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ABSTRACT

A computer model is used to study the radiative transfer of the martian winter-polar atmo-

sphere. Solar heating at winter-polar latitudes is provided predominately by dust. For normal,

low-dust conditions, CO2 provides almost as much heating as dust. Most heating by CO2 in the

winter polar atmosphere is provided by the 2.7 |0.m band between 10 km and 30 km altitude, and

by the 2.0 u,m band below 10 km. The weak 1.3 Jim band provides some significant heating near

the surface. The minor CO2 bands at 1.4,1.6,4.8 and 5.2 p.m are all optically thin, and produce

negligible heating. 63 provides less than 10% of the total heating. Atmospheric cooling is

predominantly thermal emission by dust, although CO2 15 \im band emission is important above

20 km altitude.
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INTRODUCTION

While the past 20 years of spacecraft exploration have expanded our knowledge of the

planet Mars, it seems more interesting problems exist today than ever before. At the heart of

most of these mysteries is the winter polar atmosphere. Observations of the winter polar atmo-

sphere have been limited by orbital constraints and darkness, and few models have been con-

structed to date. CO2 and H2O condensation commonly occur in the winter polar atmosphere of

Mars, resulting in extensive cloudiness and a massive ice sheet. The structure and composition

of the polar clouds as functions of latitude, altitude and season are poorly understood. Although

observations of the southern polar hood are limited, it appears strikingly different from its north-

ern counterpart, with much less coverage and different altitude structure (James, 1983;

Christensen and Zurek, 1983; Martin and James, 1984; Akabane et al., 1990). The seasonal

recession of the south polar cap (e.g., Iwasaki et al., 1990) cannot be accurately reproduced with

energy balance models without consideration of atmospheric radiative effects (Narumi, 1980;

James and North, 1982; Lindner, 1990; 1991a; 1992a; 1992b; 1993a), and the relative fraction of

snow and frost in the cap is unknown (Pollack et al., 1990). Atmospheric dynamics at winter

polar latitudes is also dependent on atmospheric heating and cooling (Haberle et al., 1979; 1982).

Ozone abundances on Mars are also dependent on the radiative effects of dust (Lindner, 1988),

and the observance of ozone on Mars is impaired by the radiative effects of dust (Lindner,

1992c).

Understanding the dominant radiative heating and cooling mechanisms in the winter polar

atmosphere is crucial to solving many of these mysteries. While dynamical and latent heat

mechanisms do provide as much as half of the atmospheric energy budget (Pollack et al., 1990),

it is the radiative transfer mechanisms which drive the dynamical and latent heat mechanisms. In

fact, due to the strong CO2 heating and cooling, radiative processes are relatively more important

in determining the temperature structure of the martian atmosphere than of the terrestrial

atmosphere (e.g., Pollack et al., 1990). This work intends to establish the relative importance of

03, CO2 and dust in the radiative heating and cooling of the winter polar atmosphere of Mars,



studying the importance of all wavelength bands. CO2 was shown to be the only gas which

produced appreciable infrared cooling at winter polar latitudes by Goody and Belton (1967),

Crisp (1990), and Savijarvi(1991). Also, significant solar heating occurs in all the near-infrared

(NIR) bands of CO2 (Pollack et al., 1981; Lindner, 1985; Savijarvi,1991). Ozone was suggested

to be an important contributor to the atmospheric temperature in the polar regions by Kuhn et al.

(1979). However, the contribution of ozone to the atmospheric heat budget was later shown to

be minor when compared to the contribution of dust (Lindner, 1991b). However, atmospheric

heating due to dust absorption of solar radiation was shown to be important during dust storms

by Gierasch and Goody (1972), Moriyama (1975), Zurek (1978), and Davies (1979). The

importance of both CO2 and dust in infrared radiative transfer, as well as the interaction between

gas and dust, was demonstrated for certain cases by Kondrafev and Moscalenko (1975). The

importance of both gas and dust in martian radiative transfer requires an advanced model capable

of accurately handling the scattering by dust and the complex wavelength structure of carbon

dioxide. To simplify the problem, most prior work has studied gas and dust radiative transfer

separately and avoided their overlapping opacities, a technique which is inaccurate (Lindner,

1993b). To more properly assess the relative importance of dust and CO2 in the thermal budget,

this study treats them simultaneously.

