Coupled 2-Dimensional Cascade Theory for Noise and Unsteady Aerodynamics of Blade Row Interaction in Turbofans

Volume 2—Documentation for Computer Code CUP2D

Donald B. Hanson

United Technologies Corporation
Pratt and Whitney Division
East Hartford, Connecticut

Prepared for the
Lewis Research Center
Under Contract NAS3–25952
January 1994
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Sections</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>1</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>2</td>
</tr>
<tr>
<td>2 Explanation of Input File</td>
<td>4</td>
</tr>
<tr>
<td>3 Explanation of Code Output</td>
<td>7</td>
</tr>
<tr>
<td>4 Source Code Listing</td>
<td>11</td>
</tr>
<tr>
<td>PROGRAM CUP2D</td>
<td>12</td>
</tr>
<tr>
<td>READIN</td>
<td>13</td>
</tr>
<tr>
<td>ALFBET</td>
<td>15</td>
</tr>
<tr>
<td>RTCOEF</td>
<td>17</td>
</tr>
<tr>
<td>GTWAKE</td>
<td>19</td>
</tr>
<tr>
<td>PRNTIN</td>
<td>21</td>
</tr>
<tr>
<td>TIMDAT</td>
<td>22</td>
</tr>
<tr>
<td>INFFNS</td>
<td>23</td>
</tr>
<tr>
<td>RCOEFS</td>
<td>24</td>
</tr>
<tr>
<td>GETVS</td>
<td>26</td>
</tr>
<tr>
<td>SCOEFS</td>
<td>27</td>
</tr>
<tr>
<td>GENKRR</td>
<td>29</td>
</tr>
<tr>
<td>GENKSS</td>
<td>30</td>
</tr>
<tr>
<td>SOLVE</td>
<td>31</td>
</tr>
<tr>
<td>LOADS</td>
<td>32</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>33</td>
</tr>
<tr>
<td>GETPWL</td>
<td>35</td>
</tr>
<tr>
<td>FUNCTION DBEL</td>
<td>35</td>
</tr>
<tr>
<td>DSWK</td>
<td>36</td>
</tr>
<tr>
<td>WAVE</td>
<td>38</td>
</tr>
<tr>
<td>MATINV</td>
<td>39</td>
</tr>
<tr>
<td>5 Array Dimensions</td>
<td>40</td>
</tr>
</tbody>
</table>
Summary

A 2D linear aeroacoustic theory for rotor/stator interaction with unsteady coupling was derived and explored in Volume 1 of this report. Computer program CUP2D has been written in FORTRAN embodying the theoretical equations. This volume (Volume 2) describes the structure of the code, installation and running, preparation of the input file, and interpretation of the output. A sample case is provided with printouts of the input and output. The source code is included with comments linking it closely to the theoretical equations in Volume 1.
Section 1
Introduction

This volume provides documentation and user information for the coupled 2D linearized cascade code CUP2D. Theory for the code is derived and explored in Volume 1 of this report. Material herein discusses how to install and run the code, explains the input file and the printed output, outlines the code structure, and provides a listing of the source code.

CUP2D is written as strictly as possible in FORTRAN 77 and is self-contained so that no system subroutines are needed. One exception is that the DOUBLE COMPLEX variable type is used; this should be accepted by any modern compiler. The only other exception is that the subroutine TIMDAT calls a system-dependent time and date function. This has been found to work on Sun™ and Iris™ systems but can be deleted or modified by the user, if necessary.

Figure 1 shows the hierarchy of subroutines with a brief description of the subroutine functions. More description can be found in the subroutine comments. To interpret the figure 1, note that each routine calls only those routines indented underneath. Thus, for example, READIN calls only ALFBET, RTCOEF, GTWAKE, and PRNTIN. Each routine is called only once with the exception of GETVS and DSWK, as shown in figure 1.

The entire code is supplied on disk in a single module (or file) called cup2d.f and can be compiled on a UNIX™ system by entering f77 -o cup2d cup2d.f. This generates an executable file which can be run by typing cup2d. The code then looks for the input file cupin.dat, which must be in the same directory as cup2d. Normally, the output is written to the screen only. However, if the user wishes the output written to a file, cupout.dat for example, the command cup2d > cupout.dat would be used.

Sections 2 and 3 give detailed descriptions of the input and output. The source listing in Section 4 is heavily commented with descriptions of subroutine function at the top and throughout each routine. Also, to help in linking the code to the theory, variable names were chosen to be as close to the names used in the theory derivation as possible. Finally, wherever appropriate in the code, equation numbers from Volume 1 are given next to the corresponding FORTRAN statements.
HIERARCHY OF SUBROUTINES

PROGRAM CUP2D main program
READIN read input file (UNIT 8) and compute some constants
ALFBET compute arrays of alphas and betas
RTCOEF compute arrays of reflection and transmission coefficients
GTWAKE compute upwash vectors
PRNTIN print input
TIMDAT print time and date of execution

INFNS compute elements of KMATRX
RCOEFS rotor on stator effect
GETVS compute Smith's \(v_x, v_y, v_z\)
SCOEFS stator on rotor effect
GETVS compute Smith's \(v_x, v_y, v_z\)
GENKRR rotor on rotor effect
DSWK & WAVE Smith's routines for matrix elements
GENKSS stator on stator effect
DSWK & WAVE Smith's routines for matrix elements

SOLVE solve coupled system for loading on both blade rows
MATINV invert the matrix KMATRX
LINPAC Routines
LOADS compute loads from \([\text{KMATRX}]^{-1} \ast \text{WASH} = \text{LOAD}\)

OUTPUT print out sound pressure and sound power by mode
GETPWL compute modal sound power

Figure 1. This figure indicates all subroutine calls. Except where shown, each routine is called only once.
Section 2
Explanation of Input File

The sample case input for code CUP2D is supplied on the same disk with the source listing in the file called *cupin.dat*, which is shown in figure 2. To facilitate verification of input, all of the input numbers are printed with the normal output. Brief definitions of the input are included at the bottom of the file. Some further explanations are provided below.

Line 1 - The comment is provided for user convenience and is printed on the 4th line of output.

Line 2 - In the theory, a 2D cascade is considered to be wrapped into a narrow annulus to simulate a fan and to permit a mixture of fan nomenclature and cascade nomenclature. In particular, this permits numbers of blades to appear directly. The radius to the annulus provides a common dimension for the 2 blade rows which is considered to be the effective radius of the fan. It is used for non-dimensionalization in the axial spacing of the blade rows. In simulating a fan, the effective radius could be taken as 85 percent of the tip radius, in which case the rotor rotational Mach numbers at that radius would be input below in line 6.

Line 3 - The number of panels \(N_p \) is fixed to be the same for both blade rows. The number of harmonics \(N_h \) is the number used for the coupling equations and in the printout of sound pressure and sound power. The code is delivered with dimensioning for a max \(N_h = 5 \) and a max \(N_p = 51 \). Section 5 gives array dimension information if this needs to be changed.

Line 4 - See figure 2 of this volume.

Line 5 - Speed of sound is in feet per second. Density is in pounds mass per cubic foot.

Line 6 - The code can treat counter-rotation configurations. In this case, input a positive rotational Mach number for the front rotor and a negative number for the rear. If either row is a stator, set its rotational Mach number to zero.

Line 7 - Here the user specifies the axial locations where he wants the modal sound pressure to be evaluated for the final table in the printout. Distances are measured downstream from the front row leading edge and are normalized by rotor effective radius.

Line 8 and 9 - For line 8, input the value of INTYPE to be used by the subroutine GTWAKE in evaluating the upwash at the two blade rows for excitation of the system.

\[
\text{INTYPE} = 1 \quad \text{is used to apply the Silverstein wake formulas derived in appendix E of Volume 1 of this report. Here, the user only specifies the drag coefficient on line 9 and the code computes upwash at} \ N_p \ \text{control points along the chord for each of} \ N_h \ \text{harmonics. This option was used for figure 15 of Volume 1.}
\]

\[
\text{INTYPE} = 2 \quad \text{is the same as 1 except that the harmonics above BPF are set to zero. This is useful for evaluation of the frequency scattering effect and was used for most of the figures in Volume 1.}
\]
INTYPE = 3 also applies the formulas from appendix E of Volume 1 for computing upwash along the stator chord. However, in Equations E-12 and E-14, the absolute values of the wake harmonics (F_n in those equations) are input directly by the user in line 9. Since the wake amplitudes do not decay using this input, this is equivalent to specifying excitation by a vorticity wave. INTYPE 3 was used to check the Kousen/Verdon results in Section 4 of Volume 1.

INTYPE = 4 is provided so that the user can excite the rotor and stator with an upwash distribution of his own choosing. Thus, the upwash vectors WREXT(n,i) and WSEXT(n,i) that would be computed from wake formulas using INTYPE 1 are input directly for harmonic order n and control point i. These are entered as real numbers in tabular form starting on line 9 as shown below for a two harmonic case.

<table>
<thead>
<tr>
<th>Real[WREXT(1,1)]</th>
<th>Imag[WREXT(1,1)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Real[WREXT(1,N_p)]</td>
<td>Imag[WREXT(1,N_p)]</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Real[WREXT(2,1)]</td>
<td>Imag[WREXT(2,1)]</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Real[WREXT(2,N_p)]</td>
<td>Imag[WREXT(2,N_p)]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Real[WSEXT(1,1)]</th>
<th>Imag[WSEXT(1,1)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Real[WSEXT(1,N_p)]</td>
<td>Imag[WSEXT(1,N_p)]</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Real[WSEXT(2,1)]</td>
<td>Imag[WSEXT(2,1)]</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Real[WSEXT(2,N_p)]</td>
<td>Imag[WSEXT(2,N_p)]</td>
</tr>
</tbody>
</table>

This mode of input could be used to simulate excitation of one blade row by the potential field of the other or could be used to simulate blade vibration effects.
File *cupin.dat*

'Sample case for Code CUP2D, B=38, V=72'

38 72 .7628 .9567 .556
30 3
.318 .360 .427 0.231
1037.7 1070.0 1070.3 0.0293 0.0328 0.0326
.75 0.0
-0.217 0.86
2
.02

The above is input for a sample case for code CUP2D

Line 1 Comment - up to 70 characters - in single quotes

Line 2 # Blades-upstream row, # Blades-downstream row,
 gap/chord-1, gap/chord-2,
 axial dist LE1 to LE2 normalized by fan effective radius

Line 3 Number of panels each row, Number of harmonics

Line 4 Axial Mach number - upstream, inter-row, downstream
 Tangential Mach number - inter-row

Line 5 Speed of sound upstream, inter-row, downstream
 Density upstream, inter-row, downstream

Line 6 Rotational Mach number-front blade row (0 for IGV)
 Rotational Mach number- rear blade row (0 for EGV, negative # for
 rotor)

Line 7 Axial locations for acoustic pressure printout normalized by fan
 effective radius, measured positive downstream from front blade leading
 edge.

Line 8 1 or 2 for input based on drag coefficient. 2 sets the wake harmonics
 above BPF to zero. See code documentation for other options.

Line 9 Drag coefficient

Figure 2. Input data set for sample case.
Section 3
Explanation of Code Output

Output for the sample case is shown in figure 3. Most of the input is printed on the first page. Subscripts 1 and 2 refer to the upstream and downstream blade rows respectively. Also, subscripts a, b, and c refer to the regions upstream of the upstream row, between rows, and downstream of the downstream row.

