NASA Contractor Report 195291 e & 2 }/

Computer Code for Controller Partitioning
With IFPC Application
A User’s Manual

Phillip H. Schmidt and Asim Yarkhan
University of Akron
Akron, Ohio

March 1994

Prepared for

Lewis Research Center i ek fj{‘r
Under Grant NAG3-11467 N

National Aeronautics and
Space Administration

The grant number for the aforesaid Contractor Report is corrected to Grant NAG3-1146.

ERRATA
NASA Contractor Report 195291
Phillip H. Schmidt and Asim Yarkhan

University of Akron
Akron, Ohio 44325

ABSTRACT

This is a user’s manual for the computer code for partitioning a centralized con-
troller into decentralized subcontrollers with applicability to Integrated Flight/
Propulsion Control (IFPC). Partitioning of a centralized controller into two sub-
controllers is described and the algorithm on which the code is based is discussed.
The algorithm uses parameter optimization of a cost function which is described
here. The major data structures and functions are described. Specific instructions
are given. The user is led through an example of an IFPC application.

User’s Manual — Table of Contents

1. INTRODUGTION 2ais ot s airiois letoiaie o e alboiakoisi ot SOt ke el Sl b s page 1
3 THE (COST FUNCTION .« uscinnicn e s oainioietian s siss slasinic s siaisns on nnsanat page 4
3. THE PARTITIONING ALGORITHMcuouninimmmniiicntetntntnnnanecens page 7
4. MAJOR DATA STRUCTURES AND VARIABLESccooncinennnnnnnnn. page 12
5. INSTRUCTIONS TO USER-ecusceuuncnsscoasnbiooneneonesscnsasasss page 16
6. EXAMPLE OF CONTROLLER PARTITIONINGccvneenennccnnnennnnnns page 19
BEPERENCES: .« oot s oinsis s ais ssbiatlaho als o shaiss stcsia sl aminie slasll ugrio's o e, s shsy diaind page 28
APPENDICES

I. DEVELOPMENT OF COST AND GRADIENT «cvonoennnnshosaaenstinaeds page 29

II. SHORT DESCRIPTIONS OF MATRIXx USER-DEFINED FUNCTIONS ... page 41
III. CONTROLLER PARTITIONING CODEccouvennurannnnccenencenns page 48
TV.. DATA FOR EXAMPLE .. .coe i« isinbioioinis siaicis o cisesaiokioisiiers siaicis sive s 2z page 65

Acknowlegment

The authors wish to express their appreciation to Dr. Sanjay Garg of NASA Lewis Re-

search Center for his excellent technical guidance and support during the project described

here.

11

1. INTRODUCTION

Large interconnected systems such as the flight/propulsion systems of modern aircraft
often exhibit significant coupling between the various subsystems. One example of such
a system is the Short Take-Off and Landing (STOL) aircraft wherein the forces and mo-
ments generated by the propulsion system provide control and maneuvering capabilities
for the aircraft at low speeds. This strong coupling suggests that a centralized control
design be used, however, a centralized controller which is designed for the integrated plant
considering all the interconnections between the flight and propulsion subsystems may be
of high order and may be difficult to implement and validate. Specifically, in aircraft design
it is the responsibility of the engine manufacturer to ensure that the propulsion system
will provide the desired performance when installed in the aircraft. The engine manu-
facturer thus needs a separate engine controller to be able to perform extensive testing
to assure adequate performance and integrity in the presence of operational and safety
limits. This requirement suggests the need for decentralized implementation of Integrated
Flight /Propulsion Control (IFPC) systems.

One approach to integrated control design which combines aspects of centralized and
decentralized control design approaches is currently being developed at the NASA Lewis
Research Center [1]. This approach consists of first designing a centralized controller, so
that all subsystem interconnections are accounted for in the initial design stage, and then
partitioning the centralized controller into separately implementable decentralized subcon-
trollers for individual subsystems. Here, partitioning means representing the high-order
centralized controller with two or more lower order subcontrollers which have input /output
intercoupling such that the overall control law obtained on assembling the subcontrollers
closely approximates the input/output behavior of the centralized controller.

The computer code described in this user’s manual is designed specifically for IFPC
application and the notation and terminology used here reflects that application. The
software described here uses a parameter optimization method to match the performance
of a centralized controller with a partitioned controller consisting of two decentralized
subcontrollers for the flight and propulsion systems. This matching will be subject to
certain subsystem design requirements. The structure is shown in Fig. 1.1, with optional

feedback paths indicated by dotted lines.

In the decentralized, hierarchical controller partitioning structure shown in Fig. 1.1,

Approximation to K(s)

Airframe %

Controlier

o y _ K (s)

Z | ‘ integrated -
el N z_c. oa !
K(s) G(s) | Plant i
+1e :
ea i
. . Propulsion : yi
" = Controller e
e : | 3
iy o Re | S

Centralized Control Loo
P Assembled partitioned control loop

Figure 1.1 Controller Partitioning

(4525 1)

the subscripts and superscripts “a” and “e” refer to airframe and propulsion (engine)
quantities, respectively, and the subscript “c” refers to commanded quantities. The inter-
face variables z, represent propulsion system quantities that affect the airframe, such as
propulsive forces and moments. The structure is hierarchical in that the airframe (flight)
controller produces commands for the engine controller via the interface variable (Zeq,)
which are tracked by the propulsion subsystem.

Such a control structure allows the engine manufacturer to evaluate the engine sub-
system performance independently of the airframe control and to verify that the engine
subsystem will provide the desired performance when installed in the airframe. In general
there are practical constraints on the achievable bandwidth of z., tracking for the engine
subcontroller. A lower bound on the z., command tracking bandwidth is based on achiev-
ing the desired performance for the integrated system, while an upper bound is imposed

by actuator limits and robustness requirements to high frequency modeling uncertainties.

The software discussed here refers to the structure described above. The variables are
named according to the convention given above. The parameters in this optimization pro-
cess are entries in the state-space representations of the subcontrollers. These parameters
are bounded so as to maintain subcontroller (open-loop) stability. An assumption made
in the formulation is that the plant has no direct feedthrough from control inputs, i.e. the
plant “D” matrix is zero. This simplifies the determination of the cost function and its
gradient.

One feature of the software is that the user may separately optimize the airframe

2

controller for a fixed engine controller or optimize the engine controller for a fixed airframe
controller. The main alternative is to jointly optimize both although separate optimization

is demonstrated in the example.

This user’s manual is organized as follows. Section 2 briefly describes the cost function
which is the objective to be minimized. The partitioning algorithm is described in section
3. There is also a brief description here of the interrelation among User-defined Functions
(UDFs) so the user who wishes to change the cost function or partitioning structure will
know which UDFs must be changed. Section 4 describes the data structures needed for
carrying out partitioning using the MATRIX x programming language. This section also
contains a description of the major data structures and variables used. Section 5 has a
brief outline of the procedure for using the software. Section 6 contains a detailed example
which exercises the algorithm showing applications of its options.

Appendix I contain a detailed discussion of the parameterization, the cost function and
the gradient evaluation as they are implemented in the software. Appendix II contains
short descriptions of the UDFs which implement the partitioning algorithm. Appendix III
contains fully-documented source code for partitioning. Appendix IV contains the data

file, INIT.DAT, and partitioned subcontrollers, [SKA_OPT, SKE_OPT] for the example in

section 6.

2. Tue CosT FUNCTION TO BE MINIMIZED

With reference to Figure 1.1, the partitioning problem can be stated as follows:
Given a centralized controller with transfer matrix K (s) and a specifi-

cation of the partitioning structure of controller inputs and outputs, 1.e.

ea

v €q

[UC] ="h(s) vy (2.1)
Ye

where u, € R**, u, € R¥, e, € R™,y, € Rls, e, € R™ and y, € Rle: a
choice of interface variables z.,, € RP=; a plant with transfer matrix 5(?)

of the form

G(s) = [G’Geffz)] iz }:,E = G(s) [3':] and ze, = Gea(s) [:‘:]
Ye

find subcontrollers with stable transfer matrices K°®(s) and K°(s), i.e.

€en
U, __ pra €q __ 17€ =
[zac} —) [Ya] and u.(s) = K¢(s) ;e :

where € = Zea, — Zea, SO that the closed-loop performance with the sub-
controllers closely matches that with the centralized controller within the

requirements of the subsystem.

The particular subsystem constraint for IFPC application is that the engine subcon-

troller K¢(s) should have the structure of a command tracking controller for the interface

variable commands Z.,, -

The cost function is formulated to reflect the difference between the centralized and
partitioned controllers. The state space representations of the subcontrollers K%(s) and
K¢(s) are parameterized and the cost function is minimized over those parameters denoted
as a vector p. The formulation of this parameterization is discussed in Appendix I. Sta-
bility robustness may be achieved through the use of optional (user-provided) weighting

matrices and a normalization function in determining the partitioning cost. Specific details

4

concerning the cost function, the parameters involved and the evaluation of the gradient
of the cost are contained in Appendix L.

The cost function f(p) is the sum of the performance cost, fo(p), and an additional
cost of tracking the airframe-to-engine commands, fi(p), f(p) = fo(p) + f1(P)

The performance cost, fo, is the H; norm of the weighted (and possibly normalized)

difference of transfer matrices for the centralized and partitioned controllers
fo0) = [Fmts [(Weliw)(E) - K(R)G)WiGe))
J Npgrr(w)

(Wo(Go)(K (jw) = K(R)G))Wi(Gw)) | do (2:2)

where K is the transfer matrix from the (;) inputs to the u outputs for the centralized

controller, and K (s) is the transfer matrix of an “equivalent” centralized controller (having
the same input/output structure as K) obtained by assembling the partitioned subcon-
trollers using appropriate plant information. Details of the state space representation for
K (s) are given in Appendix L

We are using the H, norm of the weighted difference between the transfer matrices
for the centralized controller and the equivalent heirarchically partitioned subcontrollers
as will be described in Appendix I. Since this difference must be strictly proper in order
to apply this norm, it is reasonable for the D matrices for the centralized and partitioned
controllers to be the same. Thus it may be desirable to fix the values of Dgz,, Dg,. , De.,
and D¢, (as described in Appendix I) to values determined directly by the centralized
controller. This is one of the options available in “fixing the D-parameters”.

W;(jw) and W,(jw) are optional input and output weighting matrices, Npgrr(w) is

an optional scalar normalization function. For example, the weighting
Wi(s) = G(s) (I + K(s)G(s))™

has been shown by Dale Enns [2] to lead to stability robustness for the partitioned system
provided that the centralized system has this property. Other weighting and normalization

will be discussed with the example.

fi1(p) is the cost of tracking the z,,, command generated by the airframe subcontroller
for the engine subcontroller. This cost minimizes the difference between the transfer ma-

trices for the responses to the z,, command of z.,, using the partitioned controller and

b)

Z., using the centralized controller.

70) = [g (o) = TRl o 23)

th interface

Ti . is the transfer function vector from the airframe commands z,, to the :
variable z.' with the centralized controller. T' is the " row of the transfer function
matrix T from the airframe commands z,, to the interface variables as commanded by
the partitioned airframe controller, Z.,,, with the partitioned subcontrollers. A; is a scalar
weighting which determines the influence of f; on the total cost and Ntracki(w) are (op-
tional) scalar normalization functions. ||-||2 denotes the Euclidean norm of the row vector.
Here, one may use the normalizations NTRaCK: = || T, |13 to provide adequate scaling for
this cost. The parameters \; provide weighting for the contribution of the tracking cost to
the total cost. It was shown in [3] that manipulating A; provides an indirect means for
maintaining reasonable bounds on the z,, command tracking bandwidth.

It may be required that the engine subsystem be proper, a condition which would be
violated if D¢, (described in Appendix I) is nonzero. As a result of the optimization
process, D¢,, may become large. This possibility is removed by “fixing D¢,, = 0” when

the option is presented while running the code.

3. THE PARTITIONING ALGORITHM

AND ITS IMPLEMENTATION

The objective is to minimize the cost f(p) = fo(p) + fi(p) as described above where
the parameters p are certain entries in the state space representation matrices for K °(s)
and K¢(s) (denoted SKA and SKE in the code).

The fixed data used by the algorithm are state-space representations for the plant
transfer matrix G(s), the centralized controller K(s), the (optional) weighting matrices
Wi(s) and W,(s) (denoted as SP, SC, SWI and SWO respectively in the code), as well as
a partitioning structure for the numbers of controller inputs (airframe, MA; and engine,
ME), numbers of outputs (airframe, KA; and engine, KE), numbers of plant measurements
(airframe, LA; and engine, LE) and numbers of airframe to engine subcontrollers inter-

face variables (PEA). The control designer may also introduce normalization functions

(N_PERF and N_.TRACK) for the performance and tracking costs. Examples of normal-

izations are given with the example in Section 6. The user must also enter values of the
tracking weight parameters A; which determine the relative contribution of f; to the total
cost.

The algorithm incorporates the Broyden-Fletcher-Shanno-Goldfarb (BFGS) quasi- New-
ton method to select directions of search for Fletcher’s inaccurate linesearch, see [4]. This
iterative method requires the calculation of the combined cost and its gradient for the pa-
rameters p as referred to above. It uses successive gradients to build up an approximation
to the inverse Hessian matrix. Moreover, the inaccurate linesearch assures an adequate
reduction in the cost function at each step without using excessive effort searching for a
minimum far away from the ultimate solution. In this way, subsequent search steps are

successively closer to those generated by Newton’s Method and convergence is accelerated

as the iterations proceed.

The flow of the parameter optimization algorithm for controller partitioning is shown

in Figure 3.1. The main steps in the algorithm are:

1. The initial partitioning is obtained by applying the stepwise procedure described in
[5]. Special attention is paid to obtaining reasonably low-order subcontrollers which
are stable and satisfy the z,, command-tracking requirement. The initial state-space

representations for the transfer matrices K%(s) and K*¢(s) are denoted as S_.KA and

e e

2. |
| Modal form

| K Ke | parameterization
l 2l

|

3. | Cost function po
& Gradient !

_Hp) Viip)

1e
1 Initial Guess

: . 7.
Search Direction ; l J Post- 1
and Linesearch ' ’ | processing

1

P

Figure 3.1 Flowchart for Partitioning Optimization Algorithm

S_KE: note that these are different from the working representations SKA and SKE

described next.

. The initial partitioning is converted to a “minimal parameter” form (with state-space

representations SKA and SKE respectively) and used to generate an initial value of

the parameter vector P 1. This form is described in Appendix I

. The initial (as well as any subsequent) value of the parameter vector is passed to a

function which determines the state-space representation for the equivalent partitioned
controller and calculates the combined cost, f (denoted FP in the code). The gradi-
ent (denoted as DFDP) is also computed analytically by the procedure described in

Appendix L

_ The BFGS method uses the current gradient in conjunction with previous information

to generate a direction of search. The Fletcher inaccurate linesearch is carried out using
the cost and gradient calculated at each parameter vector to predict a new parameter
vector until one is found which yields a sufficient reduction in both the cost function
and the size of the gradient. The new point is denoted as P_I1. This linesearch is

constrained so as to maintain stability of the subcontrollers.

8

5. At the end of the linesearch, the new parameter vector and cost (PI1 and FP_I1) are

compared to the values at the beginning of the linesearch (P_I and FP_I) as a check on
convergence. If the maximum change in all the parameters is less than a user-specified
value and the change in the total cost is less than another value (MAX(PI1-PJ) <
EPSILON and ABS(FPI1-FP.I) < DELTA) then convergence is declared and the
iteration ceases. If in addition, the maximum absolute value of the partial derivatives
is less than a user-specified tolerance (ABS(DFDP) < ETA), this is also noted. If the
number of iterations exceeds ITER or the function value is sufficiently reduced (FP
< FMIN), then the procedure stops with an appropriate message. If the convergence
test fails, the algorithm proceeds to update the information used to determine the
direction of search and to use the most recent cost and gradient values to generate a

new direction of search and carry out the linesearch via steps 3. and 4.

. The output of the algorithm is the state-space representation for subcontrollers (de-

noted SKA_OPT and SKE_OPT) which minimize the cost function f(p) within the

convergence criteria.

_ These subcontroller transfer matrices have the same orders n, and n. as the initial

partitioning. Controller reduction can be performed on these “optimal subcontrollers”

and the process of optimization can be repeated on the “new initial partitioning”.

The algorithm is implemented in MATRIXx using a set of functions which are referred

to in MATRIXx parlance as User-Defined Functions (UDFs). A glossary of variables and
UDFs follows in Section 4. More complete descriptions of the UDF's appear in Appendix II
and an annotated version of the code appears in Appendix III. The flow of the MATRIXx

partitioning code as illustrated in Figure 3.2 follows:

a. The function START is called with ipput LAMBDA (required tracking cost weight
scalar or vector) and STOP (optional stopping criteria vector).

i. A file (INIT.DAT) is read to acquire the fixed data and initial partitioning (S-KA
and S_KE) referred to above along with a three dimensional vector (FRQ) which
gives the left and right end points as well as the number of logarithmically placed

points in the interval over which numerical integration takes place.

5i. START calls the routine MODL to put the initial partitioning into an appropriate

S_KA, S_KE, SC, SP,-...

LAMBDA SKA Pl =)

MOD LONGCOL = COST |

STOP START Lo SKE DFDP
L————
P_l D_I P_i YES SKA O
—=PARTITION INACCURATE——= ONVERG MAT r-———{SKE —o?
[} Fp‘ l DFBP_H NO
DFDP 'P
CcOST

P_I=P_1, FP_I=FP_11, DFDP_I=DFDP_I1

Figure 3.2 Flowchart for the MATRIXx Partitioning Code

form to serve as a parameterization for the subcontrollers, i.e. SKA = MODL(SKA)
and SKE = MODL(SKE).

iii. The function LONGCOL transforms these state-space representations for the sub-
controllers into a parameter vector, i.e. PI = LONGCOL(SKA, SKE). This
function along with its “inverse” MAT ([SKA, SKE] = MAT(P)) are used

throughout the code to transform between state-space representations for subcon-

trollers and a parameter vector. START also determines constants which will be

used by the other functions and stores them in CONST.DAT .

iv. START then calls COST to calculate the initial cost (FP) and gradient (DFDP).

b. START calls PARTITIO with the convergence criteria (STOP) as input. PARTITIO

is the main routine which

c. generates the search direction (DY),

d. calls the function INACCURATE which carries out Fletcher’s inaccurate linesearch

(bracketing/sectioning) using cost function, F(P_I+ALPHA*DI), and gradient values
generated by the function COST. While INACCURATE is running, the user will see

displayed first the bracketing interval (AL, ALPR) and function and derivative values
(FAL, FPAL; FALPR, FPALPR) then the sectioning interval (A, B) and corresponding

10

function and derivative values (FA, FPA; FB, FPB). These give the user some sense
of how rapidly the linesearch is progressing, but they can easily be removed from the

code if desired.

e. Convergence/stopping conditions are checked by the function CONVERGE and steps
c. — e. are repeated until they are satisfied. During these major iterations, the last

twenty cost values are plotted.

f. The output of START is the final partitioning (SKA_OPT, SKE_OPT). At this point,

the program ends.

The user may do a posteriori analysis such as order reduction on the subcontroller state-
space representations (SKA_OPT, SKE_OPT) and start the procedure again with new
data in the file INIT.DAT.

If the user wishes to modify the partitioning structure, changes will be necessary in the
START, COST, LONGCOL and MAT routines. Different constants must be calculated
and stored by START. Different formulations for the state space representation of K (s)
and T(s) must be coded in COST and new formulations for the gradient must be gener-
ated using the procedure described in Appendix I. Furthermore, the conversions between
[SKA,SKE] and p by LONGCOL and MAT must be rewrtten.

If a different formulation of the cost function is used, then only the portion of the COST
UDF where the cost and gradient are computed must be changed. The algorithm requires

a gradient with each evaluation of the cost. The new gradient may be the most difficult

change to make.

il

4. REFERENCE TO MAJOR DATA STRUCTURES AND VARIABLES

Most of the input to the program is provided through the MATRIX x data file INIT.DAT.
The following data structures are mandatory to the running of the program and must be

provided in INIT.DAT prior to running the program.