MODEL

The discrete ordinate method of Stamnes et al. (1988) is used to treat the scattering,

absorption and emission of monochromatic radiation through the martian atmosphere. The

exponential sum program of Wiscombe and Evans (1977) and Evans et al. (1980) converts the

banded wavelength structure of CO2 to allow for monochromatic treatment (Lindner, 1985;

1993b; Lindner et al., 1990a,b). Lindner (1993b) clearly shows that errors as large as 50% occur

when dust and CCb cooling and heating rates are computed separately and then summed. Hence,

an approach such as the exponential sum technique which allows for simultaneous treatment of

CO2 and dust in the solution of the radiative transfer equation is necessary in order to properly

assess their relative importance (Lindner, 1993b). Transmission functions for the 2.759, 4.301



and 14.93 |im bands of CO2 (hereafter abbreviated as 2.7,4.3, and 15.0, respectively) are taken

from the line-by-line model results of Gal'tsev and Osipov (1979). The transmission function,

Tr, as a function of temperature T, pressure P, and CO2 column abundance U is extrapolated

from the Gal'tsev and Osipov results (subscript G) to temperatures below 200 K by

Tr(T,P,U) = !-[(!- TrG(200 K, P, U)) (T/200 K)Q] (1)

The exponential Q is found to be 0.45,0.3, and 0.8 for the 2.7,4.3, and 15 [im bands, respec-

tively, when the temperature dependencies for the Pollack et al. (1981) transmission functions

are recast in this form. Using a modified version of the FASCOD transmission model (Clough et

al., 1986), the accuracy of these transmission functions is confirmed, and transmission functions

are obtained for the 1.316,1.455, 1.600, 2.020, 4.840 and 5.200 urn bands of COa (hereafter

abbreviated as 1.3, 1.4,1.6, 2.0, 4.8, and 5.2, respectively) covering the range in temperature and

pressure present in the atmosphere to 40 km altitude (Lindner et al., 1990a,b). Additionally,

ozone absorption cross-sections from 1500 A to 3200 A (Daumont et al., 1983; Freeman et al.,

1984) and from 4000 A to 8000 A (Griggs, 1968) and ultraviolet (UV) cross-sections for CO2

(Shemansky, 1972; Lewis and Carver, 1983), C>2 (Demore et al., 1988), H2O (Thompson et al.,

1963; Hudson, 1971), HO2 (Demore et al., 1988) and H2O2 (Demore et al., 1988) are included

[e.g., Lindner, 1988; 1991b].

Dust opacities vary from 0.2 to 1.0 for conditions other than global dust storms (Pollack

et al., 1979; Lumme and James, 1984). However, dust opacities over winter polar latitudes may

be slightly less [e.g., Lindner, 1990]. A gaussian profile describes the vertical distribution of

dust, being well-mixed to 20 km altitude for conditions other than global dust storms (Anderson

and Leovy, 1978; Zurek, 1982; Korablev et al., 1993). Dust storm conditions are not considered

here because of the dramatic increase in dynamical processes during dust storms. The

wavelength dependence of the dust opacity is given by Toon et al. (1977). The single scattering

albedo of airborne dust as a function of wavelength is given by Zurek (1978; 1982) and Toon et

al. (1977) for solar and infrared wavelengths, respectively, using a solar average of 0.9 (Clancy

and Lee, 1991). Scattering of radiation by dust is represented by the Henyey-Greenstein phase



function (Toon et al., 1977; Clancy and Lee, 1991). Computational difficulties which

accompany highly asymmetric phase functions are removed with the Delta-M method

(Wiscombe, 1977). The emissivity of airborne dust is high and has been calculated as a function

of wavelength from theory and observations (Toon et al., 1977; Simpson et al., 1981). Dust

optical properties in the near-IR (1-5 \im) are highly uncertain, hence making the calculated

heating and cooling rates uncertain. However, as will be shown later, dust heating and cooling

rates in the near-IR are minor, making the uncertainty in dust optical properties in the near-IR

unimportant. Dust optical properties in the 15 jim region are also highly uncertain, and factor of

