
NASA Contractor Report 195291

Computer Code for Controller Partitioning
With IFPC Application
A User 's Manual

Phillip H. Schmidt and Aslin Yarkhan
University of Akron
Akron, Ohio

March 1994

Prepared for
Lewis Research Center , .~
Under Grant NAG3-11467 ¥

National Aeronautics and
Space Administration

----- ------ - ~ ~ --- -.--~--

NASA Contractor Report 195291

Computer Code for Controller Partitioning
With IFPC Application
A User 's Manual

Phillip H. Schmidt and Aslin Yarkhan
University of Akron
Akron, Ohio

March 1994

Prepared for
Lewis Research Center , .~
Under Grant NAG3-11467 ¥

National Aeronautics and
Space Administration

----- ------ - ~ ~ --- -.--~--

ERRATA

NASA Contractor Report 195291

Phillip H. Schmidt and Asim Yarlchan
University of Akron
Akron, Ohio 44325

The grant number for the aforesaid Contractor Report is corrected to Grant NAG3-1146.

ERRATA

NASA Contractor Report 195291

Phillip H. Schmidt and Asim Yarlchan
University of Akron
Akron, Ohio 44325

The grant number for the aforesaid Contractor Report is corrected to Grant NAG3-1146.

ABSTRACT

This is a user 's m anual for the computer code for partitioning a centralized con­
t roller into decentralized sub controllers with applicability to Integrated Flight/
Propulsion Control (IFPC). Partitioning of a centralized controller into two sub­
controllers is described and the algorithm on which the code is based is discussed.
T he algorithm uses parameter optimization of a cost function which is described
here. The m ajor data structures and functions are described. Specific instructions
are given. T he user is led through an example of an IFPC application.

----_._-- - -

--)

ABSTRACT

This is a user 's m anual for the computer code for partitioning a centralized con­
t roller into decentralized sub controllers with applicability to Integrated Flight/
Propulsion Control (IFPC). Partitioning of a centralized controller into two sub­
controllers is described and the algorithm on which the code is based is discussed.
T he algorithm uses parameter optimization of a cost function which is described
here. The m ajor data structures and functions are described. Specific instructions
are given. T he user is led through an example of an IFPC application.

----_._-- - -

--)

User's Manual - Table of Contents

1. INTRODUCTION page 1

2. THE COST FUNCTION page 4

3. THE PARTITIONING ALGORlTHM page 7

4. MAJOR DATA STRUCTURES AND VARIABLES page 12

5. INSTRUCTIONS TO USER page 16

6. EXAMPLE OF CONTROLLER PARTlTIONING p age 19

REFERENCES page 28

ApPENDICES

I. DEVELOPMENT OF COST AND GRADIENT page 29

II. SHORT DESCRIPTIONS OF MATRIXx USER-DEFINED FUNCTIONS ... page 41

III . CONTROLLER PARTITIONING CODE page 48

IV. DATA FOR EXAMPLE page 65

Acknow legment

The authors wish to express their appreciation to Dr. Sanjay Garg of NASA Lewis Re­

search Center for his excellent technical guidance and support during the project described

here.

11

- ---- -----------

User's Manual - Table of Contents

1. INTRODUCTION page 1

2. THE COST FUNCTION page 4

3. THE PARTITIONING ALGORlTHM page 7

4. MAJOR DATA STRUCTURES AND VARIABLES page 12

5. INSTRUCTIONS TO USER page 16

6. EXAMPLE OF CONTROLLER PARTlTIONING p age 19

REFERENCES page 28

ApPENDICES

I. DEVELOPMENT OF COST AND GRADIENT page 29

II. SHORT DESCRIPTIONS OF MATRIXx USER-DEFINED FUNCTIONS ... page 41

III . CONTROLLER PARTITIONING CODE page 48

IV. DATA FOR EXAMPLE page 65

Acknow legment

The authors wish to express their appreciation to Dr. Sanjay Garg of NASA Lewis Re­

search Center for his excellent technical guidance and support during the project described

here.

11

- ---- -----------

1. I NTRODUCT ION

Large interconnected systems such as the flight/propulsion systems of modern aircraft

often exhibit significant coupling between the various subsystems. One example of such

a system is the Short Take-Off and Landing (ST OL) aircraft wherein the forces and mo­

ments generated by the propulsion system provide control and maneuvering capabilities

for the aircraft at low speeds. This strong coupling suggests that a centralized control

design be used, however, a centralized cont roller which is designed for the integrated plant

considering all the interconnections between the flight and propulsion subsystems may be

of high order and may be difficult t o implement and validate. Specifically, in aircraft design

it is the responsibility of the engine manufact urer to ensure that the propulsion system

will provide the desired performance when inst alled in the aircraft. The engine manu­

facturer thus needs a separate engine cont roller to be able to perform extensive testing

to assure adequate performance and integrity in the presence of operational and safety

limits. This requirement suggest s t he need for decentralized implementation of Integrated

Flight/Propulsion Control (IFPC) systems.

One approach to integrated control design which combines aspects of centralized and

decentralized control design approaches is currently being developed at the NASA Lewis

R esearch Center [1]. This approach consists of first designing a centralized controller, so

that all subsystem interconnections are accounted for in the initial design stage, and then

partitioning the centralized controller into separately implement able decentralized sub con­

trollers for individual subsystems. Here, partitioning means representing the high-order

centralized controller wit h two or more lower order sub controllers which have input/output

intercoupling such that the overall control law obtained on assembling the sub controllers

closely approximates the input/output behavior of the centralized controller.

The computer code described in this user 's manual is designed specifically for IFPC

application and the notation and terminology used here reflects that application. The

software described here uses a parameter opt imization method to match the performance

of a centralized controller with a part itioned controller consisting of two decentralized

sub controllers for the flight and propulsion systems. This matching will be subject to

certain subsystem design requirement s. The st ructure is shown in Fig. 1.1 , with optional

feedback paths indicated by dotted lines.

In the decentralized, h ierarchical cont roller partitioning structure shown in Fig. 1.1 ,

1

~- - - - - ---- ---

1. I NTRODUCT ION

Large interconnected systems such as the flight/propulsion systems of modern aircraft

often exhibit significant coupling between the various subsystems. One example of such

a system is the Short Take-Off and Landing (ST OL) aircraft wherein the forces and mo­

ments generated by the propulsion system provide control and maneuvering capabilities

for the aircraft at low speeds. This strong coupling suggests that a centralized control

design be used, however, a centralized cont roller which is designed for the integrated plant

considering all the interconnections between the flight and propulsion subsystems may be

of high order and may be difficult t o implement and validate. Specifically, in aircraft design

it is the responsibility of the engine manufact urer to ensure that the propulsion system

will provide the desired performance when inst alled in the aircraft. The engine manu­

facturer thus needs a separate engine cont roller to be able to perform extensive testing

to assure adequate performance and integrity in the presence of operational and safety

limits. This requirement suggest s t he need for decentralized implementation of Integrated

Flight/Propulsion Control (IFPC) systems.

One approach to integrated control design which combines aspects of centralized and

decentralized control design approaches is currently being developed at the NASA Lewis

R esearch Center [1]. This approach consists of first designing a centralized controller, so

that all subsystem interconnections are accounted for in the initial design stage, and then

partitioning the centralized controller into separately implement able decentralized sub con­

trollers for individual subsystems. Here, partitioning means representing the high-order

centralized controller wit h two or more lower order sub controllers which have input/output

intercoupling such that the overall control law obtained on assembling the sub controllers

closely approximates the input/output behavior of the centralized controller.

The computer code described in this user 's manual is designed specifically for IFPC

application and the notation and terminology used here reflects that application. The

software described here uses a parameter opt imization method to match the performance

of a centralized controller with a part itioned controller consisting of two decentralized

sub controllers for the flight and propulsion systems. This matching will be subject to

certain subsystem design requirement s. The st ructure is shown in Fig. 1.1 , with optional

feedback paths indicated by dotted lines.

In the decentralized, h ierarchical cont roller partitioning structure shown in Fig. 1.1 ,

1

~- - - - - ---- ---

<-- -~--,-----' - . -

,············ ·Af)proXimation·tDK(sj······ ····· ·· ··········

....... ... Airframe 4< za

Controller
............................

.-------, y :
1---'---

~(s)
Z

~ Integrated

Plant y
u

K(s) G(s) I--z..--_

Propulsion y :
Controller

Ue zea
e

.e (s)

~•...... :

Centralized Control Loop
Assembled partitioned control loop

Figure 1.1 Controller Partitioning

the subscripts and superscripts "a" and "e" refer to airframe and propulsion . (engine)

quantities, respectively, and the subscript "e" refers to commanded quantities. The inter­

face variables Zea represent propulsion system quantities that affect the airframe, such as

propulsive forces and moments. The structure is hierarchical in that the airframe (flight)

controller produces commands for the engine controller via the interface variable (zea e)

which are tracked by the propulsion subsystem.

Such a control structure allows the engine manufacturer to evaluate the engine sub­

system performance independently of the airframe control and to verify that the engine

subsystem will provide the desired performance when installed in the airframe. In general

t here are practical constraints on the achievable bandwidth of Zea tracking for the engine

sub controller. A lower bound on the Zea command tracking bandwidth is based on achiev­

ing the desired performance for the integrated system, while an upper bound is imposed

by actuator limits and robustness requirements to high frequency modeling uncertainties.

The software discussed here refers to the structure described above. The variables are

named according to the convention given above. The parameters in this optimization pro­

cess are entries in the state-space representations of the subcontrollers. These parameters

are bounded so as to maintain sub controller (open-loop) st ability. An assumption made

in the formulation is that the plant has no direct feedthrough from control inputs , i.e. the

plant "D" matrix is zero. This simplifies the determination of the cost function and its

gradient .

One feature of the software IS that the user may separately optimize the airframe

2

<-- -~--,-----' - . -

,············ ·Af)proXimation·tDK(sj······ ····· ·· ··········

....... ... Airframe 4< za

Controller
............................

.-------, y :
1---'---

~(s)
Z

~ Integrated

Plant y
u

K(s) G(s) I--z..--_

Propulsion y :
Controller

Ue zea
e

.e (s)

~•...... :

Centralized Control Loop
Assembled partitioned control loop

Figure 1.1 Controller Partitioning

the subscripts and superscripts "a" and "e" refer to airframe and propulsion . (engine)

quantities, respectively, and the subscript "e" refers to commanded quantities. The inter­

face variables Zea represent propulsion system quantities that affect the airframe, such as

propulsive forces and moments. The structure is hierarchical in that the airframe (flight)

controller produces commands for the engine controller via the interface variable (zea e)

which are tracked by the propulsion subsystem.

Such a control structure allows the engine manufacturer to evaluate the engine sub­

system performance independently of the airframe control and to verify that the engine

subsystem will provide the desired performance when installed in the airframe. In general

t here are practical constraints on the achievable bandwidth of Zea tracking for the engine

sub controller. A lower bound on the Zea command tracking bandwidth is based on achiev­

ing the desired performance for the integrated system, while an upper bound is imposed

by actuator limits and robustness requirements to high frequency modeling uncertainties.

The software discussed here refers to the structure described above. The variables are

named according to the convention given above. The parameters in this optimization pro­

cess are entries in the state-space representations of the subcontrollers. These parameters

are bounded so as to maintain sub controller (open-loop) st ability. An assumption made

in the formulation is that the plant has no direct feedthrough from control inputs , i.e. the

plant "D" matrix is zero. This simplifies the determination of the cost function and its

gradient .

One feature of the software IS that the user may separately optimize the airframe

2

controller for a fixed engine controller or optimize the engine controller for a fixed airframe

controller. T he main alternative is to jointly optimize both although separate optimization

is demonstrated in t he example.

This user's manual is organized as follows. Section 2 briefly describes the cost function

which is the objective to be minimized. The partitioning algorithm is described in section

3. There is also a brief description here of the interrelation among User-defined Functions

(UDFs) so the user who wishes to change the cost function or partitioning structure will

know which UDFs must be changed. Section 4 describes the data structures needed for

carrying out parti tioning using t he MATRIX x programming language. This section also

contains a description of the major data structures and variables used. Section 5 has a

brief outline of the procedure for using the software. Section 6 contains a detailed example

which exercises the algorithm showing applications of its options.

Appendix I contain a detailed discussion of the parameterization, the cost funct ion and

the gradient evaluation as they are implemented in the software. Appendix II contains

short descriptions of the UDFs which implement the partitioning algorithm. Appendix III

contains fully-documented source code for part it ioning. Appendix IV contains the data

file, INIT.DAT, and part itioned subcont rollers , [SKA_OPT, SKE_OPT] for the example in

section 6.

3

controller for a fixed engine controller or optimize the engine controller for a fixed airframe

controller. T he main alternative is to jointly optimize both although separate optimization

is demonstrated in t he example.

This user's manual is organized as follows. Section 2 briefly describes the cost function

which is the objective to be minimized. The partitioning algorithm is described in section

3. There is also a brief description here of the interrelation among User-defined Functions

(UDFs) so the user who wishes to change the cost function or partitioning structure will

know which UDFs must be changed. Section 4 describes the data structures needed for

carrying out parti tioning using t he MATRIX x programming language. This section also

contains a description of the major data structures and variables used. Section 5 has a

brief outline of the procedure for using the software. Section 6 contains a detailed example

which exercises the algorithm showing applications of its options.

Appendix I contain a detailed discussion of the parameterization, the cost funct ion and

the gradient evaluation as they are implemented in the software. Appendix II contains

short descriptions of the UDFs which implement the partitioning algorithm. Appendix III

contains fully-documented source code for part it ioning. Appendix IV contains the data

file, INIT.DAT, and part itioned subcont rollers , [SKA_OPT, SKE_OPT] for the example in

section 6.

3

2. THE COST FUNCTION TO BE MINIMIZED

With reference to Figure 1.1, the partitioning problem can be stated as follows :

Given a centralized controller with transfer matrix J{ (s) and a specifi­

cation of the partitioning structure of controller inputs and outputs, i.e.

[:: 1 K (s) Wl

choice of interface variables Zea. E RP=; a plant with transfer matrix G(s)

of the form

find subcontrollers with stable transfer matrices J{Cl (S) and J{e (s), i.e.

where eea. = Zea. c - Zea. , so that the closed-loop performance with the sub­

controllers closely matches that with the centralized controller within the

requirements of the subsystem.

(2.1)

The particular subsystem constraint for IFPC application is that the engine sub con­

troller J{e(s) should have the structure of a command tracking controller for the interface

variable commands Zea. c •

The cost function is formulated to reflect the difference between the centralized and

partitioned controllers. The state space representations of the sub controllers J{Cl (s) and

Ke (s) are parameterized and the cost function is minimized over those parameters denoted

as a vector p . The formulation of this parameterization is discussed in Appendix 1. Sta­

bility robustness may be achieved through the use of optional (user-provided) weighting

matrices and a 'normalization function in determining the partitioning cost. Specific details

4

------ ---

2. THE COST FUNCTION TO BE MINIMIZED

With reference to Figure 1.1, the partitioning problem can be stated as follows :

Given a centralized controller with transfer matrix J{ (s) and a specifi­

cation of the partitioning structure of controller inputs and outputs, i.e.

[:: 1 K (s) Wl

choice of interface variables Zea. E RP=; a plant with transfer matrix G(s)

of the form

find subcontrollers with stable transfer matrices J{Cl (S) and J{e (s), i.e.

where eea. = Zea. c - Zea. , so that the closed-loop performance with the sub­

controllers closely matches that with the centralized controller within the

requirements of the subsystem.

(2.1)

The particular subsystem constraint for IFPC application is that the engine sub con­

troller J{e(s) should have the structure of a command tracking controller for the interface

variable commands Zea. c •

The cost function is formulated to reflect the difference between the centralized and

partitioned controllers. The state space representations of the sub controllers J{Cl (s) and

Ke (s) are parameterized and the cost function is minimized over those parameters denoted

as a vector p . The formulation of this parameterization is discussed in Appendix 1. Sta­

bility robustness may be achieved through the use of optional (user-provided) weighting

matrices and a 'normalization function in determining the partitioning cost. Specific details

4

------ ---

- -- '-- -----'---------- -~-----~

concerning the cost function, the parameters involved and the evaluation of the gradient

of the cost are contained in Appendix 1.

The cost function f(p) is the sum of the performance cost, fo(p), and an additional

cost of t racking the airframe-to-engine commands, fI(P), f(p) = fo(p) + fI(P) '

The performance cost, fo , is the Hz norm of the weighted (and possibly normalized)

difference of transfer matrices for the centralized and partitioned controllers

00

fo(p) = J NPE~p(W) tr [(Wo(jw)(K(jw) -K(p)(jw»Wi(jw»)*
o

(Wo(jw)(K(jw) - K(p)(jw»Wi(jw»)] dw (2.2)

where K is the ~ansfer matrix from the (;) inputs to the u outputs for the centralized

controller, and K(s) is the transfer matrix of an "equivalent" centralized controller (having

the same input/output structure as K) obtained by assembling the partitioned sub con­

trollers using appropriate plant information. Details of the state space representation for

K(s) are given in Appendix 1.

We are using the Hz norm of the weighted 'difference between the transfer matrices

for the centralized controller and the equivalent heirarchically partitioned sub controllers

as will be described in Appendix 1. Since this difference must be strictly proper in order

to apply this norm, it is reasonable for the D matrices for the centralized and partitioned

controllers to be the s~e. Thus it may be desirable to fix the values of D:a , D~Y4' D: e ,

and D:yc (as described in Appendix I) to values determined directly by the centralized

controller. This is one of the options available in "fixing the D-pararneters".

Wi(jw) and Wo(jw) are optional input and output weighting matrices, NpERF(W) is

an optional scalar normalization function. For example, the weighting

Wi(S) = G(s)(I + K(s)G(s))-1

has been shown by Dale Enns [2] to lead to stability robustness for the partitioned system

provided that the centralized system has this property. Other weighting and normalization

will be discussed with the example.

II (p) is the cost of tracking the zea c command generated by the airframe sub controller

for the engine sub controller. This cost minimizes the difference between the transfer ma­

tr ices for the responses t o the Za c command of z ea c using the partitioned controller and

5

- -- '-- -----'---------- -~-----~

concerning the cost function, the parameters involved and the evaluation of the gradient

of the cost are contained in Appendix 1.

The cost function f(p) is the sum of the performance cost, fo(p), and an additional

cost of t racking the airframe-to-engine commands, fI(P), f(p) = fo(p) + fI(P) '

The performance cost, fo , is the Hz norm of the weighted (and possibly normalized)

difference of transfer matrices for the centralized and partitioned controllers

00

fo(p) = J NPE~p(W) tr [(Wo(jw)(K(jw) -K(p)(jw»Wi(jw»)*
o

(Wo(jw)(K(jw) - K(p)(jw»Wi(jw»)] dw (2.2)

where K is the ~ansfer matrix from the (;) inputs to the u outputs for the centralized

controller, and K(s) is the transfer matrix of an "equivalent" centralized controller (having

the same input/output structure as K) obtained by assembling the partitioned sub con­

trollers using appropriate plant information. Details of the state space representation for

K(s) are given in Appendix 1.

We are using the Hz norm of the weighted 'difference between the transfer matrices

for the centralized controller and the equivalent heirarchically partitioned sub controllers

as will be described in Appendix 1. Since this difference must be strictly proper in order

to apply this norm, it is reasonable for the D matrices for the centralized and partitioned

controllers to be the s~e. Thus it may be desirable to fix the values of D:a , D~Y4' D: e ,

and D:yc (as described in Appendix I) to values determined directly by the centralized

controller. This is one of the options available in "fixing the D-pararneters".

Wi(jw) and Wo(jw) are optional input and output weighting matrices, NpERF(W) is

an optional scalar normalization function. For example, the weighting

Wi(S) = G(s)(I + K(s)G(s))-1

has been shown by Dale Enns [2] to lead to stability robustness for the partitioned system

provided that the centralized system has this property. Other weighting and normalization

will be discussed with the example.

II (p) is the cost of tracking the zea c command generated by the airframe sub controller

for the engine sub controller. This cost minimizes the difference between the transfer ma­

tr ices for the responses t o the Za c command of z ea c using the partitioned controller and

5

Zea using the centralized controller.

(2.3)

T~ent is the transfer function vector from the airframe commands za c to the i th int erface

variable Zea i with the centralized controller. Ti is the ith row of the transfer function

matrix T from the airframe commands za c to the interface variables as commanded by

the partitioned airframe controller , zea c ' with the partitioned sub controllers . .Ai is a scalar

weighting which determines the influence of h on the total cost and NTRACK i (w) are (op­

tional) scalar normalization functions . 11·112 denotes the Euclidean norm of the row vector.

Here, one may use the normalizations NTRACK i = IIT~ent Il~ to provide adequat e scaling for

this cost. The parameters .Ai provide weighting for the contribution of the tracking cost to

the total cost. It was shown in [3 1 that manipulating .Ai provides an indirect means for

maintaining reasonable bounds on the Zelle command tracking bandwidth.

It may be required that the engine subsystem be proper, a condition which would be

violated if D!ea (described in Appendix I) is nonzero. As a result of the optimization

process, D!ea may become large. This possibility is removed by "fixing D~ea = 0" when

the option is presented while running the code.

6

Zea using the centralized controller.

(2.3)

T~ent is the transfer function vector from the airframe commands za c to the i th int erface

variable Zea i with the centralized controller. Ti is the ith row of the transfer function

matrix T from the airframe commands za c to the interface variables as commanded by

the partitioned airframe controller , zea c ' with the partitioned sub controllers . .Ai is a scalar

weighting which determines the influence of h on the total cost and NTRACK i (w) are (op­

tional) scalar normalization functions . 11·112 denotes the Euclidean norm of the row vector.

Here, one may use the normalizations NTRACK i = IIT~ent Il~ to provide adequat e scaling for

this cost. The parameters .Ai provide weighting for the contribution of the tracking cost to

the total cost. It was shown in [3 1 that manipulating .Ai provides an indirect means for

maintaining reasonable bounds on the Zelle command tracking bandwidth.

It may be required that the engine subsystem be proper, a condition which would be

violated if D!ea (described in Appendix I) is nonzero. As a result of the optimization

process, D!ea may become large. This possibility is removed by "fixing D~ea = 0" when

the option is presented while running the code.

6

r--
I

- - -- - ---

3. THE PARTITIONING ALGORITHM

AND ITS IMPLEMENTATION

The objective is to minimize the cost f(p) = f o(p) + !I (p) as described above where

the parameters p are certain entries in the state space representation matrices for]{a (s)

and KC(s) (denoted SKA and SKE in the code).

The fixed data used by the algorithm are state-space representations for the plant

transfer matrix G (s), the centralized controller J{ (s), the (optional) weighting matrices

Wi(s) and Wo(s) (denoted as SP, SC, SWI and SWO respectively in the code), as well as

a partitioning structure for the numbers of controller inputs (airframe, MA; and engine,

ME), numbers of outputs (airframe, KA; and engine, KE) , numbers of plant measurements

(airframe, LA; and engine, LE) and numbers of airframe to engine sub controllers inter­

face variables (PEA). The control designer may also introduce normalization functions

(NYERF and N_TRACK) for the performance and tracking costs. Examples of normal­

izations are given with the example in Section 6. The user must also enter values of the

tracking weight parameters .Ai which determine the relative contribution of II to the total

cost.

The algorithm incorporates the Broyden-Fletcher-Shanno-Goldfarb (BFGS) quasi- New­

ton method to select directions of search for Fletcher's inaccurate linesearch, see [4]. This

iterative method requires the calculation of the combined cost and its gradient for the pa­

rameters p as referred to above. It uses successive gradients to build up an approximation

to the inverse Hessian matrix. Moreover, the inaccurate linesearch assures an adequate

reduction in the cost function at each step without using excessive effort searching for a

minimum far away from the ultimate solution. In this way, subsequent search steps are

successively closer to those generated by Newton's Method and convergence is accelerated

as the iterations proceed.

The flow of the parameter optimization algori thm for controller partitioning is shown

in Figure 3.1. The main steps in the algorithm are:

1. The initial partitioning is obtained by applying the stepwise procedure described in

[5]. Special attention is paid to obtaining reasonably low-order sub controllers which

are stable and satisfy the Zea command-tracking requirement. The initial stat e-space

representations for the transfer matrices J{a (s) and J{e (s) are denoted as S-KA and

7

r--
I

- - -- - ---

3. THE PARTITIONING ALGORITHM

AND ITS IMPLEMENTATION

The objective is to minimize the cost f(p) = f o(p) + !I (p) as described above where

the parameters p are certain entries in the state space representation matrices for]{a (s)

and KC(s) (denoted SKA and SKE in the code).

The fixed data used by the algorithm are state-space representations for the plant

transfer matrix G (s), the centralized controller J{ (s), the (optional) weighting matrices

Wi(s) and Wo(s) (denoted as SP, SC, SWI and SWO respectively in the code), as well as

a partitioning structure for the numbers of controller inputs (airframe, MA; and engine,

ME), numbers of outputs (airframe, KA; and engine, KE) , numbers of plant measurements

(airframe, LA; and engine, LE) and numbers of airframe to engine sub controllers inter­

face variables (PEA). The control designer may also introduce normalization functions

(NYERF and N_TRACK) for the performance and tracking costs. Examples of normal­

izations are given with the example in Section 6. The user must also enter values of the

tracking weight parameters .Ai which determine the relative contribution of II to the total

cost.

The algorithm incorporates the Broyden-Fletcher-Shanno-Goldfarb (BFGS) quasi- New­

ton method to select directions of search for Fletcher's inaccurate linesearch, see [4]. This

iterative method requires the calculation of the combined cost and its gradient for the pa­

rameters p as referred to above. It uses successive gradients to build up an approximation

to the inverse Hessian matrix. Moreover, the inaccurate linesearch assures an adequate

reduction in the cost function at each step without using excessive effort searching for a

minimum far away from the ultimate solution. In this way, subsequent search steps are

successively closer to those generated by Newton's Method and convergence is accelerated

as the iterations proceed.

The flow of the parameter optimization algori thm for controller partitioning is shown

in Figure 3.1. The main steps in the algorithm are:

1. The initial partitioning is obtained by applying the stepwise procedure described in

[5]. Special attention is paid to obtaining reasonably low-order sub controllers which

are stable and satisfy the Zea command-tracking requirement. The initial stat e-space

representations for the transfer matrices J{a (s) and J{e (s) are denoted as S-KA and

7

Data: 1. I Initial Guess
2.

I
G. K
u,e'Zea II<' .K

e
Modal form

-------;
parameterization

3. Cost function I
& Gradient

\71
f(p) v f(p) J

.... ~(P..L ~~ .~~ ~.~~ ... """'''' 'p ''''

4. r-----~--~ 5
Search Direction " . Yes
and Unesearch

6. Output

I<' ,Ke

7.
Post­

processing

Figure 3.1 Flowchart for Pa rtitioning Optimization Algorithm

SJ<E; note that these are different from the working representations SKA and SKE

described next.

2. The initial partitioning is converted to a "minimal parameter" form (with state-space

representations SKA and SKE respectively) and used to generate an initial value of

the parameter vector P..1. This form is described in Appendix 1.

3. The initial (as well as any subsequent) value of the parameter vector is passed to a

function which determines the state-space representation for the equivalent partitioned

controller and calculates the combined cost, f (denoted FP in the code). The gradi­

ent (denoted as DFDP) is also computed analytically by the procedure described in

Appendix 1.

4. The BFGS method uses the current gradient in conjunction with previous information

to generate a direction of search. The Fletcher inaccurate linesearch is carried out using

the cost and gradient calculated at each parameter vector to predict a new parameter

vector until one is found which yields a sufficient reduct ion in both the cost function

and the size of the gradient. The new point is denoted as P..11. This linesearch is

constrained so as to maintain stability of the sub controllers.

8

J

Data: 1. I Initial Guess
2.

I
G. K
u,e'Zea II<' .K

e
Modal form

-------;
parameterization

3. Cost function I
& Gradient

\71
f(p) v f(p) J

.... ~(P..L ~~ .~~ ~.~~ ... """'''' 'p ''''

4. r-----~--~ 5
Search Direction " . Yes
and Unesearch

6. Output

I<' ,Ke

7.
Post­

processing

Figure 3.1 Flowchart for Pa rtitioning Optimization Algorithm

SJ<E; note that these are different from the working representations SKA and SKE

described next.

2. The initial partitioning is converted to a "minimal parameter" form (with state-space

representations SKA and SKE respectively) and used to generate an initial value of

the parameter vector P..1. This form is described in Appendix 1.

3. The initial (as well as any subsequent) value of the parameter vector is passed to a

function which determines the state-space representation for the equivalent partitioned

controller and calculates the combined cost, f (denoted FP in the code). The gradi­

ent (denoted as DFDP) is also computed analytically by the procedure described in

Appendix 1.

4. The BFGS method uses the current gradient in conjunction with previous information

to generate a direction of search. The Fletcher inaccurate linesearch is carried out using

the cost and gradient calculated at each parameter vector to predict a new parameter

vector until one is found which yields a sufficient reduct ion in both the cost function

and the size of the gradient. The new point is denoted as P..11. This linesearch is

constrained so as to maintain stability of the sub controllers.

8

J

5. At the end of the linesearch, the new parameter vector and cost (P -11 and FP -11) are

compared to the values at the beginning of the linesearch (P -1 and FP -1) as a check on

convergence. If the maximum change in all the parameters is less than a user-specified

value and the change in the total cost is less than another value (MAX(P -11-P -1) <

EPSILON and ABS(FP -11-FP -1) < DELTA) then convergence is declared and the

iteration ceases. If in addition, the maximum absolute value of the partial derivatives

is less than a user-specified tolerance (ABS(DFDP) < ETA), this is also noted. If the

number of iterations exceeds ITER or the function value is sufficiently reduced (FP

< FMIN) , then the procedure stops with an appropriate message. If the convergence

test fails, the algorithm proceeds to update the information used to determine the

direction of search and to use the most recent cost and gradient values to generate a

new direction of search and carry out the linesearch via steps 3. and 4.

6. The output of the algorithm is the state-space representation for subcontrollers (de­

noted SKA_OPT and SKE_OPT) which minimize the cost function f(p) within the

convergence criteria.

7. These sub controller transfer matrices have the same orders na and ne as the initial

partitioning. Controller reduction can be performed on these "optimal sub controllers"

and the process of optimization can be repeated on the "new initial partitioning".

The algorithm is implemented in MATRIXx using a set of functions which are referred

to in MATRIXx parlance as User-Defined Functions (UDFs). A glossary of variables and

UDFs follows in Section 4. More complete descriptions of the UDFs appear in A.ppendix II

and an annotated version of the code appears in Appendix III. The flow of the MATRIXx

partitioning code as illustrated in Figure 3.2 follows:

a. The function START is called with input LAMBDA (required tracking cost weight

scalar or vector) and STOP (optional stopping criteria vector).

1. A file (INIT.DAT) is read to acquire the fixed data and initial partitioning (SJ<A

and S-1(E) referred to above along with a three dimensional vector (FRQ) which

gives the left and right end points as well as the number of logarithmically placed

points in the interval over which numerical integration takes place.

ll. START calls the routine MODL to put the initial partitioning into an appropriate

9

--- .------------

" I
I

5. At the end of the linesearch, the new parameter vector and cost (P -11 and FP -11) are

compared to the values at the beginning of the linesearch (P -1 and FP -1) as a check on

convergence. If the maximum change in all the parameters is less than a user-specified

value and the change in the total cost is less than another value (MAX(P -11-P -1) <

EPSILON and ABS(FP -11-FP -1) < DELTA) then convergence is declared and the

iteration ceases. If in addition, the maximum absolute value of the partial derivatives

is less than a user-specified tolerance (ABS(DFDP) < ETA), this is also noted. If the

number of iterations exceeds ITER or the function value is sufficiently reduced (FP

< FMIN) , then the procedure stops with an appropriate message. If the convergence

test fails, the algorithm proceeds to update the information used to determine the

direction of search and to use the most recent cost and gradient values to generate a

new direction of search and carry out the linesearch via steps 3. and 4.

6. The output of the algorithm is the state-space representation for subcontrollers (de­

noted SKA_OPT and SKE_OPT) which minimize the cost function f(p) within the

convergence criteria.

7. These sub controller transfer matrices have the same orders na and ne as the initial

partitioning. Controller reduction can be performed on these "optimal sub controllers"

and the process of optimization can be repeated on the "new initial partitioning".

The algorithm is implemented in MATRIXx using a set of functions which are referred

to in MATRIXx parlance as User-Defined Functions (UDFs). A glossary of variables and

UDFs follows in Section 4. More complete descriptions of the UDFs appear in A.ppendix II

and an annotated version of the code appears in Appendix III. The flow of the MATRIXx

partitioning code as illustrated in Figure 3.2 follows:

a. The function START is called with input LAMBDA (required tracking cost weight

scalar or vector) and STOP (optional stopping criteria vector).

1. A file (INIT.DAT) is read to acquire the fixed data and initial partitioning (SJ<A

and S-1(E) referred to above along with a three dimensional vector (FRQ) which

gives the left and right end points as well as the number of logarithmically placed

points in the interval over which numerical integration takes place.

ll. START calls the routine MODL to put the initial partitioning into an appropriate

9

--- .------------

" I
I

r·--- -- --- -

SKA LONGCOy-_P=-I--i
SKE

I START MODL

PIDI P 11
'---ARTrTlOI~-----i INACCURATE

FP 11

DF~~ DFDP_"

~

YES

NO

COST

MAT

Figure 3.2 Flowchart for the MATRIXx Partitioning Code

FP
DFDP

form to serve as a parameterization for the sub controllers , i.e. SKA = MODL(S..KA)

and SKE = MODL(S..KE).

lll. The function LONG COL transforms these state-space representations for the sub­

controllers into a parameter vector, i.e. P j = LONGCOL(SKA, SKE). This

function along with its "inverse" MAT ([SKA, SKE] = MAT(P j)) are used

throughout the code to transfonn between state-space representations for sub con­

trollers and a parameter vector. START also detennines constants which will be

used by the other functions and stores them in CONST.DAT .

IV. START then calls COST to calculate the initial cost (FP) and gradient (DFDP).

b. START calls PARTITIO with the convergence criteria (STOP) as input. PARTITIO

is the main routine which

c. generates the search direction (D I),

d. calls the function INACCURATE which carries out Fletcher's inaccurate linesearch

(bracketing/sectioning) using cost function , F(P j+ALPHA *DI), and gradient values

generated by the function COST. While INACCURATE is running, the user will see

displayed first the bracketing interval (AL, ALPR) and function and derivative values

(FAL, FPAL; FALPR, FPALPR) then the sectioning interval (A, B) and corresponding

10

r·--- -- --- -

SKA LONGCOy-_P=-I--i
SKE

I START MODL

PIDI P 11
'---ARTrTlOI~-----i INACCURATE

FP 11

DF~~ DFDP_"

~

YES

NO

COST

MAT

Figure 3.2 Flowchart for the MATRIXx Partitioning Code

FP
DFDP

form to serve as a parameterization for the sub controllers , i.e. SKA = MODL(S..KA)

and SKE = MODL(S..KE).

lll. The function LONG COL transforms these state-space representations for the sub­

controllers into a parameter vector, i.e. P j = LONGCOL(SKA, SKE). This

function along with its "inverse" MAT ([SKA, SKE] = MAT(P j)) are used

throughout the code to transfonn between state-space representations for sub con­

trollers and a parameter vector. START also detennines constants which will be

used by the other functions and stores them in CONST.DAT .

IV. START then calls COST to calculate the initial cost (FP) and gradient (DFDP).

b. START calls PARTITIO with the convergence criteria (STOP) as input. PARTITIO

is the main routine which

c. generates the search direction (D I),

d. calls the function INACCURATE which carries out Fletcher's inaccurate linesearch

(bracketing/sectioning) using cost function , F(P j+ALPHA *DI), and gradient values

generated by the function COST. While INACCURATE is running, the user will see

displayed first the bracketing interval (AL, ALPR) and function and derivative values

(FAL, FPAL; FALPR, FPALPR) then the sectioning interval (A, B) and corresponding

10

~-~- - --- ---------- - - ---~-----~---------~-- ---------~ .--.---~

function and derivative values (FA, FPA; FB , FPB)_ These give the user some sense

of how rapidly the linesearch is progressing, but they can easily be removed from the

code if desired.

e. Convergence/stopping conditions are checked by the function CONVERGE and steps

c. - e. are repeated until they are satisfied. During these major iterations, the last

twenty cost values are plotted.

f. The output of START is the final partitioning (SKA_OPT, SKE_OPT). At this point,

the program ends.

The user may do a posteriori analysis such as order reduction on the subcontroller state­

space representations (SKA_OPT, SKE_OPT) and start the procedure again with new

data in the file INIT.DAT .

If the user wishes to modify the partitioning structure, changes will be necessary in the

START, COST, LONGCOL and MAT routines. Different constants must be calculated

and st ored by START. Different formulations for the state space representation of K(s)

and T(s) must be coded in COST and new formulations for the gradient must be gener­

ated using the procedure described in Appendix 1. Furthermore, the conversions between

[SKA,SKE] and p by LONGCOL and MAT must be rewritten.

If a different formulation of the cost function is used, then only the portion of the COST

UDF where the cost and gradient are computed must be changed. The algorithm requires

a gradient with each evaluat ion of the cost . The new gradient may be the most difficult

change to make.

11

~-~- - --- ---------- - - ---~-----~---------~-- ---------~ .--.---~

function and derivative values (FA, FPA; FB , FPB)_ These give the user some sense

of how rapidly the linesearch is progressing, but they can easily be removed from the

code if desired.

e. Convergence/stopping conditions are checked by the function CONVERGE and steps

c. - e. are repeated until they are satisfied. During these major iterations, the last

twenty cost values are plotted.

f. The output of START is the final partitioning (SKA_OPT, SKE_OPT). At this point,

the program ends.

The user may do a posteriori analysis such as order reduction on the subcontroller state­

space representations (SKA_OPT, SKE_OPT) and start the procedure again with new

data in the file INIT.DAT .

If the user wishes to modify the partitioning structure, changes will be necessary in the

START, COST, LONGCOL and MAT routines. Different constants must be calculated

and st ored by START. Different formulations for the state space representation of K(s)

and T(s) must be coded in COST and new formulations for the gradient must be gener­

ated using the procedure described in Appendix 1. Furthermore, the conversions between

[SKA,SKE] and p by LONGCOL and MAT must be rewritten.

If a different formulation of the cost function is used, then only the portion of the COST

UDF where the cost and gradient are computed must be changed. The algorithm requires

a gradient with each evaluat ion of the cost . The new gradient may be the most difficult

change to make.

11

4. REFERENCE TO MAJOR DATA STRUCTURES AND VARIABLES

Most of the input t o the program is provided through the MATRIX x data file INIT.DAT.

The following data structures are mandatory to the running of the program and must be

provided in INIT.DAT prior to running the program.

INIT.DAT - Mandatory Data

SP, NP - the state space representation and the order for the integrated plant m

system matrix form

SP _ (AP
- CP

BP)
DP .

SC, NSC - the state space system matrix for the centralized controller, and its order.

S-.KA , NS-.KA - the state space system for an initial "guess" at the airframe controller ,

and its order.

S-.KE, NS-.KE - the state space system for an initial "guess" at the engine controller

and its order.

PEA - the number of interface variables from flight controller to the engine controller.

FRQ - a vector of the form [FRQ(1);FRQ(2);FRQ(3)] where FRQ(3) logarithmically

placed frequency points over the interval FRQ(l) < w < FRQ(2) are used in the

numerical integration for determining the costs. The number of points must be

odd because of the numerical integration rule used.

The following data structures are optional and may be entered in INIT.DAT if desired.

Indexing rules of MATRIX X do not allow the index zero or empty vectors. Thus, if

some of the optional quantities are absent or have value zero, the code will place dummy

variables in appropriate matrices and set corresponding size variables to nonzero quantities

(usually one) .

INIT.DAT - Optional Data - if absent , the indicated default values are set by the code.

SW I, N\VI - state space system for input weighting of t he difference between central-

ized and assembled partitioned controllers, and its order. If absent , the code sets

SWI = an identity matrix of size (MA + ME + LA + LE + 1) and N VlI = 1.

12

i
I

I
j

j
I
I

4. REFERENCE TO MAJOR DATA STRUCTURES AND VARIABLES

Most of the input t o the program is provided through the MATRIX x data file INIT.DAT.

The following data structures are mandatory to the running of the program and must be

provided in INIT.DAT prior to running the program.

INIT.DAT - Mandatory Data

SP, NP - the state space representation and the order for the integrated plant m

system matrix form

SP _ (AP
- CP

BP)
DP .

SC, NSC - the state space system matrix for the centralized controller, and its order.

S-.KA , NS-.KA - the state space system for an initial "guess" at the airframe controller ,

and its order.

S-.KE, NS-.KE - the state space system for an initial "guess" at the engine controller

and its order.

PEA - the number of interface variables from flight controller to the engine controller.

FRQ - a vector of the form [FRQ(1);FRQ(2);FRQ(3)] where FRQ(3) logarithmically

placed frequency points over the interval FRQ(l) < w < FRQ(2) are used in the

numerical integration for determining the costs. The number of points must be

odd because of the numerical integration rule used.

The following data structures are optional and may be entered in INIT.DAT if desired.

Indexing rules of MATRIX X do not allow the index zero or empty vectors. Thus, if

some of the optional quantities are absent or have value zero, the code will place dummy

variables in appropriate matrices and set corresponding size variables to nonzero quantities

(usually one) .

INIT.DAT - Optional Data - if absent , the indicated default values are set by the code.

SW I, N\VI - state space system for input weighting of t he difference between central-

ized and assembled partitioned controllers, and its order. If absent , the code sets

SWI = an identity matrix of size (MA + ME + LA + LE + 1) and N VlI = 1.

12

i
I

I
j

j
I
I

1 __ -

swo, NWO - state space system for output weighting of the difference between

centralized and assembled partitioned controllers, and its order. If absent, the

code sets SWO = an identity matrix of size (KA + KE + 1) and NWO = 1.

LA - number of integrated plant measurements to the airframe controller. If absent,

the code sets LA = 1; appropriate zero entries are introduced in SP, SC, and SKA.

This allows for the case where there are no measurements fed from the plant to the

airframe controller.

LE - number of integrated plant measurements to the engine controller. If absent,

the code sets LE = 1; appropriate zero entries are introduced in SP, SC, and SKE.

This allows for the case where there are no measurements fed from the plant to the

engine controller.

NPERF - normalization vector of size (FRQ(3) X 1) for the performance cost. If

absent, the code sets NPERF to a vector of ones.

NTRACK - normalization matrix of size (FRQ(3) X PEA) for the tracking cost . If

absent, the code sets NTRACK to a matrix of ones.