INIT.DAT — Mandatory Data

SP, NP — the state space representation and the order for the integrated plant in

system matrix form

sp=(&p 2p):
SC, NSC — the state space system matrix for the centralized controller, and its order.
S_KA, NS_KA — the state space system for an initial “guess” at the airframe controller,
and its order.
S_KE, NS_KE — the state space system for an initial “guess” at the engine controller
and its order.
PEA — the number of interface variables from flight controller to the engine controller.
FRQ — a vector of the form [FRQ(1);FRQ(2);FRQ(3)] where FRQ(3) logarithmically
placed frequency points over the interval FRQ(1) < w < FRQ(2) are used in the
numerical integration for determining the costs. The number of points must be
odd because of the numerical integration rule used.
The following data structures are optional and may be entered in INIT.DAT if desired.
Indexing rules of MATRIX x do not allow the index zero or empty vectors. Thus, if

some of the optional quantities are absent or have value zero, the code will place dummy

variables in appropriate matrices and set corresponding size variables to nonzero quantities

(usually one).

INIT.DAT — Optional Data — if absent, the indicated default values are set by the code.
SWI, NWI — state space system for input weighting of the difference between central-
ized and assembled partitioned controllers, and its order. If absent, the code sets

SWI = an identity matrix of size (MA + ME + LA + LE + 1) and NWI = 1.

12

SWO, NWO — state space system for output weighting of the difference between
centralized and assembled partitioned controllers, and its order. If absent, the
code sets SWO = an identity matrix of size (KA + KE + 1) and NWO = 1.

LA — number of integrated plant measurements to the airframe controller. If absent,

the code sets LA = 1; appropriate zero entries are introduced in SP, SC, and SKA.

This allows for the case where there are no measurements fed from the plant to the

airframe controller.

LE — number of integrated plant measurements to the engine controller. If absent,
the code sets LE = 1; appropriate zero entries are introduced in SP, SC, and SKE.
This allows for the case where there are no measurements fed from the plant to the
engine controller.

NPERF — normalization vector of size (FRQ(3) x 1) for the performance cost. If
absent, the code sets NPERF to a vector of ones.

NTRACK — normalization matrix of size (FRQ(3) x PEA) for the tracking cost. If
absent, the code sets NTRACK to a matrix of ones.

STABIL — a necessarily negative parameter which is used to guarantee that all eigen-
values of the subcontrollers have negative real parts for stability. If absent, the

code sets STABIL = —1079°.

The major constants used within the code are created by the execution of START and

stored in the file CONST.DAT.

MA, ME — number of airframe and engine controller inputs.

LA, LE — number of integrated plant measurements to airframe and engine controllers.

KA, KE — number of airframe and engine controller outputs.

PEA — number of intermediate commands from airframe controller to engine con-
troller.

SP, NP — state space system for the integrated plant, with its order.

S_KA, NS_KA — state space system for the initial airframe controller (X*) in modified

13

modal form (or in original form if the system is to be held fixed) along with its
order.

S_KE, NS_KE — state space system for the initial engine controller (K ¢) in modified
modal form (or in original form if the system is to be held fixed) along with its
order.

SK, NK — state space system for centralized controller (K), with its order.

SG, NG — state space system for transfer matrix from z,_ t0 Ze, (Teent) using the
centralized controller, with its order.

WEIGHT — a vector containing weights to use with Simpson’s integration rule; de-
pends on FRQ(3) for the number of points at which integration is to take place.

OMEGA — the vector of logarithmically placed frequency points at which sampling
is to be done; determined by FRQ.

AORE — flag to indicate whether the airframe controller (1) or the engine controller
(2) or neither (0) is held fixed during the optimization process.

FIXD — flag to indicate whether the ‘D’ matrices are held fixed; if FIXD = 0 none are
fixed, if FIXD = 1 or 2 the DAA, DAYA, DEE and DEYE are held fixed during the
optimization process and (if FIXD = 1) then DEEA and DEAE are variables or
(if FIXD = 2) then DEEA is set to a zero matrix and DEAE is a variable matrix;
if FIXD = 3 then only DEEA is set to a zero matrix and all the remaining D’s
are variable matrices. In any case DAA, DAYA, DEE and DEYE are saved in
CONST.DAT.

STABIL — a necessarily negative parameter which is used to guarantee that all eigen-
values of the subcontrollers have negative real parts for stability. If absent, the

code sets STABIL = —107°.

The outputs of interest to the program are kept in the file INTER.DAT, which contains
a history of the optimization process and information which can be used to restart the

program (after a crash or after intentionally stopping it) if desired.

14

INTER.DAT contains

P_I — the last point (parameter vector) that met the inaccurate linesearch minimiza-
tion criteria, that is, the :*" point. P Iis a column vector consisting of the successive
@, B values in the 2 x 2 blocks of A* and A*, the successive columns of BZ, after
the first, the successive columns of C?, the successive columns of D® correspond-
ing to the z.,, outputs, the successive columns of B¢ after the first, the successive
columns of C¢, and the successive columns of D¢ corresponding to the e, inputs in
this order. See Appendix I for a more complete discussion of the parameter vector
as it is related to the cost function.

JHO — the complete history of the cost of partitioning through the i*? jteration.

JH1 — the complete history of the cost of tracking through the i* iteration.

FH — the complete history of the total cost, FP = FP0 + FP1 through the i*! iteration.

GRADO — the gradient of the partitioning part of the cost function, fy, at the ith
iteration.

GRAD1 — the gradient of the tracking part of the cost function, fo, at the it iteration.

GRADI — the total gradient of the cost function at the it iteration.

LAMBDA — the PEA X1 vector which weights the contribution of the airframe to
engine command tracking cost in the total cost function.

HI — the inverse Hessian matrix being used during the BFGS optimization process.

FX — keeps track of which parameters corresponding to A® and A° are at the stability
bound.

Refer to the cost section of Appendix I for the structures of SP, SK, SKA, SKE and SG.

15

5. INSTRUCTIONS TO THE USER

The following instructions are intended to be a quick introduction to the code. They
do not attempt to explain the details of what is occurring during the execution. More
thorough documentation of the MATRIXx functions is available in the documented code
contained in Appendix III.

e Use MATRIXx to construct the data file INIT.DAT described in the preceding section.
The initial approximation to the subcontroller state-space matrices S_ZKA and S KE
can be produced by the procedure described in [5] or may come from a previous
application of the partitioning software. If any of the optional data are not present in

INIT.DAT then the code will produce the defaults indicated earlier.

e Start MATRIXx and type
DEFINE ‘START.MTX’

to activate the code. To execute START you must enter a value of LAMBDA, a weight-
ing of the tracking cost relative to the total cost. LAMBDA can be a PEA x 1 vector
whose entries individually weight the z., output responses to the total z,_ inputs. If all
the weights are to be the same then a scalar may be entered. This variable emphasizes
the degree to which the tracking cost will affect the total cost.

Optionally, the vector STOP of stopping conditions can be defined.
STOP = [EPSL; DELTA; ETA; ITER; FMIN].

The program stops if the following criteria are met:

the maximum change in the parameters MAX(|PI-PI1|) < EPSL and
the change in the cost |[FPI-FPI1| < DELTA and

the norm of the gradient |DFDP I| < ETA or
the number of major iterations I > ITER or

the cost FPI1 < FMIN

If STOP is not entered, the following values are set by the code
STOP = [EPSL; DELTA; ETA; ITER; FMIN] = [107%; 10~%; 10~?; 100; 0.1].

16

e Now the program can be executed by entering

[SKA_OPT,SKE.OPT]=START(LAMBDA, STOP) or
[SKA_OPT,SKE_OPT|=START(LAMBDA).

The choice of fixing the engine or airframe system matrices will be presented. If
neither is to be fixed (the usual choice) enter 0.
Various options for fixing the D—submatrices are presented. If none are to be fixed
enter 0 here. ;
During the linesearch procedure, the user will see function and derivative values
which indicate the progress of the search for a reduction in the function value.
After every major iteration of the program (starting from the second), a MATRIX x
graph is generated showing the costs (total, partitioning and tracking) for the last

twenty iterations.

e When the run ends, the output of START is the final optimized state-space represen-

tations for the subcontrollers SKA_OPT and SKE_OPT.

The data file INTER.DAT stores the history of the costs, the most recent parameter
vector, approximation to the inverse Hessian matrix and gradient. This information
can be used to see the progress of the algorithm, and to restart the program either

after a successful termination or after user interruption.

There is a routine called RESTART which is available for restarting from a system crash

or an intentional interruption. It uses the data stored in INTER.DAT and CONST.DAT

and allows the user to define new values of the tracking cost weight A, the stopping criteria

STOP, and/or a new inverse Hessian approximation.

e The inputs and outputs of the RESTART routine are similar to those for START.

There are three alternatives:
1) enter [SKA_OPT,SKE_OPT]=RESTART(LAMBDANEVV) if all that is changed is

the LAMBDA weighting parameter or

2) enter [SKA_OPT,SKE_.OPT]=RESTART(LAMBDANEW, STOP) if a change is

made in LAMBDA and/or STOP or

3) or enter [SKA_OPT,SKE_OPT]=RESTART(LAMBDANEW, STOP, 1) if a restart

with the identity matrix as the initial approximation to the inverse Hessian is
desired. Note that you must enter values of LAMBDANEW and STOP even if
they are the same as the previous LAMBDA and STOP.

77

The restarted program executes in the same way as before, with results stored in
the file INTER.DAT and the output of the program being the optimized state-space
representations SKA_OPT and SKE.OPT.

18

6. EXAMPLE OF CONTROLLER PARTITIONING

STOL Example.

The controller partitioning software is first applied to a centralized flight/propulsion
controller for a STOL aircraft as was described in reference | 6]. This controller has the
form u = K(s)e with the error vector e consisting of errors, e = fevieg, ensy egpr]’, in
following velocity (v), pitch rate variable (g, = g+0.16), engine fan speed (N2) and engine
pressure ratio (EPR) commands. The control input vector u consists of rates of change
of thrust vectoring angle, fuel flow, thrust. reverser port area and nozzle throat area, u =
[57'~V, WF,A78, A8]T. u consists of rates because integrators were appended to the control
inputs during the process of centralized control design to achieve zero steady-state error for
step commands. The partitioned airframe and engine controllers are desired to have inputs
€. = [ey,€)" and e, = [en2,eppr)’ and outputs u, = [67v] and u, = [WF, AT8, A8]T
respectively. The interface variable z., for this example is the single variable FEX, the
axial thrust generated by the propulsion system. An initial controller partitioning was

obtained using the procedure discussed in [5].

The numbers of airframe and propulsion subcontroller inputs are thus (MA=)2 and
(ME=)2 while the subcontrollers have (KA=)1 and (KE=)3 outputs respectively. There is
(PEA=)1 interface variable and no direct measurements are fed back from the integrated
plant to the subcontrollers (LA and LE are absent from INIT.DAT since there are no
measurements).

State-space matrices for the integrated plant, SP of order (NP=)13, the centralized
controller, SC of order (NSC=)13 and initial partitioning, SJKA of order (NS_KA=)10
and S_KE of order (NS_KE=)T7 are listed in Appendix IV.

The optimization is done over the frequency range w € [0.1,100] with 41 frequency
points (FRQ=[0.1;100;41]). The frequency weighting

Wi(s) = G(s)(I + K(s)G(s))™"

is used to achieve good performance matching as well as stability robustness for the equiva-
lent controller. The state-space representation for this weighting, SWI of order (NWI=)26,
is obtained from SP and SC. The tracking normalization, N.TRACK= ||Tcent(jw)|[3, is
used to scale the tracking cost. The state-space representation for Tcent(s) is constructed
as in expression (1.3) in Appendix I. Since LA and LE are absent, any blocks involving y,
or y. as either inputs or outputs are omitted. Notice that since PEA=1, Tcen: is 2 1X MA
row vector. Neither output weighting (SWO) nor performance normalization (N_PERF)
were used.

All the necessary variables are stored in INIT.DAT .

The tracking weighting parameter LAMBDA is set to 0.05 and the stopping criteria

vector is defined as
STOP=[1le-9;1e-9;1e-9;100;0.1].

19

After defining the UDF START by entering
define 'START.MTX’

the program is started by entering

[SKA,SKE|=START(LAMBDA,STOP).

Respond to the question concerning fixing the engine or airframe by entering ‘0’ to fix

neither as shown in Figure 6.1.

The ‘0’ response to the question concerning the D— matrices as shown in Figure 6.1
will fix none of these submatrices . The program now begins.

ENTER 1 TO FIX AIRFRAME, 2 TO FIX ENGINE or 0 FOR NEITHER: 0

ENTER 1 TO FIX ALL Ds EXCEPT DEAA & DEEA, 2 TO INCLUDE DEEA,
3 FOR ONLY DEEA, or 0 for NONE: 0

Figure 6.1 Screen After Responding to Questions

During a major iteration, the user will see values of AL, FAL, FPAL, ALPR, FALPR,
A, FA, FPA, B, FB and FPB displayed on the screen. These values result from calculations
during the linesearch as described in Step 4 of Section 3. In particular [AL, ALPR] is the
interval used in the “bracketing” phase of the linesearch and [A, B] is the interval used
during “sectioning”. The function values (and directional derivatives) at the endpoints of
these intervals are denoted by FAL, FALPR, FA, and FP (respectively FPAL, FPALPR,
FPA and FPB). The user can follow the progress of the linesearch by viewing the values

displayed on the screen as in Figure 6.2.

AL = A %
7.5865D-09 0.
FAL = FA =
4.9981D+01 4.9737D+01
FPAL = FPA =
6.7610D+08 -6.1169D+08
ALPR = B =
0. 7.5865D-09
FALPR - FB &
49737D+01 4.9981D+01
FPALPR = FPB =
-6.1169D+08 6.7610D+08
DURING BRACKETING DURING SECTIONING

Figure 6.2 Screen Display During the Linesearch

After the first linesearch succeeds the user will see a graphical display of the values
of the total, performance and tracking costs for the previous major iterations (after the
twentieth, only the last twenty are displayed). A typical screen is displayed in Figure 6.3.

After 100 iterations, SKA and SKE are returned. The convergence criteria were not all
met, rather the program stopped because the maximum number of iterations was reached.
Nonetheless, as will be seen by a posterioiri analysis, the resulting subcontrollers exhibited
good performance and tracking properties. The total cost history is shown in Figure 6.4.

The performance of the initial controller partitioning is evaluated in comparison with
that of the centralized controller by comparing closed-loop system response to step com-

mands in the controlled variables z.

iall

’
'
'
1

'
(el WG

......

10 12 14 16 18 20

8
ITER

8 3

Performance and Tracking Costs

Figure 6.3 Screen Display Showing Total

The responses to gu., V2. and EPR. with the initial as well as the optimized parti-

22

55

45

40

Cost f(p)

25
20
15

10

IT'I'[I"T‘V'T'III"]I"lllll’l]!lll‘l[!llllll Gl

wn

1 i 1 1 3l J) & 1
20 40 60 80 100
lteration no.

i
i

o
O rrrrT

Figure 6.4 Cost History for Controller Partitioning Optimization

tioned subcontrollers were comparable to those with the centralized controller so they are
not shown here. However, the responses to V., shown in Fig. 6.5, show considerable
degradation in terms of increased coupling in the N2 and EPR responses with the ini-
tial partitioned subcontrollers. This deficiency was overcome by the optimized partitioned
controllers as can be seen in Fig. 6.5. Note that all the quantities shown in Fig. 6.5 are
normalized, using scalings discussed in [6], to allow a direct comparison of the various
response magnitudes. In addition, the response of FEX (the interface variable) to V. using
partitioned subcontrollers was also comparable to that using the centralized controller as

is seen in Fig. 6.6.

Since the performance with the optimized subcontrollers is found to be acceptable,
an effort is made to reduce the orders of the subcontrollers. The engine subcontroller is
reduced to 4*® order by residualization of the three high frequency modes without any
loss of performance. Through the use of internally balanced reduction techniques [7],
the airframe subcontroller is reduced to 6" order (from the original 10*" order) without

excessive mismatch in the controller transfer matrix characteristics as is seen from the

1.5

1.0

-.02

qv

-.04

-.06

-.08

P ,’ T s e s s e —a
,I
Centralized
A Initial partitioning
—-— Optimized partitioning
| | l | |]
\' ______ Y N R g
o X 8 Y
. ’/’
250
So < /
/
s // .
_ J
\ 7/
l I | J
l“\
=\
] \
] \
VL S D ecimitaso i T
PN S ,/'
|] \ e
vt Nz’
1]
H-T
i
v
| | |]
-
1
1y
i
It
i el
} ‘L ,r *~§~‘ . -
7
Y
Nt
/
v il l | | | B
0 2 4 6 8 10 12
Time(s)

Figure 6.5 Closed-Loop System Response to Step Velocity Command for Cen-

tralized Controller, Initial Partitioning and Optimized Partitioning

Centralized
------ Optimized partitioning
A —-— FEX. optimized partitioning

2.4

| ' 1.8

FEX

152

<6
0 2 4 6 8 10 12

Time (s)
Figure 6.6 FEX Response to Step Velocity Command for Centralized Controller

and Optimized Partitioning

full and reduced order airframe controller singular values comparison in Fig. 6.7. This

reduced order airframe subcontroller does, however, exhibit deterioration in closed-loop

performance in the V and g, response comparison plots for a step change in V. as shown

\ in Fig. 6.8.

| The reduced order subcontroller state-space matrices are stored as S_KA (order NS_KA=6)

and SKE (order NS_KE=4) in INIT.DAT and the program is started by entering

[SKA,SKE|=START(LAMBDA,STOP).

One should not use RESTART here since the CONST.DAT file will not contain data related

| to the reduced order subcontrollers. Moreover, since the engine subcontroller is acceptable,
the optimization should take place over only the airframe subcontroller parameters. When

requested to enter a value to fix a subcontroller, enter 2’ to fix the engine subcontroller.

| The program will execute as before, generating optimal SKA and SKE (fixed to the

‘ initial reduced order S_KE). The response obtained with the optimized reduced order air-

frame subcontroller for step V, is shown in Fig. 6.8. Note that the optimized subcontroller

25

100

10
o
o
=
=
S
1
|
| 01
|

Full order (10)

N, 02000 Reduced order (6)
o —p
= N
Lottt tatpnl el
5| 1 10 _ 100
Frequency (rad/s)

Figure 6.7 Singular Values of the Airframe Subcontroller for Optimized Parti-

tioning with A = 0.05 — Full (10) and Reduced (6) Orders

also provides improved tracking of the velocity command. The state-space matrix for the

optimized reduced order airframe subcontroller is listed in Appendix IV.

26

15—
/"' ;‘
1.0 — /4 ST -
= Centralized
O e ¥ Initial reduced order
—-— Optimized partitioning
§ r l 1 |

Time(s)

Figure 6.8 Closed-Loop System Response to Step Velocity Command for Cen-

tralized Controller and Reduced Order Partition Subcontrollers — Initial and

Optimized

For a discussion of the application of this code to the design of a decentralized controller
for a Short TakeOff and Vertical Landing (STOVL) aircraft, the user is referred to [8].
This application uses measurements from the integrated plant to the subcontrollers and

includes more than one interface variable. In addition, several different weighting matrices

are discussed in [8 |.

1]

(2]
(3]
[4]
(5]
(6]
[7]

(8]

[9]

REFERENCES

Sanjay Garg, Peter J. Ouzts, Carl F. Lorenzo and Duane L. Mattern, IMPAC — An inlegrated method-
ology for propulsion and airframe control , Proceedings of the 1991 American Control Conference,
June, 1991, Boston, MA, 1 (1991), 747- 754.

Dale F. Enns, Model Reduction for Control Systems Design, Ph.D. dissertation, Stanford University,
1984.

Phillip H. Schmidt, Sanjay Garg and Brian Holowecky, A parameter opiimizalion approach to con-
troller partitioning for integrated flight/propulsion control application, Proceedings of the 1992 Con-
ference on Control Applications, September, 1992, Dayton, OH, 2 (1992), 972-979.

R. Fletcher, Practical Methods of Optimization, Wiley, New York, 1987.

Sanjay Garg, Controller Partitioning for Integrated Flight/Propulsion Control Implemeniation, pre-
sented at the 1992 American Control Conference, June, 1992, Chicago, IL.

Sanjay Garg, Duane L. Mattern and Randy E. Bullard, Integrated flight/propulsion control system
design based on a centralized approach, AIAA Paper No. 89-3519, Proceedings of the ATAA Guidance,
Navigation and Control Conference, Aug. 1989, Boston, MA.