2 uncertainty in the computed cooling rates is quite possible. Clouds will also affect atmospheric

radiative transfer. However, since the cloud opacity is highly variable (i.e. Briggs and Leovy,

1974), the cloud particle scattering properties are very uncertain, and even the composition of the

clouds is unclear, the effect of clouds is highly speculative and variable. But clouds should affect

atmospheric radiative transfer similarly to how dust does, since dust single scattering albedos are

very high (Lindner, 1990; 1993a).

The Rayleigh scattering optical depth is computed as in Hansen and Travis (1974), using

parameters appropriate for Mars. Solar fluxes are taken from Smith and Gottlieb (1974) and

Rottman (1981), after adjusting for the eccentricity and orbital radius of Mars. Solar heating

rates are diurnally averaged (e.g., Cogley and Borucki, 1976). Atmospheric properties are

zonally averaged and assumed azimuthally-independent. The region from the surface to 40 km

altitude is broken into 20 2-km-thick layers to account for vertical inhomogeneity. The improved

Curtis-Godson approximation (Yamamoto et al., 1972; Ramanathan and Coakley, 1978) is used

to treat vertical inhomogeneity at thermal wavelengths. The Chapman function is used to

approximate the slant path in place of the secant function [e.g., Smith and Smith, 1972], because

the winter polar atmosphere always has large solar zenith angles, and the secant function is in

error for large angles.

Atmospheric composition is taken as 95% CC-2 (Owen et al., 1977; see also Kondrat'ev et

al., 1973). Atmospheric composition may have been quite different in past epochs, with CO2



being perhaps a minor constituent (e.g., Lindner and Jakosky, 1985; Lindner, 1993c), but this

study focuses on the present epoch. Season-dependent CO2 abundances (Hess et al., 1980) are

corrected for circulation-induced pressure gradients (Haberle et al., 1979) and elevation (Jakosky

and Farmer, 1982; Lindal et al., 1979). The surface pressure is 8 mbar at 57°N latitude in late

winter, which is when the maximum Os column abundance of 57 jim-atm was observed (Earth et

al., 1973). The altitude dependence of 63 is based on model results (Lindner, 1988).

As this study uses late northern winter conditions (Ls = 343°), the surface is covered by

somewhat dirty ice with an albedo of 0.5 (Kieffer, 1979; James and Lumme, 1982). [Ls, the

solar longitude, is a seasonal index; Ls of 0°, 90°, 180°, 270°, correspond to northern spring

equinox, summer solstice, autumnal equinox, and winter solstice, respectively]. The wavelength

dependence of the ice albedo is taken from Hapke et al. (1981) and Warren and Wiscombe

(1980). The infrared (5.4 -100 p.m) albedo of the polar cap is assumed to be zero (Kieffer, 1970;

Smythe, 1975; Wiscombe and Warren, 1980). An average ice emissivity of 0.9 is adopted, with

the wavelength dependence given in Ditteon and Kieffer (1979) and Hunt et al. (1980). The

temperature profile rises linearly with altitude from 150K at the surface to 160K at 10 km, and

then falls linearly with altitude to 130 K and 40 km, typical for winter polar conditions (Lindal et

al., 1979; Kieffer, 1979; Martin, 1984). Atmospheric temperatures are poorly known above 30

km altitude, and therefore results above that altitude are speculative and are not presented here.