STABIL - a necessarily negative parameter which is used to guarantee that all eigen­

values of the sub controllers have negative real parts for stability. If absent , the

code sets STABIL = -10-9
.

The major constants used within the code are created by the execution of START and

stored in the file CONST.DAT.

MA, ME - number of airframe and engine controller inputs.

LA, LE - number of integrated plant measurements to airframe and engine controllers.

KA, KE - number of airframe and engine controller outputs.

PEA - number of intermediate commands from airframe controller to engine con­

troller.

SP, NP - state space system for the integrated plant , with its order.

S.J{A, NS-I(A - state space system for the initial airframe controller (I{ a) in modified

13

1 __ -

swo, NWO - state space system for output weighting of the difference between

centralized and assembled partitioned controllers, and its order. If absent, the

code sets SWO = an identity matrix of size (KA + KE + 1) and NWO = 1.

LA - number of integrated plant measurements to the airframe controller. If absent,

the code sets LA = 1; appropriate zero entries are introduced in SP, SC, and SKA.

This allows for the case where there are no measurements fed from the plant to the

airframe controller.

LE - number of integrated plant measurements to the engine controller. If absent,

the code sets LE = 1; appropriate zero entries are introduced in SP, SC, and SKE.

This allows for the case where there are no measurements fed from the plant to the

engine controller.

NPERF - normalization vector of size (FRQ(3) X 1) for the performance cost. If

absent, the code sets NPERF to a vector of ones.

NTRACK - normalization matrix of size (FRQ(3) X PEA) for the tracking cost . If

absent, the code sets NTRACK to a matrix of ones.

STABIL - a necessarily negative parameter which is used to guarantee that all eigen­

values of the sub controllers have negative real parts for stability. If absent , the

code sets STABIL = -10-9
.

The major constants used within the code are created by the execution of START and

stored in the file CONST.DAT.

MA, ME - number of airframe and engine controller inputs.

LA, LE - number of integrated plant measurements to airframe and engine controllers.

KA, KE - number of airframe and engine controller outputs.

PEA - number of intermediate commands from airframe controller to engine con­

troller.

SP, NP - state space system for the integrated plant , with its order.

S.J{A, NS-I(A - state space system for the initial airframe controller (I{ a) in modified

13

modal form (or in original form if the system is to be held fixed) along with its

order.

S-KE, NS-KE - state space system for the initial engine controller (Ke) in modified

modal form (or in original form if the system is to be held fixed) along with it s

order.

SK, NK - state space system for centralized controller (K), with its order.

SG, NG - state space system for transfer matrix from za
c

to Zen (Tcend using the

centralized controller, with its order.

WEIGHT - a vector containing weights to use with Simpson 's integration rule; de­

pends on FRQ(3) for the number of points at which integration is to t ake place.

OMEGA - the vector of logarithmically placed frequency points at which sampling

is to be done; determined by FRQ.

AORE - flag to indicate whether the airframe controller (1) or the engine controller

(2) or neither (0) is held fixed during the optimization process.

FIXD - flag to indicate whether the 'D' matrices are held fixed ; if FIXD = 0 none are

fixed, if FIXD = 1 or 2 the DAA, DAYA, DEE and DEYE are held fixed during the

optimization process and (if FIXD = 1) then DEEA and DEAE are variables or

(if FIXD = 2) then DEEA is set to a zero matrix and DEAE is a variable matrix;

if FIXD = 3 then only DEEA is set to a zero matrix and all the remaining D 's

are variable matrices. In any case DAA, DAYA, DEE and DEYE are saved in

CONST.DAT.

STABIL - a necessarily negative parameter which is used to guarantee that all eigen­

values of the sub controllers have negative real parts for stability. If absent, the

code sets STABIL = -10-9 •

The outputs of interest to the program are kept in the file INTER.DAT, which contains

a history of the optimization process and information which can be used t o restart the

program (after a crash or after intentionally stopping it) if desired.

14

modal form (or in original form if the system is to be held fixed) along with its

order.

S-KE, NS-KE - state space system for the initial engine controller (Ke) in modified

modal form (or in original form if the system is to be held fixed) along with it s

order.

SK, NK - state space system for centralized controller (K), with its order.

SG, NG - state space system for transfer matrix from za
c

to Zen (Tcend using the

centralized controller, with its order.

WEIGHT - a vector containing weights to use with Simpson 's integration rule; de­

pends on FRQ(3) for the number of points at which integration is to t ake place.

OMEGA - the vector of logarithmically placed frequency points at which sampling

is to be done; determined by FRQ.

AORE - flag to indicate whether the airframe controller (1) or the engine controller

(2) or neither (0) is held fixed during the optimization process.

FIXD - flag to indicate whether the 'D' matrices are held fixed ; if FIXD = 0 none are

fixed, if FIXD = 1 or 2 the DAA, DAYA, DEE and DEYE are held fixed during the

optimization process and (if FIXD = 1) then DEEA and DEAE are variables or

(if FIXD = 2) then DEEA is set to a zero matrix and DEAE is a variable matrix;

if FIXD = 3 then only DEEA is set to a zero matrix and all the remaining D 's

are variable matrices. In any case DAA, DAYA, DEE and DEYE are saved in

CONST.DAT.

STABIL - a necessarily negative parameter which is used to guarantee that all eigen­

values of the sub controllers have negative real parts for stability. If absent, the

code sets STABIL = -10-9 •

The outputs of interest to the program are kept in the file INTER.DAT, which contains

a history of the optimization process and information which can be used t o restart the

program (after a crash or after intentionally stopping it) if desired.

14

----- - - - - ~ --~--------------- -----

INTER.DAT contains

P J - the last point (parameter vector) that met the inaccurate linesearch minimiza­

tion criteria, that is, the i th point. P.J is a column vector consisting of the successive

0', f3 values in the 2 x 2 blocks of A a and A e, the successive columns of B~a after

the first, the successive columns of C a, the successive columns of Da correspond­

ing to the Zea c outputs, t he successive columns of Be after the first, .the successive

columns of C:e and the successive columns of De corresponding to the eea inputs in

this order. See Appendix I for a more complete discussion of the parameter vector

as it is related to the cost function.

JHO - the complete hist ory of the cost of partitioning through the ith iteration.

JHl - the complete history of the cost of tracking through the ith iteration.

FH - the complete history of t he total cost, FP = FPO + FP1 through the i th iteration.

GRADO - the gradient of the partitioning part of the cost function, fo, at the i th

iteration.

GRAD 1 - the gradient of the t racking part of the cost function, fo , at the i th iteration.

GRADI - the total gradient of the cost function at the ith iteration.

LAMBDA - the PEA x 1 vector which weights the contribution of the airframe to

engine command t racking cost in the total cost function.

HI - the inverse Hessian mat rix being used during the BFGS optimization process.

FX - keeps track of which parameters corresponding to A a and A e are at the stability

bound.

Refer to the cost section of Appendix I for the structures of SP, SK, SKA, SKE and SG.

15

----- - --

----- - - - - ~ --~--------------- -----

INTER.DAT contains

P J - the last point (parameter vector) that met the inaccurate linesearch minimiza­

tion criteria, that is, the i th point. P.J is a column vector consisting of the successive

0', f3 values in the 2 x 2 blocks of A a and A e, the successive columns of B~a after

the first, the successive columns of C a, the successive columns of Da correspond­

ing to the Zea c outputs, t he successive columns of Be after the first, .the successive

columns of C:e and the successive columns of De corresponding to the eea inputs in

this order. See Appendix I for a more complete discussion of the parameter vector

as it is related to the cost function.

JHO - the complete hist ory of the cost of partitioning through the ith iteration.

JHl - the complete history of the cost of tracking through the ith iteration.

FH - the complete history of t he total cost, FP = FPO + FP1 through the i th iteration.

GRADO - the gradient of the partitioning part of the cost function, fo, at the i th

iteration.

GRAD 1 - the gradient of the t racking part of the cost function, fo , at the i th iteration.

GRADI - the total gradient of the cost function at the ith iteration.

LAMBDA - the PEA x 1 vector which weights the contribution of the airframe to

engine command t racking cost in the total cost function.

HI - the inverse Hessian mat rix being used during the BFGS optimization process.

FX - keeps track of which parameters corresponding to A a and A e are at the stability

bound.

Refer to the cost section of Appendix I for the structures of SP, SK, SKA, SKE and SG.

15

----- - --

5. INSTRUCTIONS TO THE USER

The following instructions are intended to be a quick introduction to the code. They

do not attempt to explain the details of what is occurring during the execution. More

thorough documentation of the MATRIXx functions is available in the documented code

contained in Appendix III.

• Use MATRIXx to construct the data file INIT.DAT described in the preceding section.

The initial approximation to the sub controller state-space matrices S-.KA and S_KE

can be produced by the procedure described in [5] or may come from a previous

application of the partitioning software. If any of the optional data are not present in

INIT.DAT then the code will produce the defaults indicated earlier.

• Start MATRIXx and type

DEFINE 'START.MTX'

to activate the code. To execute START you must enter a value of LAMBDA, a weight­

ing of the tracking cost relative to the total cost. LAMBDA can be a PEA X 1 vector

whose entries individually weight the Zea output responses to the total zac inputs. If all

the weights are to be the same then a scalar may be entered. This variable emphasizes

the degree to which the tracking cost will affect the total cost.

Optionally, the vector STOP of stopping conditions can be defined.

STOP = [EPSL; DELTA; ETA; ITER; FMIN).

The program stops if the following criteria are met :

the maximum change in the parameters MAX(IP .J-P .111) < EPSL and

the change in the cost IFP .J-FP .111 < DELTA and

the norm of the gradient IDFDP.JI < ETA or

the number of major iterations I > ITER or

the cost FP.J1 < FMIN

If STOP is not entered, the following values are set by the code

STOP = [EPSL; DELTA; ETA; ITER; FMIN] = [1 0- 9
; 10-9

; 10-9 ; 100; 0.1] .

16

5. INSTRUCTIONS TO THE USER

The following instructions are intended to be a quick introduction to the code. They

do not attempt to explain the details of what is occurring during the execution. More

thorough documentation of the MATRIXx functions is available in the documented code

contained in Appendix III.

• Use MATRIXx to construct the data file INIT.DAT described in the preceding section.

The initial approximation to the sub controller state-space matrices S-.KA and S_KE

can be produced by the procedure described in [5] or may come from a previous

application of the partitioning software. If any of the optional data are not present in

INIT.DAT then the code will produce the defaults indicated earlier.

• Start MATRIXx and type

DEFINE 'START.MTX'

to activate the code. To execute START you must enter a value of LAMBDA, a weight­

ing of the tracking cost relative to the total cost. LAMBDA can be a PEA X 1 vector

whose entries individually weight the Zea output responses to the total zac inputs. If all

the weights are to be the same then a scalar may be entered. This variable emphasizes

the degree to which the tracking cost will affect the total cost.

Optionally, the vector STOP of stopping conditions can be defined.

STOP = [EPSL; DELTA; ETA; ITER; FMIN).

The program stops if the following criteria are met :

the maximum change in the parameters MAX(IP .J-P .111) < EPSL and

the change in the cost IFP .J-FP .111 < DELTA and

the norm of the gradient IDFDP.JI < ETA or

the number of major iterations I > ITER or

the cost FP.J1 < FMIN

If STOP is not entered, the following values are set by the code

STOP = [EPSL; DELTA; ETA; ITER; FMIN] = [1 0- 9
; 10-9

; 10-9 ; 100; 0.1] .

16

• Now the program can be executed by entering

[SKA_OPT,SKE_OPT]=START(LAMBDA, STOP) or

[SKA_O PT ,SKE_O PT]=START(LAMBDA) .

The choice of fixing the engine or airframe system matrices will be presented. If

neither is to be fixed (the usual choice) enter O.

Various options for fixing the D-submatrices are presented. If none are to be fixed

ent er 0 here.

During the linesearch procedure, the user will see function and derivative values

which indicate the progress of the search for a reduction in the function value.

After every major iteration of t he program (starting from the second) , a MATRIX x

graph is generated showing the costs (total, partitioning and tracking) for the last

twenty iterations.

• When the run ends , the output of START is the final optimized state-space represen-

tations for the sub controllers SKA_OPT and SKE_OPT.

The data file INTER.DAT stores the history of the costs, the most recent parameter

vector, approximat ion to the inverse Hessian matrix and gradient . This information

can be used to see the progress of the algorithm, and to restart the program either

after a successful termination or after user interruption.

T here is a routine called RESTART which is available for restarting from a system crash

or an intentional interruption. It uses the dat a stored in INTER.DAT and CONST.DAT

and allows the user to define new values of the tracking cost weight A, the stopping criteria

ST OP, and/ or a new inverse Hessian approximation.

• The inputs and outputs of the RESTART routine are similar to those for START.

There are three alternatives:

1) enter [SKA_OPT,SKE_OPT]=RESTART(LAMBDANEW) if all that is changed is

the LAMBDA weighting parameter or

2) enter [SKA_OPT,SKE_OPT]=RESTART(LAMBDANEW, STOP) if a change is

made in LAMBDA and/or STOP or

3) or enter [SKA_OPT,SKE_OPT]=RESTART(LAMBDANEW, STOP, 1) if a restart

with the identity matrix as the ini t ial approximation to the inverse Hessian is

desired. Note that you must enter values of LAMBDANEVv and STOP even if

they are the same as the previous LAMBDA and STOP.

17

• Now the program can be executed by entering

[SKA_OPT,SKE_OPT]=START(LAMBDA, STOP) or

[SKA_O PT ,SKE_O PT]=START(LAMBDA) .

The choice of fixing the engine or airframe system matrices will be presented. If

neither is to be fixed (the usual choice) enter O.

Various options for fixing the D-submatrices are presented. If none are to be fixed

ent er 0 here.

During the linesearch procedure, the user will see function and derivative values

which indicate the progress of the search for a reduction in the function value.

After every major iteration of t he program (starting from the second) , a MATRIX x

graph is generated showing the costs (total, partitioning and tracking) for the last

twenty iterations.

• When the run ends , the output of START is the final optimized state-space represen-

tations for the sub controllers SKA_OPT and SKE_OPT.

The data file INTER.DAT stores the history of the costs, the most recent parameter

vector, approximat ion to the inverse Hessian matrix and gradient . This information

can be used to see the progress of the algorithm, and to restart the program either

after a successful termination or after user interruption.

T here is a routine called RESTART which is available for restarting from a system crash

or an intentional interruption. It uses the dat a stored in INTER.DAT and CONST.DAT

and allows the user to define new values of the tracking cost weight A, the stopping criteria

ST OP, and/ or a new inverse Hessian approximation.

• The inputs and outputs of the RESTART routine are similar to those for START.

There are three alternatives:

1) enter [SKA_OPT,SKE_OPT]=RESTART(LAMBDANEW) if all that is changed is

the LAMBDA weighting parameter or

2) enter [SKA_OPT,SKE_OPT]=RESTART(LAMBDANEW, STOP) if a change is

made in LAMBDA and/or STOP or

3) or enter [SKA_OPT,SKE_OPT]=RESTART(LAMBDANEW, STOP, 1) if a restart

with the identity matrix as the ini t ial approximation to the inverse Hessian is

desired. Note that you must enter values of LAMBDANEVv and STOP even if

they are the same as the previous LAMBDA and STOP.

17

The restarted program executes in the same way as before, with results stored in

the file INTER.DAT and the output of the program being the optimized state-space

representations SKA_OPT and SKE_OPT.

18

The restarted program executes in the same way as before, with results stored in

the file INTER.DAT and the output of the program being the optimized state-space

representations SKA_OPT and SKE_OPT.

18

6. EXAMPLE OF CONTROLLER PARTITIONING

STOL Example.

The controller partitioning software is first applied to a centralized flight/propulsion
controller for a STOL aircraft as was described in reference [6). This controller has the
form u = K(s)e with the error vector e consisting of errors, e = [e v ,eq ,eN2,eEPR)T, in
following velocity (v), pitch rate variable (qv = q+0.18), engine fan speed (N2) and engine
pressure ratio (EP R) commands. The control input vector u consists of rates of change
of thrust vectoring angle, fuel flow, thrust. reverser port area and nozzle throat area, u =
[8';v, WF,A78,A8JT. u consists of rates because integrators were appended to the control
inputs during the process of centralized control design to achieve zero steady-state error for
step commands. The partitioned airframe and engine controllers are desired to have inputs

T T T
ea = [ev,e q] and ee = [eN2,eEPR] and outputs Ua = [8Tv J and U e = [WF,A78,A8]
respectively. The interface variable Zea for this example is the single variable FEX, the
axial thrust generated by the propulsion system. An initial controller partitioning was
obtained using the procedure discussed in [5].

The numbers of airframe and propulsion sub controller inputs are thus (MA=)2 and
(ME=)2 while the sub controllers have (KA=) 1 and (KE=)3 outputs respectively. There is
(PEA=)l interface variable and no direct measurements are fed back from the integrated
plant to the sub controllers (LA and LE are absent from INIT.DAT since there are no
measurements) .

State-space matrices for the integrated plant, SP of order (NP=)13, the centralized
controller, SC of order (NSC=)13 and initial partitioning, S-I(A of order (NS-I(A=)10
and S..KE of order (NS..KE=)7 are listed in Appendix IV.

The optimization is done over the frequency range w E [0.1,100) with 41 frequency
points (FRQ=[O.l; 100; 41]). The frequency weighting

Wi(s) = G(s)(I + J«s)G(S))-l

is used to achieve good performance matching as well as stability robustness for the equiva­
lent controller. The state-space representation for this weighting, SWI of order (NWI=)26,

is obtained from SP and SC. The tracking normalization, N_TRACK= IITCent(jw)II~, is
used to scale the tracking cost. The state-space representation for TCent (s) is constructed
as in expression (1.3) in Appendix 1. Since LA and LE are absent, any blocks involving Ya
or Ye as either inputs or outputs are omitted. Notice that since PEA=l, TCent is a Ix MA
row vector. Neither output weighting (S\;VO) nor performance normalization (N.l'ERF)
were used.

All the necessary variables are stored in INIT.DAT .
The tracking weighting parameter LAMBDA is set to 0.05 and the stopping criteria

vector is defined as

STOP= [le-9; 1e-9; 1e-9; 1 00;0.1].

19

6. EXAMPLE OF CONTROLLER PARTITIONING

STOL Example.

The controller partitioning software is first applied to a centralized flight/propulsion
controller for a STOL aircraft as was described in reference [6). This controller has the
form u = K(s)e with the error vector e consisting of errors, e = [e v ,eq ,eN2,eEPR)T, in
following velocity (v), pitch rate variable (qv = q+0.18), engine fan speed (N2) and engine
pressure ratio (EP R) commands. The control input vector u consists of rates of change
of thrust vectoring angle, fuel flow, thrust. reverser port area and nozzle throat area, u =
[8';v, WF,A78,A8JT. u consists of rates because integrators were appended to the control
inputs during the process of centralized control design to achieve zero steady-state error for
step commands. The partitioned airframe and engine controllers are desired to have inputs

T T T
ea = [ev,e q] and ee = [eN2,eEPR] and outputs Ua = [8Tv J and U e = [WF,A78,A8]
respectively. The interface variable Zea for this example is the single variable FEX, the
axial thrust generated by the propulsion system. An initial controller partitioning was
obtained using the procedure discussed in [5].

The numbers of airframe and propulsion sub controller inputs are thus (MA=)2 and
(ME=)2 while the sub controllers have (KA=) 1 and (KE=)3 outputs respectively. There is
(PEA=)l interface variable and no direct measurements are fed back from the integrated
plant to the sub controllers (LA and LE are absent from INIT.DAT since there are no
measurements) .

State-space matrices for the integrated plant, SP of order (NP=)13, the centralized
controller, SC of order (NSC=)13 and initial partitioning, S-I(A of order (NS-I(A=)10
and S..KE of order (NS..KE=)7 are listed in Appendix IV.

The optimization is done over the frequency range w E [0.1,100) with 41 frequency
points (FRQ=[O.l; 100; 41]). The frequency weighting

Wi(s) = G(s)(I + J«s)G(S))-l

is used to achieve good performance matching as well as stability robustness for the equiva­
lent controller. The state-space representation for this weighting, SWI of order (NWI=)26,

is obtained from SP and SC. The tracking normalization, N_TRACK= IITCent(jw)II~, is
used to scale the tracking cost. The state-space representation for TCent (s) is constructed
as in expression (1.3) in Appendix 1. Since LA and LE are absent, any blocks involving Ya
or Ye as either inputs or outputs are omitted. Notice that since PEA=l, TCent is a Ix MA
row vector. Neither output weighting (S\;VO) nor performance normalization (N.l'ERF)
were used.

All the necessary variables are stored in INIT.DAT .
The tracking weighting parameter LAMBDA is set to 0.05 and the stopping criteria

vector is defined as

STOP= [le-9; 1e-9; 1e-9; 1 00;0.1].

19

After defining the UDF START by entering
define'START.MTX'

the program is started by entering
[SKA,SKE]=START(LAMBDA ,STOP).

Respond to the question concerning fixing the engine or airframe by entering (0' t o fix
neither as shown in Figure 6.1.

The '0' response to the question concerning the D- matrices as shown in Figure 6.1
will fix none of these submatrices . The program now begins.

ENTER 1 TO FIX AIRFRAME, 2 TO FIX ENGINE or 0 FOR NEITHER: 0

ENTER 1 TO FIX ALL Ds EXCEPT DEAA & DEEA, 2 TO INCLUDE DEEA,

3 FOR ONLY DEEA, or 0 for NONE: 0

Figure 6.1 Screen After Responding to Questions

During a major iteration, the user will see values of AL, FAL, FPAL, ALPR, FALPR,
A, FA, FPA, B, FB and FPB displayed on the screen. These values result from calculations
during the linesearch as described in Step 4 of Section 3. In particular [AL, ALPR] is the
interval used in the "bracketing" phase of the linesearch and [A, B] is the interval used
during "sectioning". The function values (and directional derivatives) at the endpoints of
these intervals are denoted by FAL, FALPR, FA, and FP (respectively FPAL, FPALPR,

FPA and FPB). The user can follow the progress of the linesearch by viewing the values
displayed on the screen as in Figure 6.2.

20

I - .• -- ------'

After defining the UDF START by entering
define'START.MTX'

the program is started by entering
[SKA,SKE]=START(LAMBDA ,STOP).

Respond to the question concerning fixing the engine or airframe by entering (0' t o fix
neither as shown in Figure 6.1.

The '0' response to the question concerning the D- matrices as shown in Figure 6.1
will fix none of these submatrices . The program now begins.

ENTER 1 TO FIX AIRFRAME, 2 TO FIX ENGINE or 0 FOR NEITHER: 0

ENTER 1 TO FIX ALL Ds EXCEPT DEAA & DEEA, 2 TO INCLUDE DEEA,

3 FOR ONLY DEEA, or 0 for NONE: 0

Figure 6.1 Screen After Responding to Questions

During a major iteration, the user will see values of AL, FAL, FPAL, ALPR, FALPR,
A, FA, FPA, B, FB and FPB displayed on the screen. These values result from calculations
during the linesearch as described in Step 4 of Section 3. In particular [AL, ALPR] is the
interval used in the "bracketing" phase of the linesearch and [A, B] is the interval used
during "sectioning". The function values (and directional derivatives) at the endpoints of
these intervals are denoted by FAL, FALPR, FA, and FP (respectively FPAL, FPALPR,

FPA and FPB). The user can follow the progress of the linesearch by viewing the values
displayed on the screen as in Figure 6.2.

20

I - .• -- ------'

AL A

7.58650-09 O.

FAL FA

4.99810+01 4.97370+01

FPAL FPA

6.7610D+08 -6.11690+08

ALPR B

O. 7.58650-09

FALPR FB

4.97370+01 4.99810+01

FPALPR FPB

-6.11690+08 6.76100+08

DURING BRACKETING DURING SECTIONING

Figure 6.2 Screen ~isplay During the Linesearch

After the first linesearch succeeds the user will see a graphical display of the values

of the total, performance and tracking costs for the previous major iterations (after the

twentieth, only the last twenty are displayed). A typical screen is displayed in Figure 6.3.

After 100 iterations, SKA and SKE are returned. The convergence criteria were not all

met, rather the program stopped because the maximum number of iterations was reached.

Nonetheless, as will be seen by a posterioiri analysis , the resulting subcontrollers exhibited

good performance and tracking properties. The total cost history is shown in Figure 6.4.

The performance of the initial controller partitioning is evaluated in comparison with

that of the centralized controller by comparing closed-loop system response to step com­

mands in the controlled variables z.

21

AL A

7.58650-09 O.

FAL FA

4.99810+01 4.97370+01

FPAL FPA

6.7610D+08 -6.11690+08

ALPR B

O. 7.58650-09

FALPR FB

4.97370+01 4.99810+01

FPALPR FPB

-6.11690+08 6.76100+08

DURING BRACKETING DURING SECTIONING

Figure 6.2 Screen ~isplay During the Linesearch

After the first linesearch succeeds the user will see a graphical display of the values

of the total, performance and tracking costs for the previous major iterations (after the

twentieth, only the last twenty are displayed). A typical screen is displayed in Figure 6.3.

After 100 iterations, SKA and SKE are returned. The convergence criteria were not all

met, rather the program stopped because the maximum number of iterations was reached.

Nonetheless, as will be seen by a posterioiri analysis , the resulting subcontrollers exhibited

good performance and tracking properties. The total cost history is shown in Figure 6.4.

The performance of the initial controller partitioning is evaluated in comparison with

that of the centralized controller by comparing closed-loop system response to step com­

mands in the controlled variables z.

21

55

· .
50 · .. . ,.. - - _ .. _ -_ .. _ .. -- -_ -- -_ .. --_.. .. -- - -_ ... -- ---_ ... a,. _________ ______ .. ,._ ___ .. __ _ .. _ · . . · . . · . . · . .
45
,. I.' I -- ____ e. __ _ ___ ____ __ __ __ .. ___ _ ... ____ ___ __________ .. ____ _

• • " •• I •

• I I ",

40
· : : . :.:: ---------;----------:---------:----------1---- ----------;----------;---------T--------T--------

n: 35

Lr 30

25
::::::-:-! :::::::::r::::]:::::-:::]:::-:::::I.--:: :::::-::-:-:_i ::::::::~-----:-::~::::::-:-

20 ---------f ----------1---------+ ------- --1----------j ----------j ----------f - --------1--------- ~----------
15 -------- ... ~----------~---------~---------.:- .. --- ... -.. ... -~----------~-------- .. -~---------~ ... -------- -,

• • • • I I • • I
• • • • I ., I ·

10
50

· . . ,
45 --- --- .. ;. -- -_ .. -r. -... ------...,.. ---- -_.. -------.--.;---... --- --- t - .. - - _.;..-- -----.- -~---.-------· "

, I I •••••

• I • I I I
• • • I • •
I • I • I •

40 --... ---- - - ~ ----------~---- .. ----T---------.:--- ---... -~----------~--------~-~---.------..:_---------.:_-.--------
I I I • I • • •

" • I • • •
• I •••• I

. 0 I • I • • • .. ,....
35

n:
30 0-

LL

--------- ~ .. ------- -.;. .. --------.;..---------~-.-----_.. -;----------~ --------.. -~------ -~------ ... -... ~--- .. --.. --
· ~ ; ~ . ; ~ i

I • 0 • • • • · . , , . ---------.,. .. ------------ ... --_ .. -..,..-_._-_._- .. -.. ---------- .. - ------..... .,.--_ .. _-- -..... _--_ .. _-_ -.. -.. --".. __ ---
• • • • t • • • 0 · , . .
f • , f 1 ft • •
• • • • I • • • 0
• If. I • • • •

25 • I • • I • • • • --------- .. -------------------_ .. --_ .. _---.. ----------.. --_.. ---.---------- .. -----.. ----_ .. _---_._-----_ .. --_ ..
f • I. I"
• I O. 0 f I
• I. I. I
I It"
I I. I I

20 -_ - -- - -: ---- - _ .. _-.!.- - --- - -_ .. .!..--- ... _---- .:---- _---.! --- -.. -_ ... _-! - ------- --.. -------.!.--------.-~-.- ... ---......
I , • • • • • •

• • 0 • •• I

15 ---------~--------+--------r-------+--------+-------+---------~--------- : ----
10
1.2

• " I I •

1.1 --- ... -----~---------..;.--- ... - .. -... .;..--.----.. --.; .. -.. --- --~---- .. -----~------ .. - - -~----- ... ---~------ -~ .. -- -
• • I I • • • • I

• • I I '" I
• • • f '" f
I I I I ' " I
I I " ••• •
• • I I • I • •
., I ••• •

1
I I .. . ' . . ---------: ----------:--------.. :--- .. -.. -----_ .. : ------... ---: ---------.. ~-------.... t--·-----.. -t--- ... ----

n:
.9

LL

.8

-------1---------------------------- -------j----------j--------r-_____ L ______ 1
---------.,. -- .. -------r ---------..,... ---------:--- ----.. : ----------! -......... _- _.,.-- -- 'T-------- --:- ------..

• • I • • •

. 7 ---------: ---------l---------T ---------r ---------r --------1------- -[---------r ---------r ---------

.6
0 2 4 6 8 10 12 14 16 18 20

ITER

Figure 63 Screen Display Showing Total , Performance and Tracking Costs

The responses to qvC) N2c and EP Rc with the initial as well as the optimized parti-

22

55

· .
50 · .. . ,.. - - _ .. _ -_ .. _ .. -- -_ -- -_ .. --_.. .. -- - -_ ... -- ---_ ... a,. _________ ______ .. ,._ ___ .. __ _ .. _ · . . · . . · . . · . .
45
,. I.' I -- ____ e. __ _ ___ ____ __ __ __ .. ___ _ ... ____ ___ __________ .. ____ _

• • " •• I •

• I I ",

40
· : : . :.:: ---------;----------:---------:----------1---- ----------;----------;---------T--------T--------

n: 35

Lr 30

25
::::::-:-! :::::::::r::::]:::::-:::]:::-:::::I.--:: :::::-::-:-:_i ::::::::~-----:-::~::::::-:-

20 ---------f ----------1---------+ ------- --1----------j ----------j ----------f - --------1--------- ~----------
15 -------- ... ~----------~---------~---------.:- .. --- ... -.. ... -~----------~-------- .. -~---------~ ... -------- -,

• • • • I I • • I
• • • • I ., I ·

10
50

· . . ,
45 --- --- .. ;. -- -_ .. -r. -... ------...,.. ---- -_.. -------.--.;---... --- --- t - .. - - _.;..-- -----.- -~---.-------· "

, I I •••••

• I • I I I
• • • I • •
I • I • I •

40 --... ---- - - ~ ----------~---- .. ----T---------.:--- ---... -~----------~--------~-~---.------..:_---------.:_-.--------
I I I • I • • •

" • I • • •
• I •••• I

. 0 I • I • • • .. ,....
35

n:
30 0-

LL

--------- ~ .. ------- -.;. .. --------.;..---------~-.-----_.. -;----------~ --------.. -~------ -~------ ... -... ~--- .. --.. --
· ~ ; ~ . ; ~ i

I • 0 • • • • · . , , . ---------.,. .. ------------ ... --_ .. -..,..-_._-_._- .. -.. ---------- .. - ------..... .,.--_ .. _-- -..... _--_ .. _-_ -.. -.. --".. __ ---
• • • • t • • • 0 · , . .
f • , f 1 ft • •
• • • • I • • • 0
• If. I • • • •

25 • I • • I • • • • --------- .. -------------------_ .. --_ .. _---.. ----------.. --_.. ---.---------- .. -----.. ----_ .. _---_._-----_ .. --_ ..
f • I. I"
• I O. 0 f I
• I. I. I
I It"
I I. I I

20 -_ - -- - -: ---- - _ .. _-.!.- - --- - -_ .. .!..--- ... _---- .:---- _---.! --- -.. -_ ... _-! - ------- --.. -------.!.--------.-~-.- ... ---......
I , • • • • • •

• • 0 • •• I

15 ---------~--------+--------r-------+--------+-------+---------~--------- : ----
10
1.2

• " I I •

1.1 --- ... -----~---------..;.--- ... - .. -... .;..--.----.. --.; .. -.. --- --~---- .. -----~------ .. - - -~----- ... ---~------ -~ .. -- -
• • I I • • • • I

• • I I '" I
• • • f '" f
I I I I ' " I
I I " ••• •
• • I I • I • •
., I ••• •

1
I I .. . ' . . ---------: ----------:--------.. :--- .. -.. -----_ .. : ------... ---: ---------.. ~-------.... t--·-----.. -t--- ... ----

n:
.9

LL

.8

-------1---------------------------- -------j----------j--------r-_____ L ______ 1
---------.,. -- .. -------r ---------..,... ---------:--- ----.. : ----------! -......... _- _.,.-- -- 'T-------- --:- ------..

• • I • • •

. 7 ---------: ---------l---------T ---------r ---------r --------1------- -[---------r ---------r ---------

.6
0 2 4 6 8 10 12 14 16 18 20

ITER

Figure 63 Screen Display Showing Total , Performance and Tracking Costs

The responses to qvC) N2c and EP Rc with the initial as well as the optimized parti-

22

L ___ ..

--- -'-'--"--~--- - --- '---' -----~- ---

55

50

45

40

35

~ 30 --.,
0 25 0

20

15

10

5

0
0 20 40 60 80 100

lteratlon no.

Figure 6.4 Cost History for Controller Partitioning Optimization

tioned sub controllers were comparable to those with the centralized controller so they are

not shown here. However, the responses to Ve , shown in Fig. 6.5, show considerable

degradation in terms of increased coupling in the N2 and EP R responses with the ini­

tial partitioned sub controllers. This deficiency was overcome by the optimized part itioned

controllers as can be seen in Fig. 6.5. Note that all the quantities shown in Fig. 6.5 are

normalized, using scalings discussed in [6], to allow a direct comparison of the various

response magnitudes. In addition, the response of FEX (the interface variable) to Ve using

partitioned sub controllers was also comparable to that using the centralized controller as

is seen in Fig. 6.6.

Since the performance with the optimized sub controllers is found to be acceptable,

an effort is made to reduce the orders of the sub controllers. The engine sub controller is

reduced to 4th order by residualization of the three high frequency modes without any

loss of performance. Through the use of internally balanced reduction techniques [7],

the airframe sub controller is reduced to 6th order (from the original 10th order) without

excessive mismatch in the controller transfer matrix characteristics as is seen from the

23

L ___ ..

--- -'-'--"--~--- - --- '---' -----~- ---

55

50

45

40

35

~ 30 --.,
0 25 0

20

15

10

5

0
0 20 40 60 80 100

lteratlon no.

Figure 6.4 Cost History for Controller Partitioning Optimization

tioned sub controllers were comparable to those with the centralized controller so they are

not shown here. However, the responses to Ve , shown in Fig. 6.5, show considerable

degradation in terms of increased coupling in the N2 and EP R responses with the ini­

tial partitioned sub controllers. This deficiency was overcome by the optimized part itioned

controllers as can be seen in Fig. 6.5. Note that all the quantities shown in Fig. 6.5 are

normalized, using scalings discussed in [6], to allow a direct comparison of the various

response magnitudes. In addition, the response of FEX (the interface variable) to Ve using

partitioned sub controllers was also comparable to that using the centralized controller as

is seen in Fig. 6.6.

Since the performance with the optimized sub controllers is found to be acceptable,

an effort is made to reduce the orders of the sub controllers. The engine sub controller is

reduced to 4th order by residualization of the three high frequency modes without any

loss of performance. Through the use of internally balanced reduction techniques [7],

the airframe sub controller is reduced to 6th order (from the original 10th order) without

excessive mismatch in the controller transfer matrix characteristics as is seen from the

23

>

> cr

N
Z

ex:
~
w

1.5

1.0

.5

0

-.5

2
'\

0

-.02

-.04

-.06

-.08

.2

.1

0

- .1
I,

"
-.2

.6

.4

.2

,
I \ ,

\ , \ , \
\

... _---------
Centralized
Initial partitioning
Optimized partitioning

-------" ... -.... o ~~----~;~------------~------~~~----­
;

-.2 , ;;

I /
\;

;
;

;

-.4 ~----~------~------~----~------~----~
o 2 4 6

Time(s)
8 10 12

Figure 6.5 Closed-Loop System Response to Step Velocity Command for Cen­

tralized Controller, Initial Partitioning and Optimized Partitioning

24

--- - - ----- ------

>

> cr

N
Z

ex:
~
w

1.5

1.0

.5

0

-.5

2
'\

0

-.02

-.04

-.06

-.08

.2

.1

0

- .1
I,

"
-.2

.6

.4

.2

,
I \ ,

\ , \ , \
\

... _---------
Centralized
Initial partitioning
Optimized partitioning

-------" ... -.... o ~~----~;~------------~------~~~----­
;

-.2 , ;;

I /
\;

;
;

;

-.4 ~----~------~------~----~------~----~
o 2 4 6

Time(s)
8 10 12

Figure 6.5 Closed-Loop System Response to Step Velocity Command for Cen­

tralized Controller, Initial Partitioning and Optimized Partitioning

24

--- - - ----- ------

-~ ~." _______ ___ ~U •• ' __ " " _ _

3.0
Centralized

------ Optimized partitioning

2.4
- -- FEXc optimized partitioning

1.8

~ 1.2
u..

.6

~L-__ ~ ____ -L ____ ~ __ ~ ____ ~ ____ ~

o 2 4 6
lime (s)

8 10 12

Figu re 6 _6 F EX Response to Step Velocity Command for Centralized Controller

a nd Optim ized Partit ioning

full and reduced order airframe controller singular values comparison in Fig. 6_7_ This

reduced order airframe sub controller does , however, exhibit deterioration in closed-loop

performance in the V and qv response comparison plots for a step change in Vc as shown

in F ig. 6.8.

The reduced order sub controller state-space matrices are stored as SJ<A (order NSJ<A=6)

and S.J(E (order NSJ<E=4) in INIT_DAT and the program is started by entering

[SKA,SKE]=START(LAMBDA,STOP).

One should not use RESTART here since the CONST.DAT file will not contain data related

to the reduced order sub controllers. Moreover, since the engine sub controller is acceptable,

the optimization should take place over only the airframe sub controller parameters. When

requested to en ter a value to fix a sub controller, enter '2' to fix the engine subcontrolleL

The program will execute as before, generating optimal SKA and SKE (fixed to the

initial reduced order S.l(E)_ The response obtained with the optimized reduced order air­

frame sub controller for step Vc is shown in Fig. 6_8. Note that the optimized sub controller

25

---~-- -~-

-~ ~." _______ ___ ~U •• ' __ " " _ _

3.0
Centralized

------ Optimized partitioning

2.4
- -- FEXc optimized partitioning

1.8

~ 1.2
u..

.6

~L-__ ~ ____ -L ____ ~ __ ~ ____ ~ ____ ~

o 2 4 6
lime (s)

8 10 12

Figu re 6 _6 F EX Response to Step Velocity Command for Centralized Controller

a nd Optim ized Partit ioning

full and reduced order airframe controller singular values comparison in Fig. 6_7_ This

reduced order airframe sub controller does , however, exhibit deterioration in closed-loop

performance in the V and qv response comparison plots for a step change in Vc as shown

in F ig. 6.8.

The reduced order sub controller state-space matrices are stored as SJ<A (order NSJ<A=6)

and S.J(E (order NSJ<E=4) in INIT_DAT and the program is started by entering

[SKA,SKE]=START(LAMBDA,STOP).

One should not use RESTART here since the CONST.DAT file will not contain data related

to the reduced order sub controllers. Moreover, since the engine sub controller is acceptable,

the optimization should take place over only the airframe sub controller parameters. When

requested to en ter a value to fix a sub controller, enter '2' to fix the engine subcontrolleL

The program will execute as before, generating optimal SKA and SKE (fixed to the

initial reduced order S.l(E)_ The response obtained with the optimized reduced order air­

frame sub controller for step Vc is shown in Fig. 6_8. Note that the optimized sub controller

25

---~-- -~-

100

10

,

.1

.01 .1

Full order (1 0)

.---- - Reduced order (6)

1

Frequency (radls)

10 100

Figure 6.7 Singular Values of the Airframe Subcontroller for Optimized Parti­

tioning with .A = 0.05 - Full (10) and Reduced (6) Orders

also provides improved tracking of the velocity command. The state-space matrix for the

optimized reduced order airframe sub controller is listed in Appendix IV.

26

- . . . _---- , .. _- .. _-------'

100

10

,

.1

.01 .1

Full order (1 0)

.---- - Reduced order (6)

1

Frequency (radls)

10 100

Figure 6.7 Singular Values of the Airframe Subcontroller for Optimized Parti­

tioning with .A = 0.05 - Full (10) and Reduced (6) Orders

also provides improved tracking of the velocity command. The state-space matrix for the

optimized reduced order airframe sub controller is listed in Appendix IV.

26

- . . . _---- , .. _- .. _-------'

1.5

1.0

>
.5

0

.4
1\

.2

> ,
0-

0

-.2
0

••
V

2 4

Centralized
------ Initial reduced order
- - - Optimized partitioning

6
Time(s)

8 10 12

Figure 6.8 Closed-Loop System Response to Step Velocity Command for Cen­

tral ized Co ntroller and Reduced Order Partition Subcontrollers - Initial and

Optimized

For a discussion of the application of this code to the design of a decentralized controller

for a Short TakeOff and Vertical Landing (STOVL) aircraft, the user is referred to [8].

This application uses measurements from the integrated plant to the sub controllers and

includes more than one interface variable. In addition, several different weighting matrices

are discussed in [8].

27

1.5

1.0

>
.5

0

.4
1\

.2

> ,
0-

0

-.2
0

••
V

2 4

Centralized
------ Initial reduced order
- - - Optimized partitioning

6
Time(s)

8 10 12

Figure 6.8 Closed-Loop System Response to Step Velocity Command for Cen­

tral ized Co ntroller and Reduced Order Partition Subcontrollers - Initial and

Optimized

For a discussion of the application of this code to the design of a decentralized controller

for a Short TakeOff and Vertical Landing (STOVL) aircraft, the user is referred to [8].

This application uses measurements from the integrated plant to the sub controllers and

includes more than one interface variable. In addition, several different weighting matrices

are discussed in [8].

27

REFERENCES

[1] Sanjay Garg , Peter J. Ouzts , Carl F . Lorenzo and Duane L. Mattern , IMPAC - An integrated method­
ology for propulsion and airframe control , Proceedings of the 1991 American Control Conference,
June, 1991 , Boston, MA, 1 (1991) , 747- 754 .

[2] Dale F . Enns , Model Reduction for Control Systems Design, Ph .D. dissertation , Stanford University,
1984.