B.C. Moore, Principal Component Analysis in Linear Sysiems: Controllability, Observability, and
Model Reduction, IEEE Transactions on Automatic Control 26 (1981), 17-31.

Sanjay Garg and Phillip H. Schmidt, Application of Controller Partitioning Opiimization Procedure
1o Integrated Flight/Propulsion Control Design for @ STOVL Aircraft, ATAA Paper No. 93-3766,
to appear in Proceedings of the AIAA Guidance, Navigation and Control Conference, Aug. 1993,
Monterey, CA.

Uy-Loi Ly, Arthur E. Bryson and Robert H. Cannon, Design of low order compensators using para-
metric opiimization, Automatica 21 (1985), 315-318.

[10] Phillip H. Schmidt and Sanjay Garg, Decentralized Hierarchical Partitioning of Centiralized Integrated

Controllers, Proceedings of the 1991 American Control Conference, Boston, MA, June, 1991 1 (1991),
755-760.

Typeset by ApS-TEX

APPENDIX I

DEVELOPMENT OF THE COST AND ITs GRADIENT

The Parameters. Parameters in the optimization process are certain entries in state-space real-
izations of K®(s) and K(s) as defined in the formula (I.1). The notation Mg; is used throughout
to indicate the matrix M € {A, B,C, D} in the state-space realization of the system transfer matrix
s € {c,p,a, e} (c =centralized controller, p =plant, a =airframe subcontroller, e =engine subcon-
troller) with input i (respectively output o) € {p, a,€,ea.,ea} (ea. =interface variable commands,

ea =interface variables).

ra . Ug | _ Cae _ gae)-1 a a g, Dﬁy, €a
I\ (S) ' [zm:] T ((C:aca) (SI A) (‘Baa Baya) - (D:a.ca D:ucya ¥

eeu
K*(s): u.=(C(sI—A°)(Biw B B2y,)+ (Dem Dee D5y,)) | e
Ye

For the purposes of this software description, the corresponding state space matrices are written as

A Ba S, i O
gEa=dl c2. Dps, D and SKE:[Sl Dgw] (11)
Cga " D:a a Dga 3 Cee eea ee eye

One consideration in choosing a parameterization is to introduce a “minimal” number of pa-
rameters in the optimization process. A real canonical form used in [9] served as the model for
our parameterization. The subcontroller system dynamics matrices A® and A€ are represented as
block diagonal matrices with two-by-two real companion blocks of the form [g ;] If the order
of either A% or A® is odd, there is also one diagonal real entry corresponding to a real eigenvalue.
In addition, & and 3 are constrained to be negative in order to meet the requirement that sub-
controllers be stable. It should be noted that this form for the A matrices does not allow for a
Jordan block structure. However, since the matrices are obtained from a numerical process, it is
improbable that the “optimal” solution would need such a special structure.

In addition the first columns of each of the subcontroller input matrices BZ, and BZ,, are fixed

at non-zero values determined as follows. State space representations for the initial partitioning

are not required to be in the canonical form described above. For each of them, a similarity

29

transformation, 7, is applied to the initial A matrix so that TAT! is in the proper form. If A is
an 7 X n matrix then there will be n degrees of freedom in tlie determination of T'. Different T will
yield the same canonical TAT ™! but different transformed T'B and CT~! matrices. This implies
that there are actually n degrees of freedom in the determination of TB and CT~!. We select a
simple T which is nonsingular and compute TB and CT~'. We remove the degrees of freedom by
fixing the n entries in the first column of TB to their values or 10~° if the corresponding value is
zero.

We are using the H, norm of the weighted difference between the transfer matrices for the cen-
tralized controller and the equivalent heirarchically partitioned subcontrollers as will be described
below. Since this difference must be strictly proper in order to apply this norm, it is reasonable
for the D matrices for the centralized and partitioned controllers to be the same. Thus it may
D¢

ee>

be desirable to fix the values of Dg,, Dg

aya?

and Dg,, to values determined directly by the

centralized controller. This is one of the options available in “fixing the D-parameters”.

The parameters over which the optimization takes place are then the o and J entries in the
block canonical forms, the entries in all but the first columns of the matrices B, and B, and all
the entries in the matrices [ggf:‘a], C¢,, D, ., and Dg,,. The parameter vector will be denoted
as p € RN where N = ng(ks + mo + 1l + Dea) + ne(ke + Me + le + Pea) + Pealks'+ m.): % im, K,
and [refer respectively to the order, number of error inputs, number of outputs, and number of
direct measurements for a subcontroller and p,, refers to the number of interface variables. The
number of parameters depends not only on the total numbers of controller inputs and outputs and
interface variables which are fixed but also on the orders of the subcontrollers, n, and n.. There
is thus a double incentive for keeping these orders low; not only to reduce the complexities of the

subcontrollers but also to accelerate the optimization algorithm whose performance depends on the

total number of parameters.

The Cost Function. The cost function is the sum of fo(p) as in (2.2) and fi(p) as in (23):

These involve the transfer matrices K(s), I:’(s), Teent(s), and f(s) which are described below.

30

The parameters in the cost function are the entries in SKA and SKE as described in the previous
section. These parameters along with some fixed transfer matrices are used in the determination
of the transfer matrices needed in the cost function.

State-space representations for the centralized controller transfer matrix, K (s), and the plant
transfer matrix, 6@) = [Gc;effg)] , are given. Those for K(s), Teent(s) and f(s) (shown in formulas

(1.2), (1.3) and (1.4) below) are constructed from the state-space representations of () ™(5),

K®(s), Ge(s) and G(s).

The transfer matrix i (s) which enters into the performance cost term fo(p) depends on K°(s)

and K®(s), and on the transfer submatrix of the plant from control inputs (u) to interface variables

Ug
Ue

(Bl Gt iBe = Chpl8] — AP)~1 [BE, B;’e] [] The block diagram in Fig. I.1 shows the
specific interconnections accounted for in this transfer matrix. Note that K (s) has the same inputs

and outputs as K (s) as described in (2.1).

A state-space realization for the equivalent partitioned controller K (s)y= Gl — X)'IE +D

was shown in [10] to be § = [g g] where
rL A° 0 0
A Baakes, A¢ -—B:mC&p
_(B;;:aC:a T B;;:eD:eanzca) B;I;cceee (Ap = B;eD:eaC;p)
i B2, 0 Be | 0
B = B Des. o Be. BeaDaly. ot
| (B2, D:, + BLD:,DS,.) BLD: (BLDiwDa,, +B%Dg.) BhD: | (2
SN o 0 0]
L D:mC:nca C:e _D:mcga.p
Fa b 0 Dgs 0]
MREtR & Die Dowle.y, Doy,

The calculation of the tracking cost in (2.3) requires two transfer matrices, Tcent(s) and T(s)
The norms of the rows of their difference measures the differences in response of the various possible
interface variables to airframe commands. Figure 1.2 is the block diagram for Tieni(s) = C™ (s ~
Acent)—1pcent | Dcent the closed loop transfer matrix from airframe commands, z,,, to interface

variable quantities, z.,, , produced by the engine using the centralized controller.

31

P
*| Cpa

z

P ea

oo

P Ze

4

Figure 1.1 Partitioned Controller

Note that in Figures 1.1, 1.2 and 1.3 a block of the form
— Tq — — z.a — [] —
2N represents the block T

[4°]

As is easily seen from Figure 1.2 the state-space representation for the centralized controller

t |

b

transfer matrix Teent (s) can be written in terms of the submatrices in the state-space representations

for K(s) and G(s),

A€ (_Bgacr;z,p = Bgecfp + Bgya C;ap + ‘Bgye CSII:P
A = | (BE,CS.+ BR.CS) AP+ BE(=D5CE, + D5, CP o, + D5 CE, + Doy CF.,)
a5 Bgc(_DieC:p + Dgya C;op + D:ecgp e D:ye Czlljep)

cent __ Bga cent P cent __
B [B;’aD:a g igigre pEsve g (1.3)

Figure 1.3 is the block diagram for f(s) = é(sI - X)"lﬁ + D, the closed loop transfer matrix
from airframe commands, z,,, to interface variable quantities produced by the airframe subcon-

troller, z.,, using the partitioned controller.

32

Figure 1.3 z,, response to z,_ using the partitioned controller

33

The state space matrices for T(s) = CsI-A)" B+ D can be written in terms of the state-space

representations for K¢(s), K¢(s) and G(s) as

f = [g g] where
g el A° 0 -BLCL+B:.Cl,
A= Bij;ca A€ Ay
VBRI Caee B DS CE BT Cn Ag
T Be,
B= BE DAL
| B2, D2, + B2 D: DS, .

6 == [Cgacﬂ O _Dgacacgp + D;cyacgapl
D=[Ds.]

(14)

where Zep =(=B:.0f, —C..Ch — B2 DGt B, 5. Chy + 380, C? ,) and 2,,,, = (AP -
B;’aDga.Cgp G BgepgeaD:acaczp i BgeDgeacgap il BgeDgecfp o B;’:aD:ya ngp it BﬁeDsz;cya C-Z’op oy
Bse Dsyc C;’e P)'

It may be required that the engine subsystem be strictly proper, a condition which would be

violated if D¢, is nonzero. As a result of the optimization process, D¢ may become large. This

possibility is removed by “fixing D¢,, = 07 when the option is presented while running the code.

The total cost is evaluated for a particular parameter vector p (corresponding to particular
SKA and SKE) by applying Simpson’s Rule for numerical integration to fo(p) + f(p) over a
user defined logarithmically spaced frequency interval [wi,w2]. The expressions given above for
the state-space representations of K(s),]‘;’(s),Tcem(s) and T (s) are used for calculating fo(p) and

f1(p) according to formulas (2.2) and (2.3).

The Gradient of the Cost.

The performance cost fo(p) was defined in (2.2) as

—

fo(p) = / NPLRF tr [(W,,(K - K(p))w,-)' (WO(K - IHB))W,-)] dw
0

34

where the explicit dependence of the integrand on w is suppressed for convenience.

Only I;T};) depends on p so the derivative of fo(p) with respect to a parameter p of p is

6fo(p> / Tt (w (K - E(p)W:) (Wo(K - K(p))W:)

+ (Wolk - K@)W:)” % (WolK = E(p)W)| dw

—

= Re]o 1 [(WO(K o IRI,))W,-)' WoaK(p)Wi] &
0

NpERF dp

Since I\T(};)(s) = 5(31 - X)'IE + D, the product rule for differentiation implies that

0K(p)(s) _ oC L A - ph, B B oF ' ap
o (I A B +.C(sI- A) -E)_E(SI—A) B+ C(sI-A) 5;-{-—67
= [C(sI—A)'l nZ (g &P
Thus,
dfo(p) _ i > =
7 il -2 Re/ = tr[(Wo(Ix - K (p))W,)

W, [E(jwI — A)~ 1]53;[% g] [(jwl”fz)_lﬁ]w,-]dw

Using abbreviations for the system matrix given in (I.2) well as for the terms on the left and

right sides of the partial,

_[4 B
5=(% 3]
1 T i ~
L) = Fmy (7o ~ Kp): SRR 1]
Ry =[R2 w,
allows the derivative to be written as
3fo(P) 7 _3_§
o —2 Re [tr | L(w) 3 R(w)| dw.
0

Any particular parameter p of p is some jk'** entry of some submatrix, denoted M;, relating

an input i to an output o of SKA (or SKE) as described in (I.1). Furthermore, p (as well as the

(wilel!

entire submatrix M,;) occurs in one or more blocks of S= [g] as was described in (I1.2).

35

S can be thought of as consisting of blocks aligned in “columns” corresponding to the “inputs”
Xa, Xes Xpy €4, €, Ya, Ye and in “rows” corresponding to the “outputs” X,, Xe, Xp, Uq, Ue. Each
block of S is denoted as Bor where I is one of the “inputs” above and O is one of the “outputs”.
Let Eo denote a column block matrix with the same number of rows as S, the same number of
columns as the dimension of the “output” O, with an identity matrix in the rows corresponding

to “output” O, and with zeros elsewhere. Let EIT be a similar row block matrix corresponding to

the “input” I,
(0]

Using this notation, S can be written as

S = ZE EoBo1Er”.
o 1

In the partial derivative of S with respect to the p = Mog; ik, every block of S is zero except
for the blocks containing p. Denote such a block as Bor = LooMoiRi1, where Lo, denotes the
factor to the left of Mg; (if one exists, otherwise an identity) and R;1 denotes the factor to the
right(similarly, an identity if M; is the rightmost factor); define both Loo = 0 and R;y = 0 if
Bor does not contain Mo;. The partial of S with respect to p thus contains a term of the form
EooejekT'R,;I in the same place as the block Bor. These contributions can be written as

oS
a_p- = ; z EoﬁooejekTRiIEIT
I

Thus the partial of the partitioning cost can be expressed as

Bf;(P) — _9 Re/tr [L(w) (ZZ EOEOOejekTR;IE1T> R(w)} dw.
P 4 o 1

36

Note that L(w)EoLooe€; is a column vector and ekT‘R,uEITR(w) is a row vector. Furthermore,

the trace of a column times a row is the dot product of the row and the column. Therefore,

0
3f°(" =0 A / S (e RiExT R(@))(L(w) EoLooe;)] dw.
o O I

To generate the partials with respect to all the parameters in Mg; simultaneously, let 5 and &
vary over the row and column indicies respectively of the submatrix. Notice that varying the row
index j selects the j** column of the product L(w)EoLoo, Whereas varying the column index k
selects the k' row of RirExT R(w).

A matrix containing the partial derivatives with respect to the entries of M,; located in each

entry’s proper spot is thus obtained by replacing e; and e, by identity matrices and transposing

the result.

aa%p) ~2¥e / ZE [(RixEx™ R(w))(L(w)EoLoo)] " d

Note that only the terms in R(w)L(w) depend on w and thus the integration can be rewritten to

yield
J

Gale) _ ;e [ZZ RuxEr? [0/ [R(w)L(w)] dw} EoLoo

; : . 0fo(p) 0fo(p) . :
Finally, build two matrices denoted 3SKA and 3SKE of the shapes of SKA and SKE (de-

scribed in (I.1)) respectively containing the partial derivatives of fo(p) with respect to the parame-

ters in SKA (respectively SKE) in the same positions as the corresponding parameters would occur.

dfo(p) dfo(p)
askA 4 3SKE

by a call of the function LONGCOL (the same function which produces p from SKA and SKE).

This is done so that in the software the gradient vector can be produced from

To build these matrices, define the “row” and “column” block matrices E%T and E°, relative
to the “inputs” i € {X.,€q,¥a} and “outputs” o € {X.,Uq,Zea, } for the airframe controller state-
space system matrix SKA. As before E%, is a block column matrix with as many rows as SKA,
with an identity matrix of size equal to the dimension of the output o in the rows corresponding
to o and with zeros in the remaining rows. The matrices column block matrix E€, and the row

block matrices E% %, and E&T are similarly defined. If we again denote the submatrices of SKA

37

as M°,; and those of SKE as M*q;, we can write

SKA =% E*oM°GE5T and SKE=Y > EoMGES".
o i o i
Notice that, as with .§, the column and row block matrices merely position each M,; properly.

0
Thus, replacing Mg; by the corresponding block 5‘?2/((—})') in these formulas gives the desired results

dfo(p) ZZ E°, dfol P)Ea T

0SKA CoMey
and
T T P
Using the expression from above for ABIWO(‘?;); gives

0 71
%éol((? = RGEZ E® [Zz RiEx” {/ (w)L(w)) dw} EOLOO} E%T
0
o0 T
= {ZZ > ERakr [/ [R(w)L(wnd“’} EoﬁooE"oT} .
S 15D T 4

The terms of the form E“;RHEIT are independent of “outputs” o and O whereas those of the form

EOEOOE"OT are independent of “inputs” i and I. Therefore the sums can be rearranged

?92052 st [(ZZ:EaiRﬂEIT> (/[R () L))) (ZonLooga)r

The sum Y > E%RiErT represents a matrix with “inputs” I, the “inputs” of S, and with “out-
i 1
puts” i, the “inputs” for SKA. This matrix has the submatrix Ri1 as the block in the rows corre-

sponding to i and the columns corresponding to I; denote this matrix as R®. Similarly the matrix

=0) EoLooE®sT contains the submatrix Loo in its block with rows corresponding to the
o O
S “output” O and with columns corresponding to SKA “outputs” o.

dfo(p) .

The following simple procedure can thus be used to determine 3SKA

1. For each block Boy of S containing a submatrix M?%.; from SKA, determine the left and
right factors (or identity) Loo and Rir of M.

38

2. Enter Loo in the appropriate block of L® and R;y in the appropriate block of R°.

3. Ca.]cu]ate/ R(w)L(w) dw where
0
Lw) = g (Welk = K(@)W:) Wo [C(jwl =)" 1]
i) — [(jw] —1;1')—15] W,

4. Form -
afO(p) _ a il a
3SKA = -2 Re [R (O/[R(w)l,(w)]dw) L jl g

By a similar procedure

- 7
Re (0/ [R(w)L(w)]dw) L’}

where L€ and R® contain the left and right factors respectively of M®,; terms appearing in 5.

It is easy to use the representation of S as given in (I.2) to calculate

bl 0
I 000O0TO0OUO 6 0 Bt
R°=(0 00 I 00 0| and L*=|0 B2 B2D:,
0000UO0TIDO 0 0
0 0 D:.,
and
I 0 0 0O 0 0 0 ?g
ce. 0 -C2. D% . 0 D° 0
€ eea eap ea.a ed.Yaq €
R 0 0 I oo o) W L‘gB(fe
0 0 0 0 0 0.8 Ly

The Tracking Cost

The tracking cost was given in (2.3) as

oo o : % .
fl(p) = ‘0/2 m (”Tcenl k' 3 (p)”'l) dw

where the state space representations for Tcent(s) and f(s) are given in (1.3) and (1.4) respectively.

39

This function can be put into a form which is similar to fo(p) so the same procedure for calcu-
lating the gradient applies. Each row of the difference is normalized before the sum of squares is cal-
culated. Note that the multiplication by non-negative A; and division by non-negative Nigck(w)
could also be absorbed into the normalized sum of squares by the use of their square roots. Multi-
plication (or division) of rows by factors can also be achieved by multiplication from the left by a
diagonal matrix. The sum of squares of the row norms in the resulting product is the same as the

sum of squares of all the entries or the H; norm of the diagonal weighted difference. In this case
fl(p) = 7tr dxag —1—&—— (Tcent = f(p)) ‘
4 Nigpack (@)

) Ai =
diag (ﬂ m) (Tcent = T(P))] dw.

T

As before, denote

: Ai =
Li(w) = (dlag (Nimron(@)) (Tcent = T(P)))

diag(—i\——> [C(jwI -)™ 1)

N ’i“RACK (w)

_ [(GwI- 4)7'B
Rw) = | U917
and apply the same procedure as earlier to write the partial derivatives as
I 0 0 3
I 0 0 0] =
0£1(p) / 0 0 Bt
———==-2Re||0 0 -CE T Ri(w)Ly(w)dw - e
0SKA o 0 ¢z, o)} 8 B(;),a Br. is
and
0 I 0 0 o 0 0
df1(p) ce, 0 —CL —DPe CP + DLg, Ct .0 Do, I 0
| R e A e F L CEC I L)
0 0 Cto 0 & 0 =4

This completes the discussion of the cost function and its gradient as implemented in this
software. If the user wishes to compute cost functions involving the H2 norm as used here, the user

must apply the procedure described above to determine the gradient.

40

APPENDIX Il

SHORT DESCRIPTIONS OF USER-DEFINED FUNCTIONS

START in START.MTX

[SKA_OPT,SKA_OPT] = START(LAMBDA, STOP)

Initializes information from dat.a files, puts subcontrollers into modified modal form, constructs or
initializes some matrices required for the evaluation of the cost function. Calls COST to initialize

the costs and gradients and then calls PARTITION to perform the optimization.

INPUT
LAMBDA — weighting for the contribution of the tracking cost to the total cost.
STOP (optional) — vector of stopping conditions.

INIT.DAT — data file containing initial information.

OvuTPUT

SKA_OPT — the state-space representation of the optimized airframe subcontroller.
SKE_OPT — the state-space representation of the optimized engine subcontroller.
CONST.DAT — data file containing constants used by other UDFs.

PAR.DAT — used to stdre the stopping conditions in STOP.