Local thermodynamic equilibrium is assumed (Gierasch and Goody, 1967; Uplinger et al., 1984;

Hourdin, 1992).

RESULTS AND DISCUSSION

Figure 1 presents the ozone, carbon dioxide, and dust heating rates, and the carbon dioxide

and dust cooling rates, for late winter (Ls = 343°) conditions at 57°N latitude with 0.2 vertical

optical depths, tv, of dust (averaged over the solar spectrum). The net heating and net cooling

are virtually identical at all altitudes. Because thermal emission is a strong function of the tem-

perature and heating is virtually independent of temperature, less than a 10K adjustment in the

assumed temperature profile will yield a perfect balance of heating and cooling. These modifi-
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cations would still be consistent with observations of temperature (Lindal et al., 1979). Because

the variation in dust with altitude is not well understood, the discrepancy could also be due to the

assumed altitude profile of dust. Indeed, the assumed temperature profile could be correct, and

the dust profile could be extracted by obtaining a balance between heating and cooling. Note

that in addition to radiative cooling, energy could also go into condensation. In fact, clouds are

often observed at these latitudes and seasons. Clouds would also change heating and cooling

rates by increasing the flux (and heating) up high, and decreasing flux (and heating) in the lower

10km.

While the near equality of heating and cooling rates means that meridional and vertical

heat transport may not be required to explain the observed winter polar temperatures, it certainly

does not rule out any meridional or vertical heat transport. Indeed, vertical heat transport could

also be responsible for the low cooling rates at 20-30 km altitude. Observations do show some

day to day variability, which could be due to changes in dynamical heat transport, or to pockets

of high ozone or dust concentrations which would change radiative heating and cooling.

However, maximum dynamical heating rates are of the order IK/day, with typical winter polar

heating rates much smaller (Gadian, 1978; Pollack et al.j 1981). While this could be significant

near the surface, it becomes less so at higher altitudes.

The relative importance of gas and dust is clearly seen in Figure 1. Dust heating is the

major source of heating at all altitudes, particularly above 20 km. Ozone provides approximately

10% of the total heating at all altitudes. 57 |im atmospheres of ozone are used, the maximum

observed by Mariner 9 (Barth et al., 1973). [1 p.m atmosphere = 2.69 x 1015 cm"2]. Smaller

ozone abundances will reduce the importance, but not dramatically. This contradicts earlier

work by Kuhn et al. (1979) which showed ozone to be a more significant source of heating.

However, Kuhn et al. (1979) ignored the heating by dust, which is clearly incorrect (Lindner,

1991b). Indeed, 0.2 vertical optical depths of dust represent the minimum amount of dust

observed (Leovy et al., 1972; Pollack et al., 1979; Thorpe, 1981; Zurek, 1981). Larger dust

loading will provide greater heating. Ozone heating is almost the same as that of the NER. bands
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of CO2, at all altitudes. This occurs because the major CO2 bands are saturated at the large solar

zenith angles in the winter polar atmosphere.

Figure 1 can also be used to show what would happen to the thermal structure for the case

of no dust. CO2 and 03 heating is triple CO2 cooling near the surface, while CO2 cooling is

triple COi and 63 heating at 30 km altitude. This means that a dust-free atmosphere would be

warmer near the surface and cooler at 30 km to allow for a balance between heating and cooling.

Higher lapse rates were found in other dust-free studies as well (e.g., Gierasch and Goody, 1968).

Cooling rates are also dominated by dust. Dust cooling is greater than CO2 15 |im band

cooling from the surface to 25 km altitude, with CO2 cooling dominant above this altitude. Note

that cooling is not dependent on latitude, but on temperature. Hence the relative importance of

dust cooling to CO2 cooling is approximately the same at all winter polar latitudes.