For the axial spacing of the blade rows, the user inputs the distance from between leading edges of the rows in fan effective radii. The code then computes and prints the axial distance from the upstream trailing edge to the downstream leading edge normalized by the upstream chord. Input values printed in the output include:

- \(M_{xa}, M_{xb}, \) and \(M_{xc} \) - axial Mach numbers
- \(M_s \) - swirl Mach number (in Region b)
- \(My_1, My_2 \) - blade row rotational Mach numbers
- \(RHOa, RHOb, \) and \(RHOC \) - densities
- \(Aa, Ab, Ac \) - speeds of sound

Relative Mach numbers of the two blade rows \(M_{rel1} \) and \(M_{rel2} \) are computed from the velocity triangles in figure 5 of Volume 1. Smith's reduced frequencies are based on full chord.

Flow angles \(\Theta_1 \) and \(\Theta_2 \) and Swirl Angle are computed from the input Mach numbers. Note that \(\Theta_1 \) is normally negative per figure 5 of Volume 1.

The long table entitled "EXTERNAL VELOCITY IMPOSED ON CASCADE" gives the upwash values used as external excitation of the system. These are listed by harmonic order \(N \) and control point along the chord, counted by \(I \). The control points are at Smith's unevenly spaced locations given by \(z_i = 0.5^*\{1 - \cos[\pi(2I-1)/(2N_p)]\} \). Values in the table become the vectors \(WREXT \) and \(WSEXT \) used in the call to the SOLVE routine.

After the listing of the upwash vectors, the printout in figure 3 shows the items "Entering RCOEFS", and so forth to show the user how near execution is to completion. The "condition number" indicates whether the KMATRIX is close to being singular.

"VALUES OF LIFT COEFFICIENTS" are the \(\Delta C_p \) values computed in the LOADS routine integrated over the chords of each blade row.

In the final table showing modal sound pressures and sound powers, the FREQ column gives the value of \(\Omega_{nk} = nB_1M_{y1} - kB_2M_{y2} \) and the mode column gives \(nB_1 - kB_2 \), which is defined so that positive values correspond to co-rotating modes. (Co-rotation implies a mode rotating in the direction of positive rotation of the blade rows and in the direction of positive swirl.) The cutoff ratios on the right are printed to help with diagnosis. For example, with the first harmonic (\(N=1 \)) the \(K=1 \) mode can be seen to be cut on between the rotor and stator (region b) and cut off in the upstream and downstream regions. (Cutoff ratios larger than 9.99 are printed as 9.99.) This is the "trapped mode" discussed at length in Volume 1. It produces pressure but no power in regions a and b. Note that the downstream powers for \(n = 2 \) and 3 (namely 56.1 dB and 62.6 dB) can be found in the top part of figure 14 in Volume 1 for the rotor rotational Mach number \(= 0.75 \).
Code CUP2D for coupled cascade aeroacoustics - Version 1.1
Developed for NASA-Lewis by Pratt & Whitney under Contract NAS3-25952 - Task 10
Theory documented in NASA CR-4506, Volume I.

COMMENT: Sample case for Code CUP2D, B=38, V=72
Time of execution: Mon Mar 1 12:56:37 1993

B1= 38 B2= 72
Gap/Chord(1) = 0.763, Gap/Chord(2) = 0.957
(Rotor LE to Stator LE)/(Local Radius of Rotor)= 0.556 (input)
Axial Spacing Between Blade Rows/Rotor Chord 1.9951 (computed)
Drag Coefficient = 0.020

Number of panels=30, Number of harmonics= 3

<table>
<thead>
<tr>
<th>Mxa</th>
<th>Mxb</th>
<th>Mxc</th>
<th>Ms</th>
<th>My1</th>
<th>My2</th>
<th>Mrel1</th>
<th>Mrel2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.318</td>
<td>0.360</td>
<td>0.427</td>
<td>0.231</td>
<td>0.750</td>
<td>0.000</td>
<td>0.632</td>
<td>0.428</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RHOa</th>
<th>RHOb</th>
<th>RHOc</th>
<th>Aa</th>
<th>Ab</th>
<th>Ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02930</td>
<td>0.03280</td>
<td>0.03260</td>
<td>1037.7</td>
<td>1070.0</td>
<td>1070.3</td>
</tr>
</tbody>
</table>

Remainder of printout is computed from input above
Smiths reduced freqs @ BPF front row, rear row = 18.532 6.078
Theta1, Theta2 (in degrees) = -55.253 32.687
Swirl Angle (in degrees) = 32.69
Ambient Pressure/Sea Level STD (upstream, downstream) = 0.331 0.391

<table>
<thead>
<tr>
<th>WEXT(real, imag)</th>
<th>WSEXT(real, imag)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000 0.0000</td>
<td>0.0000 0.0000</td>
</tr>
</tbody>
</table>

Figure 3 (beginning). Output for sample case.
<table>
<thead>
<tr>
<th>2</th>
<th>1</th>
<th>0.0000</th>
<th>0.0000</th>
<th>0.0000</th>
<th>0.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>26</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>28</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>29</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>1</th>
<th>0.0000</th>
<th>0.0000</th>
<th>0.0000</th>
<th>0.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>23</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>28</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>29</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Figure 3 (continued). Output for sample case.
Entering RCOEFS
Entering SCOEFS
Entering GENKRR
Entering GENKSS
Entering MATINV
Condition number of KMATRIX = 4.3478710669121D-05

*** VALUES OF LIFT COEFFICIENTS ***

<table>
<thead>
<tr>
<th>N</th>
<th>CLROTOR(N)</th>
<th>CLSTATOR(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>real</td>
<td>imag</td>
</tr>
<tr>
<td>1</td>
<td>-0.00130</td>
<td>-0.00070</td>
</tr>
<tr>
<td>2</td>
<td>0.00009</td>
<td>-0.00004</td>
</tr>
<tr>
<td>3</td>
<td>0.00001</td>
<td>0.00003</td>
</tr>
</tbody>
</table>

Axial locations for sound pressure output in radii from rotor leading edge
For PRESup, Xa = -.217, For PRESdn, Xc = 0.860

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>FREQ</th>
<th>nB1-kB2</th>
<th>PRESup</th>
<th>PRESdn</th>
<th>PWLup</th>
<th>PWLdn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>28.50</td>
<td>110</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>28.50</td>
<td>38</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>28.50</td>
<td>-34</td>
<td>69.9</td>
<td>21.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>28.50</td>
<td>-106</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cutoff Ratios

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.28</td>
<td>0.03</td>
<td>0.29</td>
</tr>
<tr>
<td>0.82</td>
<td>0.56</td>
<td>0.83</td>
</tr>
<tr>
<td>0.91</td>
<td>1.15</td>
<td>0.93</td>
</tr>
<tr>
<td>0.29</td>
<td>0.54</td>
<td>0.30</td>
</tr>
</tbody>
</table>

.............. Total power for N= 1 0.0 0.0

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>FREQ</th>
<th>nB1-kB2</th>
<th>PRESup</th>
<th>PRESdn</th>
<th>PWLup</th>
<th>PWLdn</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-3</td>
<td>57.00</td>
<td>292</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>-2</td>
<td>57.00</td>
<td>220</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
<td>57.00</td>
<td>148</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>57.00</td>
<td>76</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>57.00</td>
<td>4</td>
<td>98.7</td>
<td>108.9</td>
<td>41.0</td>
<td>56.1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>57.00</td>
<td>-68</td>
<td>31.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>57.00</td>
<td>-140</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

.............. Total power for N= 2 41.0 56.1

<table>
<thead>
<tr>
<th>N</th>
<th>K</th>
<th>FREQ</th>
<th>nB1-kB2</th>
<th>PRESup</th>
<th>PRESdn</th>
<th>PWLup</th>
<th>PWLdn</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-3</td>
<td>85.50</td>
<td>330</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>-2</td>
<td>85.50</td>
<td>258</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>85.50</td>
<td>186</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>85.50</td>
<td>114</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>85.50</td>
<td>42</td>
<td>103.4</td>
<td>116.3</td>
<td>45.4</td>
<td>62.4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>85.50</td>
<td>-30</td>
<td>88.9</td>
<td>102.1</td>
<td>31.1</td>
<td>48.7</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>85.50</td>
<td>-102</td>
<td>6.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

.............. Total power for N= 3 45.6 62.6

Figure 3. (concluded) Output for sample case.
Section 4
Source Code Listing

The remainder of this volume gives the listing of the routines shown in figure 1. The routines can be categorized as follows. The first group comprises new code as described in Volume 1. Then there are two routines taken verbatim from the Smith code: DSWK and WAVE. Finally, there is a series of routines for inverting the (double precision, real) matrix of influence coefficients. These were taken from LINPAC (see LINPAC User’s Guide, SIAM, Philadelphia, 1979) and are not shown here since they are in the public domain and are commonly available. Of course, they are included on the disk with the rest of the source code. The routine MATINV is included, since this was written for the present purposes to call the LINPAC routines.
PROGRAM CUP2D

Calculates the unsteady loading and associated acoustic and vorticity waves on 2 mutually interacting blade rows in a 2 dimensional, linear, subsonic analysis. Blade rows can be rotor/egv, igv/rotor, or rotor/rotor, depending on input values of rotor rotational Mach numbers, MY1 and MY2. Simultaneous solution for flow tangency for 2 blade rows, NH harmonics, and NP panels via inversion of the matrix coupling equation KMATRIX*LOAD=WASH. A disturbance upwash distribution at either, or both, blade rows is generated either from direct user input or from Silverstein's wake formulas. The code then finds the unsteady loading (LOAD) that produces an upwash (WASH) that just cancels the disturbance wash. These loads are used to find the acoustic waves and the sound power. Blade row self-effect is computed via subroutines from Smith Code. Effect of each row on the other is computed via an extension of Smith's theory by D.B. Hanson. Reflections at inlet and exit interfaces are treated with reflection and transmission coefficients derived from continuity of mass & momentum based on an actuator disk model. Overall theory documented in NASA CR-4506, Volume I. Comments in this listing refer to equation numbers in the same Contractor Report. Coding by Hanson.

This routine is the main program.

IMPlict DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION MXA,MXB,MXC,MY1,MY2,MS,LAMI,LAM2,
> KMATRIX(1020,1020)
> ALF,(9,-5:5,-5:5)
> KHU(-5,-5:5,51),KRDN(5,-5:5,51),KSDN(5,-5:5,51),
> R12(-5:5,-5:5),R21(-5:5,-5:5),R13(-5:5,-5:5),R31(-5:5,-5:5),
> T14(-5:5,-5:5),T28(-5:5,-5:5),T38(-5:5,-5:5)
INTEGER BI, B2, BETA(-5:5,-5:5)

WRITE(*,*) 'CUP2D for coupled cascade aeroacoustics - Version 1.0'
WRITE(*,*) 'Developed for NASA-Lewis by Pratt & Whitney under Contract NAS3-25952 - Task 10'
WRITE(*,*) 'Theory documented in NASA CR-4506, Volume I'

Read input, generate wavenumbers and reflection coefficients, establish external disturbance vectors from wake formulas or direct input, and print input geometry and flow conditions.