RESTART in RESTART.MTX
[SKA_OPT,SKA_OPT] = RESTART(LAMBDANEW, STOP, NEWH)
Restarts the program using the data available in INTER.DAT and CONST.DAT. Calls COST to

initialize the costs and gradients, and then calls PARTITION to optimize.

INPUT

LAMBDANEW — a new value of LAMBDA may allow a different emphasis on the tracking
cost relative to the total cost.

41

STOP (optional) — the vector of stopping conditions, same as in the START routine. It may
be redefined, perhaps to allow more stringent conditions or more iterations.

NEWH (optional) — a flag whose presence indicates the desire for restart with identity inverse
Hessian. If restart with the current Hessian matrix is desired, no value should be passed.

CONST.DAT — data file containing constants pertaining to the plant and global controller

being partitioned.

INTER.DAT — the data file in which intermediate results from previous iterations are stored.

OUTPUT

SKA_OPT — the state-space representation of the optimized airframe subcontroller.
SKE_OPT — the state-space representation of the optimized engine subcontroller.
PAR.DAT — the data file in which the stopping conditions STOP are saved.

INTER.DAT — the data file in which intermediate results are stored.

PARTITION in PARTITIO.MTX
PI = PARTITION(STOP)
This is the main routine and does the optimization. It iterates till some convergence or stopping
conditions are met. After each iteration a graph is plotted showing the change in costs. PARTI-
TION implements the Broyden-Fletcher-Goldfarb-Shanno method of determining a search direction
for minimization. It then calls the function INACCURATE to implement Fletcher’s inaccurate line
search in that direction. The function CONVERGE is called to see if convergence or stopping
conditions are met; if not, the iteration in PARTITION is repeated.
INPUT

STOP — the vector of stopping conditions, used to check convergence.

CONST.DAT — the data file containing the constants of the program.

INTER.DAT — the data file containing the intermediate results.
OuTPUT

42

P — the vector of parameters, after the i*h optimization step.

INTER.DAT — the data file containing the intermediate results, where the results of the

optimization are stored.

INACCURATE in LINESRCH.MTX

[ALIL FAL, FPO, FP1, DFDPAL, DFPO, DFP1, FLAG]

= INACCURATE (X, FZ, DFDPZ, D, FMIN, DELTAF, LAMBDA, ALPHAMAX)

This function performs Fletcher’s inaccurate line search as part of the unconstrained optimization
performed by the function PARTITION. It calls the function COST to get the cost and gradient for
the cost function evaluated at the i*! set of parameters. Effectively, INACCURATE seeks a point

where a sufficient decrease in both the function value and directional derivative have occurred.

INPUT
X — the current point (parameter vector), before the linesearch.
FZ — the total cost function evaluated at X.
DFDPZ — the gradient of the cost function evaluated at X.
D — the direction vector which the PARTITION function has chosen to perform the line search.
FMIN — the minimum value for the cost function. If the cost falls below this value, the
function will terminate.
DELTAF — the estimated change in cost.
LAMBDA — the weighting for the tracking cost.

ALPHAMAX — maximum alpha, set by stability constraints.

OQUuTPUT

ALI — the alpha value that yields sufficient reduction in F(X + alpha x D) for the ith iteration.

FAL — the total cost function evaluated at X + AL x D.
FP0 — the partitioning cost evaluated at X + AL X D.

43

FP1 — the tracking cost evaluated at X + AL x D.
DFDPAL — the gradient of the total cost function evaluated at X + AL x D.
DFP0 — the gradient of the partitioning cost at X + AL x D.
DFP1 — the gradient of the tracking cost at X + AL X D.
FLAG — an output flag signalling the condition with which INACCURATE completed.
0 — solution found, no problems.
1 — solution found, objective value less than FMIN.
| 2 — new point found, but backeting step converged to right endpoint without satisfying

Armijo/Goldstein conditions.

COST in COST.MTX

[DF, DF0, DF1, FP, FPO, FP1] = COST (P, LAMBDA)

Evaluates the cost and gradient at the current point using the cost function described in Appendix 1.

The state space representations for I?(s) and f(s) are constructed based on the current value of the

parameter P. The contributions of these to the costs fo and f; are calculated at each frequency point
in OMEGA and are added according to Simpson’s Rule for numerical integration. Furthermore, the

! contributions to the gradient as described in Appendix I are also accumulated for each frequency

in OMEGA.

INpPUT
P — the current point (parameter vector).
LAMBDA — the weighting for the tracking cost.

CONST.DAT — the data file containing the constants of the program.

OUTPUT

DF, DF0, DF1 — the gradients of the total cost function, the partitioning cost function and

the tracking cost function respectively.

FP, FP0, FP1 — the values of the total cost function, the partitioning cost function and the

44

tracking cost function respectively.

CONVERGE in CONVERGE.MTX
ANSWER = CONVERGE (X1, F11, X1, FI, GRAD, EPS, DEL, ETA)
This function checks if the convergence condition are met and returns a flag ANSWER defined as

0 if MAX |[XI1-XJ| >EPS or |[F11-F.| >DEL
ANSWER ={ 1 if MAX |[XJ1-XJ| <EPS and [FJ1-F_I| <DEL but MAX (GRAD| >ETA
9 if MAX [XJ11-XJ| <EPS, |[F11-F.I| <DEL and MAX |GRAD| <ETA

INPUT
X_I1 — the value of the variable (parameter vector) at the (i + 1)'" iteration.
F_I1 — the value of the cost function at the (i + 1)** iteration.
X_I — the value of the variable (parameter vector) at the :*" iteration.
F_I — the value of the cost function at the P iteration.
GRAD — the gradient of the cost function at the (i 4+ 1)'" iteration.
EPS — the absolute tolerance for X differences.
DEL — the absolute tolerence for cost function differences.

ETA — the absolute tolerence for the gradient.

OuTPUT
ANSWER — a flag indicating the state of convergence.
0 — no convergence.
1 — variable values converge, function values converge.

2 — variable values, function values, and gradient converge.

MODL in MODL.MTX
[SM]=MODL(S,NS)
This function takes a system matrix and puts it in to the form where A has 2 X 2 companion matrix

blocks whose first rows are [0 1] and whose second rows are [a b]. The transformation matrix is

normalized by requiring that all nonzero entries in the first column of the B matrix remain fixed

(zero entries are set at 107°).

INPUT
S — the system matrix.

NS — the order of the input matrix S.

QuTPUT

SM — the system matrix in modified modal form, still having order NS.

MAT in PARMAT.MTX

[SKA,SKE] = MAT(P)

Creates the system matrices for the airframe and the engine controllers from the parameter vector
(the variable over which the optimization process is being performed). In case one of the subsystems

is fixed, the corresponding initial system matrix is loaded from CONST.DAT and returned as SKA

or SKE.

INpPUT
P — the parameter vector.

CONST.DAT — the data file of constants.

QuUTPUT

SKA — the system matrix for the airframe controller.

SKE — the system matrix for the engine controller.

LONGCOL in PARVEC.MTX

[P] = LONGCOL(SKA,SKE)
This function generates the parameter vector from the system matrices for the airframe and the

engine. In case one of the subcontrollers is fixed, the parameter vector corresponds only to the

46

parameters in the other subcontroller.

INPUT
SKA — the airframe controller.

SKE — the engine controller.

CONST.DAT — the data file of constants.

QuTPUT

P — the long column vector of the parameters.

Z in ZERO.MTX
[ZER] = Z(NROW, NCOL)

Constructs a matrix of zeros of size NROW x NCOL.

INPUT

NROW, NCOL — the row and column size of the desired zero matrix.

OuTPUT

ZER — the generated zero matrix.

47

AprPENDIX III

CONTROLLER PARTITIONING CODE

48

il

7
/7
17,
[1)
- s
7
‘ 1/

/7
e 7
e 7%
/1
/7
/1
1/
/1
/1

1/
r /7

/1

/7
& 77

//

77
; /7
| /1
S

answer=converge (x_1{1,f 11,x _1,f },grd,epsilon,delta,eta,fx)

The function CONVERGE located in the file CONVERGE.MTX 1is called by
PARTITION to test the convergence of the optimization algorithm according
to the following criteria:
Condltion X: | xi1(J)~x1(J) | < epsilon(j) for J=1..n where dim(x)=n x 1
whether the parameter vectors are converglng
Condition f: | f(xi1)~f(xl) | < delta
whether the function values (costs) are converging
Condition G: |grd(j)| < eta for j=1..n where dim(x)=n x 1
whether the gradlient is approaching some low value (approx 0)
The result of the convergence check are returned in the flag answer.
The codes used for the answer are:
answer = 1 {f X and f are true and G is false.
answer = 2 {f X,f and G are true
answer = 0 if elther X or f ls false
Input:
x_11 - [real,vec] value of variable at lteration (i+1).
x_1 - (real,vec] value of variable at iteration (i).
f 1 and f 11 - [real,scal] values of function at successive iterations
g i and g_11 - [real,vec] gradients at successive iteratlions
epsilon - [real,vec] vector of the absolute tolerances defined
for each of the elements of the x
delta - (real,scal] absolute tolerance for the objective values,
eta - (real,scal] absolute tolerance for gradient
fx - [real,vec] tracks which of the A matrices ls at its stablility bound
OQutput:

/7 answer - [int,scal) flag that will show whether or not the
/7 optimization procedure has converged according to the
// user-defined criteria.
¥
answer=0;
|

1L£

(row, col)=size(grd);

abs(f_i1-f 1) > delta then retf;

diff=abs(x_1i1-x_1);
for i{=l:row; ...

if diff(i)>epsilon(i), retf;...

end;

answer=1;

for i=l:row; ...

if £x(1)=0, if grd(il)>eta, retf; ...
end;end;

answer=2; retf;

retf

// Created: 01/24/90

// Programmer: Steven Ims

// Revised by Phil Schmidt and students Nader Kamrani and Brian Holawecky at
// The University of Akron with the support of NASA Lewis Research Center

1/

under grant NAG-3-1146.

US

// [Df,DfO,Df1,fp, fp0, fpl)=cost (p, lambda)

//

// The function COST in file COST.MTX

// computes the cost and gradlent of the cost function at the current
// point (parameter vector). The partitioning and tracking costs and
// thelr gradients are returned seperately.

// lnput:

// p - the parameter vector

i lambda - the weighting appllied to the tracklng cost in the total
11 cost function

i const.dat - dataflle of constants

// Output:

// Df - gradient of the total cost function

// Df0 - gradlent of the partitloning cost function

// Df1 - gradient of the tracking cost functlion

// fp - the total cost at point p (current parameter vector)

A fp0 - value of the partitioning cost functlion

1/ fpl - value of the tracking cost function

/7

load ’const.dat’ la le ka ma ke me pea nka nke sp sk np nk frq omega ...
sg ng swi nwl swo nwo welght stabll aore Nperf Ntrack;

//Generate ska and ske controllers from the parameter vector p
(ska, ske]=mat (p);

//Note some of the sizes of matrices, numbers of inputs and outputs
mt=ma+me; //ma,me - alrframe, engine inputs

lt=latle; //la,le - numbers of airframe and engine y feedbacks
mtot=mt+lt; //mtot - total numbers of inputs to the centralllzed controller
kt=katke; //ka,ke - alrframe and englne outputs

nt=np+nkat+nke; //np,nka,nke - orders of plant,alrframe,engine controllers

// Split the plant controller sp and find the sizes of each plece

// using the stored data in Init.dat. Get the pleces from each submatrix M
// which connect input 1 to output o, that is Mol; Bpa, Bpe, Cap, Cyep

// Some of the indices Into the rows and columns used repeatedly are

// precalculated to save processing, le, mapl=ma+l etc

[ap,bp, cp,Df]=split (sp,np): //split sp

(mp ntmp]=size (cp); //the ap: xp -> xp and does not need
mapl=matl;mame=ma+tme; // to be further broken up

mpea=matme+tpea; //the dp submatrix of the plant is
kapl=ka+l; kp=katke; //kept zero

bpa=bp(:, (1:ka]); //part of bp: ua -> xp

bpe=bp(:, (kapl:kpl); //part of bp: ue -> Xp
cap=cp([l:ma),:); //part of cp: xp -> za
ceap=cp([(mapl:matpea),:); //part of cp: xp -> zeap

cep=cp ([(matpeatl) :mpea],:); //part of cp: xp -> ze
cyap=cp ([(mpea+1) : (mpeatla)],:)i//part of cp: xp -> ya
cyep=cp ([(mpea+la+l): (mp)),:); //part of cp: xp -> ye

// From the alrframe controller ska, get Baa,Baya,Caa,Ceaa,

// Daa,Daya,Deaa,Deaya in similar manner to the way that the plant
// matrix was split up

(aa,ba,ca,da]=split (ska,nka); //split the alrframe controller

[katot ntmp]=size(ca); //part of

baa=ba(:, [1:ma)); // ba: ea => xa
baya=ba(:, [(matl): (ma+la)]); 7/ :batiya => Xa
caa=ca(([1:ka],)7 // ca3 xa => uva
ceaa=ca ([kapl:katot],:); // ca: xa => zea
daa=da([l:ka), (1l:ma]); // da: ea -> ua

daya=da([1:ka), [mapl: (ma+la)]); // da: ya -> ua
deaa=da ([kapl:katot), {1:ma}); // da: ea -> zea
deaya=da ([kapl:katot], (mapl:(matla)]); // da: ya -> zea

cost.mtx

// From the engine subcontroller, get Beea, Bee, Beye,Cee,Deeam, Deem, Deye
{ae,be, ce,de] =split (ske,nke); //split the engine controller

(ntmp metot|=size (be); //part of

beea=be (:, [1:pea]); // be: zea => xe

bee=be (:, [(pea+l) : (me+pea)]); // be: ee => xe

beye=be (1, [(me+peatl) :metot]); // be: ye -> xe

cee=ce; // ce: xe => ue

deea=de (:, [1:pea)); // de: zea => ue

dee=de (:, ((peatl) : (metpea)]); // de: ee =-> ue

deye=de (:, [(me+peatl) :metot]); // de: ye => ue

//PARTITIONING COST MATRICES

// Get the Centralized controller K for the performance cost as
// input data originally read from init.dat

{ak,bk,ck,dk}= split(sk,nk};

// Form the Equivalent System tilde (K) using Partitioned Subcontrollers

// from inputs: Ee,Ea,Y to outputs: Ua, Ue.

at0=[aa,0*ones (nka, nke) ,0*ones (nka,np) ;..
beea*ceaa,ae,-beea*ceap;..
bpa‘caabbpe'deea'ceaa,bpe'ce,(ap—bpe'deea'ceap)l:

th-[baa,O'ones(nka,me),baya,o‘ones(nka,le);..
beea*deaa,bee,beea*deaya, beye;..
bpa'daafbpe'deea‘deaa,bpe'dee,bpe'deea‘deayabbpa'daya,bpe‘deye]:

ct0=[caa,0'ones(ka,nke),O‘Ones(ka,np):deea'ceaa,ce,(-deea'ceap)];

dtO-(daa,O'ones(ka,me),daya,O‘ones(ka,le):..
deea*deaa,dee,deea*deaya,deyel};

//TRACKING COST MATRICES

// Form Tcent from input: 2ac to output: Zeac for

// command tracking using Centralized Controller. This was created in
// start.mtx because it only needs to be defined once (does not vary

// with the parameter)

(ag,bg, cg,dg]=split (sg,ng);

// Generate the state-space representation tilde(T) from input:Zac
// to output: Zeac, command tracking using partitioned Controller.
atc-[aa,O'ones(nka,nke),(—baa'cap&baya'cyap};...
beea'ceaa,ae,(-1‘bee'cep—beea‘ceap—beea'deaa'cap ces
t+beea*deaya*cyaptbeye*cyep)i...
(bpa*caatbpe*deea*ceaa), bpe*cee, (ap-bpa*daa*cap...
—bpe'deea‘deaa'cap-bpe‘deea'ceap—bpe'dee'cep oee
»bpa'daya‘cyap#bpe‘deea‘deaya'cyap+bpe'deye'cyep)]:
btc-[baa;beea‘deaa:(bpa'daa#bpe'deea'deaa)];
ctc-[ceaa,O‘ones(pea,nke),(-deaa'cap#deaya'cyap)];
dtc=[(deaal;

// Decompose the input and output weighting functions into
// thelr state space representations
[awi,bwi,cwl,dwil-split(swi,nwi);
[awo,bwo,cwo,dwo)-spllt(swo,nwo);

// Compute the costs; fp0 (performance), fpl (tracking) and thelr gradlents
// fpO=Integral (tr ((Wo (K- tilde (K))Wi)~T) (Wo(K-tilde(K))W1)))

// fpl=Integral (tr ((nrm(T- tilde(T)))~T) (nrm(T-tilde(T))))

// DfpO=partitioning cost gradlent

/7 =-2*Re[(LeftFactor)

Ly Integral

// ((inv(sI-A)*B; I)*Wi* ((Wo (K- tilde (K))Wi)~T) *Wo* (C*inv (sI-A), I
L (RightFactor))*

// Dfpl=tracking cost gradient

(i =-2*Re[(LeftFactor)

/7 Integral

1 ((inv(sI-A)*B; I]*(nrm*(T- tilde(T))*T*nrm*(C*inv(sI-A), I))
// (RightFactor))’

// Initialize the costs and gradlents to zero

. fp0=0;

| fpl=0;
Df0=0*ones (nka+nke+np+matme+la+le, nkatnke+nptkatke);
Df1=0*ones (nkatnke+np+ma,nkatnke+nptpea);

‘ // Integrate over the frequency interval [FRQ(1),FRQ(2)] using Simpsons rule,
// coefficlents are in the variable WEIGHTS..
// Build up the partitioning costs fp0, fpl, and the integral
// part of the gradients DfO and Df1l
// DfO=Integral
(I ([inv(sI-A)*B; I)*Wi*((Wo(K- tilde (K))WLl)~T)*Wo*(C*inv(sI-A), I])
'\ // Dfpl=Integral ((inv(sI-A)*B; I])*(nrm*(T- tilde(T))*T*nrm*(C*inv(sI-A), I])
for i=1:frq(3,1), om=omega(l);...
kO={nv (om* jay*eye(nt)-at0); ...
\ wi=cwi*inv (om*jay*eye (nwl)-awl) *bwitdwi; ...
\ wo=cwo*inv (om*jay*eye (nwo) ~awo) *bwo+dwo; ...
kdiff=wo* (ck*inv (om* jay*eye (nk)-ak) *bk+dk-ct0*k0*bt0-dt0) *wi;...
fp0=fp0 +welght (1) *om*sum(dlag (kdiff’*kdiff) /Nperf(l));...
1 DfO=DfO+welght (1) *om/Nperf (1) * (k0*bt0;eye (mtot) | *wi*kdiff’ *wo*...
[ct0*k0,eye (kt))i ...
nrm=dlag((lambda./Ntrack(i,:))**.5);...
kl=inv (om*jay*eye(nt)-atc); ...
ktrc=nrm* (cg*inv (om* jay*eye (ng) -ag) *bg+dg-ctc*kl*btc-dtc);...
fpl=fpl+weight (1) *om*sum(diag(ktrc’*ktrc)) ;...
Df1=Dfl+weight (1) *om* [kl*btc;eye (ma)]*ktrc’*nrm* [ctc*kl, eye(pea)];...
‘ end;
N
= //1f the alrframe controller is to be optimized, calculate the cost gradients
//with respect to the parameters belonging to the airframe controller by
//multiplying DFO and Dfl by the corresponding Left and Right Factors
//This 1s done for both the partitioning cost Dfa0 and the tracking
//cost Dfe0 (with respect to the afirframe parameters)
//Dfa0=((LeftFactor) Df0 (RightFactor))’
//Dfal=((LeftFactor) Dfl (RightFactor)]’
1f aore<>},...
DfaO=([eye(nka),z (nka,nke+np+mtot);z(ma,nt),eye(ma),z (ma,me+lt) ;...
z(la,nt+mt),eye(laj,z(la,lec) |*Df0* (eye(nka), z(nka, katpea);z(nke,nkatka)...
; beea;z (np, nka) ,bpa,bpe*deea;z(ka,nka),eye(ka), z(ka,pea);...
‘ z (ke,nkatka) ,deeal)’;..

Dfal=((eye(nka),z (nka,nke+nptma);z(ma,nka+nke),-cap,eye(ma);z(la,nkatnke),...
cyap,z(la,ma)] *Dfl1*[eye (nka),z(nka,katpea);z(nke,nkatka), beea;z(np,nka),...
bpa, bpe*deea;z (pea,nkatka),eye(pea)j)’;..

