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Summary

This research program deals with the application of high-performance computing methods
for the analysis of complete jet engines. We have initited this program by applying the
two-dimensional parallel aeroelastic codes to the interior gas flow problem of a by-pass jet
engine. The fluid mesh generation, domain decomposition and solution capabilities were
successfully tested.
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1. Introduction

The present program deals with the application of high-performance parallel compu-
tation for the analysis of complete jet engines, considering the interaction of fluid, thermal
and mechanical components. The research is driven by the simulation of advanced aircraft
propulsion systems, which is a problem of primary interest to NASA Lewis.

The coupled problem involves interaction of structures with gas dynamics, heat con-
duction and heat transfer in aircraft engines. The methodology issues to be addressed
include: consistent discrete formulation of coupled problems with emphasis on coupling
phenomena; effect of partitioning strategies, augmentation and temporal solution proce-
dures; sensitivity of response to problem parameters; and methods for interfacing multi-
scale discretizations in different single fields. The computer implementation issues to be
addressed include: parallel treatment of coupled systems; domain decomposition and mesh
partitioning strategies; data representation in object-oriented form and mapping to hard-
ware driven representation, and tradeoff studies between partitioning schemes and fully
coupled treatment.

2. Graduate Students

Two Ph. D. graduate students begin work this summer under support from the grant.
M. Ronaghi (U.S. citizen) began his doctoral studies at Colorado on January 1993.

Mr. Ronaghi has a M.S. in Mechanical Engineering at North Carolina A&T State Uni-
versity at Greensbroro and has worked at NASA Langley doing finite element structural
analysis. He has a good understanding of structures and composites and some computer
experience but lacks background in fluid mechanics, thermomechanics and propulsion. He
will remedy that by initiating a fluid course sequence this Spring semester and will start a
thermal-propulsion sequence in the Fall semester.

U. Gumaste (permanent U.S. resident) begins his graduate studies at Colorado in
the Fall semester, but will work on this project during June-July 1993 as an hourly R.A.
Mr. Gumaste has a B.Tech in Civil Engineering from the Indian Institute of Technology,
Bombay, India.

Both students were significantly helped by a visiting Post-Doc, Stephane Lanteri,
during their first modeling assignment. Dr. Lanteri is affiliated with INRIA Antipolis.
He is working with Charbel Farhat in the development of parallel finite-volume element
methods for 2D and 3D flow around aircrafts, and the analysis of nonlinear fluid-structure
interaction for flutter and stall analysis.

3. Flow Analysis of a By -Pass Engine

The main first-year objective is to "turn inside out" our exterior-domain aeroelastic
codes to fit the interior-flow engine problem. The codes are then run to assess their strength
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and weaknesses in numerical analysis and capturing physical effects. Observed weaknesses
are then addressed by a combination of methodology and modeling improvements.

The gas flow within an engine is very complex. It exhibits localization, vortices, sharp
pressure gradients and thermal-combustion effects. Our approach is to incorporate gas
flow and structural modeling common to the exterior problem, and then solicit the help of
experts to deal with new effects such as compression, diffussion, mixing and combustion.

To initiate this program we chose a rather old Conway by-pass engine sketched in
the textbook of Hesse and Mumford [1]. Figure 1 is a schematic diagram of the engine
presented in Hesse-Mumford's Fig. 11.7.

The purpose of the first experiments were to verify if the aeroelastic codes could be
gracefully adapted to confined gas flow. To play it safe we began with a two-dimensional
model and used the engine structure essentially as a way to provide boundary conditions
for the gas flow. Blades and combustion effects were ignored.

The rather complex boundary configuration provided a good test for the fluid mesh
generator, which "triangulates" the gas domain. This generation was done by S. Lanteri,
who is an expert in this subject.

The fluid meshes were treated with Farhat's domain decomposer program DOMDEC
[2]. Meshes were partitioned into 8 domains. Figures 3, 4 and 5 show the decompositions
produced by the Greedy, Recursive Graph Bisection (RGB) and Reverse Cuthill-McKee
(RCM) algorithms, respectievly. Ideally each partition should be single-connected to min-
imize interface communications overhead in parallel machines. Given the complex config-
uration of the gas domain, satisfaction of this criterion is by no means obvious. It can be
seen that RGB met the single-connectivity criterion, but that Greedy and RCM did not.

