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ABSTRACT

The class of hypersonic vehicle configurations with single stage-to-orbit (SSTO)

capability reflect highly integrated airframe and propulsion systems. These designs are

also known to exhibit a large degree of interaction between the airframe and engine

dynamics. Consequently, even simplified hypersonic models are characterized by tightly

coupled nonlinear equations of motion. In addition, hypersonic SSTO vehicles present a

major system design challenge: The vehicle's overall mission performance is a function of

its subsystem efficiencies, including structural, aerodynamic, propulsive, and operational.

Further, all subsystem efficiencies are interrelated, hence, independent optimization of the

subsystems is not likely to lead to an optimum design. Thus, it is desired to know the

effect of various subsystem efficiencies on overall mission performance. For the purposes

of this analysis, mission performance will be measured in terms of the payload weight

inserted into orbit. In this report, a trajectory optimization problem is formulated for a

generic hypersonic lifting body for a specified orbit-injection mission. A solution method

is outlined, and results are detailed for the generic vehicle, referred to as the baseline

model. After evaluating the performance of the baseline model, a sensitivity study is

presented to determine the effect of various subsystem efficiencies on mission

performance. This consists of performing a parametric analysis of the basic design

parameters, generating a matrix of configurations, and determining the mission

performance of each configuration. Also, the performance loss due to constraining the

total head load experienced by the vehicle is evaluated. The key results from this analysis

include the formulation of the sizing problem for this vehicle class using trajectory

optimization, characteristics of the optimal trajectories, and the subsystem design

sensitivities.



NOMENCLATURE

a sonic velocity

AC engine exit area

AN engine nozzle area ratio

CD vehicle drag coefficient

CDO profile drag coefficient

CL vehicle lift coefficient

Cp specific heat at constant pressure for air

D vehicle drag

E vehicle energy height

g gravitational constant

h vehicle altitude above Earth's surface

k ratio of specific heats

L vehicle lift

Ln vehicle forebody length

Moo freestream Mach No.

M2 diffuser exit Mach No.

M3 combustor exit Mach No.

Me engine exit Mach No.

p« freestream pressure

ps surface pressure on vehicle forebody

q« freestream dynamic pressure

Q vehicle heat load

R vehicle distance from Earth's center

Re radius of Earth

S effective frontal area

T engine thrust

V vehicle velocity

W total vehicle weight

We effective vehicle width

Wf vehicle fuel flow rate

a vehicle angle of attack

ocn forebody nose angle

Y vehicle flight path angle

p» freestream density

C0e Earth's rate of rotation



I. INTRODUCTION

A possible next-generation launch vehicle will be a fully reusable, single-stage-to-

orbit, manned aerospacecraft Such vehicles will most likely use liquid hydrogen fuel, be

100 to 150 feet in length, and weigh approximately 300,000 Ibs [1]. They should be

capable of horizontal take-off and landing, accelerating to Mach 25 on orbit, as well as

cruising at Mach 5 to 15 in the upper atmosphere.

In order to meet the above stated mission requirements, the vehicle must utilize an

airbreathing propulsion system for much of its trajectory, to avoid the weight penalty of

carrying the oxidizer on board. The untested SCRAMjet engine will likely be the primary

propulsive system. To obtain maximum propulsive efficiency, the SCRAMjet engine

must be operated at a high dynamic pressure. However, since aerodynamic heating and

drag also increase with dynamic pressure, the benefits of high propulsive efficiency must

be balanced against temperature and structural constraints. Further, propulsive variables

such as thrust and fuel flow vary with Mach number and altitude, so propulsive efficiency

will depend on the vehicle trajectory. Similarly, both aerodynamic forces and heating are

functions of Mach number and altitude, thus aerodynamic efficiency and structural design

requirements (e.g., the amount of aerodynamic heating the structure can withstand) are

trajectory-dependent as well. This demonstrates the highly interactive nature of these

systems. As such, it should be reiterated that independent subsystem optimization will not

lead to the optimal integrated system.

Since these vehicles are neither conventional aircraft nor rocket, the vehicle sizing

problem is unique. Conventional aircraft sizing, based on Breguet analysis for example, is

not appropriate, nor is classic rocket performance analysis. Consequently, the sizing

problem must be reformulated. A new formulation and some parametric results are

presented in this paper. First, a baseline hypersonic vehicle configuration is defined. Also

defined are several high-efficiency configurations, each resulting from a change in the

efficiency of one of the vehicle's many subsystems. A minimum-fuel optimization

problem for these configurations is then posed. After a numerical solution algorithm is

outlined, the resulting characteristics of the baseline trajectory are detailed. Also, the

effect of constraining the total heating load experienced by the vehicle during the mission

will be assessed. Finally, a parametric analysis will be performed to determine the

sensitivities between mission performance and subsystem efficiencies.



H. DESCRIPTION OF BASELINE VEHICLE AND ATMOSPHERIC MODEL

The vehicle geometry considered in this study is generic, but was selected to

reflect key characteristics similar to the X-30 vehicle described in [1]. Figure 1 shows a

simplified sketch of the baseline vehicle. The basic aerodynamic and propulsive

modeling of the vehicle has been addressed in [4] and [5]. The configuration consists of

a forebody/engine inlet, internal engine module, and afterbody/exhaust nozzle.

B

FOREBODY

SCRAMJET ENGINE

Fig. 1. Hypersonic Vehicle Configuration.