[3] Phillip H. Schmidt , Sanjay Garg and Brian Holowecky , A parameter optimization approach t o con­
troller partitioning for integrated flight/propulsion control application, Proceedings of the 1992 Con­
ference on Control Applications , September, 1992 , Dayton , OH, 2 (1992) , 972-979 .

[4] R . Fletcher, Practical Methods of Optimization, Wiley , New York , 1987 .

[5] Sanjay Garg, Controller Partitioning for Integrated Flight/Propulsion Control Implementation , pre­
sented at the 1992 American Control Conference, June , 1992 , Chicago , IL.

[6] Sanjay Garg , Duane L. Mattern and Randy E . Bullard , Integrated flight/propulsion control system
design based on a centralized approach, AIAA Paper No. 89-3519, Proceedings of the AIAA Guidance ,
Navigation and Control Conference , Aug . 1989, Boston , MA.

[1] B .C. Moore, Principal Component Analysis in Linear Systems : Controllability, Observability, and
Model Reduction, IEEE Transactions on Automatic Control 26 (1981) , 17-31.

[8] Sanjay Garg and Phillip H. Schmidt , Application of Controller Partitioning Optimization Procedure
to Integrated Flight/Propulsion Control Design for a STOVL Aircraft, AIAA Paper No . 93-3766 ,
to appear in Proceedings of the AIAA Guidance, Navigation and Control Conference, Aug. 1993 ,
Monterey, CA.

[9] Uy-Loi Ly, Arthur E. Bryson and Robert H . Cannon, Design of low order compensators using para­
metric optimization, Automatica 21 (1985) , 315-318 .

[1 0] Phillip H . Schmidt and Sanjay Garg , Decentralized Hierarchical Partitioning of Centralized Integrated
Controllers, Proceedings of the 1991 American Control Conference, Boston, MA, June , 1991 1 (1991),
755-760 .

Typeset by AMS-TEX

REFERENCES

[1] Sanjay Garg , Peter J. Ouzts , Carl F . Lorenzo and Duane L. Mattern , IMPAC - An integrated method­
ology for propulsion and airframe control , Proceedings of the 1991 American Control Conference,
June, 1991 , Boston, MA, 1 (1991) , 747- 754 .

[2] Dale F . Enns , Model Reduction for Control Systems Design, Ph .D. dissertation , Stanford University,
1984.

[3] Phillip H. Schmidt , Sanjay Garg and Brian Holowecky , A parameter optimization approach t o con­
troller partitioning for integrated flight/propulsion control application, Proceedings of the 1992 Con­
ference on Control Applications , September, 1992 , Dayton , OH, 2 (1992) , 972-979 .

[4] R . Fletcher, Practical Methods of Optimization, Wiley , New York , 1987 .

[5] Sanjay Garg, Controller Partitioning for Integrated Flight/Propulsion Control Implementation , pre­
sented at the 1992 American Control Conference, June , 1992 , Chicago , IL.

[6] Sanjay Garg , Duane L. Mattern and Randy E . Bullard , Integrated flight/propulsion control system
design based on a centralized approach, AIAA Paper No. 89-3519, Proceedings of the AIAA Guidance ,
Navigation and Control Conference , Aug . 1989, Boston , MA.

[1] B .C. Moore, Principal Component Analysis in Linear Systems : Controllability, Observability, and
Model Reduction, IEEE Transactions on Automatic Control 26 (1981) , 17-31.

[8] Sanjay Garg and Phillip H. Schmidt , Application of Controller Partitioning Optimization Procedure
to Integrated Flight/Propulsion Control Design for a STOVL Aircraft, AIAA Paper No . 93-3766 ,
to appear in Proceedings of the AIAA Guidance, Navigation and Control Conference, Aug. 1993 ,
Monterey, CA.

[9] Uy-Loi Ly, Arthur E. Bryson and Robert H . Cannon, Design of low order compensators using para­
metric optimization, Automatica 21 (1985) , 315-318 .

[1 0] Phillip H . Schmidt and Sanjay Garg , Decentralized Hierarchical Partitioning of Centralized Integrated
Controllers, Proceedings of the 1991 American Control Conference, Boston, MA, June , 1991 1 (1991),
755-760 .

Typeset by AMS-TEX

ApPE NDIX I

DEV ELOPMEN T OF THE COST A ND ITS GRADIENT

T he P aram et e rs . Parameters in the optimization process are certain entries in state-space real-

izations of Ka(s) and J(e(s) as defined in t he formul a (1.1). The notation M~i is used throughout

to indicate the matrix M E {A , B , C , D} in the state-space realization of the system transfer matrix

s E {c,p,a,e} (c = centralized controller, p =plant, a = airframe sub controller , e =engine sub con-

t roller) with input i (respectively ou tput 0) E {p , a,e, eac, ea} (eac =interface variable commands,

ea =interface variables).

For the purposes of this software descript ion , the corresponding state space matrices are written as

and [
Ae

SKE = Ce
ee

(I.1)

One consideration in choosing a parameterization is to introduce a "minimal" number of pa-

rameters in the optimization process. A real canonical form used in [9) served as the model for

our parameterization . The sub controller system dynamics matrices A a and A e are represented as

block diagonal matrices wit h two-by-two real companion blocks of the form [~ ~] . If the order

of either A a or A e is odd , there is also one diagonal real entry corresponding to a real eigenvalue.

In addition, Q and f3 are constrained to be negat ive in order to meet the requirement that sub-

controllers be stable. It should be noted that this form for the A matrices does not allow for a

Jordan block structure. However, since the matrices are obtained from a numerical process , it is

improbable that the "opt imal" solution would need such a special structure.

In addition the first columns of each of the sub controller input matrices B~a and B:ea are fixed

at non-zero values determined as follows. State space representations for the initial partitioning

are not required to be in the canonical form described above. For each of them, a similarity

29

ApPE NDIX I

DEV ELOPMEN T OF THE COST A ND ITS GRADIENT

T he P aram et e rs . Parameters in the optimization process are certain entries in state-space real-

izations of Ka(s) and J(e(s) as defined in t he formul a (1.1). The notation M~i is used throughout

to indicate the matrix M E {A , B , C , D} in the state-space realization of the system transfer matrix

s E {c,p,a,e} (c = centralized controller, p =plant, a = airframe sub controller , e =engine sub con-

t roller) with input i (respectively ou tput 0) E {p , a,e, eac, ea} (eac =interface variable commands,

ea =interface variables).

For the purposes of this software descript ion , the corresponding state space matrices are written as

and [
Ae

SKE = Ce
ee

(I.1)

One consideration in choosing a parameterization is to introduce a "minimal" number of pa-

rameters in the optimization process. A real canonical form used in [9) served as the model for

our parameterization . The sub controller system dynamics matrices A a and A e are represented as

block diagonal matrices wit h two-by-two real companion blocks of the form [~ ~] . If the order

of either A a or A e is odd , there is also one diagonal real entry corresponding to a real eigenvalue.

In addition, Q and f3 are constrained to be negat ive in order to meet the requirement that sub-

controllers be stable. It should be noted that this form for the A matrices does not allow for a

Jordan block structure. However, since the matrices are obtained from a numerical process , it is

improbable that the "opt imal" solution would need such a special structure.

In addition the first columns of each of the sub controller input matrices B~a and B:ea are fixed

at non-zero values determined as follows. State space representations for the initial partitioning

are not required to be in the canonical form described above. For each of them, a similarity

29

transformation, T , is applied to the initial A matrix so that T AT-1 is in the proper form . If A is

an n X n matrix then there will be n degrees of freedom in the determination of T. Different Twill

yield the same canonical T AT-1 but different transformed T B and CT- 1 matrices . This implies

that there are actually n degrees of freedom in the determination of T Band CT-l . We select a

simple T which is nonsingular and compute T Band CT- 1
• We remove the degrees of freedom by

fixing the n entries in the first column of T B to their values or 10-9 if the corresponding value is

zero.

We are using the H2 norm of the weighted difference between the transfer matrices for the cen-

t ralized controller and the equivalent heirarchically partitioned sub controllers as will be described

below. Since this difference must be strictly proper in order to apply this norm, it is reasonable

for the D matrices for the centralized and partitioned controllers to be the same. Thus it may

be desirable to fix the values of D~a ' D~Y4 ' D~e ' and D:Ye to values determined directly by the

centralized controller. This is one of the options available in "fixing the D-parameters" .

The parameters over which the optimization takes place are then the 0: and f3 entries in the

block canonical forms , the entries in all but the first columns of the matrices B~a and B;ea and all

the ent ries in the matrices [~~a] , C;e ' D':aca and D:ea . The parameter vector will be denoted
eaea

as p E RN where N = na(ka + ma + La + Pea) + ne(ke + m e + le + Pea) + Pea (ka + m e); n , m , k ,

and I refer respect ively to the order, number of error inputs , number of outputs, and number of

direct measurements for a su bcontroller and Pea refers to the number of int erface variables. T he

number of parameters depends not only on the total numbers of controller inputs and outputs and

interface variables which are fixed but also on the orders of the sub controllers, na and n e. There

is thus a double incentive for keeping these orders low; not only to reduce the complexities of the

sub controllers but also to accelerate the optimization algorithm whose performance depends on the

total number of parameters .

The Cost Function. The cost function is the sum of fo (p) as in (2.2) and h (p) as in (2.3).

These involve the transfer matrices K (s), K (s), Tcent (s), and T (s) which are described below.

30

transformation, T , is applied to the initial A matrix so that T AT-1 is in the proper form . If A is

an n X n matrix then there will be n degrees of freedom in the determination of T. Different Twill

yield the same canonical T AT-1 but different transformed T B and CT- 1 matrices . This implies

that there are actually n degrees of freedom in the determination of T Band CT-l . We select a

simple T which is nonsingular and compute T Band CT- 1
• We remove the degrees of freedom by

fixing the n entries in the first column of T B to their values or 10-9 if the corresponding value is

zero.

We are using the H2 norm of the weighted difference between the transfer matrices for the cen-

t ralized controller and the equivalent heirarchically partitioned sub controllers as will be described

below. Since this difference must be strictly proper in order to apply this norm, it is reasonable

for the D matrices for the centralized and partitioned controllers to be the same. Thus it may

be desirable to fix the values of D~a ' D~Y4 ' D~e ' and D:Ye to values determined directly by the

centralized controller. This is one of the options available in "fixing the D-parameters" .

The parameters over which the optimization takes place are then the 0: and f3 entries in the

block canonical forms , the entries in all but the first columns of the matrices B~a and B;ea and all

the ent ries in the matrices [~~a] , C;e ' D':aca and D:ea . The parameter vector will be denoted
eaea

as p E RN where N = na(ka + ma + La + Pea) + ne(ke + m e + le + Pea) + Pea (ka + m e); n , m , k ,

and I refer respect ively to the order, number of error inputs , number of outputs, and number of

direct measurements for a su bcontroller and Pea refers to the number of int erface variables. T he

number of parameters depends not only on the total numbers of controller inputs and outputs and

interface variables which are fixed but also on the orders of the sub controllers, na and n e. There

is thus a double incentive for keeping these orders low; not only to reduce the complexities of the

sub controllers but also to accelerate the optimization algorithm whose performance depends on the

total number of parameters .

The Cost Function. The cost function is the sum of fo (p) as in (2.2) and h (p) as in (2.3).

These involve the transfer matrices K (s), K (s), Tcent (s), and T (s) which are described below.

30

The parameters in the cost function are the entries in SKA and SKE as described in the previous

section. These parameters along with some fixed transfer matrices are used in the determination

of the transfer matrices needed in the cost function.

State-space representations for the centralized controller transfer matrix,]((s), and the plant

transfer matrix, 8(;) = [g~(l)], are given. Those for K(s), Teent(s) and T(s) (shown in formulas

(1.2), (1.3) and (1.4) below). are constructed from the state-space representations of]((s) ,](a(s),

The transfer matrix K(s) which enters into the performan ce cost term fo(p) depends on](a(s)

and Ke(s), and on the t ransfer submatrix of the plant from control inputs (u) to interface variables

(zea), G ea : Zea = C:"p(s1 - AP)-l [B;a B;e] [~:]. The block diagram in Fig. 1.1 shows the

specific interconnections accounted for in this transfer matrix. Note that K (s) has the same inputs

and outputs as K(s) as described in (2.1).

A state-space realization for the equivalent partitioned controller K(s) = C(s1 - A)-l B + D

was shown in [10] to be 5 = [8 ~] where

(1.2)

- [Da _ aa
D - De Da

eea eacQ

The calculation of the tracking cost in (2.3) requires two transfer matrices, Teenl (s) and T(s).

The norms of the rows of their difference measures the differences in response of the various possible

interface variables to airframe commands. Figure 1.2 is the block diagram for Teent (s) = ceenl (s1 -

Aeenl)-1 Beenl + Deent, the closed loop transfer matrix from airframe commands, Za
e

, to interface

variable quantities, Zea e , produced by the engine using the centralized controller.

31

The parameters in the cost function are the entries in SKA and SKE as described in the previous

section. These parameters along with some fixed transfer matrices are used in the determination

of the transfer matrices needed in the cost function.

State-space representations for the centralized controller transfer matrix,]((s), and the plant

transfer matrix, 8(;) = [g~(l)], are given. Those for K(s), Teent(s) and T(s) (shown in formulas

(1.2), (1.3) and (1.4) below). are constructed from the state-space representations of]((s) ,](a(s),

The transfer matrix K(s) which enters into the performan ce cost term fo(p) depends on](a(s)

and Ke(s), and on the t ransfer submatrix of the plant from control inputs (u) to interface variables

(zea), G ea : Zea = C:"p(s1 - AP)-l [B;a B;e] [~:]. The block diagram in Fig. 1.1 shows the

specific interconnections accounted for in this transfer matrix. Note that K (s) has the same inputs

and outputs as K(s) as described in (2.1).

A state-space realization for the equivalent partitioned controller K(s) = C(s1 - A)-l B + D

was shown in [10] to be 5 = [8 ~] where

(1.2)

- [Da _ aa
D - De Da

eea eacQ

The calculation of the tracking cost in (2.3) requires two transfer matrices, Teenl (s) and T(s).

The norms of the rows of their difference measures the differences in response of the various possible

interface variables to airframe commands. Figure 1.2 is the block diagram for Teent (s) = ceenl (s1 -

Aeenl)-1 Beenl + Deent, the closed loop transfer matrix from airframe commands, Za
e

, to interface

variable quantities, Zea e , produced by the engine using the centralized controller.

31

Figure 1.1 Partitioned Controller

Note that in Figures 1.1 , 1.2 and 1.3 a block of the form

- Xa-+

represents the block

As is easily seen from Figure 1.2 the state-space representation for the centralized controller

transfer matrix Tcenl (s) can be written in terms of the submatrices in the state-space representations

ccenl = [0 c~p] D cenl = o. (1.3)

Figure 1.3 is the block diagram for T(s) = C(s1 - A)-l jj + fJ , the closed loop transfer matrix

from airframe commands, za
e

, to interface variable quantities produced by the airframe subcon-

troller , zelle using the partitioned controller.

32

--~

Figure 1.1 Partitioned Controller

Note that in Figures 1.1 , 1.2 and 1.3 a block of the form

- Xa-+

represents the block

As is easily seen from Figure 1.2 the state-space representation for the centralized controller

transfer matrix Tcenl (s) can be written in terms of the submatrices in the state-space representations

ccenl = [0 c~p] D cenl = o. (1.3)

Figure 1.3 is the block diagram for T(s) = C(s1 - A)-l jj + fJ , the closed loop transfer matrix

from airframe commands, za
e

, to interface variable quantities produced by the airframe subcon-

troller , zelle using the partitioned controller.

32

--~

Figu re 1.2 Zen response to za
e

using the centralized controller

c~ 8 ea ~Ir l. __ ~ __ ~~ __________ ~

Z ea

8

0--
8

Figure 1.3 Z en
e

response to zae using the partitioned controller

33
I

i
I
I

I

_J

Figu re 1.2 Zen response to za
e

using the centralized controller

c~ 8 ea ~Ir l. __ ~ __ ~~ __________ ~

Z ea

8

0--
8

Figure 1.3 Z en
e

response to zae using the partitioned controller

33
I

i
I
I

I

_J

The state space matrices for T(5) = 6(51 - .-4)-) B+ i5 can be written in terms of the state-space

representations for Ka(s), Kf(S) and G(s) as

where

o -B~aC~p.7 B~YG C~GPl
A fp

App

(1.4)

B;eD;y. C:. p).

It may be required that the engine subsystem be strictly proper , a condition which would be

violated if D;ea is nonzero. As a result of the optimization process , D;ea may become large. This

possibility is removed by "fixing D;ea = 0" when the option is presented while running the code.

The total cost is evaluated for a particular parameter vector P (corresponding to particular

SKA and SKE) by applying Simpson's Rule for numerical integration to fo(p) + II (p) over a

user defined logarithmically spaced frequency interval [WI, W2J . The expressions given above for

the state-space representations of J{(5), K(s), Tcent (5) and T(5) are used for calculating fo(p) and

!I (p) according to formulas (2 .2) and (2.3).

The Gradient of the Cost.

The performance cost fo(p) was defined in (2.2) as

00

fo(p) = J Np~RF tr [(lVo(I{ - J((p))H'ir (Wo(I(- J{(P))Wi)] dw
o

34

.- - -- ----------------- ------ -

The state space matrices for T(5) = 6(51 - .-4)-) B+ i5 can be written in terms of the state-space

representations for Ka(s), Kf(S) and G(s) as

where

o -B~aC~p.7 B~YG C~GPl
A fp

App

(1.4)

B;eD;y. C:. p).

It may be required that the engine subsystem be strictly proper , a condition which would be

violated if D;ea is nonzero. As a result of the optimization process , D;ea may become large. This

possibility is removed by "fixing D;ea = 0" when the option is presented while running the code.

The total cost is evaluated for a particular parameter vector P (corresponding to particular

SKA and SKE) by applying Simpson's Rule for numerical integration to fo(p) + II (p) over a

user defined logarithmically spaced frequency interval [WI, W2J . The expressions given above for

the state-space representations of J{(5), K(s), Tcent (5) and T(5) are used for calculating fo(p) and

!I (p) according to formulas (2 .2) and (2.3).

The Gradient of the Cost.

The performance cost fo(p) was defined in (2.2) as

00

fo(p) = J Np~RF tr [(lVo(I{ - J((p))H'ir (Wo(I(- J{(P))Wi)] dw
o

34

.- - -- ----------------- ------ -

where the explicit dependence of the integrand on w is suppressed for convenience.

-Only K(p) depends on p so the derivative of fo(p) with respect to a parameter p of pis

00

{}f;~P) = J Np~RF tr[:p (Wo(K - K(p»Wir (Wo(I(- K(P»Wi)
o

+ (Wo(J(-]((p»Wir :p (Wo(/(- /((p»Wi)]dw

= -2 Re 1 Np~RF tf [(W.(J(- I«P))W) w. 8I~)w;l dw

Since K(p)(s) = C(sl - .-4) -1 jj + jj, the product rule for differentiation implies that

Thus,

afo(p) JOO 1 [(-)*
{}p = -2 Re NpERF tr Wo(K - K(p »Wi

o

[- . -] a [.4 D~] [(jWl -1.4)-1 B] lXTt.]dw Wo C(Jw1 - Atl I {}p C ' j'

Using abbreviations for the system matrix given in (I.2) well as for the terms on the left and

right sides of the partial,

s = [~ ~]
L(w) = N 1 (Wo(K-K(p»Wi)*WO[C(jw1-.4)-1 I]

PERF

R(w) = [(jWl -1.4)-1 B] Wi

allows the derivative to be written as

Any particular parameter p of p is some jkth entry of some submatrix, denoted Moi , relating

an input i to an output 0 of SKA (or SKE) as described in (I.l). Furthermore, p (as well as the

entire submatrix Mod occurs in one or more blocks of S = [~ !] as was described in (1.2).

35

-_.- -•. ---- ---'

where the explicit dependence of the integrand on w is suppressed for convenience.

-Only K(p) depends on p so the derivative of fo(p) with respect to a parameter p of pis

00

{}f;~P) = J Np~RF tr[:p (Wo(K - K(p»Wir (Wo(I(- K(P»Wi)
o

+ (Wo(J(-]((p»Wir :p (Wo(/(- /((p»Wi)]dw

= -2 Re 1 Np~RF tf [(W.(J(- I«P))W) w. 8I~)w;l dw

Since K(p)(s) = C(sl - .-4) -1 jj + jj, the product rule for differentiation implies that

Thus,

afo(p) JOO 1 [(-)*
{}p = -2 Re NpERF tr Wo(K - K(p »Wi

o

[- . -] a [.4 D~] [(jWl -1.4)-1 B] lXTt.]dw Wo C(Jw1 - Atl I {}p C ' j'

Using abbreviations for the system matrix given in (I.2) well as for the terms on the left and

right sides of the partial,

s = [~ ~]
L(w) = N 1 (Wo(K-K(p»Wi)*WO[C(jw1-.4)-1 I]

PERF

R(w) = [(jWl -1.4)-1 B] Wi

allows the derivative to be written as

Any particular parameter p of p is some jkth entry of some submatrix, denoted Moi , relating

an input i to an output 0 of SKA (or SKE) as described in (I.l). Furthermore, p (as well as the

entire submatrix Mod occurs in one or more blocks of S = [~ !] as was described in (1.2).

35

-_.- -•. ---- ---'

- - ----_ .. _._- '-

S can be thought of as consisting of blocks aligned in "columns" corresponding to the "inpu ts"

block of S is denoted as BOI where I is one of the "inputs" above and 0 is one of the "outputs" .

Let Eo denote a column block matrix with the same number of rows as S, the same number of

columns as the dimension of the "output" 0 , with an identity matrix in the rows corresponding

to "output" 0, and with zeros elsewhere. Let EIT be a similar row block matrix corresponding t~

the "input" I,
o

o
Eo = I

o

o

EI T = [0 ... 0 I 0 .. . 0 1 .

Using this notation , S can be written as

S = L L EoBoIEIT.
o I

- -In the partial derivative of S with respect to the p = Moijk> every block of S is zero except

for the blocks containing p. Denote such a block as Bor = £ooMoi'Ril , where £00 denotes the

factor to the left of Moi (if one exists , otherwise an identity) and 'Ril denotes the factor to the

right(similarly, an identity if Moi is the rightmost factor) ; define both £00 = 0 and 'Ril = 0 if

Bor does not contain Moi. The partial of S with respect to p thus contains a term of the form

LOoej ek T'Ril in the same place as the block BoI . These contributions can be written as

Thus the partial of the partitioning cost can be expressed as

36
I

__ J

- - ----_ .. _._- '-

S can be thought of as consisting of blocks aligned in "columns" corresponding to the "inpu ts"

block of S is denoted as BOI where I is one of the "inputs" above and 0 is one of the "outputs" .

Let Eo denote a column block matrix with the same number of rows as S, the same number of

columns as the dimension of the "output" 0 , with an identity matrix in the rows corresponding

to "output" 0, and with zeros elsewhere. Let EIT be a similar row block matrix corresponding t~

the "input" I,
o

o
Eo = I

o

o

EI T = [0 ... 0 I 0 .. . 0 1 .

Using this notation , S can be written as

S = L L EoBoIEIT.
o I

- -In the partial derivative of S with respect to the p = Moijk> every block of S is zero except

for the blocks containing p. Denote such a block as Bor = £ooMoi'Ril , where £00 denotes the

factor to the left of Moi (if one exists , otherwise an identity) and 'Ril denotes the factor to the

right(similarly, an identity if Moi is the rightmost factor) ; define both £00 = 0 and 'Ril = 0 if

Bor does not contain Moi. The partial of S with respect to p thus contains a term of the form

LOoej ek T'Ril in the same place as the block BoI . These contributions can be written as

Thus the partial of the partitioning cost can be expressed as

36
I

__ J

(- ---~, ... ~.----.---

Note that L(w)EoLOoej is a column vector and ekTRiIEIT R(w) is a row vector. Furthermore,

the t race of a column times a row is the dot product of the row and the column. Therefore,

To generate the partials with respect to all the parameters in Moi simultaneously, let J and k

vary over the row and column indicies respectively of the submatrix. Notice that varying the row

index j selects the ph column of the product L(w) EoLOo, whereas varying the column index k

selects the kt h row of RilEITR(w).

A matrix containing the partial derivatives with respect to the entries of Moi located in each

entry's proper spot is t hus obtained by replacing e j and e k by identity matrices and transposing

t he result .
00

8f o(p) J"" [T JT 8M . = -2 Re L..J L..J (RilEI R(w))(L(w)EoLOo) dw
01 0 0 I

Note that only the terms in R(w)L(w) depend on w and thus the integration can be rewritten t o

yield

0;;:/ = -2 Re [~~ nnE,T [l[RCW)LCW)]dW] EOLOr

. . . 8fo(p) 8fo(p) r r (
Fm ally, bUIld two matnces denoted 8SKA and 8SKE of the shapes of SKA and SKE de-

scribed in (1.1)) respectively containing the partial derivatives of fo(p) with respect to the parame-

ters in SKA (respectively SKE) in the same positions as the corresponding parameters would occur.

. . , . 8fo(p) 8fo(p)
T hIS IS done so that In the software the gradIent vector can be produced from 8SKA and 8SKE

by a call of the fu nction LONGCOL (the same function which produces p from SKA and SKE).

To build these matrices, define the "row" and "column" block matrices E a? and Ea 0 relative

to t he "inputs" i E {xa , ea , Ya} and "outputs" 0 E {xe, ua,zenJ for the airframe controller state-

space system matrix SKA. As before Ea 0 is a block column matrix with as many rows as SKA,

with an identity matrix of size equal t o the dimension of the output 0 in the rows corresponding

to 0 and with zeros in the remaining rows. The matrices column block matrix Ee 0 and the row

block matrices E aiT, and E e? are similarly defined. If we again denote the submatrices of SKA

37

(- ---~, ... ~.----.---

Note that L(w)EoLOoej is a column vector and ekTRiIEIT R(w) is a row vector. Furthermore,

the t race of a column times a row is the dot product of the row and the column. Therefore,

To generate the partials with respect to all the parameters in Moi simultaneously, let J and k

vary over the row and column indicies respectively of the submatrix. Notice that varying the row

index j selects the ph column of the product L(w) EoLOo, whereas varying the column index k

selects the kt h row of RilEITR(w).

A matrix containing the partial derivatives with respect to the entries of Moi located in each

entry's proper spot is t hus obtained by replacing e j and e k by identity matrices and transposing

t he result .
00

8f o(p) J"" [T JT 8M . = -2 Re L..J L..J (RilEI R(w))(L(w)EoLOo) dw
01 0 0 I

Note that only the terms in R(w)L(w) depend on w and thus the integration can be rewritten t o

yield

0;;:/ = -2 Re [~~ nnE,T [l[RCW)LCW)]dW] EOLOr

. . . 8fo(p) 8fo(p) r r (
Fm ally, bUIld two matnces denoted 8SKA and 8SKE of the shapes of SKA and SKE de-

scribed in (1.1)) respectively containing the partial derivatives of fo(p) with respect to the parame-

ters in SKA (respectively SKE) in the same positions as the corresponding parameters would occur.

. . , . 8fo(p) 8fo(p)
T hIS IS done so that In the software the gradIent vector can be produced from 8SKA and 8SKE

by a call of the fu nction LONGCOL (the same function which produces p from SKA and SKE).

To build these matrices, define the "row" and "column" block matrices E a? and Ea 0 relative

to t he "inputs" i E {xa , ea , Ya} and "outputs" 0 E {xe, ua,zenJ for the airframe controller state-

space system matrix SKA. As before Ea 0 is a block column matrix with as many rows as SKA,

with an identity matrix of size equal t o the dimension of the output 0 in the rows corresponding

to 0 and with zeros in the remaining rows. The matrices column block matrix Ee 0 and the row

block matrices E aiT, and E e? are similarly defined. If we again denote the submatrices of SKA

37

as Ma oi and those of SKE as Me oi, we can write

SKA = 2:: 2:: EO oMo ojEo j
T and SKE = 2::2:: EeoMeoiEe?

o 1 o 1

Notice that, as with 5, the column and row block matrices merely position each Moj properly.

Thus, replacing Moi by the corresponding block io(p) in these formulas gives the desired results
Moj

8fo(p) = "" Ea 8fo(p) Ea.T
8SKA ~~ °8Ma. 1

o i 01

and

8fo(p) = ,,~ E e 8fo(p) Ee.T
8SKE ~ ~ °8Meoi 1

o 1

Using the expression from above for ~fo(P) gives
M a.

01

is°~~ = -2 Re 2::~ E a
o [2::2:: 'RiIEIT [jrR(W)L(W)]dW] EOLOo] TEa?

o 1 0 I 0

= -2Re [2::~ 2:: 2:: Eai'RiIEI T [j[R(W)L(W)]dW] EOLooEaoT]T
o 1 0 I 0

The terms of the form Eai'RiIEIT are independent of "outputs" 0 and 0 whereas those of the form

EoLooEa oT are independent of "inputs" i and 1. Therefore the sums can be rearranged

The sum 2: 2: Eai'RiIEIT represents a matrix with "inputs" I , the "inputs" of 5, and with "out­
j I

puts" i, the "inputs" for SKA. This matrix has the sub matrix 'Ril as the block in the rows corre-

sponding to i and the columns corresponding to I; denote this matrix as Ra. Similarly the matrix

La = :L 2: EoLooEa 0 T contains the submatrix Loo in its block with rows corresponding to the
o 0

S "output" 0 and with columns corresponding to SKA "outputs" o.

The following simple procedure can thus be used to determine is°~~:

1. For each block BOl of S containing a submatrix Ma oi from SKA, determine the left and

right factors (or identity) Loo and 'Ril of Ma oj.

38

- -----
" --- - --- .- -------'

as Ma oi and those of SKE as Me oi, we can write

SKA = 2:: 2:: EO oMo ojEo j
T and SKE = 2::2:: EeoMeoiEe?

o 1 o 1

Notice that, as with 5, the column and row block matrices merely position each Moj properly.

Thus, replacing Moi by the corresponding block io(p) in these formulas gives the desired results
Moj

8fo(p) = "" Ea 8fo(p) Ea.T
8SKA ~~ °8Ma. 1

o i 01

and

8fo(p) = ,,~ E e 8fo(p) Ee.T
8SKE ~ ~ °8Meoi 1

o 1

Using the expression from above for ~fo(P) gives
M a.

01

is°~~ = -2 Re 2::~ E a
o [2::2:: 'RiIEIT [jrR(W)L(W)]dW] EOLOo] TEa?

o 1 0 I 0

= -2Re [2::~ 2:: 2:: Eai'RiIEI T [j[R(W)L(W)]dW] EOLooEaoT]T
o 1 0 I 0

The terms of the form Eai'RiIEIT are independent of "outputs" 0 and 0 whereas those of the form

EoLooEa oT are independent of "inputs" i and 1. Therefore the sums can be rearranged

The sum 2: 2: Eai'RiIEIT represents a matrix with "inputs" I , the "inputs" of 5, and with "out­
j I

puts" i, the "inputs" for SKA. This matrix has the sub matrix 'Ril as the block in the rows corre-

sponding to i and the columns corresponding to I; denote this matrix as Ra. Similarly the matrix

La = :L 2: EoLooEa 0 T contains the submatrix Loo in its block with rows corresponding to the
o 0

S "output" 0 and with columns corresponding to SKA "outputs" o.

The following simple procedure can thus be used to determine is°~~:

1. For each block BOl of S containing a submatrix Ma oi from SKA, determine the left and

right factors (or identity) Loo and 'Ril of Ma oj.

38

- -----
" --- - --- .- -------'

2. Enter Loo in the appropriate block of La and Ril in the appropriate block of Ra.
00

3. Calculate J R(w)L(w) dw where

o

4. Form

8fo(p) = -2 R [Ra
8SKA e

By a similar procedure

J]

(lIR(W)L(W)]dW) L'] T

where Le and R e contain the left and right factors respectively of Meoi terms appearing in S.

It is easy to use the representation of S as given in (1.2) to calculate

L' = [I
0

o 1 R' = [f 0 0 0 0 0

~]
0 B;ea

0 0 J 0 0 and B;a B;e~=ea
0 0 0 0 J I

0 D;ea

and

R' = [i~
0 0 0 0 0

~l L' = [1 +1
0 -cP D':n a 0 Da

and eap < etl c Yo

0 0 0 I 0
0 0 0 0 0

The Tracking Cost

The tracking cost was given in (2.3) as

00 J A- (- - r h(p)= LN i ~ () IIT:ent-Ti(p)lb dw
- TRACK W

o '

where the state space representations for Tcent(s) and Y(s) are given in (1.3) and (104) respectively.

39

2. Enter Loo in the appropriate block of La and Ril in the appropriate block of Ra.
00

3. Calculate J R(w)L(w) dw where

o

4. Form

8fo(p) = -2 R [Ra
8SKA e

By a similar procedure

J]

(lIR(W)L(W)]dW) L'] T

where Le and R e contain the left and right factors respectively of Meoi terms appearing in S.

It is easy to use the representation of S as given in (1.2) to calculate

L' = [I
0

o 1 R' = [f 0 0 0 0 0

~]
0 B;ea

0 0 J 0 0 and B;a B;e~=ea
0 0 0 0 J I

0 D;ea

and

R' = [i~
0 0 0 0 0

~l L' = [1 +1
0 -cP D':n a 0 Da

and eap < etl c Yo

0 0 0 I 0
0 0 0 0 0

The Tracking Cost

The tracking cost was given in (2.3) as

00 J A- (- - r h(p)= LN i ~ () IIT:ent-Ti(p)lb dw
- TRACK W

o '

where the state space representations for Tcent(s) and Y(s) are given in (1.3) and (104) respectively.

39

This function can be put into a form which is similar to Jo(p) so the same procedure for calcu-

lating the gradient applies. Each row of the difference is normalized before the sum of squares is cal-

culated. Note that the multiplication by non-negative Ai and division by non-negative N+RACK(W)

could also be absorbed into the normalized sum of squares by the use of their square roots. Multi-

plication (or division) of rows by factors can also be achieved by multiplication from the left by a

diagonal matrix. The sum of squares of the row norms in t.he resulting product is the same as the

sum of squares of all the entries or the H2 norm of the diagonal weighted difference. In this case

N i Ai ()) (Tcenl - T(P))) ..
TRACK W

diag (Ai) (Tcenl - T(p))] dw.
N+RACK(W)

As before, denote

1]

and apply the same procedure as earlier to write the partial derivatives as

8Jl(P) = -2 Re [[~ ~
8S](A 0 0

0] 00 [I
1 J Rt(w)Lt(w)dw ~
o 0 0

and

:~'Jii = -2 ~ [[c~ro ~ -C~P - D:ro~~r D~<y. C:.P ~ D~<'ll R,(w)L,(w)dw [~ B~' 1 r II'
This completes the discussion of the cost function and its gradient as implemented in this

software. If the user wishes to compute cost functions involving the Hz norm as used here , the user

must apply the procedure described above to determine the gradient.

40

This function can be put into a form which is similar to Jo(p) so the same procedure for calcu-

lating the gradient applies. Each row of the difference is normalized before the sum of squares is cal-

culated. Note that the multiplication by non-negative Ai and division by non-negative N+RACK(W)

could also be absorbed into the normalized sum of squares by the use of their square roots. Multi-

plication (or division) of rows by factors can also be achieved by multiplication from the left by a

diagonal matrix. The sum of squares of the row norms in t.he resulting product is the same as the

sum of squares of all the entries or the H2 norm of the diagonal weighted difference. In this case

N i Ai ()) (Tcenl - T(P))) ..
TRACK W

diag (Ai) (Tcenl - T(p))] dw.
N+RACK(W)

As before, denote

1]

and apply the same procedure as earlier to write the partial derivatives as

8Jl(P) = -2 Re [[~ ~
8S](A 0 0

0] 00 [I
1 J Rt(w)Lt(w)dw ~
o 0 0

and

:~'Jii = -2 ~ [[c~ro ~ -C~P - D:ro~~r D~<y. C:.P ~ D~<'ll R,(w)L,(w)dw [~ B~' 1 r II'
This completes the discussion of the cost function and its gradient as implemented in this

software. If the user wishes to compute cost functions involving the Hz norm as used here , the user

must apply the procedure described above to determine the gradient.

40

ApPENDIX II

SHORT DESCRIPTIONS OF USER-DEFINED FUNCTIONS

START in START .MTX

[SKA_OPT,SKA_OPT] = START(LAMBDA, STOP)

Initializes information from data files, puts sub controllers into modified modal form, constructs or

initializes some matrices required for the evaluation of the cost function. Calls COST to initialize

the costs and gradients and then calls PARTITION to perform the optimization.

INPUT

LAMBDA - weighting for the contribution of the tracking cost to the total cost.

STOP (optional) - vector of stopping conditions.

INIT .DAT - data file containing initial information.

OUTPU T

SKA_OPT - the state-space representation of the optimized airframe sub controller.

SKE_OPT - the state-space representation of the optimized engine sub controller.

CONST.DAT - data file containing constants used by other UDFs.

PAR.DAT - used to store the stopping conditions in STOP.

RESTART in RESTART.MTX

[SKA_OPT,SKA_OPT] = RESTART(LAMBDANEW, STOP, NEWH)

Restarts the program using the data available in INTER.DAT and CONST.DAT. Calls COST to

initialize the costs and gradients, and then calls PARTITION to optimize.

INPUT

LAMBDANEW - a new value of LAMBDA may allow a different emphasis on the tracking

cost relative to t he total cost.

41

ApPENDIX II

SHORT DESCRIPTIONS OF USER-DEFINED FUNCTIONS

START in START .MTX

[SKA_OPT,SKA_OPT] = START(LAMBDA, STOP)

Initializes information from data files, puts sub controllers into modified modal form, constructs or

initializes some matrices required for the evaluation of the cost function. Calls COST to initialize

the costs and gradients and then calls PARTITION to perform the optimization.

INPUT

LAMBDA - weighting for the contribution of the tracking cost to the total cost.

STOP (optional) - vector of stopping conditions.

INIT .DAT - data file containing initial information.

OUTPU T

SKA_OPT - the state-space representation of the optimized airframe sub controller.

SKE_OPT - the state-space representation of the optimized engine sub controller.

CONST.DAT - data file containing constants used by other UDFs.

PAR.DAT - used to store the stopping conditions in STOP.

RESTART in RESTART.MTX

[SKA_OPT,SKA_OPT] = RESTART(LAMBDANEW, STOP, NEWH)

Restarts the program using the data available in INTER.DAT and CONST.DAT. Calls COST to

initialize the costs and gradients, and then calls PARTITION to optimize.

INPUT

LAMBDANEW - a new value of LAMBDA may allow a different emphasis on the tracking

cost relative to t he total cost.

41

STOP (optional) - the vector of stopping conditions, same as in the START routine . It may

be redefined, perhaps to allow more stringent conditions or more it erations .

NEWH (optional) - a flag whose presence indicates the desire for restart with identity inverse

Hessian. If restart with the current Hessian matrix is desired, no value should be passed.

CONST.DAT - data file containing constants pertaining to the plant and global controller

being partitioned.

INTER.DAT - the data file in which intermediate results from previous iterations are stored.

OUTPUT

SKA_OPT - the state-space representation of the optimized airframe sub controller.

SKE_OPT - the state-space representation of the optimized engine sub controller.

PAR.DAT - the data file in which the stopping conditions STOP are saved.

INTER.DAT - the data file in which intermediate results are stored.

PARTITION in PARTITIO .MTX

P.l = PARTITION(STOP)

This is the main routine and does the optimization. It iterates till some convergence or stopping

conditions are met. After each iteration a graph is plotted showing the change in costs. PARTI­

TIO N implements the Broyden-Fletcher-Goldfarb-Shanno method of determining a search direct ion

for minimization. It t hen calls the function INACCURATE to implement Fletcher's inaccurate line

search in that direction . The function CONVERGE is called to see if convergence or stopping

conditions are met ; jf not , the iteration in PARTITION is repeated .

INP UT

STOP - the vector of stopping conditions , used to check convergence.

CONST.DAT - the data file containing the constants of the program.

INTER.DAT - the data file containing the intermediate results.

OUTP UT

42

.. _---------

STOP (optional) - the vector of stopping conditions, same as in the START routine . It may

be redefined, perhaps to allow more stringent conditions or more it erations .

NEWH (optional) - a flag whose presence indicates the desire for restart with identity inverse

Hessian. If restart with the current Hessian matrix is desired, no value should be passed.

CONST.DAT - data file containing constants pertaining to the plant and global controller

being partitioned.

INTER.DAT - the data file in which intermediate results from previous iterations are stored.

OUTPUT

SKA_OPT - the state-space representation of the optimized airframe sub controller.

SKE_OPT - the state-space representation of the optimized engine sub controller.

PAR.DAT - the data file in which the stopping conditions STOP are saved.

INTER.DAT - the data file in which intermediate results are stored.

PARTITION in PARTITIO .MTX

P.l = PARTITION(STOP)

This is the main routine and does the optimization. It iterates till some convergence or stopping

conditions are met. After each iteration a graph is plotted showing the change in costs. PARTI­

TIO N implements the Broyden-Fletcher-Goldfarb-Shanno method of determining a search direct ion

for minimization. It t hen calls the function INACCURATE to implement Fletcher's inaccurate line

search in that direction . The function CONVERGE is called to see if convergence or stopping

conditions are met ; jf not , the iteration in PARTITION is repeated .

INP UT

STOP - the vector of stopping conditions , used to check convergence.

CONST.DAT - the data file containing the constants of the program.

INTER.DAT - the data file containing the intermediate results.

OUTP UT

42

.. _---------

P J - the vector of parameters, after the i lh optimization step.

INTER.DAT - the data file containing the intermediate results, where the results of the

optimization are stored.

INACCURATE in LINESRCH.MTX

[ALI, FAL, FPO, FPl, DFDPAL, DFPO, DFPl , FLAG]

= INACCURATE (X, FZ, DFDPZ, D, FMIN, DELTAF, LAMBDA, ALPHAMAX)

This function performs Fletcher 's inaccurate line search as part of the unconstrained optimization

performed by the function PARTITION. It calls the function COST to get the cost and gradient for

the cost function evaluated at the i lh set of parameters. Effectively, INACCURATE seeks a point

where a sufficient decrease in both the function value and directional derivative have occurred.

INPUT

X - the current point (parameter vector), before the linesearch.

FZ - t he total cost function evaluated at X.

DFDPZ - the gradient of the cost function evaluated at X.

D - the direction vector which the PARTITION function has chosen to perform the line search.

FMIN - the minimum value for the cost function . If the cost falls below this value, the

function will terminate.

DELTAF - the estimated change in cost.

LAMBDA - the weighting for the tracking cost.

