VENI, VIDEO, VICI: THE MERGING OF COMPUTER AND VIDEO TECHNOLOGIES

Jay G. Horowitz
NASA Lewis Research Center
Cleveland, Ohio

Pre-HDTV Milestones

Video Technology

V. Zworkyn invents iconoscope & kinescope
NBC Begins regular broadcasts
First coast-to-coast broadcast
First Color Broadcast
Early Bird 1st TV Satellite
Early HDTV

Computer Technology

Technology Transfer

Vector Displays
Color Raster Systems

Digital Video LCD TV Screens

PONG

Apple II

43
Post-HDTV Milestones

Video Technology

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>FCC adopts broadcast standard</td>
</tr>
<tr>
<td></td>
<td>All stations broadcast HDTV</td>
</tr>
<tr>
<td>2000</td>
<td>Advanced Digital Image Architecture</td>
</tr>
<tr>
<td></td>
<td>Ultimate Imaging Systems</td>
</tr>
<tr>
<td>2010</td>
<td>No more NTSC</td>
</tr>
<tr>
<td>2020</td>
<td>Trans-Mortal PONG!</td>
</tr>
<tr>
<td>2030</td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td></td>
</tr>
</tbody>
</table>

Computer Technology

- Neural-nets, parallel systems, organic & optical computers

Visual Information Bandwidth

Visual Factors:
- Field of View (image size)
- Visual Acuity (pixel size & number of pixels)
- Dynamic Range (number of bits/pixel)
- Color (color components and encoding scheme)
- Image Retension (flicker rate, images/sec)

Analog Bandwidth (Hz):
\[
= (\text{Images/sec}) \times (\text{Lines/image}) \times (\text{cycles/line}) \times (\text{Number of Colors})
\]
where 'cycle' is minimum horizontally resolvable unit, one 'on-off'

Digital Bandwidth (bps):
\[
= \text{Analog Bandwidth} \times 2 \times \text{pixels/cycle} \times \text{Number bits/pixel}
\]

Example: Monochrome Broadcast TV

- 30 frms/sec * 525 lines/frm * 250 'cycles'/line = 4,000,000 cycles/sec = 4 MHz
- at 2 pixels/cycle * 8 bits/pixel = 64 Mbs
Television Frequency Allocation and Bandwidth

Frequency, Hz

Power Radio VHF UHF Microwaves InfraRed Ultraviolet X-rays Gamma Rays

Channel

54 60 65 72 76 82 88

174 180 188 192 198 204 210 216 MHz

Picture Carrier

Color SubCarrier

Sound

Luminance Signal

I-signal

Q-signal

6 MHz

Horizontal Scanning

Workstation Video

1024 Scanlines

60 Full Frames/sec

Non-Interlaced

Television

525 Scanlines

30 Full Frames/sec

2 Interlaced Fields
Workstation RGB Color Domain

Scanline

Red Signal

Green Signal

Blue Signal

NTSC Color Domain

Susceptible to adjacent pixel color interference

Scanline

Luminance Signal

Chrominance Signal

Composite Signal
American HDTV Time-Table

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>Acceptance of 1125/60 SMPTE 240M Analog HDTV Standard</td>
</tr>
<tr>
<td></td>
<td>(Already delayed because all proposed standards had problems!)</td>
</tr>
<tr>
<td></td>
<td>- Begin ON-AIR Testing</td>
</tr>
<tr>
<td>1995</td>
<td>First Commercial receivers/licenced broadcasts</td>
</tr>
<tr>
<td></td>
<td>(All stations must also simulcast NTSC)</td>
</tr>
<tr>
<td>2000</td>
<td>All Stations must be HDTV capable</td>
</tr>
<tr>
<td></td>
<td>(Simulcast NTSC still enforced)</td>
</tr>
<tr>
<td>2009</td>
<td>Shutdown NTSC Broadcasting</td>
</tr>
<tr>
<td></td>
<td>(Recoup valuable broadcast frequencies & bandwidth)</td>
</tr>
</tbody>
</table>

HDTV Image Size

<table>
<thead>
<tr>
<th>Aspect Ratio</th>
<th>Visible Image Size in Pixels</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:3</td>
<td>~1280x1024 pixels</td>
</tr>
<tr>
<td>16:9</td>
<td>~1920x1035 pixels</td>
</tr>
</tbody>
</table>

Comparison of Aspect Ratio and Visible Image Size in Pixels
Digital HDTV Heirarchy

HDTV Production Standard

Fiber Optics
- 120 Mbps

DBS Satellite
- 60 Mbps

Cable & Broadcast
- 20 Mbps

VCR in EP Mode
- 10 Mbps

Consumer TV

Down-converters

Task Force on Digital Image Architecture

Represents input from SMPTE, IEEE, ATSC

"To develop and propose a structure for a hierarchy of digital standards to facilitate interoperation of high resolution display systems." [That are:]

Open
- In the Public Domain

Interoperable
- Images move across application/industry boundaries

Scalable
- Wide range of image size, color, speed capabilities

Extensible
- Room for future technology

Compatible
- Incorporate existing imaging/television standards
Open Architecture Model

Image Acquisition/Generation

Processing
Production Quality Storage

Contribution Quality Storage

Transport
Distribution Quality Storage

Reconstruction

Display

Future Displays

Wrist Display
- Low power, wire-less transmission, close viewing

Personal Viewer –
- Eyeglass/visor Heads-Up display, head-tracking

Home Entertainment –
- Flat, wall mounted, typically 6 meter diagonal

Physician’s Work Surface –
- X-ray wall, close-viewing, super hi-res, locally magnifiable

Writer’s Table –
- Desk-size, multi-page, pen/touch input, cut/paste

Artist’s Canvas –
- Special color/contrast/texture capabilities, unique input/output control

Make-Up Mirror
- ‘Through-the-screen’ cameras, image processing
The ULTIMATE Imaging System

1) Field of View ~ 1.5π Steradians = 15,000 sq. degrees
 (typical movie screen ~ 1200 sq. degrees)

2) Spatial Resolution ~ 0.65 arcmin = .01 deg.
 Assume 2 pixels per minimum resolution
 implies 16 pixels/sq. arcmin

1 & 2) -> 36,000 x 28,000 pixel screen

3) Color -- 3 components

4) Dynamic Resolution ~ 10^5:1 -> 17 bits

5) Time Resolution ~ 60 images/sec

6) Stereopsis -> x2

= 771 GBytes/sec (not including digital sound, closed-captioning, etc)