
!

rg l# i --

t ld & t..C,_,i......

ADVANCED RECHNOLOGY DEVELOPMENT

MULTI-COLOR HOLOGRAPHY

(Final Report)

Contract No. NAS8-38609/D.O. 66

Prepared by
Chandra S. Vikram

Center for Applied Optics, The University of Alabama in Huntsville

Huntsville, Alabama 35899

i

Prepared for
COTR: William K. Witherow

National Aeronautics and Space Administration

George C. Marshall Space Flight Center

Marshall Space Flight Center, Alabama 35812

(NASA-CR-193931) ADVANCED

TECHNOLOGY DEVELOPMENT MULTI-COLOR

HOLOGRAPHY Final Report, I Feb.

1993 - 31 Jan. 1994 (Alabama

Univ.) 36 p

N74-27229

Unclas

G3/35 0208988

January 1994



2

CONTENTS

1. INTRODUCTION ................................................. 3

2. ERROR ANALYSIS IN THREE-COLOR HOLOGRAPHY ................. 4

3. ALGORITHM FOR PHASE DIFFERENCE MEASUREMENT IN

PHASE SHIFTING INTERFEROMETRY .............................. 8

4. ROLE OF PHASE DIFFERENCE AMONG COMPONENT HOLOGRAMS . . . 12

5. EXPERIMENTS WITH TWO COLOR HOLOGRAPHY .................. 22

6. ANALYSIS OF HOLOGRAMS BY DEFLECTOMETRY .................. 24

7. ANALYSIS BY CONFOCAL OPTICAL PROCESSING ................... 30

8. TEST CELL AND BREADBOARD OPTICAL SYSTEM DESIGN ........... 32

9. CONCLUSIONS ................................................. 33

REFERENCES .................................................. 34



3

1 INTRODUCTION

Holography is an important technique for the materials processing in space program at
NASA-George C. Marshall Space Flight Center. The Fluid Experiment System (FES)

employs holography to monitor several aspects of the fluid in the crystal growth cell. NASA

KC-135 as well as First International Microgravity Laboratory (IML) employed holography as

one of the tools in a reduced gravity environment. Holographic Optical Laboratory (HOLOP)

and FES are two space qualified holographic systems.

Traditionally, holography is used with one wavelength or color. As such, these holograms

provide refractive index information in the crystal growth cell. To extract other quantities

(such as temperature and concentration) from this information is not easy and

straightforward. Thermocouples can provide the temperature information but they are

intrusive and practical at a limited number of places in the cell. In this connection, using

two-or more colors for the holography is very important. For example, two colors provide

two independent interferograms of the same fluid. The two independent relationships can

be used to solve for temperature and concentration variations. Progress in such holography
with more than one color is documented. 1,_

Another parallel development 'is possible with non traditional applications of holographic

reconstructions. As we know, holography stores and reconstructs the wavefront. Traditionally,

this wavefront is used for holography and holographic interferometry. The reconstructed

wavefront can in fact be used for a large number of existing and future optical techniques.

There are two basic advantages of this approach. First, only one optical system (holographic

system) is flown in space, still effectively having the advantage of several hardwares.

Secondly, even holograms from a previous space mission can be re-analysed to reveal new
information.

In this report, we cover several new aspects of multi-color holography as well as non

traditional applications of holographic reconstructions. In particular, the following aspects
are covered:

• Error analysis in three color holography. This study provides error aspects in three-color
holography. The possible advantages and disadvantages of usin three-colors are described.

A particular three-color combination and a typical triglycine sulfate (TGS) aqueous solution

(in the typical crystal growth situation) case is considered in detail.

• Algorithm for phase difference measurement in phase shifting interferometry. Phase

shifting interferometry is commonly used now for the quantitative analysis of interferograms.

In the present study, we have introduced a new algorithm for the phase difference (the

quantity actualIy desired in most applications) analysis. Experiment verification with sugar-

water solution is also presented.

• Role of phase difference among component holograms. This study provides the role of the
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phase difference among different color components in multi-color holography. Fringe
intensity variations with some two- and three-color situatiuons are presented and then
important conclusionson the fringe contrast are drawn.

• Experiments with two color holography. This part covers the progress in two-color
holography performed at the Space Science Laboratory at NASA/MSFC in close
cooperation with NASA, MetroLaser, and University of Alabama In Huntsville.

• Analysisof hologramsby deflectometry.This sectioncoversexperimentsperformed using
a Ronchi grating and some holograms from SpacelabIII mission.

• Confocal optical processing. This section covers another application of holographic
reconstructions.Again, someSpacelabHI holograms were used for this way of analysis.

• Design of a breadboard optical system and a test cell. The design and fabrication aspects
are summarized here.

2 ERROR ANALYSIS IN THREE-COLOR HOLOGRAPHY

In a previous work, ' we reported some aspects of three-color holography. One of the

advantages is that we get three two-color sets with such an arrangement. Particular

advantages are thus the statistical analysis of the data and reconfirmation of the results.

Here we present some error aspects. In two color holography, two fartherest wavelengths

are used so that two linearly independent relationships are obtained to separate two

quantities (generally temperature and concentration). In three color holography, another

intermediate wavelength is also used. The selection also depends on the available laser

wavelengths, system weight, cost, etc. Now the error analysis with each available two-color

set must be performed.

