ELA NASA BATTERY WORKSHOP PRESENTATION

November 18, 1993

Johnson Controls Battery Group, Incorporated

Douglas C. Pierce

Dr. William O. Gentry

Marshall Space and Flight Center

David Hall
TRUE BIPOLAR BATTERY DEVELOPMENT
WPAFB CONTRACT

• GOALS:

Develop a Composite Bipolar Substrate Material with the Following Characteristics:

Resistivity: \(< 2 \Omega \text{ -cm}\)
Thicknes: \(< 0.064 \text{ cm}\)
Weight: \(< 150 \text{ mg/cm}\)
Area: \(> 400 \text{ cm}^2\)

The 270 Volt Battery will be Designed to be used in the More Electric Aircraft Program
TRUE BIPOLAR BATTERY DEVELOPMENT
WPAFB CONTRACT

- VALUE:

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract Total</td>
<td>1,013.4M</td>
</tr>
<tr>
<td>Spending To Date</td>
<td>636.4M</td>
</tr>
<tr>
<td>Funding For FY'94</td>
<td>377.0M</td>
</tr>
</tbody>
</table>

10% Cost Share to JCBGI
TRUE BIPOLAR BATTERY DEVELOPMENT
WPAFB CONTRACT

• APPROACHES:

Compound Stable Conductive Filler(s) into
Plastic or Thermosets to Produce Non-Porous
Highly Conductive, Lightweight Substrate
Material

Use Compounding Additives Which Enhance
Conductivity, and Manufacturability While
Eliminating Porosity
TRUE BIPOLAR BATTERY DEVELOPMENT
WPAFB CONTRACT

- PROGRESS:

Conductive Filler Stability Proven
Conductive Filler Supplier Qualified
Composition of Substrate Identified
Project Substrate Thickness of 0.010-0.015"
Numerous Batteries Tested To Date
TRUE BIPOLAR BATTERY DEVELOPMENT

WPAFB CONTRACT

NEXT STEPS:

- Improved Containment Design Trial
- Improve Present Manufacturing Techniques - Mass Production
- Produce Lighter, Thinner, More Conductive Substrate
- Test for SIL, EV Applications
JCBGI LABBM
300 Volt Bipolar Battery System
ELA Program

<table>
<thead>
<tr>
<th>Battery Parameter</th>
<th>Design Specs</th>
<th>WPAFB Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate Thickness</td>
<td>0.015"</td>
<td>0.025"</td>
</tr>
<tr>
<td>Substrate Resistivity</td>
<td>2Ω -cm</td>
<td>2Ω -cm</td>
</tr>
<tr>
<td>Substrate Weight/Area</td>
<td>150 mg/cm²</td>
<td>150 mg/cm²</td>
</tr>
<tr>
<td>Substrate Area</td>
<td>1200 cm²</td>
<td>400 cm²</td>
</tr>
</tbody>
</table>
ELA Current Profile

20 amp Background, 310 amp 1.5 second Spikes

Discharge Current (amps)

Time (seconds)
JCBGI LABBM
300 Volt Bipolar Battery System
ELA Program

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Size</td>
<td>15" x 15" x 9"</td>
</tr>
<tr>
<td>Weight</td>
<td>228 pounds</td>
</tr>
<tr>
<td>Number of Cells</td>
<td>140</td>
</tr>
<tr>
<td>OCV</td>
<td>300 Volts</td>
</tr>
<tr>
<td>Cell Thickness</td>
<td>0.063"</td>
</tr>
</tbody>
</table>
JCBGI Bipolar Battery Voltage/Power Profile
30 Amp Background, 200 Amp Spikes

- Battery Voltage
- Power (kW)
JCBGI Bipolar Lead/Acid
300 Volt Battery System 1
ELA Program

TOP VIEW

END BLOCKS

VENTS/PORTS

END VIEW

TERMINAL PAD

ENCASEMENT

SIDE VIEW

1993 NASA Aerospace Battery Workshop
-767-
Advanced Technologies Session
ELA Current Profile

30 amp Base Load, 400 amp Pulse for 0.2 Seconds

Time (seconds)

Current (amps)
JCBGI LABBM
300 Volt Bipolar Battery System
ELA Program

<table>
<thead>
<tr>
<th>Battery System 2 Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Size</td>
<td>16.8" x 16.8" x 8.7"</td>
</tr>
<tr>
<td>Weight</td>
<td>273 pounds</td>
</tr>
<tr>
<td>Number of Cells</td>
<td>140</td>
</tr>
<tr>
<td>OCV</td>
<td>300 Volts</td>
</tr>
<tr>
<td>Cell Thickness</td>
<td>0.061"</td>
</tr>
</tbody>
</table>
JCBGI Bipolar Lead/Acid
300 Volt Battery System 2
ELA Program

TOP VIEW
- END BLOCKS
- VENTS/PORTS

SIDExVIEW
- TERMINAL PAD

END VIEW
- ENCASEMENT

1993 NASA Aerospace Battery Workshop
Advanced Technologies Session