CALL READIN(NH,NP, BI,B2, CI,C2, SCI,SC2, CTI,CT2, STI,ST2, XS, XA, XC,
> MXA,MXB,MXC,MS,MY1,MY2,LAMI,LAM2,ALF,BETA,R12,R21,R13,R31,
> T14,T28,T38, AA,AB,AC, WREXT,WSEXT,POPSA, POPSC)

Generate matrices of influence functions:
CALL INFFNS(NH,NP, BI,B2,SCI,SC2,CT1,CT2,ST1,ST2,XS,
> MXA,LAMI,LAM2,ALF,BETA,R12,R21,R13,R31,
> KMATRIX,KRUP,KRDN,KSUP,KSDN)

Solve coupled system of equations for loading by matrix inversion.
CALL SOLVE(NH,NP,KMATRIX,WREXT,WSEXT,LR,LS)

Compute output waves and print their sound pressure and sound power.
CALL OUTPUT(NH,NP, BI,B2, MXA,MXB,MXC,MC,MY1,MY2,ALF,AB/AA,AB/AC,
> XS, XA, XC,POPSA,POPS, KRUP,KRDN,KSUP,KSDN,LR,LS)

END

Figure 4. Source code for CUP2D.
SUBROUTINE READIN(NH,NP,B1,B2,C1,C2,SC1,SC2,CT1,CT2,ST1,ST2,
> XS,XA,XC,MXA,MXB,MXC,MS,MY1,MY2,LAM1,LAM2,ALF,BETA,
> R12,R21,R13,R31,T14,T28,T38,AA,AB,AC,WREXT,WSEXT,POPSA,POPS2)

C.. Reads input from data set on disk (UNIT 8); generates constants for the
C.. Smith common block; and calls routines for alpha and beta wavenumbers,
C.. reflection and transmission coefficients, and external input velocity
C.. vectors.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION MXA,MXB,MXC,MS,MY1,MY2,LAM1,LAM2
INTEGER BI, B2, BETA(-5:5,-5:5)
DOUBLE COMPLEX WREXT(5,51),WSEXT(5,51),ALF(9,-5:5,-5:5),
> R12(-5:5,-5:5),R21(-5:5,-5:5),R13(-5:5,-5:5),R31(-5:5,-5:5),
> T14(-5:5,-5:5),T28(-5:5,-5:5),T38(-5:5,-5:5)
CHARACTER*70 COMMENT

C.. Read and compute data for common block
OPEN(UNIT=8,FILE='cupin.dat')

C.. Read comment
READ(8,*') COMMENT

C.. Read geometry from disk file and compute normalized chords
READ(8,*) BI, B2, SCI, SC2, XS
C1 = 6.2831853D0/(BI*SCI) ! Chord/radius, front row
C2 = 6.2831853D0/(B2*SC2) ! Chord/radius, back row

C.. Read number of panels and number of harmonics
READ(8,*) NP, NH

C.. Read operating conditions from disk file. 1 & 2 refer to upstream and
c.. downstream blade rows. A, B, & C refer to regions upstream of blade row 1,
c.. between blade rows, and downstream of blade row 2. POPSA & POPSC = ambient
c.. pressure in upstream and downstream regions divided by sea level standard
C.. pressure.
READ(8,*) MXA, MXB, MXC, MS ! Axial & swirl Mach #'s
READ(8,*) AA, AB, AC, RHOA, RHOB, RHOC ! Sound speeds & densities
READ(8,*) MY1, MY2 ! Blade rotational Mach #'s

C.. Read x locations for pressure output. (x over radius from front row LE.)
READ(8,*) XA, XC ! Make XA < 0 and XB > 0.

C.. Compute remaining items for passage to other routines
ST1 = (-MY1+MS) / SQRT(MXB**2 + (-MY1+MS)**2) ! Sine(theta1)
ST2 = (-MY2+MS) / SQRT(MXB**2 + (-MY2+MS)**2) ! Sine(theta2)
CT1 = SQRT(1D0 - ST1**2) ! Cosine(theta1)
CT2 = SQRT(1D0 - ST2**2) ! Cosine(theta2)
LAM1 = B2*(MY1-MY2)/(MXB/CT1) ! Reduced freq, front row
LAM2 = B1*(MY1-MY2)/(MXB/CT2) ! Reduced freq, back row

C.. Compute axial wavenumbers (alpha's) and tangential wavenumbers (beta's)
CALL ALFBET(B1,B2,NH,MXA,MXB,MXC,MS,MY1,MY2,
> AA,AB,AC,ALF,BETA)

C.. Get reflection and transmission coefficients
CALL RTCOEF(NH,B1,B2,ALF,BETA,AA,AB,AC,RHOA,RHOB,RHOC,
> MXA,MXB,MXC,MS,MY1,MY2, R12,R21,R13,R31, T14,T28,T38)

C.. Read wake input data and compute upwash vectors. Leave unit 8 open to
C.. read from GTWAKE.
CALL GTWAKE(NH,NP,C1,C2,SC1,CT1,CT2,ST1,ST2,XS,INTYPE,CD,
> WREXT,WSEXT)
CLOSE(8)

Figure 4. (continued) Source code for CUP2D.
c.. Compute Pambient/Pstandard to be used in OUTPUT for SPL's

\[P_{OPS\alpha} = \rho_{\alpha} A_{A}^2 / (1.4 \times 32.2 \times 2116) \]
\[P_{OPS\kappa} = \rho_{\kappa} A_{C}^2 / (1.4 \times 32.2 \times 2116) \]

c.. Print input data

CALL PRNTIN(NH,NP,B1,B2,C1,C2,SC1,SC2,CT1,CT2,ST1,ST2,XS,
> AA,AB,AC,RHOA,RHOB,RHOC,MXA,MXB,MXC,MS,MY1,MY2,
> LAM1,LAM2,COMMENT,INTYPE,CD,WREXT, WSEX T, POPS\alpha, POPS\kappa)

RETURN
END
C
C
C

Figure 4. (continued) Source code for CUP2D.
SUBROUTINE ALFRET(B1,B2,NH,MXA,MXB,MXC,MS,MY1,MY2,AA,AB,AC,ALF,BETA)
c.. Computes alpha and beta wavenumbers from formulas derived in appendix B.
c.. The alphas are Smith's normalized by source radius R rather than by chord.
c.. Prints message if a resonance condition occurs for any combination of n & k.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION MXA,MXB, MXC, MS,MYI,MY2
INTEGER BI,B2,BETA(-5:5,-5:5)
DOUBLE COMPLEX ALF(9,-5:5,-5:5)

DENOMA = 1.0D0 - MXA**2
DENOMB = 1.0D0 - MXB**2
DENOMC = 1.0D0 - MXC**2
DO 100 N = -NH, NH
DO 100 K = -NH, NH
IF (ABS(N)+ABS(K) .EQ. 0) GOTO 100
BETA(N,K) = - (N*B1 - K*B2)
OMEGA = N*B1*MYI - K*B2*MY
EA = DENOMA*BETA(N,K)**2 - (OMEGA*AB/AA)**2
EB = DENOMB*BETA(N,K)**2 - (OMEGA + BETA(N,K)*MS)**2
EC = DENOMC*BETA(N,K)**2 - (OMEGA*AB/AC)**2
FA = MXA*OMEGA*AB/AA
FB = MXB*(OMEGA + BETA(N,K)*MS)
FC = MXC*OMEGA*AB/AC

DO 100 N = -NH, NH
DO 100 K = -NH, NH
IF (ABS(N)+ABS(K) .EQ. 0) GOTO 100
BETA(N,K) = - (N*B1 - K*B2)
OMEGA = N*B1*MYI - K*B2*MY
EA = DENOMA*BETA(N,K)**2 - (OMEGA*AB/AA)**2
EB = DENOMB*BETA(N,K)**2 - (OMEGA + BETA(N,K)*MS)**2
EC = DENOMC*BETA(N,K)**2 - (OMEGA*AB/AC)**2
FA = MXA*OMEGA*AB/AA
FB = MXB*(OMEGA + BETA(N,K)*MS)
FC = MXC*OMEGA*AB/AC

IF (EA .EQ. 0.0) THEN
WRITE(*,1) N,K
1 FORMAT(iX,'Resonance in Region A for N=',I3,' K=',I3)
STOP 'Execution terminated due to resonance'
ELSE IF (EA .LT. 0.0) THEN
ALF(4,N,K) = (FA + SIGN(SQRT(-EA), FA))/DENOMA
ALF(5,N,K) = (FA - SIGN(SQRT(-EA), FA))/DENOMA
ELSE
ALF(4,N,K) = CMPLX(FA, -SQRT(EA))/DENOMA
ALF(5,N,K) = CMPLX(FA, +SQRT(EA))/DENOMA
ENDIF

IF (EB .EQ. 0.0) THEN
WRITE(*,2) N,K
2 FORMAT(iX,'Resonance in Region B for N=',I3,' K=',I3)
STOP 'Execution terminated due to resonance'
ELSE IF (EB .LT. 0.0) THEN
ALF(1,N,K) = (FB + SIGN(SQRT(-EB), FB))/DENOMB
ALF(2,N,K) = (FB - SIGN(SQRT(-EB), FB))/DENOMB
ELSE
ALF(1,N,K) = CMPLX(FB, -SQRT(EB))/DENOMB
ALF(2,N,K) = CMPLX(FB, +SQRT(EB))/DENOMB
ENDIF

IF (EC .EQ. 0.0) THEN
WRITE(*,3) N,K
3 FORMAT(iX,'Resonance in Region C for N=',I3,' K=',I3)
STOP 'Execution terminated due to resonance'
ELSE IF (EC .LT. 0.0) THEN
ALF(7,N,K) = (FC + SIGN(SQRT(-EC), FC))/DENOMC
ENDIF

Figure 4. (continued) Source code for CUP2D.
ALF(8,N,K) = (FC - SIGN(SQRT(-EC), FC))/DENOMC
ELSE
 ALF(7,N,K) = CMPLX(FC, -SQRT(EC))/DENOMC
 ALF(8,N,K) = CMPLX(FC, +SQRT(EC))/DENOMC
ENDIF

c.. Wavenumbers for vorticity waves in Region B from eq. B-11 and variations

c.. for Regions A and C.
ALF(3,N,K) = -(OMEGA + MS*BETA(N,K))/MXB
ALF(6,N,K) = - OMEGA /MXA
ALF(9,N,K) = - OMEGA /MXC

100 CONTINUE

RETURN
END

Figure 4. (continued) Source code for CUP2D.
SUBROUTINE RTCOEF(NH, BI, B2, ALF, BETA, AA, AB, AC, RHOA, RHOB, RHOC,
> MXA, MXB, MXC, MS, MY1, MY2, R12, R21, R13, R31, T14, T28, T38)

This subroutine computes reflection and transmission coefficients for the
inlet and exit for the transverse velocity component. Coefficients derived
in NASA CR-4506, Volume I, appendix D.

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DOUBLE PRECISION MXA, MXB, MXC, MS, MYI, MY2
INTEGER BI, B2, BETA(-5:-5, -5:-5)
DOUBLE COMPLEX CI, C2, C3, C4, CS, CI, C9, FI, F2, F3, F4, FS, F9,
> GI, G2, G3, G4, G8, G9, E0, E1, E2, E3, E4, E5, E6, E7, E8, E9, E10,
> E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21
DOUBLE COMPLEX ALF(9,-5:-5, -5:-5),
> R12(-5:-5, -5:-5), R21(-5:-5, -5:-5), R13(-5:-5, -5:-5), R31(-5:-5, -5:-5),
> T14(-5:-5, -5:-5), T28(-5:-5, -5:-5), T38(-5:-5, -5:-5)

C.. Compute rho*c0 for 3
ROCA = RHOA*AA
ROCB = RHOB*AB
ROCC = RHOC*AC

C.. Compute reflection and transmission coefficients
DO 10 N = -NH, NH
DO 10 K = -NH, NH
IF ((ABS(N)+ABS(K)) .EQ. 0) GO TO 10
BET = BETA(N, K)
OMEGA = N*BI*MY1 - K*B2*MY2

C.. Coefficients from continuity equations
C1 = ROCB*(ID0-MXB**2)*ALF(1, N, K) - MXB*(OMEGA+MS*BET))
C2 = ROCB*(ID0-MXB**2)*ALF(2, N, K) - MXB*(OMEGA+MS*BET))
C3 = ROCB*(-BET)
C4 = ROCA*(ID0-MXA**2)*ALF(4, N, K) - MXA*OMEGA*AB/AA)
C8 = ROCC*(ID0-MXC**2)*ALF(8, N, K) - MXC*OMEGA*AB/AC)
C9 = ROCC*(-BET)