In a simple test cell (rectangular parallelpiped), the error 8(AT) in the temperature change
AT to be measured is

AN[Z,l(an/ac)d + zd(an/ac)jl]
6(AT) = _ (1)

L[(an/a c), (an/aT)j- (an/a c)j(an/aT), ]

where AN is the fractional fringe order measurement capability, L is the longitudinal depth

of the test section, a n/a T and On/a T are the gradients of the refractive index (n) against

temperature (T) and concentration (c) respectively, j and k represent two-colors and _. is

the wavelength.

Also, the error 8(Ac) in the concentration change Ac is
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a(ac) = _+ (2)
L[(an/aT)_(an/ac)+- (an/aT),(an/ac)d

Using eqs. (1) and (2), the fractional fringe order accuracy needs (Mq) can be determined

using particular experimental situation. For triglycine sulfate (TGS) aqueous solution (in the

typical crystal growth situation), we know 2

and

an�aT = - 7.6443321x10".n(n 2- 1)/(2n _ + 1) °C" (3)

an/ac = 3.16056467x10+.(n 2- 1)(n 2 + 2)/n (gTGS/liter H20) 1 (4)

where n is the refractive index whose wavelength _ (in _) dependence is given by

n = 1.372753 + 366216/_? (5)

Some results using eq. (3)-(5) are summarized in Table 1. Using a typical L = 10 cm, HeNe

(_.j = 632.8 nm) and HeCd (_.k = 441.6 nm) lasers, we obtain

and

6(AT)----- _.+14 M',I °C

6(z_C) -- _ 33 _ gTGS/liter H,O

(6)

(7)

respectively. Thus, very accurate fringe orders (small M,/) measurement capability) is

required for small errors or temperature and concentration changes measurement capability.

In three color holography, the errors can be obtained for each of the three two-color sets.

One particular example in three-color holography with HeNe (_. = 632.8 nm), HeCd (_. =

441.6 nm), and frequency doubled YAG (_ = 532 nm) lasers. The result of HeNe and

HeCd combination is already known by eqs. (6) and (7). For HeNe and frequency doubled

YAG lasers, eqs. (3)-(5) or Table 1 can be used in eqs. (1) and (2) to obtain

a(aT) = __38 err °c (8)

and

6(Ac)-- _+94 M,,I gTGS/liter H20 (9)



TABLE 1. SOME REFRACTIVE PROPERTIES OF TRIGLYCINE SULFATE
AQUEOUS SOLUTION IN A TYPICAL GROWTH SITUATION AT 45 °C
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Laser/Wavelength Refractive index
n

HeNe/632.8 nm

Frequency doubled YAG
532 nm

HeCd/441.6 nm

1.381898

1.3856914

0.00019939

0.00020137

On/Oc

(gTGS/liter H2 0) 1

0.000081339

0.000082272

1.391532 0.00020441 0.000083716

Similarly, for the frequency doubled YAG-HeCd lasers combination, we obtain

6(AT) = 20 AN °C (10)

and

8(Ac) _ 49 AN gTGS/liter H20 (11)

Useful conclusions can be drawn now:

• The need of very accurate fractional fringe order measurement capability (AN .: 1)

remains with each two-color set of this particular three color arrangement.

• Frequency doubled YAG-HeCd laser combination case [eqs. (10) and (11)] demands

slightly more accurate fringe counting capability as compared to that with the HeNe-HeCd

case [eqs. (6) and (7)].

• HeNe-frequency doubled YAG combination [eqs. (8) and (9)] case demands substantially

more accurate fringe counting as compared to the HeNe-HeCd case. Therefore, this case

is less desirable for the analysis. Nevertheless, it all depends upon the fringe counting

accuracy and required temperature and concentration resolution. For example, if AN =

1/250 then 6(AT) and 6(Ac) of eqs. (8) and (9) become 0.15 °C and 0.36 gTGS/liter H20

respectively. This may be sufficient in many situations.
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The error aspectsof this particular three-color holographyyields preferable two-color sets
for the analysis.However, the methodology is general and can be applied to other laser
sources,solution materials, etc.

With the particular three-color case,now we know the minum,intermediate, and maximum
errorswere for HeNe-HeCd, frequencydoubled YAG-HeCd, and HeCd-frequency doubled
YAG laser combinationsrespectively.For the statistical data analysispurpose,all the three
results can be combined to reduce the error. Here we present the maximum possible error
of such a combination. Let us represent the measured quantity (temperature or
concentration) in terms of error and the actual value as

_ = e ± 8e_ (12)

e2 = e _+ 8G (13)
and

G = e ± 8G (14)

where &term represents the maximum possible error. Subscripts represents different colors

and e is the actual quantity without the error. A weighted average of the quantities can be
taken to result in

e,/8 e_ + e_/8e_+ e,/8 e,
I=

1/8 e, + 1/8 e=+ 1/8 e,

_+1 ±1 ±1

= _ + (15)

1/6e_ + 1/8G + 1/6G

Or, considering the maximum value of the error,

l= e ± 3/(1/8e, + 1/6G + 1/8G)

The maximum possible error 8 e is therefore

8e = ± 31(118e, + lI8G + 1/SG)

(16)

(17)

Now we can draw some specific conclusions. The particular TGS aqueous solution case the

three temperature measurement maximum errors are ± 14 AN ° C (HeNe -HeCd lasers

combination), _ 20 AN ° C ( frequency doubled YAG - HeCd lasers combination), and __+
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38 AN ° C ( HeNe - frequency doubled YAG lasers combination). Using equation (17), the

combined maximum error is

8(AT) = _.+20 AN °C (18)

Similarly, for concentration change, we obtain (using base errors as _+ 33, - 49, and _ 94

in gTGS/liter Hp respectively), we obtain

8(Ac) = _+.49 gTGS/liter H/3 (19)

We see there is no special advantage of using the three two-color combinations from the

maximum possible error point of view. However from statistical data point of view, the

individual components" errors will not always be maximum, reducing the error. Even so, the

individual two color set can be analyzed several times for the statistical data analysis to
minimize the error. So, three color holography with three two-color mode of data analysis

seems unnecessary. Nevertheless, three color holography appears useful from the following

aspects:

• Different wavelengths provide different interefrence fringe frequencies, providing useful

analysis if the frequency is too small or too large with a particular combination.