ALPHAMAX - maximum alpha, set by stability constraints.

OUTPUT

ALI - the alpha value that yields sufficient reduction in F(X + alpha X D) for the i lh iteration.

FAL - the total cost function evaluated at X + AL X D.

FPO - the partitioning cost evaluated at X + AL X D.

43

P J - the vector of parameters, after the i lh optimization step.

INTER.DAT - the data file containing the intermediate results, where the results of the

optimization are stored.

INACCURATE in LINESRCH.MTX

[ALI, FAL, FPO, FPl, DFDPAL, DFPO, DFPl , FLAG]

= INACCURATE (X, FZ, DFDPZ, D, FMIN, DELTAF, LAMBDA, ALPHAMAX)

This function performs Fletcher 's inaccurate line search as part of the unconstrained optimization

performed by the function PARTITION. It calls the function COST to get the cost and gradient for

the cost function evaluated at the i lh set of parameters. Effectively, INACCURATE seeks a point

where a sufficient decrease in both the function value and directional derivative have occurred.

INPUT

X - the current point (parameter vector), before the linesearch.

FZ - t he total cost function evaluated at X.

DFDPZ - the gradient of the cost function evaluated at X.

D - the direction vector which the PARTITION function has chosen to perform the line search.

FMIN - the minimum value for the cost function . If the cost falls below this value, the

function will terminate.

DELTAF - the estimated change in cost.

LAMBDA - the weighting for the tracking cost.

ALPHAMAX - maximum alpha, set by stability constraints.

OUTPUT

ALI - the alpha value that yields sufficient reduction in F(X + alpha X D) for the i lh iteration.

FAL - the total cost function evaluated at X + AL X D.

FPO - the partitioning cost evaluated at X + AL X D.

43

FPl - the tracking cost evaluated at X + AL X D .

DFDPAL - the gradient of the total cost function evaluated at X + AL X D.

DFPO - the gradient of the partitioning cost at X + AL X D.

DFPl - the gradient of the tracking cost at X + AL x D.

FLAG - an output flag signalling the condition with which INACCURATE completed .

° - solution found, no problems.

1 - solution found , objective value less than FMIN.

2 - new point found , but backeting step converged to right endpoint without satisfying

Armijo/Goldstein conditions.

COST in COST.MTX

[DF, DFO, DFl, FP, FPO , FPl] = COST (P, LAMBDA)

Evaluates the cost and gradient at the current point using the cost function described in Appendix 1.

The state space representations for K (s) and T(s) are constructed based on the current value of the

parameter P. The contributions of these to the costs fo and II are calculated at each frequency point

in OMEGA and are added according to Simpson's Rule for numerical integration. Furthermore, the

contributions to the gradient as described in Appendix I are also accumulated for each frequency

in OMEGA.

INPUT

P - the current point (parameter vector).

LAMBDA - the weighting for the tracking cost.

CONST.DAT - the data file containing the constants of the program.

OUTPUT

DF, DFO, DFI - the gradients of the total cost function , the partitioning cost function and

the tracking cost function respectively.

FP, FPO, FPl - the values of the total cost function , the partitioning cost funct ion and the

44

FPl - the tracking cost evaluated at X + AL X D .

DFDPAL - the gradient of the total cost function evaluated at X + AL X D.

DFPO - the gradient of the partitioning cost at X + AL X D.

DFPl - the gradient of the tracking cost at X + AL x D.

FLAG - an output flag signalling the condition with which INACCURATE completed .

° - solution found, no problems.

1 - solution found , objective value less than FMIN.

2 - new point found , but backeting step converged to right endpoint without satisfying

Armijo/Goldstein conditions.

COST in COST.MTX

[DF, DFO, DFl, FP, FPO , FPl] = COST (P, LAMBDA)

Evaluates the cost and gradient at the current point using the cost function described in Appendix 1.

The state space representations for K (s) and T(s) are constructed based on the current value of the

parameter P. The contributions of these to the costs fo and II are calculated at each frequency point

in OMEGA and are added according to Simpson's Rule for numerical integration. Furthermore, the

contributions to the gradient as described in Appendix I are also accumulated for each frequency

in OMEGA.

INPUT

P - the current point (parameter vector).

LAMBDA - the weighting for the tracking cost.

CONST.DAT - the data file containing the constants of the program.

OUTPUT

DF, DFO, DFI - the gradients of the total cost function , the partitioning cost function and

the tracking cost function respectively.

FP, FPO, FPl - the values of the total cost function , the partitioning cost funct ion and the

44

L--__ _

tracking cost function respectively.

CONVERGE in CONVERGE.MTX

ANSWER = CONVERGE (X..11, F ..11, X..1, F..1, GRAD, EPS, DEL, ETA)

This function checks if the convergence condition are met and returns a flag ANSWER defined as

ANSWER =
{

2

°1

INPUT

if MAX IX..11-X..11 >EPS or IF..11-F..11 >DEL

if MAX IX..11-X..11 <EPS and IF..11-F..11 <DEL but MAX IGRADI ~ETA

if MAX IX..11-X..11 <EPS, IF ..11-F ..11 <DEL and MAX IGRADI <ETA

X..11 - the value of the variable (parameter vector) at the (i + 1)lh iteration.

F ..11 - the value of the cost function at the (i + 1)lh iteration.

X..1 - the value of the variable (parameter vector) at the i lh iteration.

F..1 - the value of the cost function at the i lh iteration.

GRAD - the gradient of the cost function at the (i + 1)lh iteration.

EPS - the absolute tolerance for X differences.

DEL - the absolute tolerence for cost function differences .

ETA - the absolute tolerence for the gradient.

OUTPUT

ANSWER - a flag indicating the state of convergence.

0- no convergence.

1 - variable values converge, function values converge.

2 - variable values, function values, and gradient converge.

MODL in MODL.MTX

[SM]=MODL(S ,NS)

This function takes a system matrix and puts it in to the form where A has 2 X 2 companion matrix

blocks whose first rows are [0 1] and whose second rows are [a b]. The transformation matrix is

45

L--__ _

tracking cost function respectively.

CONVERGE in CONVERGE.MTX

ANSWER = CONVERGE (X..11, F ..11, X..1, F..1, GRAD, EPS, DEL, ETA)

This function checks if the convergence condition are met and returns a flag ANSWER defined as

ANSWER =
{

2

°1

INPUT

if MAX IX..11-X..11 >EPS or IF..11-F..11 >DEL

if MAX IX..11-X..11 <EPS and IF..11-F..11 <DEL but MAX IGRADI ~ETA

if MAX IX..11-X..11 <EPS, IF ..11-F ..11 <DEL and MAX IGRADI <ETA

X..11 - the value of the variable (parameter vector) at the (i + 1)lh iteration.

F ..11 - the value of the cost function at the (i + 1)lh iteration.

X..1 - the value of the variable (parameter vector) at the i lh iteration.

F..1 - the value of the cost function at the i lh iteration.

GRAD - the gradient of the cost function at the (i + 1)lh iteration.

EPS - the absolute tolerance for X differences.

DEL - the absolute tolerence for cost function differences .

ETA - the absolute tolerence for the gradient.

OUTPUT

ANSWER - a flag indicating the state of convergence.

0- no convergence.

1 - variable values converge, function values converge.

2 - variable values, function values, and gradient converge.

MODL in MODL.MTX

[SM]=MODL(S ,NS)

This function takes a system matrix and puts it in to the form where A has 2 X 2 companion matrix

blocks whose first rows are [0 1] and whose second rows are [a b]. The transformation matrix is

45

normalized by requiring that all nonzero entries in the first column of the B matrix remain fixed

(zero entries are set at 10-9).

INPUT

S - the system matrix.

NS - the order of the input matrix S.

OUTPUT

SM - the system matrix in modified modal form, still having order NS.

MAT in PARMAT.MTX

[SKA,SKE] = MAT(P)

Creates the system matrices for the airframe and the engine controllers from the parameter vector

(the variable over which the optimization process is being performed). In case one of the subsystems

is fixed, the corresponding initial system matrix is loaded from CONST.DAT and returned as SKA

or SKE.

INPUT

P - the parameter vector.

CONST.DAT - the data file of constants .

OUTPUT

SKA - the system matrix for the airframe controller.

SKE - the system matrix for the engine controller.

LONGCOL in PARVEC.MTX

[P] = LONGCOL(SKA ,SKE)

This function generates the parameter vector from the system matrices for the airframe and t he

engme. In case one of the sub controllers is fixed , the parameter vector corresponds only to the

46

__ J

i
J

I
I

I

I

I

normalized by requiring that all nonzero entries in the first column of the B matrix remain fixed

(zero entries are set at 10-9).

INPUT

S - the system matrix.

NS - the order of the input matrix S.

OUTPUT

SM - the system matrix in modified modal form, still having order NS.

MAT in PARMAT.MTX

[SKA,SKE] = MAT(P)

Creates the system matrices for the airframe and the engine controllers from the parameter vector

(the variable over which the optimization process is being performed). In case one of the subsystems

is fixed, the corresponding initial system matrix is loaded from CONST.DAT and returned as SKA

or SKE.

INPUT

P - the parameter vector.

CONST.DAT - the data file of constants .

OUTPUT

SKA - the system matrix for the airframe controller.

SKE - the system matrix for the engine controller.

LONGCOL in PARVEC.MTX

[P] = LONGCOL(SKA ,SKE)

This function generates the parameter vector from the system matrices for the airframe and t he

engme. In case one of the sub controllers is fixed , the parameter vector corresponds only to the

46

__ J

i
J

I
I

I

I

I

parameters in the other su bcontrollcr.

INPUT

SKA - the airframe controller.

SKE - the engine controller.

CONST.DAT - the data file of constants.

OUTPUT

P - the long column vector of the parameters.

Z in ZERO.MTX

[ZER] = Z(NROW, NCOL)

Constructs a matrix of zeros of size NROW x NCOL.

INPUT

NROW, NCOL - the row and column size of the desired zero matrix.

OUTPUT

ZER - the generated zero matrix.

47

---- .. - -- -_._--------

parameters in the other su bcontrollcr.

INPUT

SKA - the airframe controller.

SKE - the engine controller.

CONST.DAT - the data file of constants.

OUTPUT

P - the long column vector of the parameters.

Z in ZERO.MTX

[ZER] = Z(NROW, NCOL)

Constructs a matrix of zeros of size NROW x NCOL.

INPUT

NROW, NCOL - the row and column size of the desired zero matrix.

OUTPUT

ZER - the generated zero matrix.

47

---- .. - -- -_._--------

ApPENDIX III

CONTROLLER PARTITIONING CODE

48

----- - -.---- -------

ApPENDIX III

CONTROLLER PARTITIONING CODE

48

----- - -.---- -------

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
/I
II
II
II
II

; .,:/:.::;;:.' ;;·;:.L •.. : .. :::;::::.:·,: .).·:·:::·;·jL·:::::::::·COI] Y9rge. m tx . . .
answer-converge (x_ll, f_ll,x_l,f_l,grd,epsllon,delta,eta,fxl

The function CONV~RG~ located in the file CONV~RGE.HTX is called by
PARTITION to test the convergence o[the optimization algorithm according
to the following criteria:
Condition X: I xiI (jl-xi(jl I < epsllon(jl [or j-1..n where dim(xl-n x 1

whether the parameter vectors are converging
Condition [: I f(xill-f(xil I < delta

whether the function values (costs) are converging
Conditio n G: Ig rd(jl I < eta [or j-l •• n where dim(xl-n x 1

whether the gradient is approaching some low value (approx 01
The result of the convergence check are returned in the [lag answer.
The codes used for the answer are:

answer - 1 if X and f are true and G is false.
answer - 2 if X,f and G are true
answer - 0 if either X or f is false

Input:
x 11 - (reai,vec l value of variable at iteration (l+ll.
x- i - (r ea l,vecl value o[variable at iteration (il.
f- i and f il - (real,scall values of [unction at successive iterations
g- i and g-il - (rea l,vec l gradients at successive iterations
epsilon - - (real,vecl vector of the absolute tolerances defined

for each of the eiements of the x
delta - (real,scall absolute tolerance for the objective values.
eta - (real,scall absolute tolerance [or gradient
fx - (rea l,vec l tracks which of the A matrices Is at its stability bound

Output:
answer - (int,scal l [lag tha t will show whether or not the

optimization procedure has converged according to the
user-defined criteria.

~ II
D ans'tler-O;

(row,coll-size(grd);

if abs(f il-f I) > delta then rett;
dlff-abs(x il=x il;
for i-l:row; .. ~

it diU (1»eps11on(i), rett; •••
end;

answer-I;
for i-I:row;
if !x (i) -0, if grd (i) >eta, retf; ...

end;end;

answer-2i ret!;

retf

II Created: 01/24/90
II Programmer: Steven Ims
II Revised by PhIl Schmidt and students Nader Kamrani and Brian Ifolawecky at
II The University of Akron with the support of NASA Lewis Research Center
II under granL NAG-3-1146.

•

-------------- ---- --

II answer-converge (x_II, C_ll,x_l,C_l,grd,epslloo,delta,eta,Cx)
II
II
II
1/
1/
II
II
II
II
/I
/I
II
II
/I
/I
/I
1/
II
/I
/I
/I
/I

The function CONV~RGE located io the file CONV~RGE.MTX Is called by
PARTITION to test the convergence of the optimization algorithm according
to the following criteria:
Condition X:) xiI (j)-xi(j)) < epsilon(j) for j-l..n where dim(x)-n x I

whether the parameter vectors are converging
Condition f:) f(xII)-f(xi)) < delta

whether the function values (costs) are converging
Condition G:)grd (j)) < eta for j-I .. n where dim (x) -n x 1

whether the gradient Is approaching some low value (approx 0)
The result of the convergence check are returned in the flag answer.
The codes used for the answer are:

answer - 1 if X and f are true and G Is false.
answer - 2 if X,! and G arc true
answer - 0 if either X or t is talse

Input:
x 11 - (real, vec I Va lue of variable at iteration (1+1).
x- I - (real,vec) value oC variable at iteration (1).
f-I and C 11 - (re~l,scall values ot function at successive Iterations
g- I and g-Il - (rcal,vec) gradients at successive iterations
epsilon - - (real,vecl vector of the absolute tolerances defined

for each of the elements of the x
II delta - (real,sc~l) absolute tolerance for the objective values.
II eta - (real,scal) absolute tolerance (or gradient
II fx - (real,vecl tracks which of the A matrices Is at Its stability bound
II Output:
II answer - (int,scall fl~g that will show whether or not the
II optimization procedure has converged according to the
II user-defined criteria .

I ~ ~~swer-o;
(row,coll-size(grd);

if abs(t 11-t I) > delta then ret!;
dift-abs(x Il=x i);
for 1-1:row; .. -:-

it d1ft (1»epsllon(i), retC; •.•
end:

answer-1:
for 1-1:row;
Htx(il-O, ifgrd(i»eta, ret!; ...

end;end;

answer-2; retC;

retf

II Created: 01/24/90
II Programmer: Steven Ims
II Revised by Phil Schmidt and stUdents Nader Kamranl and Brian Holawecky at
II The University ot Akron with the support of NASA Lewis Research Center
II under granL NAG-3-1146.

.,: .. : .. ;.
':' .. : :

..

----------------------- ---- ~

II (Df , DfO , Dfl ,fp, f pO,fpl l-cost (p, l ambda)
II

The function COST in file COST.HTX II
II
II
II
II
II
II
II
II
II
II
II
II
II
I I
II
II

computes the cost and gradient of the cost fun ction at the current
point (p~rameter vectorl. The partitioning and tracking costs a nd
the i r gradi e nts are r et urned seperat ely.
Input:

p - the parameter vector
l ambda - the we ighting applied to the tracking cost in the total

cost fun c tion
const.dat - data fll e of constants

Output:
Df - gradient of the total cost fun ct ion
DfO - gradient of the partitioning cost fun c tion
Dfl - gradient of the tracking cost function
[p - the total cost at point p (current parameter
fpO - value of the partitioning cost function
fpl - value of the tra cking co st function

vec t or)

load 'const . dat' la Ie ka ma ke me pe a nka nke sp sk np nk frq omega ..•
sg ng s wl nwi swo nwo weight stabll aore Nperf Ntrack;

IIGe nerate ska and ske co ntro ll e rs from the parameter vector p
(s ka ,skel -mat (p);

I IN ote some of the sizes of matrices, numbers of inputs and o utputs
mt - ma+me ; Ilma,me - airframe, engine inputs
It - I a tle; Illa,l e - numbers of airframe and eng in e y feedba cks

~ ~~~~::~:~t; ~~~~~~e-_t~~~~r:~:b:~~ ~~g~~~U~~t~~t;he centra llized controller

nt - nptnka+nke; Ilnp,nka ,nke - orders of plant,airframe , e ngine controllers

I I Sp lit th e plant co ntrolle r sp and find the sizes of each piece
II us ing the sto r ed data in inlt.da t . Ge t the pieces fr om each submat rix H
II whi c h connect in put i to output 0, that is Hoi; Bpa,Bpe ,Cap,Cye p
II Some of the indices into the rows and columns used repeat edly are
II precalculated to save processing, Ie, mapl-ma+l etc
lap, bp, cp, Del -s plit (sp, np); Iisplit sp
Imp ntmpl-siz e (cp); lithe ap: xp -> xp and does not nee d
map l - ma+l;mame-ma .me ; II to be Curther brok e n up
mpea - ma +me+ pea ; lithe dp submatrix of the plant is
kapl - ka +1; kp- ka+ke; Ilkept zero
bpa - bp (: ,{l:k a l); IlpHt of bp: ua -) xp
bpe ~bp (:, (kapl:kp)); Ilpart of bp: ue -) xp
cap 2 cp {{l:mal, :); IIpart of cp: xp -) za
ceap- cp ({mapl:ma.pea l, :); Ilpart of cp : xp -) zeap
cep- cp « (ma.pea+l) :mpeal,:) ; Ilpart of cp: xp -> ze
cyap- cp (((mpea+ l):(mpead a)).:);llpa rt of cp: xp -) ya
cyep- cp « (m pea+ia+1) : (mp) I, :); I l part of cp: xp -) ye

II from the airframe controller ska , get Baa,Baya,Caa,Ceaa,
II Daa,Daya ,Deaa ,Dea ya In similar manner to the way that the plant
II matrix was split up
(a a ,ba ,ca,dal -spllt (sk a ,nka); Ilspllt the airframe controller
(katot ntmp]-si 7,e(c a); Ilp~rt of
baa-ba l: , (l :ma]); 1/ ba: ea
bilya - ba (:,«(ma+1) :(ma+ l a)]) ; II ba: ya
caa -ca ((I: ka I , :) ; II ca: Xii

ceaa-ca((kapl:katotl,:); II ca: Xii

daa-da(l:ka),(l:mal); II da: ea
daya - da(I:ka),(mapI:(ma+la)]); II da: ya
deaa-dal(kapl:katot).ll:ma]); II da: ea
deaya-dal(kapI:kiltotl,(milpI:(mil+1all); II

-) xa
-> xa
-> ua
-) zea
-> ua
-> ua
-> zea
da : ya -> zea

II From the eng in e subcontroller , get Beea ,Bee,Beye , Cee ,Deeam ,Deem,Deye
(ae,be , ce ,de]-sp l1t(ske ,nke); Ilspllt the engine controller
(ntmp metot]-size(be); Ilpart oC
beea-be (:, (l: pea l); II be: zea -) xe
bee-be (:, « pea+l):(me +pea)I); II be: ee -> xe
beye - be(:, (me +pea+ I) :metotl); II be: ye -) xe
cee-ce; 1/ ce : xe -> ue
deea-de (:, (l: pea)); II de: zea -) ue
dee - de (:,{(peatl):(me+pea)]); II de: ee -> ue
deye-de(: ,{(me+pca+l):metot]); II de: ye -> ue

IIPARTITIONING COST MATRICES
II Get the Centralized controller K for the performance cost as
II input da ta origina lly read Crom init.dat
(ak,bk , ck,dk]- split(sk,nk);

II form the Equival e nt System tilde (K) using Partitione d Subcontrollers
II from inputs: Ee,Ea,Y to outputs : Ua,Ue.
atO - {aa,O'one s (nk a ,nke) ,O*ones(nka,np); . •

beea*ceaa,ae,-beea*ceap; ..
bpa'caa'bpe'deea'ceaa,bpe'ce, (ap-bpe'deea'ceap) I;

btO a (baa , 0' ones (nka, me) ,bay a, O'ones (n ka, Ie) ; ..
beea*deaa,bee,beea*deaya,beye; ..
bpa'daa,bpe'deea'deaa,bpe'dee ,bpe*deea'deaya,bpa'daya,bpc*deyel;

ctO - (caa, O'on es (k a , nk e), O'ones (k a, np) ;deea'ceaa, ee, (-deea 'ceap) I;
dtO - (daa , O'ones (ka, me), daya, ° 'ones (ka, Ie) ; .•

deea'deaa ,dee,deea'deaya,deye];

IITRACKING COST MATRICES
II form Tce nt from input: Zac to ou tput : Zeac for
II co~mand tracking using Centralized Controller. This was created in
II start.mtx becau se i t only needs to be de fined once (does not vary
II with the parameter)
(ag,bg, cg,d91-s pI1t(sg ,ng);

II Ge nerate the state-space r epre sentation tilde (T) Crom inpu t :Zac
II to output: Zeac, command tracking using Partitioned Controller.
a tc - (aa, ° *ones (nk a, nke) , (~baa' cap+baya' cyap)·; •••

beea to ceaa, ae, (- 1 ·bee· c ep-beea * ceap-beea *deaa 'cap
+beea *deaya*cyap+beye·cyep); • •.
(bpa'caa+bpe'deea*ceaa), bpe'cee, (ap-bpa'daa'cap •••
-bpe'deea'deaa*cap-bpc*deea*ce.p-bpe*dee*cep .• ,
+bpa'd aya'cyap+bpe'deea'deaya*cyap+bpe'deye*cyep) I;

bte-(baa;beea*deaa; (bpa*daa+bpe'deea'deaa)];
ctc-(ceaa ,O 'ones {pca,nke), (-deaa'cap+deaya*cyap) I;
dtc-(deaa l;

II Decompose the input and output weig hting lunctions into
II their state space represen tat ions
(awi,bwi,cwi,dwil-split(swi,nwi);
{awo,bwo,cwo,dwol -s pllt (swo,nwo);

II Compute the costs; fpO (performance), {pI (tracking) and their qradlents
II fpO-Int eg r a l (tr ((Wo(K- tllde(K))Wi)"T) (Wo(K-tilde(K»Wi)))
II Cpl-Integral (t r ((nrm(T- tilde (T))) AT) (nrm(T-tilde (T))))
II OCpO - partltionlng cost gradient
II --2' Re ((Leftfactor)
II
II
II
II
II
II

Integral
((lnv{ sI-II)'B; II'Wi'(Wo(K­

(Righ t Factor) I'
DfpI -tracking cost gradi ent

- -2'Re ((Leftfactor)
Integral

tllde (K))Wl)AT)*Wo'(C*inv(sI-A), II)

II [Df,DfO,DlI,fp,fpO, fpII-co s t (p,lambda)
II
II The function COST in file COST . MTX
II computes the cost and gradient of the cost f unct ion at the current
II point [p~rameter vector). The partitioning and tracking costs and
II the ir gradi e nts are r etur ned seperatel y.
II Input:

p - the parameter vector II
II
II

lambda - the weig hting applied to the tracking cost in t he total
cost lunction

II const. da t - data fil e of co nsta nt s
II Output :
II Df - gradient of the total cost fun ct ion
II DfO - gradient of the part ition Lng cost function
II Df l - gradient of the tracking cost function
II fp - the total cos t at point p (current parameter
I I fpO - value of the part i t Loning cost lunctlon
II [pI - value of the tracking cos t fUnction
II

vecto r)

load 'const.dat' la I e ka ma ke me pea nk a nke sp sk np nk Crq omega .,.
5g ng s wi nwi swo nwo weight stabil aore Npe rf Ntrack ;

IIG enerate ska and ske contro ll ers fr om the parameter vecto r p
[ska ,skel - mat (p);

IINote some of the sizes of matr i ces , numbers of input s and outputs
mt ~matme; Ilma,me - aLrframe, engLne Inputs
I t - l a+ l e ; Illa,le - number s of airframe and engine y feedbacks

~ mtot - mt+lt; Ilmtot - t o ta l numbers of Inputs to the centrallized controller
~ kt - ka+ke; I lka ,ke - airf rame and e ngine outputs

n t ~ np+ nkatn ke; Ilnp,nka,nk e - orders of plant,airframe , e ng Lne co ntro ll ers

II Split the plant co ntroller sp and find the slzes of eac h pLe ce
II using the sto r ed da ta in lnlt.dat. Ge t the pieces fr om ea ch submatr lx M
II whi c h connect inpu t i to output 0 , that ls Mol; Bpa,Bpe,Cap,Cyep
II Some of the indice s Into the rows and columns used repeated ly are
II preca l cu lated t o Save processing, Ie, mapl-ma+ l etc
lap, bp , cp, Dfl-split (sp, np); Ilsplit sp
Imp ntmp l-size (cp); lIthe ap: xp -> xp and does not need
map l - matl;mame-ma+me ; II t o be further broken up
mpea - matmetpea; lithe dp submatrlx of the plant is
kap l - ka+l ; kp- katke; Ilkept zero
bpa - bp(:,{l : kal); Ilpart of bp : ua -> xp
bpe - bp(:, (kapl:kpl); Ilpa rt of bp: ue -> xp
cap· cp ([l:mal, :); Ilpart of cp: xp -> za
ceap· cp ([map l:ma+pea l, :); Ilpart of cp: xp -> zeap
cepQcp (((m~+ pea+l) :mpeal ,:) ; Ilpart of cp: xp -> ze
cyap-cp (((mpea+ l):(mpeatla)),:);llpa rt of cp : xp -> ya
cyep- cp (((mpeat l a+l) : (mp) I, :); Ilpart of cp: xp - > ye

II from the airframe controll e r ska , get Baa , Baya , Caa,Ceaa,
II Daa,Daya,Deaa,Deaya In s imilar manner to the way that the plant
II matrix was split up
(aa,ba ,ca,dal -spli t (ska,nka); Ilspllt the airframe controller
(katot ntmpl- slze (ca); Ilpart of
baa-ba (:, (l:ma); II ba : ea
baya - ba (:, ((ma+l) :(ma+la) I) ; II ba: ya
caa-ca ((l:kal, :); II ca: xa
ceaa-ca((kapl:katotl,:); II ca: xa
daa - da ((1 :k a l, (l: ma I); II da: ea
daya - da ((l: kal, (map l: (matla)I); II da: ya
deaa-d,, ((kapl:katotl.ll :ma»; II da: ea
deaya-da((kapl:k<ltotl,(m.,pi: (ma+l a ll); II

->
->
->
->
->
->
->
da :

xa
xa
ua
lea
ua
ua
lea

ya -> zea

II from the engine subcontrol l er , get Beea,Bee,Beye,Cee,Deeam,Deem,Deye
(a e ,be ,ce ,de] -split (ske ,nke); Iisplit the engine controller
(ntmp metotl-size(be); Ilpart of
beea-be(:, (I:peal); II be: zea -> xe
bee-be(:, ((pea+l): (me+pea) I); II be: ee -> xe
beye-be (: ,((metpea+l):metotl); II be: ye -> xe
cee-ce; II ce: xe -> ue
deea-de (:, (l:pea l) ; II de: lea -> ue
dee-de(:,(pea+l):(me+pea)]); II de: ee -> ue
deye-de (:, (metpea+l) :metot I); II de : ye -> Ue

IIPARTITIONING COST MATRICES
II Get the Centralized controller K for the performance cost as
II input data origln~lly read from init . dat
(ak,bk,ck , dkl- sp lit(sk ,nkl;

II form the Equivalent System ti lde (K) using Pa rtit ioned Subcontrollers
II from inputs : Ee,Ea,Y to ou t puts: Ua , Ue.
at Os (aa ,O 'ones(nka ,nk e) ,O 'one s(nka, np); ••

beea*ceaa,ae,-beea*ceap; . .
bpa'caa l bpe 'deea ' ceaa,bpe'ce , (ap-bpe'deea ' ceap)];

btO-(baa, O'on es (nka , me) ,baya, O'ones (nka,l e); . •
beea*deaa,bee,beea*deaya,beye: . .
bpa'daa+bpe'deea'deaa,bpe'dee,bpe'deea'deaya1bpa'daya , bpe'deyel;

ctO - (ca a, 0' one s (ka, nk e) , 0 'ones (k a, np) ; deea' ceaa , ce , (-deea' cea p)] ;
dtO - (daa , O'ones (ka, me) ,daya, O'ones (ka, I e) ; ..

deea 'deaa ,dee ,deea' deaya,deyel;

IITRACK ING COST MATRICES
II Form Tcent from input: Zac to output: Zeac for
II co~ma nd track ing us lng Ce ntralized Co ntroller . This was created in
II start.mtx because it o nly needs to be de fi ned once (does not vary
II with the parameter)
[ag,bg, cg, dg]-split (sg,ng);

II Generate the state-space repre sentat ion tilde (T) from input:Zac
II to output: Zeac, command tra ck lng using Partitioned Controller.
atc- (aa, 0 'ones (nka, nke) , (-baa 'cap+baya' cyap)·; •••
beea*ceaa,ae, (- l* bee *cep-beea*ce ap-beea *deaa *cap • . •
+beea'deaya'cyaptbeye'cyep); •• .
(bpa'caa+bpe'deea'ceaa), bpe'cee, (ap-bpa ' daa' cap •••
-bpe'deea'deaa'cap-bpe'deea'ce~p-bpe'dee'cep •• ,
+bpa 'daya'cya p+bpe'deea'deaya'cyap+bpe'deye'cyep) I;

btc-(baa;beea'deaa; (bpa'daalbpe'deea'deaa)];
ctc- (ceaa, 0 'ones (pea, nke) , (-dea a' cap+deaya' cyap) I;
dtc-(deaa l;

II Decompose the input and output weighting functions into
II their state spa ce representations
(a wi, bwi, cw i, dwil-split (swi, nwi) ;
(awo,bwo,cwo,dwol-spllt Iswo,nwo);

I I Comput e the costs; fpO (performance), Cpl (tracking) and their gradients
II CpO-Int egral (tr (Wo(K- tllde(K»Wl)"T) (Wo(K-t llde(K»Wi»)
I I fpl-Integral Itr «nrm(T- tllde(T»)'T) (nrm(T-tllde (T» »
II DCpO - partitloning cost gradient
I I --2' Re ((Leftfactor)
II
II
II
II
II
II

Integral
((inv (sI-II)' B; II'Wl'«(Wo(K­

(Right F'a ctor) I'
Dfpl -tracki ng cost gradient

- -2' Re ((Left factor)
Integra I

tilde (K» Wi) 'T) 'Wo' (C'lnv (s I - A), I I)

"

//
//

((inv(sI-II)'B; 1I'(nrm'(T- tilde(T))AT'nrm'(C'inv(sI-II), I I)
(RightFactor) I'

// Initialize the costs and gradients to zero
CpO-O;
Cpl-O;
DCO-O'ones(nka+nke+np+ma+me+la+le,nka+nke+np+ka+ke);
Dfl-O'ones(nka+nke+nptma,nka+nketnp+pea) ;

II Integrate over the Crequency interval [FRO(I),FRO(2) I using Simpsons rule,
/1 coefficients are in the variable WE:IGIITS ••
1/ Build up the partitioning costs CpO, Cpl, and the integral
II part of the gradients DCO and Dfl
1/ DfO-Integral
1/ ((inv(sI-II)'Fl; II'Wl'«Wo(K- tllde(K))Wi)AT)'Wo'[C'inv(sI-II), II)
1/ DCpl-Integral ((inv(sI-II)'B; 11'(nrm'(T- tllde(T))AT'nrm'(C'lnv(sl-II), II
Cor i -l : frq (3, 1) , om-omega (I); ..•

kO- inv (om' jaY'eye (n tl-atO) ; .••
wi -cw i ' i nv(om'jay'eye(nwi)-awi)'bwi+dwi; •••
wo-cwo'i nv(om"jaY'eye (nwo)-awo)'bwotdwo; • • •
kdiff-wo' (ck' l nv(om'jay'eyc(nk)-ak) "bk+dk-ctO"kO'btO-dtO)"wi; •..
f pO - CpO +we ig ht (i) ' om ' s um(d i ag (kd ifC'"kdiff)/Nper C(i)); •.•
DCO-DfO+ we l ght (1) 'om / NpcrC (I) " (kO ' btO ; eye (mtot)) "wi ' kd1!C' ' wo" . •.

(ctO"kO , eye (kt)); ..•
nrm-d i ag «(l ambda./Ntrack (i,:))" .5); ..•
kl- i nv(om' j aY'eye(nt) -atc) ; . ..
ktrc-nrm" (cg'inv (om" jay'eye (ng) -ag) 'bg+dg - ctc"kl 'btc-dtc); ..•
Cpl- fpl+we i ght (I) 'om' sum (diag (kt rc' 'kt rc)) ; . •.
Ofl-Dtl+ we i ght (1) 'om' (kl'utc;eye (rna))" ktrc ' " nrm' (ctc'kl , eye (pea)) ; ..•

e nd;

~ IIIC the airCrame controller is to be optimized, calculate the cost gradients
Ilwith respect to the parameters belonging to the airCrame controller by
I lmu i t i p l y i ng Of 0 and DCI by the correspond i ng Left and Right factor s
IIThis is done Cor both the partitioning cost OfaO and the tracking
Ilcost DCeO (with respect to the airframe parameters)
I IDtaO- ((Lenfactor) OCO (Rightfactor) I'
/lDfal-[(LenFactor) Ofl (Rightfactor) I'
iC aore<>l, •••
o CaO- ([eye (nka) , z (nka, nke tnpt mtot) ; z (rna, nt) , eye (rna) , z (ma, me + It) ; •••

z (la, nt+mt) ,eye (la) , z (la, Ie) I' Of 0" [eye (nka I , z (nka, ka +pea) ; z (nke, nka+ka) •••
beea;z(np,nka),bpa,bpe'deea;z(ka,nka),eye(ka),z(ka,pea); .• ,
z (ke, nka tka) ,deea I) , ; ..

DCal-([eye(nka),z(nka,nke+np+ma);z(ma,nka+nke),-cap,eye(ma);z(la,nka+nke) , •••
cyap, z (la, rna) I 'Ofl" [eye (nka) ,z (nka, ka+pea) ; z (nke, nka +ka) ,beea; z (np, nka), •••
bpa, bpe'deea; z (pea, nkHka), eye (peal II': • •

else DfaO-O"ones(ska); Ofal-OCaO; end,

IISimilarly, if the engine controller Is to be optimized,
Ilcalculate the cost gradients with respect to the engine
Ilparameters by multiplying Of 0 and Ofl by the requisite Left and
IIRlght Factors. Gradient of partitioning cost with respect to the
Ilengine parameters Is DfcO and gradient of the tracking cost is OCel.
I IDteO- [(Leftfactor) otO (Right factor) I'
I 10Cel- ((LeftFactor) Ofl (RightFactor) I'
if aore<>2, ••.
o feO- ((z (nke, nka) ,eye (nke) , z (nke, np+mtot) ; ceaa, z (pea, nke) ,-ceap, deaa, •••

z (pea, me) , deaya, Z (pea, Ie I; z (me, nt tma) ,eye (me) , z (me, It) ; z (le, nt +mt + la) , ••
eye(le)I ..•

"Of 0" [z (nka, nke+kel ;eye (nke), z (nke, ke); z (np,nke), bpe; z(ka,nke+ke);z (ke, nke), •••
eye(keIJl': .•.

OCel- « z (nke, nkal ,eye (nke) , z (nke, nptma) ; ceaa, z (pea, nke) , .•.
-(deaa'cap+ceap-deayn'cyap),deaa;z(me,nka+nke),-cep,z(me,ma);z(le,nka+nke), ••
cyep, z (Ie, rna) I '0 fl ' [z (nkn, nka tke) ; eye (nke) , z (nka, ke) : z (np, nke) ,bpe; ••

cost.mtx,
z (pea, nke+ke) I)' ; ..•

else OCeO-O'ones(ske);OCel - OCeO;end,

IIAssemble the final cost and gradients using the formulas
Iidescribed earlier and the airCrame and engine costs and gradients
Iljust generated.
coe C - (log (C rq (2, 1) If rq (I, I))) I (3' C rq (3, I I) ;
fpO-real(coef"fpO); Cpl-real(coeC'fpl);
tp- CpO+!pl;
OCO--2'coet'real (longcol (OCaO, OCeO));
OU--2"coet'real (longcol (OCal,OCel));
OC- OCO+OU;

retl

II COST evaluates the total cost oC approximating a centralized controller by
1/ hierarchically partitioned subcontrollers . It is the sum of two costs ,
II CPerC which measures the performance cost of approximation and CTrack which
II measures the error in meeting the command tracking requirement. It's input
II Is the parameter vector. p, and the tracking weighting vector, lambda.

I I The Ci le 'const . dat' contains the constants of the process
II the dimensions --- ka,ma,ke , me,pea,np,nka,'nke , nk , nwi (o),ng,la,le(k-outputs,
II m-inputs, 1- neg . feedbacks, n-order, p-intermediate variables)
I I the r ange vector o f freque ncies -- - Crq
II the actual frequencies --- omega
II the plant in system form --- sp
/ 1 t he global controller in system form --- sk
II the I nput and output weigh ting matrices i n system form --- sw i , swo
I I the global tracking comman d matrix in system form --- sg
/1 the weights used in the numerical integration -- - weight
II the normalization matrix for the performance cost --- NperC
/1 the normalization matrix Cor the track i ng cost -- Ntrack
/!
II The state space representation Cor the weighted difference between global
1/ controller and assembled partitIoned controller Is determined. The
II H 2 norm of the resulting system is computed.The norm Is calculated by
/1 applying a Simpson's rule suitably modified to account tor the exponential
II distribution of the omegas.
/!
II The normalIzed H 2 norm of the dIfference between the tracking command
II transfer matrix and the nominal one is also calculated. This is added to
II the previous H 2 norm. The gradient of this sum is computed.
/! -

II The outputs are fpO the H 2 norm of the weighted difference between
II centralIzed and partitioned controllers
II fpl the normalized H 2 norm of the deviation from
II nominal co~mand tracking
/! fp - CpO + Cpl
/! and DfO,OO and ot --- the gradients of Cpl, fpl and fp resp.

II Created by Phil Schmidt and students Nader Kamrani and Brian Holawecky at
II The University of Akron with the support of NASA Lewis Research Center
II under grant NAG-3-ll46.

"

II
II

((inv(sI-II)'B; 1I'(nrm'(T- tllde(T))AT'nrm'(C'inv(sI-II), II)
(Righ tf'actor) I'

II Initialize the costs and gradients to zer.o
fpO-O;
Cpl-O;
OfO-O'ones (nk a+nke+np+ma+me+la+le,nka+nke+np+ka+ke);
Ofl-O'ones(nka+nke+np+ma,nka+nke+np+pea);

II Integrate over the Crequency Interval [FRQ(I),FRQ(2)) using Simpsons rule,
II coefficients are In the variable WEIGHTS ••
I! Build up the partitioning costs fpO, Cpl, and the Integral
II part of the gradients Of 0 and OCI
II OfO-Integral
II ([inv(sI-II)'Il; II'WI'«Wo(K- tllde (K))WI) AT)'Wo'(C'inv(sI-II), II)
II Ofpl-Integral ((Inv(sI-II)'B; II'(nrm'(T- tllde(T))"T'nrm'(C'inv(sI-II), II
for i - l : frq (3,1), om-omega(l); ...

kO - inv (om' jaY'eye (nt) -atO); ..•
wi - cwi'inv(om'jay'eye(nwl)-awi)'bwl+dwi; •.•
wo-cwo'inv(om'jaY'eye(nwo)-awo)'bwo+dwo; • •.
kdlf f-wo' (ck' I nv (om' j ay' eye (nk) -ak) 'bk +dk-ct 0' kO 'btO-dtO) 'wi: •••
fpO- fpO +weight (i) 'om'sum (diag (kdlff " kd i f C) /NperC(I)) ; •• •
OfO - OfO+welght (1) 'om/NperC (I)' (kO'btO:eye (mtot) l'wi'kd1!C' 'wo' . •.

(ctO'kO, eye (kt) I; ..•
nrm- dlag «lambda./Ntrack (i,:)) " . 5) : .. •
kl-inv (om' jay'eye (n t) -atc); . . .
ktrc-nrm' (cg'inv (om' jaY'eye (ng) -ag) 'bg+dg-ctc'kl'btc-dtc); . . •
Cpl-fpl+weight (I) 'om'sum(diag (ktrc' 'ktrc)); . • .
Otl - Ofl+weight (I) 'om' (kl' btc ;eye (rna) I'ktrc' 'nrm' (ctc'kl, eye (pea) I; ..•

end;

~ IIIf the airframe controller is to be optimized, calculate the cost gradients
Ilwi t h respect to the parameters belo nging to the airframe controller by
Ilmultiplying Of a and OCI by the corresponding LeCt and Right factors
IIThis is done for both the partitioning cost OCaO and the tracking
Ilcost OCeO (with respect to the airframe parameters)
I 10taO- ((LeCtFactor) DCA (Rlghtfactor))'
II0Cal-((LeftFactor) Ofl (Rightfactor) I'
if aore<>l, •••
OfaO- «(eye (nka) , z (nka, nke+np+mtot); z (ma, nt) , eye (ma), z (rna, me +It) : •.•

z (la, nt+mt) , eye (Ia) , z (la, Ie) I' OCO' (eye (nka I , z (nka, ka +pea I : z (nke, nka+ka I •••
beea:z(np,nkal,bpa,bpe'deea:z(ka,nkal,eye(ka),z(ka,peaI; •••
t (ke,nkatka) ,deea))': ••

Ofal-«(eye(nka),z(nka,nke+np+ma):z(ma,nka+nke),-cap,eye(mal:z(la,nka+nke) , •••
cyap, z (la, ma)) 'Ofl' (eye (nkal ,z (nka, ka +pea) : z (nke, nkatkal ,beea; z (np, nka), •••
bpa, bpe'deea: z (pea, nka+kal, eye (pea)))': ••

else OCaO-O'ones(skal: OCal-OCaO: end,

IISlmilarly, if the engine controller Is to be optimized,
Ilcalculate the cost gradients with respect to the engine
Ilparameters by multiplying OCO and DCI by the requisite LeCt and
IIRight factors. Gradient of partitioning cost with respect to the
Ilengine parameters Is DfeO and gradient of the tracking cost Is Ofel.
I 10feO- ((Leftfactor) DCa (Right factor))'
I 10fel- ((Leftfactor) Ofl (Rlghtfactorl)'
if aore<>2, ••.
o CeO- ((z (nke, nka) ,eye (nke I, z (nke, nptmtot I : ceaa, z (pea, nke) ,-ceap, deaa, •••

z (pea, me I , deaya, z (pea, Ie) ; z (me, nt +ma) , eye (me) , z (me, It I : z (le, nt +mt + la) , ••
eye (l e)) ...

