THERMAL MODELING OF NIH2 BATTERIES

Agnes PONTHUS (SAFT) and Alain ALEXANDRE (TSR)

1993 NASA AEROSPACE BATTERY WORKSHOP
U.S. SPACE AND ROCKET CENTER
HUNTSVILLE AL
NOVEMBER 16–18, 1993
THERMAL MODELING OF NIH2 BATTERIES

TABLE OF CONTENTS

1 - NIH2 BATTERY MISSION AND ENVIRONMENT
2 - NIH2 CELL HEAT DISSIPATION
3 - NODAL SOFTWARE
4 - MODEL DEVELOPMENT GENERAL PHILOSOPHY
5 - NIH2 BATTERY MODEL DEVELOPMENT
 5-1 AT COUPLE LEVEL
 5-2 AT CELL LEVEL
 5-3 AT DIODES LEVEL
 5-4 AT BATTERY BASEPLATE LEVEL
 5-5 BATTERY COMPLETE MODEL
6 - NIH2 EXPERIMENTAL DEVELOPMENTS
7 - CONCLUSION

SAFT
THERMAL MODELING OF NIH2 BATTERIES

1 - NIH2 BATTERY MISSION AND ENVIRONMENT

IN GENERAL, GEOSTATIONARY AND LOW ORBIT SATELLITES:

- PRELAUNCH OPERATIONS
- LAUNCH AND TRANSFER ORBIT
- ECLIPSES
- PEAK DISCHARGE DURING SUNLIGHT

FOR THERMAL STUDIES, GEO MAXIMUM ECLIPSE PERIOD WITH:

- C/2 TO C/1.5 DISCHARGE CURRENT DURING 1.2 HOUR
- C/20 TO C/10 CHARGE CURRENT WITH RECHARGE FACTOR OF 1.1 TO 1.2
- C/100 TRICKLE CHARGE CURRENT TO COMPLETE THE 24 HOURS CYCLE

THERMAL OPERATING CONDITIONS:

- TEMPERATURE RANGE: -5°C < T < +25°C
- TEMPERATURE DIFFERENCE BETWEEN TWO POINTS OF THE ELECTRODE STACK < 6°C
- TEMPERATURE DIFFERENCE BETWEEN STACK AND CELL WALL < 12°C
- TEMPERATURE DIFFERENCE BETWEEN TWO IDENTICAL POINTS OF TWO CELLS OF THE BATTERY < 9°C
THERMAL MODELING OF NIH2 BATTERIES

2 - NIH2 CELL HEAT DISSIPATION

2.1 - DISCHARGE

HEAT DISSIPATION FORMULATION:

\[PD = ID \times (U_0 - UD) \]

WITH

\[PD : HEAT \ DISSIPATION \ IN \ DISCHARGE \ (W) \]

\[ID : DISCHARGE \ CURRENT \ (A) \]

\[UD : DELIVERED \ CELL \ VOLTAGE \ (V) \]

\[U_0 : THERMO-NEUTRAL \ POTENTIAL \ (V) \]

\[UD = u - R \times ID^2 \]

WITH

\[u : VOLTAGE \ AT \ COUPLE \ LEVEL \ (V) \]

\[R : NICKEL \ TABS \ AND \ OUTLET \ RESISTANCE \ (mOHM) \]

\[PD = \text{PSTACK} + R \times ID^2 \]

WITH

\[\text{PSTACK} = ID \times (U_0 - u) : HEAT \ DISSIPATION \ IN \ THE \ STACK \ (W) \]

THERMO-NEUTRAL POTENTIAL (U0):

GENERAL ADMITTED VALUE: 1.51 V

SAFT EVALUATION FOR A 96 AH CELL:

EXAMPLES OF HEAT DISSIPATION (AVERAGE):

<table>
<thead>
<tr>
<th></th>
<th>96 AH</th>
<th>84 AH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD</td>
<td>12</td>
<td>10.6</td>
</tr>
<tr>
<td>P STACK</td>
<td>7.7</td>
<td>8.2</td>
</tr>
<tr>
<td>R</td>
<td>1.55</td>
<td>1.7</td>
</tr>
<tr>
<td>ID</td>
<td>52.5</td>
<td>37.7</td>
</tr>
</tbody>
</table>
THERMAL MODELING OF NIH2 BATTERIES

2 - NIH2 CELL HEAT DISSIPATION

2.2 - CHARGE & TRICKLE

FORMULATION OF HEAT DISSIPATION IN CHARGE:

HEAT DISSIPATION HAPPENS AT END OF CHARGE AND IS LINKED TO EXOTHERMIC REACTIONS IN THE STACK

FORMULATION RESULTS FROM ANALYSIS OF:

- ENERGETIC BALANCE OVER THE CYCLE
- CELL VOLTAGE PROFILE AT END OF CHARGE

ENERGETIC BALANCE:

\[QC = Ec - Ed - Qd \]

WITH

- \(QC \): THERMAL ENERGY LOST IN CHARGE (JOULE)
- \(Ec \): ELECTRICAL ENERGY INPUT IN CHARGE (JOULE)
- \(Ed \): ELECTRICAL ENERGY OUTPUT IN DISCHARGE (JOULE)
- \(Qd \): THERMAL ENERGY LOST IN DISCHARGE (JOULE)

CORRELATION HAVE BEEN ESTABLISHED FOR SAFT 96AH CELL AND 64 AH BATTERY, FOR C/10 CHARGE AND K FACTOR OF 1.2 AND 1.1 RESPECTIVELY

FORMULATION OF HEAT DISSIPATION IN TRICKLE CHARGE:

\[P = Ut It \]

ELECTRICAL ENERGY INPUT = HEAT DISSIPATION
64 AH NiH2 CELL VOLTAGE IN CHARGE

POWER DISSIPATED IN CHARGE

electrochemical reactions:

(1) + (2)
(3) + (4)

\[n_1 = 0.074 \]
\[n_2 = 0.395 \]

\[P_c = n_2 U_{clc} \]
\[P_c = n_1 U_{clc} \]

1993 NASA Aerospace Battery Workshop, November 16–18
THERMAL MODELING OF NIH2 BATTERIES

3 - NODAL SOFTWARE

2.1 - THERMAL ANALYSER ESACAP

NETWORK ANALYSER FOR THERMAL AND ELECTRONIC PROBLEMS (PRODUCED BY STAN.SIM IN DENMARK)

MAIN ADVANTAGES:

- EASY DESCRIPTION BY BASIC COMPONENTS
- EASY DESCRIPTION OF RADIATIVE COMPONENTS
- MODEL APPROACH
- POSSIBILITY TO INTRODUCE NEW COMPONENTS
- LARGE POSSIBILITIES TO INTRODUCE CONTROL
- TREATMENT OF COUPLED PROBLEMS (ELECTRICAL, FLUID FLOW, MECHANIC, TWO PHASE FLOWS)
- LARGE POSSIBILITY TO INTRODUCE PARAMETERS AND PHYSICAL PROPERTIES
- GEAR INTEGRATING METHOD
- SPECIAL METHODS FOR STEADY-STATE ANALYSIS

<table>
<thead>
<tr>
<th>Thermal parameter</th>
<th>Electrical parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>heat flux</td>
<td>intensity</td>
</tr>
<tr>
<td>temperature</td>
<td>potential</td>
</tr>
<tr>
<td>capacity</td>
<td>capacity</td>
</tr>
<tr>
<td>conductance</td>
<td>conductance</td>
</tr>
<tr>
<td>heat source</td>
<td>current generator</td>
</tr>
<tr>
<td>impressed temperature</td>
<td>voltage generator</td>
</tr>
<tr>
<td>impressed flux</td>
<td>current generator</td>
</tr>
</tbody>
</table>

1993 NASA Aerospace Battery Workshop, November 16–18
THERMAL MODELING OF NIH2 BATTERIES

3 - NODAL SOFTWARE

2.2 - INTEGRATING GEAR METHOD

- A high stability for orders $k \leq 6$, and at the same time a high precision,

- The automatic control of the time step, control which is performed thanks to the evaluation of the error,

- An optimum modification of the order in such a way that the required precision is obtained,

- Because the control of the time step is automatic, this leads to a gain of time calculation, without instability which is particularly important for stiff problems.

Gear performs the integration in two steps:

- Prediction with an extrapolation by a Newton polynomial

- Correction by solving the implicit equation relative to the energy-balance (successive point iteration method).
THERMAL MODELING OF NIH2 BATTERIES

4 – DEVELOPMENT GENERAL PHILOSOPHY

- TWO FUNDAMENTAL PARTS: CELL AND STRUCTURE, EACH PART CAN BE RUN SEPARATELY

- A CELL HAS TWO FUNDAMENTAL PARTS: ELECTROCHEMICAL HEART AND MECHANICAL STRUCTURE (CELL WALL, NICKEL TABS, OUTLETS)

IT'S WHY THE THERMAL STUDY IS MANAGED HAS FOLLOW:

- DEVELOPMENT OF A MODEL FOR THE ELECTROCHEMICAL COUPLE WITH THERMOPHYSICAL PARAMETERS AND COMBINATION OF CONDUCTIVITIES, HEAT CAPACITIES, TO TAKE INTO ACCOUNT ALL COMPONENTS (MATTER GRID, SEPARATORS, ...) ==> MODEL OF 100 NODES

- REDUCTION OF NODES NUMBER BUT NOT INITIAL PARAMETERS AND EXTENSION TO A COMPLETE CELL (MORE THAN 100 NODES)

- REDUCTION OF A COMPLETE CELL INTO 10 NODES ALWAYS WITH THE INITIAL PARAMETERS

- DEVELOPMENT OF BATTERY STRUCTURE AND INTRODUCTION, AT EACH PLACE, OF A REDUCED CELL MODEL

- SAME APPROACH FOR SUB-COMPONENTS SUCH AS DIODES FOR EXAMPLE

1993 NASA Aerospace Battery Workshop, November 16–18
5.1 - AT COUPLE LEVEL

EQUIVALENT THERMAL CAPACITY:

\[\rho C_{\text{eq}} = \frac{\sum \rho C_{\text{volume}}}{\text{volume couple}} \]

EQUIVALENT THERMAL CONDUCTIVITY:

\[\lambda_H = \frac{\sum \lambda E_p}{\sum E_p} \]

\[\lambda_V = \frac{\sum E_p}{\sum \lambda E_p} \]
5.2 - AT CELL LEVEL (1/4 OF A CELL)

H₂

36 NODES PER COUPLE

N COUPLES

COPPER

CELL CASE

NICKEL TAB

2 EXTREMITY PLATES

22 NODES PER PLATE

1993 NASA Aerospace Battery Workshop, November 16–18

1993 NASA Aerospace Battery Workshop

-341- Nickel-Hydrogen Technologies Session
THERMAL MODELING OF NIH2 BATTERIES

5.2 - AT CELL LEVEL (1/4 OF A CELL)

INTEGRATION OF BATTERY STRUCTURE AT CELL LEVEL:

MODEL APPROACH:

ALUMINIUM SLEEVE + SOLITHANE RESIN

STACK

ALUMINIUM BASE PLATE ALVEOLUS + SOLITHANE RESIN

RADIATOR

1993 NASA Aerospace Battery Workshop, November 16-18
THERMAL MODELING OF NIH2 BATTERIES

5.2 - AT CELL LEVEL (1/4 OF A CELL)

CELL MODEL REDUCTION:

BASIC INPUTS:

WITH SAME BATTERY STRUCTURE INTERFACE

1/4 CELL
DETAILED MODEL:

1 CELL
ROUGH MODEL:

REDUCTION

250 NODES

5 NODES

1993 NASA Aerospace Battery Workshop, November 16-18
5.1 -

EXPERIMENTAL APPROACH:

-- > EVALUATION OF THERMAL CAPACITY
(SPECIFIC TEST)

VHS 96 CM WITH SLEEVE AND ALVEOLUS

\[C_{\text{calculated}} = \frac{2333}{\text{J/}^\circ\text{C}} \]
\[C_{\text{experimental}} = \frac{2330}{\text{J/}^\circ\text{C}} \]

-- > EVALUATION OF HEAT GENERATION
(SPECIFIC TEST)

VHS 96 CM TOTAL AVERAGE HEAT DISSIPATION IN DISCHARGE:

70% DOD : \[P = 12\,\text{W} \]
80% DOD : \[P = 16.5\,\text{W} \]

-- > TEMPERATURE DISTRIBUTION ON A VHS 96 CM CELL
CORRELATION WITH MODEL PREDICTIONS
(SEE THERMAL VACCUM TEST ON VHS 96 CM CELL)
THERMAL MODELING OF NH2 BATTERIES

5.3 – AT DIODES LEVEL

EXPERIMENTAL APPROACH:

- Heat generation within discharge and charge diodes
- Thermal conduction through the diode assembly system
- Predict diodes temperature at various current level.

EXPERIMENTAL RESULTS:

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>DISCHARGE P</th>
<th>CHARGE P</th>
<th>DISCHARGE MAX T J</th>
<th>CHARGE MAX T J</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 A</td>
<td>30 W</td>
<td>/</td>
<td>95.5 °C</td>
<td>/</td>
</tr>
<tr>
<td>37 A</td>
<td>20 W</td>
<td>/</td>
<td>66 °C</td>
<td>/</td>
</tr>
<tr>
<td>6 A</td>
<td>/</td>
<td>5.5 W</td>
<td>/</td>
<td>52.5 °C</td>
</tr>
</tbody>
</table>

MODEL APPROACH:

- Detailed model of diodes on their support --- > 33 nodes
- Correlation achieved with tests
- Rough model --- > 8 nodes
THERMAL MODELING OF NIH2 BATTERIES

5.4 - AT BATTERY BASEPLATE LEVEL

SIDE PLATE (3 NODES)

DIODES PLACE 3 NODES

26 NODES (PER ALVEOLUS)

840 NODES FOR THE WHOLE BASEPLATE

1993 NASA Aerospace Battery Workshop, November 16-18
THERMAL MODELING OF NIH2 BATTERIES

5.5 - BATTERY COMPLETE MODEL

COMPLETE SYSTEM : 983 NODES

27 CELLS (5 NODES EACH)

WITH ALL BASIC INPUTS

DIODES SYSTEM
(8 NODES)

1993 NASA Aerospace Battery Workshop, November 16–18
WITH THIS APPROACH:

SIMPLIFIED CELL MODEL: 5 NODES \rightarrow 135 NODES
SIMPLIFIED DIODE MODEL: 8 NODES \rightarrow 8 NODES
BASEPLATE MODEL: 840 NODES \rightarrow 840 NODES

COMPLETE SYSTEM: 983 NODES

A COMPLETE DETAILED MODEL:

DETAILED CELL MODEL: 250 NODES \rightarrow 6750 NODES
DETAILED DIODE MODEL: 33 NODES \rightarrow 33 NODES
BASEPLATE MODEL: 840 NODES \rightarrow 840 NODES

COMPLETE SYSTEM: 7623 NODES

FURTHERMORE EXPERIMENTAL STEPS ARE DIRECTLY INCLUDED IN THE DEVELOPMENT OF THE SYSTEM MODEL (AT CELL AND DIODE LEVEL)
6 – NIH2 EXPERIMENTAL DEVELOPMENT

6.1 – CONSIDERATION ON TEST ENVIRONMENT

6.2 – THERMAL VACUUM TEST ON A VHS90CM CELL

6.3 – QUALIFICATION LIFE TEST ON VHS90CM CELLS

6.4 – THERMAL VACUUM QUALIFICATION ON SAFT 27VHS64CM BATTERY
THERMAL MODELING OF NIH2 BATTERIES

6.1 - CONSIDERATION ON TEST ENVIRONMENT

TEST ENVIRONMENT:

AMBIANT SIMULATION:

- AMBIANT AIR
- THERMAL CHAMBER
- THERMAL VACUUM CHAMBER

RADIATOR SIMULATION

- BATTERY SET ON A PLATE AT CONSTANT TEMPERATURE
- BATTERY SET ON PLATE WITH PILOTED TEMPERATURE PROFILE
- BATTERY FIXED ON A PLATE VIEWING A COLD SOURCE
THERMAL MODELING OF NIH2 BATTERIES

6.2 - THERMAL VACUUM TEST ON A VHS90CM CELL

MOUNTING

![Diagram of mounting setup]

Test Results Compared to Model Prediction

<table>
<thead>
<tr>
<th>Node</th>
<th>Model Node</th>
<th>Max Discrepancy (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper dome</td>
<td>2204</td>
<td>2.25 (measured: 13.2), end of charge (model: 10.95)</td>
</tr>
<tr>
<td>Upper stack (on sleeve)</td>
<td>707</td>
<td>1.1 (measured: 26.3), end of discharge (model: 25.2)</td>
</tr>
<tr>
<td>Lower (on sleeve)</td>
<td>107</td>
<td>1.4 (measured: 17), end of discharge (model: 15.6)</td>
</tr>
<tr>
<td>Lower dome</td>
<td>1304</td>
<td>0.8 (measured: 2.3), end of trickle (model: 3.1)</td>
</tr>
</tbody>
</table>
THERMAL MODELING OF NIH2 BATTERIES

6.3 - QUALIFICATION LIFE TEST ON VHS90CM CELLS

(ESTEC - NOORDWIJK)

MOUNTING

INSULATION AMBIENT AIR

ALUMINIUM PLATE

PELTIER ELEMENT

TEMPERATURE PROFILE OF THE PLATE DETERMINED BY THE DETAILED CELL MODEL

<table>
<thead>
<tr>
<th>Mode/Δt level</th>
<th>Predicted</th>
<th>Measured</th>
<th>Estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔQ/Δt</td>
<td>27</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>ΔQ/Δt</td>
<td>14.4</td>
<td>16.1</td>
<td></td>
</tr>
<tr>
<td>Upper stack inside (hot)</td>
<td>29</td>
<td>-</td>
<td>31</td>
</tr>
<tr>
<td>ΔT sleeve -dome</td>
<td>8.1</td>
<td>11.6</td>
<td>-</td>
</tr>
<tr>
<td>ΔT radial sleeve-stack</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>ΔT stack-dome</td>
<td>10.1</td>
<td>-</td>
<td>13.6</td>
</tr>
<tr>
<td>ΔT sleeve</td>
<td>5.38</td>
<td>6.2</td>
<td>-</td>
</tr>
<tr>
<td>ΔT stack</td>
<td>5.38</td>
<td>-</td>
<td>6.2</td>
</tr>
</tbody>
</table>