The theoretical and computational basis of the gas flow calculations are described in
the Appendix reprint of an article by Farhat, Lanteri and Fezoui [3]. Computations based
on Stokes flow were carried out without difficulties. Figures 6 and 7 shoe contour plots of
pressures and density, respectively, for the steady state corresponding to a free-flow Mach
number of 0.4. Figure 8 shows the velocity field.

4. Future Work

The key need is to introduce more physical effects in the gas flow, namely compression,
diffusion and combustion. We need to decide whether to continue with a two-dimensional
axisymmetric model with artifices to represent nonaxisymmetric devices, or to proceed to
a "sector" three-dimensional model requiring tetrahedral meshes. We plan to consult with
NASA Lewis experts as to the best way to proceed at this point. Dr. Russ Claus of NASA
LeRC has offered to provide us a three-dimensional model of a more recent engine. Such
a model could be used as Testbed for the next phases of this research program.
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Appendix

Theoretical Background on Viscous Flow Computations

Summary

The following material, extracted from a recently published paper by Farhat, Fezoui and Lanteri
[3], summarizes the theoretical foundations of our parallel Navier-Stokes computations on unstruc-
tured meshes. Although the article focuses on CM-2 computations carried out during 1990-1991,
it also presents implementation considerations applicable to the present project.

1. Introduction

Previously we have reported on our experience with performing two-dimensional structured com-
pressible flow computations on the Connection Machine CM-2 (Saati, Biringen and Farhat [Al],
Lanteri, Farhat and Fezoui [A2]). We have found that this massively parallel processor is par-
ticularly well suited for explicit computations on regular grids. For grids that result in a high
virtual processor ratio (VPR or VP ratio), using the NEWS fast communication mechanism, we
have measured the communication component of the simulation time to represent typically less
than 10% of the total CPU time. We have concluded that on a 64K machine (65536 processors),
efficiency rates in the neighborhood of 2 gigaflops are attainable. We have also found that for
both inviscid (Euler equations) and viscous (Navier-Stokes equations) flow structured computa-
tions, a 16K CM-2 (16384 processors) can be 4 and 6 times faster than one CRAY-2 processor,
respectively.

We focus here on massively parallel viscous flow computations using fully unstructured grids.
In Section 2, we formulate the problem to be solved, and in Section 3, we derive first-order and
second-order spatial schemes that are characterized by an upwind integration of the convective
fluxes. Second-order accuracy is achieved through a Monotonic Upwind Scheme for Conservation
Laws (MUSCL) technique. An explicit, and therefore nicely parallelizable, Runge-Kutta method
is selected for time integration; it is summarized in Section 4. Because the mesh irregularities
inhibit the use of the NEWS mechanism, interprocessor communication is bound to be carried
out via the slower machine router. If a trivial processor mapping is used, up to 60% of the total
CPU time is consumed in communication requirements. This bottleneck has been previously
analyzed and documented by Farhat, Sobh and Park [A3] for massively parallel finite element
computations in solid mechanics problems. It has also been recently addressed by several other
investigators for fluid flow computations. In particular, Shapiro [A4] has proposed the use of a
graph coloring algorithm to allow a particular implementation of the communication steps which
reduces the communication costs by a factor of two. Hammond and Barth [A5] have developed
a vertex-based partitioning scheme for inviscid flow computations which attempts to minimize
both the computational and communication costs associated with unstructured grids. Here, we
present a strategy for mapping thousands of processors onto an unstructured grid which leads to
an efficient scheme for carrying out communications of an arbitrary pattern. The key elements
of this strategy are discussed in Section 5. These include the selection of an appropriate parallel
data structure, the partitioning of a given unstructured grid into subgrids, and the mapping of
each individual processor onto an entity of these subgrids. Combining this mapping strategy with
a communication compiler reduces the communication overhead by an order of magnitude and
brings it down to 15% of the total simulation time. In Section 6, we apply our massively parallel
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code and its highly vectorized variant to the simulation of low Reynolds number chaotic flows.
Measured performance results indicate that for such computations on unstructured grids, an 8K
CM-2 with single precision floating point hardware is as fast as one CRAY-2 processor.