• Three color lasers, now commercially available, can be used as such without beam

combination problems.

• Three unknowns can now be considered to be solved using three interferograms. Thus,

one can in principle, eliminate some unwanted effect, such as those due to the window

materials, on the interferogram.

• In phase shifting interferometry, several phase measurement errors depend on the phase

(or the fringe position) itself. 3_With three two-color sets, a particular set can be used at

particular spatial location to minimize the error.

Thus, there are several potential uses of three color holography.

3 ALGORITHM FOR PHASE DIFFERENCE MEASUREMENT IN PHASE SHIFTING

INTERFEROMETRY

For the quantitative analysis of the interference fringes, here we present a phase shifting

algorithm with experimental verification. The method involves only three steps - the original

and two equal in amount but unknown phase steps for each stage. Only six frames of data

are thus sufficient for the phase difference analysis between two stages. Real time

holographic interferometry with concentration change of a sugar-water solution in a test cell

is presented for the experimental verification.
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Phasemeasurementinterferometry is a well establishedtechnique in optical metrology. 3-5
In this, different phaseshifts areprovided to the original distribution suchasan interference
pattern. The irradiance data from these shifted patterns are then used to compute the
desired phaseinformation. The phaseat each point can thus be obtained rather than at
fringe maxima or minima in customaryinterferometry. The whole-field data canbecaptured
by a camera (CCD, CID, etc) and processedby a computer to obtain the phasemap over
the field. The procedure continues to be refined, critically studied, and applied to new
situations. _.17

There are severalphasemeasurementalgorithms.Thesearewell describedby Creath, 3and
Greivenkamp and Bruning. 4Theseare Three Step Method, Four Step Method, Integrating

Method, Multi-Step Method, Carr_ Method, Hariharan Method, etc. In one class of methods,

the phase steps must be precisely known or calibrated. In the other one, such as in the CarrO

Method, the phase shift need not be known because it is eliminated by the mathematical

process of the algorithm. The method is very powerful because it does not need phase
calibration and also works with converging or diverging beam where the phase shift varies

across the beam.

In the Carr6 method, the four phase steps are shifted by a to give phase steps of -3a/2, -

a/2, a/2, and 3a/2. The four intensity equations are then solved to yield the unknown phase

in the original pattern.

It is interesting to note that in many applications, the phase difference between the two
states (or times) of the test field is desired. So determining the absolute phase in the

individual pattern is overkill. It is important that the difference measurement may require

less number of phase shifts, data storage, simpler phase shifts, etc. We have found one such

algorithm that we are reporting here. Like the Carr6 technique, our method does

not need phase calibration. The required phase steps by a are given as -a, 0, and a. The

steps are only three (including the original state) and the total phase shift range is reduced

from 3a to 2a. Providing linear phase shifts should then be an easier task. The reduced data

acquisition should also help the system stability requirements by reducing the total

acquisition time.

Let us write the intensity equations for O, a, and -a phase shifts as

I, = A + B cos $, (20)

12 -- A + B cos (q_ + a), (21)

and

13 = A + B cos ($- a), (22)

where A and B correspond to the background and the contrast of the pattern and can be

space-variant. _b is the phase of the original pattern. Now suppose a phase shift _ is
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introduced in the original pattern and that is the quantity to be measured.The phaseshifts
0, a, and -a will give the corresponding intensities as

I, = A + B cos (_b + 8), (23)

I5 = A + B cos (_b + 6 + a), (24)

and

I6 =A +Bcos(¢ +6-a).

Now the unknown 8 can be obtained by the following procedure.

quantity (say P) as

(25)

First we determine a

p

I_-I, sin (4_ + 6)
w

13- I, sin 4_

(26)

Similarly we determine another quantity (say Q) as

(I6- I, ) + (I,- I,)

Q=
(I2-I,) + (I3-I1)

Equations (26) and (27) can be solved to obtain

PQ+ 1
COS 8 =

P+Q

cos (_ + 8)

cos _b

(t6- I,)[q6- t,) + (I,- t,)] + (t3- L )[(I2- I, ) + (I3- I,)]

(I6- I5)[(/2- I,) + (13- I,)1 + (I3- 12)[(I_- I,) + (I5- I, )1

(27)

(28)

(30)

(29)I3 + I2- 2/1 = 2B cos q5 (cos a- 1),

yields the sign of cos qS. Then from

13- 12 = 2B sin _b sin a,

The exact value of 8 in the complete cycle of 2rr can be determined as follows. Equation

(28) gives the sign of cos 8 as such. Assuming the sign of cos a is known, the relationship
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we obtain the sign of sin 4,. Therefore the sign of tan 4, or cot 4, is now known. Finally, from

P = cos 8 + cot 4' sin 8 (31)

or

Q = cos 8 - tan 4' sin 8 (32)

the sign of sin 8 is determined. Once the signs of sin 8 and cos 8 are known, we can place

the value of 8 in the appropriate quadrant.

An interesting aspect of our algorithm is when the phase difference 8 is small (8 < ,rr/2).