2.1 Aerodynamic Characteristics

The forebody, with forebody nose angle ctn, is the primary lifting surface. If the

vehicle angle of attack is a, under Newtonian theory the pressure on the forebody is

ps = (2.1.1)



If the pressure on the upper surface is assumed constant at poo, the resulting lift and drag

on the forebody are

(2.1.2)

(2.1.3)

L = LnWecos(a + a^qooO-cos 2(a + a,,))

D = LnWe(sin(a + On) qoo(l-cos 2(a + an))4q«x,CDo

These equations can be arranged as

L =

D =

(2.1.4)

(2.1.5)

where

S = LnWe

CL = (l-cos(2(a + On)))cos (a + a,,)
CD = cDo + (l-cos(2(a + an)))sin(a + a,,)

(2.1.7)

(2.1.6)

(2.1.8)

For this model, a constant CDO of .024 has been chosen [6]. Figure 2 shows the

aerodynamic drag polar.
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Fig. 2. Vehicle Drag Polar.



2.2 Propulsive Characteristics

The SCRAMjet engine modeling is presented in [4], [5], and [7]. The thrust and

fuel flow characteristics of the baseline engine module are

Thrust / (poo Ag) = Ci F (k/fc-D) - C2 (k Moo2 + 1) / [M^ F^+D^Oc-D)] (2.2.1)

Fuel flow / (poo Ae a) = C3 F tfk-l)/(2(k-D) (2.2.2)

where

k = 1.4 (2.2.3)

F= 1 + ((k+l)Moo2)/2 (2.2.4)

AC = Ago exp(-C4(Moo -1)) • (2.2.5)

Aeo = 840ft2 (2.2.6)

a = 1000 ft/sec (2.2.7)

Note that Ag is assumed to be a function of Mach number, which reflects the fact that

the number of engine modules operating may be a Mach-dependent variable. The

function (2.2.5) is itself a curve-fit of empirical data, with C4 taking on a value of

approximately .2.

For this analysis, the engine quantities have been calculated assuming fixed chosen

values for combustor exit Mach number, nozzle area ratio, and heat input to the

combustor. The engine dependent constants C l through C3 are defined below as

Cl =

";' "ai" ^ "2\ (2.2.8)

„ M2c2 =
I . .lrj.1

(2.2.9)



M2

RQ (2.2.10)

where Q and R in (3.2.9) represent heating value of the fuel and gas constant for air,
respectively. All of the quantities in (3.2.7)-(3.2.9) are taken to be constant for a specific
engine configuration. Therefore, the three engine constants will remain fixed over the

trajectory. The values of the engine constants taken for this analysis are

Ci=0.1

C2 = 0.03
€3 = 8 x 10-10/ft

(2.2.11)
(2.2.12)

(2.2.13)

Thrust/(P ^
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Fig. 3. Variation of Thrust with Mach number.

The variation of thrust with Mach number is plotted in Figure 3. Note that this is a plot of
Eqn (3.2.1) above multiplied by Ae/Ae0, thus allowing for the Mach-dependent area.

Figure 4 shows specific fuel consumption vs. Mach number. Although thrust (Ib) and fuel

flow rate (Ib/hr) are functions of Mach number and altitude, Figures 3 and 4 vary with
Mach number only.
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Fig. 4. Variation of S.F.C. with Mach number.

2.3 Atmosheric Model

For the trajectory study deiscussed later in this report, a simplified exponential

atmosphere was used, resulting in the following model for freestream pressure poo and

density poo:

f -e 1P«o = Pref exp - — 2— (h - href)
LKgas Aref J

Aref
- href)

(2.3.1)

(2.3.2)

where h is altitude and

href= 150,000ft

Pref = 2-5 Ipsf

Pref = 2.87

"g =3.68xlO-5/ft
ref

(2.3.3)

(2.3.4)

(2.3.5)

(2.3.6)
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m. PARAMETRIC CONFIGURATION MATRIX

Having set forth the characteristics of the baseline configuration, it can now be

determined how to model an increase in the efficiency of the configuration's various

subsystems in order to determine the effect of each increase on mission performance. As

stated earlier, mission performance is measured in terms of the amount of payload inserted

into orbit, i.e., the vehicle's orbital mass fraction. The orbital mass fraction is the sum of

the structural and payload mass fractions:

= (Wpayload / w initial) + (Wstmcture / winitial)

So for a given orbital mass fraction, structural mass fraction trades one to one with

payload mass fraction. Finally, the operational efficiency is maximized if the trajectory

leads to the maximum orbital mass fraction.

The initial and final energy levels of the vehicle's trajectory are to be specified

(and hence known). Thus, by expressing energy as a function of mass fraction, the effects

of the subsystem efficiencies on orbital mass fraction can be examined. Consider a

simplified form of the energy equation as follows:

(3-D

/ V d t /

(assumingL =

W s-f-c-

1 1

D

-1

or, since dWf = -dW,

dWf W(s.f.c.)

dW
W

(3.3)

(3.4)
'

Equation (3.4) reveals the overall system efficiency, or the energy gain per unit of fuel

used. In this relation one observes that the s.f.c., the thrust-to-weight ratio, and the lift-to-
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drag ratio are significant, along with the flight velocity. Obviously, the greater the system

efficiency for a given mission, the greater the orbital mass fraction Wfmai/Winitial-

The mission performance is therefore a function of the following subsystem

efficiencies:

(L/D) - Aerodynamic Efficiency

(T/W) and s.f.c. - Propulsive Efficiencies

In addition to the baseline vehicle configuration, three other vehicle configurations

are generated: one representing an increase in aerodynamic efficiency, and two

representing increases in propulsive efficiency. These configurations will be labeled as

the high-(L/D), high-(TTW), and low-s.f.c. configurations! For each configuration, one of

the subsystem efficiency parameters is increased while the other two are kept at their

baseline values. Table 1 presents a configuration matrix indicating the efficiency values

for each configuration considered. All efficiency parameters are evaluated at the nominal

initial condition: The baseline L/D in Table 1 is defined by evaluating the lift and drag
equations for the baseline vehicle at a = 0, while T/W and s.f.c. are evaluated at the initial