‘ else Dfa0O=0*ones(ska); Dfal=Dfa0; end,

{ //Similarly, if the engine controller ls to be optimized,

//calculate the cost gradients with respect to the englne

//parameters by multiplying Df0 and Dfl by the requislite Left and

//Right Factors. Gradient of partitioning cost with respect to the

//engine parameters is Dfe0 and gradient of the tracking cost is Dfel.

//Dfe0=[(LeftFactor) Df0 (RightFactor) |’

//Dfel=[(LeftFactor) Df1l (RlightFactor))’

1€ 4cp8<>2; .. -

Dfe0=([z(nke, nka),eye (nke), z (nke, np+mtot) ;ceaa, z (pea, nke) ,~ceap, deaa,...
z (pea, me) ,deaya, z (pea, le) ; z (me,nt+ma), eye (me), z (me, 1t) ;z (le, nt +mt+la), ..
eye(le)]...

DfO [z (nka,nke+ke) ;eye (nke), z (nke, ke) ; z (np, nke) ,bpe; z (ka, nke+ke) ; z (ke,nke) , ...
eye (ke)yl) s

Dfel=((z(nke,nka),eye (nke),z(nke,nptma) ;ceaa, z(pea,nke), ...
- (deaa*cap+ceap-deaya*cyap),deaa;z (me, nka+nke) ,-cep, z(me,ma) ;z (le, nkatnke), ..
cyep,z(le,ma) | *Df1*(z (nka,nketke);eye (nke),z(nke, ke);z(np,nke),bpe;..

z(pea, nketke))) ;...
else Dfe0=0*ones (ske) ;Dfel=Dfe0;end,

//Assemble the final cost and gradients using the formulas
//described earller and the alrframe and englne costs and gradients
//just generated.

coef=(log(frq(2,1)/frq(1,1)))/(3*frq(3,1));

fp0=real (coef*fp0); fpl=real(coef*fpl);

fp=fpO0+fpl;

Df0=-2*coef*real (longcol (Dfa0,Dfe0));
Dfl1=-2*coef*real (longcol (Dfal,Dfel));

Df=

DfO+Df1;

retf

//
A
//
1/
/7

//
//
/7
//
//
/7
//
1/
/7
Vil
T
1/
[/
/7
’/
1/
.
//
/7
/7
1/
//
il
//
/7
A
(/4
/7
//

//
17/
//

COST evaluates the total cost of approximating a centralized controller by
hierarchically partitioned subcontrollers. It is the sum of two costs,
fPerf which measures the performance cost of approximation and fTrack which
measures the error in meeting the command tracking requirement. It’s input
is the parameter vector, p, and the tracking welghting vector, lambda.

The file ’const.dat’ contalins the constants of the process

the dimenslons --- ka,ma,ke,me,pea,np, nka, nke,nk,nwi (o), ng, la, le (k=outputs,
m=inputs, l= neg. feedbacks, n=order, p=intermediate variables)

the range vector of frequencles --- frq

the actual frequencies ~-- omega

the plant In system form --- sp

the global controller in system form --- sk

the input and output welghting matrices in system form --- swi, swo

the global tracking command matrix in system form --- sg

the weights used in the numerfcal integration --- wefght

the normalization matrix for the performance cost --~ Nperf

the normalization matrix for the tracking cost -- Ntrack

The state space representation for the weighted difference between global
controller and assembled partitioned controller is determined. The

H_2 norm of the resulting system is computed.The norm is calculated by
applying a Simpson’s rule sultably modified to account for the exponential
distribution of the omegas.

The normalized H_2 norm of the difference between the tracking command
transfer matrix and the nominal one is also calculated. This is added to
the previous H_2 norm. The gradient of this sum is computed.

The outputs are fp0 --- the H_2 norm of the welghted difference between
centralized and partitioned controllers
fpl --- the normalized H_2 norm of the deviation from
nominal command tracking
fp = fp0 + fpl
and Df0,Dfl and Df --- the gradients of fpl, fpl and fp resp.

Created by Phil Schmidt and students Nader Kamrani and Brian Holawecky at
The University of Akron with the support of NASA Lewls Research Center
under grant NAG-3-1146.

S

// (ali,fal,pr,fpl,dfdpal,dfpo,dtpl,llaql-INACCURATE(X,[z,dfdpz,...
d, fmin,deltaf, lambda,alphamax)

// The function INNACURATE in file LINESRCH.MTX

// performs Fletchers inaccurate line search as part

// of the unconstrained optimization process. Glven the search direction,
// a point is found that satisfies the Armijo-Goldsteln condltions using

// a two stage bracketing/sectioning procedure.

// Input:

(s X - [real,vec) the current polint corresponding to al=0

// fz - (real,scal] objective function value for al=0.

/7 dfdpz - {real,vec) directional derivative of objective function at al=0
// d - (real,vec]) the direction vector which the BFGS procedure

// has chosen to perform the univarlate search.

// fmin - (real,scal] user-defined lower bound on the problem;

(44 {f a point is found such that the objective value {s less than
1/ fmin, then the procedure will terminate.

L deltaf - [real,scal]) estimated change in cost

(L alphamax - (real,scal] maximum alpha set be stability constraint.
// Output:

// all - [real,scal] the step-slze determined to be the solution

1/ to the univarlate problem.

// fal, fp0, fpl - [real,scal] the cost function values at the point

// (x+al*d); this Is included to help keep the number of computations

/7 to a minimum,

1/ dfdpal,dfp0,dfpl - [real,vec]; gradients at the min point.

// flag - (lnt,scal] denotes the condition with which INACCURATE has

/7 completed the line search.

I 0 - solution found; 1 - solution with functlon value less than fmin
/i 2 - reached end of search interval, reduction without finding min

//

// The Armljo/Goldstein parameters, described in more detall in
// Fletcher, PRACTICAL METHODS OF OPTIMIZATION, Wiley, 1987.
Rho=0.01;

Sigma=0.7;

Taul=10;

Tau2=0.1;

Taul3=0.5;

fpz=dfdpz’ *d; // slope when alpha=0, le directional slope
alpr=0; // alpha(i-1) the previous alpha

falpr=fz; // function value at previous point
fpalpr=fpz; // slope at previous point

bounds=(1;-10*deltaf/fpz;alphamax]; // used to find inital alpha
al=min(bounds); // initial alpha
albound=min ((fmin-fz)/ (Rho*fpz),alphamax); // search restricted to [0,albound]

// The following algorithm is not documented In great detall as it follows
// almost directly from Fletcher, PRACTICAL METHODS OF OPTIMIZATION, Wiley,
// 1987 pp.34,35. The only part of the code not in the book lis

// the minimization of the cublic interpolation of fal, fpal, falp

// and fpalp used to generate the next alpha in both the bracketing

// and the sectioning phases

// The bracketing phase
while 1>0 do ...
[d[dpal,dfpo,dfpl,tal,tpo,(pll-COST(x+al‘d,lambda): ety
fpal=dfdpal’ *d;...
al,fal,fpal, alpr, falpr, fpalpr,...
If fal<=fmin then flag=1; ali=al; retf; end;...
if fal>£z+al‘Rho'(pz,aualpr;b-al;fa-falpr;tb-fal;lpa-fpalpr;(pbn(pal;...
exit;end; ...
if fal>falpr, a-alpr;bnal;ta=(alpr;fb-fal;fpa-fpalpr:fpb-(pal;exlt:end;...

linesrch.mtx

if abs(fpal)<=-Sigma*fpz, flag=0;ali=al;retf;end;...
i{f fpal>=0, b-alpr;a-al;fb-talpr:ta-fal:(pb-fpalpr;fpa-fpal;exlt;end:...
{f abs(al-albound)<0.001*albound, flag=2;all=al;retf;end;...
{f albound<=2*al-alpr then m=(al+albound)/2; n=albound;...
else m=2*al-alpr; n=m1n([albound,al*Tau1‘(al-alpr)]);end;...
dal=al-alpr; dfal=(fal-falpr)/dal; dfpal=(fpal-fpalpr)/dal;...
cd=(dfpal-2*(dfal-fpalpr)/dal)/dal; c3=0.5*dfpal-1.5*dal*c4;...
if c4==0, if c3==0, alnew=-(abs (fpalpr)/fpalpr)*albound;...
else alnew=alpr-fpalpr/(2*c3);end;...
elself c3*c3-3*cd*fpalpr<=0, alnew=- (abs (fpalpr)/fpalpr)*albound;...
else alnew=al+(sqrt (c3*c3-3*c4*fpalpr)-c3)/(3*cd); end;...
alpr=al; falpr=fal; fpalpr=fpal;...
{f alnew<=m, alnew=m;elself alnew>=n, alnew=n;end, ...
al=alnew;...
end;
// The steps above select a new alpha in the interval
// [al+(al-alpr),al+Taul*(al-alpr)]. alpha is chosen to minimize
// a cublc polynomial which interpolates the values of f{al), f'(al),
// f(alpr) and f’(alpr). Note that the new point is chosen by moving far out
// to the right in an effort to bracket an interval of acceptable polnts.
//
// Similarly, in the sectioning phase, construct a cubic interpolant
// using the values of f(A), £(B), £'(A) and £’ (B) and find a minimum point
// which (hopefully) lies in the interval
// [(1-Tau2) *A+ Tau2*B,Tau3*A+(1-Tau3) *Bj, 0<Tau2<Tau3<l. The new
// point is chosen in this interval (which is a subinterval of its
// predecessor). Eventually an acceptable point will be found.

// The sectioning phase
while 1>0 do ...
a,fa,fpa, b,fb,fpb,...
dal=b-a; dfal=(fb-fa)/dal; dfpal=(fpb-fpa)/dal;...
c4=(dfpal-2* (dfal-fpa)/dal)/dal; c3=0,5*dfpal-1.5*dal*cd;...
{1f c4==0, 1f c3==0, alnew=b; else alnew=a-fpa/ (2*c3);end;...
elself c3*c3-3*c4*fpa<=0, alnew=b;...
else alnew=a+(sqrt (c3*c3-3*c4*fpa)-c3)/(3*cd);end;...
m=at+tau2*dal; n=b-tau3*dal;...
i1f me<n, Lf alnew<=m, alnew=m; elself alnew>=n, alnew=n; end,...
else If alnew<=n, alnew=n; elself alnew>=-m, alnew=m; end,end;...
[d!dpal,dfpo,dtpl,fal,pr,fpl]-COST(x+alnew'd,lambda);...
fpal=dfdpal’*d;...
{f fal<=fmin ,flag=l; ali=alnew; retf; end;...
{f fal>fz+Rho*alnewtfpz, b=alnew;fb=fal;fpb=fpal;...
elself fal>fa,b=alnew;fb=fal;fpb=fpal;...
else {f abs(tpal)<-—Sigma'tpz,flag-O;ali-alnew;rett; endsicen
aold=a; faold=fa; fpaold=fpa; a=alnew; fa=fal; fpa=fpal;...
{f 0<=(b-aold)*fpal, b=aold; fb=faold; fpb=fpaold; end;...
end; ...
end;

retf

//

// The function INACCURATE in the file *linesrch.mtx’ performs Fletcher’s
// inaccurate line search as a part of the unconstrained optimization

// procedure, PARTITION. It makes calls to the user-defined function (UDF)
// COST in ‘cost0.mtx’ which produces both the function value and its

// gradient.

1/

// TINACCURATE will solve the univarlate minimization problem required

// at each line search in the overall optimization process, that is,

//

// min f(x+al*d)

/7

// This is accomplished by use of a two-stage (bracketing/sectioning)

Ty

procedure which employs cubic approximation that will seek
only to find a point which satisfles the Armijo-Goldstein conditlions,
This approach is useful because the BFGS method of

determining a search direction has proven to be robust enough to

be effective even with an inaccurate line search.

This line search makes use of many parameters that define varlous
aspects of the search computatlions, These parameters have been set
to values that have proven to be adequate for this procedure. Of
course, these may be changed to suit the user’s needs. For a more
thorough description of how each parameter is used in this procedure,
see Fletcher, PRACTICAL METHODS OF OPTIMIZATION, Wiley, 1987.

Parameters: The Armijo/Goldstein parameters should satisfy:

0 < Rho < 1/2 --- smaller is easier to satisfy; we use 0.01
Rho < Sigma < 1 --- Larger is easler to satisfy; we use .7

The next is used in the bracketing stage to find (1f
necessary) larger and larger intervals which might contain an
acceptable, i.e. Armljo/Goldstein, interval:

Taul > 1 --- we use 10, the larger, the more effort might be
used In the sectioning phase.

The last two parameters are used to reduce the acceptable
interval until an acceptable point is found:

0< Tau2 < Sigma ls advised --- we use 0.1
Tau2 < Tau3d <= 1/2 --- we use .5 to get the greatest
reduction of slze.

Notes on the use of the output variable ’flag’ in this function:
Flag is used by INACCURATE,.DAT to characterize the condition of
the line search when it terminates. The values can signify:

flag=0 - the solutlon to the line search has been found;
nothing special to note about the solution.

flag=1 - a point has been found that gives an objective value
less than fmin.

flag=2 - the bracketing step has converged to the right hand
endpoint of the interval without satisfying the A-G
conditions. It should be noted however that the new point
will have a reduced function value (although, perhaps
insufficient to trigger the A-G conditions).

Created: 01/30/90

Programmer: Steven Ims

Rewritten by Phil Schmidt and students Nader Kamrani and Brian Holawecky at
The University of Akron with the support of NASA Lewls Research Center
under grant NAG-3-1146.

// [sm])=modl (s, ns)

// .

// The function MODL in file MODL.MTX puts a system matrix into a modifled
// modal form reducing the number of parameters in the optimizatlion.

// The lnputs are a system matrix and its order. The system is put into the
// form where A has 2x2 companion matrix blocks whose first rows are [0 1] and
// whose second rows are [a b]. The transformation matrix is normalized by
// requiring that all nonzero entrles {n the first column of the B matrix

// remain fixed (in case of zero entries in Bl, the entry is fixed at le-9).
// The €, and D are full. This should work except in the speclal case of

// repeated real roots.

// Input:

// s - the system matrix to be put in modal form

// ns - the order of the input matrix

// Output:

// sm - the system matrix, now in modified modal form, still has order ns
il

// Convert the input system matrix S into the internal Matrixx modal form
// where the A submatrix is of the form that the real elgenvalues

// are on the diagonal and the complex conjugate elgenvalues (a + bl)

// and (a - bl) are stored in 2x2 matrices of the form (a b] on the flrst
// row and [-b a] on the second row.

[sm,t]=modal (s, ns);

// Split the modal form sm into its components
(am, bm, cm,dm] =split (sm,ns);

// Create a permutation matrix P which collects all the real distinct
// elgenvalues at the top of am and sends all the 2x2 matrices representing
// the complex elgenvalues to the bottom of am.
i=1; 3=0; p=eye(ns);
[(n,o0)=size(cm);
while i < ns,...
i{f am(i,1+1)=0,1=1+1;...
else,...
m=p((L:1+1),2);...
1f 1>3+41, for k=i:-1:3+2, pl(k+l,:)=p(k-1,:); end; end;...
p((J+1:3+42),:)=m;...
I=442; 1=1+1;...
end;...
end;

// Rearrange the real eigenvalues so that the ones that are close
// in value are separated.
nr=ns-j;
i1f nr > 2, g=mod(nr,2); nrhalf=(nr-q)/2; tpnt=3+2; mpnt=j+nrhalf+l;...
for i=1:(nrhalf-1), temp=p(mpnt,:);...
p([(tpnt+1):mpnt),:)-p([tpnt:(mpnt-l)l,:);..:
p(tpnt,:)=temp; tpnt=tpnt+2; mpnt=mpnt+1;...
end; ...
end;

// Since S=[A,B; C,D] is the form of a system matrlx, multiplying

// (P, I} * S * [inv(P); I] will have the following effect on A,B,C,D
a=p*am*inv(p);

b=p*bm;

c=cm*inv(p)

// 1f two real elgenvalues are still very close in value, shift one slightly
// more negative
for i=1l:nr-1, ...
1f a(l,1)=a(L+1,141), a(i,1)=a(l,1)-10e~-9; end;
end;

e modl.mtx

// Construct a transformation matrix T such that

// T * a * Inv(T) has the effect of taking 2x2 blocks of

// real elgenvalues (or of complex conjugate pairs) and

// returning the desired structure (0 1; a b] which have the same

// elgenvalues as the 2x2 blocks.

t=0*eye (ns);

q=mod (ns, 2) ;

for i{=1:(ns-q)/2,...
t(2*1-1,2*1-1)=1; t(2*1-1,2*1)=1;...
t(2*1,2*1-1)=a(2*1-1,2*1-1)-a (2*1-1,2*1) ;...
t(2*1,2*1)=a(2*4,2*1)-a(2*4,2*1-1) ;...

end;

// The varlable q keeps track of an odd size matrix, i.e. an odd entry which
// does not fit in the 2x2 blocks
if g=1, t(ns,ns)=1; end;

// [T 1) * system matrix * {inv(T); I} will generate the following
tinv=inv(t);
aa=t*a*tinv; bb=t*b; cc=c*tinv;

// Set the first entry in the modal blocks to zero; (0,1;a.b)
for i=1:(ns-q)/2, aa(2*1-1,2*1-1)=0; end;

// Construct the system matrix sm which is now in the modified modal form
sm=[aa,bb;cc,dm];

retf
// Created by Phil Schmidt and students Nader Kamrani and Brian Holawecky at

// The University of Akron with the support of NASA Lewls Research Center
// under grant NAG-3-1146.

// [ska,ske]=mat (p)

//

// The function MAT in file PARMAT.MTX generates

// the partitioned system matrices ska and ske from

// the parameter vector p. Note that p is: Aa,Ae,Ba,Ca,Deaa,Deaya,Be,Ce,Deea.
// The other submatrices are all constants and are loaded from const.dat

// Input:

/7 p - the vector of parameters

// const.dat - dataflle of constants

// Output:

/7 ska - the alrframe controller

T4 ske - the engine controller

{ivd

// load the default data from const.dat
load ‘const.dat’ nka ma lya nke bal ka pea me ke lye bel ...
daa daya dee deye ska0 ske0 aore fixd

// Set the counter,
dum = 0;

first to 0 then to nka etc. as new blocks are bullt from p

// 1f alrframe is not flxed, then create a blank aa (A submatrix for ska)
// and copy the requisite entries from the parameter vector p. Recall the
// modal from of the system matrlces (refer to modl.mtx) reduces the
// A submatrices to 2x2 companion blocks of the form (0,1; a,b], so only
// the a and b need to be read
if aore<>1, aa=0*eye(nka); g=mod(nka,2); ...

for i=1:(nka-q)/2,...

aa(2*1-1,2+*1)=1; aa(2*{,2*1-1)=p(2*1-1,1); ...

aa(2*1,2*1)=p(2*1,1); end;...

if q=1, aa(nka,nka)=p(nka,l1); end; ...

2 matot=ma+lya; katot=ka+pea; dum=nka;...

end,

// 1f engine is not fixed, then create a blank ae and copy requisite
// entries from the p vector, with the same provisos as for aa above
i1f aore<>2, ae=0O*eye(nke); g=mod(nke,2); ...
for i=1: (nke-q)/2,...
ae(2*1-1,2*1)=1; ae(2*{,2*i-1)=p(dum+2*i-1,1); ...
ae(2*1,2*1)=p(dum+2*i,1);end;...
{f g=1, ae(nke,nke)=p(dumtnke,1);
metot=me+pea+lye; dum=dum+nke;...
end,

end; ...

// 1f alrframe is not fixed, generate the ca,deac,da entries from p.
// Note that the first column of the ba entry is fixed as required by
// the modal form, so load it from bal (saved in const.dat)
// The rest of ba,ca,deac are loaded from p. If Ds are not fixed, then
// thelr values are read from p, otherwise from constants
// (and daya depending on whether feedback lya exits).
if aore<>1, ba(:,1)=bal;..
for i{=2:matot, ba(:,1)=p([(dumtl:dum+nka),l); dum=dum+tnka; end;..
for i=l:nka, ca(:,!)=p({dum+l:dumtkatot],l); dum=dumtkatot; end;..
1f (fixd=1)*{fixd-2) <> 0,...
for i=1:matot, daaya(:,1)=p((dum+l:dum+ka],1); dum=dum+ka; end;..
else If lya=0, daaya=daa; else daaya=(daa, daya); end;...
end; ...
for i=l:matot, deac(:,!)=p([dum+l:dum+pea),l); dum=dumtpea; end;..
da=[daaya;deac);...
end,

load the first column of be
Then load rest of be,ce,deea
Construct de from deea, dee (and deye depending on whether

// 1f the engine controller is not fixed,
// from the bel entry stored in const.dat.
// from p.