Even if the phase terms in the interferograms described by eqs. (20) - (25) cover many

cycles (fringes), 8 given by eq. (28) will not have phase ambiguities in this situation.

We have performed some preliminary experiments to verify the algorithm. A real-time

holographic interferometry set-up to study the phase change of sugar-water solution upon

the concentration change was used. First the hologram of a test cell ( 1 cm inner thickness

or the longitudinal path length) containing distilled water was stored. As shown in Figure

Aperture

stop _ I

Real-time /
// Referencefringes

/ _wave

(i/ _ / / ./Object

3 = -= \V _f //J__ wave

shifter

"_ .. P ........ cell
/ hologram

Reconstructed and

object waves

Figure 1. Observation of real-time holographic fringe pattern for the analysis of optical path

variations of the fluid in the test cell. HeNe laser of wavelength 632.8 nm was used.

1, the processed hologram was kept back on the original stage to observe real-time fringes.
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A photo-detector (much smaller than a fringe) linked to a microvoltmeter was used to
measure the intensity. The phase stepswere provided by a rotating glassplate (Corning
Cover Glass
No. 11,_on a rotation stage)phaseshifter. 3.,9The rotation wasprovided by a computer
controlled translator. Up to 20000stepsof the translator would produce a 2-rrphaseshift.
We provided o_ = "rr/2, although this knowledge is not required in our algorithm. However,

we will use this later for comparing the results with another algorithm. For the phase change

3, the concentration of the solution was changed by removing some water and replacing by

a dilute sugar -water solution. The fact _8that the refractive index of water at room

temperature (20 ° C) changes by 0.00144 for one percent change in the sugar was used. Thus
the concentration in the cell was changed to obtain _,/2 optical path length change (or "n-

phase change, also verified by half fringe shift on the photodetector) for the HeNe laser

wavelength _. = 632.8 nm. The microvoltmeter readings (in p.V) I,, 12, I3,14,15 and 16

were 352.5, 1015, 255, 781, 68.5 and 911.5 respectively. Equation (20) gives the value of cos

8 as - 1.0015. This value is very close to the expected value of cos ,n- = 1 and proves the

general validity of the algorithm. Nevertheless, error analysis and other critical aspects of

the technique should follow.

Three step method due to Wyant et al. 3_ with a = "rr/2 can also be used to determine

for verification of the results. By replacing our 11, 12 and 13 into their 12, 13, and 11

respectively, we basically determine tan (05 - ,n-/2 - -rr/4). Similar data about tan (05 + 8 -

rr/2 - rr/4) can be obtained from our I,, 15 and 16 values. Finally _ can be obtained using

tan (x -y) = [ tan x - tan y]/[ 1 + tan x tan y]. Using our experimental data, we obtain tan
8 = 0.037, or one of the values of 6 as 182 o. This value is very close to the expected value.

As we notice, there are five unknowns: A, B, 05, 8 and a so basically five equations are

required to solve for a given quantity. We used six ( convenient because we need only three

for each set). However solutions using only five equations are possible. For example, using
Carr6 method, we can first solve for A, B, 05 and a using four initial intensity values. Then

using a fifth intensity with an unknown phase difference (8), 8 can be determined.

Nevertheless, complicated expressions and additional phase ambiguities are expected.

To conclude, the proposed algorithm for the phase difference measurement requires fewer

phase steps (three, as compared to four in the Carr6 method). The reduction in the total

data acquisition time would reduce the system stability time requirements. The phase step

range is smaller helping to provide a linear phase change. Thus in a number of situations

when the phase difference is the desired quantity we have an alternative option.

4 ROLE OF PHASE DIFFERENCE AMONG COMPONENT HOLOGRAMS

In a previous study, _we described the hologram fringe contrast from heterodyning of more
than one wavelengths. The general conclusion was that the heterodyning due to the



13

superimposition of the component holograms reduces the effective hologram fringe contrast

in most of the hologram. Consequently, there is no need to have a high customary reference
to object beam intensity ratio of the component holograms. The main advantage of reducing

the beam intensity ratio is to partly recover the loss of the reconstruction efficiency due to

the multiplexing process.

So far we assumed that different holograms due to different colors cover identical paths in

the interferometer so that there is no phase difference among them. In the present study,

we consider the role of phase difference among them. This phase difference may arise due

to different refractive indices (still in the common geometrical path) of different wavelengths

passing through window materials, and the phase media itself. More importantly, if there

is some advantage from this phase difference, it can be deliberately introduced between two

or more holograms. The usual contrast factor F(_0) with ideally superimposed holograms 1
is

F( 0) = cos q, + cos + cos + .... (33)

where q_is the phase difference between the reference and the object waves at the hologram
plane due to the first wavelength _.. _.2, _.3, ... are the second, third, ... wavelengths

respectively.

Now _ _ , _ 3 , etc. can describe the role of the phase difference among the holograms.

These phase factors can be constant as well as space variant. We have already described

F(q_) without these phase factors for some two- and three-color cases of practical interest.

Now we shall describe the role of the additional phase factors.

• Two color holography with frequency doubled wavelengths. In this case the function F(_0)

becomes cos q_ + cos ( 2 q_ + _ 2). In Figure 2, we have plotted the function F(q_) against

_ofor some values of _ 2. As we see that in a complete cycle when gr 2changes, maxima and

minima both shift up or down in the pattern.