Mach number of 2.5. Increases in each of the subsystem efficiencies are modeled as

follows. For the high-(L/D) model, the efficiency parameters are evaluated at the same
initial condition, but with the profile drag coefficient CDO set to zero. Similarly, for the

low-s.f.c. configuration, the engine constant €3 for the fuel flow rate was decreased by

10%. Finally, the high-(TAV) configuration was obtained by increasing Ci and €2 by

10% while also increasing €3 by 10% to maintain the same s.f.c. as the baseline vehicle.
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Table 1 - Comparison of Baseline Configuration With
Three Improved Subsystem Efficiency Models

Model

Baseline

High L/D

HighT/W

LowSFC

(L/I»o

2.206

3.732

2.206

2.206

(T/W)o

.472

.472

.519

.472

(SFC)0

(Ib/hr/lb)

.196

.196

.196

.177

As the table shows, increases in the subsystem efficiencies are as follows:

high-(L/D): 69% increase in (L/D)0 above baseline value

high-(T/W): 10% increase in (T/W)0 above baseline value

low-s.f.c.: 10% decrease in (s.f.c.)0 below baseline value

As expected, each configuration shows an increase in one subsystem efficiency parameter

and no change in the other two.
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IV. FORMULATION OF THE TRAJECTORY OPTIMIZATION PROBLEM

4.1 Optimization Paradigm

The optimization problem is formulated as follows. A baseline configuration is

selected, described in terms of what will be taken as "nominal" aerodynamic and

propulsive subsystem efficiencies. The question is then, for this baseline system, what is

the maximum weight, or orbital mass fraction, that can be placed in orbit? This question

may be answered by solving for the minimum-fuel trajectory, which leads to the

maximum orbital mass fraction and the trajectory yielding maximum operational

efficiency for the baseline vehicle. In addition, a heating constraint on the vehicle can be

imposed. The initial solution desired is that for unconstrained heating (i.e., the maximum

orbital mass fraction that can be obtained without regard to heat load). Afterward,

solutions for various specified values of maximum heat load can be obtained and

compared to the nominal solution. The development below parallels that of [2].

4.2 Equations of Motion

The single-stage-to-orbit mission is said to be accomplished if the vehicle can

transfer from an initial energy level to an orbital energy level with non-negative final

weight. Here energy is measured in terms of the energy height, which is the total vehicle

energy (kinetic plus potential) per unit weight. The vehicle is treated as a point mass and

its motion for this analysis is constrained to be planar. The equations of motion below are

for a spherical rotating earth and are relative to a coordinate frame fixed to the earth's

surface [3]:

(4.2.1)
W o

h = V sin Y (4.2.2)

+2cOe (4.2.3)

(4.2.4)
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The energy height, E, and the altitude above the earth center, R, are defined as

E = h + ̂ - (4.2.5)

R = Rearth+h (4.2.6)

The initial and final conditions are:

h0 h(tf) = hf
= 2.5 M(tf) = Mf
0

W(t0) = 300,000 Ib

(4.2.7-4.2.10) (4.2.11-4.2.12)

For orbit injection, the desired values of hf and Mf will be 200,000 ft and 25, respectively.

The heat-transfer rate near the stagnation region as given in [8] is

0 = 865 Rn-l/2(V/10*)kl(p/p0)k2 BTU/ft2/sec (4.2.13)

where Rn is the vehicle nose radius. For the baseline vehicle, the above equation becomes

Q=Cp k 2V k l (4.2.14)

where C is a geometry-dependent proportionality constant, and ki and k2 are taken to be
2.65 and 0.5, respectively. Thus the fifth equation of motion is

Q = Q = pi/2V265 (4.2.15)

with boundary conditions Q(to) = 0, and Q(tf) = CQ The parameter CQ is therefore

proportional to the total heat load experienced by the vehicle over the trajectory. By
selecting CQ, the total heat load may be constrained. The following values will be used

for the known constants in the equations of motion:
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Re = 4.8xl07ft (4.2.16)

g = 32.2 ft2/sec (4.2.17)
e% = 27i rad/day = 7.3 x 10-5rad/sec (4.2. 18)

The state vector for the model is then [E h y w Q]. For this model, the engine is assumed

to be always operating at maximum thrust, so the single control is angle of attack.

4.3 Nondimensionalization

Before formally setting up the problem, the variables associated with the equations

of motion (except y and a) are to be normalized with respect to reference quantities. The

resulting nondimensional variables are:

h = h/href R = R/Re

W = W/W0 T=T/(PrefAeo)

Q=Q/(Pref1/2Vref
2-65) L

P = P/Pref _D

P - P/Pref Wf = W£/(C3 Pref a

(4.3.1-4.3.6) (4.3.7-4.3.12)

where

Vref= 20,000 ft/sec

Eref = href+.5*(Vref)2/g

W0 = 300,000 Ib

h^ a 150,000ft

Pref = 2.51 psf

pref = 2.87 xlO"6 si/ft3

Ago = 840 ft2 '

a = 1000 ft/sec

C3 = 8 x 10-10/ft

(4.3.13-4.3.21)

Thus the equations of motion in nondimensional form are:
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LW

h =~^- Vsin y
"ref

(4.3.22)

(4.3.23)

1vref vw sin a - W cos y' Rref RV

(4.3.24)

W =
"o

exp

(4.3.25)

Q=pl/2y2.65

The initial and final conditions are:

= 1

(4.3.27-4.3.31)

(4.3.26)

h(tf) = hf

(4.3.32-4.3.34)

where ho = 0, hf = 1.333, Vf = 1.25, and CQ = CQ/(pref
1/2Vref2.65). Also, E0 = EJEKf

and Ef = Ef/Ergf. For the next several sections, all variables will be referred to without the

bar notation. (This includes Q, which has been normalized twice, in (2.2.15) and (2.3.4).)