C.. Coefficients from axial momentum equations
F1 = ROCB*(ID0+MXB**2)*(OMEGA+MS*BET)- (ID0-MXB**2)*MXB*ALF(1, N, K)
F2 = ROCB*(ID0+MXB**2)*(OMEGA+MS*BET)- (ID0-MXB**2)*MXB*ALF(2, N, K)
F3 = ROCB*(2D0*MXB*BET)
F4 = ROCB*(ID0+MXA**2)*OMEGA - (ID0-MXA**2)*MXA*ALF(4, N, K)*AA/AB)
F8 = ROCCC*(ID0+MXX**2)*OMEGA - (ID0-MXX**2)*MXX*ALF(8, N, K)*AC/AB)
F9 = ROCCC*(2D0*MXX*BET)*AC/AB)

C.. Coefficients from transverse momentum equations
G1 = ROCB*(MXB*BET-MXB*MS)*(OMEGA+MS*BET) + (ID0-MXB**2)*MS*ALF(1, N, K)
G2 = ROCB*(MXB*BET-MXB*MS)*(OMEGA+MS*BET) + (ID0-MXB**2)*MS*ALF(2, N, K)
G3 = ROCB*(MXB*ALF(3, N, K)*M*BET)
G4 = ROCC*(MXA*BET*AA/AB)
G8 = ROCC*(MXC*BET*AC/AB)
G9 = ROCC*(MXC*ALF(9, N, K)*AC/AB)
E0 = C4*F1 - C1*F4
E1 = C4*F2 - C2*F4
E2 = C3*F4 - C4*F3
E3 = C4*G1 - C1*G4
E4 = C4*G2 - C2*G4
E5 = C3*G4 - C4*G3
E6 = C2*G1 - C1*G2
E7 = C1*G2 - C2*G3
E8 = C4*F1 - C1*F2
E9 = C5*F2 - C2*F3
E10 = C1*F4 - C8*F1

Figure 4. (continued) Source code for CUP2D.
E11 = C9*F1 - C1*F9
E12 = C1*G8 - C8*G1
E13 = C9*G1 - C1*G9
E14 = C8*F2 - C2*F8
E15 = C8*F9 - C9*F8
E16 = C8*G2 - C2*G8
E17 = C8*G9 - C9*G8
E18 = C8*F3 - C3*F8
E19 = C8*G3 - C3*G8
E20 = C1*F3 - C3*F1
E21 = C1*G3 - C3*G1

C.. Reflection coefficients
R12(N,K) = (E2*E3-E0*E5) / (E1*E5-E2*E4)
R13(N,K) = (E1*E3-E0*E4) / (E1*E5-E2*E4)
R21(N,K) = (E15*E16-E14*E17) / (E12*E15-E10*E17)
R31(N,K) = (E15*E19-E17*E18) / (E12*E15-E10*E17)

C.. Transmission coefficients
T14(N,K) = (E7*E8-E6*E9) / (E4*E9-E1*E7)
T28(N,K) = (E6*E11-E8*E13) / (E10*E13-E11*E12)
T38(N,K) = (E11*E21-E13*E20) / (E11*E12-E10*E13)

10 CONTINUE
RETURN
END

Figure 4. (continued) Source code for CUP2D.
SUBROUTINE GTWAKE(NH,NP,C1,C2,SCI,CT1,CT2,ST1,ST2,XS,
 > INTYPE, CD, WREXT,WSEXT)
 c.. This routine reads data from the input file and generates the upwash vectors
 c.. WREXT and WSEXT, representing external excitation of the system. The
 c.. disturbance can be described via various optional methods specified by the
 c.. input value of INTYPE as follows.
 c.. INTYPE = 1 is used to represent viscous wakes via the Silverstein formulas.
 c.. The wake is specified by the drag coefficient CD, i.e. by only one number.
 c.. The upwash vectors are then computed from the formulas in appendix E.
 c.. INTYPE = 2 is the same as INTYPE 1 except that the wake harmonics above BPF
 c.. are set to zero.
 c.. INTYPE = 3 is the same as INTYPE 1 except that the velocity defect harmonics
 c.. are input rather than being computed from the wake formulas.
 c.. For INTYPE = 4 the real and imaginary parts of WREXT and WSEXT are simply
 c.. read from the file. Here the upwash vectors are completely specified by the
 c.. user for all harmonics: N = 1...NH and all control points I = 1...NP.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION FW(5)
DOUBLE COMPLEX EXPON, WREXT(5,51), WSEXT(5,51), AI
PI = 3.14159265D0
AI = (0.000,1.000)

 c.. Read INTYPE to identify type of input disturbance
 READ(*,*) INTYPE
 IF (INTYPE .EQ. 1) THEN
 c.. For INTYPE:1, read drag coefficient and use Silverstein formulas as given
 c.. in appendix E.
 READ(*,*) CD
 DO 34 N = 1, NH
 DO 34 I = 1, NP
 Z21 = 0.5D0*(1.0D0-COS(PI*(2.0D0*I-1.0D0)/(2.0D0*NP)))
 Z1 = (XS/C1 + Z21/(C1/C2)*CT2)/CT1
 WCOWI = 0.68D0*SQRT(CD/Z1)
 YOCI = 1.77245D0*SCI/YOCI
 Q = 3.54491D0/Q*WCOWI*EXP(-(PI*N/Q)**2)
 EXPON = EXP(AI*2D0*PI*N*(CT2*ST1/CT1-ST2)*(C2/CI)/SCI*Z21 + (XS/CI)/SCI*STI/CTI))
 WSEXT(N,I) = CT2/CTI*(ST2*CTI-CT2*STI)*FN*EXPON
 WREXT(N,I) = (0D0, 0D0)
 CONTINUE
 ELSE IF (INTYPE .EQ. 2) THEN
 c.. For INTYPE=2, read drag coefficient and use Silverstein formulas as given
 c.. in appendix E. BUT, for harmonic order > BPF, set upwash to zero.
 READ(*,*) CD
 DO 24 N = 1, NH
 DO 24 I = 1, NP
 Z21 = 0.5D0*(1.0D0-COS(PI*(2.0D0*I-1.0D0)/(2.0D0*NP)))
 Z1 = (XS/C1 + Z21/(C1/C2)*CT2)/CT1
 WCOWI = 0.68D0*SQRT(CD/Z1)
 YOCI = 1.77245D0*SCI/YOCI
 Q = 3.54491D0/Q*WCOWI*EXP(-(PI*N/Q)**2)
 EXPON = EXP(AI*2D0*PI*N*(CT2*ST1/CT1-ST2)*(C2/CI)/SCI*Z21 + (XS/CI)/SCI*STI/CTI))
 WSEXT(N,I) = CT2/CTI*(ST2*CTI-CT2*STI)*FN*EXPON
 IF (N .GT. I) WSEXT(N,I) = (0D0, 0D0)
 WREXT(N,I) = (0D0, 0D0)
 CONTINUE

Figure 4. (continued) Source code for CUP2D.
c. For INTYPE=3, read harmonics of an upwash that convects with the mean flow. This is just like INTYPE 1 above except that FW(N) is read from input here and is independent of x. By contrast, for INTYPE = 1 above, FN is computed from the Silverstein formulas as a function of chordwise position on the downstream blade row. To interpret these formulas, see appendix E.

ELSE IF (INTYPE .EQ. 3) THEN
READ(8,*) (FW(N),N=1,NH)
DO 14 N = 1, NH
 DO 14 I = I, N_'
 Z2I = 0.5D0*(1D0 - COS(PI*(2.0D0*I-I-1D0)/(2.0D0*NFP)))
 EXPON =EXP(AI*2D0*F'I*N*
 + (CT2*ST1/CT1-ST2)*(C2/CI)/SCI*Z2I + (XS/CI)/SCI*STI/CTI))
 WSEXT(N,I) = CT2/CT1*(ST2*CTI-CT2*STI)*FW(N)*EXPON
 WREXT(N,I) = (0D0, 0D0)
 CONTINUE

14

ELSE IF (INTYPE .EQ. 4) THEN
DO i0 N=I,NH
 DO i0 I=I,NP
 READ(8,*) WREXTR, WREXTI
 WREXT(N,I) = CMPLX(WREXTR, WREXTI)
 CONTINUE
 DO 12 N=I,NH
 DO 12 I=I,NI'
 READ(8, *) WSEXTR, WSExtI
 WSEXTR(N,I) = CMPLX(WSEXTR, WSExtI)
 CONTINUE

12

ELSE
 STOP 'Input type (INTYPE) for WSEXTR AND WREXT not defined'
ENDIF

RETURN
END

Figure 4. (continued) Source code for CUP2D.
SUBROUTINE PRNTIN(NH,NP,B1,B2,C1,C2,SC1,SC2,CT1,CT2,ST1,ST2,XS,
> AA,AB,AC,RHOA,RHOB,Rhoc,MXA,MXB,MMC,MS,MY1,MY2,LAM1,LAM2,
> COMMENT, INTYPE,CD,WREXT, WSEXT, POPSA, POPSC)

* This routine prints the input data (some of it manipulated) to the screen. *

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION MXA,MXB,MMC,MS,MY1,MY2,LAM1,LAM2
INTEGER B1,B2
DOUBLE COMPLEX WREXT(5,51), WSEXT(5,51)
CHARACTER* 70 COMMENT

c.. Print input data and computed quantities
WRITE(*,*) ' '
WRITE(*,*) 'COMMENT: ',COMMENT
CALL TIMDAT ! WRITES TIME AND DATE OF EXECUTION
WRITE(*,*)
WRITE(*,11) XI, BI, B2
11 FORMAT(IX, 'BI=',I3, ' B2=',I3)
WRITE(*,13) XI, SC1, SC2
13 FORMAT(IX, 'Gap/Chord(l) = ',F6.3, ' Gap/Chord(2) = ',F6.3)
WRITE(*,31) XS
31 FORMAT(IX, 'Axial Spacing Between Blade Rows/Rotor Chord',F7.4,' > (computed) ')
IF (INTYPE .LT. 3) WRITE(*,1) CD
1 FORMAT(IX, 'Drag Coefficient = ',F5.3)
WRITE(*,*)
WRITE(*,15) NP, NH
15 FORMAT(IX, 'Number of panels=',I2, ', Number of harmonics=',I2)
WRITE(*,*)
WRITE(*,*) 'Mxa Mxb MXc Ms My1 My2 Mr2l Mre>
17 FORMAT(IX,8F7.3)
WRITE(*,*)
WRITE(*,*) 'RHOa RHOb RHOC Aa Ab Ac '
WRITE(*,19) RHOA, RHOB, RHOC, AA, AB, AC
19 FORMAT(IX, 3F8.5, 3F8.1)
WRITE(*,*)
WRITE(*,*) 'Remainder of printout is computed from input above'
WRITE(*,21) LAM1*C1, LAM2*C2
21 FORMAT(IX, 'Smiths reduced freqs @ BPF front row, rear row =',2F8.3)
WRITE(*,27) 57.29578*ASIN(ST1), 57.29578*ASIN(ST2)
27 FORMAT(*,29) 57.29578*ATAN(MS/MXB)
29 FORMAT(IX, 'Swirl Angle [in degrees] = ', F7.2)
WRITE(*,16) POPSA, POPSC
16 FORMAT(IX, 'Ambient Pressure/Sea Level STD (upstream, downstream) ='
> ,2F7.3)
WRITE(*,*)
WRITE(*,*) 'EXTERNAL VELOCITY IMPOSED ON CASCADE'
WRITE(*,*)
DO 20 N=1,NH
DO 22 I=1,NP
WRITE(*,33) N,I,WREXT(N,I), WSEXT(N,I)
33 FORMAT(IX,2F8.4,' ',2F8.4)
22 CONTINUE
WRITE(*,*)
20 CONTINUE
WRITE(*,*)
RETURN
END