• Three color holography with HeNe ( ,l = 632.8 nm), HeCd (2 2 = 441.6 nm) and frequency

doubled YAG (2 _ = 532 nm). This is an important practical combination because of the

availability of practical laser sources and also about equal wavelength difference between

successive wavelengths.In the presence of phase difference among component holograms,

we can represent

F(,p) = cos + cos [(VX3q, + *2] + cos [(X/X3 o + (34)

We have plotted F(q_) for this case in Figure 3. The solid line corresponds to the usual case

,2 without the phase difference whereas the dashed curves are with the respective phase

differences. Although we have provided only one phase difference (between only two

holograms at a given time ) we find considerable differences.
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Figure 2. Variation of F(q_) against q0for two color holography with frequency doubled

wavelengths. (a) and (b) correspond to different values of qr2.
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Figure 3. Variation of F(q_) against _ for three color holography with HeNe (wavelength
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In Figure 3(a) the maximum difference between the maxima and minima is reduced (as

compared to that with the original solid curve). This should be of advantage to have high

effective reference to object beam intensity ratio for the entire hologram with a low actual

beam intensity ratio. Figure 3(b) shows similar trend. In Figure 3(c) and 3(d) the changes

are not of any advantage. The results of Figure 3(e) and Figure 3(0 are interesting.

Although the maximum differences between maxima and minima values are generally not

reduced by the phases ,, such maxima and minima are reduced in number. Thus, smaller

area of the hologram encounters them. Thus, the phase , plays a helpful role in linear

hologram recording with a low beam intensity ratio. Therefore, in this case the additional

phases tit are important and have a potential use in the system designing.

Like equation (34) we can represents the general variable part F(_0) of the hologram
intensity in multi-color holography as

F(_o) = cos q_ + cos [(_./Z2)q_ + *2] + cos[(_./X3)q_ + ,'_] + ..... (35)

where _., _.2, L3, etc are the first, second, third, etc. wavelengths. Quantities _2, _3, etc. are

the mutual hologram phase effects.

In usual single color holography, the factor F(q_) varies between + 1 and - 1. With more

than one (say N) colors, it will vary between _ O N where B < 1 is possible in a large

portion of the hologram. Some explanation about the coefficient _ is appropriate here. We

can see from eq. (35) that if N cosine terms are added, the maximum possible values will
still vary between _ N. However, due to frequency and phase differences among the cosine

terms, destructive interference will occur at different locations of the hologram. The

coefficient _ is introduced to mathematically describe this situation so that different cases

can be compared in the analytical sense. Figure 3 clearly shows the usefulness of such a

coefficient. For example in Figure 3(a), the solid curve covers a large portion with _ < 0.6

(or F(q_) < 1.8 ). If just cos q_is plotted, a smaller portion will cover ,e < 0.6 [or F(_o) < 0.6]

in the range of the plot. The role of the destructive interference seen for _ between 5 and

25 in Figure 3(b) is not there for N = 1 case.

Earlier, 1we have observed the function F(q_) (or B when normalized with N) for some

two- and three-color combinations with *i = 0. The function varied significantly at least in

the limited plotted domain. Also, it was observed that B < 1 is possible in a large portion

of the hologram.

Then earlier in this section we observed significant variations occur due to mutual phase

shifts among holograms due to different colors. The variations shown are for a limited

number of fringes or only a small portion of a typical hologram. Plots for extended values

of q_ can be made for further studies. Now we present the results of such a global

observation of the situation. Starting with a large number of fringes, we determined the

portion of the total hologram area falling within a certain value of B • This is one of the
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ways of reaching to some conclusion on the mutual hologram phase effects. As we

havefound earlier 'that for a given fringe contrast in the combined multi-color hologram,

the standard net ratio (usually between 3 and 10) a and a lower ratio a " of individual

holograms, are related by

_¢'V(a" + 1)= aV(a + 1) (36)

Thus, the factor B can help visualizing the situation quantitatively. As an example, the lowest

possible value of a" (= 1) and 13 = 0.866 yields the beam ratio a as 3, which is generally
sufficient for the linear recording. Now we will see obtainable B values in different

situations.

Two- and three-color holography with irrationally related wavelengths

The results of several calculations with these cases are presented here. With the two-color

case we considered several combinations, particularly three two-color combinations from

HeNe (_. = 632.8 nm), frequency-double YAG (_. = 532 nm ), and HeCd (_. = 441.6 nm

) lasers. The quantity I cos _ + cos [(X/_.2 ) _ + _2 ] I/2 was calculated. With each case,

the value of q_up to 400-rr was considered. Calculation was started at q_ = 0 at intervals of
0.01_r to the maximum value. Whenever the value of B was less than or equal to a certain

assigned value, the particular calculation was counted. In that way the portion of the

hologram with B-value less than or equal to a certain number was determined. The

calculations were repeated for several values of B. Each calculation was performed for

several values of _2 (0, "rr/4, ,rr/2, 3"rr/4, "rr, 57r/4, 3"rr/2, and 7"rr/4). It was found that the

results were practically independent of the wavelength combination (irrationally related

wavelengths in each case) and the phase _2. This is simple to explain. For a given value of

cos q_ (say at phase angles q_,2,rr + q_,4_ + q_, 6rr + q_,etc.), cos [(_./_.2 ) + _2 ] will take

each possible value between + 1 and - 1 if the wavelength ratio is irrational. Thus at the

particular phase of q_ the value of the function is independent of the wavelength ratio and

the phase _2. Similar conclusion can be drawn for other values of q_ and hence for the

entire hologram.

In case of three-color holography, similar calculations were performed for the quantity ]

cos _ + cos[(X/X2)_ + ,_] + cos[(X/Z3),p + .3]1/3 with several laser wavelength

combinations (including the above mentioned wavelengths. Again as expected for the

irrationally related wavelengths, the result was independent of the wavelength combination.