'OCO' (z (nka, nke+ke) ;eye (nke), z (nke, ke): z (np, nke), bpe; z (ka, nke+ke); z (ke, nke), •••
eye(ke)))': ...

o fel- ((z (nke, nka) , eye (nke) , z (nk .. , np+ma) : ceaa, z (pea, nkc) , .•.
- (deaa' cap+ceap-d<!ay,,' cyap) ,deaa; z (me, nka+ nke) ,-cep, z (me, rna) ; z (Ie, nka+nke) , . •
cyep , Z (I e, rna) I '0 fl ' (z (nk", nk e tke) ; eye (nke) , z (nke, ke) : z (np, nkel , bpe; ••

cost.mtx·
z (pea, nke+ ke)))': ..•

else OfeO-O'ones(ske);Ofel - OfeO;end,

IIAssemble the Cinal cost and gradients using the formulas
Iidescribed earlier and the airCrame and engine costs and gradients
Iljust ge nerated.
coe t - (log (f rq (2, I) If rq (l, I)) I I (3' f rq (3, I)) ;
fpO-real(coeC'CpO); fpl-real(coeC'fpl):
fp-fpO+Cpl;
OfO--2'coef'real (longcol (OfaO, OfeO)):
OCl--2'coef'real(longcol(OCal,OCell):
Of- OfO+Ofl;

retC

II COST evaluates the total cost of approximating a centralized controller by
II hierarchically partitioned subcontro ll e rs. It is the sum of two costs,
II fP e rf which measures the performance cost of approximation and CTrack which
II measures the e rror in meeting t he comma nd t ra c king requirement. I t 's Input
II I s the parameter vector. p, and the tracking weighting vector, lambda.

II The file 'const.dat' contains the constants of the process
II the dime nsio ns --- ka,ma,ke,me,pea,np,nka,'nke,nk,nwl (o),ng, la, le(k-o utputs,
II m-Inputs, 1- neg . f eedbacks , n-order, p-intermediate variables)
II the range vector of frequencies --- frq
II the actual frequencies --- omega
II the plant in system form --- sp
II the global controller in system form --- sk
II the Input and output we ighting matrices In system Conn --- swl, swo
II the global tracking command matrix In system form --- sg
II the weights used in the numer ical Int egra tion --- weigh t
II t he normaliza t ion matrix for the performance cost --- Nperf
/1 the norma lizati on matrix for the tracking cost -- Ntrack
II
II The state space representation for the weighted dlCference between giobal
II controller and assembled partitioned controller Is determined . The
II H 2 norm of the resulting system Is computed.The norm Is calculated by
II applying a Simpson's rule suitably modified to account for the exponential
/1 distribution of the omegas.
II
/1 The normalized H 2 norm of the difference between the tracking command
II transfer matrix and the nominal one is also calculated. This is added to
II the previous H_2 norm. The gradient of this sum is computed.
II
II The outputs are fpO the H 2 norm of the weighted difference between
II centralized and partitioned controllers
II fpl the normalized H 2 norm of the deviation from
II nominal co~mand tracking
II fp - fpO + fpl
II and OfO,on and Of --- the gradients of fpl, fpI and fp resp.

II Created by Phil Schmidt and students Nader Kamrani and Brian Holawecky at
II The University of Akron with the support of NASA Lewis Research Center
II under grant NAG-3-ll46.

:): ';.:.:::"':':! ·::;.·;'.:.:·:::::::.i::i:·:;iii!!:J:: .. ·.·i::n·;;.:·;:; fines reh. mtx
II (ali, fal, fpO, fpl,dfdpal,dfpO, dCpl, Clagl-INACCURATE(x, fZ,dfdpz, .••
d, tmin,deltaf,lambda,alphamax)
II
II The function INNACURATE in file LINESRCH . MTX
II
II
/I
II
/I
/I
II
/I
/I
II
/I
II
/I
II
II
II
/I
/I
II
II
II
II
/I
II
II

. I I
:3 I I

performs ,1 etchers inaccurate line search as part
of the unconstrained opt imization process. Given the search direction,
a point is found that sat i s fie s the Armijo-Gold ste in co ndItions us ing
a two stage bracketing/sectioning procedure.
Input:

x - (real,vecl the current point corresponding to al-O
fz - (real,s ca ll objective Cunction value Cor al - O.
dfdpz - (real,vec) dir ect ional derivative oC objectIve Cunction at al-O
d - (real,vec) the direc tion ve ctor which the BrGS procedure

has chose n to pe rform the univariate search.
fmin - (rea l,s cal l use r -de Cine d lowe r bound on the problem;

if a point is Cound su ch that the objective value i s less than
fmin, then the procedure wIll terminate.

deitaf - (real,scall estImated Change in cost
alphamax - [reai,sca ll maximum alpha set be stability constraint.

Output:
ali - (rea l, sca li the step-size determined to be the solution

to the univariate problem.
fal, fpO, fpl - (real,sca ll

(x+al'd); this is Included
to a minimum .

the cost function values at the point
to help keep the number of computations

dfdpal,dfpO,dfpl - (rea l,vec l; gradients at the min point.
flag - (Int,s ca ll denotes the condition with whi c h INACCURATE has

completed the line search.
o - solution tound; 1 - solutIon with Cun ct lon value less than fmln
2 - reached end o f searc h Interval, reductIon wIthout Clnding min

II The Armijo /Goldstein pa rameters, described in more de tail In
II ri etcher, PRACTICAL flETlIODS or OPTIMIZATION, Wiley, 1987.
Rho - O.OI;
Sigma-0.7;
Taul-lO;
Tau2-0.1;
Tau3-0.S;

Cpz-dCdpz"d; II slope when alpha-O, ie dIrectional slope
alpr-O; II alpha (i-I) the previous alpha
falpr-Cz; II function value at previous poInt
fpalpr - fp z ; II slope at prevIous point
bounds-(I:-10'deltaC/fpz;alphamax): II used to Cind inital alpha
al - min(bounds); II initial alpha
albound~min«Cmin-[z)/(Rho'[pz) ,alphamax); II search restricted to (O,alboundl

II The following algorithm i s not documented In great detail as it Collows
II almost direct ly Crom rletcher, PRACTICAL METHODS or OPTIMIZATION, Wiley,
II 1987 pp .3 ~,3S. The only part oC the code not in the book is
II the minimization of the cubic interpoi a t ion oC Cal, Cpal, falp
II and fpalp used to generate the next alpha in both the bracketing
II and the sectioning phases

II The bracketing phase
while 1>0 do ...

(d fdpal,dCpO,dCpl, Cal, CpO, Cpl) -COST(x+al'd, lambda);
Cpal-dfdpal ' 'd; .•.
ai, Cal, Cpal, alpl, Calpr, fpalpr, •.•
!. f Cal< - Cmln then fl ag-I; al l -a l; retC; end;,..
iC Cal>Cz+al'Rho'Cpz,a -a lpr;b- a l;fa-falpr;fb-fal;tpa-Cpalpr ;tpb~[pal; ...

L· exlt;end; ...
~ fa I >fa Ipr, a-a I pr; boa I; Ca' Ca I pr; Cb - Ca I; Cpa-fpa Ipr; Cpb- Cpa I; ex It; end ; . • .

~ ------- ---

l[abs (C pa l) <--S igma'Cpz , flag-O;all - al;ret!;end;.,.
i C Cpa 1> - 0, baa I pr; a -a I; fb-Ca I pr ; Ca-fa I; Cpb-Cpalpr: fpa-Cpal: exit;end; •••
If abs(al-albound) <O.OOI'albound, flag-2;ali-al;retf;end; •••
IC aibound<-2'al-alpr then m-(al+albound)/2: n-albound: •••
else m- 2'al-alpr; n: min((albound,al+Taul' (al-alpr) I):end: •••

dal-al-alpr; dCal-ICal - Cal pr)/dal; dfpa l - (Cpal-fpalpr)/dal; •••
c 4- (dC pa l-2' (dCal-Cpalpr) Idal) Idal; c3 -0.S'dCpal-l.S·dal'c4; ••.
lC c4--0 , lC c3--0, alnew--(abs(Cpalpr)ICpalpr)'albound;,..
else alnew-alpr-Cpalprl (2'c3) ;end; ...
elseiC c3'c3-3'c4'Cpalpr<-0, alnew- -(abs(Cpalpr)ICpalpr)·albound; •••
else a 1 new-a 1 + (sqrt (c3' c3-3' c4' Cpalpr) -c3) 113 'c4); end: •••

alpr-al; falpr-Cal; Cpalpr-fpal; .• •
if alnew< - m, alnew - m;elseiC alnew>-n, alnew- n;end, ..•
a I-a Inew; ...

end;
II The steps above select a new alpha in the interval
II (al« a l-alpr),aI+Taul'(al-alprll. alpha is chosen to minimize
II a c ubi c polynomial which interpolates the val ues of f (al), f' (al).
II C (a lpr) and C' (alpr) . Not e that the new point is chosen by moving far out
II to the right in an efCort to bracket an interval of acceptable points.
II
II Similarly, in the sectioning phase, construct a cubic interpolant
II using the value s oC C (II), fIB), C'IA) and [' (S) and !1nd a minimum point
II which (hopeCully) lies in the interval
II I (I -Ta u2) '11+ Tau2'B,Tau3'A+(l-Tau3) 'BI, 0<Tau2<Tau3 <1. The new
II point i s chosen in this interval (which is a subinterval of its
II predecessor). Eventually an acceptable point will be found.

II The sect ioning phas e
while 1>0 do ...
a,Ca,Cpa, b,Cb,Cpb, • •.
dal - b-a; dCal-(tb- Ca)/dal; dCpal-(Cpb-Cpa)/dal: •.•
c4-(dCpal-2' (d fa l-Cpa) Idal) Idal; c3-0 . S'dCpal-l.S'dal'c4; .. •
if c4 - - 0, lC c3 --0, alnew- b; else alnew-a-fpal 12'c3) ;end ; •..

elseif c3'c3-]'c4'Cpa<-0, alnew-b; .••
el se a l new -a+ (sqrt (c3' c3-3 'c4' Cpa) -c3) I (3' c 4) ; end; .. •

m-a+tau2'dal; n-b-tau3'dal; •••
1C m<n, 1f alnew<-m, alnew -m; elsetc alnew>-n, alnew-n; end, ...
else if alnew<-n, alnew-n; else!! alne w>-m, alnew-m; end, end; •..

(d Cdpa 1, d fpO, d fpl, Ca I, fpO, fpl) -COST (x+a 1 new' d, lambda) ; •••
fpal-dfdpal'·d; •..
if fal<-Cmin ,!lag-I; ali-alnew; retC; end;,..
iC fal >fz+Rho'alnew'[pz, b-alnew;Cb-fal;fpb-!pal: •••
elsei! fal>Ca,b-alnew;fb - Cal;fpb-fpal; • •.
else if absICpal)<--Sigma'Cpz,Clag-O:ali-alnew;retC: end; •••
aold-a; Caold-Ca; Cpaold - fpa: a -a lnew; fa-fal: Cpa-Cpal; •••
if 0< - Ib- aold) 'Cpal , b-aold; fb- Caold; Cpb- fpaold; end; ..•

end; ...
e nd:

r et C
II
II The fun ction INACCURATE in the Cile 'Iinesrch.mtx' perCorms rletcher' 5

II inaccurate line search as a par t of the unc onstrained optimization
II procedure, PARTITION. It makes calls to the user-deCined function (UDf)
II COST in 'costO.mtx' which produces bot h the function value and its
II gradient.
II
II INA CC URATE will solve the univariate minimization problem required
II at each line sea rch in the overa ll optimization pro cess, that Is,
II
II min C(x +al 'd)
II
II Thi s is a ccomplished by use oC a two-stage (bra cketing/sectloning)

-.lL

II (a Ii, f a I , fpO, fp l , dCd pa I , d CpO, dC pl , !lag I-I NACCURATE (x, f z, dCdpz, .• •
d, Cmin,deltaf,lambda,alphamax)
II
II The functi o n INNACURATE in file LINESRCH . MTX
II
II
II
II
II
II
II
/I
II
II
II
II
/I
II
II
II
II
/I
II
II
II
II
/I
II
II

I II
Jl I I v

pe rforms rletche rs ina ccura te line search as par t
of the un co ns trained optimization process. Giv e n the searc h dire ct i o n,
a point is found th at s a ti s fi es the Armijo-Goldst ein co ndltlons us ing
a two stage bra cketing/se ctloning procedure.
Input :

x - (real,vecl th e current po int corresponding to a l - O
fz - (real,scall objective Cun c tion value Cor al - O.
dfdp z - (r ea l,vec) di rect i ona l derlvative of object lve function a t al ~ O
d - (real,vec) the dire c tion ve c tor whlch the BrGS procedure

ha s c hosen to pe rCo r m the unlvarlate s earc h.
fmin - (real, s ca ll use r-de Clne d lower bound on the problem;

if a po lnt i s Cound su ch that the objective valu e is less tha n
(min, then the pro cedu r e wlll termlnate .

de ltaf - (real,scall estima t ed change in cost
alphamax - [real,sca ll maximum alpha set be stability cons traint.

Output:
ali - (rea l, sca ll th e step-s iz e determined to be the solution

to the univarla t e probl em.
fal, (pO, Cpl - (rea l,s ca ll

(x+al'd); this i s in c luded
to a minimum .

the cost (unction values at the point
to help keep the number oC computations

d(dpal,dfpO,dCpl - (real,vec l; gradients at the min po int.
fl ag - [lnt,scall de note s the condition with which INACCURATE has

complet ed the line s ea rch .
o - so l ut i on Cound ; 1 - so lution with function value less than Cmin
2 - r e a c he d e nd o f s ea r c h interval, reduction without finding min

II The Armijo/Gold s tein paramete r s, described in more de tail in
II n e tch e r, PRACT I CAL HEnlODS or OPTIMIZATION, Wiley, 1987.
Rho - O.OI;
Sigma-0.7;
Taul-lO;
Tau2 - 0.1;
TauJ-O.S;

fpz - dfdpz"d: II slope when alpha-O, ie dire ction a l slope
alpr- O; II alpha(i-l) the previous alpha
falpr-fz; II Cunctlon value at previous point
fpalpr - Cpz; II slope at previous point
bounds-(I;-IO'deltaCICpz;alphamaxl; II used to Clnd inltal alpha
aI Kmin(bounds); II initial alpha
albound-min «(fmin - Cz) I (Rho' fpZI ,alphamax); II search re s tricted to [O,alboundl

II The following algo rithm is not doc ume nted in gre a t de tail as it follows
II almost direct ly fr om rl e t c he r, PRACTICAL METHODS or OPTIMIZATION, Wil e y,
II 1987 pp.J4, J S. The only pa rt of the code not In th e book is
II th e minimizati on oC t he cub i c interpolation of Ca l , fpa l, f a lp
II and fpalp used t o ge ne rat e the next alpha In both the bracketing
II and t he sect i on ing phase s

II The brack e ting pha se
while 1>0 do ...

(dfdpa I, dfpO, d fpl, fa I, CpO, fpl I -COST (xta 1 'd, l ambda) ;
fpa l -dfd pa l ' 'd; . . .
ai, Cal, Cpal, a lp r , Calpr, fp a lpr, .. •
.I.t Ca l <- Cmin t h!!n Cl ag-l; all- a l; retf ; end; ...
if fal >f z+a l'Rho 'C pz , a-a l p r;b- al;Ca-Calpr;fb-fal;Cpa-Cpal pr;f pb-fpal; . ..

if fal >[al pr, a -a l pr ;b-a l ; fa- f a lpr;Cb- fal; Cpa-!pa lpr;fpb- Cpa l ;!!x i t ;!!nd ; . • • L
" exit; e nd ; ...

.:.:

i(a bs (f pa l)< - -Sigma 'Cpz, Clag-O;ali - al;re tf;end; .••
if fpa 1>-0, b~ a I pr; a -a I; Cb-falpr ; fa-fa I; fpb-fpalpr; Cpa-fpa 1; exit lend; •.•
if abs (al-al bo undl <O.OOI'albound, Clag - 2;ali-al;retf;end; •••
if albound< - 2'al-alpr then m-(altalbound)/2; n-albound; •••
e l se m- 2'al-alpr; n ~m in ((albound,al+Taul' (al-alpr) I) ;end; •••

da l -a l - alpr; deal- (Cal - falpr) Idal; dfpal- (fpa l-Cpalpr) Idal; •••
c4-(d f pa l-Z' (dCal-fpa lpr)/dal)/dal; cJ-0 . 5'dfpal-l.S'dal'c4; •••
if c 4--0, 1(cJ--O, alnew--(abs(Cpalprl/fpalpr)'albound; ...
el se alne w-alpr -C palprl (Z'c3) ;end; ...
elself cJ'c3-J'c4'(palpr<-0, alnew- -(abs (fpalpr)/fpalpr)'albound; •••
el se alnew-a l+ (sqrt (cJ'cJ-J' c 4' fpalpr) -c3) I (3'c4); end; ...

alpr-al; Calpr - fal; Cpalpr-fpal; ...
if alne w<- m, alnew- m;elseif alnew>-n, alne w- n;end, ...
al-alnew; .• .

end;
II The s t e ps a bove sel e ct a ne w alpha in the interval
II (a P (a l-alpr) ,al+Ta ul' (al - alpr) I. alpha is chosen to minimize
II a c ubic polynom ial whi ch interpolates the values of f (al), [' (al),
II f(a lpr) and C' (a lpr). Note that the ne w point is chosen by moving far
II t o the r ight In an eCCort t o br ac ket an interval of a cceptable points.
II

Si mil a rly, In the s ecti oning phase, cons t ruc t a cubic interpolant

out

II
II
II
II
II
II

us ing the value s of t (II), f(B), f' (II) and f' (B) and ftnd a minimum point
which (hopeCully) lies in the Int e rval
((I-Ta uZ) 'A+ TauZ'B,Tau3'At(l-TauJ) 'BI , 0<T auZ <Tau3 <1 . The new
po int is chosen in thi s in t erval (whi ch is a subinterval of its
predeces s or). Eventually an acceptable point will be found .

II The sectioning phase
while 1>0 do • . .

a, fa, fpa, b, fb , (pb, .• •
da l - b-a; dfa l-(Cb-fa)/dal; dfpal-(fpb-Cpa)/dal; ...
c 4- (dfpa l-2' (d fa l-Cpa) Idal)/da l; cJ - O.5'dfpal-I.S ' dal' c 4; .••
iC c4 - - 0, 1C c3--0, alne w- b; else alnew-a-fpa l (Z ' cJ) ;end; •..

elseif cJ'c3 - 3'c4'Cpa<-0, alnew- b; ..•
el se a In!!w - a+ (sqrt (c3' c3-3 'c4' fpa) - c3) I (3' c 4) ; end; . .•

m-a+tau2'dal; n-b-tau3'dal; .. •
if m<n, H alnew<-m, alnew-m; elseH alnew>-n, alnew-n; end, ..•
el se If alne w<-n, alne w-n; elseif alnew>-m, alnew-m; end,end; . • •

(dfdpal,dfpO,dCpl, Cal, CpO, fpll-COST(x+alnew'd, lambda); .••
fpal-dfdpal' 'd; ••.
H fal< - fmln ,flag-I; ali-alnew; retf; end; ...
If fal>fz+Rho'alnew'fpz, b-alnew;fb-fal;fpb-fpal; •••
elseif fal>fa,b-alnew;fb-fal;fpb-fpal; ..•
else if abs(fpal)<--Siqma'fpz,flaq - O;ali-alnew;retf; end; .••

aold - a; Caold - fa; Cpaold-fpa; a - aln ew; fa-fall fpa-fpal; ..•
1C 0<- (b-aold) 'fpal, b-aold; Cb- faold; Cpb- fpaold; end; • . •

e nd; ...
e nd;

r e t f
II
/I
II
II
II
II
/I
I I
II
II
II
I I
I I

The fun ct i on INIICCURAT E in t he fil e ' Jinesrch.mt x' performs Fletcher'S
inaccurate line search as a part of the unconstrained optimization
procedure, PARTITION. It makes ca lls to the user-deCined function (UDn
COST In 'cost O.mt x' which produ ces both the function value and its
gradient.

INA CC URAT E will so l ve the univaria te minimization probl em r equired
a t eac h l ine search in t he ove r a ll optimization process, that Is,

min f (x +a l'dl

Th i s I s accompli shed by use oC a t wo-s t age (bracket ing/sect i onlng)

---~ ~~ --- - -- --

II
1/
/I
/I
/I
/I
/I
II
/I
/I
1/
/1
1/
1/
1/
/I
/1
/1
/I
/I
II
/I
/I
/I
/I
1/
/I
/I
/I
/I

"/I
,)1/

/I
II
/I
/I
1/
/1
1/
1/
/I
/I
/I
1/

/I
1/
/I
1/
/I

procedure which employs cubic approximation that will seek
only to find a point which satisfies the ArmijO-Goldstein conditions.
This approach is useful because the BfGS method of
determining a search direction has proven to be robust enough to
be effective even with an inaccurate line search.

This line search makes use o{ many parameters that define various
aspects o(the search computations. These parameters have been set
to values that have proven to be adequate (or this procedure. Of
course, these may be changed to suit the user's needs. for a more
thorough description of how each parameter is used in this procedure,
see fletcher, PRACTIC~L METHODS Of OPTIMIZATION, Wiley, 1981.

Parameters: The Armijo/Goldstein parameters should satisfy:

a < Rho < 1/2 --- smaller Is easier to satisfy; we use 0.01
Rho < Sigma < 1 --- Larger is easier to satisfy; we use .1

The next Is used In the bracketing stage to find (if
necessary) larger and larger Intervals which might contain an
acceptable , i.e. ~rmijo/Gold ste in, in terval:

Tau1 > 1 --- we use 10, the larger, the more effort might be
used in the sectioning phase.

The last two parameters are used to reduce the acce pt able
interval until an acceptable point is found:

0< Tau2 < Sigma is advised --- we use 0.1
Tau2 < Tau3 <- 1/2 --- we use .5 to get the great est

reduction of size.

Notes on the use of the output variable 'flag' in this {unction:
flag i s us ed by IN~CCURATE.D~T to characterize the condition of
the line search when it terminates. The values can signify:

flag-O - the solution to the line search has been found;
nothing special to note about the solution.

flag-l - a point has been found that gives an objective value
less than fmin.

flag-2 - the bracketing step has converged to the right hand
endpoint of the intervai without satiSfying the A-G
conditions. It should be noted however that the new point
will have a reduced function value (although, perhaps
insufficient to trigger the A-G conditions).

Created: 01/30/90
Programmer: Steven Ims
Rewritten by Phil Schmidt and students Nader Kamrani and Brian Ho1awecky at
The University o{ ~kron with the support of NASA Lewis Research Center
under grant N~G-3-1146.

-_ .. _---- --- ; ~~

II
II
II
//
/1
II
II
II
II
/1
II
II
/1
II
II
/ 1
II
II
//
II
II
I I
I I
II
/1
I I
II
II
II
II

" II
>J II

/1
II
II
1/
1/
1/
II
II
II
1/
/1
/1

II
II
1/
II
II

,,':::

procedure which employs cubic approximation that will seek
only to find a point which satisfies the Armijo-Goldstein conditions.
This approach Is useful because the BFGS method of
determining a search direction has proven to be robust enough to
be effective even with an Inaccurate line search.

This line search makes use of many par~meters that define various
aspects of the search computations. These parameters have been set
to values that have proven to be adequate for this procedure. Of
course, these may be changed to suit the user's needs. For a more
thorough description of how each parameter Is used in this procedure,
see Fletcher, PRACTICIIL ME:THODS OF OPTIMIZATION, Wiley, 1981.

Parameters: The ArmljolGoldsteln parameters should satisfy:

o < Rho < 1/2 --- smaller Is easier to satisfy; we use 0.01
Rho < Sigma < 1 --- Larger is easier to satisfy; we use .1

The next Is used In the bracketi ng stage to find (if
necessary) larger and l~rqer Intervals which might contain an
acceptable, I.e. IIrml jo/Goldsteln, Interval:

Taul > 1 --- we Use 10, t he l arger, t he more effort mi ght be
used In the sectioning phase.

The last two parameters are used t o reduce the acceptable
Interval until an acceptable point Is tound:

0< Tau2 < Sigma Is advised - -- wo use 0.1
Tau2 < Tau3 <- 1/2 --- we use .5 to get the greatest

reduct i o n ot s iz e.

Notes on the use of the output variable' !lag' In this function:
Flag Is used by INIICCURATE:.DIIT to characterize the condition of
the line search when It terminates. The values can slgnlty:

flag-O - the solution to the line search has been found;
nothing special to note about the solution.

flag-l a point has been found that gives an objective value
less than tmln.

(lag-2 the bracketing step has converged to the right hand
endpoint of the Interval without satisfying the A-G
conditions. It should be noted however that the new point
will have a reduced (unction value (although, perhaps
insuttlc1ent to trigger the A-G conditions).

Created: 01/30/90
Programmer: Steven Ims
Rewritten by Phil Schmidt and students Nader Kamranl and Brian Holawecky at
The University of IIkron with the support Of NASA Lewis Research Center
under grant NIIG-3-1146.

-----------------------------_.----.---- ---------

------ -- - --~.---- --.--------=o-.== ===~

II [sml-modl (s,ns)
II
II The Cunction MODL In Cile MODL.MTX puts a system matrix into a modiC1ed
II modal form reducing the number of parameters 1n the optimization.
1/ The inputs are a system matrix and its order. The system is put into the
II Corm where A h~s 2x2 companion matrix blocks whose first rows are [0 11 and
II whose second rows are (a bl. The transformation matrix Is normalized by
II requiring that all nonzero entr ie s in the Cirst column oC the B matrix
II remain Clxed (in case oC zero entries in ill, the entry is Clxed at le-9).
II The C, and D are Cull. This should work except in the special case of
II repeated real roots.
II Input:
II s - the system matrix to be put In modal Corm
II ns - the order of the input ma trix
II Output:
II sm - the system matrix, now In modiCied modAl Corm, sti ll has order ns
II

II Convert the input system matrix S into the Internal Matrixx modal Corm
II where the A submatrlx is oC the Corm that the real eigenvalues
II are on the diagonal and the complex conjugate eigenvalues (a + bi)
II and (a - bi) are stored in 2x2 matrices oC the form [a bl on the Cirst
II row and [-b alan the second row.
(sm,tl-modal(s,ns);

II Split the modal Corm sm into lts components
[am,bm,cm,dml -split (sm,ns):

II Create a permutation mAtrix P which collects all the real distinct
II e ige nvalues at the top oC am and sends all the 2x2 matrices repres enting

~ II the complex eigenvalues to the bottom oC am.
I J::.. i-I: j-O: p-eye (n s) :
, [n,ol-size(cm):

while i < ns , .••
1C am(i, i+l) -O,i-1+1: .•.
else, ...

map ((i : i + 11 , :) : ...
if i>j+l, [or k-i : - 1: j+ 2, P (k+1, :) -p (k-l, :); end; end; .. •
p ((j + 1: j + 2) , :) am; ..•
j-j+2; i-i+l: ••.

end; ...
end:

II Rearrange the real eigenvalues so that the ones that are close
II in value are separated.
nr-ns-j;
1C nr > 2, q- mod(nr,2); nrhalC-(nr-q)/2; tpnt-j+2; mpnt-j+nrhalf+l; .••

Cor i-I: (nrhal f-1), temp-p (mpnt, :) ; •••
p(((tpnt+l) :mpntJ,:) - p ((tpnt : (mpnt-l) I,:); •.. '
p(tpnt,:)-temp; tpnt-tpnt+2; mpnt -mpnt+l; .••

end; . ..
end;

II Since S-(A,B; C,DI is the Corm oC a system matrix, multiplying
II (P, II'S' [inv(P); II will have the Collowing e!fect on A,B,C,D
a - p'am'lnv(p) ;
b - p'bm;
cacm' inv (p) ;

II If two real eigenvalues are still very close in value, shiCt one slightly
II more negative
Cor i-l:nr-l, . ..

i(a(I ,i) -al1+1,i+1), a(i,i)-a(i,il-l0e-9; end;
end;

.. ,'Inodl;m tx '.:

II Construct a transCormat ion matr ix T such that
II T ' a ' inv(T) has the eCfect of taking 2x2 blocks of
II r ea l eigenvalues (or oC complex conjugate pairs) and
II returning the desired structure (0 1; a bl which have the same
II eigenvalues as the 2x2 blocks.
t-O'eye (ns) ;
q-mod (n s , 2);
Cor i-I: (ns-q) 12, ...

t(2'i-I,2'i-l)-I; t(2'i-I,2'i)-I; .•.
t (2' i , 2' i-I) -a (2' i-I, 2' i-I) - a (2' i-I, 2 'i) ; .• .
t (2'i, 2'i)-a (2'i, 2'i) -a (2'1 , 2'i-l); ..•

end;

II The variable q keeps track of a n odd size matrix, i.e. an odd entr y which
II does not fit in the 2x2 blocks
if q- l, t(ns,ns)-l; end;

1/ [T 1) , system matrix ' (inv(T); II will generate the [allowing
tinv-inv (t);
aa-t*a*t1nv; bb - t"'b; cc-c*tlnv:

II Set the first entry In the modal blocks to zero; [O,I;a.b)
(or i-l:(ns-q)/2, aa(2'i-l,2'i-1) - 0; end;

II Construct the system matrix sm whi c h is now In the modified modal form
sm- [aa, bb;cc,dml ;

retf

II Crp.ated by Phil Schmidt and students Nader Kamran i and Brian Holawecky at
/1 The University o[Akron with the support oC NASA Lewis Research Center
II under grant NAG-3-1146.

~~ -------------_ .. ~---

II (sml-modl (s,nsl
1/
II
II
/I
II
//
//
1/
//
/I
/1
//
1/
/I
/I
1/

The [unction MODL in [lie MODL.MTX puts a system matrix Into a modi[led
modal form reducing the number o(parameters In the optimization .
The Inputs are a system matrix and Its order. The system Is put Into the
Corm where A h~s 2x2 comp~nlon matrix blocks whose (Irst rows are (0 11 and
whose second rows are [a bl. The transformation matrix Is normalized by
requiring that all nonzero entries In the first column oC the B matrix
remain fixed (In case o(zero entries In Ill, the entry Is fixed at le-9).
The C, and 0 are full. This should work except In the special case oC
repeated real roots.
Input:

s - the system matrix to be put In modal Corm
ns - the order oC the input matrix

Output:
sm - the system matrix, now In modltled mod"l (orm, still has order ns

/1 Convert the input system matrix S into the Internal Matrlxx modal Corm
/1 where the A submatrlx Is oC the form that the real eigenvalues
II are on the diagonal and the complex conjugate eigenvalues (a + bl)
II and (a - bi) are stored In 2x2 matrices o(the (orm (a bl on the first
II row and (-b al on the second row.
(sm,tl-modal(s,ns);

1/ Split the modal form sm Into Its components
[am,bm,cm,dml-spllt (sm,ns);

II Create a permutation m"trlx P which collects all the real distinct
/1 eigenvalues at the top o[am and sends all the 2x2 matrices representing

All the complex eigenvalues to the bottom oC am.
! ~ 1-1; j-O; p-eye (ns) ;

(n, ol-size (cm);
while I < ns, ...
if am(I,IH) -O,I-i+l; ...
else, ...

m- p ((I: 1+ 11 , :) ; ..•
it l>j+1, [or k-i:-l:j+2, p(k+l, :)-p(k-l,:); end; end; .• •
p ((j + 1: j + 21 , :) -m; ...
j-j+2; I-i+l; •••

end; ...
end:

II Rearrange the real eigenvalues so that the ones that are close
/1 In value are separated.
nr-ns-j;
if nr > 2, q-mod(nr,2); nrhalf-(nr-q)/2; tpnt-j+2; mpnt-j+nrhalf+l; •••

[or 1-1: (nrhal [-1), temp-p (mpnt, :) ; •••
p(((tpnt+l) :mpntl,:) ·p((tpnt: (mpnt-l) ,,:); •.• '
p(tpnt,:)-temp; tpnt-tpnt+2; mpnt -mpnt+l; .••

end; ...
end;

II Since S-(A , B; C,DI is the form o[a system matrix, multiplying
// (P, II'S' (inv(P); II will have the [ollowlng e[Cect on A,B,C,D
a-p'am'inv(p) ;
b - p'bm;
c-cm'lnv(p) ;

II I[two real eigenvalues are still very close in value, shift one slightly
/1 more negative
for I-l:nr-l, .. .

if a(I,I)-a(l+l,l+l), a(I,I)-a(1,1)-109-9; end;
end;

,-- -~---

II Construct a tra nsfo rmat ion matrix T such that
II T ' a ' Inv(T) has the eCfect of taking 2x2 blocks o[
II real eigenvalues (or o[complex conjugate pairs) and
II returning the des ired structure (0 1; a bl which have the same
II eigenvalues as the 2x2 blocks.
t-O'eye (ns);
q-mod (ns, 2) ;
for 1-1: (ns-q) 12, ...

t (2'i-l, 2'i-l) -1; t (2'1-1, 2'1)-1; .••
t (2'1, 2'1-1)-a (2'1-1, 2'i-l)-a (2'1-1,2'1); .. .
t (2' i, 2' i) -a (2' i, 2' 1) -a (2' i , 2 ' I-I) ; ...

end:

II The variable q keeps track o(an odd size matrix, i.e. an odd entry which
II does not (It In the 2x2 blocks
if q- l, t (ns, ns) -1; end;

II (T 1) , system matrix' (In\l(T): II will generate the following
tlnv-inv (t);
aa-t*a*tinv; bb - t*bi cc-c*tlnv ;

II Set the (Irst entry In the modal blocks to zero; (O,l;a.b)
for i-l:(ns-q)/2, aa(2'i-l,2'i-1) - 0; e nd;

II Construct the system matrix sm which Is noW in the modified modal form
sm-(aa,bb;cc,dm l;

retf

II Cr~"ted by Phil Schmidt and stUdents Nader Kamranl and Brian Holawecky at
II The University ot Akron wi t h the support o(NASA Lewis Research Center
II under grant NAG-3-1146.

II [ska, ske] -mat (p)
1/
1/
1/
II
1/
1/
II
II
II
II
II
II

The function MAT in file PARMAT.HTX generates
the partitioned system matrices ska and ske from
the parameter vector p. Note that pis: Aa,Ae,Ba,Ca,Deaa,Deaya,Be,ce,Deea.
The other submatrices are all constants and are loaded from const.dat
Input :

p - the vector ot parameters
const.dat - datafile of constants

Output:
ska - the airframe controller
ske - the engine controller

II load the default data from const.dat
load 'const.dat' nka ma lya nke bal ka pea me ke lye bel •••

daa day a dee deye skaO skeO aore fixd

II Set the counter, !lrst to 0 then to nka etc. as ncw blocks are built from p
dum - 0;

II If airframe is not flx ed , then crcate a blank aa (/\ submatrlx for ska)
II and copy the r equisit e entries from the parameter ve ctor p. Recall the
II modal from of the system matrices (refer to modl.mtx) reduces the
II /\ submatrl ces to 2x2 companion blocks of the form (0,1; a,bl, so only
II t he a and b need to be read
if aore<>l, aa-O'eye(nka); q-mod(nka,2);

for i - I: (nka-q) 12, •• •
aa (2 ' 1-1, 2'i) -I; aa (2'1 , 2'1-1) -p(2'I -l ,I);
aa(2'l,2'i) -p (2'i,I); end; •••

J\ if q-l, aa (nka,nka)-p(nka ,l); end; •• •
J\ matot-ma+lya; katot-ka+pea; dum-nka; •••

end ,

II If engine Is not fixed, then create a blank ae and copy requisite
II entries from the p vector, with the same provisos as for aa above
if aore<>2, ae-O'eye(nke); q-mod(nke,2); •.•

for i-I: (nke-q) 12, •••
ae(2'i-I,2'i)-I; ae(2'I,2'i-I)-p(dum+2'i-I,I);
ae(2'1, 2'i) -p(dum~2'i,1) ;end; •••

ifq-l, ae(nke,nke)-p(dum+nke,l); end; •••
metot-me+pea+lye; dum-dum+nke; •••

end,

II If airframe is not fixed, generate the ca,deac,da entries from p.
II Note that the first column of the ba entry Is fixed as required by
II the modal form, so load it from bal (saved In const.dat)
II The rest of ba,ca,deac are loaded from p. If Ds are not fixed, then
II their values are read from p, otherwise from constants
II (and daya depending on whether feedback lya exits).
1C aore<>I, ba (:, 1) -bal; •.

for 1-2:matot, ba(:,i)-p((dumll:dum1nka],1); dum-dum+nka; end; ••
[or i-I:nka, ca(:,I)-p({dum+l:dum+katot],I); dum-dum+katot; end; ••
if (flxd-I)'(fixd-2) <> 0, •••

for i-l:matot, daaya(:,i)-p([dum+l:dum1ka],I); dum-dum+ka; end; ••
else if Iya-O, daaya-daa; else daaya-[daa, daya]; end; •••
end; ...
for i-l:matot, deac(:,i)-p((dum+l:dum+pea],l); dum-dum+pea; end; ••
da-{daaya;deac]; ..•

end,

II If the engine controller Is not fixed, load the first column of be
II from the bel entry stored In const.dat. Then load rest of be,ce,deea
II from p. Construct de from deea, dee (and deye depending on whether

II there Is any feedback lye).
if aore<>2, be(:,l)-bel; ••

for 1-2:metot, be(:,i) -p ([dum+l:dum+nke],l); dum-dum+nke ; end; ••
for i-l:nke, ce(:,I)-p([dum+1:dum+ke],I); dum-dum+ke; end; ••
it (flxd-2)' (t1xd-3) -0, deea-O'ones (ke,pea); • ••

else for I-l:pea, deea(:,I) -p ({dum+l:dum+ke],l); dum- dum+ke; end; •••
end; .•.
it (flxd-l)' (flxd-2) <> O,meplye-me+lye; •••

for I-l:meplye, deeye(:,I)-p((dum+l:dum+ke),I); dum-dum+ke; end; ••
else If lye-O, deeye - dee; else deeye-[dee, deye]; end; •••
end: ...
de- (deea, deeye]; •.•

end,

II If the airframe controller Is not fixed, then construct ska from aa,ba
II ca and da. If there Is no feedback defined lya-O, then extend
II ska by one column of zeros to accomodate the dummy feedback that will
II be used.
II If the airframe contro lle r is fixed, then use ska-skaO
If aore <> l, ska-{aa,ba;ca,da]; •.•
If lya - O, (rska,cska/ -s lze(ska); ska-{ska ,O· ones(rska,I)/;end, ...

else ska-skaO; .•.
end,

II IC the engine controller Is not fixed, then construct ske.
II If there Is no feedback defined lye-O , then add the zero column
II to accomodate the dummy feed back.
II If the engine co ntro ll cr Is fixed, then let ske-skeO the fix ed
II e ngine controller.
if aore<>2 , ske-(ae,be;ce,de/; ...
If lye-O, (rske,c s ke] - size(ske); ske - {ske,O'ones (rske'I)/; end, • . •

else ske-skeO; end,

ret f

II This program takes the parameter vector P, which Is a column vector, and
II uses the dimensions of the subcontrollers stored in 'const.dat' to
II reconstruct the partitioned system matrices ska and ske. It allows for the
II possibility that one of the subcontrollers Is fixed and loads its initial
II value. Note that the constant submatrlces Bal,Bel, Daa, Daya, Deac, Dee and
II Deye are properly loaded.

II Created by Phil Schmidt and students Nader Kamrani and Brian Holawecky at
II The University of Akron with the support of NASA Lewis Research Center
II under grant NAG-3-1146.

,':,

II [sxa.ske]-mat(p)
1/
II
1/
1/
1/
1/
1/
1/
II
II
II
II

The function MAT in file PARMAT.HTX generates
the partitioned system matrices sxa and sxe from
the parameter vector p. Note that pis: Aa.Ae.Ba.Ca.Deaa.Deaya.Be.Ce.Deea.
The other submatrices are all constants and are loaded from const.dat
Input:

p - the vector of parameters
const.dat - dataClle of constants

Output:
ska - the airframe controller
ske - the engine controller

II load the default data from const.dat
load ·const.dat· nxa ma lya nxe ba1 ka pea me xe lye bel •••

daa day a dee deye skaO skeO aore flxd

I I Set the counter. first to 0 then to nka etc. as ne w blocks are built from p
dum - 0;

II If airframe Is not fixed. then create a blank aa (A submatrlx for ska)
II and copy the r equisit e entries from the parameter ve ctor p. Recall the
I I modal from of the system matrices (refer to modl.mtx) reduces the
II A submatrices to 2x2 companion blocks of the form (0.1; a.bl, so only
II the a a nd b need to be read
if aore<>l. aa-O'eye(nka); q-mod(nka.2);

for i - I: (nka -q) 12 • .••
aa(2'i-1.2'i)-1; aa (2'I ,2 ' i - 1)-p (2 ' i - 1.1);
aa(2'i.2'i) -p (2'I.l); end; ...

.Jt If q- 1. aa (nka.nka)-p(nka .1); end; '"
J\ matot-ma+lya; katot-ka+pea; dum-nka; •••

end,

II If engine Is not fixed. then create a blank ae and copy requisite
II entries from the p vector. with the same provisos as for aa above
If aore<>2. ae-O'eye(nke); q-mod (nke. 2); •••

for I-I: (nke-q) 12 ••••
ae(2'I-l.2'1)-I; ae(2'i.2'I-l)-p(dum+2'i-l.l);
ae (2' I. 2 'I) -p (dum ~ 2 'I. 1) ; end; •••

If q-l, ae(nke,nke)-p(dum+nke.l); end; •••
metot-me+pea+lye; dum-dum+nke; •••

end,

II It airframe is not fixed. generate the ca.deac.da entries from p.
II Note that the first column of the ba entry is fixed as required by
II the modal form. so load It from ba1 (saved In const.dat)
II The rest of ba.ca.deac are loaded from p. If Os are not fixed. then
II their values are read from p. otherwise Cram constants
II (and daya depending on whether feedback Iya exits).
1f aore<>l. ba(:.1)-ba1; ••

for i-2:matot. ba(:,i)-p((dum+1:dum+nka].1); dum-dum+nka; end; ••
for 1-1:nka. ca(:.I)-p((dum+l:dum+katot].l); dum-dumtkatot; end; ••
if (flxd-l)' (flxd-2) <> 0 ••••

for 1-1:matot. daaya(:.i)-p((dumtl:dum+xa].l); dum-dumtka; end; ••
else 1f lya - O, daaya-daa; else daaya-(daa. dayal; end; •••
end; •••
for I-l:matot. deac(:.I)-p((dum+1:dumtpea],1); dum-dum+pea; end; ••
da-(daaya;deac]; •..

end.