Figure 4. (continued) Source code for CUP2D.
SUBROUTINE TIMDAT ! This routine is specific to the Sun Workstations
CHARACTER*24 FDATE ! Modify this routine for other computers
WRITE(*,*) 'Time of execution: ', FDATE()
END

Figure 4. (continued) Source code for CUP2D.
SUBROUTINE INFFNS(NH,NP,B1,B2,SC1,SC2,CT1,CT2,ST1,ST2,XS,
> MXB,LAM1,LAM2,ALF,BETA,R12,R21,R13,R31,T14,T28,T38,
> KMATRX,KRUP,KRDN,KSUP,KSDN)
C.. Calls routines to compute elements of KMATRX, the matrix of influence
C.. functions. KMATRX is then returned to the main program. Algebra is
C.. based on NASA CR-4506, Volume I, Section 3.3.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION MXB, LAMI, LAM2, KMATRX(1020,1020)
INTEGER BI, B2, BETA(-5:5,-5:5)
DOUBLE COMPLEX ALF(9,-5:5,-5:5),
> R12(-5:5,-5:5), R21(-5:5,-5:5), R13(-5:5,-5:5), R31(-5:5,-5:5),
> T14(-5:5,-5:5), T28(-5:5,-5:5), T38(-5:5,-5:5),
> KRUP(5,-5:5,51), KRDN(5,-5:5,51), KSUP(5,-5:5,51), KSDN(5,-5:5,51)
C1 = 6.28318530D0/(B1*SC1)
C2 = 6.28318530D0/(B2*SC2) ! chord/radius, row # 1
C.. Zero the Kmatrix before starting to compute the elements
DO 10 MU = 1, 4*NP*NH
DO 10 NU = 1, 4*NP*NH
KMATRX(MU,NU) = 0.0D0
CONTINUE

C.. Effect of rotor loading on stator
CALL RCOEFS(NH,NP,C1,C2,SC1,CT1,CT2,ST1,ST2,XS,
> MXB,LAM1,ALF,BETA,R12,R21,R13,R31,T14,T28,T38,KMATRX,KRUP,KRDN)

C.. Effect of stator loading on rotor
CALL SCOEFS(NH,NP,C1,C2,SC1,SC2,CT1,CT2,ST1,ST2,XS,
> MXB,LAM2,ALF,BETA,R12,R21,R13,R31,T14,T28,T38,KMATRX,KSUP,KSDN)

C.. Effect of rotor loading on rotor
CALL GENKRR(NH,NP,C1,C2,SC1,SC2,CT1,ST1,MXB,LAM1,KMATRX)

C.. Effect or stator loading on stator
CALL GENKSS(NH,NP,C1,C2,SC1,SC2,CT2,ST2,MXB,LAM2,KMATRX)

RETURN
END

C

Figure 4. (continued) Source code for CUP2D.
SUBROUTINE RCOEFS(NH,NP,C1,C2,SC1,CTI,CT2,ST2,XS,
 > MXR,LAM1,ALF,RETA,R12,R21,R13,R31,T14,T28,T38,KMATRIX,KRUP,KRDN)

 c.. Generates elements of the matrix of influence coefficients KMATRIX that give
c.. the upwash caused by rotor loading at control points on the stator and
c.. rotor. These are computed from KRS(N,K,I,J), effect of rotor on stator,
c.. and KRR'(N,I,J),. effect of stator on stator. The prime on KRR indicates
c.. that only the part of KRR associated with waves reflected from the actuator
c.. disk is computed here. The remainder is computed in GENKRR using original
c.. routines from the Smith code. N counts the rotor loading harmonics, I the
c.. control points, and J the load elements. K counts the cascade wave index in
c.. the rotor frame which becomes the time harmonic index in the stator frame.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION MXB,MRI,MR2,LAMI,KMATRIX(1020,1020)
INTEGER BET,BETA(-5:5,-5:5)
DOUBLE COMPLEX ALF1,ALF2,ALF3,EXPE21,EXPE31,EXPE1,
 > EI1,E2I,E3I,KR1,KR2,KR3,V1,V2,VR1,VR2,VR3,KR8,KRR,
 > ALF(9,-5:5,-5:5), KRUP(5,-5:5,51), KRDN(5,-5:5,51),
 > R12(-5:5,-5:5), R21(-5:5,-5:5), R13(-5:5,-5:5), R31(-5:5,-5:5),
 > T14(-5:5,-5:5), T28(-5:5,-5:5), T38(-5:5,-5:5)
AI = (0.0D0, 1.0D0)
PI = 3.14159265D0
WRITE(*,*), 'Entering RCOEFS'
MRI = MXB/CTI
MR2 = MXB/CT2
CON = MRI/5:CI
XE : XS + C2*CT2
NPNH2 = NP*NH*2
DO 10 N = I, NH
 DO 10 K = -NH, NH
 BET = BETA(K,N)
 ALFI = ALF(I,K,N)
 ALF2 = ALF(2,K,N)
 ALF3 = ALF(3,K,N)
 ! Relative Mach #, row 1
 ! Relative Mach #, row 2
 ! A constant
 ! Axial coordinate of stator exit
 EXPE21 = EXP(AI*(ALF2-ALFI)*XE)
 EXPE31 = EXP(AI*(ALF3-ALFI)*XE)
 EXPEl = EXP(-AI*ALFI*XE)
 c.. Get Smith's factors for transverse velocity components
 CALL GETVS(BET,N*LAMI,MXB,STI,CTI,VI,V2,V3)
 DO J0 J = 1, NP
 ! Loop on load elements
 Z0J=0.50D0*(1D0 - COS(PI*(J-J0D0)/NP))
 ! Chordwise locations for loads
 KRI = CON*V1*EXP(-AI*(ALF1*CT1+BET*ST1)*CI*Z0J)
 ! eq. 43
 KR2 = CON*V2*EXP(-AI*(ALF2*CT1+BET*ST1)*CI*Z0J)
 KR3 = CON*V3*EXP(-AI*(ALF3*CT1+BET*ST1)*CI*Z0J)
 c.. Compute VR1, VR2, VR3 from eq. 44.
 VR1 = (KRI*R12(K,N)+KR2)*R21(K,N)*EXP(AI*ALF2*XE)
 > + (KRI*R13(K,N)+KR3)*R31(K,N)*EXP(AI*ALF3*XE)
 VR2 = (KRI*VR1*EXPE1)*R12(K,N)
 VR3 = (KRI*VR1*EXPE1)*R13(K,N)
 c.. KRUP and KRDN are passed out of the subroutine for later use in computing
 c.. pressure in the non-swirl regions upstream and downstream.
 KRUP(N,K,J) = (KRI + VR1*EXPE1) * T14(K,N)
 ! eq. 85
 KRDN(N,K,J) = (KR2+VR2)*T28(K,N)*EXP(AI*ALF2*XE)
 ! eq. 97
 > + (KR3+VR3)*T38(K,N)*EXP(AI*ALF3*XE)

Figure 4. (continued) Source code for CUP2D.
c.. Loop on stator control points
DO I0 = 1, NP
 ZI0 = 0.5D0*(1D0-COS(PI*(2D0*I0 - 1D0)/(2D0*NP)))
 EII = (ALFI*CT2+BET*ST2)*C2*ZI
 E2I = (ALF2*CT2+BET*ST2)*C2*ZI
 E3I = (ALF3*CT2+BET*ST2)*C2*ZI
ENDDO

C.. Effect of rotor on stator, eq. 51
IF (K .NE. 0) THEN
 KRS = 1/MR2 * (
 (BET*CT2-ALFI*ST2)* VRI*EXP(AI*(ALFI*(XS-XE)+EII))
 + (BET*CT2-ALF2*ST2)*(KRS+VR2)*EXP(AI*(ALF2* XS +E2I))
 + (ALF3*CT2+BET*ST2)*(KRS+VR3)*EXP(AI*(ALF3* XS +E3I))
)
ENDIF

C.. Place elements in KMATRIX, forming real elements, from complex KRS, eq. 69
KMATRIX((NP-NH2+2)*NP+I,J) = KMATRIX((NP-NH2+2)*NP+I,J) + REAL(KRS)
KMATRIX((NP-NH2+2)*NP+I,J) = KMATRIX((NP-NH2+2)*NP+I,J) + IMAG(KRS)
KMATRIX((NP-NH2+2)*NP+I,J) = KMATRIX((NP-NH2+2)*NP+I,J) + ISIGN(1,K)*REAL(KRS)

C.. Compute the portion of the KRR coefs caused by the reflected waves, eq. 46.
 KRR = 1/MR1 * (
 (BET*CT1-ALF1*ST1)* VRI*EXP(AI*(ALF1*CT1+BET*ST1)*C1*ZI)*EXPEI
 + (BET*CT1-ALF2*ST1)* VR2*EXP(AI*(ALF2*CT1+BET*ST1)*C1*ZI)
 + (ALF3*CT1+BET*ST1)*VR3*EXP(AI*(ALF3*CT1+BET*ST1)*C1*ZI)
)

C.. Form real elements, do sum over K, and place in KMATRIX.
KMATRIX((2*N-2)*NP+I,J) = KMATRIX((2*N-2)*NP+I,J) + REAL(KRR) ! eq. 62
KMATRIX((2*N-2)*NP+I,J) = KMATRIX((2*N-2)*NP+I,J) + IMAG(KRR) ! eq. 63

10 CONTINUE

C.. Fill in the remaining sections of the rotor-on-rotor quarter of the matrix
C.. from the second parts of Eqs. 62 and 63.
DO 20 N = 1, NH
 DO 20 J = 1, NP
 DO 20 I = 1, NP
 KMATRIX((2*N-1)*NP+I,N) = KMATRIX((2*N-1)*NP+I,N) + REAL(KRR)
 ENDDO
 ENDDO
20 CONTINUE

RETURN
END

Figure 4. (continued) Source code for CUP2D.
SUBROUTINE GETVS(BETA, NLAM, MX, ST, CT, V1, V2, V3)
c.. Generates V1 and V2 (Smith's v1'/beta and v2'/beta) and V3 (Smith's v3'/
c.. alpha3) for either rotor waves or stator waves.
c.. For stator waves, call with BETA(N,K), NLAM=N*LAM2=N*B1*(MY1-MY2)/MR2, MXB,
c.. ST=SIN(THETA2), CT=COS(THETA2).
c.. For rotor waves, call with BETA(K,N), NLAM=N*LAM1=N*B2*(MY1-MY2)/MR1, MXB,
c.. ST=SIN(THETA1), CT=COS(THETA1). Derivation given in
appendix C.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION NLAM, MX
DOUBLE COMPLEX ROOT, G, VI, V2
INTEGER BETA

ABAR = NLAM**2 + BETA**2 + 2.0D0*NLAM*BETA*ST ! eq. C-18
E = BETA**2 - ABAR*(MX/CT)**2 ! eq. C-19

c.. E < 0 for propagation, E > 0 for decay. Any E = 0 (resonance) cases
c.. will be caught by the prior call to subroutine ALFBET.

IF (E .LT. 0.0D0) THEN
 ROOT = CMPLX(SQRT(-E), 0.0D0)
ELSE
 ROOT = CMPLX(0.0D0, -SQRT(E))
ENDIF

F = BETA + NLAM*ST
G = NLAM*BETA*CT/ROOT

V1 = (-F + G)/(2.0D0*ABAR) ! eq. C-15
V2 = (F + G)/(2.0D0*ABAR) ! eq. C-16
V3 = - NLAM*CT/ABAR ! eq. C-17

RETURN
END

Figure 4. (continued) Source code for CUP2D.