The dominant ozone heating occurs at 2700 A, with appreciable contributions from 2200

A to 3100 A (Lindner, 199Ib). The Chappuis bands (4000 - 7000 A) provide over 10% of the

total ozone heating near the surface. CO2, C>2, H2O, HO2, and H202 produce minor heating of

the winter polar atmosphere at UV wavelengths, although CO2 and 62 UV heating is appreciable

above 30 km altitude (Lindner, 1991b). H2O, HO2, and H2O2 number densities are too low for

any appreciable UV heating.

COa solar heating rates at near-infrared (NIR) wavelengths at 57°N latitude are computed

for each CO2 band, as shown in Figure 2. Most heating by CO2 in the winter polar atmosphere is

provided by the 2.7 |im band between 10 km and 30 km altitude, and by the 2.0 [Lm band below

10 km. The weak 1.3 |im band provides some significant heating near the surface. The minor

CO2 bands at 1.3, 1.4,1.6,4.8 and 5.2 |im are all optically thin, and produce negligible heating.

The 2.0 |im band is more strongly absorbing than these minor bands and becomes optically thick

at 10 km altitude, which results in a decreasing heating rate with a decrease in altitude below 10

km. The 2.7 Jim band is stronger yet, and becomes optically thick at 20 km altitude. The 4.3

and 15 |im bands are very efficient, and are optically thick even at 30 km altitude. 15 Jim band

heating is surprisingly strong, despite the low solar flux at infrared wavelengths. The explana-



tion lies in the large bandwidth (from 12 to 19 \im) and the efficient absorption over the band

width.

In addition to being heated from absorption of solar radiation by Os and CO2, the martian

atmosphere is also heated by absorption of solar radiation by dust. As dust optical depths are not

as strongly wavelength dependent as CO2 and Os optical depths, the altitude dependence of dust

heating is virtually the same for all wavelengths (Fig. 3). The strongest heating occurs in the vis-

ible where the maximum in solar flux occurs.

Atmospheric cooling rates due to thermal emission by 0.2 vertical optical depths of dust

are presented in Figure 4. The maximum cooling occurs at 10 km altitude. Cooling is not as

efficient in the lowest 5 km for two reasons. The temperature profile is inverted, with a

maximum near 5-10 km altitude. Thus the near-surface atmosphere absorbs more radiation

relative to its emission than does the atmosphere at 10 km altitude. Furthermore, the larger

optical depths near the surface do not allow the emitted thermal radiation to escape the layer as

easily as at higher altitudes.

The maximum cooling due to dust below 30 km altitude occurs in the 12-18 Jim wave-

length interval. This is due to the cold temperatures at winter polar latitudes. The overlap of

strong dust cooling in the 12-18 |im interval with the strong cooling by CO2 in the 15 pm band

(12-19 (J.m) is particularly important, as discussed by Lindner (1993b). Hence, to properly

account for both dust and CO2 cooling, they must be treated simultaneously (Lindner, 1993b),

unlike what is usually done. Significant cooling due to dust also occurs at wavelengths longer

than 18 \im. Cooling by dust at wavelengths shorter than 12 ̂ m is inefficient due to the cold

winter polar temperatures. (Recall that the peak Planck emission occurs at longer wavelengths

for colder temperatures.)

Cooling due to CO2 near the surface occurs mostly in the wings of the 15 (im band, those

parts of the 15 (im band where neither absorption nor emission is efficient. Photons emitted near

the surface in the center of the 15 Jim band (the strongly absorbing parts of the band) are rapidly

re-absorbed. Hence, the cooling is smaller at lower altitudes (see Fig. 1) due to the inability of
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photons to escape and cool the atmosphere. Photons in the line center can escape to space more

easily at higher altitudes, explaining the higher cooling rates there. Cooling to the surface also

occurs, and is included in all calculations. However, in order to cool to the surface, photons must

pass through large optical depths. Cooling to the surface is only important right near the surface.