Hence all quantities will be assumed to be nondimensional unless otherwise specified.

4.4 Performance Index
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The optimal trajectory will be that which requires the minimum fuel in order to

ascend from an initial altitude and velocity (or energy height) to the final altitude and

velocity in an unspecified time. Consequently, the performance index can be stated as

ff •iinj= I
Jtn

minj = Wfdt (4.4.1)

K)

Formulation of the problem is simplified, however, if we note that minimizing fuel is
equivalent to maximizing final vehicle weight, W(tf). Thus the performance index can be

restated as

min J = -W(tf) (4.4.2)

This effectively changes the formulation from a Problem of Bolza to a Problem of Mayer.

4.5 Two-Point Boundary Value Problem

The problem as now defined is to minimize the above performance index subject

to the above equations of motion and the specified initial and final conditions. This is a

two-point boundary value problem, i.e., not all of the states and adjoints are known at

either the initial time or final time. Now define the augmented performance index as

/•tf rtf

linj = G+ I Fdt = -w(tf) + vTT+ I XT(f-x)dt
«AO ./to

mm,_
Jtn Jin

(4.5.1)

where

Q(g-0, E(tf)-Ef, h(tf)-hf, Q(tf)-CQ]T

(4.5.2)

(4.5.3)

x = [E h g W Q]T (4.5.4)
f=[ f 1 f 2 f 3 f 4 f 5 ]T ' (4.5.5)
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Note that ¥ is simply a vector of the differences between the actual and specified initial

and final conditions placed on the states. The functions f i through f5 are the right-hand

sides of the equations of motion in the order that they were given above. Also, define the
Hamiltonian H = XT£ The Euler-LaGrange equations—consisting of adjoint equations and

control equations—can now be derived. The adjoint equations are

XT = -3H/3x = -XT@f/ax) (4.5.6)

so that

XE = -XEOf!/aE) - XhOf2/3E)-

Xh = -XEOf!/3h) - XhOf2/3h)-

etc....

Note that the equations of motion contain terms involving quantities such as V, L, D, R,

and T that are functions of the states. Thus, to fully express the required derivatives of f, it

is necessary either to express these quantities in terms of the states before differentiating

or to differentiate the quantities with respect to the states and use the chain rule. The

control equation is

0 = 3H/3u = 9H/acc =

(4.5.7)

Because the first two equations of motion contain L and D, which are functions of a, the

above remark for the adjoint equations applies here.

To derive the transversality conditions, note that there are 1 1 unknowns (5 states +
5 adjoints + tf) and 8 boundary conditions. Thus, 3 new boundary conditions are expected

from transversality. They are:

0 = 3G/3x(tf) + (3F/3x)tf = 3G/3x(tf) + XT(tf)

-l (4.5.8)

0 = 9G/3tf + (F - OF/dx )x ) ltf = 3G/3tf + H ltf

=> H ltf = 0 . (4.5.9)
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In light of the development given in this section, the trajectory optimization
problem can be restated as follows: solve the 5 state variables, 5 adjoints, 1 control, and tf

that will satisfy the 5 state equations, 5 adjoint equations, control equation, and 11
boundary conditions. This two-point boundary value problem may be solved, for
example, by the "shooting" method. The method itself is described in Appendix A, while
the application of the shooting method to this particular problem is detailed in Appendix
B.



V. RESULTS OF BASELINE OPTIMAL TRAJECTORY
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For the baseline vehicle, with heat load unconstrained, total flight time was 238.8

sec., final slant range was 3.183 x 10^ ft, and final weight fraction was .5890 (i.e.,

123,300 Ib of fuel expended). Time histories of the states and adjoints are given in

Figures 5 and 6. All states are shown in the nondimensional form defined earlier except

altitude, which is plotted in dimensional form for convenience. Note also that it is
expressed as h - h0, again because the orbit injection maneuver will begin at some

nonzero altitude.
The value of CQ for the unconstrained heating solution was found to be

approximately 142, corresponding to a total heat soak of 5.291 x 105 BTU/ft2. Thus
setting CQ at 142 yielded a solution for which XQ was of the order 10"7, very near the

necessary value of zero.

energy (non-dim.)
110- h-ho (ft)

150 200 250

Q (heat load, non-dim.) weight fraction

X 100 150 200 250

Fig. 5. State Histories.
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lambda e 110.3 lambda h

lambda y

50 100 150 200 250 0

lambda w

SO 100 150 200

Fig. 6. Adjoint Time Histories.

Velocity and dynamic pressure are plotted in Figure 7. It is evident that before climbing,

the vehicle must dive down below the initial altitude to a higher dynamic pressure in order

to trade potential for kinetic energy and thus attain a more desirable flight condition. It is

then able to ascend rapidly before levelling off slightly at the point of orbit injection. Peak

dynamic pressure is approximately 9000 psf, which is much higher than the 1500 to 2000

anticipated for NASP [9].
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X104 velocity (ft/sec) dynamic pressure (lb/ftA2)

50 100 150 200 250

Fig. 7. Velocity and Dynamic Pressure Histories.

Lift and flight path angle are plotted together in Figure 8, while drag, thrust, and

fuel flow are plotted in Figure 9. (Note that lift, drag, and thrust are shown in the non-

dimensional form defined earlier.) As expected, fuel flow rate is seen to increase with

acceleration (i.e., thrust minus drag). Maximum fuel flow is extremely high

(approximately 1600 Ib/sec) compared to reasonable values for other classes of vehicles.

Thrust turns out to be a very large quantity as well, peaking at approximately 2.1 x 10^ Ib.

1600

T, f.f.r.
1400

1200

•-1000

100 150 200 250

time (sec)

23

Fig. 8. Thrust, Drag, and Fuel Flow Histories.
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1.5

0.5

-0.5

-1

-1.5
\ w

50 100 150

time (sec)
200 250

Fig. 9. Lift and Right Path Angle.