//
if

armat.mtx

there is any feedback lye).
aore<>2, be(:,1)=bel;..

for {=2:metot, be(:,1)=p((dum+l:dumtnke],l); dum=dum+nke; end;..
for i=1:nke, ce(:,1)=p([dumtl:dum+ke],1); dum=dum+ke; end;..
1f

(£ixd-2) * (fixd-3) =0, deea=0*ones(ke,pea);...
else for i=1:pea, deea(:,!)=p((dum+l:dum+ke],1); dum=dum+ke; end;...

ends oew
1f (fixd-1)*(fixd-2) <> 0,meplye=met+lye;...

for i=1:meplye, deeye(:,1)=p((dum+l:dum+ke),1); dum=dumike; end;..

else if lye=0, deeye=dee; else deeye=(dee, deye]; end;...

end;...
de=[deea, deeye];...
end,
// 1f the airframe controller is not fixed, then construct ska from aa,ba
// ca and da. If there is no feedback defined lya=0, then extend
// ska by one column of zeros to accomodate the dummy feedback that will
// be used.
// 1f the airframe controller is fixed, then use ska=ska0
if aore<>1, ska=[aa,ba;ca,da];...
If lya=0, (rska,cska]=slze(ska); ska=[ska,0*ones(rska,l)];end,...
else ska=ska0;...
end,
// 1f the engine controller ls not fixed, then construct ske.
// 1f there is no feedback defined lye=0, then add the zero column
// to accomodate the dummy feedback.
// If the engine controller ls fixed, then let ske=ske0 the fixed
// engline controller.
if aore<>2, ske=[ae,be;ce,de];...
1f lye=0, [rske,cske]=slize(ske); ske=[ske,O*ones(rske,1)]; end,...
else ske=skeO; end,
retf
// This program takes the parameter vector P, which is a column vector, and
// uses the dimensions of the subcontrollers stored in ’‘const.dat’ to
// reconstruct the partitioned system matrices ska and ske, It allows for the
// possibility that one of the subcontrollers is fixed and loads its initial
// value, Note that the constant submatrices Bal,Bel, Daa, Daya, Deac, Dee and
// Deye are properly loaded,
// Created by Phil Schmidt and students Nader Kamrani and Brian Holawecky at
// The University of Akron with the support of NASA Lewis Research Center
// under grant NAG-3-1146.

>

//
//
//
//
// It implements the Broyden-Fletcher-Goldfarb-Shanno method of finding

p_i=partition(stop)

The function PARTITION in file PARTITIO.MTX is the
outer level loop in the optimization process.

//
1/
(il

a search direction for minimization, then calls function INACCURATE
to generate a new point by minimizing in that direction. This
process is then repeated until the convergence conditions (as

// checked by function CONVERGE) are met or some other stopping criteria
// are met (number of iteratlions exceeds maximum or function value 1is
// less than fmin).

// Input:

/7 stop - the vector of stopping conditions

// const.dat - the dataflle of constants

// {nter.dat - the datafile containing intermediate results

// Output:

// p_i - the ith point along the optimization process

717 inter.dat - the datafile where intermediate results are stored
14

load ‘const.dat’ omega nka nke atot stabil
load ’inter.dat’ p_{ gradi grad0 gradl fh jho jhl hi lambda fx;
(row,col)l=size(p_1); (cnt,tmp]=size (fh);

// Prestore the messages to save the length of loops, in order that the
// Matrixx line limit be avolded

1s='LINESEARCH TERMINATED BY HITTING BOUND’;:

not='NOTICE! STABILITY BOUND.’;

a_ph='A phat has been found that gives an objective value < fmin.’;
ex='exceeded maximum number of iterations’;

plpar='STRIP YLAB/f (P)|fO(P)|f1(P)/";

// Read stopping conditlons
epsl =stop(1l) *ones(p_1);
del =stop(2);

eta = stop(3)/

maxcnt =stop(d);

fmin =stop(5);

from the vector stop

dfx-diaq(ones(row,1)-({x;O'ones((row—atot),l)));
delf=max (0,9*abs(fh(cnt)),10**(-6));
cvgfact=1;
cvflg=0;
// While the convergence/stopping conditions have not been met
while cvflg<0.5 do...
cnt, fh(cnt), ...

£f cnt>l, S

i1f cnt>20, ITER=[cnt=-20:cnt])’; ...

else ITER=(l:cnt]’;...

end..
Y-[[h(ITER),jhO(ITER),jhl(ITER)];PLOT(ITER,Y,plpar);...
end, ...

di=-dfx*hi*dfx*gradi;...// search direction is -Approx Inv Hesslan*gradient
alphamax=lel6;...// check on stabllity constralnts
for I=l:atot,...
1f fx(1)=0,...
1f Al (1)>0,...
if (stabll-p_1i(I))/di (I)<alphamax,...
alphamax=(stabil-p 1(I))/di(I);...
end; .
end, ...
else di (I)=0;
end, ...
(ali,tp_il,jo,jl,qradil,qrado,qradl,[laq]-INACCURATE(p_l,fh(cnt),qradl,...

end, .

 partitio.mtx

di, fmin,delf, lambda,alphamax);...// calls the linesearch
if flag=2, display(ls); end;...
{f ali=alphamax, cvgfact=0; display(not); end, ...
fh(cnt+l)=fp_11;...
p_i1=p_i+ali*di; ...
JhO (cnt+1)=30; ...
jhl (cnt+1)=Jj1;...
cvflg=coNVERGE(p_11,fh(cnt#l),p_l,fh(cnt).qradil,cvgract*epsl,...
cvgfact*del,eta, fx);...// checks convergence
cvgfact=1;...
psi=ali*di;...
Qi=dfx* (gradil-gradi);...
psiQi=psi‘*Qi;...
pOmat=(eye (row) -psi*Qi’/psiQi) ;...
hi=p0mat‘hi‘(meat')*((psl'psl')/pslol);...// updates Inv Hesslan Approx
for I=l:atot, ...
{f fx(1)=0, 1f p_11(I)>=1.001*stabll, fx(I)=1;...
p_ll(I)=stabll;dfx(I,I)=O:end...
elself gradil (1)>0,fx(I)=0; for J=l:row,hi(I,J)=0;hi(J,I)=0;end,...
hi(I,I)=1;dfx(I,I)=1;...
end,end ...// updates stablility constralnts
p_i=p_11;...
gradi=gradil;...
delf=max (fh(cnt)-fh(cnt+1),10**(-6))7...
cnt=cnt+l;...
i{f mod(cnt,20)=0, ...
save ’inter.dat’ p_i fh jh0o jhl gradi grad0 gradl lambda fx hijend...
{f cnt=maxcnt,disp(ex);...
save ‘Inter.dat’ p_i fh Jh0 jhl gradi grad0 gradl lambda fx hi;...
retf;end, ...
i1f flag=1,disp(a_ph):
save ‘inter.dat’ p_i fh jh0 jhl gradl grad0 gradl lambda fx hi;...
retf;end;...
end;
save ’inter.dat’ cnt p_i fh jh0 jhl gradi grad0 gradl lambda fx hi;
disp(’Convergence of f-value and parameters has occurred’);
{f cvflg=2, disp(’all partials are also less than’); eta, end;

retf

// PARTITION is the top-level function i{n the optimization routine.

// It makes calls to the user-defined functions INACCURATE and CONVERGE

// in the flles ’linesrch.mtx’ and ‘converge.mtx’ resp.

// It also uses the MATRIXX PLOT functlon to show intermediate results.

1/

// PARTITIO.MTX is an implementation of the Broyden-Fletcher-Goldfarb-Shanno
// method of determining a search direction, with Fletcher’s lnaccurate

// 1lne search being used to locate the the next point in UDF INACCURATE.
/7

// PARTITION.MTX will solve hierarchical partitioning problems.

/7

// Inputs:

// stop = [real,vec] column vector of stopping conditions

// stop = (epsl del eta maxcnt fmin)

/7

// parameters being defined in ‘param’ vector: any defaults were assigned in
{if START

/1

// epsl (default=1e-9) - column vector with element-wise convergence
A 1imits for elements of |p i1 - p_il:

Ll del (default=1e-9) - convergence of objective values,

/7 |£(p_11) - f(p_1) 17

/7 eta (default=1e-9) - convergence ‘of gradients,

1/ |grad f(p_11)| < eta;

1l maxcnt (default=100) - maximum number of iterations of procedure

‘ //

7/

//
R
Ry
1/
//
//

\
//
//
//
/7
il
| //
//
/7
/7
/7

allowed in searching for a solution.
fmin (default=0) - lower bound on the objective function.
Any polnt, x, found with an objective
value less than fmin will be considered
a solution. Since we minimize a norm, the
default is zero.

Notes on the use of ‘flag’ in this function:

Flag is used by the INNACURATE functions to

characterize the objective function and the current point, x.

It can take on values as follows:

(1) flag=0 - a point has been found which satisfies the Armijo-
Goldstein conditions (see ’linesrch.mtx’); the precedure
cont inues,

(2) flag=1 - a point has been found that gives an objective value
less than fmin., Procedure terminates.

(3) flag=2 - a point has been returned by INACCURATE which doesn’t
satlsfy the A-G condition, but which corresponds to the
maximum allowable step in the search direction. This can
happen because the steps are constrained to malntain
subcontroller stability. Currently, the code continues
as though the A-G condlitlons were satlisfled, If problems
such as looping are encountered, the user might try to
reset HI to the identitly at this point.

The program terminates properly under one of the following conditions:

(1) flag=1 - the objective value is less than fmin,

(2) cnt=mxcnt - the maximum number of iteratlons has occurred

(3) cvflg=l =~ the max deviation in parameters is less than epsl and
the max deviation In COST ls less than delta

(4) cvflg=2 - same conditions as cvflag=l and max deviation in

partials is less than eta.

on termination (of any type) the following can be found in the file
*inter.dat’:

Pl - last parameter vector (can use procedure MAT in ‘parmatO.mtx’
to generate the corresponding SKA and SKE)
fh - complete total cost hlstory (all lteratlons)
4h0, jhl - complete cost historles of fPerf and fTrack costs
gradl - gradient of total cost at last parameter polnt.
grad0, gradl - gradients of fPerf and fTrack at last point

hi - last inverse Hessian updated according to values of p_i, etc.
lambda - lambda vector
fx - vector indicating which entries in Aa and Ae are fixed at

stablility bounds

Created: 01/23/90 as BFGS.DAT

Programmer: Steven Ims

Revisions by Phil Schmidt and students Nader Kamranl and Brian Holawecky at
The Unlversity of Akron with the support of NASA Lewls Research Center
under grant NAG-3-1146.

// p=longcol {ska,ske)

// The function LONGCOL in file PARVEC.MTX

// creates the long column vector of parameters p from the partitioned
// system matrices ska and ske

// Input:

// ska - the alrframe controller state-space matrix

// ske - the engine controller state-space matrix

Vi const .dat - datafile of constants

// Output:

Vi p - the long column vector of the parameters

load ‘const.dat’ nka nke me pea lye ma lya ka aore fixd

(aa,ba,ca,da]=spllit (ska,nka); // split ska and ske into thelr
{ae,be, ce,de] =split (ske,nke); // component (A,B;C,D]

metot=metpeatlye; // define sizes of the parameters
matot=matlya;
p=(0]; // initialize p

// If alrframe controller is not fixed then copy entries that need to be
// optimized from aa. Note that because aa has the modiflied modal from
// consisting of 2x2 companion matrices (0,1 ; a,b], only the a,b need to
// be included into the parameter vector. The last block of aa may contain
// only la,b) and needs to be {ncluded if a is odd (gq=1)
i{f aore<>1,q=mod(nka,2);...
for i=1:(nka-q)/2, p=[(p:;aa(2*i,2*1-1); aa(2*4,2*1)); end;...
if g=1, p=[p;aa(nka,nka)]; end;..
end,

// 1f englne controller is not fixed, put the required elements of
// ae into p (same modified modal form as aa)
{f aore<>2,q=mod(nke,2);...
for 1-1:(nke—q)/2,p-[p;ae(2'£,2'l-\);ae(2'1,2'l)l:end;...
{f q=1, p=(p;ae(nke,nke)]; end;...
end,

// If airframe controller {s not fixed, then copy ba (note first column
// of ba Is fixed and 1s not copled), ca and da into p
1f aore>l, ...
for i=2:matot, p=(p;ba(:,1)]; end;..
for i=1:nka, p=(p:sca(:,1)]); end;..
1f (fixd-1)*({fixd-2) <> 0, for {=1:matot, p={p;da((l:kal,i)]; end; end;...
for i=1l:matot, p-(p;da((ka+1:kafpea],1)]; end; ...
end ,

// 1f the engine controller is not fixed copy be (first col fixed), ce and
// de into p
1f aore<>2,...

for i=2:metot, p=(p:sbe(:,1)]; end;...

for i=l:nke, p=(p:ice(:,1)]; end;...

{f (fixd-2)*(fixd-3) <> 0, for {=1:pea, p={psde(:,i)}; end; end;...

1f (fixd-1)*(fixd-2) <> 0, for {=peatl:metot, p=(p:de(:,1)]); end; end;...
end,

// Get rid of the 0 which was the 1st entry in p (used to initialize p)
(x y)=slze(p)?
p=p((2:x],1);

retf

/1
//
//

This program accepts the partitioned system matrices of subcontrollers
and generates the long column vector of the parameters, The order with
which thls procedure bullds p is: Aa,Ae,Ba,Ca,Deaa,Deaya,Be,Ce,Deea. Note
that it skips matrices if the subcontroller {s fixed. It also ignores the
submatrices which are constants --- Bal, Bel, Daa, Daya, Dee, and Deye.

Created by Phil Schmidt and students Nader Kamrani and Brian Holawecky at
The University of Akron with the support of NASA Lewls Research Center
under grant NAG-3-1146.

[ska_opt,ske*opt]-restart(lambdanew,stop,newh)

(4

//
// The function RESTART in flle RESTART.MTX is used to
// restart the optimizatlion process after it has been intentlionally
// halted or has stopped due to the stopping criteria.
J // Some parameters may be altered If desired.
. // Input:
// lambdanew - a new value for lambda, the welghting of the tracking
// cost as part of the total cost function
. stop - (optional) the vector of stopping conditions
{7 newh - (optlonal) If any parameter whatsoever is passed, thls sets
R the Inverse Hesslan approximation to an ldentity matrix
. // const.dat - the datafile of constants
/7 inter.dat - the intermediate results at the last checkpoint or the
| i/ final results if convergence/stopping criteria were met,
| // Output:

//
//

ska_opt - the optimlzed airframe controller
ske_opt - the optimized engine controller

resize(’sstack’,1000000); // load the relevant data
‘ load ‘const.dat’ nka nke pea lya lye; atot=nkatnke;

load ‘inter.dat’ p 1 fh jh0 jhl gradl grad0 gradl hi fx lambda;
‘ short e; // Specify the format for displaying matrices

// Define UDF INACCURATE which implements Fletchers inaccurate line search
define ’linesrch.mtx’;

| // Define UDF CONVERGE which checks If convergence conditions are met
define ’converge.mtx’;
N
O // pefine UDF PARTITION which is the outermost loop and implements the
// Broyden-Fletcher-Goldfarb~Shanno technique for finding a search direction
// for optimization
define ’'partitio.mtx’;

// Define UDF Z which returns a zero matrix of the desired slze
define ’zero.mtx’

// Define the UDF MAT which generates the SKA and SKE subcontrollers
// from the parameter vector p
deflne ’‘parmat.mtx’

// Define UDF LONGCOL which generates the parameter vector from the
// SKA and SKE groupings of the parameters
define ’parvec.mtx’

// Define UDF COST which evaluates the performance cost, tracking cost
// and thelr sum, as well as the respective gradients for a speclfied
// parameter vector

define ’cost.mtx’

// if stop does not exist, load it from par.dat
1f exist(’stop’)=0, load ’par.dat’ stop

// Verify that the newlamda provided is a row vector or a scalar and is
// consistant with pea
[rlambda, clambda) =size (lambdanew) ;
i{f rlambda > 1, disp(’ERROR: lambda must be a row vector or a scalar!’),
if clambda=1, lambdanew=lambdanew*ones(l,pea); ...

elseif clambda <> pea,...

display (ERROR: lambda must contaln pea entries!’); retf;
changelam=norm(lambda-lambdanew) ;
lambda=lambdanew;

retf;

// 1f the difference between

// >le-10, then call COST to

// just use old data

if abs(changelam)>le-10,
[gradi,grad0,gradl, fh, Jh0, $h1]=COST (p_i,lambda) ;...

alse ...

{ent, tmp)=size (fh); fh(cnt)=3h0 (cnt)+3hl(cnt); gradi=gradO+gradl;...

end,

old lambda and new lambda is large enough,
initialize costs and gradients, otherwise

“en

1l
/7
(47
//
if

If newh is defined, then set the inverse Hesslan to an identity matrix,
If any of the A parameters are at the bounds (noted in fx)

then set that element of hi to be zero (no further decrease in that
direction/parameter)

1=exist (‘newh’), [row,col]=size(p_1i); hi=eye(row); ...
for {=1:atot, if fx(i)=1, hi(i,1)=0; end,end,...
end;

// save the possibly new stopping vector and save intermediate data
save ‘par.dat’ stop;
save ’'Inter.dat’ p_i fh jh0 jhl gradi grad0 gradl hi fx lambda;

// call the PARTITION routine which eventually returns the final
// optimized vector
p_opt=PARTITION (stop) ;

// Generate the optimized ska and ske as the final output of the program
[ska_opt, ske_opt]=MAT (p_opt);

load 'inter.dat’ p i fh jh0 jhl gradl grad0 gradl hi fx lambda;

// If a dummy feedback for ya or ye was added, then remove it

{f lya=0, [r,c)=size(ska_opt); ska_opt=ska_opt(:,1l:c-1); end;

{f lye=0, (r,c)=size(ske_opt); ske_opt=ske opt(:,1l:c-1); end;

save ‘inter.dat’ p_i fh JhO jhl gradl grad0 gradl hil fx lambda ska_opt ske_opt;

// INTER.DAT now contains the final results including the optimal
// subcontrollers.

retf
// Created by Phil Schmidt and students Nader Kamrani and Brian Holawecky at

// The University of Akron with the support of NASA Lewls Research Center
// under grant NAG-3-1146.

oYy

// [ska_opt, ske_opt]=start (lambda,stop)

//

// The function START in file START.MTX {nitlates the

// controller partitioning optimization code.

// It sets up initial data and precalculates some required information,
// calls COST to initialize the costs and gradlients and

// calls PARTITION to do the optimizatlion.