Cooling rates in the 4.3 jam band of CO2 increase from 10"6 K/Mars day at the surface to

SxlO-4 K/Mars day at 30 km. Hence, cooling in the 4.3 nm band of CO2 is about 10'3% of the

total cooling via CO2. Clearly, 4.3 Jim band cooling is not an important process in the winter

polar atmosphere of Mars. The 4.3 \im cooling rate has the same altitude behavior as the 15 Jim

cooling rate. As with the 15 nm band, the line center is optically thick near the surface and all

emitted photons are quickly reabsorbed, preventing effective line-center cooling in the 4.3 jam

band. 4.3 jim cooling would be larger at warmer latitudes, as thermal emission would shift to

shorter wavelengths. However, 4.3 |im band cooling will never be an important cooling source

in the martian atmosphere. The 4.3 p.m band and other NIR bands are important cooling

processes in the Earth's atmosphere.

The heating and cooling rates for a late winter (Ls = 343°) atmosphere at 57° N latitude

with more dust (TV = 0.5) are shown in Fig. 5. Comparing Fig. 1 and Fig. 5, we see that dust

heating and cooling rates increase at higher dust opacities, at all altitudes. Clearly, dust heating

and cooling dominates over that of gas, except possibly for CC«2 cooling above 30 km altitude.

As TV = 0.5 was not unusual during the Viking mission, dust heating and cooling would dominate

for most winter polar latitudes and seasons. Dust heating and cooling at larger dust loadings is

even more dominant. During global dust storms (tv~3), heating and cooling by 03 and CC>2 will

be negligible compared to that of dust. However, dynamical transport of heat increases during

dust storms.

For tv (dust) = 0.5, meridional and vertical heat transport may be even less important than

for the TV = 0.2 case. Based on observational and modeling evidence, meridional and vertical

winds do not change much between the 0.2 and 0.5 cases (Haberle et al., 1982). Therefore,

radiative equilibrium may be a more valid assumption at tv = 0.5 because total radiative heating
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and cooling rates are twice as large for tv (dust) = 0.5, and are greater than 3 K/Mars day at

almost all altitudes.

Heating and cooling rates are well balanced in the lower 20 km of the atmosphere in Fig.

5. Above 20 km the assumed temperatures are incorrect Temperatures closer to 140 K at 30 km

altitude would give a better balance between the heating and cooling rates above 20 km. Indeed,

the inability of dust cooling to keep up with dust heating at higher dust loadings in addition to

heat transport is the explanation for the higher atmospheric temperatures observed during global

dust storms. The explanation lies in the negative feedback of larger dust loadings, in that larger

opacities decrease the ability of photons to escape. COi cooling also becomes less effective at

higher dust loadings due to dust-gas interaction (Lindner, 1993b).

Obviously, higher dust loading results in increased dust heating rates. The higher optical

depth chokes off some light from reaching lower altitudes, which explains why the increases in

the heating rate for higher dust optical depths are not as large at the surface as at higher altitudes.

Cooling rates for 0.5 vertical optical depths of dust are twice the cooling rates for TV = 0.2.

While the optical depth is 2.5 times as large, cooling rates are only 2.2 times larger. This is

because two negative feedbacks exist in that larger optical depths also hinder the ease of escape

for emitted photons, and in that larger optical depths increase the thermal flux which increases

absorption and heating. The thermal heating at altitudes above 25 km also increases. The

heating above 25 km increases because the upward thermal flux is larger for tv = 0.5, which

results in larger absorption in the upper atmosphere, while the thermal emission above 25 km

remains the same.

The phenomenon of thermal heating is also partly responsible for the low lapse rates in the

martian atmosphere. Because dust and CO2 are both radiatively active in the infrared, the atmo-

sphere near the surface is able to cool very effectively, and keep near-surface temperatures low.

But the high thermal fluxes are also causing a heating as they are absorbed by the other regions

of the atmosphere. Any part of the atmosphere that is too cold will be heated by both solar and

thermal flux. Higher dust loading increases both solar and thermal heating more effectively than
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thermal cooling. This results in more isothermal conditions as the dust loading increases, as is

observed.