TEST RESULTS COMPARED TO MODEL PREDICTIONS

1993 NASA Aerospace Battery Workshop, November 16-18
6.4 - THERMAL VACUUM QUALIF. ON SAFT 27VHS64CM BATTERY

MOUNTING:
- THERMAL VACUUM CHAMBER
- FIXED ON A RADIATIVE PANEL
- SUSPENDED OVER A COLD PLATE AT -170°C

CYCLE:
- 80% DOD DISCHARGE OF 1.2 HOUR
- C/10 CHARGE, K FACTOR OF 1.1
- C/100 TRICKLE CHARGE
- 1.8 W HEATING PER CELL, SWITCH ON WHEN CELL TEMP. IS BETWEEN 2 AND 4 °C

ONE FAILED CELL SIMULATION:
- W CELL IS PUT IN OPEN CIRCUIT AND RELAYED BY DIODES
- DISCHARGE DIODE IS PLACED ON SUPPORT N°32
- CHARGE DIODES ARE PLACED ON SUPPORT N°32, 29, 30.

THERMOCOUPLES:
- 81 THERMOCOUPLES WHERE INSTALLED
- 17 ON THE BASEPLATE
- 4 ON THE RADIATIVE PANEL
- 3 CELLS COMPLETELY EQUIPPED (5 thermocouples at least)
- ABOUT 20 CELLS EQUIPPED WITH ONE THERMOCOUPLES PLACED ON THE HOT POINT
- 3 DIODES SUPPORTS COMPLETELY EQUIPPED
THERMAL MODELING OF NiH2 BATTERIES

6.4 - THERMAL VACUUM QUALIF. ON SAFT 27VHS64CM BATTERY

RESULTS:

<table>
<thead>
<tr>
<th></th>
<th>SPECIFICATION</th>
<th>MODEL</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX CELL STACK TEMP.</td>
<td>+35°C</td>
<td>33.7 (X)</td>
<td>34.6 (X)</td>
</tr>
<tr>
<td>MIN CELL STACK TEMP.</td>
<td>-5°C</td>
<td>-4 (F)</td>
<td>-3.75 (F)</td>
</tr>
<tr>
<td>% HEATING USED</td>
<td>< 80%</td>
<td>70%</td>
<td>73%</td>
</tr>
<tr>
<td>MAX STACK GRADIENT</td>
<td>6°C</td>
<td>3.6 (F)</td>
<td>3.8 (F)</td>
</tr>
<tr>
<td>MAX STACK TO CELL GRADIENT</td>
<td>12°C</td>
<td>9.7 (F)</td>
<td>9.95 (F)</td>
</tr>
<tr>
<td>CELL TO CELL GRADIENT</td>
<td>8°C</td>
<td>7°C (N-F)</td>
<td>8°C (N-F)</td>
</tr>
<tr>
<td>MAX DIODE JUNCTION TEMP.</td>
<td>110°C</td>
<td>105</td>
<td>105.6</td>
</tr>
</tbody>
</table>
THERMAL MODELING OF NIH2 BATTERIES

6.4 - THERMAL VACUUM QUALIF. ON SAFT 27VHS64CM BATTERY

Nasa Aerospace Battery Workshop, November 16-18

1993 NASA Aerospace Battery Workshop
-357- Nickel-Hydrogen Technologies Session
THERMAL MODELING OF NIH2 BATTERIES

7 - CONCLUSION

NIH2 BATTERIES ARE CAREFULLY STUDIED FROM A THERMAL POINT OF VIEW

MODEL AT COUPLE LEVEL, CELL LEVEL AND BATTERY LEVEL ARE PERFORMED WITH THE SAME PARAMETERS

THERMAL MODELING IS REALISED WITH AN EASY AND POWERFUL NODAL SOFTWARE: ESACAP

TESTS IN VACUUM CHAMBER OR WITH PELTIER ELEMENTS ARE DEFINED IN ASSOCIATION WITH MODEL

GENERAL THERMAL DEVELOPMENT PROGRAM DELIVER NOW A TOOL ABLE TO ANSWER QUICKLY TO NEW REQUIREMENTS OF FUTURE BATTERIES