The results of these two-and three-color situations are represented in Figure 4. The ratio

of the hologram portion (less than or equal to certain B-value) to the total hologram has

been plotted against B. As we see, for very small values of B, the three-color case has

slightly lower ratio as compared to the two-color case. Otherwise, the three-color case

generally yields more portion below the certain B-value. As expected the results for both the



cases are common at B = 0 and 1 points.

2O

Two-color holography with frequency-doubled wavelengths

In this case, the normalized absolute value of the function F(q_) becomes ] cos q_ + cos (2 q)

+ _2) l/2. For the portion of the hologram under certain B-value, we calculated the function

between 0 and 2"rr, in intervals of 0.0002"rr. _2 values considered were 0, rr/25, 2_r/25,

3rr/25,..., 2"rr. The results are plotted in Figure 5. The results are interesting because the role
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Figure 4. Plot showing the fraction ( called ratio) of the hologram equal to or less than

certain B-value against B. Irrationally reIated wavelengths are assumed.

of _2 becomes important. For example, near _2 = ,n-, the ratio is minimum and maximum

depending upon the value of B. Thus, the phase _2 can be an important controlling factor

in the system designing.
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Figure 5. Fraction (ratio) of hologram below a given B-value against _2. Two-color

holography with frequency-doubled wavelengths is considered.

Conclusions on fringe contrast and phase effects in multi-color holography

Mutual phase effects among component holograms in multi-color holography may or may

not play a role on the portion of the hologram below a given contrast level. When the

wavelength ratios of component holograms are irrationally related, the phase factor does not

play a role in the statistical sense. For the rationally related wavelength ratios, the phase

factor can play a key role in optimizing the contrast. For two- and three-color holography

with irrationally related wavelengths, and two-color holography with frequency-doubled

wavelengths, the study has also provided fractions of hologram under different contrast
levels.
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5 EXPERIMENTS WITH TWO COLOR HOLOGRAPHY

Several experiments have been performed at the Space Science Laboratory at NASA/MSFC
in close cooperation with NASA, MetroLaser, and UAH. Initially, the test cell and the

control software (by MetroLaser) were tested for their functional performance. Then the

system was refined and used for extensive experimentation. Several temperature and/or

concentration change experiments of sugar solutions in the test cell were performed. Phase

steps were given to store shifted interferograms for the digital data processing.

NASA/MSFC is performing data processing, phase unwrapping, etc.

The optical system is represented by Figure 6. Basically, the hologram of the test cell

containing water is first stored. The processed hologram is kept back on the original stage
for real-time observation of the fringes. These fringes are due to the interference between

the actual object wave (from the test cell fluid) and the reconstructed image of the cell

containing water. The difference between the two times is shown in form of interference

fringes. The position of the hologram on the translation stage can be manipulated to obtain

a desirable fringe frequency.

The following specific experiments were performed after gaining experiences from the

earlier experiments:

• Real time holographic interferometry with phase shifting. First, a two-color hologram of the

test cell containing water was stored. The processed hologram was replaced back on the

original stage to observe real-time interference fringes. Each color (from HeNe or HeCd

laser) was used separately to observe the patterns against the changes in the test cell, and
the fringe shifter. The experimentation was performed by increasing the temperature on the

cell top and bottom to have a minimum temperature somewhat in the middle of the cell

section. In another experiment, the concentration at the cell bottom was increased by

removing some water and replacing it with a sugar solution, and then increasing the

temperature at the top and bottom of the cell. This part was to create a maxima or minima

of the temperature and concentration well inside rather than near the wall of the cell. The

necessary fringe shifted patterns were digitized by the video camera for further analysis.

• Holographic storage of the temperature and�or concentration gradients. This mode of storage

is close to the traditional holographic storage in space environment. First, the desired

conditions of the test cell were generated and then the hologram (two-color) stored. The

reconstructed images were studied in the real-time manner with the test cell now with water

without temperature or concentration gradients. There are two main advantages of this

approach. First, both the colors are simultaneously used to store the cell condition. Second,
this is the traditional NASA method to store the holograms in space. So, there will be

minimum changes in the analysis and storage methods, hardware, etc. except replacing the

single color laser to a multi-color one. Phase shifted interferograms were stored with

temperature minima alone ( i.e. just water in the cell) in the middle of the test cell, as well

as with a dilute sugar solution at the bottom of the cell and then the temperature condition.
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NASA/MSFC performed some data processing of the digitally stored interferograms of
theseexperiments.

Granite table
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Camera _x l
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Recorder
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Mirror
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Reference ./1_/ _ _. Beam

/ beam / k@/ - splitter

/ \/ ...'.Object ,,
/_..- boam

=: f,_

Hologram cell (Computer controlled)

To oscilloscope

(Detector system removed for video)

Figure 6. Experimental arrangement for two-color holographic interferometry

Initially we used a photodetector to measure the intensity (of the fringe pattern) at a point.

Experiments in Reference 1 as well as in the Section 3 found usefulness of the method. This

procedure was adopted to test the optical arrangement, sensitivity, algorithm, etc. Now we

are storing the whole field data using a CCD camera so that the processing can be
performed using a computer for the entire cross section. We have successfully obtained the

phase maps of the entire cross-section and will continue to refine the approach for the

ultimate goal of temperature and concentration separation.