// Input:

// lambda - a scalar or pea x 1 vector of weightings for determining the
// relative contribution of fl(p), the trackling cost, to the total cost.
(A stop - (optional) the vector of stopping conditions

// stop-[eps;delta:eta;iter;fmlnl where

1/ default: stop=[le-7;le-7;1le-7;1e2;1le-2];

// eps = tolerance for max change in parameters giving convergence

/7 delta = tolerance for max change in cost giving convergence

// eta = tolerance for max change in norm of gradient giving convergence
1/ {ter = number of iterations to run; defaults to 100

// fmin = minimum tolerance for the total cost; a cost below this

/7 {s assumed to be a minimum,

// INIT.DAT - the data file contalning the initial information
// Output:

// ska_opt - the optimized airframe subcontroller

// ske_opt - the optimized engine subcontoller

i

resize(’sstack’,1000000);
load 'init.dat’;

// System stack size is Increased
// Initial data is loaded

// Define UDF MODI, which puts a system matrix into a modi fied modal form
define ‘modl.mtx’;

// Define UDF INACCURATE which implements Fletchers {naccurate line search
define ‘linesrch.mtx’;

// Define UDF CONVERGE which checks Lf convergence conditions are met
define ‘converge.mtx’;

// Define UDF PARTITION which is the outermost loop and implements the

// Broyden-Fletcher-Goldfarb-Shanno technique for finding a search direction
// for optimization

define ’'partitio.mtx’;

// Define UDF RESTART which can restart the program using checkpointed
// information
define ‘restart.mtx’;

// Define UDF Z which returns a zero matrix of the desired size
define ‘zero.mtx’

// Define the UDF MAT which generates the SKA and SKE collectlions of the
// parameters from the parameter vector
define ’parmat.mtx’

// Define UDF LONGCOL which generates the parameter vector from the
// SKA and SKE system controllers.
Define ’‘parvec.mtx’

// Define UDF COST which evaluates the performance cost, tracking cost
// and thelr sum, as well as the respective gradlents for a speclfied
// parameter vector

define ‘cost.mtx’

// specify the format for displaying matrices
// Initlalizing answers in case of an abrupt error/end

short e;
ska_opt=0; ske_opt=0;

if exist("sp’)=0, 1f exist(’spaug’)=1, sp=spaug;
1f exist(‘np’)=0, 1f exlist(’nspaug’)=1, np=nspaug;

// Checking the input data to see if it is consistant.
1f exist(’s_ka’)=0, display (' ERROR: s_ka lis missing from init.dat’); retf ;
1f exist(’'ns_ka’)=0, display(‘ERROR: ns_ka 1s missing from init.dat’); retf;
1f exist(’'s_ke’)=0, display (' ERROR: s_ke is missing from init.dat’); retf;
if exist(‘ns_ke’)=0, display(’ERROR: ns_ke is missing from init.dat’); retf;
{f exist(’sc’)=0, display(’'ERROR: sc is missing from init.dat’);retf;
{f exist (‘nsc’)=0, display(’ERROR: nsc is missing from init.dat’);retf;
1f exist(’sp’)=0, display(’ERROR: sp is missing from init.dat’);retf;
{1f exist('np’)=0, display('ERROR: np is missing from init.dat’);retf;
{f exist(’frq’)=0, display(’ERROR: frq is missing from init.dat’);retf;
i1f exist(’pea’)=0, display(’ERROR: pea {s missing from init.dat’);retf;
1f exist(*la*)=0, lya=0; else lya=la;
i1f exist(’le’)=0, lye=0; else lye=le;
[r,c)=slze(s_ka); ka_tmp = r-ns_ka-pea; ma_tmp = c-ns_ka-lya;
[r,c)=slze(s_ke); ke_tmp = r-ns_ke; me_tmp = c-ns_ke-pea-lye;
[r,c)=size(sp);
if r<>np#ma_tmp+me_tmp+pea#lya*lye, S0
display ('ERROR: number of rows in sp not consistant with other data’); ...
retf; end;
{f c<>nptka_tmptke_tmp, ...
display (* ERROR: number of columns in sp not consistant with other data’)i...
retf; end;
(r,c)=size(sc);
{f r<>nsctka_tmptke_tmp, ...
display (’ERROR: number of rows i{n sc is not consistant with other data’); ...
retf; end;
{f c<>nscima_tmp+me_tmptlyatlye, ...
display (’ERROR: number of columns in sc not consistant with other data‘’); ...
retf; end;
if frq(3,1) <= 0, ...
display (ERROR: number of observation polnts frq(3,1) must be positive’); ...
retf; end;
{f mod(frq(3,1),2)=0, ...
display (’ERROR: number of observation points frq(3,1) must be odd’); ...
retf; end;
{f frq(l,1) >= frq(2,1), ...
display (ERROR: min. observation point frq(l,1) must be less than the ’)7;...
display(‘max. observation point frq(2,l)’);'retf; end;

// Get row and column of the centrallzed controller sc

{rsc,csc)=size(sc);

// The input and output weighting matrices swi and swo of orders nwi and nwo
// resp. can be defined in fnit.dat. If not defined, they are assumed to

// be identity matrices of the desired size (depending on the size of

// the centralized controller)

If exist(’swi’)=0, nwi=1; swi=eye (1+csc-nsc); end

{1f exlst (‘swo’)=0, nwo=1; swo=eye {1+rsc-nsc); end

1f exist (‘nwi’)=0, display(”ERROR: nwi is not defined in init.dat’);retf;

{1f exlist (‘nwo’)=0, display(’ERROR: nwo {s not defined in init.dat’);retf;
(r,c)=size(swi);

i€ r<>nw1+ma_tmp#me~;mp+lya+lye, 250

display (ERROR: number of rows in swi is not consistant with other data’);...
retf; end;

{f ¢ < nwi, display (' ERROR: number of columns in swi Is less than nwi’); ...
retf; end;

[r,c]=slze(swo);

{f c<>nwotka_tmptke_tmp, ...

display(‘ERROR: number of columns in swo not consistant with other data’);...
retf; end;

Lz

if r < nwo, display(’ERROR: number of rows In swo ls less than nwo'); ...
retf; end;

// Verify that the lamda provided is a row vector or a scalar and is
// consistant with pea

[rlambda,clambda]=size (lambda) ;
if rlambda > 1, disp(’ERROR: lambda must be a row vector or a scalar!’), retf;
if clambda=l, lambda=lambda*ones(l,pea), ...

elself clambda <> pea,...

display (ERROR: lambda must contain pea entries!’); retf;

// The stopping condlitions vector is glven a default value if it was not
// provided (it will be saved in par.dat)

1f exist(’stop’)=0, stop=(le-7;1le-7;le-7;1e2;1e-2];

save ‘par.dat’ stop

// Inquire If the airframe or the engine submatrices are to be held fixed
// storing the reply in varlable aore
// If not, put the subcontroller matrices in modified modal form.
// Make ska and ske with orders nka and nke the varlables to be used
// from now on (instead of s_ka and s_ke)
nka=ns_ka; nke=ns_ke;
inquire aore "ENTER 1 TO FIX AIRFRAME, 2 TO FIX ENGINE or 0 FOR NEITHER: ’;
1f aore=0, atot=nkatnke; ska=modl (s_ka,ns_ka); ske=modl (s_ke,ns_ke);...
elself aore=1, atot=nke; ska=s_ka; ske=modl (s_ke,ns_ke);...
elseif aore=2, atot=nka; ska=modl (s_ka,ns_ka); ske=s_ke;...
else DISPLAY (YOU MUST ENTER O, 1 or 2!’); retf;...
end,
// Inquire If any of the D submatrices are to be fixed. DAA, DAYA,
// DEE, and DEYE are determined by the corresponding submatrices of the
// centralized controller. Under option 1 DEEA and DEAA are determined
// by optimization. Under option 2 DEEA is set to O and DEAA is determined
// optimization. Under option 3 DEEA=0 and the remaining Ds are determined
// by optimization. Under option 0 no Ds are fixed.
DISPLAY ('ENTER 1 TO FIX ALL Ds EXCEPT DEAA & DEEA, 2 TO INCLUDE DEEA,’);
inquire fixd * 3 FOR ONLY DEEA, or 0 for NONE:’;
Lf (fixd-1)*(fixd-2)* (fixd-3)*fixd <> 0,...
DISPLAY (’ YOU MUST ENTER 0, 1, 2 or 3!'); retf;end,

// Get the row and column size of the plant matrix, input weighting matrix,
// and the alrframe and englne controller matrices.

(rsp, csp)l=size(sp);

[rswi,cswi]=slize(swi);

[rska,cska]=slze(ska);

[rske,cske)=slze (ske);

// 1f the measurements from plant to controllers la,le, are absent,
// create a dummy feedback of one (la = 1 and/or le = 1).
// lya and lye hold the actual number of ya and ye measurements.
// Increase the sizes of the system matrices to accomodate these
// feedback varlables. In the case of the dummy feedbacks being created
// (and not input via init.dat) the system matrices are adjusted with
// zero columns.
1f . axist(’1a2)=0, ...
la=1; lya=0; ...
ska=[ska, O*ones(rska,1l)];...
{f exist({’le’)=0,
le=1;1lye=0;...
sc=[(sc, O*ones(rsc,2)]);...
sp={sp; O*ones(2,csp)li...
swi=(swi; O*ones(2,cswi)];...
ske=[ske, O*ones(rske,1));...
else lye=le;...

sc=(sc(:, (1:csc-le)),0%*ones (rsc,1),sc(:, [csc-letlicsc)))i...
sp=[sp([l:rsp-le),:); O*ones(l,csp); sp(lrsp-le+l:rsp),:)]);...
swi=[swi([l:rswi-le],:); O*ones(l,cswi); swi([rswi-le+tl:rswi],z)];...
end;...
else ...
lya=la; ...
if exist(’le’)=0, ...
le=1; lye=0; ...
sc=[sc, O*ones(rsc,1)];...
sp=(sp; O*ones(l,csp)); ...
ske=[ske, O*ones(rske,1)];...
swi=[swi; O*ones(l,cswi)];...
else...
lye=le;...
end,...
end,

// Decompose the alrframe subcontroller in modified modal form

// ska=(aa,ba;ca,da). Use da to figure out the total inputs matot

// and outputs katot for ska. Subtract the la input from matot

// to get ma, the actual number of inputs to ska. Subtract the number

// of pea alrframe to engine commands from the katot to get ka the number
// of outputs going to the plant

[aa ba ca da)=split(ska,nka);

[katot matot]=size(da);

ma=matot-la;

ka=katot-pea;

// Decompose the engine subcontroller in modified modal form

// ske=[ae,be;ce,de). Use de to find ke the number of outputs

// from the engine to the plant. Also find metot, the total number of
// inputs, and subtratk pea, the airframe to plant commands, and le, the
// engine feedback to get me, the actual number of external inputs

// to the engine subcontroller

(ae be ce de]=split (ske,nke);

(ke metot]=size(de);

me=metot-pea-le;

// If any of the entrles of the first column of ba or be are <= zero (or
// almost <= 0) then set them to le-9 (almost zero but positive).

// This is required by the modified modal form of the system matrix.

for i=l:nka, If abs(ba(i,1))<1e-9, ba(i,1)=1le-9; end,end, bal=ba(:,1);
for 1=1:nke, if abs(be(i,1))<le-9, be(i,1)=le-9; end,end, bel=be(:,1);

// Decompose the integrated plant sp=[ap,bp;cp,dp]
(ap,bp, cp,dp] =split (sp, np);

[kptot ntmp]=size (cp);
kplnt=kptot-pea;

(ntmp mptot]=size (bp);
kpmpea=kptot-peatl;

// Let sk=sc be the centralized controller
sk=sc; nk=nsc;

// Decompose the centralized controller sk=[ak,bk;ck,dk]
[ak, bk, ck,dk]=split (sk, nk);

// 1f the user has not entered the (optional) matrix Nperf for
// normalizing the performance cost, it is set to a matrix of ones
// This matrix should be a frq(3,1)x1 matrix.
if exist(’Nperf’)=1, ...
Nperf = max (Nperf,le-13); ([r,c]=slze(Nperf);...
LE r<ofrq(3).

display (ERROR: The number of performance welghts is different from the ...
number of frequency points ‘);retf;end;...

else, Nperf=ones(frq(3,1),1);...

end;

// 1f the user has not entered the (optlonal) matrix Ntrack for
// normallzing the tracking cost, it 1s set to a matrix of ones.
// This matrix should be a frq(3,1)xpea matrix.
i1f exist (Ntrack’)=1, ...
Ntrack = max (Ntrack,le-13); (r,c]=size(Ntrack);...
1f r<e>frq(3,1), ...
display (ERROR: The number of tracking weights disagrees with the ...
number of frequency points ’);retf;end;...
if c<Opea, ...
display (ERROR: The number of tracking weights disagrees with the ...
number of interface varlables ’);retf;end;...
else, Ntrack=ones(frq(3,1),pea);...
end;

// Define the welghts for Simpsons rule {ntegration. They depend on the
// number of observation polnts specified in frq(3) and are stored in

// the variable WEIGHT.

welght=(1];

for i=1:((frq(3,1)-3)/2),weight=[weight,4,2];end

welght=(welght,4,1]};

// Define the set of frequency points at which the cost function and gradient
// are evaluated. Store as the varlable OMEGA..
omega-frq(l)'(((frq(2)/rrq(l))"(1/(frq(S)-l)))"l0:£rq(3)-1l):

// Decompose the plant controller, splitting up the matrix bp relative to
// its inputs and the matrix cp relative to its outputs. For example,
// cap would be the plant to alrframe plece, the first ma rows of the
// plant matrix because these rows form the input to the alrframe.

(mp ntmp]=size(cp);

kp= katke; kapl= katl;

cap= cp([1:ma},:); ceap= cp(((ma+l): (matpea)],:);

cep= cp((matpeatl): (matpeatme),:);
cyap-cp([(ma+me*pea+1):(ma+me0pea+la)l,:);
cyep-cp([(ma*meOpea#1a+l):(ma*me+pea#la§1e)],:);

bpa= bp(:,[1:ka]); bpe= bp(:, [(ka+l):kp]);

// The centralized controller is decomposed in a similar way as the plant
// controller

(kc ktmp)=size(ck);

bak= bk (:,1:ma); bek= bk (:, [(ma+1l) : (me+ma)]);

byak= bk (:, [(ma+me+1) : (ma+metla)]); byek-bk(:,((ma#me+la4l):(maome&la+le)]):
cak= ck(l:ka,:); cek= ck(kaplikc,:);

dak= dk ([1:ka), [1:ma)); daek=dk ([1:ka), [matl:ma+me]);

dayek= dk([l:kal,[maéme+la+1:ma+me+la+lel);
deak-dk((ka#l:ka#ke],[1:ma]);deyax-dk([ka+l:ka+ke],{ma+me§1:ma+me+la\);
dek-dk((ka+1:ka+ke],(maOI:maimeI);

dyak-dk([l:kal,[ma#me#l:ma+me+la]);
dyek-dk([ka+1:ka*ke],(ma+1a+me#1]:(ma#la#meOIel);

// HERE Construct the state space representation of Tcent from input: zac to

// output: zea using the system with the global controller. This

// is used in evaluating the zea tracking cost, but does not alter

// with the cholce of parameters so it i{s constructed once only

// in this routine and then stored.

ag= [ak, (-bak *cap-bek *cep+byak*cyaptbyek*cyep) ;...

(bpa*cak+ bpe*cek), (ap- (bpa*dak*cap) - (bpe*dek*cep) +...

bpa‘dyak'cyap+bpe‘dyek'cyep-bpa'daek‘cep#bpa'dayek‘cyep...
—bpc'deak'cap+bpe‘deyak'cyap)l;

ii"iStart.mtx»f'f -

bg= [bak; bpa*dak];
cg= [0O*ones (pea,nk) ceapl;
dg= O*ones (pea,ma);

// Let sg be the constructed state space representation of Tcent
sg=[ag,bg;cqg,dg];
ng= nk+np;

// 1f Ds are fixed, their initial values are determined here
1f aore<>1,1if (tlxd—l)'(flxd—Z)-0,da-[dak,dyak;da([ka+1:ka+pea],:)):end;end;

{f aore <> 2, If (fixd-2)*(fixd-3)=0, de(:, [1:pea)) =0*ones (ke,pea); end;...
1f (fixd-1)*(fixd-2)=0, de=(de (:, [1:pea]),dek,dyek]; end;...
end;

daa=da((1:ka],[1:ma]); daya=da((1l:ka], [ma+l:ma+la]);
dee=de (:, [peatl:peatme]); deye=de (:, [peatme+l:metot]);
ska=(aa, ba; ca, da); ske=[ae,be; ce, de];

// Store the current (initial) values of ska and ske in ska0 and ske0
// to be used if the subcontroller(s) are flxed.
skaO=ska;ske0=ske;

// The stability upperbound stabil for the A submatrices should
// be read in from init.dat and later stored in const .dat

// 1f it is not defined or it is defined too high, it is glven a
// default value

{f exlist(’stablil’)=0 then stabil=-le-9;

{f stabil>-1e-9, stabil=-le-9;

// Save the constants in const.dat

save ’const.dat’ la le lya lye ka ma ke me pea nka nke sp sk np nk frq ...
omega daa dee daya deye atot sg ng swi nwl swo nwo welght stabil ...
bal bel ska0 ske0 aore Nperf Ntrack fixd;

// 1f there was no error in the data checking
p_i=longcol (ska, ske);

[row,col]=size(p_1):

hi=eye(row);

fx=0*ones (atot, 1) ;

for I=l:atot,
if p_i(X)>stabll, ...
p_i(I)=stabil; ...
fx(I)=1; ...
hi(1,1)=0;...
end;end;

// Initialize costs and gradients
(gradl,qrado.qradl,fh,jhO,jhl]-cost(pﬂl,lambda);

// Save intermediate results
save ’inter.dat’ p 1 gradl grad0 gradl fh jh0 jh1l hi lambda fx;

// Save starting data for restarts
save ’start.dat’ aore p_1 gradi grad0 gradl fh 3jh0 Jhl lambda fx;

// call the PARTITION routine returning the final optimized vector
p_opt =PARTITION (stop) ;

// Generate the optimized ska and ske as the final output of the program
[ska_opt,ske_opt]-MAT(pﬁopt):

vy

load ’inter.dat’ p_i fh jh0 Jhl gradl grad0 gradl hi fx lambda;

/7

I1f a dummy feedback for ya or ye was added, then remove it

i1f lya=0, [r,c)=size(ska_opt); ska_opt=ska opt(:,1:c-1); end;

1f lye=0, [r,c)=size(ske_opt); ske_opt=ske opt(:,l:c-1); end;

// save final data

save ’inter.dat’ p_1 fh jh0 jhl gradl grad0 gradl hi fx lambda ska_opt ske_opt;
retf

// The UDF start.mtx is the main routine for the controller partitioning

1/
/7
11
//
(4l
/1
//
//
//
//
//
74
//
//
£/
1/
//
//
1/
//
//
//
//
//
/7
14,
£/
/7
i/
1/
//
/7
)
/7
//
1/
r/
//
//
1/
/7
1/
{id:
/1l
/7
/7l
(4
/7
1/
//
ld
/7
//
Tl

program. It expects the lnput to the program to be In the dataflle
*init.dat’, and requires certaln data to be there.

*init.dat’ contains the global controller sc, the initial partitioned
controllers s _ka and s ke, and the plant sp along with thelr orders nsc,
ns_ka, ns_ke, and np resp. It also contains the number of intermediate
variables pea and the range of frequencles for calculating norms frq. The
optional weighting matrices swi and swo (for input and/or output welghting)
may be included (default = Id in both cases) as may la and/or le, the
numbers of neg. feedback variables (i1f these are absent, then the code
inserts dummy values of 1 and loads appropriate zeros in the data matrices.)
stabil = upper bound for eigenvalues of Aa and Ae to assure stabllity is
also contained in init.dat (if missing, defaults to -le-9).

The code gives the option of fixing values of elther subcontroller {f
optimization over the parameters {n only one subcontroller is desired.

The optlon is also given to fix certain of the D submatrices.

The subcontrollers are put into a modified modal form where the A matrices
consist of 2x2 companion blocks and the first column of the B matrix is
fixed to its initial value (or le-9 {f this initlal value {s zero). These
are then split to identify the state space representations from inputs to
outputs using intermediate variables.

Here the modifications are made to account for the absence of la and/or le.

The logarithmic frequency range over which the cost function is evaluated is
created as Omega. The vector of Welghts used in Simpson’s Rule integration
is also calculated.

The state~space representation for the nominal “command-tracking®
transfer matrix Tcent:zac to zea ls computed, sg., Its row norms are stored
to Qe used as normalizations in the fTrack part of the cost functlon.