Figure 6 shows the heating and cooling rates deeper in the winter polar region at 70°N lati-

tude for the same season for normal, low-dust conditions. The cooling rates are the same as at

57°N latitude (Figure 1), because the same temperature profile is used. The same temperatures

are used at both latitudes to illustrate latitude-dependent changes in the heating rates. The lower

solar fluxes at 70°N latitude (due to the larger solar zenith angle) result in lower heating rates.

The atmospheric heating and cooling is approximately equal near the surface and above 20 km.

However, the assumed temperature inversion is too strong for radiative equilibrium for 70°N

latitude conditions, as the cooling at 10 km is twice the heating. Slightly lower temperatures in

the 5-10 km range would provide a better balance between heating and cooling, and would agree

with observational evidence (Lindal et al., 1979). Dynamics could be relatively more important

at transporting heat at 70°N latitude because the heating rates are lower. However, observations

and dynamical modeling indicate that the atmosphere is even more stable against motion at these

latitudes which would lower heat transport (Haberle et al., 1979).

The excess cooling could also go into condensation, rather than in changing the tempera-

ture (Pollack et al., 1990). Indeed, optically thick clouds are frequently observed in the 5-10 km

altitude range. As the atmospheric temperature near the surface is already at the CO2 condensa-

tion temperature, the clouds at this latitude will be at least partly composed of CO2 ice. Clouds

would also alter the heating rate profile by shifting the location of solar flux through scattering.

Comparing Fig. 1 and Fig. 6 shows that the relative importance of 03 to CO2 heating is

virtually the same at 70°N latitude as it is at 57°N latitude. However, both 63 and CO2 heating

are less important relative to dust. CO2 heating occurs mostly in bands which are optically thick.

At higher latitudes, the larger solar zenith angles only serve to decrease the transmission in these

already optically-thick bands and hence decrease their relative importance. 63 is less important

to the heat budget at 70°N latitude due to the lower 03 abundances there (Barth et al., 1973; Lane

et al., 1973; Lindner, 199Ib). The same general altitude and wavelength behavior in heating and
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cooling is seen at 70°N latitude as at 57°N latitude. Therefore, while dust heating is less at higher

latitudes due to the decreased solar flux, the importance of dust heating relative to gas heating

has increased.

The large solar zenith angle 0 at 70°N latitude increases the effective optical depth (T =

TV/COS <5>) of dust, which increases the absorption of solar flux, and hence increases the heating.

The larger solar zenith angle also decreases the solar flux, and hence decreases the heating. In an

optically-thin medium, these effects would cancel and the heating would be the same at 70°N

latitude as at 57*N latitude. However, the 0.2 vertical optical depths of dust yield an effective

optical depth of 1.7 at 70°N latitude. Thus, the dust is actually choking off the solar-flux, which

decreases the heating rate relative to 57°N latitude. The lower heating at the surface is due to the

large optical-depth of dust.

CO2 NIR heating at 70°N latitude is half that at 57°N latitude. The general behavior of

each band at 70°N latitude is similar to that at 57°N latitude, although the bands saturate at higher

altitudes. Consequently, the 4.3 and 15 Hm bands are less important at 70°N latitude, and the 2.0

and 2.7 Mm bands are less important near the surface. The minor bands (1.3,1.4,1.6,4.8 and 5.2

p.m) are optically thin at 70°N latitude, as at 57°N latitude. The heating in all bands is reduced at

70°N latitude, due to the lower solar flux (via the larger solar zenith angle). Comparing the

results of 57°N latitude and 70°N latitude, it is apparent that CO2 NCR. heating would be

markedly higher at equatorial latitudes, due to the increased solar flux, and the larger contribu-

tions by the saturated 2.0,2.7,4.3 and 15 |im bands. Hence, the relative importance of dust and

CO2 will shift in the favor of CC>2 at more equatorward latitudes. 63 heating will not be impor-

tant at equatorial and mid-latitudes because negligible ozone abundances exist there (Earth et al.,

1973). Total heating rates will increase with decreasing latitude due to the decrease in the solar

zenith angle. The net result is higher atmospheric temperatures with decreasing latitude, which is

in fact observed.