To examine the effect of imposing a heating constraint, solutions were obtained for
various values of Cqless than 140, and the resulting trajectories were investigated.

Figures 10 and 11 show both the unconstrained trajectory and a trajectory for which the

final heat load was constrained to approximately half that of the unconstrained

(approximately 2.4 x 10^ BTU/ft2). Figure 10 also shows contours of constant energy E,
dynamic pressure q, and heat-transfer rate 0. Each of the two figures shows the

trajectories indexed with time. Flight time for the constrained case is reduced significantly

to 84.0 sec, and final orbital mass fraction is .5864 (124,080 Ib of fuel expended), a

decrease of only about .4 % from the unconstrained result. Compared to the unconstrained

trajectory, the trajectory with the heat-load constraint descends lower, to a greater dynamic

pressure, and gains more kinetic energy before beginning its ascent. Note also that from

approximately Mach 8 to Mach 17, the constrained trajectory follows a path of almost

constant dynamic pressure at 10,000 psf. An interesting result is that the constrained

optimal trajectory experiences much higher heating rates, but the trajectory duration is

less than half that for the unconstrained trajectory, thus halving the total heat load.
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Comparison of Nominal ('*') & Heat-Constrained Co') Trajectories

2000 sooqjioooq 20000

h-ho(tt)

t=o
tsSOMC

10 15
Mach no.

20 25

lines of constant energy (ft)
— lines of constant dynamic pressure (lb/ftA2)

lines of constant heating rate (BTU/sec/ftA2)

Fig. 10. Vehicle Trajectory—Altitude vs. Mach number.

(ft)

Comparison of Nominal ('*') & Heat-Constrained ('o') Trajectories
XlO4

3.5

range (ft)

Fig. 11. Vehicle Trajectory—Altitude vs. Range.
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VL SUBSYSTEM MISSION PERFORMANCE SENSITIVITIES

For each vehicle configuration described in Chapter 3, the maximum orbital
mass fraction was determined by solving numerically for the minimum-fuel trajectory.

This was done using the shooting method (Appendix A) and following the procedure in
Appendix B. Table 2 lists the key parametric results. Shown in this table are not only
the maximum orbital mass fractions for each configuration, but also the mission flight
time to achieve orbital energy, the final slant range when orbital energy is achieved, and
the total heating load experienced by the vehicle over the entire trajectory. Also shown
for each configuration are the same results for an optimal trajectory that is constrained
to yield a fixed value of total heat soak. For the puposes of this analysis, a heating
constraint of 2.48 x 10^ BTU/ft2 was placed on all configurations. The heating
constraint is a means of effectively decreasing the vehicle's structural efficiency. Thus

the tabulated results below illustrate the effects of four different subsytem efficiencies

on mission performance.

Table 2 - Final Values of Time, Range, Total Heat Soak,
and Total Weight Fraction for Each Model

(For Unconstrained and Constrained Heating)

Model

Baseline

High LVD

High TAV

Low SFC

tf(sec)

unconst consfr.

238.8 103.9

222.1 98.5

230.3 107.4

234.0 102.3

Range (ft)

unconst constr.

3.183e6 7.927e5

2.905e6 7.985e5

3.038e6 8.585e5

3.079e6 7.753e5

Qf(BTU/ftA2)

unconst constr.

5.29e5 2.48e5

5.10eS 2.48e5

4.95e5 2.48e5

5.30e5 2.48e5

W/W0

unconst constr.

.5890 .5872

.5962 .5947

.5901 .5886

.6211 .6194

The trajectories corresponding to the baseline configuration were discussed

previously. The trajectories for the remaining cases are similar. For unconstrained

heating, all the high-efficiency configurations achieve orbit with higher weight fraction
than the baseline, as expected from equation (3.4). Moreover, the high-efficiency

configurations all complete the mission faster than the baseline. As a result of the

imposed heating constraint, the mission time for each configuration decreases
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drastically from its unconstrained value, while the penalty in orbital mass fraction is

small—about .3% less payload for each configuration.

Now consider the mission performance, i.e., the weight placed into orbit,

expressed in terms of the subsystem sensitivities 81-84 by the following equation:

A Orbital Weight = (Si) A(1VD)0 + (S2) A(T/W)0+ (83) A(s.f.c.)0+ (84) AQfmal

Each sensitivity Sj is defined as the change in payload to orbit divided by the percent

increase in the efficiency of one subsystem while holding the other subsystem

efficiencies constant, i.e., at their baseline values. The A terms above represent the

percent change from baseline values in (L/D)0, (T/W)0, (s.f.c.)0, and Qfinab

respectively. Of course, an increase in orbital weight leads directly to a corresponding

increase in payload to orbit, if the structural mass fraction is constant and all fuel is

expended. From the results in Table 2 and the subsystem efficiency increases presented

in Chapter 3, assuming a gross takeoff weight of 300,000 Ib, the numerical values for

the subsystem sensitivities 81-84 for the unconstrained heating case are

Si = 30 Ib / (% increase in (L/D)0)

82 = 24 Ib / (% increase in (TAV)0)

83 = 954 Ib / (% decrease in (s.f.c.)0)

84 = 12 Ib / (% increase in Qfmai)

If the total heat load is constrained, the subsystem efficiencies change. In this case, 84 is

not applicable, and the other three sensitivities become

Si = 33 Ib payload / (% increase in (L/D)0)

82 = 36 Ib payload / (% increase in (T/W)0)

83 = 966 Ib payload / (% decrease in (s.f.c.)0)

Note that, while the magnitudes of Si and 83 remain about the same as for the

unconstrained case, 82 has increased significantly. Thus, based on this method of
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representing subystem senstivities, TAY appears to have a larger influence on mission

performance when the heating load is constrained. The above results are summarized

graphically in the carpet plot of Figure 12. This figure shows the variation in orbital

mass fraction due to variations in (s.f.c.)0, (T/W)0, and (L/D)0. In the case of both

constrained and unconstrained heating, the lower left corner of the plot represents the

baseline values.