The file ’const.dat’ contains constants --- the numbers of subcontroller
inputs, ma and me; outputs, ka and ke; and intermediate variables, pea;

the numbers of negative feedbacks from the plant (lya/lye relects the actual
numbers, {.e. 0 If la resp le were absent in ’init.dat’. 1In this case la/le
would contain the dummy value 1), Further constants are the state space
matrices for the plant, sp; the centrallized controller, sk; the

nominal tracking transfer matrix, sg; the frequency weighting matrices,

swil and swo; and thelr orders --- np, nk, ng, and nw along with the orders
of the subcontrollers nka and nke; plus the frequency range, frq; the

vector of frequencles, omega; the welghts for Simpson’s Rule, welght; and
the vector of row norms for the nominal tracking transfer matrix. Other
constants are the values of the D subcontroller submatrices which are fixed
equal to the corresponding submatrices of the state space representation

for the centralized controller; the first columns of the subcontroller B
matrices which are fixed by the modl canonical form; and finally, the

values of ska0 and ske0 which are used iIn case the appropriate subcontroller
i{s fixed. atot indicates the sum of orders of the subcontroller state-space
matrices which are not fixed,

The initial system matrices for the subcontrollers ska0 and ske0 are put
into the form of a parameter vector p_{, an identity matrix is created as

. startmtx

7/
//
//
//
/7
//
/7
/7
1/
/7
/7
//
[T
//
L
//
7/
//
//
’/

//
//
/7

the initial approximation for the inverse Hessian used in the optimization
process and a vector, fx, indicating which of the entries in the state-space
A matrices are at the stability upper bound. p_ i and lambda are passed to
the COST function which returns the initlal values of:

fh = the total cost

jho = the performance cost

jhl = the tracking cost

gradl = gradient of the total cost

grad0 = gradient of the performance cost

gradl = gradient of the tracklng cost

These values are stored in ‘inter.dat’ the file for intermediate results.
*start.dat’ contains a record of the starting configuration.

The parameters are passed to PARTITION which carrles out the optlimizatlon.
This procedure reads the data it needs from the file ‘inter.dat’ and
returns the optimized paramter vector p_opt.

This final vector is split into the optimized airframe and engine
controllers ska_opt and ske_opt, which are the final output of

the program,

Created by Phil Schmidt and students Nader Kamranl and Brian Holawecky at
The University of Akron with the support of NASA Lewis Research Center
under grant NAG-3-1146.

//<zer> = z(nrow,ncol)

// Construct a matrix of zeros of slze nrow X ncol. This is done so that
// less space is taken within the main program

// Input:

// nrow - number of rows

1/ ncol - number of columns

// Output:

1/ zer - the zero matrix of the desired size (nrow,ncol)
zer=0*ones (nrow, ncol) ;
retf

// Created by Phil Schmidt at The University of Akron with the support
// of NASA Lewls Research Center under grant NAG-3-1146.

APPENDIX IV

DATA FOR EXAMPLE

Ny cd, TR, e

65

the given m

The data file INIT.DAT corresponding to the example contains the following:

PEA = 1 — number of interface variables

FRQ = [0.1; 100; 41] — describes the frequency range of 41 points between 0.1 and 100

NP = 13 — order of the integrated plant

NSC = 13 — order of the centralized controller

NS_KA = 10 — order of the airframe subcontroller

NS_KE = 7 — order of the engine subcontroller

NWI = 26 — order of the input weighting transfer matrix

NTRACK =

[6.1823D —01 6.3153D —01

6.9179D — 01
9.6037D — 01
9.9744D — 01
4.6326D — 01
4.7282D — 01
1.2933D + 00
1.2067D + 01

6.4195D — 01
7.1732D - 01
1.0534D + 00
8.3547D — 01
4.5302D — 01
4.9653D — 01
1.9711D + 00
1.9074D + 01

6.5131D — 01
7.5413D — 01
1.1326D + 00
6.8055D — 01
4.5255D — 01
5.5002D — 01
3.0733D + 00
3.0171D + 01

6.6139D — 01
8.0582D — 01
1.1646D + 00
5.6432D — 01
4.5595D — 01
6.6494D — 01
4.8371D + 00

T
4.7762D + 01 7.5645D + 01 }

6.7411D — 01 - - -
8.7492D — 01 - --
1.1194D 400 - - -
4.9513D —-01---
4.6188D — 01 ---
8.9018D — 01 ---
7.6375D 4+ 00---

— 41 x 1 vector of tracking weights (The size of NTRACK is FRQ(3)x PEA.)

SP (listed below) — state-space matrix for the integrated plant transfer matrix

SC (listed below) — state-space matrix for the centralized controller transfer matrix

S_KA (listed below) — state-space matrix for the in

itial airframe subcontroller transfer matrix

S_KE (listed below) — state-space matrix for the initial engine subcontroller transfer matrix

SWI (described below) — state-space matrix for the input weighting transfer matrix transfer matrix

The data matrices and initial partitioning matrices fo
atrices A, B, C and D correspond to the state-space representation of the given system or subsystem

The state-space matrix for this system is S where S = [C

dx

dt

u=

A

Ax + By
Cx+ Dy.

o)

66

r the controller partitioning example are listed below. In all cases ‘

|
l

The integrated airframe propulsion system with integrator augmentation is represented by SP = [

AR =

ECP=

r—4.40E-2
~29nE!
—~3
0
Lao -t
THeE "
LEIE !
7.93E!
= 10nE 1
0

0
0
0

4.89E?2
0
0
0
2B

3.60E-2 -3.85E*! -—3.18E*!
—446E-! 194Et? —459E*°
151E-2 —194E-* -—-481E™*
0 1.00E+° 0
—g.80E 0 2.00E+?
1.54E! 0 0
3.00E~2 0 0
5TE 0 0
~1.99E-2 0 0
0 0 0
0 0 0
0 0 0
0 0 0
gL, D 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
BP = 0 0 0
0 0 0
0 0 0
0 1.00E+° 0
0 0 1.00E
0 0 0
L 1.00E+° 0 0
9.70E-3 0 0 0
0 LAEY 1TE® 0
0 0 0 0
0 0 0 0
2.40E-5 0 0 1.20E

1.40E2
5.19E~%
2.56E-%

0

0
—848E*
~1.65E—°
~3.5055
1.09E-2

D000 00

+0
1.00E*°

0

0
1.74E4

0
-3 34588

67

3.14E-4
B {14 il
9.46E~7

0

0
—4.19E*0
426 B>
2.99E}
3.74E~?

PP =

0
0
0
0
2.3 E~°
0
0
0

0
1.92E-4

2.59E~4
=2.105 ¢
s e U e

0

0
6.02E+°
L5 20E+°
1.16E~1
~1.03E"!

DRV O O
oo i o Ml o Y ==
00O O

0
0
0

2.04E!

3.15E2
0
0
0
0
147E73

REIE?
T8 E
3.66E-°

0

0
—3.43E%2
QTET
—9.02E+?
—7.95E+0

000 o

{ <o Jil == i = i o=

—8.53E!

AP BP
CP DP

5.68E~1

] where

=48 ESE
—5.45E10
=7 975"
0
0
0

0
0
0
0
0
0

—100E=21

(= S == [N > Bl =)

0
0
0
0
0

The augmented plant state variables are

x = [u,w,q,0,h, N2R,N25, P6,T41B,6rv, W F, AT8, A8]

where

u = aircraft body axis forward velocity, ft/s
w = aircraft body axis vertical velocity, ft/s
g = aircraft pitch rate, rad/s

f = pitch attitude, deg

h = altitude, ft

N2R = engine fan speed, rpm

N25 = core compressor speed, rpm

P6 = engine mixing plane pressure, psia

T41B = engine high pressure turbine blade temperature, °R
é7v = normalized thrust vectoring angle, deg/10

W F = normalized engine main burner fuel flow rate, Ib m/hr/500

AT8 = normalized thrust reverser port area, in?/50

A8 = normalized main nozzle throat area, in?/100.

v

Zg .
The augmented plant outputs are listed in the order { Z. } with z, = {;/}, Zel = [;PQR]’ and z.,, = FEX where

Zeg
V = normalized aircraft speed, ft/s/20
\ g, = normalized pitch variable, (g(deg/s)+0.16(deg))/3

N2 = normalized engine fan speed, % of maximum allowable rpm at operating condition/5

EPR = normalized engine pressure ratio, ratio/0.3

The augmented plant inputs are the rates of change on normalized control variables as described in the text.

68

The centralized controller has state-space representation SC = [AC BC] where
cemibe
-—123E+° —2.00E-! 3.63Et! —243E*! 140E-? -—441E™ 259FE¢
—391E-2 —407E-! -5.53E+! —296E*! 5.19E-%* 159E~°% -210E-°
_9280E-3 152E-2 —6.49E*° —6.30E-! 256E-° 1.08E°% 3.74E~T
3.76E % H43E° —134E2* -1.01E-? 0 ~1.80E-7 0
—4360 1 L1I0ET° 2.02EF! - 2.02E%? 0 1.05E-4 0
1.86E~1 3.70E-2 1.14E*! 114Et° —848E-? -7.78E*° 6.02E*°
AC= | -1.78E-1 -353E-2 1.07E*° 1.07E~! -165E-2 -961E~' -5.70E*+°
7.8881 L56E-! —2.86E~! —2.86E-2? —3.50E ‘s 2N INaE""
_924G6E-1 —488FE-? —126E*° —-126E-! 1.09E-2 —-749E-! -1.03E7!
—13%E-1 100Et® 173E*® 1.73EY? 179E-2 200E" " S4BRE"S
—3.77E-2 -—760E~3 —4.04E~! T747E-2 1.76E-® -1.09E-! —6.16E~?
3.80E+0 708E-1 —296E*l —241E+' —957E~® =118E % =124E~*
| _3.06E+° —568E-! 196E+! 200E*! -3.12E-2 -139E-2 -129E-3
225E-% —4.18E-° 171E!
-2.95E-°¢ —5450%% 6ITE°
267E-¢ —-18iET " TG ET
0 0 0
0 0 0
1165 0 7.34E+2
1.03E+! 0 2.68E+2
8.47E-1 0 9.06 E+!
—-1.06E%4 0 8.21E+2
944E-5 —524F%" 1.06E°
—214E-' LOGE " —2335%
276E-2 = 416ET " 3G4E™
39TE-? 35BS 431"
r'243F+1 —436ET° 4.33E-' - 4S5EEE
~3.99E+0 145E+! -181E-%2 -507E~*
—413E-3 366E-! -781E-% 2 lEEE
~T66E-* 5.89E~% +1.03E-* ~23E
1.18E+! -1.17E*° —6.02E-2 -1.55E~? a0
1.20E+! —6.68E-! 2.05E+t® —6.00E*2 0
BC=| 6.74Et® —6.23E-2 795E+? 254E*? DC = gt
1.08E-1 1.66E-2 —5.12E+° 4.16E%! oo
9.97EtY 7.34E-2 .450E? - LO1ETS
—155E~1 —124E*° 1.74E~%® 9.36E~*
1.05E-2 6.63E~% 1.16E*° 447E!
—9.50E-1 1.18E-! 294E-! —T46E"!?
L 796E-! —9.98E-%2 3.36E-! —897E-1]
140E-! —=100E*® —1.71E*3® -—171E+2 —179E-® -3.01E~% —848E-©
cC = 3.72E° 750E-3 3.93E-! —7.58E-2 -1.76E-® 107E~! 6.16E72
= | —376E*° —6.99E-! 205Et! 239E*! 957E-® 112B% 124E7°
3.02E*° 560E-1 —1.79E+! —198E+! 3.12E-2 133 & 120E*
—944E-%" ‘5940 1 08E~"
2.14E7! —106E ™ A 283Et
" —276E~2 —4.16E-! -364E*°
~327E%2 3.BE ‘=431 E®

69

(= [e [
OIDHED D

T7.98E*
1.81E-1

LZRORETY

—9.70E*°
—4.16E™!
—3.64E+0
1.258 12
1.37TE+?

3.58E"!
=~4.31E+9
1 31ET>
1.76 E*+2

and an engine controller with representation S.KE = [

the procedure of reference [2].

The initial partitioning consisted of the airframe controller with representation S_KA = [C

AXE BXKE
C.KE DKE
This partitioning is not in the minimal parameter form. The submatrices in the initial

partitioning are:

r—§ 87FT1
4.14E*?
—1.63E1°

AKA =

(= Il = I < M e (> = J =)

and

AKE =

—4.14E*!
=B
5.71E-2

DO O OO O 0O

ch=[

r—3.50E+2
—-5.30E%!

[« i e I e B e i e

1.71E®
6.28E2
—5.76E71

0

(== M == (0 I = J{ o JH(o)

B_KA =

0

5.11

~1.75E2

0

0
0
0
0

- 2.90E-1
9.67E~2
1.19E-1
1.13E*S

—-3.66E*!
1.51E+°

—-3.36E7!

-3.35E°!

L 3.16E+°

2.68E*! 9.27E-!

0

£ 0
0

0
0
0

~121Et! —859E*°
8.55E+° —1.75E~2
-2.16E-2 —5.98E-3
-1.22E-2 1.96E-3
6.95E-2 —991E-3
~786E~2 473E?°
1.14E+t® 4.13E*!

—2.68E*11
9.22E!
—3.63E!
—1.04E+2
1.90E+!
1.58E+!
—6.41E+°
2.59E+!
—6.02E+°

0
0

-1.67E-' -190Et+!
1.73E*? —2.02EY?
1.17E+® —1.06E*+?

—5929E+% 141E*!

—8.39E-* . 5.67E%°

A

0 0
0 0
0 0

3.3T1E-! 1.36E-?

KA BXKA
KA DXKA

] of order 7. The initial partitioning was obtained by

1.38E-2 5.33E-%
-388E-2 —-195E-!
1.95E-1 —7.55E-3
—198FE-1 426E-?
IRAE-? 1. HE?
—1.58E+1 —6.42E+°

] of order 10

0 0 0 1
0 0 0
0 0 0
~562E=L" - 14 E-t 0
=o38k~< | 5560+ 0
" 198E-1 -3.37E-2 0
498E~2 —1.57E~?2 0
—9.87p=1 1.45E-1 0
128E=2 —4.61lE=" 0
2.60E+! —6.80E+° —1.00E72.
: 00
D_I\A_[O 0]
000 00 0
000 0 0 100E-*
0 0 0 7
0 0 0
~1.04E+? —451B-* 2.83E™
—1.06Et! —103E+? —6.5TE~?
-1.92E+! 189E+! —-299E+!
1.03E+2 —3.59E+2 250E*2
3.56E+! —246Et? —207E*!]

r—8.66E!
~5.94F"1
0
BKE = 0
0
0
L o
—4.12E-' —144E7!
CKE = | T47E¥ TARE
—4.37E%! 5.58 E~1

0

0
1.69E~*
-1.91E%!
—5.75E+°
5.49E+°
2.51E+9

=1 81E+0
1.86E~1!
21551

0 -

0
~1.83 6"
7.38E~!
5.45E%°
—2.93E+

—4.48E+° |

0= 00
DEKE'= |0 0 .0
070 0

-191E+! —561E*® -1.45E*°

—6.92E!
-9.85E~1

—3 675+ 1.918+1
S40opTY" 298]

4.77E-}
QEAAO
~3798t°

|

Recall that the input weighting transfer matrix is W;(s) = G(s)(I+K(s)G(s))~" where G(s) and K (s) are the integrated
plant and centralized controller transfer matrices respectively. The state-space representation for this transfer matrix is too
large to list. Instead, the user can easily construct it from the following MATRIXx command applied to the state space

matrices for the integrated plant and the centralized controller

[SWI,NWI)=FEEDBACK(SC,NSC,SP,NP).

Notice that this command also produces the correct value for NWI, the order of the weighting transfer matrix.

The parameter optimization algorithm for controller partitioning was applied to the problem with the initial partitioning
given by S_KA and SKE as listed above and with input weighting SWI as described above. The controllers obtained from
this process had state-space representations SKA_OPT for the airframe and SKE_OPT for the engine where, as before

P
—AA3F >

0

0

0

A_AOPT = 0

0

0

0

L

1.00E%*°

—-3.15E!
0

0
0
0
0
0
0
0

0 0 0 0 0
0 0 0 0 0
0 1.00E+° 0 0 0
—728E+l —1.12E+% 0 0 0
0 0 0 1.00E+° 0
0 0 ~1.72E+3 =591 B+ 0
0 0 0 0 0
0 0 0 0 ~1.00
0 0 0 0 0
0 0 0 0 0

0

0

0

0

0

0

1.00E+°
=3 41"
0
0

E—S

0
0
0
0
0
0
0
0
0

~9.96E3

Q® IORONO D

0
1.00E*°
—1.99E-1

-3 67TE-3 —545E%31
—124E-2 1.60E*3
1.31E+5 —9.08E*3
8 50E+4 —258E*4
_ -1 +1 -1 _ -3
puopr=|ZoHEL 2850 b orp= (200, TS
1.03Et* —1.84E*3
~2.11E*? 455E*?
2.14E-! 6.51E*3
| —797E-2 —6.50E+2]
C.A.OPT = _386E-5 —1.06E~%* —4.69E~° —557E~° —9.82Et® —541E-! -—1.85E~S
- = | 2.49E-* 203E-3 191E-¢ —128E-5 -2.99E~% 2.17E~* 7.65E~5
409E-4 644E~%2 6.46E7!
—263E-% —-159E-2 -157E"!
The optimized engine controller has state-space representation
r 0 1.00E*° 0 0 0 0 0 1
—92.12E+2 —165E*! 0 0 0 0 0
0 0 0 1.00E*° 0 0 0
AEOPT = 0 0 —7.15E+¢ —3.89E+2 0 0 0
0 0 0 0 0 1.00E+° 0
0 0 0 0 —1.20E+2 —2.35E*! 0
L 0 0 0 0 0 0 =341 Et2]
- 1.00E-° —253Et! 5.04E%°]
1.00E-° 9.38E+! —7.78E*!
1.00E-°® 3.75E+0 —156E*! 5.82E} 17954 . Y41 E*
B.E.OPT = | 1.00E-° 167E*® —T7.69E*® D.EOPT = | S204E*° = 148E% "1 101
1.32E+l —1.35E+! 2.95E*0 6.64Et® —6.93E-! 1.03E-2
—1.05E+2 1.94E*? —4.60E+!
| 8.96E+! —356E-! 8.92E7%J
_465E+° —107E*® —142E-! -9.50E~* 952E+! 336E*® 5.68E7!
CEOPT= | 1.97E*° 144E-1 8.80E*® 588E-2 2.14E*! 146E*Y —7.44E+?
_162E+® —1.10E-! 1.01E+! 6.27E-2 -1.92E*! ~1RTEY 447EY

Residualization of high frequency modes was applied to the optimized engine controller to reduce it to one with order 4

(not shown here because it is easily obtained).
to reduce it to one of order 6. The optimization procedure was ap

Balanced model reduction was applied to the optimized airframe controller
plied to this sixth order subcontroller with the engine

controller fixed at the one of fourth order. The resulting reduced order optimized airframe subcontroller 1s

-0 1.00E+° 0 0 0 0 —2.81E-1 8.98E’2W
—92.84E+0 —439Et! 0 0 0 0 ~1A30E~2 . II8E~]

0 0 0 1.00E+° 0 0 1.29E+° _—5.50E+°

S 0 0 ~1.71E*® —6.19Et? 0 0 —1.53E+! —9.18E*2
Ared = 0 0 0 0 0 1.00E+° | 1.38E+0 —120E-!
0 0 0 0 A G2EF! | —138EF 503" . 54GF"!

T187E-1 _705E*° 783ET° T95E-' 343E*1 128E*0 | —3.24E*° 5.62E"1

| _105E+0 140E+! 299E-2 866E-% —8.63E*" -2.28E*° 1.60E-3 —2.25E~3]

REPORT DOCUMENTATION PAGE 5 i

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1994 Final Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Computer Code for Controller Partitioning With IFPC Application
A User’s Manual

6. AUTHOR(S) WU-505-62-50 ks
C-NAG3-1 1467\ o)
Phillip H. Schmidt and Asim Yarkhan
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
University of Akron
Akron, Ohio 44325 E-8654
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Lewis Research Center ; NASA CR-195291
Cleveland, Ohio 44135-3191

11. SUPPLEMENTARY NOTES
Project Manager, Sanjay Garg, Instrumentation and Control Technology Division, organization code 2550, NASA

Lewis Research Center, (216) 433-2355.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Categories 08 and 63

13. ABSTRACT (Maximum 200 words)

This is a user’s manual for the computer code for partitioning a centralized controller into decentralized subcontrollers
with applicability to Integrated Flight/Propulsion Control (IFPC). Partitioning of a centralized controller into two
subcontrollers is described and the algorithm on which the code is based is discussed. The algorithm uses parameter
optimization of a cost function which is described here. The major data structures and functions are described. Specific
instructions are given. The user is led through an example of an IFPC application.

15. NUMBER OF PAGES

14. SUBJECT TERMS
76

Integrated control; Centralized control; Decentralized control; Flight control;
16. PRICE CODE

ropulsion control
Propuls AO4
17. SECURITY CLASSIFICATION |18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

NSN 7540-01-280-5500