-26-
SUBROUTINE SCOEPS(NH,NP,C1,C2,SC1,CT1,ST1,ST2,XS,
> MXB,LAM2,ALF,BETA,R12,R21,R31,T14,T28,T38,KMATRX,KSUP,KSDN)
c.. Generates elements of the matrix of influence coefficients KMATRX that give
c.. the upwash caused by stator loading at control points on the rotor and
c.. stator. These are computed from KSS(N,K,I,J), effect of stator on rotor,
c.. and KSS’(N,I,J), effect of stator on stator. The prime on KSS’ indicates
that only the part of KSS associated with waves reflected from the actuator
c.. disk is computed here. The remainder is computed in GENKSS using original
c.. routines from the Smith code. N counts the stator loading harmonics, I the
c.. control points, and J the load elements. K counts the cascade wave index in
c.. the stator frame which becomes the time harmonic index in the rotor frame.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION MXB,MR1,MR2,LAM2,KMATRX(1020,1020)
INTEGER BET, BETA(-5:5,-5:5)
DOUBLE COMPLEX AI,ALFI,ALF2,ALF3,EXPEI,EII,E2I,E3I,
> KS1,KS2,KS3,V1,V2,V3,VS1,VS2,VS3,KSR,KSS,
> ALF(9,-5:5,-5:5),
> KSR(N,-5:5,51), KSUP(5,-5:5,51), KSDN(5,-5:5,51),
> R12(-5:5,-5:5),R21(-5:5,-5:5),R31(-5:5,-5:5),R31(-5:5,-5:5),
> T14(-5:5,-5:5),T28(-5:5,-5:5),T38(-5:5,-5:5)
AI = (0.0D0, 1.0D0)
PI = 3.14159265D0
WRITE(*,*) 'Enterinc'
WRITE(*,*) 'MR1 : MXB/CT1
WRITE(*,*) 'MR2 : MXB/CT2
WRITE(*,*) 'CON : MR2/SC2
WRITE(*,*) 'XE : XS + C2*CT2
NPNH2 : NP*NH*Z
DO 10 N : 1, NH
DO i0 K = -NH, NH
BET = BETA(N,K)
ALFI = ALF(I,N,K)
ALF2 = ALF(2,N,K)
ALF3 = ALF(3,N,K)
CALL GETVS(BET,N*LAM2,MXB,ST2,CT2,VI,V2,V3)
DO 10
Z0J = 0.5D0*(ID0 - COS(PI*(J-ID0)/NP))
KS1 = CON*VI*EXP(-AI*(ALF1*CT2+BET*ST2)*C2*Z0J)
KSR(N,K) = (KS1*EXP(-AI*ALFI*XS)
> + R12(N,K)*R21(N,K)*EXP(AI*ALF2*(XE-XS))
> + R13(N,K)*KS2*EXP(AI*ALF3*(XE-XS))
> - R12(N,K)*R21(N,K)*EXP(AI*ALF2*(XE-XS))
> - R13(N,K)*KS2*EXP(AI*ALF3*(XE-XS))
>)/(1.0D0 - R12(N,K)*R21(N,K)*EXP(AI*ALF2*(XE-XS))
> - R13(N,K)*KS2*EXP(AI*ALF3*(XE-XS))
VS1 = VS1*EXPEI
VS2 = (KS2*EXP(-AI*ALF2*X3)+VS1*EXPEI)*R12(N,K)
VS3 = (KS3*EXP(-AI*ALF3*X3)+VS1*EXPEI)*R13(N,K)
KSUP(N,K,J) = (KS1*EXP(-AI*ALF1*X5)+VS1*EXPEI)*T14(N,K)
KSDN(N,K,J) = (KS2*EXP(-AI*ALF2*X5)+VS2*EXP(AI*ALF2*X5)*T38(N,K)
> + (KS3*EXP(-AI*ALF3*X5)+VS3*EXP(AI*ALF3*X5)*T38(N,K)

Figure 4. (continued) Source code for CUP2D.
c.. Loop on rotor control points
DO 10 I = 1, NP
 ZI = 0.5D0*(1D0-COS(PI*(2*I-1D0)/(2*NP)))
 E1I = (ALF1*CTI+BET*STI)*C1*ZI
 E2I = (ALF2*CTI+BET*STI)*C1*ZI
 E3I = (ALF3*CTI+BET*STI)*C1*ZI
10 CONTINUE

c.. Effect of stator on rotor, eq. 37
IF (K .NE. 0) THEN
 KSR = 1/MR1*
 > (BET*CT1 - ALF1*ST1)*KS1*EXP(AI*EI1)*EXP(-AI*ALF1*XS)
 > + (BET*CT1 - ALF1*ST1)*VS1*EXP(AI*EI1)*EXP(1)
 > + (BET*CT1 - ALF2*ST1)*VS2*EXP(AI*EI2)
 > + (ALF3*CT1 + BET*ST1)*VS3*EXP(AI*EI3)
 ENDIF

c.. Place elements in KMATRX, forming real elements, from complex KSR, eq. 70
 KMATRX((2*ABS(K)-2)*NP+I,NPNH2+(2*N-2)*NP+J) =
 > KMATRIX((2*ABS(K)-2)*NP+I,NPNH2+(2*N-2)*NP+J) + REAL(KSR)
 KMATRX((2*ABS(K)-2)*NP+I,NPNH2+(2*N-1)*NP+J) =
 > KMATRIX((2*ABS(K)-2)*NP+I,NPNH2+(2*N-1)*NP+J) - IMAG(KSR)
 KMATRX((2*ABS(K)-2)*NP+I,NPNH2+(2*N-2)*NP+J) =
 > KMATRIX((2*ABS(K)-2)*NP+I,NPNH2+(2*N-2)*NP+J) + ISIGN(1,K)*IMAG(KSR)
 KMATRX((2*ABS(K)-2)*NP+I,NPNH2+(2*N-1)*NP+J) =
 > KMATRIX((2*ABS(K)-2)*NP+I,NPNH2+(2*N-1)*NP+J) - ISIGN(1,K)*REAL(KSR)

CONTINUE
RETURN
END

Figure 4. (continued) Source code for CUP2D.
SUBROUTINE GENKRR(NH,NP,CI,C2,SCI,SC2,CTI,STI,MXB,LAMI, KMATRX)
 c.. This generates the input needed to call Smith’s matrix generation routines
 c.. for the effect of the rotor on itself via the direct waves. It fills the
 c.. WHEAD common block and calls Smith’s routine DSWK. This returns the real
 c.. and imaginary parts of the matrix. These are placed in the appropriate
 c.. locations in KMATRX, adding to the elements already computed by RCOEFS that
 c.. account for the effect of the rotor on itself via the reflected waves.

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
 COMMON /WHEAD/ SC,STAG,MACH,LAM,PHASE,DEG,PI,COSET,STAG,
 > MACH2,B,BETA2,BC,BC2
 DOUBLE PRECISION MXB,LAMI,KR(51,51),KI(51,51),KMATRX(1020,1020)
 DOUBLE PRECISION MACH,LAM,MACH2

 WRITE(*,*) 'Entering GENKRR'
 c.. Fill /WHEAD/ common block (except for LAM and PHASE)
 SC = SCI
 STAG = ASIN(STI)
 MACH = MXB/CTI
 MACH2 = MACH**2
 BETA2 = 1D0 - MACH2
 B = SQRT(BETA2)
 DEG = 57.2957_D0
 PI = 3.14159265D0
 COSET = CTI
 STAG = STI
 BC2 = 1D0 - MXB**2
 BC = SQRT(BC2)

 c.. Loop on rotor loading harmonic
 DO 300 N=1, NH
 LAM = N*LAMI*CI
 PHASE = 2.0D0*PI*N*CI/C2*SCI/SC2
 c.. Call Smith’s original matrix generation routine
 CALL DSWK(KR,KI,NP, IW)
 IF (IW .EQ. I) THEN ! Smith’s resonance check
 WRITE(*,1) N
 1 FORMAT(X, 'DSWK RETURNED IW:I TO GENKRR FOR N:',I2)
 STOP 'EXECUTION TERMINATED DUE TO RESONANCE'
 ENDIF

 c.. Add Smith’s real and imaginary matrix elements into KMATRX, see Eqs. 62 & 63
 DO 100 I = 1, NP
 DO 100 J = 1, NP
 KMATRX((2*N-2)*NP+I,(2*N-2)*NP+J) =
 > KMATRX((2*N-2)*NP+I,(2*N-2)*NP+J) + KR(I,J)
 KMATRX((2*N-1)*NP+I,(2*N-1)*NP+J) =
 > KMATRX((2*N-1)*NP+I,(2*N-1)*NP+J) + KR(I,J)
 KMATRX((2*N-2)*NP+I,(2*N-2)*NP+J) =
 > KMATRX((2*N-2)*NP+I,(2*N-2)*NP+J) + KI(I,J)
 KMATRX((2*N-1)*NP+I,(2*N-1)*NP+J) =
 > KMATRX((2*N-1)*NP+I,(2*N-1)*NP+J) - KI(I,J)
 100 CONTINUE
 300 CONTINUE

RETURN
END

C
C

Figure 4. (continued) Source code for CUP2D.
SUBROUTINE GENKSS(NH, NP, C1, C2, SC1, SC2, CT2, ST2, MXB, LAM2, KMATRIX)
c.. This generates the input needed to call Smith's matrix generation routines
c.. for the effect of the stator on itself via the direct waves. It fills the
c.. WHEAD common block and calls Smith's routine DSWK. This returns the real
c.. and imaginary parts of the matrix. These are placed in the appropriate
c.. locations in KMATRIX, adding to the elements already computed by SCOEFFS that
c.. account for the effect of the stator on itself via the reflected waves.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON /WHEAD/ SC, STAG, MACH, LAM, PHASE, DEG, PI, COSST, SINST,
> MACH2, B, BETA2, Bc, BC2
DOUBLE PRECISION MXB, LAM2, KR(51,51), KI(51,51), KMATRIX(1020,1020)
DOUBLE PRECISION MACH, LAM, MACH2
WRITE(*,*) 'Entering GENKSS'
C... Fill /WHEAD/ common block (except for LAM and PHASE)
SC = SC2
STAG = ASIN(ST2)
MACH = MXB/CT2
MACH2 = MACH**2
BETA2 = 1.000 - MACH2
B = SQRT(BETA2)
DEG = 57.295776D0
PI = 3.14159265D0
COSST = CT2
SINST = ST2
BC2 = 1.000 - MXB**2
BC = SQRT(BC2)
C... Loop on stator loading harmonic
NPNH2 = NP*NH*2
DO 300 N=1, NH
LAM = N*LAM2*C2
PHASE = -2.0D0*PI*N*C2/CI*SC2/SCI
C... Call Smith's original matrix generation routine
CALL DSWK(KR,KI,NP, IW)
IF (IW .EQ. 1) THEN ! Smith's resonance check
WRITE(*,1) N
1 FORMAT(I6, 'DSWK RETURNED IW=I TO GENKSS FOR N=',I2)
STOP 'EXECUTION TERMINATED DUE TO RESONANCE'
ENDIF
C.. Add Smith's real and imaginary matrix elements into KMATRIX, see Eqs. 64 & 65
DO 100 I = 1, NP
DO 100 J = 1, NP
KMATRIX(NPNH2+(2*N-2)*NP+I,NPNH2+(2*N-2)*NP+J) =
> KMATRIX(NPNH2+(2*N-1)*NP+I,NPNH2+(2*N-1)*NP+J) + KR(I,J)
KMATRIX(NPNH2+(2*N-1)*NP+I,NPNH2+(2*N-2)*NP+J) =
> KMATRIX(NPNH2+(2*N-2)*NP+I,NPNH2+(2*N-1)*NP+J) + KR(I,J)
KMATRIX(NPNH2+(2*N-1)*NP+I,NPNH2+(2*N-2)*NP+J) =
> KMATRIX(NPNH2+(2*N-2)*NP+I,NPNH2+(2*N-1)*NP+J) + KI(I,J)
KMATRIX(NPNH2+(2*N-2)*NP+I,NPNH2+(2*N-1)*NP+J) =
> KMATRIX(NPNH2+(2*N-1)*NP+I,NPNH2+(2*N-2)*NP+J) - KI(I,J)
100 CONTINUE
300 CONTINUE
RETURN
END