.63 -

Wf/W0

.62 -

.61 ~

.60 -

.59 -

.58 -

.18

S.F.C.
(Ib/hr/lb)

(T/W)*(L/D)

Fig. 12. Mission Performance Sensitivities for Unconstrained

Constrained ( ) Heating.

and

Consider again equation (3.4). If (s.f.c.)0, (T/W)0, and (L/D)0 are known, this

equation makes it possible to calculate approximately dE/dWf at the takeoff condition,

or (dE/dWf)0. However, the values of s.f.c., TAV, and L/D--and therefore dE/dWf--

vary widely throughout the trajectory. This suggests that it would be useful to examine

the average values of L/D, TAV, and s.f.c. over the entire trajectory for each
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configuration. Each sensitivity above is calculated by evaluating the performance at a

single condition (the nominal "takeoff condition) and comparing it to baseline

performance. Recall from Table 1 that for each configuration, this resulted in a higher

value of one efficiency parameter evaluated at the "takeoff condition, while the other

parameters remained constant. For example, for the high-(L/D) configuration, this

resulted in (L/D)0 above the baseline value, and the same (T/W)0 and (s.f.c.)0 as the

baseline. However, due to the high degree of coupling in the problem, (T/W)avg and

(s.f.c.)avg will generally not be the same as for the baseline case. This is due in part to
the fact that decreasing the drag coefficient changes the optimal value of a. And as a

feeds back into the equations of motion, it affects (T/W) and (L/D) as well. In other

words, an increase in one subsystem efficiency will have some effect on other

subsystem efficiencies over the course of the trajectory. This is borne out in the

following tabular data. Table 3 displays (L/D)aVg, (T/W)avg, and (s.f.c.)avg for each
configuration, along with the average value of the parameter dE/dWf as computed by

equation (3.4). Table 4 displays these results for the heat-constrained case.

Table 3 - Subsystem Performance Comparison for Each Model (UNCONSTRAINED case)

Model

Baseline

High L/D

High T/W

LowSFC

<Lfl»««

1.689

5.732

1.698

1.690

(T/W)^

5.108

5.099

5.128

5.185

(SFC)OTg

(Ib/hr/Ib)

3.147

3.184

3.153

2.852

(dE/dWr)OTg

.019227

.02090

.019231

.02105
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Table 4 - Subsystem Performance Comparison (CONSTRAINED case)

Model

Baseline

HighL/D

HlghT/W

LowSFC

CL/DW

1.754

5.488

1.749

1.759

(T/W).yg

22.943

21.827

20.195

23.821

(SFC)OTg

(Ib/hr/lb)

3.168

3.195

3.167

2.867

(dE/dWf)aTg

.02118

.02139

.02122

.02311

Note that both with and without the heating constraint, (L/D)avg increases significantly

for the high-(L/D)0 configuration, and similarly the average specific fuel consumption

decreases for the low-(s.f.c.)0 configuration. However, the analogous situation does not

occur for the high-(T/W)0 model. Indeed, (T/W)avg increases only slightly for this

configuration in the unconstrained case, and decreases in the constrained case. This

type of result would not be expected for a vehicle with less dynamic coupling.

Due to the approximate nature of equation (3.4), the vehicle configurations for

the heat-constrained case display larger average values of dE/dWf than those for the

unconstrained case. Still, the trends exhibited by the four configurations in each case

are clear. Consider an alternate set of subsystem sensitivites, defined as follows:

A (dE/dWf)avg = (Si) A(L/D)0 + (S2) A(T/W)0+ (S3) A(s.f.c.)0

where

Si = .133(% increase in (dE/dWf)aVg) / (% increase in (L/D)0)

82 = .0208(% decrease in (dE/dWf)aVg) / (% increase in (TAV)0)

83 = .948(% decrease in (dE/dWf)aVg) / (% decrease in (s.f.c.)0)

for no heating constraint, and
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Si = .0144(% increase in (dE/dWf)avg) / (% increase in (UD)0)

82 = .0189(% decrease in (dE/dWf)avg) / (% increase in (T/W)0)

83 = .911(% decrease in (dE/dWf^vg) / (% decrease in (s.f.c.)0)

with heating constraint. Again, due to simplifications in the derivation of equation

(3.4), the computed values of (dE/dWf)avg in Tables 3 and 4 are approximate.

However, the general trends for the Sj's are in line with those of the Si's defined

previously—specifically, the sensitivity 83 is much larger than Si or 82 both with and

without heating constraint. Thus the data in Tables 3 and 4 offers some insight as to the

effect that a change in one subsystem efficiency has on the overall system efficiency, as

well as on the other subsystem performance parameters, over the entire trajectory. Both

sets of sensitivities defined in this section suggest that, from a vehicle designer's

perspective, vehicle fuel efficiency is the most critical design aspect with regard to its

effect on overall system efficiency. As stated in Section 3, maximum overall system

efficiency translates directly into maximum mission performance, i.e., maximum

payload to orbit.
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vn. CONCLUSIONS

Single-stage-to-orbit (SSTO) vehicles have unique characteristics. Like an aircraft,

they rely on significant aerodynamic lift and have smaller thrust-to-weight ratios than

rockets. But like rockets, their mission is to maximize payload into orbit, and propulsive

and structural efficiencies are extremely important. The orbit-insertion mission here is

more one of climbing in the atmosphere than cruising like an aircraft or a ballistic launch.