The phase shifter is now rotated by a computer controlled translator. The phase shift

resolution of _/10,000 is available. The test cell temperature (with six thermocouples) is also

controlled by the same computer. Details of these computer controlled devices are available
elsewhere. ,1

For the data analysis, phase shifting interferometry 3-,is used. A new algorithm (see Section

3) has also been developed.
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6 ANALYSIS OF HOLOGRAMS BY DEFLECTOMETRY

Defection of light passing through a transparent media contains valuable information about

the refractive properties of the material processes. For example, Lenski and Braun " of

Dornier gmbH, Germany used it to study convection in vapor crystal growth experiments.

The method is simple from the diagnostics point of view and adaptable to a spaceflight

experimentation. We can move one step ahead. A hologram from a mission (say from the

NASA FES system) already has the deflection information. Studying the reconstruction in

the deflection mode should be possible without any additional hardware as far as the

recording is concerned. Also, Lensld and Braun '*work uses a single laser beam passing

through a region of the test section. Ronchi gratings can also be used _' for the whole field

analysis simultaneously. In our experiments, we have used a Ronchi grating and holograms

from Spacelab III mission to establish the approach. Holographic deflectometry was

introduced by Verhoeven. 25However, that method was a pointwise method using an

aperture stop. Our approach has the following key features:

• Whole-field analysis by Ronchi grating

• Hologram from an earlier space mission used

The principle of deflection measurement by Ronchi ruling method can be described by

Figure 7. A collimated light is passed through the deflecting medium (such as a crystal

growth test cell). The transmitted light will not remain collimated and the deviation will

(dn/dy) t

CollimaLed 't

beam .

Deflection

DefleeLing
medium ruling 0bservation

plane

Figure 7. Diagram illustrating deflectometry using a Ronchi grating.
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locally vary dependingupon the refractive deviations.Theseray anglescanbe measuredby
placing a Ronchi ruling asshownin the figure. The position of the shadowof the ruling on
the observation will reveal the deflection. The angular deflection 0 in terms of the mean

refractive index gradient dn/dy and the active optical length e is given by 23

0 = (dn/dy)

To adopt the method for holographic reconstructions (such as from an earlier space

mission), the principle can be illustrated by Figure 8. The hologram of the deflected

Deflecting
medium

Collimated I 5 /

object beam >

/ /
" / Recording

_Reference / plane
beam *

Reconstructed
Observation wavefront

plane

Ronchi

Reconstruction
beam

ruling
Hologram

Figure 8. Recording of a hologram of a deflecting medium and subsequent readout of the

reconstruction using a Ronchi ruling.
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wavefront after passingthrough the test section is stored.Traditionally, thesehologramsare
reconstructed in the holographic interferometry mode. In the Ronchi ruling approach, the
grating can be placed near the real image plane to study the deflection contours. For our
experiments,we used a Ronchi grating with 100 line pairs per inch. The holograms were
from SpacelabIII mission dealing with triglycine sulfate (TGS) crystal growth solution.

Results reported here are when the observation plane (ground glass) is 42 cm away from

the Ronchi ruling. Figure 9 correspond to the hologram number 2POl1(14) with horizontal

and vertical gratings respectively. This hologram was for a relatively low refractive gradient

situation. The lines generally remain unchanged except near the crystal, or when bubbles,
etc. are encountered.

(a)
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(b)

Figure 9. Observation of the deflected Ronchi gratings from the reconstruction of hologram

number 2POl1(14). (a) and (b) correspond to the grating lines horizontal and

vertical respectively.

Figure 10 correspond to a relatively higher refractive index gradient situation [hologram

number 2PO85(88)]. Not only the higher gradients seen in the form of ruling contours, we

see the turbulence effects. From the crystal and upwards, the streams (with local refractive

index changes), have different line broadening effects, visualizing these streams. These

streams are seen when the lines are horizontal. That means the gradients are dominant in

the vertical direction.
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(a)

(b)

Figure 10. The deflections from the reconstruction of hologram number 2PO85(88)

corresponding to (a) horizontal and (b) vertical gratings.
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In Figure 11, the hologram [number 2P171(174)] is of a high gradient situation but also

contained a grid in the test cell. Those grids, combined by our Ronchi grids, make a

complicated pattern, including a Moire pattern. Obviously, as such it is complex for the

analysis at this stage.

Figure 11. The reconstruction observed by the Ronchi grating in the horizontal direction.

The hologram [number 2P171(174)] already contained another grid at the recording stage
near the cell.

These early experiments conclude that deflectometry is an useful tool to study holographic

reconstructions of large gradients. The approach has the following advantages:

• Whole field approach

• Variable sensitivity by changing the observation plane position.

• No additional instrumental needs for the recording

• Very minimal (such as commercially available Ronchi rulings) additional instrumental

needs at the data readout stage.

• The impractical assumption of usual interferometry that there is no ray deflection is not

required here.
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7 ANALYSIS BY CONFOCAL OPTICAL PROCESSING

In connection to solidification studies, McCay et al. _'_7described the use of confocal optical

processing. Basically, this is central dark ground method of the phase contrast to convert

refractive index variation into intensity variations. McCay et al. used the system for

solidification studies of a simulated metal alloy (ammonium chloride in water). Such optical

processing can also be performed from holographic reconstructions, particularly already

existing holograms from an earlier space mission. Here we report some results using

holograms from Spacelab III mission. As seen in Figure 12, the real image is first

T

i f f
< >< -.//--. >

Lens

[
><

Lens /
Input

Observation Filter plane
plane plane

Image

/

Hologra_m_

Reeonstruetion
beam

Figure 12. Arrangement for confocal optical processing of the real reconstructed image from

a hologram.

reconstructed as usual. A double lens system (each of focal length f) is used to Fourier

Transform and then Inverse Fourier Transform to get the original image back. However, in

the Fourier plane, if a small opaque stop is placed to remove some of the low frequency

components, then the image intensity will take the form of A - B cos q_,where q_is the phase

variation. The fringe like pattern will yield refractive index variations and then ultimately

other quantities such as temperature and/or concentration variations. Basically, q_(x, y) over

the cross section is 2"rr/_. multiplied by the integration of the refractive index variation n(x,

y, z) over the thickness ,r (in the longitudinal or z-direction) of the test fluid/cell. If there
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is no index variation in the z-direction, q_ is simply 2"rr_'n(x, y)/_..