Figure 4. (continued) Source code for CUP2D.
SUBROUTINE SOLVE(NH,NP,KM matrix, WR, WS, LR, LS)

This routine finds the loading on both the rotor and the stator simultaneously by matrix inversion. Externally imposed upwash velocities enter the routine in complex form (WR, WS) and are used to form a one-dimensional real vector WASH. KM matrix is inverted using the LINPACK routines and multiplied by WASH. The result is the one-dimensional load vector LOAD. This is decomposed into the complex load vectors LR and LS and these are sent to the LOADS routine for output.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION KM matrix(1020,1020), LOAD(1020), WASH(1020)
DOUBLE COMPLEX WR(5,51), WS(5,51), LR(5,51), LS(5,51)

ZERO = 0.0D0
NPNH2 = NI*NH*2
NPNH4 = NI*NH*4

CALL MATINV(KM matrix, NPNH4)

DO 10 K = 1, NH
 DO 10 I = I, NP
 WASH((2*K-2)*NP+I) = REAL (WR(K,I))
 WASH((2*K-I)*NP+I) = IMAG (WR(K,I))
 WASH(NPNH2 + (2*K-2)*NP+I) = REAL (WS(K,I))
 WASH(NPNH2 + (2*K-I)*NP+I) = IMAG (WS(K,I))
 10 CONTINUE

DO 20 NU = 1, NPNH4
 LOAD(NU) = ZERO
20 CONTINUE

DO 30 NU = 1, NPNH4
 DO 30 MU = 1, NPNH4
 LOAD(NU) = LOAD(NU) + KM matrix(NU,MU) * WASH(MU)
 30 CONTINUE

DO 40 N = 1, NH
 DO 40 J = 1, NP
 LR(N,J) = CMPLX(LOAD((2*N-2)*NP+J), LOAD((2*N-1)*NP+J))
 LS(N,J) = CMPLX(LOAD(NPNH2+(2*N-2)*NP+J), LOAD(NPNH2+(2*N-1)*NP+J))
 40 CONTINUE

CALL LOADS(NH,NP,LR,LS)

END

Figure 4. (continued) Source code for CUP2D.
SUBROUTINE LOADS(NH,NP,LR,LS)
c. Computes and prints integrated loading on both blade rows for multiple
c. harmonics. Formulas equivalent to Smith's eq. 56. Values are lift per
c. unit span divided by chord*rho*relv**2. Treatment of first and last terms
c. handled automatically by inversion process.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE COMPLEX LR(5,51), LS(5,51), CLR, CLS

WRITE('','** VALUES OF LIFT COEFFICIENTS **'
WRITE('','N ' CLROTOR(N) CLSTATOR(N)'
WRITE('','real imag real imag'

DO 20 N=1, NH
CLR = (0D0, 0D0)
CLS = (0D0, 0D0)
DO 10 J=1, NP
CLR = CLR - LR(N,J)
CLS = CLS - LS(N,J)

CONTINUE
WRITE(*,I) N, CLR, CLS:
FORMAT(I2,' ',2F10.5,' ',2F10.5)

CONTINUE
WRITE(*,*)
RETURN
END

Figure 4. (continued) Source code for CUP2D.

-32-
SUBROUTINE OUTPUT(NH,NP,B1,B2,MAXA,MAXB,MAXC,MS,MY1,MY2,ALF,ABA,ABC,
> XC, XA, XC, POPSA, POPSC, KRUP, KRDN, KSUP, KSDN, LR, LS)
c.. Calculates sound pressure at axial locations XA and XB and sound power
c.. (average per unit area) upstream and downstream based on loading from
c.. SOLVE and influence functions from INFFNS.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION MAXA, MAXB, MAXC, MS, MY1, MY2, PWLAT(5), PWLCT(5)
INTEGER BI, B2 ORDER
DOUBLE COMPLEX A4, A8, G4, G8, PUP, PDN, ALF(-9,-5:5,-5:5), AI,
> LR (5,51), LS (5,51), LUP (5,-5:5), LDN (5,-5:5),
> LRUP(5,-5:5), LRDN(5,-5:5), LSUP(5,-5:5), LSDN(5,-5:5),
> KRUP(5,-5:5,51), KRDN(5,-5:5,51), KSUP(5,-5:5,51), KSDN(5,-5:5,51)

AI = (0.0D0, 1.0D0)

WRITE(*,*) 'Axial locations for sound pressure output in radii from
> rotor leading edge'
WRITE(*,5) XA, XC
5 FORMAT(IX, 'F5.3', 'F5.3', For PRESup, X+ = ',F5.3,'.
> For PRESdn, Xc = ',F5.3)

WRITE(*,'(1x, 'Decibel Levels for Pressure Waves and Power Levels
> Cutoff Ratio')
WRITE(*,*)' N K FREO nBl-kB2 PRESup PRESdn PWLup PWL
>dn A R C'

c.. Zero the wave accumulators
DO 10 N = 1, NH
DO 10 K = -NH, NH
LRUP(N,K) = (0D0, 0D0)
LRDN(N,K) = (0D0, 0D0)
LSUP(N,K) = (0D0, 0D0)
LSDN(N,K) = (0D0, 0D0)
10 CONTINUE

c.. Sum contributions to waves over load elements
DO 20 N = 1, NH
DO 20 K = -NH, NH
DO 20 J = 1, NI
LRUP(N,K) = LRUP(N,K) + KRUP(N,K,J)*LR(N,J) ! eq. 84
LRDN(N,K) = LRDN(N,K) + KRDN(N,K,J)*LR(N,J) ! eq. 96
LSUP(N,K) = LSUP(N,K) + KSUP(N,K,J)*LS(N,J) ! eq. 77
LSDN(N,K) = LSDN(N,K) + KSDN(N,K,J)*LS(N,J) ! eq. 89
20 CONTINUE

c.. Add rotor waves to stator waves upstream and downstream
DO 30 N = 1, NH
DO 30 K = 1, NH
LU(N) = LRUP(K, N) + LSUP(N, K) ! eq. 106
LU(N) = -CONJG(LRDN(K, N)) + LSUP(N, -K)
LD(N) = LRDN(K, N) + LSDN(N, K) ! eq. 116
LD(N) = -CONJG(LRDN(K, N)) + LSDN(N, -K)
30 CONTINUE

c.. Following terms computed without steady loading effect from rotor
LU(N,0) = LSUP(N,0)
LD(N,0) = LSDN(N,0)
30 CONTINUE

c.. Compute modal and total powers upstream and downstream
DO 50 N = 1, NH
PWAT = 0.0D0 ! Total power accumulator, upstream
PWACT = 0.0D0 ! Total power accumulator, downstream
50 CONTINUE

Figure 4. (continued) Source code for CUP2D.
DO 52 K = -NH, NH
 FREQ = N*BI*MYI - K*B2*MY2
 ORDER = N*BI - K*B2 ! Negative of beta(n,k)
 c.. CTRAT's below are cutoff ratios (infinity is rigged to print 9.99), eq. B-6
 IF (ORDER .EQ. 0) THEN
 CTRATA = 9.99D0
 CTRATB = 9.99D0
 CTRATC = 9.99D0
 ELSE
 CTRATA = SQRT(((ABA*FREQ)**2/((ID0-MXA**2)*ORDER**2))
 CTRATB = SQRT(((FREQ-ORDER*MS)**2/((ID0-MXB**2)*ORDER**2))
 CTRATC = SQRT(((ABC*FREQ)**2/((ID0-MXC**2)*ORDER**2))
 CTRATA = MIN(ABS(CTRATA), 9.99D0)
 CTRATB = MIN(ABS(CTRATB), 9.99D0)
 CTRATC = MIN(ABS(CTRATC), 9.99D0)
 ENDIF
 c.. Output only waves with cutoff ratios > 0.2 in up or downstream region
 IF (CTRATA .GT. 0.2D0) GOTO 51
 IF (CTRATC .LE. 0.2D0) GOTO 52

51 A4 = ALF(4,N,K) ! axial wavenumber upstream
 A8 = ALF(8,N,K) ! axial wavenumber downstream
 G4 = - (ABA*FREQ + MXA*A4) ! eq. 81
 G8 = - (ABC*FREQ + MXC*A8) ! eq. 93
 CALL GETWL(CTRATA,MXA,A4,G4,LUP(N,K),-1, PWRA, PWLA)
 CALL GETWL(CTRATC,MXC,A8,G8,LDN(N,K), 1, PWRC, PWLC)
 CWRAT = CWRAT + PWRA
 CWRCT = CWRCT + PWRC
 c.. Compute pressures at phi=0 and x = xa and xc
 PUP = G4*LUP(N,K)*EXP(AI*A4*XA)
 PDN = G8*LDN(N,K)*EXP(AI*A8*(XC-XE))
 WRITE(*,1) N, K, FREQ, ORDER, DBEL(PUP,POPSA), DBEL(PDN,POPSA),
 PWLA, PWLC, CTRATA, CTRATB, CTRATC
1 FORMAT(1X,2I5,F7.2,I6,4F8.1,' ',2F8.1)

52 CONTINUE
 PWLAT(N) = MAX(0D0, 1000*LOG10(CWRAT*1.0D14+1.0D-30))
 PWLCT(N) = MAX(0D0, 1000*LOG10(CWRCT*1.0D13+1.0D-30))
 WRITE(*,3) N, PWLAT(N), PWLCT(N)
3 FORMAT(1X,'-------------- Total power for N=',I2, ', ',2F8.1)
 WRITE(*,*)
50 CONTINUE
 RETURN
END

Figure 4. (continued) Source code for CUP2D.
SUBROUTINE GETPWL(CTRAT, MX, A, G, L, IX, POWER, PWL)
 c.. Computes sound power level according to theory in Eqs. 98-116.
 c.. Checks that power is real (within numerical accuracy) and that real part
 c.. has the correct sign for flux away from blades.

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
 DOUBLE PRECISION MX
 DOUBLE COMPLEX A, G, L, PWR

 c.. No power for waves that are cut off.
 IF (CTRAT .LE. 1.00) THEN
 POWER = 0.0D0
 PWL = 0.0D0
 RETURN
 END IF

 c.. Treat power as complex to verify correct behavior. See Eqs. 112 & 115.
 c.. SIGN function below is needed because derivation was for power flux in the
 c.. +x direction. The expression below must be real and > 0 for regions A & C.
 PWR = ((1.0D0+MX**2)*A*G + MX*(A**2+G**2))*ABS(L)**2 *SIGN(1,IX)

 c.. Check that PWL is real.
 TEST = ABS(IMAG(PWR)/(REAL(PWR)+1.0D-20))
 IF (TEST .LT. .001DO) THEN
 STOP 'Execution terminated because power flux is complex'
 END IF

 c.. Check that power flux is outgoing on either side of the source.
 IF (REAL(PWR) .LT. 0.0) THEN
 WRITE(*,*) 'IX = ', IX
 STOP 'Execution terminated because power flux is negative'
 END IF

 POWER = REAL(PWR)

 IF (POWER .LT. 1.0D-13) THEN
 PWL = 0.0D0
 ELSE
 PWL = 10.0D0*LOG10(POWER*1.0D1)
 END IF

 RETURN
END

DOUBLE PRECISION FUNCTION DBEL(X, POPS)
 c.. Computes SPL dB from harmonic peak value normalized by ambient rho*c**2.
 c.. Uses POPS, the ratio of local ambient pressure to 2116 psf.