But the sizing of SSTO vehicles leads to a unique problem. The sizing problem has been

formulated for a generic hypersonic vehicle model utilizing an optimization paradigm,

built around minimum-fuel optimal trajectories, and defining mission performance in

terms of the maximum amount of payload placed into orbit. The optimal trajectory

involves a zoom/climb, reminiscent of classical aircraft climb performance. Although

orbital mass fraction for the mission is approximately 60% for all the configurations

considered here, results indicate that this value is a strong function of L/D and s.f.c., and

depends on the T/W ratio as well. In addition, a heating model has been incorporated into

the problem as a means of constraining the heat load experienced by the vehicle.

Although a heating constraint clearly can reduce the maximum orbital mass fraction for a

given vehicle, trajectory shaping via optimization can significantly reduce this deleterious

effect.



33

. REFERENCES

1. Aviation Week and Space Technology. Oct. 29, 1990, p. 46.

2. Lovell, T.A., Schmidt, D.K., and Chavez, F.R., "Minimum-fuel Trajectories for

Hypersonic Vehicles with Aeropropulsive Interactions," AIAA Paper 93-3660, Atm.

Flight Mech. Conf., Monterey, CA, August, 1993.

3. Bilimoria, K.D., and Schmidt, O.K., "An Integrated Development of the Equations of

Motion for Elastic Hypersonic Flight Vehicles," technical report ARC92-3, prepered by

the Aerospace Research Center, ASU, for NASA Langley Research Center, July, 1992.

4. Schmidt, D. K. and Chavez, F.R., "An Integrated Analytical Aeropropulsive/ Aeroelastic

Model for the Dynamic Analysis of Hypersonic Vehicles," AIAA Paper 92-4567, Atm.

Flight Mech. Conf., August, 1992.

5. Chavez, F.R. and Schmidt, D.K., "Dynamics of Hypersonic Flight Vehicles Exhibiting

Significant Aeroelastic and Aeropropulsive Interactions," AIAA Guidance, Navigation,

and Control Conf., Monterey, CA, August, 1993.

6. Shaughnessy, J.D., Pinckney, S.Z., and McMinn, J.D., "Hypersonic Vehicle Simulation

/v Model: Winged-Cone Configuration," NASA Technical Memorandum 102610, November

1990. .

7. Bossard, J.A., Peck, R.E., and Schmidt, D.K., "An Extended Supersonic Combustion

Model for the Dynamic Analysis of Hypersonic Vehicles," Technical report ARC93-2,

prepared by the Aerospace Research Center, ASU, for NASA Langley Res. Center,

March, 1993.

8. Martin, John J., Atmospheric Entry. Prentice-Hall, 1966.

9. Schmidt, D. K., Mamich, H., and Chavez, F., "Dynamics and Control of Hypersonic

Vehicles - The Integration Challenge for the 1990's," AIAA Paper 91-5057, Dec., 1991.



34

A. NUMERICAL SOLUTION METHOD

A.I Shooting Method

The shooting method for solving two-point boundary value problems involves

guessing the unspecified initial conditions, integrating forward, and updating the guesses

(via a Newton-Raphson routine) based on the error between the actual and desired

terminal conditions. The method as applied to this particular problem proceeds as

follows:

Define the states and adjoints together as X = [Xj X^T, where Xj = [E h y W Q]T are the

elements of X that are specified at the initial time and X2 ~ &E ̂ -h ̂ Y ̂ W ̂ Q]T are &e

elements of X that are unspecified at the initial time. (Note that for this problem X j is

comprised entirely of states and X2 entirely of adjoints, although generally this may not be

the case.) Thus the state and adjoint equations can be written as

X = F, where F = [f -aH/3x]T (A. 1.1)

Define M(t) = 3X(t)/9X2(t0). From this we see that

M(t0) = ax(g/ax2(t0) = to i5f (A.i.2)

and

M = ax (t)/ax2(to) = ap/ax2(t0) = aF/ax(t)*ax(tyax2(t0) = aF/ax(t)*M
(A. 1.3)

With the initial condition on M (4.1.2), Equation (4.1.3) can be integrated together with

(4.1.1) at each time step. Now define

¥m(t) = [E(t)-Ef, h(t)-hf, X-)(t)-Xyf, Xw(t)-XWf, H(t)-HfF (A. 1.4)

where Ef, hf, etc., are the final conditions specified for the states, adjoints, and

Hamiltonian. So
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= [E(tf)-Ef, h(tf)-rr, Xy(tfUw(tf)+l, H(tf)]T (A. 1.5)

Note that

m(tfyax2(t0) = avm(tf)/3x(tf)*ax(tfv3x2(t0) = a^m(tf)/ax(tf)*M(tf)
(A.1.6)

After (A.I.I) and (A.1.3) are integrated up to tf, M(tf) is known and d*Vm(t{)/dX(t{) can be

calculated. Thus a4/
m(tf)/ax2(t0), a 5x5 matrix, is known.