II If the engine controller Is not fixed. load the first column of be
II from the bel entry stored In const.dat. Then load rest of be,ce.deea
II from p. Construct de from deea. dee (and deye depending on whether

--~--- ----- .. ~-~--.-------

II there is any feedback lye).
if aore<>2. be(:,I)-bel; ••

for 1-2:metot. be(:.I)-p([dumtl:dum+nxe].l); dum-dumtnke; end; ••
for I-l:nke. ce(:.I)cp((dum+l:dum+ke].l); dum-dumtke; end; ••
If (flxd-2)'(flxd-3)-0. deea-O·ones(ke,pea); •••

else for I-l:pea, deea(:,I)-p((dum+l:dum+xe].l); dum- dum+ke; end; •..
end; •••
it (flxd-l)' (!lxd-2) <> O.meplye-metlye; •..

for I-l:meplye. deeye(:.i)-p((dum+l:dum+xel.l); dum-dumtke; end; ••
else 1f lye-O. deeye-dee; else deeye-(dee. deye]; end; •••
end; ...
de-[deea. deeye]; •••

end.

II If the airframe controller is not fixed. then construct sxa from aa.ba
II ca and da. If there is no feedback defined lya-O. then extend
II ska by one column of zeros to accomodate the dummy feedback that will
II be used.
II If the airframe contro ll er Is fix ed. then use ska -skaO
If aore<>l. ska-(aa.ba;ca,da); ...
if lya-O. (rska,cskal-size(ska); ska-(ska.O·ones(rska.l»);end •.••

else ska-ska O; •••
end.

II If the engine controller Is not fixed, then construct ske.
II If there Is no feedback defined lye-O, then add the zero column
II to accomodate the dummy fe edback .
II If the eng ine controller Is fixed. then let ske-skeO the fix ed
II e ngine controller.
If aore<>2. ske-(ae.be;ce,del; .. .

1C lye-O. (rske.cske) -slze (ske); ske-(ske.O'ones(rske,l)J; end , . . .
e lse ske-skeO; end.

ret [

II This program takes the parameter vector P, which is a column vector. and
II uses the dimensions of the subcontrollers stored in 'const.dat' to
II reconstruct the partitioned system matrices ska and ske. It allows for the
II possibility that one of the subcontrollers is fixed and loads its Initial
II value. Note that the constant submatrlces Ba1,Bel. Daa. Daya, Deac. Dee and
II Deye are properly loaded .

II Created by Phil Schmidt and students Nader Kamranl and Brian Holawecky at
II The University of Akron with the support of NASA Lewis Research Center
II under grant NAG-3-1146.

· ::~.; - .

II p_I-partltlon(stop)
II
II
II
II
II
II
II
II
II
/I
II
II
II
/I
II
/I
II
II

The [unction PARTITION In file PARTITIO.MTX Is the
outer level loop In the optimization process.
It implements the Broyden-fletcher-Gold(arb-Shanno method of find ing
a search direction (o r minimization, then calls function INACCURATE
to generate a ne w point by minimizing in that directi on. This
process Is then repeated until the convergence conditions (as
checked by function CONVERGE) are met or some other stopping criteria
are met (number of iterations exceeds maximum or function value is
less than fmln).
Input:

stop - the vector o(stopping conditio ns
const.dat - the dat~[ile of constants
in te r.dat - the data(ile containing Intermediate results

Output:
p I - the ith point along the opti miz at ion process
Inter.dat - the data[lle where intermediate results are stored

load 'const.dat' omega nka nke atot stabil
load'inter.dat' p i gradi gradO gradl fh jhO jhl hi lambda fx;
(rOw,COI I-size (p_ i ,; (cnt,tmp)-slze((h);

II Prestore the me ssages to sa ve the length of loops, In order that the
II Matrlxx line limit be avoided
ls-' LINESEARCH TERMINATED BY HITTING BOUND';
not-'NOTICEI STABILITY BOUND.';
a_p h- 'A phat has been found that gives an objective value < (min.';
eX - ' exceeded maximum number o(iterations';

11 plpar-' STRIP HAB/((P) 1[0 (P) 1(1 (P) I';
l\

II Read stopping conditions (rom the vector stop
epsl -stop(l) 'ones (p_ll;
del -st op(2);
eta - stop(3);
maxcnt -stop(4);
fmln - stop (S);

d fx-d i ag (on es (row, I) - ((x; 0' ones ((row- atot) , 1))) ;
de l(-max (0.9' abs ((h (cnt)) , 10' , (-6)) ;
cvgfact-I;
cvtlg-O;
II While the convergence/stopplng conditions have not been met
while cv(lg<O.S do ...

cnt , th (cnt), .•.
it cnt>l, .. ,
it cnt>20, ITER-(cnt-20:cnt)';
else ITER- (I:cnt)'; •.•
end .•
Y- ((h (I TE:R) , j hO (I TER) , j hi (I TER)) ; PLOT (ITER, Y, pi pa r) : ...

end, .. .
di--d(x'hi'dfx'gradl; .. . 11 search direction Is -Approx Inv Hessian'gradient
alphamax-IeI6; .. • 11 check on stability constraints
(or I-I: atot, .•.
[(ex (I) - 0, .. .

1C di (I) >0, .. .
lC (stabll-p_1 (I)) Idl (I) <alph~max, •..
alphamax- (stab ll-p 1 (I)) Idi (I); ...

end,... -
end, .. .

else dl (I) -0; end, ...
end, ..•
(a 11 , Cp _ II, jO, j 1, 'I rad 11, gradO, grad J, (1 ag) - INACCURATE (p _ I, Ch (cnt) , 'I rad I, ...

partitlo~[ntx
dl, (mln,delt, lambda,alphamax) ; . . . 11 calls the llnesearc h
if (1ag-2, display (Is); end; ...
iC ali - alphamax, cvgfact-O; display(not): end, •••
th(cntH)-tp II; ...
p l1 - p l+a1l 7di: •.•
jhO(cnttl) - jO; •.•
jhl (cnttl) -jl: . •.
cv [lg - CONVERGE (p 11, fh (cnt + 1) , pi, fh (cnt), gradll, cvgfact 'epsl, ...

cvgtact'del,eta, fx); .. . 11 checks convergence
cvgfact-l; ...
psl ~al1'di; •.•
Ol -d tx' (gradll-gradl); . •.
pslOi - psl' '01; ...
pOmat- (eye (row) -psi'OI' Ips 101); .. ,
hl -pQmat 'hl'(pQmat')+«(ps l'ps l') /ps IOI); ... 11 updates Inv Hessian Approx
for I - l:atot, .. .
it tx(I) - O, it p l1(1» - l.OOJ'st abll, [x(I) - I; ...

p II (I) -stab ll;dfx(I,I) - O;end . ..
e l selC gradll(l»O,tx(I)-O; tor J =I:row,hl(I,J)-O;hi(J,I) - O;end, ...

hi (I, I) -l;dtx (I, I) - 1; ...
end,end . .. 11 updates stability constraints
pi ~pll; .. .
gradl =gradll: •• •
delf - max (th (cnt) -[h (cnt+i), 10" (-6)); ...
cnt - cnttl; ...
if mod(cnt,20)-0 , ...

save 'inter.dat ' p I fh jhO jhl gradi gradO gradl lambda fx hl;end ...
if cnt - maxcnt, dlsp (ex); ...
save'lnter.dat' pith jhO jhl gradi gradO gradl lambda fx hi; ...
retf;end,... -

If flag - l,disp(a ph):
save' Inter.dat7" pith jhO jhl gradl gradO gradl lambda tx hi; ...
retC;end;... -

end ;
save 'inter.dat' cnt pith jhO jhl gradl gradO gradl lambda tx hi;
dlsp('Convergence ot f=va lue and parameters has occurred ');
i(cvtlg - 2, disp('all partials are also less than '); eta, end ;
retf

II PARTITION is t he top-level tunction in the optimization routine.
II It makes calls to the user-defined functions INACCURATE and CONVERGE
II in the tiles 'llnesrch.mtx' and 'converge.mtx' resp.
II It also uses the MATRIXX PLOT tunction to show intermediate results.
/I
II PARTITIO .MTX is an Implementation of the Broyden-fletcher-GoldCarb-Shanno
II method of determining a search direction, with fle tcher's Inaccurate
II line search being used to locate the the next point In UDf INACCURATE.
II
II PARTITION.MTX will solve hierarchical partitioning problems .
II
II Inputs:
II stop - (real,vec) column vector ot stopping conditions
II stop - (epsl del eta maxcnt tmin)
II
II Paramete rs being defined in 'param' vector: any defaults were assigned in
I I START
II
II epsl (default - le-9) - column vector with element-wise co nvergence
II limits Cor elements of Ip 11 - P II;
II del (deCault2le -9) - convergence of objective values, -
II It(p II) - tIp i) I;
II eta (de Cault-le-9) - convergence 'of gradients,
/! Igrad t (p il) I < eta;
II maxcnt (default - lOO) - maximum number of iterations of procedure

~l ______________ _

::~ . .

II p_ I-partltlon(stop)
II
II
II
//
II
II
1/
II
II
/I
II
II
II
II
II
II
II
II

The [unction PARTITION in [lie PARTITIO.MTX Is the
outer level loop In the optimization process.
It implements the Broyden-Fletcher-Goldfarb-Shanno method of finding
a search direction for minimization, then calls function INACCURAT8
to generate a new point by minimizing In that direction. This
process Is then repeated until the convergence conditions (as
checked by function CONV8RG8) are met or some other stopping criteria
are met (number of iterations exceeds maximum or function value is
less than fmln).
Input:

stop - the vector of stopping conditions
const.dat - the dat~[ile of constants
Inter.dat - the dataflle containing Intermediate results

Output :
p I - the Ith point along the optimization process
Inter.dat - the dataClle where Intermediate results are stored

load' const .dat' omega nka nke atot stabll
load'inter.dat' p I gradl gradO gradl fh jhO jhl hi lambda fx:
(row, col) -s Ize (p_ I)" ; (cnt, tmp)-sl ze ([h) ;

II Prestore the messages to save the length of loops, In order that the
II Matrixx line iimlt be avoided
Is-'LINES8ARCH T8RMIN AT ED BY HITTING BOUND';
not-'NOTICE! STABILITY BOUND.';
a_ph- 'A phat has been found that gives an objective value < fmin.';
eX - ' exceeded maximum number o[Iterations':

"plpar-'STRIP YLAB/f(P)lfO(PII!l(P)/';

'" II Read stopping conditions [rom the vector stop
epsl -stop(l) 'ones (p i);
del -stop(2) ; -
eta - stop (3) :
maxcnt -stop(4);
fmin -stop IS) ;

d fx-d iag (ones (row, 1) - (fx; 0' ones (I row-atot) , 1))) ;
de l!-max (0.9' abs (fh (cnt)) ,10' , (-6)) ;
cvgfact-I;
cvOg-O;
II While the convergence/stopping conditions have not been met
whil e cvfig<O.S do . . .

cnt, fh (cnt), ...
if cnt>l, ...
If cnt>20, IT~R-(cnt-20:cnt)';
else IT8R-(I:cnt)' ; •.•
end •.
y- (fh (I HR) , j hO (IT 8R) , j hi (IT8R)) ; PLOT (ITS R, Y, pi pa r) ; ...

end, ...
dl--dfx'hi'dfx'gradl; ••. 11 search direction Is -Approx Inv Hesslan'gradlent
alphamax-le16: • . . 11 check on stability constraints
for 1-1: atot, ••.

1! [xIII-O, .. .
1f di (I) >0, .. .
lf (stabll-p i(I))/diII)<alph~max, ...

a lphamax- (stabil-p_ i II)) Id i I I) : •• •
end, .. .

end, .. .
else di (I) -0; end, ...

end, ...
(a Ii, fp_ll, jO , jI, gradll, gradO, gradl, fl ag) -INACCURAT8 (p_ l, fh (cnt) ,grad I, ...

di, fmln,del [, lambda,alphamax); . . . 11 calls the linesearch
1f flag-2, display(ls); end: ...
if all - alphamax, cvgfact-O; displaylnot): end, ...
fh Icnt+I)-fp il; ...
P ll - p 1+a1l7di: •••
jhO (cnt+l) -jO; •••
jhl (cnt+l) -jl: ..•
cv flg - CONVERGE (p ii, fh (cnt'I), pi, fh Icnt) ,gradll, cvg[act 'epsl, ••.

cvgfact'del,eti, fx); ... 11 che~ks convergence
cvg[act-l: .. .
psi - ali'dl: .. .
Oi - dfx' (gradll-gradl); ...
psiOi - psi' 'Oi; •• .
pOmat- (eye (row)- psi'OI' IpsIOi); ...
hl - pOmat'hl' (pQmat') +«psl'psl')/ps IOI); ... 11 updates Inv Hessian Approx
[or I-l:atot, ...
if [x(I) - O, if p 11 (I»-l.OOI'stabil, [x(I)-I: ...

p ilII)-stabll;d[x(I,I) - O;end ...
elS-elf gradil(I»O,[x(I)-O; [or J =l:row,hl(I,J) -O;hiIJ , I) - O;end, ...

hi (I, I) -l;dfx (I, I) - I; . .•
end,end ... 11 updates stability constraints

p i - p il; .. .
gradi:gradll; .••
delf- max (fh (cnt) -fh (cnt+1), 10" (-6)); • ••
cnt - cnt+l; • •.
if mod(cnt,20)-0, ...
save'inter .dat' p I fh jhO jhl gradi gradO gradl lambda [x hi;end ...

if cnt - maxcnt, disp lex); ...
save'inter.dat' p i fh jhO jhl gradi gradO gradl lambda fx hi; .•.
retC;end,... -

1f (lag- I, dlsp (a ph);
save' Inter.dat-;- p_ i fh jhO jhl gradi gradO gradl lambda [x hi; .. .
ret f; end; ...

end;
save'l nter.dat' cnt p I [h jhO jhl gradi gradO gradl lambda fx hi;
disp('Convergence o[f=value and parameters has occurred');
If cvflg-2, disp('all partials are also less than'): eta, end ;
retf

II
II
II
II
1/
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
1/
II

PARTITION Is the top-level function in the optimization routine.
It makes calls to the user-defined functions INACCURATE and CONVERGE
In the files' l1nesrch.mtx' and 'converge.mtl<' resp.
It also uses the MATRIXX PLOT function to show intermediate results.

PARTITIO.MTX is an Implementation of the Broyden-Fletcher-Gold[arb-Shanno
method of determining a search direction, with Fletcher's Inaccurate
line search being used to locate the the next point in UDF INACCURATE.

PARTITION .M TX will solve hierarchical partitioning problems.

Inputs:
stop - (real,vec) column vector of stopping conditions
stop - (epsl del eta maxcnt fmin)

Parameters being defined in ' param ' vect or: any defaults we re assigned in
START

epsl (default - Ie-9) - column vector with element-wise convergence
limits for elements of Ip II - P il;

del (default-Ie-9) - convergence of objective values, -
If(p_ il) - f(p_ 1) I;

eta (de[ault-Ie - 9) - convergence 'of gradients,
Igrad t(p il)1 < eta:

maxcnt Idefault - IOO) - maximum numbe r o[iterations of procedure

___ J'---

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

I j II II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

II
II
II
II
II

fmin (default-O)
allowed in searching tor a solution.

- lower bound on the objective function.
Any point, x, found wllh an objective
value less than fmln will be considered
a solution. Since we minimize a norm, the
default is zero.

Notes on the use of 'flag' in this function:
Flag is used by the INNACURATE functions to
characterize the objective function and the current point, x.
It can take on values as follows:
(I) flag-O - a point has been found which satisfies the Armijo­

Goldstein conditions (see 'Il nesrch . mtx'): the precedure
continues.

(2) flag-I - a point has been found that gives an objective value
le ss than fmln. Procedure terminates.

(3) flag 5 2 - a point has been returned by INACCURATE which doesn't
satisfy the A- C condition, but wh(ch corresponds to the
ma ximum allowable step In the search direction. This can
happen because the steps are constrained to maintain
subcontroller stability. Currently, the code continues
as though the A-G conditions were satisfied. If problems
such as looping are encountered, the user might try to
reset HI to the Identltly at t his point.

The program terminates properly under one of the following conditions:

(1) flag - l - the objective value Is less than fmln.
(2) c nt - mxcnt - the maximum number of Iterations has occurred
(3) cvflg - l - the max deviation In parameters is less than epsl

the max deviation in COST Is less than delta
(4) cvflg-2 - same conditions as cvflag-l and max deviation in

partia ls is less than eta.

On termination (of any type) the following can be found In the file
'inter.dat' :

and

p_i - last parameter vector (can Use procedure MAT In 'parmatO.mtx'
to generate the corresponding SKA and SKE)

fh - complete total cost history (all iterations)
jhO, jhl - complete cost histories of fPerf and fTrack costs

gradl - gradient of total cost at last parameter point.
gradO, gradl - gradients of fPerf and fTrack at last point

hi - last inverse Hessian updated according to values of p i, etc.
lambda - lambda vector -

fx - vector indicating which entries in Aa and Ae are fixed at
stability bounds

Created: 01/23/90 as BfCS.DAT
Programmer: Steven Ims
Revisions by Phil Schmidt and students Nader Kamrani and Brian Holawecky at
The University of Akron with the support of NASA Lewis Research Center
under grant NAG-3-1146.

//
1/
1/
/I
/I
/I
1/
1/
1/
/I
/I
/I
II
/1
/1
/1
/I
/I
1/
/I
/1
/1
/I
/I
/I
II
II
II
II
/I

Jt //
-..l 1/

/I
/1
II
II
/I
/I
1/
/1
II
/I
/1
II
/1
/I
1/

II
/I
1/
II
II

fmin (default-O)
allowed In searching for a solution.

- lower bound on the objective fUnction.
Any point, x, found wllh an objective
vaiue less than fmin wlil be considered
a solution. Since we minimize a norm, the
default Is zero.

Notes on the use of ' flag' in this function:
flag is used by the INNACURATE fu nctions to
characterize the objective function and the current point, x.
It can take on values as follows:
(1) flag-O - a point has been found which satls!les the Armijo­

Goldstein conditions (see 'll nesrch .mtx'); the precedure
continues.

(2) flag-I - a poInt has been found that gives an objective value
l ess than fmln. Procedure termInates.

(3) fla g-2 - a point has been returned by INACCURATE Which does n't
sat isfy the A- G condition, but which corresponds to the
maximum allowable step In the search direction. This can
happen because the steps are constrained to maintain
subcontroller stability. Currently, the code continues
as t hough the A-G conditions were satlslled. It problems
such as looping are encountered, the user might try to
reset HI to the Identltly at this point.

The program terminates properly under one of the following conditions:

(1) fl ag- l - the object ive value is l ess than fmin .
(2) cnt-mxcnt - the maximum number of It e rations has occ ur red
(3) cvflg-l - the max deviation In parameters is less than epsl

the max deviation in COST is less than de lta
(4) cvflg-2 - same cond itions as cvflag-l and max deviation in

partials Is less than eta.

On termination (of any type) the following can be found in the file
'inter.dat' :

and

p_i - last parameter vector (can use procedure MAT In ·parmatO.mtx'
to generate the corresponding SKA and SKE)

fh - complete total cost history (all iterations)
jhO, jhl - complete cost histories of fPerf and fTrack costs

gradl - gradient of total cost at last parameter point.
gradO, gradl - gradients of fPerf and fTrack at last point

hi - last inverse Hessian updated according to values of p_i, etc.
lambda - lambda vector

fx - vector Indicating which entries in Aa and Ae are fixed at
stability bounds

Created: 01/23/90 as BrGS.DAT
Programmer: Steven Ims
Revisions by Phil Schmidt and students Nader Kamrani and Brian Holawecky at
The University of Akron with the support of NASA Lewis Research Center
under grant NAG-3-1146.

-------------~

._---------------- ---------

II
()

II p-Iongcol(ska,ske)
II
II
II
II
II
II
II
II
II
II
II

The function LONGCOL in file PARVEC.MTX

creates the long column vector of parameters p from the partitioned

system matrices ska and ske
Input:

ska - the airframe controller state-space matrix

ske - the engine controller state-sp3ce matrix

const.dat - dat.file of constants
Output:

p - the long column vector oC the parameters

load 'const.dat' nka nke me pea lye ma lya ka aore fixd

[a a,ba ,ca,da)~spllt (ska,nka):
[ae, be, ce, del-split (ske, nke);

metot - me+pea+lye;
matot-ma+lya;

p-[o);

II split ska and ske Into their

II component [A,B;C,D)

II define sl~es of the parameters

II inltiall ze p

II If airframe controller Is not fixed then copy entries that need to be

II optimized from aa. Note that because aa has the modifIed modal from

II consisting of 2x2 companion matrices [0,1 ; a,b), only the a,b need to

II be included into the parameter vector. The last block of aa may contaIn

II only [a,b) and needs to be Included if a is odd (q-ll

iC aore<>I,q- mod (nka,Z); •••
for i -I : (nka -q)/2, p-[p;aa(2'i,2'i-ll; aa(Z'i,2'i»); end: .•.

if q-l, p-[p;aa (nka, nka»); end; ..

end,

II If engIne controller Is not fixed, put the required elements of

II ae into p (same modi(led modal (arm as aa)

if aore<>Z, q-mod (nke, 2); .••
for i-I : (nke-q) IZ,p-lp;ae(2'1, 2'1-11 ;ae (2'i, 2'111 ;end; •••

if q-l, p-Ip;ae (nke, nk e ll; end; •• •
end,

II If airframe controller is not fixed, then copy ba (note first column

II of ba Is fixed and is not copied), ca and da into p

if aore<>I, •••
for i-2:matot, p-[p;ba(:,i)l; end; ••

for i-l:nka, p-Ip;ca (:, i) I: end; ••
if (fixd-l)'(tlxd-2) <> 0, (or 1-1:matot, p-Ip;da([l:ka)'ill; end; end; •••

for i-l:matot, p-[p;da ([katl :ka+peal, i) I; end; ••.

end,

II If the engine controller is not !1xed copy be (Cirst col fixed), ce and

II de into p
if aore<>Z, •••

for i-2:metot, p-[p;be (:, i) I; end; • . •

for i-l:nke, p-[p;ce(:,i)l; end; •••
1f (tlxd-2)' (flxd-3) <> 0, for i-l:pea, p-[p;de(:, ill; end; end; •••

if (!1xd-l)'(flxd- 2) <> 0, for i-pea+l:metot, p-Ip;de(:,i»); e nd: e nd; .••

end,

II Get rid o(the 0 whIch was the 1st entry In p (used to initialize p)

Ix y)-size(p);
pap (IZ: x) , 1) ;

ret f

II This program accepts the partltloned system matrices of subcontrollers

II and generates the long column vector of the p3r3meters. The order with

II which this procepure builds pis: Aa,Ae,Ba,Ca,De3a,De3ya,Be,Ce,Deea. Note

II that it skips matrices if the subcontroller is fixed. It also ignores the

II submatrices which are constants --- Bal, Bel, Daa, Daya, Dee, and Deye.

II Created by Phil Schmidt and students Nader Kamrani and Brian Holawecky at

II The University of Akron with the support of NASA Lewis Research Center

II under grant NAG-3-1146.

I

III . 10

I

II p-Iongcol(ska,ske)
II

The function LONGCOL In file PARVEC.MTX II
II
II
II
II
II
II
1/
1/
II

creates the long column vector of parameters p from the partitioned

system matrices ska and ske
Input:

ska - the airframe controller state-space matrix

ske - the engine controller state-space matrix

const.dat - data file of constants
Output:

p - the long col umn vector of the parameters

load 'const.dat' nka nke me pea lye ma lya ka aore flxd

[a a,ba ,ca,da)~spllt (ska, n ka);

rae, be, ce, del-split (ske, nke);

metot ~me.pea+lye;

matot - ma+lya;

parOl ;

II split ska and ske into their

II component [A,B;C,D)

/1 define sizes of the parameters

/I initialize p

II If airframe controller is not fixed then copy entries that need to be

II optimized from aa. Note that because aa has the modified modal from

II consisting of Zx2 compan i o n matrices [0,1 ; a,b), only the a,b need to

II be inclUded into the parameter vector. The last block of aa may contain

// only {a,b} and needs to be included if a is odd (q-1)

If aore<>l,q- mod(nka, Z); •••
for 1-1: (nka-q)/Z, p-[p;aa(Z'I,Z'I-1); aa(Z'1,Z'I»); end; ..•

if q-1, p-[p;aa(nka,nka»); end; ..

end,

II If engi ne controller Is not fixed, put the requi red elements of

II ae Into p (same modified modal form as aa)

l! aore<>Z,q-mod(nke,Z); ...
for i-I: (nk e-q) /2,p-{p;ae(Z'i, 2'1-1) ;ae (2'I,Z'I) I ;end; •••

if q - 1, p-[p;ae(nke,nke»); end; •••
end,

II If airframe controller Is not fixed, then copy ba (note first column

II of ba is fixed and Is not copied), ca and da Into p

if aore<>l, ••.
for I-Z:matot, p-[p;ba(:,I»); end; ..

for 1-1:nka, p-lp;ca(:,I»); end; ••
l! (flxd-1)'(flxd-2) <> 0, for 1-1:matot, p-{p;da«l:kal.l)l: end: end: •••

[or 1-1:matot, p-[p;da t[ka+l :ka+pea), 1»); end; ...

end,

II If the engine controller Is not fixed copy be ([irs t coi fixed), ce and

II de into p
if aore<>2, •••

[or 1-2:metot, p-[p;be(:,1)): end; ...

[or i-l :nk e, p-[p: ce(:,I») ; end; •••
If (flxd -2)'(Clxd-3) <> 0, for i-1:pea, p-{p;de(:,I)\; end; end; •••

If (Clxd-l)'(Clxd-2) <> 0, for I-pea+l:metot, p-[p;de(:,i»): end; end; .••

end,

II Get rid o[the 0 which was the 1st entry in p (used to Initialize p)

[x y)-slze(p);
p -p({2:x), I);

ret f

-----------.---~ ------_._-_. __ .-

II This program accepts the partitioned system matrices of subcontrol1er.

II and generates the long column vector of the parameters. The order with

II which this proce.dure bullds pis: Aa,Ae,Ba,Ca,Deaa,Deaya,Be,Ce,Deea. Hote

II that It skips matrices If the subcontroller Is fixed. It also ignore. the

II subma trlces which are constants --- Bal, Bel, Daa, Daya, Dee, and Deye.

1/ Created by Phil Schmidt and students Nader Kamrani and Brian Holawecky at

II The University of Akron with the support of NASA Lewis Research Center

II under grant NAG-3-1146.

--------------- -

I

------~---

rilifff1Z1~

II [ska opt,ske opt)-restart (Iambdanew,stop, newh)
1/ - -

1/
1/
1/
II
II
1/
1/
II
II
II
II
II
II
II
II
II

The function RESTART in file RESTART.MTX is used to
restart the optimization process after it has been intentionally
halted or has stopped due to the stopping criteria.
Some parameters may be altered If desired.
Input:

lambdanew - a new value for lambda, the weighting of the tracking
cost as part of the total cost function

stop - (optional) the vector of stopping conditions
newh - (optional) if any parameter whatsoever is passed, this sets

the inverse Hessian approximation to an identity matrix
const.dat - the datafile of consta nts
inter.dat - the intermediate results at the last checkpoint or the

final results if convergence/stopplng criteria were met.
Output:

ska opt - the optimized airframe controller
sk e=opt - the optimized engine controller

resize (' sstack', 1000000): /1 load the relevant data
load' const .dat' nka nke pea Iya lye: atot-nka+nke:
load 'inter.dat' p_i fh jhO jhl gradi gradO gradl hi fx lambda:

short e: /1 Specify the format for displaying matrices

II Define UDr INACCURATE which implements rletchers inaccurate line search
define 'linesrch.mtx';

I II Define UDr CONVERGE which checks if convergence conditions are met
define 'converge.mtx';

A
!) II Define UDr PARTITION whlch Is the outermost loop and Implements the

II Broyden-rletcher-Goldfarb-Shanno technique for finding a search direction
II for optimization
define 'partitio.mtx';

II Define UDr Z which returns a zero matrix of the desired size
define 'zero.mtx'

II Define the UDr MAT which generates the SKA and SKE subcontrollers
II from the parameter vector p
define 'parmat.mtx'

II Define UDr LONGCOL which generates the parameter vector from the
II SKA and SKE groupings of the parameters
define 'parvec.mtx'

II Define UDr COST which evaluates the performance cost, tracking cost
II and their sum, as well as the respective gradients for a specified
II parameter vector
define 'cost.mtx'

II if stop docs not exist, load it from par.dat
if exist('stop')-O, load 'par.dat' stop

II Verify that the newlamda provided is a row vector or a scalar and is
II consistant with pea
[rlambda, clambda) -size (Iambdanew);
if rlambda > 1, disp('ERROR: lambda must be a row vector or a scalarl'), retf;
if clambda-l, lambdanew-Iambdanew·ones(l,pea): •.•

elseif clambda <> pea, ..•
display('ERROR: lambda must contain pea entriesl'): retf;

changelam-norm(lambda-lambdanew):
lambda-lambda new;

II If the difference between old lambda and new lambda is large enough,
II >le-10, then call COST to initialize costs and gradients, otherwise
II just use old data
if abs(changeiam»le-10, •••

[grad i, gradO, grad I, fh, jhO, j hi) -COST (p i, lambda) : •••
else... -

[cnt,tmp)-size(fh); fh(cnt)-jhO(cnt)+jhl(cnt); gradi-gradO+gradl: •••
end,

II If newh is defined, then set the inverse Hessian to an identity matrix,
II If any of the A parameters are at the bounds (noted in fx)
/1 then set that element of hi to be zero (no further decrease in that
II direction/parameter)
if l-exist('newh'), [row,col)-size(p i): hi-eye(row):

for i-l:atot, if fx(i)-l, hi(l,i)-O; end,end, •••
end;

/1 save the possibly new stopping vector and save intermediate data
save 'par.dat' stop:
save 'inter.dat' p_i fh jhO jhl gradi gradO gradl hi fx lambda:

II call the PARTITION routine which eventually returns the final
II optimized vector
p_opt-PARTITION(stop):

// Generate the optimized ska and ske as the final output of the program
[ska opt,ske opt)-MAT(p opt):
load-'inter.dat' p i fh-jhO jhl gradi gradO gradl hi fx lambda:
/1 If a dummy feedback for ya or ye was added, then remove it
if Iya-O, [r,c)-size(ska opt): ska opt-ska opt(:,l:c-l): end:
if Iye -O, [r,c)-size (ske=opt); ske=opt-ske=opt (:,l:c-l); end;

save 'inter.dat' p_i fh jhO jhl gradi gradO gradl hi fx lambda ska_opt ske_opt;

/1 INTER.DAT now contains the final results Including the optimal
II subcontrollers.

retf

II Created by Phil Schmidt and students Nader Kamrani and Brian Holawecky at
II The University of Akron with the support of NASA Lewis Research Center
II under grant NAG-3-1146.

J\

// (ska_opt, ske_optj-restart (lambdanew, stop, newh)
/I
/I
/I
/I
1/
1/
/I
/I
/I
/I
/I
/1

The function RESTART in file RESTART.MTX is used to
restart the optimization process after it has been intentionally
halted or has stopped due to the stopping criteria.
Some parameters may be altered If desired.
Input:

lambdanew - a new value for lambda, the weighting of the tracking
cost as part of the total cost function

stop - (optional) the vector of stopping conditions
newh - (optional) if any parameter whatsoever is passed, this sets

the inverse Hessian approximation to an Identity matrix
const.dat - the datafile of constants

// inter.dat - the Intermediate results at the last checkpoint or the
// final results If converge nce/stoppi ng criteria were met.
/1 Output:
/1 ska opt - the optimized airframe controller
/1 ske=opt - the optimized engine controller

resize('sstack' ,1000000); 1/ load the relevant dat a
load 'const.dat' nka nke pea Iya ly e ; atot-nka+nke;
load'lnter.dat' p_ i fh jhO jhl gradi gradO gradl hi fx lambda;

short e; // Specify the format for displaying matrices

// Define UDr INACCURATE which implements rletchers inaccurate line search
define 'linesrch.mtx';

1/ Define UDr CONVERGE which checks if convergence co nditions are met
define 'converge.mtx';

~ // Define UDr PA RT ITION which Is the outermost loop and Impleme nts the
// Broyden-Fletchcr-Goldfarb-Shanno technique for finding a search direction
/1 for optimization
define 'partitio.mtx';

// Define UDr Z Which returns a zero matrix of the desired size
define 'zero.mtx'

// Define the UDr MAT which generates the SKA and SKE subcontrollers
II from the parameter vector p
define 'parmat.mtx'

1/ Define UDr LONGCOL which generates the parameter vector from the
1/ SKA and SKE groupings of the parameters
define 'parvec.mtx'

1/ Define UDr COST which evaluates the performance cost, tracking cost
// and their sum, as well as the respective gradients for a specified
II parameter vector
define 'cost.mtx'

1/ if stop docs not exist, load it from par .dat
if exist('stop')-0, load 'par.dat' stop

1/ Verify th~t the newlamda provided is a row vector or a scalar and is
/1 consistant with pea
(rlambda, clambdaj -size (lambdanew);
If rlambda > I, disp('ERROR: l~mbda must be a row vector or a scalarl'), retf;
if clambda-l , lambdanew-Iambdanew·ones (1, pea); •.•

elseif clambda <> pea, .••
display('ERROR: lambda must contain pea entriesl'); retf;

changelam-norm(lambda-Iambdanew);
lambd~-lambdanew;

// If the difference between old lambda and new lambda is large enough,
1/ >le-10, then call COST to initialize costs and gradients, otherwise
// just use old data
if abs (change lam) >le-l0, • ••

(gradl,gradO,qradl,fh, jhO,jhll-COST(p i,lambda); •••
else ••• -

[cnt,tmpl-size(fh); fh(cnt)-jhO(cnt)+jhl(cnt); qradi-qradO+gradl; •••
end,

1/ If newh Is defined, then set the inverse Hessian to an identity matrix,
1/ If any of the A parameters are at the bounds (noted In fx)
II then set that element of hi to be zerO (no further decrease in that
// direction/parameter)
if I-exist('newh'), (row,coll-slze(p i); hi-eye(row);

for i-l:atot, if fx(i)-l, hi(I,i)-O; end,end, ...
end;

// save the possibly new stopping vector and save intermediate data
save 'par.dat' stop;
save 'Inte r.dat ' p_i fh jhO jhl gradl gradO gradl hi fx lambda;

// call the PARTITION routine which eventuall y returns the final
// optimized vector
p_opt-PARTITION(stop) ;

// Generate the optimized ska and ske as the final output of the program
(s ka opt,ske opt l -MAT(p opt);
load- 'inter.dat' p I fh - jhO jhl gradl gradO gradl hi fx lambda;
// If a dummy feedback for ya or ye was added, then remove it
1C Iya-O, [r,cj -slze (sk a opt); ska opt-ska opt(:,I:c-I); end;
if lye- O, [r,cl-size(ske=opt); ske=opt-ske=opt(:,I:c-I); end;

save 'Inter.dat' p_ i fh jhO jhl grad! gradO gradl hi fx lambda ska_opt ske_opt;

// INTER.DAT now contains the final results Including the optimal
// subcontrollers.

retf

II Created by Phil Schmidt and students Nader Kamrani and Brian Holawecky at
// The University of Akron with the support of NASA Lewis Research Center
/1 under grant NAG-3-l146.

j.,

.......

II [ska opt, ske optJ-start[lambda,stop)
1/ - -

1/
1/
1/
1/
1/
1/
/I
1/
1/
1/
1/
/I
/I
/I
/I
/I
/I
1/
/I
/I
/I
/I

The fun ct ion START in file START.MTX initiates the
controller partitioning optimization code.
It sets up Initi a l data and preca lculat es some required Informat ion,
calls COST to Initialize th e cos ts and gradi e nts and
calls PARTITION to do t he optimization.
Input:

lambda - a scalar or pea x 1 vector of welghtlngs for determining the
r e la tive contribution of fl (p), the tracking cost , to the total cost.

stop - (opt ional) the vector of stopping conditions
stop- [eps;delta;eta;iter;fml nl where
default: stop- [le-7 ;le-7;l e-7;le2:1e-2 1;
eps - tolerance for max change in paramet e rs giving co nv ergence
delta - tolerance for max change in cost giving convergence
eta - to l era nc e for max cha nge In norm of gradient giving co nvergence
I te r - numbe r of It era tions to run; defaul ts to 100
fmln - minimum tolerance for the total cost; a cost below this

is assumed to be a minimum.
INIT.DAT - the data file contai nin g the Initial Informat i on

Output:
ska_opt - the optimized airframe subcontroller
ske_opt - the optimi ze d engine subcontoller

reslze('sstack' ,1 000000) ;
load' Inlt.dat ';

II System stack size Is Increased
II Initial data is load ed

II Define UDr MODL which puts a s ystem matrix Into a mod ified modal form
de fine 'modl.mtx';

=> /I Define UDr INACCU RATE whi c h Implements Fletchers inaccurat e line s ea r c h
define 'llnesrch.mtx';

II DeClne UDr CONVERGE which checks If convergence conditions are met
define 'conv e rge . mt x';

II Define UDr PARTITION which I s the outermost loop and implements the
II Broyden-rletcher-Goldfarb-Shanno technique for finding a search direct ion
II for optimization
define 'partl t io.mt x ' ;

II Define UDr RESTART whi ch ca n restart the program using checkpointed
/I information
define 'restart .mt x' ;

II DeCine UDr Z which r et ur ns a zero matrix of the desired size
define ' ze ro .mtx '

II DeClne the UDr KAT which ge nerate s the SKA and SKE collections oC the
II parameters from the para meter vector
define 'parmat.mtx '

II DeCine UDr LONGCOL whi ch generates the parameter vector from the
II SKA and SKE system controllers.
Define 'parvec .mtx'

II Define UDr COST whi ch evaluates the performa nce cost , tracking cost
II a nd their sum, as well as the respective gradients Cor a specified
II parameter vector
define ' cost.mtx'

s hort e;
l~a_oPt-O ; ske_opt - O;

II SpeciCy the format for di splay ing matrices
II In it ializing answers In case oC an abrupt error/end

1f exlst (' sp') - O, If exlst('spaug ') -l , sp- spaug;
1f exist (' np') -0, 1f exist (' nspaug') -I, np-nspaug;

I I Check ing the Input data to see if i t Is consistant .

"::;'

l! exis t (' s ka') -0, display (' ERROR: s ka is missing from Inlt.dat'); retC ;
If ex l st ('n' ka')-O, dlsplay('ERROR: ns ka Is missing Crom Init.dat'); re t f;
1f exlst('s ke')-O, dlsplay('ERROR : s ke Is missing from Inlt.dat'); reU;
1f exls t (' n' ke')-O, display ('ERROR: ns ke is missing from inlt.dat'); retf;
If exist('sc7 ,-O, display('ERROR: sc is-m issing from init.dat');ret f;
If exist('nsc')-O, di sp lay('ERROR: nsc is missing from init.dat');retf;
lC exist(' sp') - O, dlsplay('ERROR: sp Is mis s ing from Init . dat'l;retf;
1f exist ('np ') - 0, display(' ERROR: np is missing fr om Init.dat ') ;retf;
If exlst ('C rq ') -O, display('ERROR: Crq Is missing Cram Init.dat');retC;
IC exist (' pea') - O, display('ERROR: pea i s missing from Inlt.dat');retf;
if exist (' la') - 0, l ya - O; e lse Iya-Ia;
lC exist ('Ie') - 0, lye - O; else lye- Ie;
[r,c l - s i ze (s ka); ka tmp - r-ns ka -pea ; ma tmp - c-ns ka-lya;
Ir, c l - size(s- ke); ke- tmp - r-n s - ke; me tmp - c-ns ke-pea-lye;
[r,cl-size(sp); - - -
if r <> npfma tmpfme t mp+pea1lya+ lye,

displaY('ERROR : number of rows in sp not cons ista nt with other data'); ...
retC; end;

If c<>np+ka tmpfke tmp,
dlsplaY('ERROR: number of columns In sp not co ns l stant with other da t a'); •..

retC; end;
Ir, c l-slze(sc);
If r<>nsc+ka tmp+ke tmp, ...
dl spla y('ERROR: nu~er of rows In sc Is not conslstant wi t h other data'); ...
retf; end;

If c<>nsc+ma tmpfme tmpHya+lye, .. .
dlsplaY('ERROR: nu~er of columns In sc not conslstant with other data'); • • .
retf; end;

l! frq(3,1) <- 0, ...
dlsplay(' ERROR: number oC observation po ints frq(3,1) mu st be positi ve'); ...
ret!; end;

If mod (Crq (3,1),2) -0 , .• •
display (' ERROR: number of observat Ion points frq (3,1) mus t be odd');
re t f; e nd;

If frq(l,l) >- Crq(2,1), .. •
display('ERROR: min. observation point Crq(I,I) must be less than the ') ; •..
display('max. observation point !rq(2,1)'); retf: end;

II Get row and column of t he central ized controller sc
I rsc, csc) -s i ze (sc) ;
II The Input and output we ighting ma trices swl and swo oC orders nwl and nwo
/I resp. can be defin ed in Inlt .dat. If not defined, they ar e ass ume d to
II be identity matrices of the desired size (depending on t he size oC
II the ce ntra lized controller)
It exist (' swi') -0, nwl-l; swi-eye (H csc-nsc); end
I f exist (' s wo') - 0, nwo- l; swo-eye (l+rsc- nsc); end

I(exist('nwl')-O, display('ERROR: nwl is not defined In Inlt.dat ') ;retf;
if exist('nwo')-O, dlsplay('ERROR: nwo is not defined in Init.dat');retC;
[r,cl -s lze(swl) ;
If r <> nwifma tmpfme tmp+lya+lye, .••
dl sp lay('ERROR: nu~er of r ows In swl Is not consist ant with other data'); •..
ret!; e nd;

If c < nwi, display (' ERROR: numbe r of co lumns in s wi Is less t han nwi'); • .•
ret!; e nd;

[r ,c l -s lz e (swo):
if c<>nwo+ka tmp+ke tmp, ...
dl sp l ay(' ERROR: number of columns i n swo not consistant wi th other da ta '); • • .
ret!; e nd ;

JL

:t.