SUMMARY AND CONCLUSIONS

Heating in the winter polar atmosphere of Mars is provided mostly by dust at visible
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wavelengths, especially for high dust loading, or at high latitudes. CO2 NIR heating is always

less than dust heating at 57"N latitude during late winter, but is comparable to dust heating at low

altitudes for minimal dust loading. CO2 NIR heating is more important at equatorial latitudes,

and less important at high latitudes. Most COi heating comes from the 2.7 n.m band above 10-20

km altitude, with most heating by the 2.0 Jim band below. 1.3 Jim band heating is appreciable

near the surface. The importance of minor COi bands requires their inclusion in models of polar

winter winds and surface energy balance. Ozone heating is only 10% of the total heating at 57°N

latitude, and is even less at other latitudes due to lower ozone abundances. Ozone heating was

suggested to be important to the polar heat budget by Kuhn et al. (1979), but the importance of

dust heating was ignored by Kuhn et al. Heating by COi, Oi, H2O, HOi and H2O2 is negligible

at ultraviolet wavelengths below 30 km altitude.

CO2 15 nm band cooling is the dominant source of cooling at high altitudes for low dust

abundances, but is ineffective near the surface. CO2 4.3 |im band cooling is negligible. Dust

cooling is the dominant source of cooling at winter polar latitudes under most conditions, with

the largest dust cooling in the 12-18 H-m wavelength range. Dust cooling increases at higher dust

loadings; however dust cooling does not increase as fast as dust heating, due to several negative

feedbacks. As a result, atmospheric temperatures rise with increasing dust opacity, in agreement

with observations. The warmest winter polar temperatures occur during global dust storms,

when the largest dust opacity exists. However, whether the high temperatures at polar latitudes

during global dust storms are due primarily to radiative processes or dynamical heat transport is

uncertain. Radiative effects of dust have little effect on the overall recession of the polar cap

(Lindner, 1990).

Radiative processes are responsible for the low lapse rates in the martian atmosphere.

Significant dust and gas heating occurs at all altitudes, damping out inhomogeneities in tempera-

ture. Any region of the atmosphere which is significantly colder than the rest of the atmosphere

is warmed not only by solar flux but also by the absorption of the large thermal flux. Large lapse

rates are quickly eliminated by solar and infrared heating. As atmospheric dust loading

15



increases, the atmosphere becomes more isothermal due to the increased solar and thermal heat-

ing, particularly at higher altitudes. Ignoring dust altogether leads to the opposite situation. CO2

cools ineffectively near the surface, but cools readily at high altitudes, which leads to stronger

lapse rates in the dust-free atmosphere.
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Figure Captions

Figure 1. Total atmospheric radiative heating and cooling as a function of altitude on Mars

at 57°N latitude with tv (dust) = 0.2. Also shown is the contribution by CO2, 03

and dust.

Figure 2. Total solar heating rates for COa as a function of altitude and the contribution by

each COi band (labeled by wavelength in Jim) at 57 °N latitude (a) and 70°N

latitude (b).

Figure 3. Total radiative heating rate as a function of altitude due to absorption of solar

radiation by dust (TV = 0.2) and the contribution from each wavelength bin from 0

to 5 microns (bins labeled on figure in (im).

Figure 4. Total infrared radiative cooling rate by dust as a function of altitude for nv = 0.2,

and the contribution from each wavelength interval from 5 to 40 Jim (wavelength

range of each bin is labeled in Jim).

Figure 5. As in Figure 1 except for TV (dust) = 0.5.

Figure 6. As in Figure 1 except at 70"N latitude for xv (dust) = 0.2
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