2. Mathematical modeling

First we recall the mathematical problem to be solved, and introduce the notation that is used in
the sequel.

2.1. Governing equations

Let f2 C R2 be the flow domain of interest and r be its boundary. The conservative law form of
the equations describing two-dimensional Navier-Stokes flows is given by :

Te-

where

W = (P, Pu y Pv , E
)T

T

— ax' ay )

F(W)	 (2)(2)

-F (W) — (G(W))

R 
(W) C S(W)

The functions F(W) and G(W ), and R(W) and S(W), denote the convective and diffusive fluxes,

respectively. They can be written as :

Pu

Put + PF(W) = Puv
u(E+P)

PV

G(W) =
Puv

PV  + 
P

v ( E + P)	 (3)
0

R(W) = Txs

(U7X.
Txy

yk ar
vTxy + Pr ax

0

S(W) _
TXY

(U-T.y

Tyy
+ marUTyy	 Pr ay
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where p is the density, U = (u, v) is the velocity vector, E is the total energy per unit of volume,

p is the pressure, and E is the specific internal energy. The variables p, E, p, U, E, and the
temperature T are related by the state equation for a perfect gas:

p = (7 — 1 )( E — 2P11 U 112)

and by:

E 
= C,T = 

P — 2(11T112)

where 7 denotes the ratio of specific heats.

The components of the Cauchy stress tensor T=s , 72y and Tyy are given by:

2	 au av	 2 av au	 au av

	

Tzz = —p 2---	 Tyy=—p 2---	 Txy=p,	 +—
3	 ax ay	 3	 ay ax	 (TY ax

where p. and k are the normalized viscosity and thermal conductivity coefficients. Two character-

istic numbers appear in the above equations; the Reynolds number Re = PoUoLo where po, Uo,
µo

Lo and po denote respectively, the characteristic density, velocity, length and diffusivity of the

flow under consideration, and the Prandtl number Pr - µoCP .
ko

We consider the initial and boundary value problem (IBVP):

8 +V.P(W)= 
Re

V.R(W)	 X, t) EQxR+

W (Y ' 0) =W.(X)	 X E Q	 (7)

W (X , t) = Wr(TI) X E I = aQ

where Wo and Wr are specified functions, and focus on finding a weak solution of (7) that is
amenable to massively parallel computations.

2.2. Boundary conditions

We are mostly interested in external flows around airfoils. Therefore, we consider the case where
the computational domain n is delimited by the boundary F = rb U I',,.. We denote by v the

(4)

(5)

(6)
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outward unit normal at a given point of r (Fig. Al).

FQ,

Z-
Ua)

Fig. Al. The computational domain

In the far field, we assume that the viscous effects are negligible so that the flow is uniform.
We adopt a formulation where the physical variables are non-dimensionalized. The free-stream
vector W^ is given by:

PC,.
_	 _ cos a	 1	 (8)

l oo	 sin a	 Poo = 
7Moo

where a is the angle of attack and Moo is the free-stream Mach number. On the wall boundary
Fb , we impose the no-slip condition and specify the temperature:

U = 0 T = Tb	 (9)

We do not impose any boundary condition on the density. Therefore, the total energy per unit of
volume and the pressure on the wall are given by :

E=pC„Tb	p=(-y-1)E	 (10)

V

F 
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3. Spatial discretization

3.1. Preliminary

The flow domain Q is assumed to be a polygonal bounded region of R Z . Let Th be a standard
triangulation of Q, and h the maximal length of the edges of Th . A vertex of a triangle A is denoted
by Si, and the set of its neighboring vertices by K(i). At each vertex Si, a cell Ci is constructed