II [ska_opt, ske_opt)-start(lambda,stop)
1/
II
II
II
II
II
II
/1
II
//
II
II
1/
1/
II
II
II
II
II
1/
II
II
II

The lunction START in file START.MTX initiates the
controller partitioning optimization code.
It sets up initial data and precalculates some required information,
calls COST to Initialize the costs and gradients and
calls PARTITION to do the optimization.
Input:

lambda - a scalar or pca x I vector of welghtlngs for determining the
relative contribution of fl (p), the tracking cost, to the total cost.

stop - (opt ional) the vector of stopping conditions
stop-[eps;delta;eta;iter;fmln) where
delault: stop-[le-7;le-7;le-7;le2;le-2);
eps - tolerance for max change In parameters giving convergence
delta - tolerance (or max change In cost giving converge nce
eta - to l erance (or max change In norm o(gradient giving convergence
I ter - number o(Iterations to run; deCaults to 100
Cmln - minimum tolerance (or the total cost; a cost below this

is assumed to be a minimum.
INIT.DAT - the data Cile containing the Initial information

Output:
ska_opt - the optimized alrCrame subcontroller
ske_opt - the optimized engine subcontoller

reslze('sstack', 1000000);
load' Inlt.dat';

II System stack size Is Increased
1/ Initial data Is loaded

II Define UDr MODL whi ch puts a system matrix Into a modiCled modal Corm
define 'modl.mtx';

::> I I Define UDr I NACCURI\TE which implements r letchers inaccurate 11 ne sea rch
define' llnesrch . mtx';

II Define UDr CONVERGE which checks i! convergence conditions are met
define 'converge.mtx';

II DeClne UDr PARTITION which is the outermost loop and implements the
II Broyden-rletcher-GoldCarb-Shanno technique (or llndlng a search direction
II for optimization
define 'partltio.mtx';

II Define UDr RESTART which can restart the program using checkpointed
I I Intormat Ion
define 'restart .mtx';

II DeCine UDr Z which returns a zero matrix of the desired size
deCine 'zero.mtx'

/1 DeClne the UDr MAT which generates the SKA and SKE collections oC the
II parameters Cram the par.meter vector
define 'parmat.mtx'

// Define UDr LONGCOL which generates the parameter vector from the
1/ SKA and SKE system controllers.
Define 'parvec.mtx'

II De tlne UDr COST which evaluates the perCorma nce cost, tracking cost
II and their sum, as well as the respective gradients for a specified
II parameter vector
define 'cost.mtx'

short e; II speciCy the Cormat tor displaying matrices
ska_opt - O; s ke_opt - O; II Initializing answers In case oC an abrupt errorlend

if exl st ('sp ') - O, If exls t ('spa ug')-l, sp- spaug;
if exist (' np') -0, if exist (' nspaug') -1, np-nspaug;

II Checking the Input data to see if It Is consistant.
if exist (' s ka') -0, display (' ERROR: s ka Is missing from In It .dat'); ret! ;
If exist('ns ka')-O, dlsplay('ERROR: ns ka is missing Crom init.dat'); retC;
i! exist('s ke')-O , dlsplay('ERROR: s ke Is missing Crom inlt.dat'); ret!;
1C exist('ns ke')-O, display('ERROR: ns ke is missing from Inll.dat'); retf;
If exlst('sc;-,-O, dlsplay('ERROR: sc Is-miSSing from Inlt.dat');ret!;
If exlst('nsc')-O, display('ERROR: nsc is missing Crom init.dat');ret!;
If exist('sp') - O, displaY('ERROR: sp Is missing Crom Inlt.dat');ret!;
iC exlst('np') - O, dlsplay('ERROR: np is missing from inlt.dat');ret!;
If exlst('frq')-O, display('ERROR: frq is missing from init.dat');retf;
iC exlst('pea')-O, display('ERROR: pea is missing Crom init.dat');retf;
if exist (' la') - 0, lya cO; else lya-la;
1C exist (' Ie') -0, lye-O; else lye - Ie;
[r,c) - size(s ka); ka tmp - r-ns ka - pea; ma tmp - c-ns ka-lya;
[r,c) - slze(s-ke); ke- tmp - r-ns_ke; me_tmp-- c-ns_ke-pea-lye;
[r,c)-size(sp); -
ic r<>np+ma tmp+me tmp+pea1lya1lye,
displaY('ERROR: number oC rows in sp not consistant wi th other data'l; .•.
ret!; end;

if c<>np+ka tmp+ke tmp,
displaY('ERROR: number oC columns in sp not consistant with other data'); •..

retC; end;
[r,c)-size(sc);
if r<>nsc+ka tmp+ke tmp, . . .
displaY('ERROR: nu~er of rows in sc Is not consistant with other data'); ...
retf; end:

if c<>nsc+ma tmp+me tmp+lya+lye, ..•
display('ERROR: nu~er of columns in sc not consistant with other data'); ••.
retC; end;

1C frq(3,1) <- 0, ..•
display('ERROR: number o! obs e rvation points frq(3,1) must be positive') ; •..
retf: end:

ifmod(Crq(3,1),2)-0, ..•
display('ERROR: number of observation points frq(3,1) must be odd');
ret [: end:

it Crq(l,l) >- Crq(2,1), •. ,
dlsplay('ERROR: min. observation point frq(l,l) must be less than the ') ; •..
dlsplay('max. observation point lrq(2,1)'); ' retC; end;

II Get row and column oC the centralized controller sc
\rsc,csc)-slze(sc);
II The input and output weighting matrices swl and swo oC orders nwl and nwo
1/ resp. can be defined In inlt .dat. If not detlned, they are assumed to
II be Identity matrices of the desired size (depending on the size of
II the centralized controller)
If exist('swl')-O, nwl - l; swl-eye(l+csc-nsc) ; end
it exist (' swo') -0, nwo- l; swo - eye (l+rsc-nsc); end

If exlst('nwl')-O, dlsplay('ERROR: nwl is not detlned In Inlt.dat');retC;
If exlst('nwo')-O, dlsplay('ERROR: nwo Is not defined In inlt.dat');ret!;
[r,c)-size(swl);
If r<>nwi+ma tmp+me tmp+lya+lye, .. •

display('ERROR: number of rows In swl Is not consistant with other data'); ••.
ret f; end;

iC c < nwi, display (' ERROR: number of columns In swl is less than nwl'); •.•
rett: end:

[r, c I -s I ze (swo) ;
It c<>nwo+ka tmp+ke tmp, .• ,
display('ERROR: nu~er of columns In swo not conslstant with other data'); • • .
retf; end;

j--- ---
---~------~- ---- ----- ----

' '''

if r < nwo, display('ERROR: number of rows in swo Is less tha n nwo'); '"
rett; end;

II Verify that the lamda provided is a row vector or a scalar and is
II consistant with pea

[rlambda,clambdal-size(lambda);
if rlambda > 1, disp('ERROR: lambda must be a row vector or a scalarl'), retf;
it clambda-1, lambda-lambda'ones(l,pea),

elseif clambda <> pea, '"
display('ERROR: lambda must contain pea entries!'); retf;

II The stopping conditions vector Is given a default value if it was not
II provided (it will be saved in par.dat)
if exist('stop')-O, stop-(le-7;le-7;le-7;le2;le-21;
save 'par.dat' stop

II Inquire if the airframe or the engine sUbmatrices are to be held fixed
II storing the reply in variable aore
II If not, put the sUbcontroller matrices in modified modal form.
II Make ska and ske with order s nka and nke the variables to be used
II from now on (instead of s ka and s ke)
nka-ns ka; nke-ns ke; - -
inquire aore 'ENTER 1 TO fIX AIRfRAME, 2 TO fIX ENGINE or 0 fOR NEITHER: ';
l! aore - O, atot - nka +nke ; ska - modl (s ka, ns ka); ske - modl (s ke, ns ke); •••

elseif aore-l, atot-nke; ska-s ka; ske-modl (s ke ,ns ke); •.. -
elseif aore -2 , a tot -nka; ska-m;dl(s ka,ns ka); ske-i ke; •••
else DISPLAY ('YOU MUST ENTER 0, 1 or 21'); retf; ••• -

end ,
II Inquire if any of the 0 submatrices are to be fixed. DAA, DAYA,
II DEE, and DEYE are determined by the corresponding submatrices of the
II centralized controller. Under option 1 DEEA and DEAA are determined
II by optimization. Under option 2 DEEA Is set to 0 and DEAA Is determined
II optimization. Under option 3 DEEA-O and the rema ining Os are determined
II by optimization. Under option 0 no Os are fixed.
DISPLAY('ENTER 1 TO fIX ALL Os EXCEPT DEAA , DEEA, 2 TO INCLUDE DEEA,');
Inquire flxd ' 3 fOR ONLY DEEA, or 0 for NONE:';
if (!1xd-11'(Cixd-21'(fixd-31'fixd <> 0, ...

DISPLAY ('YOU MUST ENTER 0, 1, 2 or 31'); rett;end,

II Get the row and column size of the plant matriX, Input weighting matrix,
II and the airframe and engine controller matrices.
[rsp,cspl-size(sp);
[rswi,cswil-size(swll;
[rska,cskal-slze(ska);
[rske,cskel-slze(ske);

II If the measurements from plant to controllers la, Ie, are absent,
II create a dummy feedback of one (la - 1 andlor Ie - 1).
II lya and lye hold the actual number of ya and ye measurements.
II Increase the sizes of the system matrices to accomodate these
II feedback variables. In the case of the dummy feedbacks being created
II (and not Input via init.datl the system matrices are adjusted with
II zero columns .
If exlst('la') - O,

la-I; Iya - O; •••
ska-[ska,O·ones(rska,I)I; ...
it exist ('Ie') -0, ••••

Ie-I; lye-O; •••
sc- [sc , O'ones (rsc, 2) I; • . •
sp-(sp; 0'ones(2,csp) I; •••
swi-[swi; 0'ones(2,cswi) I; .•.
ske- [ske, O'ones (rske, I) I; •••

else lye-lei . ..

sc- (sc (:, [I: csc-l e I) ,0' ones (rsc, I) , sc (: , [csc-Ie+l : csc I) I; •••
sp-[sp([I:rsp-Ie l,:); O'ones(l,csp); sp([rsp-le+l:rspl,:)I; ...
swi-[swl([I:rswl-lel,:); O'ones(l ,csw l); swi([rswi-Ie+1:rswi),:)); •••

end; .. .
else .. .

Iya-la;
if exist (' Ie') -0,

Ie-I; lye-O; •••
sc-[se, O'ones (rsc, l) I; ...
sp- [sp; 0 'ones (1, csp)); •••
ske-[ske, O'ones (rske,l) I; •••
swl-[swl; O'ones (1, cswi)); • ••

else •••
lye-Ie; .••

end, ...
end,

II Decompose the airframe subcontroller In modified modal form
II ska-[aa,ba;ca,dal. Use da to figure out the total Inputs matot
II and outputs katot for ska. Subtract the la Input from matot
II to get ma, the actual number of inputs to ska. Subtract the numbe r
II of pea airframe to engine commands from the katot to get ka the number
II of outputs going to the plant
faa ba ca dal-split(ska,nka);
[katot matotl-size(da);
ma - matot-la;
ka-katot-pea;

II Decompose the engine subcontroller in modified modal form
II ske - [ae,be;ce,del . Use de to find ke the number of outputs
II from the engine to the plant. Al so find me t ot, the total number of
II inputs, and subtratk pea, the airframe to plant commands, and Ie, the
II engine feedback to get me, the actual number of external Inputs
II to the engine subcontroller
[ae be ce deI-split (ske,nke);
(ke metot)-slze(de);
me-metot-pea-Ie;

II It any of the entries of the first column of ba or be are <- zero (or
II almost <- 0) then set them to le-9 (almost zero but positive).
II This is required by the modified modal form of the system matrix.
for i-l:nka, if abs(ba(i,I))<le-9, ba(I,l)-le-9; end, end, bal-ba(:,!);
for i-1:nke, l! abs(be(I,1))<le-9, be(I,l)-le-9; end, end, be1-bel:,1);

II Decompose the Integrated plant sp-[ap,bp;cp,dpl
[ap, bp, cp, dp)-split (sp, np);

[kptot ntmp)-size(cp);
kplnt-kptot-pea;
[ntmp mptot)-size(bp);
kpmpea-kptot-pea+l;

II Let sk-sc be the centralized controller
sk-sc; nk-nsc;

II Decompose the centralized controller sk-[ak,bk;ck,dkl
[ak, bk, ck, dk I -split (sk, nk);

II IC the user has not entered the (optional) matrix Nperf for
II normalizing the performance cost, it is set to a matrix oC ones
II This matrix should be a !rq(3,l)xl matrix.
it exist ('Nperf') -I, '"

Nper! - max(Npec!,le-13); (r,c)-size(Nperf); ...
i! r<>!rq(3,1), •.•

it r < nwo, display('ERROR: number ot rows In swo Is less than nwo'); • ••
rett; end;

II Verify that the lamda provided Is a row vector or a scalar and Is
II consistant with pea

[rlambda,clambdal-slle(lambda);
it rlambda > 1, dlsp('ERROR: lambda must be a row vector or a scala rl'), retf;
If clambda-l, lambda-lambda.ones(l,pea),

elself clambda <> pea, •.•
dlsplay('ERROR: lambda must contain pea entrlesl'); rett;

II The stopping conditions vector Is given a detault value It It was not
II provided (It will be saved In par .dat)
It exlst('stop')-O, stop-[le-7;le-7;le-7;le2;le-21;
save 'par.dat' stop

II Inquire It the airtrame or the engine submatrices are to be held fixed
II storing the reply in variable .lore
II If not, put the subcontroller matrices In modified modal form.
II Make ska and ske with orders nka and nke the variables to be used
II from now on (instead oC s ka and s ke)
nka-ns ka; nke-ns ke; - -
Inquire .lore 'ENTER I TO fIX AIRfRAME, 2 TO fIX ENGINE or a fOR NEITHER: ';
If aore-O, atot - nka +nke; ska-modl (s ka, ns ka); ske-modl (s ke, ns ke); •••

elseiC aore-l, atot - nke; ska-s ka; ske-modl (s ke,ns ke); . • • -
elseif aore-2, atot-nka; ska-m;dl(s ka,ns ka); ske-i ke; •••
else DISPLAY ('YOU MUST ENTER 0, 1 or 21'); retf; •• •

end,
II Inquire if any of the D submatrices are to be tlxed. DAA, DAYA,

~ II DEE, and DEYE are determined by the corresponding submatrlces oC the
II centralized controller. Under option 1 DEEA and DEAA are determined
II by optimization. Under option 2 DEEA Is set to 0 and DEAA Is determined
II optimization. Und er option 3 DEEA-O and the remaining Os are determined
II by optimization. Under option 0 no Ds are Clxed.
DISPLAY('ENTER 1 TO fIX ALL Ds EXCEPT DEAA , DEEA, 2 TO INCLUDE DEEA,');
inquire flxd ' 3 fOR ONLY DEEA, or 0 for NONE:';
lC (C1xd-l)· (Clxd-2)· (C1xd-3) 'flxd <> 0, •••

DISPLAY ('YOU MUST ENTER 0, I, 2 or 31'1; rett;end,

II Get the row and column sile of the plant matrix, input weighting matrix,
II and the alrCrame and engine controller matrices.
[rsp,cspl-slle(sp);
[rswl,cswil-slle(swl);
[rska,cskal-slze(ska);
(rske,cskel-slle(ske);

II IC the measurements Crom plant to controllers la,le, are absent,
II create a dummy Ceedback oC one (1.1 - 1 andlor Ie - 1).
II lya and lye hold the actual number of ya and ye measurements.
II Increase the siles of the system matrices to accomodate these
II feedback variables. In the case of the dummy feedbacks being created
II (and not input via Inlt.dat) the system matrices are adjusted with
II zero columns.
IC exlst('la')-O,

la-l; lya-O; •••
ska-[ska, O'ones (rska, 1) I; •••
lC exist ('Ie') -0, ••••

leal; lye-a; •••
sc- [sc, O'ones (rsc, 2) I; .••
sp-Isp; 0'ones(2,cspl I; •••
swl-[swl; O'ones (2, cswl) I; •••
ske- [ske, O·ones (rske, 1) I; •••

else lye-le; •.•

sc- [sc (:, [1 : csc-l e I) ,0· ones (rsc, 1) , sc (: , [csc-le+ 1: csc III; •••
sp- Isp (11: rsp-l e l, : I; O·ones (1, csp); sp ([rsp-le+l: rspl, :) J; •••
swl-[swl([l:rswi-lel,:); O·ones(l,cswi); swi([rswi-le+l:rswll,:)I; •••

end; •••
else •••

lya-la;
1C exist (' Ie') -0 ,

Ie-I; lye-O; •••
sc-[sc, O·ones(rsc,l)); •••
sp-[sp; O·ones(l,csp)); •••
ske-[ske, O'ones (rske, 1) I; •••
swl-[swl; O·ones (1, cswl) I; •••

else •• •
lye-Ie; •••

end , ...
end,

II Decompose the alrtrame subcontroller In modified modal form
II ska-[aa,ba;ca,dal . Use da to figure out the total inputs matot
II and outputs katot Cor ska. Subtract the 1.1 Input Crom matot
II to get mol, the actual number oC Inputs to ska. Subtract the numbe r
II of pea alrCrame to engine commands from the katot to get ka the number
II of outputs going to the plant
[aa ba ca dal-spllt(ska,nka);
[katot matotl-slze(da);
ma - matot-la;
ka-katot-pea;

II Decompose the engine subcontroller In modlCled modal Corm
II ske- [ae,be;ce,del . Use de to Clnd ke the number oC outputs
II trom the engine to the plant. Also find metot, the total number ot
II Inputs, and subtratk pea, the airframe to plant commands, and Ie, the
II engine teedback to get me, the actua l number oC external Inputs
II to the engine subcontroller
[ole be ce deI-split (ske,nke);
Ike metotl-slze(de);
me-metot-pea-le;

II It any of the entries ot the tlrst column ot ba or be are <- zero (or
II almost <- 0) then set them to le-9 (almost zero but positive).
II This Is required by the modified modal Corm oC the system matrix.
Cor i-l:nka, 1C abs(ba(I,1))<le-9, ba(1,1)-le-9; end, end, bal-ba(:,l);
tor i-l:nke, I! abs(be(i,1))<le-9, be(1,1)-le-9; end,end, bel-be(:,l);

II Decompose the Integrated plant sp-(ap,bp;cp,dpl
(ap, bp, cp, dpl-spl1t (sp, npl;

[kptot ntmpl-slle(cp);
kplnt-kptot-pea;
(ntmp mptotl-slze(bp);
kpmpea-kptot-pea+l;

II Let sk-sc be the centralized controller
sk-sc: nk-nsc:

II Decompose the centralized controller sk-[ak,bk;ck,dkl
[ak, bk, ck, dk I-split (sk, nk);

II IC the user has not entered the (optional) matrix Npert for
II normalizing the performance cost, It is set to a matrix oC ones
II This matrix should be a Crq(3,1)xl matrix.
if exlst('Nperf')-l, •••

NperC - max(NperC,le-13); (r,cl-slze(NperC) ; •••
If r<>!rq(3,l), ..•

I

I

- ---- ---------------

display('ERROR: The number of performnnce welQhts Is different from the ..•
number of frequency points ');retf;end; ..•

else, Nperf-ones (frq (3,1),1); •••
end:

II If the user has no t entered the (optional) matrix Ntrnck for
II normallzlnQ the tracklnQ cost, It Is set to a matrix of ones.
II This matrix should be a frq(3,1)xpea matrix.
if exist('Ntrack')-l, ...

Ntrack - max(Ntrack,le-13); (r,cl-slze(Ntrack); .. •
if r<>frq (3, 1), •••
dlsp1ay('ERROR: The number of tracklnq welQhts dlsaqrees with the ...
number of frequency points ') ;retf;end; •••
If c<>pea, •••
dlsplay('ERROR: The number of tracklnq welqhts dlsaQrees with the •••
number of interface variables ');rett;end; ••.

else, Ntrack-ones (frq (3, 1) ,pea); • .•
end:

1/ Define the weights for Simpsons rule integration. They depend on the
// number of observation points specified In trq(31 and are stored in
II the variable WEIGHT.
weiQht-(ll;
for i~l: «frq(3,1)-3)/2),welqht-[welqht,4,21;end
weiqht-(weiqht,4,11;

II Define the set of fr eq uency points at which the cost tunctlon and Qradlent
II are evaluated. Store as the variable OMEGA ••
omeQa - f rq (1) • I I It rq (2) / f rq (1)) , , 11/ If rq (3) -1))) " (0: C rq (3) -11) ;

~ II Decompose the plant controller, spllttlnQ up the matrix bp relative to
II Its inputs and the matrix cp relative to its outputs. for example,
II cap would be the plant to airframe piece, the first rna rows ot the
II plant matrix because these rows torm the input to the airframe.
(mp ntmpl-slze(cp);
kp- ka.ke; kap1- ka+l;
cap- cp«(l:mal,:); ceap- cpl(lman):(mHpea)I,:);
cep- cp «ma+pea+l): (ma+pea+me),:);
cyap-cp«((ma+me+pea+l): (ma+me+pea+la)),:);
cyep-cp([(ma+me+pea+la+l): Ima+me+pea+lalle) 1,:);
bpa- bp(:,[l:kal); bpe- bpl:,[(ka+l):kp));

II The centralized controller Is decomposed in a similar way as the plant
II controller
(kc ktmpl-size(ck);
bak- bk(:,l:ma); bek- bk(:,[(ma+1):(me+ma)ll;
byak- bk (:, [(ma+me+l) : (ma Imella))); byek-bk (:, [(ma+me+la+l) : Ima +me+ la+le))) ;
cak- ck(l:ka,:); cek- ck(kap1:kc,:);
dak- dk([l:ka), [l:mal); daek-dk([l:ka), [maI1:ma+me));
dayek- dk ([l:ka), [malme+la+1:ma+me+la+lel);
deak-dk «(ka+1: kalke 1, [1 :ma I) ;deyak-dk «(ka+l :ka+ke 1, [ma+me+l :ma+me.la I) ;
de k -d k ([k a + 1 : k a +k e I , [ma +l : ma I me I) ;
dyak-dk ([1: ka I, [ma+me+l :malme+la 1);
dyek-dk ([ka+1 :kalke I, (ma + la+me+ 1 I: [rna +la+me+le I);

II HERE Construct the state space representation of Tcent from Input: zac to
II output: lea uslnq the system with the global controller. This
/1 Is used In evaluatlnQ the zea tracklnQ cost, but does not alter
II with the choice of parameters so It Is constructed once only
II in this routine and then stored.
aQ- (ak, (-bak'cap-bek'cep+byak'cyap+byek'cyep); •.•

(bpa'cak+ bpe'cek), lap-(bpa'dak'cap)-(bpe'dek'cep)+ .••
bpa'dyak'cyaplbpe'dyek'cyep-bpa'daek'cep+bpa'dayek'cyep ••.
-bpe'deak'cap+bpe'deyak'cyap) I;

-.----.- --. -----------------

-starLhliX/::Z:::_:,:_:--"
bQ- [bak; bpa'dakl;
cg- [O'ones(pea,nk) ceapl;
dq- O'ones(pea,ma);

--------- -- ,-.- -,-- ----

II Let sq be the constructed state space representation of Tcent
sg-(aq,bq;cg,dgl;
ng- nk+np;

II If Os are fixed, their Initial values are determined here
it aore<>l, it (Clxd-l)' (fixd-2) -O,da-(dak,dyak;da ((ka+l:ka+peal,:) I ;end;end;

it aore <> 2, it (Clxd -2)'(flxd-3) - O, de(:, [l:peall-O'ones(ke,pea); end; ...
if (Cixd-1)'(fixd-2) -O, de-(de(:,[l:peal),dek,dyekl; end; ...

end;

daa ~da([l:kal, [l:mall; daya - da ([l:kal, [ma+l:ma+lal);
dee -de (:, (pea+l :pea+ mel); deye - de(:, [pealme+1:metotl);
ska-(aa, ba; ca, dal; ske-(ae,be; ce, del;

II Store the current (Initial) values of ska and ske In skaO and skeO
II to be used It the subcontroller(s) are fixed.
skaO-ska;skeO-ske;

II The stability upperbound stabll for the A submatrlces should
II be read In from Inlt.dat and later stored In const.dat
II If It Is not defined or It Is defined too hlQh, it is qiven a
II default value
If exist('stabil')-O then stabil--1e-9;
if stabil>-le-9, stabil--le-9;

II Save the constants In const.dat
save' const .dat' la Ie lya lye ka ma ke "," pea nka nke sp sk np nk Crq ..•

omeqa daa dee da ya deye atot sq ng swl nwl swo nwo welqht stabil .•.
ba1 bel skaO skeO aore Nperf Ntrack flxd;

II If there was no error In the data checklnq
p i-longcol(ska,ske);
[row,coll-size(p 1);
hi-eye(row); -
fx-O'ones(atot,l);

for I - I :atot, ..••
if p i(l»stabll,

p I (I) -stabll;
fx(I)-I; ...
hi(I,I)-O; •.•

end;end:

II Initialize costs and qradlents
l grad i, gradO, grad I, fh, j hO, jhl I -cost (p _i, lambda) ;

II Save intermediate results
save 'inter . dat' p_ i qradl gradO qradl fh jhO jh1 hi lambda fx;

II Save startlnq data for restarts
save 'start.dat' aore p_i gradi gradO qradl fh jhO jhl lambda fx;

II call the PARTITION routine returninq the final optimized vector
p_opt-PARTITION(stop) ;

II Generate the opt imiz ed ska and ske as the final output of the program
(ska_opt,ske_optl-MAT(p_opt);

--------...-------- -

- ---- ---------------

"'::

dlsplay('ERROR: The number of performance weights Is different from the , .•
number oC frequency points ');retf;end; •••

else, NperC-ones(frq(3,1),11; ...
end;

II If the user has not entered the (optional) matrix Ntrack for
II normalizing the tracking cost, It Is set to a matrix of ones.
II This matrix should be a frq(3,llxpea matrix.
if exist (' Ntra ck' 1-1, '"

Ntrack - max(Ntrack,le-13); (r,cl-slze(Ntrack); . ••
if r<>Crq (3, 1), ...
dlsplay('ERROR: The number of tracking weights disagrees with the ...
number of frequency points ') ;rett;end; .• •
If c<>pea, ...
display (' ERROR: The number of tracking weights disagrees with the •.•
number of interface variables ');retf;end: • ••

else, Ntrack-ones(frq(3,1),pea); .. •
end;

II Define the weights Cor Simpsons rule Integration, They depend on the
II number of observation points specified In frq(31 and are stored In
II the variable WEIGHT.
weight- (11;
for l-l:«frq(3,1)-3)/2),welght-(welght,4,21;end
weight-(welght,4,11;

II Detine the set of Crequency points at which the cost function and gradient
II are evaluated. Store as the variable OMEGA ••
omega -f rq (1) • (((f rq (2) / frq (l)) " (1/ ({ rq (3) -1))) .. (0: f rq (3) -1)) ;

~ II Decompose the plant controller, splitting up the matrix bp relative to
// Its Inputs and the matrix cp relative to its outputs. for example,
II cap would be the plant to airframe piece, the first ma rows ot the
II plant matrix because these rows form the Input to the airframe.
[mp ntmp)-siz e(cp);
kp- ka+ke; kapl- ka+l;
cap- cp«(I:ma),:); ceap- cp«((mail):(mnipea)),:);
cep- cp «ma+pea+1): (ma+pea+me) ,:);
cy"p-cp « (ma+me+pea+l) : (ma+me+pea+la)), :);
cyep-cp «((mHme+pea+la+l) : (ma +me+pea Ila lie)), :) :
bpa- bp(:,(I:ka)); bpe- bp(:,«ka+1):kp)):

II The centralized controller is decomposed in a similar way as the plant
II controller
(kc ktmp)-slze(ck);
bak- bk (:,1 :ma); bek- bk (: , (ma+l): (me+ma)));
by"k- bk (:, ((ma+me+ 1) : (ma fme+ la))); byek-bk (:, ((ma+me+la+l) : (ma+me+ la+le))) ;
cak- ck(l:ka,:); cek- ck(kapl:kc,:);
dak- dk«(I:ka), (l:maJ): daek-dk«(I:ka), (ma+l:ma+me));
dayek- dk ([I:ka), (malme+la+l:ma-lme+la+le));
deak-dk «(ka+1: ka+ke 1, (1 :ma)) ;deyak-dk (I ka+1 :katke 1, (matme+1 :ma-lme+la 1) ;
de k -d k ((k a +1 : k a +k e) , (ma +1 : ma t me () ;
dyak-dk«I:ka), (ma+me+1:ma+me+la));
dyek-dk ((ka+l : kat ke) , [ma t la +me+ 11 : (ma +la +me+le)) :

II HERE Construct the state space representation of Tcent from Input: zac to
// output: zea using the system with the global controller. This
// Is used In evaluating the zea tracking cost, but does not alter
/1 with the choice of parameters so It Is constructed once only
/1 In this routine and then stored.
ag- [ak, (-bak'cap-bek'ceptbyak 'cyap+byekOcyep); •••

(bpa*cak+ bpe'cek), (ap-(bpa'dak'cap)-(bpe'dek* cep)+ .••
bpa*dyak'cyaplbpeodyek'cyep-bpa'daek'cep+bpa'dayek'cyep .•.
-bpc'dcak'captbpe 'deyak'cyap));

bg- (bak; bpa'dakl;
cg- (O'ones(pea,nkl ceapl;
dg- O'ones(pea,ma);

II Let sg be the constructed state space representation of Tcent
sg-(ag,bq:cg,dgl;
ng- nk+np;

II If Os are fixed, their Initial values are determined here
If aore<>l, it (flxd - l)' (!1xd- 2) -O,da-(dak,dyak;da «(ka+l:ka+peal,:) I ;end:end;

If aore <> 2, If (flxd-2)'(flxd-3) - O, de (:,(l:pea))-O'ones(ke,pea); end; ...
if (flxd-I)'(flxd-2)-O, de-(de(:,(l:peal),dek,dyekl; end; ...

end;

daa ~da«(l:kal,(l:mal); daya - da «l:kal,(ma+ l:ma+la));
dee - del:, [pea+l:peaimel): deye - de(:, (pea+me+l:metotl);
ska-(aa, ba; ca, dal: ske-(ae,be; ce, del;

II Store the current (Initial) values of ska and ske In skaO and skeO
1/ to be used If the subcontroller(s) are fix ed .
skaO-ska;skeO-ske;

II The stability upperbound stabll for the A submatrices should
/1 be read in from Inlt.dat and later stored In const.dat
1/ If It is not defined or It is defined too high, It Is given a
1/ default value
if exlst('stabil')-O then stabll--le-9:
If stabll>-le-9, stabll--le-9;

/1 Save the constants in const.dat
save 'const-dat' la Ie lya lye ka ma ke n,.., pea nka nke sp sk np nk {rq ...

omega daa dee daya deye atot s9 ng swi nwi swo nwo weight stabll ..•
bal bel skaO skeO aore Nper! Ntrack fixd;

II If there was no error In the data checking
p i-longcol (ska,ske);
(row,col)-size(p I):
hl-eye(row); -
!x-O'ones(atot,l):

for I-l:atot, •.••
If p I(I»stabll,

p T(I)-stabll;
[x(I)-I : .. .
hi(I,I)-O; .. .

end;end;

II Initialize costs and gradients
(gradl,gradO,gradl ,[h,jhO,jhl)-cost (p_ I,lambda);

II Save intermediate results
save 'Inter.dat' p_ 1 gradl gradO gradl fh jhO jhl hi lambda fx;

II Save starting data for restarts
save 'start.dat' aore p_1 gradl gradO gradl Ch jhO jhl lambda [x;

1/ call the PARTITION routine returning the final optimized vector
p_opt-PARTITION(stop) ;

// Generate the optimized ska and ske as the final output of the program
(ska_opt,ske_opt) - HAT(p_opt);

---~----~--~--

(~~~l:::~~~:~~~;~:~:~r;~:~(::~~~~(:~:~:~~

'inter.dat' p i fh jhO jhl gradi gradO gradl hi Cx lambda;
II If a dummy feedback for ya or ye was added, then remove it
lC lya-O, [r,c)-size(ska opt); ska opt-ska opt(:,I:c-l); end;
lC lye-O, [r,c)-size (ske-opt); ske-opt-ske-opt (:, l:c-l); end;
II save Cinal data - - -
save'inter.dat' p_i fh jhO jhl gradl gradO gradl hi fx lambda ska_opt ske_opt;

retf

II the UDr start.mtx is the main routine Cor the controller partitioning
II program. It expects the Input to the program to be in the dataflle
II 'init.dat', and requires certain data to be there.
II 'init.dat' contains the global controller sc, the initial partitioned
II controllers s ka and 5 ke, and the plant sp along with their orders nsc,
II ns ka, ns ke,-and np resp. It aiso contains the number oC intermediate
II variables-pea and the range of frequencies for calculating norms frq. the
II optional weighting matrices swi and swo (for input and/or output weighting)
II may be included (defauit - Id in both cases) as may la andlor Ie, the
II numbers of neg. feedback variables (if these are absent, then the code
II inserts dummy values of 1 and loads appropriate zeros in the data matrices.)
II stabil - upper bound for eigenvalues of Aa and Ae to assure stability is
II also contained in inlt.dat (If missing, defauits to -le-9).
II
II The code gives the option of fixing values of either subcontroller if
II optimization over the parameters in only one subcontroller is desired.
II
II The option Is also given to fix certain of the D sUbmatrices.
II
II The subcontrollers are put into a modified modal form where the A matrices
II consist of 2x2 companion blocks and the first column of the B matrix is

~ II fixed to its initial value (or le-9 if this initial value is zero). These
II are then split to identify the state space representations from inputs to
II outputs using intermediate variables.
II Here the modiCications are made to account Cor the absence of la andlor Ie.
II
II The logarithmic frequency range over Which the cost function is evaluated is
II created as Omega. The vector of Weights used in Simpson's Rule integration
II is also calculated.
II
II the state-space representation for the nominal ·command-tracking"
II transfer matrix Tcent:zac to zea is computed, sg. Its row norms are stored
II to be used as normalizations in the Ctrack part of the cost function.
II •
II The file 'const.dat' contains constants --- the numbers of subcontroller
II inputs, ma and me; outputs, ka and ke; and intermediate variables, pea;
1/ the numbers oC negative feedbacks from the plant (lya/lye relects the actual
II numbers, i.e. 0 if la resp Ie were absent in ' init.dat'. In this case lalle
II would contain the dummy value 1). rurther constants are the state space
II matrices Cor the plant, sp; the centralized controller, skI the
II nominal tracking transfer matrix, sg; the frequency weighting matrices,
II swi and swo; and their orders --- np, nk, ng, and nw along with the orders
II of the subcontrollers nka and nke; plus the frequency range, frq; the
II vector of frequencies, omega; the weights for Simpson's Rule, weight; and
II the vector of row norms for the nominal tracking transfer matrix. Other
II constants are the values of the D subcontroller submatrices which are fixed
1/ equal to the corresponding submatrices of the state space representation
II for the centralized controller; the first columns of the subcontroller B
II matrices which arc fixed by the modi canonical form; and finally, the
II values of skaO and skeO which are used in case the appropriate subcontroller
II is tixed. atot indicates the sum of orders ot the subcontroller state-space
II matrices which are not fixed.
II
II The initial system matrices Cor the subcontrollers skaO and skeO are put
II into the form oC a parameter vector p_i, an identity matrix is created as

·start:mtX.:.: O:

II the initial approximation for the inverse Hessian used in the optimization
II process and a vector, fx, indicating which of the entries in the state-space
II A matrices are at the stability upper bound. p i and lambda are passed to
II the COST function which returns the initial values of:
II Ch - the total cost
II jho - the performance cost
II jhl - the tracking cost
II gradi - gradient of the total cost
II gradO - gradient of the performance cost
II gradi - gradient of the traCking cost
/!
II These values are stored in 'inter.dat' the Cile for intermediate results.
II 'start .dat ' contains a record of the starting configuration.
/!
II The parameters are passed to PARTITION which carries out the optimization.
II This procedure reads the data it needs from the file' inter.dat' and
II returns the optimized paramter vector p opt.
1/ This final vector is split into the optImized airframe and engine
II controllers ska opt and ske opt, which are the tinal output of
I I the program. - -

II Created by Phil Schmidt and students Nader Kamrani and Brian Holawecky at
II The University of Akron with the support of NASA Lewis Research Center
II under grant NAG-3-1146.

'inter.dat' p i fh jhO jhl gradl gradO gradl hi fx lambda;
II If a dummy feedback for ya or ye was added, then remove It
if lya-O, [r,cl-slze(ska opt); ska opt-ska opt(:,l:c-l); end;
if lye-O, [r,c)-slze (ske-opt); ske- opt-ske- opt (: ,l:c-l); end;
// save flnal data - - -
save'inter.dat' p_i fh jhO jhl gradl gradO gradl hi fx lambda ska_opt ske_opt;

retC

// The UDf start.mtx is the main routine Cor the controller partitioning
II program. It expects the Input to the program to be In the dataflle
II 'init.dat', and requires certain data to be there.
// 'init,dat' contains the global controller sc, the initial partitioned
II controllers s ka and s ke, and the plant sp along with their orders nsc,
// ns ka, ns ke,-and np resp. It also contains the number o[intermediate
1/ variables- pea and the range of frequencies for calculating norms frq. The
/1 optional weighting matrices swl and swo (for Input andlor output weighting)
1/ may be included (default - Id In both cases) as may la andlor Ie, the
/1 numbers of neg. feedback variables (If these are absent, then the code
1/ Inserts dummy values of 1 and loads appropriate zeros In the data matrices.)
II stabil - upper bound for eigenvalues of Aa and Ae to assure stability is
1/ also contained In inlt.dat (I! missing, defaults to -le-9).
II
II The code gives the option of fixing values of either subcontroller If
1/ optimization over the parameters In only one subcontroller is desired.
II
II The option is also given to fix certain ot the 0 submatrlces.
//
II The subcontrollers are put Into a modified modal form where the A matrices
II consist of 2x2 companion blocks and the first column of the B matrix is

" II tlxed to its initial value (or le-9 if this Initial value Is zero). These
~ II are then split to identify the state space representations trom Inputs to

1/ outputs using Intermediate variables.
II Here the moditlcatlons are made to account tor the absence of la andlor Ie.
II
II The logarithmic frequency range over which the cost function Is evaluated is
1/ created as Omega. The vector of Weights used in Simpson's Rule Integration
II is also calculated.
/!
II The state-space representation for the nominal "command-tracking"
1/ transfer matrix Tcent:zac to zea Is computed, sg. Its row norms are stored
II to ~e used as normalizations In the fTrack part ot the cost tunctlon.
/!
II The tile 'cons t.dat' contains constants --- the numbers ot subcontroller
II Inputs, ma and me; outputs, ka and ke; and Intermediate variables, pea;
II the numbers ot negative feedbacks trom the plant (lya/lye relects the actual
/! numbers, 1. e . 0 If la resp Ie were absent In 'Inlt.dat'. In this case lalle
II would contain the dummy value 1). further constants are the state space
// matrices tor the plant, sp; the centralized controller, ski the
1/ nominal tracking transfer matrix, sg: the freqUency weighting matrices,
II swl and swo; and their orders --- np, nk, ng, and nw along with the orders
II of the subcontroll er s nka and nke; plus the frequency range, trq; the
II vector of trequencles, omega; t he weights for Simpson's Rule, weight; and
II the vector of row norms for the nominal tracking transfer matrix. Other
1/ co nsta nts are t he va lues of the 0 subcontroller submatrl ces which are fixed
1/ equal to the corre s ponding sUbmatrlces of the state space representation
II for the centralized controller; the first columns of the subcontroller B
1/ matrices which are fixed by the modi canonical torm; and finally, the
/1 values of skaO and skeO which are used In case the appropriate subcontroller
II Is fixed. atot Indicates the sum of orders of the subcontroller state-space
II matrices which are not fixed.
II
II The Initial system matrices for the subcontrollers skaO and skeO are put
II Into the form o[a parameter vector p_l, an identity matrix Is created as

--- --- ------ -- -----~.----

:":."

::::. start~mtx · .. ·: .::..
II the Initial approximation tor the Inverse Hessian used In the optimization
II process and a vector, fx, Indicating which of the entries in the state-space
II A matrices are at the stability upper bound. p I and lambda are passed to
II the COST [unction which returns the Initial values of:
/1 th - the total cost
II jho - the performance cost
II jhl - the tracking cost
II gradl - gradient of the total cost
II gradO - gradient ot the performance cost
/1 gradi - gradient of the tracking cost
/!
II These values are stored In 'Inter.dat' the tile for Intermediate results .
II 'start.dat ' contains a record ot the starting contlguratlon.
II
II The parameters are passed to PARTITION which carries out the optimization.
II This procedure reads the data It needs from the file' Inter.dat' and
II returns the optimized paramter vector p opt.
II This final vector Is split Into the optimized airframe and engine
II controllers ska_opt and ske_opt, which are the final output of
1/ the program.

II Created by Phil Schmidt and students Nader Kamranl and Brian Holawecky at
II The University of Akron with the support of NASA Lewis Research Center
II under grant NAG-3-1146.

~

'-----

:, ::.

II<zer> - z(nrow,ncol)
II Construct a matrix of zeros of ~ize nrow x ncol. This is done so that

II less space is taken within the main program

II Input:
II nrow - number of rows
II ncol - number of columns
II Output:
II zer - the zero matrix of the desired size (nrow,ncol)

zer-O'ones(nrow,ncol);

retf

II Created by Phil Schmidt at The University of Akron with the support

II of NASA Lewis Research Center under grant NAG-3-1146.

_~I ---- ------- ---

II<zer> - z(nrow,ncol)
II Construct a matrIx of zeros of ~lze nrow x ncol. This Is done so that

II less space is taken within the main program

II Input :
II nrow - number of rows
1/ ncol - number of columns
II Output:
II zer - the zero matrix of the desired size (nrow,ncol)

zer-O'ones(nrow,ncol);

ret!

1/ Created by Phil Schmidt at The Universit y of Akron with the support

II ot NASA Lewis Research Center under grant NAG-3- 1146.