In our experiments, holograms from Spacelab III mission were used to reconstruct the

images using HeNe laser at 632.8 nm wavelength. The lenses of 16 cm focal length and 4

cm diameter were used. For the spatial filtering, 100/xm square opaque masks on a glass
slide was used.

The resulting processed images are shown in Figure 13. This was a triglycine sulfate (TGS)

crystal growth situation. Obviously, the interference fringes are clearly seen and further

analysis for the refractive index can be performed like that in holographic interferometry.

As compared to holographic interferometry, the fringe contrast is poorer. Although one may

optimize the filter to for the best contrast. On the other hand, the confocal processing

method is a quick visualization technique. Also, since both the components for the

interference have almost same path, the fringes are very stable. This appears to be a serious

advantage of the confocal approach. In usual real-time holographic interferometry, fringe
stability is a problem.

(a) (b)
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(c) (d)

Figure 13. Images obtained by confocal optical processing of some reconstructed wavefronts

from Spacelab III holograms. (a), (b), (c), and (d) correspond to hologram numbers 3PO38,
3PO49, 3PO65 and 3PO167 respectively.

8 TEST CELL AND BREADBOARD OPTICAL SYSTEM DESIGN

The designing aspects of the test cell and the breadboard optical system were performed in

close cooperation with NASA/MSFC and MetroLaser, California. MetroLaser fabricated

these components. The details are reported in the MetroLaser report. " The important
features are summarize here.

The test cell is made of quartz. It is capable of containing a solution of 1 centimeter path

length with (i) constant (in space and time), known, adjustable temperature and

concentration with the ability to change these quantities, (ii) constant temperature (in space
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and time) and a known concentration gradient, and (iii) constant (in space and time)
concentration distribution and a known temperature gradient. The rangesand accuraciesof
these quantities correspond to a typical crystal growth situation. The cell is made of quartz

faces with an aluminum cap on the top. To introduce and control temperature and gradients,

thermo-electric's are attached above and below of the cell. The cell system is enclosed and

mounted in an insulated copper enclosure with open faces of glass windows for the optical
access. Thermocouples are mounted at different vertical positions in the cell. The operation
and control of the thermal system is done by a computer. For concentration gradients, layers

of different solute concentrations can be introduced from the top of the cell using a pipette.

Thus, the desired, temperature, concentration, and the gradients can be introduced.

The fiber optic breadboard consists frequency doubled YAG (wavelength 532 nm) and diode

(wavelength 680 nm) lasers for two-color holography. Light from each laser is launched into

optical fibers. Each color is further divided into two parts (to serve as object and reference

beams) using 50/50 beam splitting couplers. For each color, one of the fibers (say the

reference) passes through PZT phase controller for the phase shifting. Finally, to combine

the beams (due to each color) for holography, the fibers were cemented together. The

results of the preliminary experimentation using the system are described in the MetroLaser
report. "

9 CONCLUSIONS

We have studied several key aspects of multi-color holography including some non-

holographic mode of analysis of the reconstructed images from holograms. The error analysis

in three-color holography helps in suitable selection of wavelengths for the analysis. Also,

three color holography has several potential advantages like a range of fringe frequencies

for the useful analysis, possible minimization of the error when phase shifting interferometry
is used, etc.

The new algorithm developed for the phase difference measurement is unique because it
avoids the phase measurement each time and then measuring the difference. The reduction

in the total data acquisition time and the system stability time are expected. We have

verified the developed theory with experimentation on sugar-water solution.

Another new aspect considered in this study is the role of phase difference among

component (individual color) holograms. We have found some interesting results on the
effective hologram fringe contrast. Several two- and three-color cases were considered. It

is found that the mutual phase effects may or may not play a role on the contrast depending

upon the situation. The study should be useful in optimizing the fringe contrast and hence
the reconstruction efficiency.

The continued experimentation with two-color holography and phase shifting interferometry

are providing the useful data for the digital analysis of the fringe patterns for obtaining the

desired refractive index and temperature information. These experiments also helped in
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designingand fabrication of asmall breadboardsystemusing optical fibers and diode lasers.

Finally, we havesuccessfullydemonstratedthe useof holographic reconstructionswith other
(non holographic in nature) analysismode. This is very important becauseonly hardware
is to be flown in spacewhereasother techniquescanbeusedlater on ground at the analysis
stage.Even techniquesnot presentlyexisting canbe usedwith holograms stored on earlier
space missions.We have used deflectometry and confocal optical signal processingusing
SpacelabIII holograms.These techniquesarevery usefulfrom the sensitivity, fringe stability,
and other aspects.

In summary,we havebeenable to push further the stateof the art of multi-color holography
and unusual applications of holographic reconstructions.Although, crystal growth on earth
as well as in microgravity conditions in mind, the study is very general. It should be very
useful in holography of heat and masstransfer in general, combustion studied, aero- and
fluid-dynamics, etc.
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