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
 DOUBLE COMPLEX X

 TEMP=20.0D0*LOG10(.7071106*ABS(X)*1.400*POPS*5.0651D9+1.0D-35)
 DBEL=MAX(TEMP,0.0D0)

END

Figure 4. (continued) Source code for CUP2D.
C Calculation of Kernel Matrix Elements from Original Smith Code

SUBROUTINE DSWK(KR,KI,NP, IW)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION MACH,LAM,MACH2,MACH4,MACH6,KR(51,51),KI(51,51)
COMMON /WHEAD/ SC,STAG,MACH,LAM,PHASE,DEC,FI,COSS,T,INSST,
> MACH2,B2,BC,BC2
COMMON/WAVEC/ XU,APU,APD,ANU,AND, PUR,PDR,PUI,VU,VD
DIMENSION ICHECK(51,51),ZE(51),ZP(51)

C CONSTANTS FOR VORTEX SHEET CALCULATION
X = LAM*SC*COSST
Y = LAM*SC*SINST + PHASE
VORT = 0.5*LAM*SINH(X)/(COSH(X) - COS(Y))

C CONSTANTS FOR LOG SINGULARITY CORRECTION
MACH4 = MACH2*MACH2
MACH6 = MACH4*MACH4
B4 = B2*B2
B6 = B2*B4
A1 = 1.0 - 0.5*MACH2/B2
A2 = 1.0 - 0.5/B2 + 0.9*MACH2/B4
A3 = 0.5*(1.0 - 1.0/B2 + MACH2/(6.0*B4) + 1.0/(3.0*B4))
> - 0.375*MACH4/B6 + MACH6/(6.0*B6))

C MATCHING AND VORTEX POINTS:
DO I = 1,NP
EPSIL = PI*FLOAT(2*I - 1)/FLOAT(2*NP)
ZE(I) = 0.5*(1.0 - COS(EPSIL))
PSI = PI*FLOAT(2*I - 1)/FLOAT(NP)
ZP(I) = 0.5*(1.0 - COS(PSI))
ENDDO

C ZERO COUNTS AND ARRAYS:
IR = 0
ICOUNT = 0
IW = 0
NP2 = NP*NP
DO I = 1,NP
DO J = 1,NP
ICHECK(I,J) = 0
KR(I,J) = 0.0
KI(I,J) = 0.0
ENDDO
ENDDO

C ASSEMBLE MATRIX
C I(= M + 1 IN PAPER) GIVES VORTEX POSITION
C J(= L + 1 IN PAPER) GIVES MATCHING POINT
C
30 CALL WAVE(IR,IW)
IF(IW.EQ.I) RETURN
DO I = 1,NP
DO J = 1,NP
IF(ICHECK(I,J).EQ.1) GO TO 131
POS = ZE(I) - ZP(J)
IF(POS.GT.0.0) GO TO 90
C
C UPSTREAM POINT
XP = EXP(XU*POS)
YP = AMPL*POS
QR = XI*COS(YF)
QI = XI*SIN(YF)
TERM = (PUR*QR - PUI*QI)/SC

Figure 4. (continued) Source code for CUP2D.

-36-
\[\text{TERMI} = \frac{(PDR*QI + PUI*QR)}{SC} \]

GO TO 100

C

........... DOWNSTREAM POINT
90

\[XP = \exp(-XU*\text{POS}) \]
\[YP = \text{APD} \cdot \text{POS} \]
\[QR = XP \cdot \cos(YP) \]
\[QI = XP \cdot \sin(YP) \]

\[\text{TERMR} = \frac{(PDR*QR - PUI*QI)}{SC} \]
\[\text{TERMI} = \frac{(PDR*QI + PUI*QR)}{SC} \]

C

........... ADD TO MATRIX
100

\[\text{KR}(I,J) = \text{KR}(I,J) + \text{TERMR} \]
\[\text{KI}(I,J) = \text{KI}(I,J) + \text{TERMI} \]

C

........... CHECK CONVERGENCE OF SERIES
C.. The next 3 lines modified from Smith's code on 8/19/91 by DBH

\[X = \text{ABS(TERMR)} + \text{ABS(TERMI)} \]
\[Y = \text{ABS(KR}(I,J)) + \text{ABS(KI}(I,J)) \]
\[\text{IF}((X/Y) \gt 1.0D - 7) \text{ GO TO 131} \]

C

\[X = \text{TERMR} \cdot \text{TERMR} + \text{TERMI} \cdot \text{TERMI} \]
\[Y = \text{KR}(I,J) \cdot \text{KR}(I,J) + \text{KI}(I,J) \cdot \text{KI}(I,J) \]
\[\text{IF}((X/Y) \gt 1.0D - 11) \text{ GO TO 131} \]

ICHECK(I,J) = 1
ICOUNT = I + 1

C

........... CORRECT FOR LOG SINGULARITY (LAST TIME THROUGH)

\[\text{SUM} = 0.0 \]
\[\text{EPSIL} = \pi \cdot \text{FLOAT}(2*I - 1)/\text{FLOAT}(2*NP) \]
\[\text{PSI} = \pi \cdot \text{FLOAT}(I - 1)/\text{FLOAT}(NP) \]
\[\text{NPM1} = \text{NP} - 1 \]
\[\text{DO JR} = I, \text{NPM1} \]
\[\text{FJR} = \text{FLOAT}(JR) \]
\[\text{SUM} = \text{SUM} + \cos(FJR \cdot \text{EPSIL}) \cdot \cos(FJR \cdot \text{PSI}) / FJR \]

ENDDO

\[\text{SUM} = 2.0 \cdot \text{SUM} + \log(4.0 \cdot \text{ABS(POS)}) \]
\[\text{SUM} = \text{SUM} \cdot \text{LAM}/(2.0 \cdot \pi \cdot \text{B}) \]
\[\text{PLAM} = \text{LAM} \cdot \text{POS} \]
\[\text{PLAM2} = \text{PLAM} \cdot \text{PLAM} \]
\[\text{PLAM3} = \text{PLAM} \cdot \text{PLAM} \]
\[\text{KR}(I,J) = \text{KR}(I,J) + \text{SUM} \cdot (A1 \cdot \text{PLAM} - A2 \cdot \text{PLAM3}) \]
\[\text{KI}(I,J) = \text{KI}(I,J) + \text{SUM} \cdot (1.0 - A2 \cdot \text{PLAM2}) \]

C

........... ADD VORTICITY WAVE

\[\text{IF(POS.LE.0.0) GO TO 131} \]
\[\text{KR}(I,J) = \text{KR}(I,J) + \text{VORT} \cdot \cos(\text{PLAM}) \]
\[\text{KI}(I,J) = \text{KI}(I,J) - \text{VORT} \cdot \sin(\text{PLAM}) \]

131

CONTINUE

ENDDO

ENDDO

C

.... CHECK FOR COMPLETION
\[\text{IF}(\text{ICOUNT} \cdot \text{NPZ}) \text{ RETURN} \]
\[\text{IF}(\text{IR} \cdot 	ext{GT} 0) \text{ THEN} \]
\[\text{IR} = -\text{IR} \]
\[\text{ELSE} \]
\[\text{IR} = -\text{IR} + 1 \]
\[\text{ENDIF} \]
\[\text{GO TO 30} \]
\[\text{END} \]

Figure 4. (continued) Source code for CUP2D.
CALCULATION OF ACOUSTIC WAVE PROPERTIES

SUBROUTINE WAVE(IR, IW)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION MACH, LAM, MACH2
COMMON /WHEAD/ SC, STAG, MACH, LAM, PHASE, DEG, PI, COSST, SINST,
> MACH2, B, B2, BC, BC2
COMMON/WAVEC/ XU, APU, APD, ANU, AND, PUR, PDR, PUI, VU, VD

BETAH = (PHASE - 2.0 * PI * FLOAT(IR)) / SC
BETAH2 = BETAH * BETAH
A = LAM * LAM + BETAH2 + 2.0 * LAM * BETAH * SINST
D = MACH2 * (LAM + BETAH * SINST) * COSST / BC2
E = BETAH2 - MACH2 * A
IF (E .NE. 0.0) GO TO 32
WRITE(*,31) IR
FORMAT(' Resonance at IR=',I4)
IW=1
GO TO 60
31 F = SQRT(ABS(E))
FB = F / BC2
H = (BETAH + LAM * SINST) / (2.0 * A)
P = BETAH * LAM * COSST / (F * 2.0 * A)
IF (E .GT. 0.0) GO TO 50

WAVE NUMBERS, PROPAGATING CASE

ACUI = D + FB
ACDI = D - FB
APU = ACUI * COSST + BETAH * SINST
APD = ACDI * COSST + BETAH * SINST
ANU = BETAH * COSST - ACUI * SINST
AND = BETAH * COSST - ACDI * SINST
PUR = ANU * (P - H)
PDR = AND * (P + H)
PUI = 0.0
XU = 0.0
VU = (P - H) * (LAM + APU) / SC
VD = (P + H) * (LAM + APD) / SC
GO TO 60

WAVE NUMBERS, DECAYING CASE

APU = D * COSST + BETAH * SINST
APD = APU
ANU = BETAH * COSST - D * SINST
AND = ANU
PUR = - ANU * H - FB * SINST * P
PDR = - PUR
PUI = ANU * P - FB * SINST * H
XU = FB * COSST
GO TO 60
RETURN
END

Figure 4. (continued) Source code for CUP2D.
SUBROUTINE MATINV(A,N)
C.. This routine written by D.B. Hanson to call the LINPACK routines for
C.. inversion of real matrices. Call for matrix A. Inverse returned in
C.. same array.

DOUBLE PRECISION A(1020,1020),WORK(1020),DET(2),RCOND,Z(1020)
INTEGER IPVT(1020)

WRITE(*,*) 'Entering MATINV'
CALL DGECO(A,1020,N,IPVT,RCOND,Z)
WRITE(*,*) 'Condition number of KMATRIX = ', RCOND
CALL DGEIDI(A,1020,N,IPVT,DET,WORK,1)
RETURN
END

Figure 4. (continued) Source code for CUP2D.
Section 5
Array Dimensions

This section shows how the arrays are dimensioned in case they need to be changed to accommodate more harmonics or panels on the blades. Interpret \(N_h \) and \(N_p \) below to be the maximum permitted values of number of harmonic and number of panels.

\[
\begin{align*}
ALF(9, -N_h:N_h, -N_h:N_h) \\
BETA(-N_h:N_h, -N_h:N_h) \\
KRUP, KRDN, KSUP, KSDN(N_h, -N_h:N_h, N_p) \\
R12, R21, R13, R31, T14, T28, T38(-N_h:N_h, -N_h:N_h) \\
WREXT, WSEXT(N_h, N_p) \\
LR, LS(N_h, N_p) \\
KMATRX(4*N_h*N_p, 4*N_h*N_p) \\
FW(N_h) \\
KR, KI(N_p, N_p) \\
WR, WS(N_h, N_p) \\
LOAD, WASH(4*N_h*N_p) \\
LUP, LDN(N_h, -N_h:N_h) \\
LRUP, LRDN, LSUP, LSDN(N_h, -N_h:N_h)
\end{align*}
\]
A 2D linear aeroacoustic theory for rotor/stator interaction with unsteady coupling was derived and explored in Volume 1 of this report. Computer program CUP2D has been written in FORTRAN embodying the theoretical equations. This volume (Volume 2) describes the structure of the code, installation and running, preparation of the input file, and interpretation of the output. A sample case is provided with printouts of the input and output. The source code is included with comments linking it closely to the theoretical equations in Volume 1.