---~-~-- --- --

l

_ _______ _ _ c_ _ ~ _. ___ _

ApPENDIX IV

DATA FOR E X AM PLE

65

l

_ _______ _ _ c_ _ ~ _. ___ _

ApPENDIX IV

DATA FOR E X AM PLE

65

The data file INIT.DAT corresponding to the example contains the following:

PEA = 1 - number of interface variables

FRQ = [0 .1; 100; 41] - describes the frequency range of 41 points between 0.1 and 100

NP = 13 - order of the integrated plant

NSC = 13 - order of the centralized controller

NS...KA = 10 - order of the airframe sub controller

NS...KE = 7 - order of the engine sub controller

NWI = 26 - order of the input weighting transfer matrix

NTRACK =

[6 .1823D - 01 6.3153D - 01 6.4195D - 01

6.9179D - 01 7.1732D - 01
9.6037D - 01 1.0534D + 00
9.9744D - 01 8.3547D - 01
4.6326D - 01 4.5302D - 01
4.7282D - 01 4.9653D - 01

1.2933D + 00 1.9711D + 00

1.2067D + 01 1.9074D + 01

6.5131D - 01 6.6139D - 01

7.5413D - 01 8.0582D - 01

L1326D + 00 1.1646D + 00
6.8055D - 01 5.6432D - 01

4.5255D - 01 4.5595D - 01

5.5002D - 01 6.6494D - 01

3.0733D + 00 4.8371D + 00

3.0171D + 01 4.7762D + 01

6.7411D - 01· · .

8.7492D - 01 . . .

1. 1194D + 00 ·· ·
4.9513D - 01 · · .
4.6188D - 01 . ..
8.9018D - 01 . . .

7.6375D + 00· · .

7.5645D + 01 r
- 41 x 1 vector of tracking weights (The size of NTRACK is FRQ(3) x PEA .)

SP (listed below) - state-space matrix for the integrated plant transfer matrix

SC (listed below) - state-space matrix for the centralized controller transfer matrix

S...KA (listed below) - state-space matrix for the initial airframe sub controller transfer matrix

S...KE (listed below) - state-space matrix for the initial engine sub controller transfer matrix

SWI (described below) - state-space matrix for the input weighting transfer matrix transfer matrix

The data matrices and initial partitioning matrices for the controller partitioning example are listed below. In all cases

the given matrices A, B, C and D correspond to the state-space representation of the given system or subsystem

dx
cit = Ax+By

u = Cx+Dy.

The state-space matrix for this system is S where S = [~ ~].
66

1
I

1

I
I

I

The data file INIT.DAT corresponding to the example contains the following:

PEA = 1 - number of interface variables

FRQ = [0 .1; 100; 41] - describes the frequency range of 41 points between 0.1 and 100

NP = 13 - order of the integrated plant

NSC = 13 - order of the centralized controller

NS...KA = 10 - order of the airframe sub controller

NS...KE = 7 - order of the engine sub controller

NWI = 26 - order of the input weighting transfer matrix

NTRACK =

[6 .1823D - 01 6.3153D - 01 6.4195D - 01

6.9179D - 01 7.1732D - 01
9.6037D - 01 1.0534D + 00
9.9744D - 01 8.3547D - 01
4.6326D - 01 4.5302D - 01
4.7282D - 01 4.9653D - 01

1.2933D + 00 1.9711D + 00

1.2067D + 01 1.9074D + 01

6.5131D - 01 6.6139D - 01

7.5413D - 01 8.0582D - 01

L1326D + 00 1.1646D + 00
6.8055D - 01 5.6432D - 01

4.5255D - 01 4.5595D - 01

5.5002D - 01 6.6494D - 01

3.0733D + 00 4.8371D + 00

3.0171D + 01 4.7762D + 01

6.7411D - 01· · .

8.7492D - 01 . . .

1. 1194D + 00 ·· ·
4.9513D - 01 · · .
4.6188D - 01 . ..
8.9018D - 01 . . .

7.6375D + 00· · .

7.5645D + 01 r
- 41 x 1 vector of tracking weights (The size of NTRACK is FRQ(3) x PEA .)

SP (listed below) - state-space matrix for the integrated plant transfer matrix

SC (listed below) - state-space matrix for the centralized controller transfer matrix

S...KA (listed below) - state-space matrix for the initial airframe sub controller transfer matrix

S...KE (listed below) - state-space matrix for the initial engine sub controller transfer matrix

SWI (described below) - state-space matrix for the input weighting transfer matrix transfer matrix

The data matrices and initial partitioning matrices for the controller partitioning example are listed below. In all cases

the given matrices A, B, C and D correspond to the state-space representation of the given system or subsystem

dx
cit = Ax+By

u = Cx+Dy.

The state-space matrix for this system is S where S = [~ ~].
66

1
I

1

I
I

I

The integrated airframe propulsion system with integrator augmentat ion is represented by SP = [~; ~~] where

AP=

- 4.40E - 2

- 2.27E- 1
- 3.09E - 3

o
1.42E - 1

7.78E - 1

1.51E - 1

7.93E - 1

- 1.00E - 1

o
o
o
o

[

4.89;-2

CP = 0
o

1.21E- 4

3.60E - 2

- 4.46E- 1

1.51E- 2

o
- 9.89E - 1

1.54E-1

3.00E - 2

1.57E-1

- 1.99E-2

o
o
o
o

BP =

-3.85£+1
1.94£+2

-1.94£-1
1.00£+0

o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o

-3.18£+1
-4 .59£+0
-4.81£-4

o
2.00E+2

o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o

1.40£-2
5.19E- 4

2.56£-5
o
o

-8.48£-2
-1.65£-2
-3.50E- 1

1.09E- 2

o
o
o
o

2.25£-3
-2.95E-6
2.67 E- 6

o
o

1.16E+1

1.03E+1
8.47E- 1

-1.06E+O
o
o
o
o

o
o
o
o
o
o
o
o
o
o
o
o

1.00£+0
o 1.00E+o

o
o
o
o
o
o
o
o
o
o
o

9.70E - 3

o
o
o

2.40E - 5

1.00£+0

o
1.71£+1

o
o
o

o
o

o
1.71£+0

o
o
o

o
o

o
o
o
o

1.20E-3

67

1.00E+o

o

o
o

1.74£-3
o

3.45E - 5

3.14E-4

-1.57E- 5

9.46£-7
o
o

-4.19E+o
4.26£-1
2.29£-1
3.74£-2

o
o
o
o

1.71E- 1

6.17E- 5

2.75£-4
o
o

7.34£+2
2.68£+2
9.06E+1
8.21£+2

- 1.00E-2

o
o
o

o
o
o
o

2.31E- 5

o
o
o
o

1.92E-4

2.59£-4
-2.10E- 6

3.74£-7
o
o

6.02£+0
-5.70E+o

1.15£-1
-1.03E- 1

o
o
o
o

-1.02E+ 1

-1.46E- 2

5.33E-3

o
o
o
o

-2.15£+3
o
o

-1.00E-2

o
o

o
o
o

2.04E- 1

3.15E-3

o
o
o
o

1.47 E-3

3.81£-2
1.82£-4
3.66E- 5

o
o

-3.43£+2
2.71E+1

-9.02E+1
-7.95E+o

o
o
o
o

6.91E+o
7.lOE-3

-8.38E-3

o
o
o
o

-2.58E+3

o
o
o

-1.00E- 2

o

o
o
o
o

-8.53E-1

-4.18E-3

-5.45E+o

-7.97E- 1
o
o
o

o
o
o
o
o
o

-1.00E- 2

~ ~ol 5.68E-1

The integrated airframe propulsion system with integrator augmentat ion is represented by SP = [~; ~~] where

AP=

- 4.40E - 2

- 2.27E- 1
- 3.09E - 3

o
1.42E - 1

7.78E - 1

1.51E - 1

7.93E - 1

- 1.00E - 1

o
o
o
o

[

4.89;-2

CP = 0
o

1.21E- 4

3.60E - 2

- 4.46E- 1

1.51E- 2

o
- 9.89E - 1

1.54E-1

3.00E - 2

1.57E-1

- 1.99E-2

o
o
o
o

BP =

-3.85£+1
1.94£+2

-1.94£-1
1.00£+0

o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o

-3.18£+1
-4 .59£+0
-4.81£-4

o
2.00E+2

o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o

1.40£-2
5.19E- 4

2.56£-5
o
o

-8.48£-2
-1.65£-2
-3.50E- 1

1.09E- 2

o
o
o
o

2.25£-3
-2.95E-6
2.67 E- 6

o
o

1.16E+1

1.03E+1
8.47E- 1

-1.06E+O
o
o
o
o

o
o
o
o
o
o
o
o
o
o
o
o

1.00£+0
o 1.00E+o

o
o
o
o
o
o
o
o
o
o
o

9.70E - 3

o
o
o

2.40E - 5

1.00£+0

o
1.71£+1

o
o
o

o
o

o
1.71£+0

o
o
o

o
o

o
o
o
o

1.20E-3

67

1.00E+o

o

o
o

1.74£-3
o

3.45E - 5

3.14E-4

-1.57E- 5

9.46£-7
o
o

-4.19E+o
4.26£-1
2.29£-1
3.74£-2

o
o
o
o

1.71E- 1

6.17E- 5

2.75£-4
o
o

7.34£+2
2.68£+2
9.06E+1
8.21£+2

- 1.00E-2

o
o
o

o
o
o
o

2.31E- 5

o
o
o
o

1.92E-4

2.59£-4
-2.10E- 6

3.74£-7
o
o

6.02£+0
-5.70E+o

1.15£-1
-1.03E- 1

o
o
o
o

-1.02E+ 1

-1.46E- 2

5.33E-3

o
o
o
o

-2.15£+3
o
o

-1.00E-2

o
o

o
o
o

2.04E- 1

3.15E-3

o
o
o
o

1.47 E-3

3.81£-2
1.82£-4
3.66E- 5

o
o

-3.43£+2
2.71E+1

-9.02E+1
-7.95E+o

o
o
o
o

6.91E+o
7.lOE-3

-8.38E-3

o
o
o
o

-2.58E+3

o
o
o

-1.00E- 2

o

o
o
o
o

-8.53E-1

-4.18E-3

-5.45E+o

-7.97E- 1
o
o
o

o
o
o
o
o
o

-1.00E- 2

~ ~ol 5.68E-1

The augmented plant state variables are

x = [u, w, q, B, h, N2R, N25, P6 , T41B ,E>TV, W F, A78, AS)

where

u = aircraft body axis forward velocity, ft/s

w = aircraft body axis vertical velocity, ft/s

q = aircraft pitch rate, rad/s

B = pitch attitude, deg

h = altitude, ft

N2R = engine fan speed , rpm

N25 = core compressor speed , rpm

P6 = engine mixing plane pressure, psia

T41B = engine high pressure turbine blade temperature, 0 R

0TV = normalized thrust vectoring angle , deg/l0

W F = normalized engine main burner fuel flow rate, lb m/hr /500

A7S = normalized thrust reverser port area, in2 /50

A8 = normalized main nozzle throat area, in2 /100 .

v = normalized aircraft speed, ft/s/20

qv = normalized pitch variable, (q(deg/s)+0.lB(deg))/3

N2 = normalized engine fan speed , % of maximum allowable rpm at operating condition/5

EP R = normalized engine pressure ratio , ratio/0.3

The augmented plant inputs are the rates of change on normalized control variables as described in the text .

68

I

I

I

I

I

1

The augmented plant state variables are

x = [u, w, q, B, h, N2R, N25, P6 , T41B ,E>TV, W F, A78, AS)

where

u = aircraft body axis forward velocity, ft/s

w = aircraft body axis vertical velocity, ft/s

q = aircraft pitch rate, rad/s

B = pitch attitude, deg

h = altitude, ft

N2R = engine fan speed , rpm

N25 = core compressor speed , rpm

P6 = engine mixing plane pressure, psia

T41B = engine high pressure turbine blade temperature, 0 R

0TV = normalized thrust vectoring angle , deg/l0

W F = normalized engine main burner fuel flow rate, lb m/hr /500

A7S = normalized thrust reverser port area, in2 /50

A8 = normalized main nozzle throat area, in2 /100 .

v = normalized aircraft speed, ft/s/20

qv = normalized pitch variable, (q(deg/s)+0.lB(deg))/3

N2 = normalized engine fan speed , % of maximum allowable rpm at operating condition/5

EP R = normalized engine pressure ratio , ratio/0.3

The augmented plant inputs are the rates of change on normalized control variables as described in the text .

68

I

I

I

I

I

1

The centralized controller has state-space representation SC = [~g ~g] where

- 1.23E+0 -2 .00E- 1 3.63E+1 -2.43E+ 1 1.40£-2 -4.41£-4 2.59E- 4 -5 .38E-2
-3.21E-2 -4.07E- 1 -5.53E+1 -2.96£+J 5.19£-4 1.59E-5 -2.1OE-6 1.21E- 3

-2 .89E-3 1.52E- 2 -6.49E+0 -6.30E- 1 2.56E-5 1.08E-6 3.74E- 7 -8 .20E- 6

3.75E- 5 7.43E- 6 -1.34E- 2 -1.01E- 1 0 -1.80E-7 0 4.50E- 5

- 4.36E-1 -1.lOE+O 2.02E+1 2.02E+2 0 1.05E-4 0 3.17E-3

1.86E- 1 3.70E-2 1.14E+1 1.14E+0 -8.48E- 2 -7.78E+0 6.02E+O -2.20E+2

AC= -1.78E-1 -3 .53E-2 1.07E+o 1.07 E-1 - 1.65E- 2 -9.61E-1 -5.70E+O -2.47E+1

7.88E- 1 1.56E-1 -2 .86E-1 -2.86£-2 -3 .50£-1 2.38E- 1 1.15E-1 -9.87E+1
-2.46E-1 -4 .88£-2 -1.26E+o -1.26E-1 1.09E-2 -7.49E- 1 -·1.03E-1 -2.86E+1
-1.32E-1 1.00E+o 1.73E+3 1.73£+2 1.79E-3 2.70E-5 8.48£-6 -8.94£-4
-3.77E-2 -7 .60£-3 -4.04E- 1 7.47 £-2 1.76£-3 -1.09E-1 -6.16E-2 -2.72E-1
3.80£+0 7.08E- 1 -2.26£+1 -2.41£+1 -9.57E- 3 -1.18E-2 -1.24£-3 8.23£+0

-3 .06E+o - 5.68E-1 1.96E+1 2.00£+1 - 3.12E- 2 -1.39E-2 -1.29E-3 9.88E+o

2.25E-3 -4.18E-3 1.71E-1 -1.02E+1 6.91E+o
-2 .95E- 6 -5.45E+o 6.17E-5 -1.46E- 2 7.lOE-3

2.67 E-6 -7.97E-1 2.75E-4 5.33E-3 -8.38E-3
0 0 0 0 0
0 0 0 0 0

1.16E+1 0 7.34E+2 0 0
1.03E+1 0 2.68E+2 0 0
8.47 E- 1 0 9.06E+1 -2.15E+3 -2.58E+3

-1.06E+o 0 8.21E+2 0 0
9.44E- 5 -5.24E+1 1.06E- 2 4.16E- 1 -3.58E-1

-2.14E-1 1.06E-2 -2.33E+1 3.64E+o 4.31E+o
2.76E- 2 4.16E- 1 3.64E+O -1.25E+2 -1.37E+2

3.27E- 2 -3.58E-1 4.31E+O -1.37 E+2 -1.76E+2

2.43E+1 -4.36E+o 4.33£-1 4.51E- 1

-3.99E+O 1.45E+1 -1.81E- 2 -5.07E-3
-4.13E- 3 3.66£-1 -7.81£-5 2.19£-4
-7.66E-4 5.89£-2 1.03E-4 -2.20E-4

1.18E+1 -1.17 E+o -6.02E-2 -1.55E-2

DC= [~
0 0

~l
1.20E+1 -6 .68£-1 2.05E+3 -6 .00E+2

BC= 6.74E+o -6 .23£-2 7.95E+2 2.54E+2 0 0

1.08E- 1 1.66E-2 -5.12E+o 4.16E+1 0 0

2.97E+o 7.34E- 2 4.50E+2 1.01 E+2 0 0

-1.55E- 1 -1.24E+o 1.74E-3 9.36£-4
1.05E- 2 6.63£-4 1.16E+o 4.47 E-1

-9.50£-1 1.18E- 1 2.94£-1 -7.46E-1
7.96£-1 -9.98E-2 3.36£-1 -8.97E- 1

[1.40E-' -1.00E+o -1.71£+3 -1.71E+2 -1.79£-3 -3.o1E- 5 -8.48E-6 7.03E-4

3.72E-2 7.50£-3 3.93E-1 -7.58£-2 -1.76E-3 1.07 E- 1 6.16E-2 1.81E-1
CC = -3.76£+0 -6.99E- 1 2.05E+1 2.39£+1 9.57E-3 1.12£-2 1.24£-3 -8.08£+0

3.02E+o 5.60E- 1 -1.79E+ 1 -1.98£+1 3.12£-2 1.33£-2 1.29E-3 -9.70E+o
-9.44£-5 5.24£+1 -1.06E-2 -4.16E-1 3.58E-' 1

2.14£-1 -1.06E- 2 2.33E+1 -3.64£+0 -4.31£+0 ...
-2.76E- 2 -4.16E- 1 -3.64E+o 1.25E+2 1.37 E+2

-3.27£-2 3.58E- 1 -4.31E+o 1.37E+2 1.76£+2

69

The centralized controller has state-space representation SC = [~g ~g] where

- 1.23E+0 -2 .00E- 1 3.63E+1 -2.43E+ 1 1.40£-2 -4.41£-4 2.59E- 4 -5 .38E-2
-3.21E-2 -4.07E- 1 -5.53E+1 -2.96£+J 5.19£-4 1.59E-5 -2.1OE-6 1.21E- 3

-2 .89E-3 1.52E- 2 -6.49E+0 -6.30E- 1 2.56E-5 1.08E-6 3.74E- 7 -8 .20E- 6

3.75E- 5 7.43E- 6 -1.34E- 2 -1.01E- 1 0 -1.80E-7 0 4.50E- 5

- 4.36E-1 -1.lOE+O 2.02E+1 2.02E+2 0 1.05E-4 0 3.17E-3

1.86E- 1 3.70E-2 1.14E+1 1.14E+0 -8.48E- 2 -7.78E+0 6.02E+O -2.20E+2

AC= -1.78E-1 -3 .53E-2 1.07E+o 1.07 E-1 - 1.65E- 2 -9.61E-1 -5.70E+O -2.47E+1

7.88E- 1 1.56E-1 -2 .86E-1 -2.86£-2 -3 .50£-1 2.38E- 1 1.15E-1 -9.87E+1
-2.46E-1 -4 .88£-2 -1.26E+o -1.26E-1 1.09E-2 -7.49E- 1 -·1.03E-1 -2.86E+1
-1.32E-1 1.00E+o 1.73E+3 1.73£+2 1.79E-3 2.70E-5 8.48£-6 -8.94£-4
-3.77E-2 -7 .60£-3 -4.04E- 1 7.47 £-2 1.76£-3 -1.09E-1 -6.16E-2 -2.72E-1
3.80£+0 7.08E- 1 -2.26£+1 -2.41£+1 -9.57E- 3 -1.18E-2 -1.24£-3 8.23£+0

-3 .06E+o - 5.68E-1 1.96E+1 2.00£+1 - 3.12E- 2 -1.39E-2 -1.29E-3 9.88E+o

2.25E-3 -4.18E-3 1.71E-1 -1.02E+1 6.91E+o
-2 .95E- 6 -5.45E+o 6.17E-5 -1.46E- 2 7.lOE-3

2.67 E-6 -7.97E-1 2.75E-4 5.33E-3 -8.38E-3
0 0 0 0 0
0 0 0 0 0

1.16E+1 0 7.34E+2 0 0
1.03E+1 0 2.68E+2 0 0
8.47 E- 1 0 9.06E+1 -2.15E+3 -2.58E+3

-1.06E+o 0 8.21E+2 0 0
9.44E- 5 -5.24E+1 1.06E- 2 4.16E- 1 -3.58E-1

-2.14E-1 1.06E-2 -2.33E+1 3.64E+o 4.31E+o
2.76E- 2 4.16E- 1 3.64E+O -1.25E+2 -1.37E+2

3.27E- 2 -3.58E-1 4.31E+O -1.37 E+2 -1.76E+2

2.43E+1 -4.36E+o 4.33£-1 4.51E- 1

-3.99E+O 1.45E+1 -1.81E- 2 -5.07E-3
-4.13E- 3 3.66£-1 -7.81£-5 2.19£-4
-7.66E-4 5.89£-2 1.03E-4 -2.20E-4

1.18E+1 -1.17 E+o -6.02E-2 -1.55E-2

DC= [~
0 0

~l
1.20E+1 -6 .68£-1 2.05E+3 -6 .00E+2

BC= 6.74E+o -6 .23£-2 7.95E+2 2.54E+2 0 0

1.08E- 1 1.66E-2 -5.12E+o 4.16E+1 0 0

2.97E+o 7.34E- 2 4.50E+2 1.01 E+2 0 0

-1.55E- 1 -1.24E+o 1.74E-3 9.36£-4
1.05E- 2 6.63£-4 1.16E+o 4.47 E-1

-9.50£-1 1.18E- 1 2.94£-1 -7.46E-1
7.96£-1 -9.98E-2 3.36£-1 -8.97E- 1

[1.40E-' -1.00E+o -1.71£+3 -1.71E+2 -1.79£-3 -3.o1E- 5 -8.48E-6 7.03E-4

3.72E-2 7.50£-3 3.93E-1 -7.58£-2 -1.76E-3 1.07 E- 1 6.16E-2 1.81E-1
CC = -3.76£+0 -6.99E- 1 2.05E+1 2.39£+1 9.57E-3 1.12£-2 1.24£-3 -8.08£+0

3.02E+o 5.60E- 1 -1.79E+ 1 -1.98£+1 3.12£-2 1.33£-2 1.29E-3 -9.70E+o
-9.44£-5 5.24£+1 -1.06E-2 -4.16E-1 3.58E-' 1

2.14£-1 -1.06E- 2 2.33E+1 -3.64£+0 -4.31£+0 ...
-2.76E- 2 -4.16E- 1 -3.64E+o 1.25E+2 1.37 E+2

-3.27£-2 3.58E- 1 -4.31E+o 1.37E+2 1.76£+2

69

Th . . . 1 d f h . f 11 ' h . S KA [A_KA B..KA] e Imtla partltIOnmg conslsie 0 t e aIr rame contro er WIt representatIOn - = C...KA D...KA of order 10

d . 11 ' h . S KE [AJ{E B_KE] f d 7 Tl ' " I .. . b . d b an an engme contro er WIt representat IOn - = C_KE D_KE 0 or er . lie mltla partltlOmng was 0 tame y

the procedure of reference [2]. This partitioning is not in the minimal parameter form . The submatrices in the initial

partitioning are:

-5.87E+l
4.14E+l

-1.63E+0

0

A...KA=
0
0
0
0
0
0

and

A...KE=

-4 .14E+l
-7 .77E-2

5.71E- 2

0
0
0
0
0
0
0

1.71E+o 0 0
6.28E- 2 0 0

-5 .76E-l 0 0
0
0
0
0
0
0
0

-1.21E+ I -8.59E+o
8.55E+o -1.75E- 2

-2 .16E-2 -5.98E-3
-1.22E- 2 1.96E-3

6.95E- 2 -9.91E-3
-7.86E- 2 4.73E-3

1.14E+3 4.13E+ I

2.90E-l
9.67E- 2

1.19E- 1

1.13E+3

-2.68E+l
9.22E- 1

-3.63E-l
-1.04E+2

BJ(A=
-3 .66E+l

1.51E+o

-3 .36E-l

1.90E+1

1.58E+l
-6.41E+o

2.59E+l
-6 .02E+o

o

-3.35E-l
3.16E+o

o

C..KA = [2 .68
0
E+1 9.27E-l -3 .83E-l 0

0 0 0

-3.50E+ 2 5.11E+1 0 0
-5.30E+l -1.75E-2 0 0

0 0 -1.67 E- 1 -1.90E+ 1

0 0 1.73E+ 1 -2.02E+l
0 0 1.17 E+o -1.06E+ 1

0 0 -5.29E+o 1.41E+ 1

0 0 -8.39E- l 5.67E+O

70

0
0

-- --~-----

0 0
0 0
0 0

3.37 E- 1 1.36E- 1

1.38E- 2 5.33E-3

-3.88E-2 -1.95E- 1

1.95E- I -7.55E-3
-1.98E- 1 4 .26E- 2

2.83E- 2 -1.34E- 2

-1.58E+ I -6.42E+o

0 0
0 0
0 0

-5.52E-l 1.44E- 1

-2 .18E- 2 5.76E-3

1.98E- 1 -3 .37 E- 2

4.28E- 2 -1.57E- 2

-2 .87E- 1 1.45E- 1

1.28E- 1 -4 .61E- 1

2.60E+l -6 .80E+o

D..KA = [~ ~]

0 0 0 0
1.00

0
E- 4] 0 0 0 0

0 0 0
0 0 0

-1.04E+o -4.51E-l 2.83E- 1

-1.06E+ 1 -1.03E+o - 6.57E- 2

-1.92E+ 1 1.89E+l -2 .99E+ l
1.03E+ 2 -3.59E+2 2.50E+2
3.56E+l -2.46E+2 -2.07E+l

--_ .. _--

0
0
0
0
0
0
0
0
0

- 1.00E- 2

I

I

I

!
I

Th . . . 1 d f h . f 11 ' h . S KA [A_KA B..KA] e Imtla partltIOnmg conslsie 0 t e aIr rame contro er WIt representatIOn - = C...KA D...KA of order 10

d . 11 ' h . S KE [AJ{E B_KE] f d 7 Tl ' " I .. . b . d b an an engme contro er WIt representat IOn - = C_KE D_KE 0 or er . lie mltla partltlOmng was 0 tame y

the procedure of reference [2]. This partitioning is not in the minimal parameter form . The submatrices in the initial

partitioning are:

-5.87E+l
4.14E+l

-1.63E+0

0

A...KA=
0
0
0
0
0
0

and

A...KE=

-4 .14E+l
-7 .77E-2

5.71E- 2

0
0
0
0
0
0
0

1.71E+o 0 0
6.28E- 2 0 0

-5 .76E-l 0 0
0
0
0
0
0
0
0

-1.21E+ I -8.59E+o
8.55E+o -1.75E- 2

-2 .16E-2 -5.98E-3
-1.22E- 2 1.96E-3

6.95E- 2 -9.91E-3
-7.86E- 2 4.73E-3

1.14E+3 4.13E+ I

2.90E-l
9.67E- 2

1.19E- 1

1.13E+3

-2.68E+l
9.22E- 1

-3.63E-l
-1.04E+2

BJ(A=
-3 .66E+l

1.51E+o

-3 .36E-l

1.90E+1

1.58E+l
-6.41E+o

2.59E+l
-6 .02E+o

o

-3.35E-l
3.16E+o

o

C..KA = [2 .68
0
E+1 9.27E-l -3 .83E-l 0

0 0 0

-3.50E+ 2 5.11E+1 0 0
-5.30E+l -1.75E-2 0 0

0 0 -1.67 E- 1 -1.90E+ 1

0 0 1.73E+ 1 -2.02E+l
0 0 1.17 E+o -1.06E+ 1

0 0 -5.29E+o 1.41E+ 1

0 0 -8.39E- l 5.67E+O

70

0
0

-- --~-----

0 0
0 0
0 0

3.37 E- 1 1.36E- 1

1.38E- 2 5.33E-3

-3.88E-2 -1.95E- 1

1.95E- I -7.55E-3
-1.98E- 1 4 .26E- 2

2.83E- 2 -1.34E- 2

-1.58E+ I -6.42E+o

0 0
0 0
0 0

-5.52E-l 1.44E- 1

-2 .18E- 2 5.76E-3

1.98E- 1 -3 .37 E- 2

4.28E- 2 -1.57E- 2

-2 .87E- 1 1.45E- 1

1.28E- 1 -4 .61E- 1

2.60E+l -6 .80E+o

D..KA = [~ ~]

0 0 0 0
1.00

0
E- 4] 0 0 0 0

0 0 0
0 0 0

-1.04E+o -4.51E-l 2.83E- 1

-1.06E+ 1 -1.03E+o - 6.57E- 2

-1.92E+ 1 1.89E+l -2 .99E+ l
1.03E+ 2 -3.59E+2 2.50E+2
3.56E+l -2.46E+2 -2.07E+l

--_ .. _--

0
0
0
0
0
0
0
0
0

- 1.00E- 2

I

I

I

!
I

B_KE=

[

-4 .12£-1
C..KE = 7.47 £+1

-4.37£+1

-8.66E+1
-5.94E-1

0
0
0
0
0

-1.44£-1
1.45E- 1

5.58£-1

0 0
0 0

1.69£-2 -1.83£+0
-1.91£+1 7.38£-1
-5.75E+o 5.45E+o

5.49£+0 -2.93£+1
2.51£+0 -4.48£+0

-1.81E+o -1.91£+1
1.86£-1 -6.92£-1
2.15£-1 -9.85E-1

[~
0

~] D..KE= 0
0

-5.61E+o -1.45£+0
-3.67 E+o 1.91£+1
-4.22E+O 2.28E+1

4.77£-1]
-3.44£+0
-3.79E+o

Recall that the input weighting transfer matrix is Wi(S) = G(s)(I +K(s)G(S))- l where G(s) and K (s) are the integrated

plant and centralized controller transfer matrices respectively. The state-space representation for this transfer matrix is too

large to list. Instead, the user can easily construct it from the following MATRIXx command applied to the state space

matrices for the integrated plant and the centralized controller

[SWI,NWI1=FEEDBACK(SC,NSC ,SP,NP) .

Notice that this command also produces the correct value for NWI, the order of the weighting transfer mat rix .

The parameter optimization algorithm for controller partitioning was applied to the problem with the initial partitioning

given by SJ<A and SJ<E as listed above and with input weighting SWI as described above. The controllers obtained from

this process had state-space representations SKA_OPT for the airframe and SKE_OPT for the engine where , as before

0 1.00E+o 0 0 0 0 0
-4.43£-2 -3.15£-1 0 0 0 0 0

0 0 0 1.00£+0 0 0 0
0 0 -7.28£+1 -1.12£+1 0 0 0

A-A_OPT =
0 0 0 0 0 1.00E+o 0
0 0 0 0 -1.72£+3 -5.91E+l 0
0 0 0 0 0 0 0
0 0 0 0 0 0 -1 .00£-5
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

1.00£+0 0 0
-3.41£+0 0 0

0 0 1.00£+0
0 -9.96£-3 -1.99£-1

71

B_KE=

[

-4 .12£-1
C..KE = 7.47 £+1

-4.37£+1

-8.66E+1
-5.94E-1

0
0
0
0
0

-1.44£-1
1.45E- 1

5.58£-1

0 0
0 0

1.69£-2 -1.83£+0
-1.91£+1 7.38£-1
-5.75E+o 5.45E+o

5.49£+0 -2.93£+1
2.51£+0 -4.48£+0

-1.81E+o -1.91£+1
1.86£-1 -6.92£-1
2.15£-1 -9.85E-1

[~
0

~] D..KE= 0
0

-5.61E+o -1.45£+0
-3.67 E+o 1.91£+1
-4.22E+O 2.28E+1

4.77£-1]
-3.44£+0
-3.79E+o

Recall that the input weighting transfer matrix is Wi(S) = G(s)(I +K(s)G(S))- l where G(s) and K (s) are the integrated

plant and centralized controller transfer matrices respectively. The state-space representation for this transfer matrix is too

large to list. Instead, the user can easily construct it from the following MATRIXx command applied to the state space

matrices for the integrated plant and the centralized controller

[SWI,NWI1=FEEDBACK(SC,NSC ,SP,NP) .

Notice that this command also produces the correct value for NWI, the order of the weighting transfer mat rix .

The parameter optimization algorithm for controller partitioning was applied to the problem with the initial partitioning

given by SJ<A and SJ<E as listed above and with input weighting SWI as described above. The controllers obtained from

this process had state-space representations SKA_OPT for the airframe and SKE_OPT for the engine where , as before

0 1.00E+o 0 0 0 0 0
-4.43£-2 -3.15£-1 0 0 0 0 0

0 0 0 1.00£+0 0 0 0
0 0 -7.28£+1 -1.12£+1 0 0 0

A-A_OPT =
0 0 0 0 0 1.00E+o 0
0 0 0 0 -1.72£+3 -5.91E+l 0
0 0 0 0 0 0 0
0 0 0 0 0 0 -1 .00£-5
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

1.00£+0 0 0
-3.41£+0 0 0

0 0 1.00£+0
0 -9.96£-3 -1.99£-1

71

-3.67E-3
-1.24E- 2

1.31E+5
8.50E+4

-4 .23E- 1

-6.84E+o
1.03E+4

-2.11E+2
2.14E-1

-7.97E-2

-5.45E+3

1.60E+3

-9.08E+3
-2.58E+4

2.03E+1
9.54E+ 2

-1.84E+3

4.55E+2
6.51E+3

-6 .50E+2

[
2.82E- 1 -2.94E-3]

D..ADPT = 8.98E-4 -1.59E-3

[
-3.86E-5 -1.06E-4 -4.69E- 5 -5.57£-6 -9.82E+o -5.41E- 1 -1.85E-6

C...A_OPT = 2.49E-4 2.03E-3 1.91E-6 -1.28E-5 -2 .99E-3 2.17E-4 7.65E-5

4.09E- 4 6.44E-2
. . . -2.63E-4 -1.59E- 2

6.46E- 1]
-1.57 E- 1

The optimized engine controller has state-space representation

A..E_OPT =

0 1.00E+O 0
-2.12E+2 -1.65E+1

0
0
0
0
0

1.00E- 9

1.00E- 9

1.00E- 9

1.00E- 9

1.32E+1

-1.05E+ 2

8.96E+1

0
0
0
0
0

-2.53E+1
9.38E+1
3.75E+o
1.67E+3

-1.35E+1

1.94E+2

-3.56E-l

0
0

-7.15E+4

0
0
0

5.04E+ o

-7.78E+1
-1.56E+1
-7.69E+3

2.95E+o
-4 .60E+1

8.92E- 2

0 0 0 0
0 0 0 0

1.00E+O 0 0 0
-3 .89E+2 0 0 0

0 0 1.00E+o 0
0 -1 .20E+2 -2.35E+1 0
0 0 0 -3 .41£+2

[

5.82E- 1 1.72E+o 1.41E- 2
]

D_LOPT = -2.04E+o 1.48E+o 1.10E- 1

6.64E+o -6 .93E-1 1.03E- 2

C..E_OPT = 1.97 E+o 1.44E- l 8.80E+O 5.88E- 2 2.14E+l
[

-4.65E+0 - 1.07E+0 -1.42E- l -9.50E-4 2.52E+l
1.46E+o -7.44E+ l
3.36E+O 5.68£- 1]

-1.62E+0 -1.10E-l 1.01E+l 6.27 E- 2 -1.92E+l -1.37 E +o 4.47 E+ 1

I

I

I
I

Residualization of high frequency modes was applied to the optimized engine controller to reduce it to one with order 4)

(not shown here because it is easily obtained) . Balanced model reduction was applied to the optimized airframe controller

to reduce it to one of order 6 . The optimization procedure was applied to this sixth order sub controller with the engine

controller fixed at the one of fourth order . The resulting reduced order optimized airframe sub controller is

0 1.00E+o 0 0 0 0 -2.81E- l 8.98E- 2

-2 .84E+o -4.39E+l 0 0 0 0 -1.39E-2 1.18£-1

0 0 0 1.00E+o 0 0 1.29E+o -5.50E+o

S KAred = 0 0 -1.71E+3 -6.19E+1 0 0 - 1.53E+1 -9 .18E+2
0 0 0 0 0 1.00E+o 1.38E+o -1.20E- 1

0 -6 .92E+ 1 -1.1 8E+ 1 -5 .03E+o 5.95E- 1

-1.87 E- l -7 .05E+o 7.83E+o 7.95E- l 3.43E+ 1 1.28E+O -3 .24E+o 5.62E- 1

-1.95E+o 1.40E+1 2.99E- 2 8.66E- 4 - 8. 63E+o - 2.28E+o 1.60E-3 -2 .25E-3

72

j

-3.67E-3
-1.24E- 2

1.31E+5
8.50E+4

-4 .23E- 1

-6.84E+o
1.03E+4

-2.11E+2
2.14E-1

-7.97E-2

-5.45E+3

1.60E+3

-9.08E+3
-2.58E+4

2.03E+1
9.54E+ 2

-1.84E+3

4.55E+2
6.51E+3

-6 .50E+2

[
2.82E- 1 -2.94E-3]

D..ADPT = 8.98E-4 -1.59E-3

[
-3.86E-5 -1.06E-4 -4.69E- 5 -5.57£-6 -9.82E+o -5.41E- 1 -1.85E-6

C...A_OPT = 2.49E-4 2.03E-3 1.91E-6 -1.28E-5 -2 .99E-3 2.17E-4 7.65E-5

4.09E- 4 6.44E-2
. . . -2.63E-4 -1.59E- 2

6.46E- 1]
-1.57 E- 1

The optimized engine controller has state-space representation

A..E_OPT =

0 1.00E+O 0
-2.12E+2 -1.65E+1

0
0
0
0
0

1.00E- 9

1.00E- 9

1.00E- 9

1.00E- 9

1.32E+1

-1.05E+ 2

8.96E+1

0
0
0
0
0

-2.53E+1
9.38E+1
3.75E+o
1.67E+3

-1.35E+1

1.94E+2

-3.56E-l

0
0

-7.15E+4

0
0
0

5.04E+ o

-7.78E+1
-1.56E+1
-7.69E+3

2.95E+o
-4 .60E+1

8.92E- 2

0 0 0 0
0 0 0 0

1.00E+O 0 0 0
-3 .89E+2 0 0 0

0 0 1.00E+o 0
0 -1 .20E+2 -2.35E+1 0
0 0 0 -3 .41£+2

[

5.82E- 1 1.72E+o 1.41E- 2
]

D_LOPT = -2.04E+o 1.48E+o 1.10E- 1

6.64E+o -6 .93E-1 1.03E- 2

C..E_OPT = 1.97 E+o 1.44E- l 8.80E+O 5.88E- 2 2.14E+l
[

-4.65E+0 - 1.07E+0 -1.42E- l -9.50E-4 2.52E+l
1.46E+o -7.44E+ l
3.36E+O 5.68£- 1]

-1.62E+0 -1.10E-l 1.01E+l 6.27 E- 2 -1.92E+l -1.37 E +o 4.47 E+ 1

I

I

I
I

Residualization of high frequency modes was applied to the optimized engine controller to reduce it to one with order 4)

(not shown here because it is easily obtained) . Balanced model reduction was applied to the optimized airframe controller

to reduce it to one of order 6 . The optimization procedure was applied to this sixth order sub controller with the engine

controller fixed at the one of fourth order . The resulting reduced order optimized airframe sub controller is

0 1.00E+o 0 0 0 0 -2.81E- l 8.98E- 2

-2 .84E+o -4.39E+l 0 0 0 0 -1.39E-2 1.18£-1

0 0 0 1.00E+o 0 0 1.29E+o -5.50E+o

S KAred = 0 0 -1.71E+3 -6.19E+1 0 0 - 1.53E+1 -9 .18E+2
0 0 0 0 0 1.00E+o 1.38E+o -1.20E- 1

0 -6 .92E+ 1 -1.1 8E+ 1 -5 .03E+o 5.95E- 1

-1.87 E- l -7 .05E+o 7.83E+o 7.95E- l 3.43E+ 1 1.28E+O -3 .24E+o 5.62E- 1

-1.95E+o 1.40E+1 2.99E- 2 8.66E- 4 - 8. 63E+o - 2.28E+o 1.60E-3 -2 .25E-3

72

j

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for th is collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of infonmation. Send comments regarding this burden estimate or any other aspect of this
collect ion of infonmation, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) , Washington , DC 20503.

1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE ~ 3, REPORT TYPE AND DATES COVERED

March 1994 Final Contractor Report
4, TITLE AND SUBTITLE 5. FUNDING NUMBERS

Computer Code for Controller Partitioning With !FPC Application
A User 's Manual

WU-5 05-62-5 0 ~ 6. A UTHOR(S)

C-NAG3-1146t
Phillip H. Schmidt and Asim Yarkhan

7 , PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

University of Akron
Akron, Ohio 44325 E-8654

9 . SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Lewis Research Center NASA CR-195291
Cleveland, Ohio 44135 -3 191

11 . SUPPLEMENTARY NOTES

Project Manager, Sanjay Garg, Instrumentation and Control Technology Division, organization code 2550, NASA
Lewis Research Center, (216) 433- 2355.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Categories 08 and 63

13. A BSTRACT (Maximum 200 words)

This is a user 's manual for the computer code for partitioning a centralized controller into decentralized subcontrollers
with applicability to Integrated FlightJPropulsion Control (!FPC). Partitioning of a centralized controller into two
subcontrollers is described and the algorithm on which the code is based is discussed. The algorithm uses parameter
optimization of a cost fu nction which is described here. The major data structures and functions are described. Specific
instructions are given. The user is led through an example of an !FPC application.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Integrated control; Centralized control; Decentralized control ; Flight control; 76
16. PRICE CODE

Propulsion control A04

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIACATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 29B (Rev. 2 -B9)
Prescribed by ANSI Std. Z39-18
298-102

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for th is collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of infonmation. Send comments regarding this burden estimate or any other aspect of this
collect ion of infonmation, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) , Washington , DC 20503.

1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE ~ 3, REPORT TYPE AND DATES COVERED

March 1994 Final Contractor Report
4, TITLE AND SUBTITLE 5. FUNDING NUMBERS

Computer Code for Controller Partitioning With !FPC Application
A User 's Manual

WU-5 05-62-5 0 ~ 6. A UTHOR(S)

C-NAG3-1146t
Phillip H. Schmidt and Asim Yarkhan

7 , PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

University of Akron
Akron, Ohio 44325 E-8654

9 . SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Lewis Research Center NASA CR-195291
Cleveland, Ohio 44135 -3 191

11 . SUPPLEMENTARY NOTES

Project Manager, Sanjay Garg, Instrumentation and Control Technology Division, organization code 2550, NASA
Lewis Research Center, (216) 433- 2355.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Categories 08 and 63

13. A BSTRACT (Maximum 200 words)

This is a user 's manual for the computer code for partitioning a centralized controller into decentralized subcontrollers
with applicability to Integrated FlightJPropulsion Control (!FPC). Partitioning of a centralized controller into two
subcontrollers is described and the algorithm on which the code is based is discussed. The algorithm uses parameter
optimization of a cost fu nction which is described here. The major data structures and functions are described. Specific
instructions are given. The user is led through an example of an !FPC application.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Integrated control; Centralized control; Decentralized control ; Flight control; 76
16. PRICE CODE

Propulsion control A04

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIACATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 29B (Rev. 2 -B9)
Prescribed by ANSI Std. Z39-18
298-102