To solve for X2(t0) (which for this problem consists of the initial adjoints Mt<>))

that will drive ^Vftf) to its desired value of [0], an initial guess for X2(to) is made and the

state equations for X and M are integrated from ^ to tf. The Taylor series expansion of

^VOf) as a function of X2(to) gives

ym(tf)i+l = ^m(tf)i + 04'm(tf)/aX2(t0))i * AX2(to)i (A.1.7)

where the desired value of vPm(tf)i+i is [0], ¥m(tf)i and (a4/
m(tf)/aX2(t0))i are computed

from the integration, and AX2(t0)j gives the amount by which to increment X2(to) in order

to reach the desired H^tf). So the initial guess forX2(to) is updated according to

X2(to)i+l = X2(to)i + AX2(t0)i

(34'in(tf)/dX2(t0))-»OFin(tf)desiied -

Because changes in ^(tf) can be very sensitive to changes in X2(t0), this equation is

modified by

where o is a step size parameter between 0 and 1. Use the updated X2(to) to integrate

again from t0 to tf. Iterating in this manner will cause X2(t0) to converge to X2*(to)

corresponding to the optimal solution. There are a number of possible critieria to

determine convergence, such as 114̂ (1̂ 11 < e or IIX2(to^+1 - X2(t0)ill < £.
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Two issues still to be addressed are determination of tf and determination of the

optimal control

A.2 Determination of tf

Six boundary conditions have been specified or derived at the final time. Five of

them are used in the definition of *¥m(t) in order to determine the five initial adjoints

X2(t0) via Equation (A.1.9). The sixth, Q(tf) = CQ, is used as a stopping condition (i.e.,

the terminal time tf has been reached when the value of Q reaches CQ). Any of the final

conditions can be used for this purpose. However, as can be seen from the fifth EOM, Q

always increases monotonically from zero. This guarantees that the value of Q will reach

CQ at some point and will reach it only once, making it a good candidate for a stopping

condition.

This raises the question of how to choose CQ. Different minimum-fuel trajectories

can be achieved for various choices of CQ, each representing a certain degree of heating

constraint. Initially, it is desired to find the minimum-fuel trajectory with no heating

constraint. From the derivation of the Euler-LaGrange adjoint equations, it is readily seen

that XQ = 0. That is, because f is not a function of Q, the quantity XT(df/3Q) is zero.

Therefore, XQ is constant throughout the trajectory. Since XQ indicates the sensitivity of J

to changes in Q, the "unconstrained heating solution" will be the minimum-fuel trajectory

corresponding to XQ = 0. Of course, the value of CQ that will yield this solution is not

known a priori. Yet, as long as a solution can be obtained for some arbitrary value of CQ,

it is likely that the unconstrained heating solution can be found by repeatedly perturbing

CQ and recomputing a solution until XQ is near zero to within some tolerance. Once the

unconstrained solution is obtained, CQ can then be varied to yield heat-constrained

solutions.

A.3 Determination of ocopt

The optimal control, which satisfies the control equation 3H/3oc=0 (2.5.9), is

determined at each time step by the Newton iteration formula

The initial guess for aopt isl ° at I=IQ and thereafter is the previous value of aopt. There

are a number of possible critieria to determine convergence, such as H3H/3ocll < e or

llcq+1 - o^ll < e.
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B. SOLUTION PROCEDURE

B.I Baseline Configuration

Due to the tight coupling and nonlinearities inherent in the state equations, solution

of the full mission trajectory by the above method tends to require extremely accurate

guesses of the initial adjoints X(t0). In addition, because the adjoints are contrived

parameters and not physical quantities, it is difficult to determine what the magnitude of

these parameters should be. The problem was solved by means of an extrapolation or

"bootstrapping" procedure, which is described as follows:

l)Pick an "intermediate" trajectory, i.e., one that begins at the initial flight

condition given in Chapter 2, but terminates at an altitude and velocity much lower than

orbital values. An estimate of the value of CQ (the specified terminal condition on Q) for

this trajectory is obtained by guessing A(t0), integrating forward from the initial state until

one of the specified terminal values (such as altitude or velocity) is reached, and noting the

final value of Q. For several different guesses of X(to)» the values of Q(tf)--and the other

final state values—give an indication as to the size of CQ required. The numerical solution

method of the previous section is then applied to the intermediate trajectory. (Note that in

picking an intermediate trajectory, the final conditions on E, h, and Q are different from

their values for the full trajectory. However, by transversality, the conditions on Xy(tf),

), and H(tf) remain the same.)

2)Once X,(t0) corresponding to the optimal solution (call this A,*(t0) ) is found for

this short trajectory, the next step is to obtain a solution for a longer trajectory (i.e., a

higher energy level) by extrapolation. One method of extrapolating from one trajectory to

the next is to begin with the current X*(t0) and integrate past the terminal conditions of the

current trajectory to a higher energy level. The values of E, h, and CQ at this energy level

become the new Ef, hf, and CQ, and the current X*(t0) becomes the initial guess of X(to)

for the new trajectory. The numerical solution method is then applied to the new

trajectory.

3)As this process continues, the specified terminal conditions for each intermediate

trajectory are made to approach those for the full (desired) trajectory until a solution for

the full orbit injection mission trajectory is reached.
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As the above solution procedure was followed, it was found that for each

intermediate trajectory, the smaller the change in energy level from the previous

trajectory, the faster the solution method converged. It should also be noted that the

minimum-fuel solution for each intermediate trajectory need not be the one corresponding

to unconstrained heating load for that trajectory. At each intermediate step, finding a
minimum-fuel solution for some value of Cq—not necessarily the one for unconstrained

heating-made it possible to march toward the final trajectory by extrapolation. Only in
the case of the final trajectory is the particular value of CQ of importance.

B.2 High Efficiency Configurations

In solving the minimum fuel trajectory for each high efficiency configuration, the

full trajectory solution for the baseline model was used as a "starting" solution. The

general procedure is here described for the low-s.f.c. configuration: The engine constant
€3 was first decreased by approximately 1%. Using A,*(to) for the baseline trajectory as

the initial guess for A,(t0), a convergent solution was obtained for the perturbed

configuration by the shooting method. Then, using the current values of X,*(t0) as an

initial guess for X(t0), a solution was obtained for €3 decreased slightly further. This

process continued, perturbing Cs a little at a time and re-optimizing, until the constant was

10% below its baseline value. Similarly, in the case of the high T/W configuration, the
engine constants Ci and C2 were increased slowly from their baseline values until they

were 10% higher; and for the high L/D model, the CDO w^s decreased slowly from its

baseline value to zero.