• as the union of the subtriangles resulting from the subdivision by means of the medians of each
triangle of Th that is connected to Si (Fig. A2). The boundary of Ci is denoted by BCi , and the
unit vector of the outward normal to 8Ci by v i = (vis , vi y ). The union of all of the constructed
cells forms a non-overlapping partition of the domain S2:

n 

Q = U Ci
	

(11)
i=i

Fig. A2. Cell definition in an unstructured grzd

For each cell Ci, a characteristic function Tj is defined as :

Ti(X) 
_ 1 if X E Ci	 (12)

0 otherwise

Also, the following discrete spaces are introduced:

Vh = {vh I vh E C°(Q), vh Jo E Pi , VA E Th}	
(13)

Wh = {vh I v h E L 2 (S2), vh Ic i = vi = constant, i = 1, ..., ns}
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where P1 is the space of polynomials in two variables and of degree 1. Clearly, any function f
belonging to Vh is uniquely determined by its values f (Si) at each vertex S i , and can be expressed
as:

f(X) _	 f(Si)Ni(X )
	

(14)

i-1,na

where {Ni};=i' is a basis of Vh. Finally, it is noted that a natural bijection between the spaces
Vh and Wh can be constructed as:

Vf E Vh , SU( X )) _	 f(Si)Ti(X)	 (15)
i-1,ne

3.2 Variational formulation and first order spatial approximations

A variational formulation of the IBVP (7) goes as follows:

Find Wh E (Vh) 4 , bah E Vh

J

aWh cp h dxdy + J V - (Wh)cphdxdy
at

n	
^

Re 

/'	
(16)

1 J V .TZ(Wh)Whdxdy

n

We construct a mixed finite volume/finite element (Galerkin) approximation for solving the above
problem by introducing appropriate schemes for computing the left and right-hand-side integrals of
(16). Chosing cph as the shape function Ni associated with the node Si and applying the operator
S to the left hand side of (16) leads to a mass-lumped variational approach which transforms the
above equation into:

8W 
h dxdy + J V ..F(Wh)dxdy

ci	 c; (17)
1 C'7Z(Wh)Nidxdy
Re f

SupNi

where SupNi = U A . Using Green's formula for the convective term and integrating by part
A,S i EA

the diffusive one leads to:
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J
h dxdy -} J .^(Wh ). v ido,

C i 	e c;

_ — 1
Re	

R(Wh).VN°dxdy	 (18)
o,S, EAA

1

	

+ Re	
R(Wh). v iNido,

rbUr^

where N" is the restriction of Ni to triangle A. Finally, we drop the right hand side boundary
integral as we enforce the viscous boundary conditions in a strong form on rb and neglect the
viscous effects on r, so that equation (18) simplifies to:

J
aWh dxdy +	 J	 ( Wh ). v ii da < 1 >

Ci	 i EK(i)aC,i

+ J T(Wh).vida<2>
acinrb

+ J F(Wh).vido<3>
BC,/nr_

_ — — 1
Re	

J R(Wh ).VN°dxdy < 4 >

A,S ' EA A

where W h is the specified value of Wh at the boundaries.

The reader should note that the above formulation leads to a locally one-dimensional com-
putation of each convective term, along the normal direction V. For this purpose, the boundary
8Ci of the cell Ci is split into bi-segments BC i i which join the middle point of the edge [S;Si]
to the centroids of the triangles having both of Si and Si as vertices (Fig. A3), and the integral
< 1 > is evaluated as:

J T (Wh ). v ii do = 1: T (U). J v i; do	 (20)
iEK(i)8Cii	 iEK(i)	 8cii

where Y(U) is some approximation of the convective flux computed at the interface between cells
Ci and Ci .

Following Fezoui and Stoufilet [A6], we choose (U) to be a numerical flux function ID
associated with a first-order accurate upwind scheme (Van Leer [A7]). It is denoted here by HĴ J ),

where the superscript (1) emphasizes the first order accuracy, and can be written as:

1Hii = 4^)^ri ( Wi, Wi , Vii )

(19)

(21)
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Si
Si

where W; = Wh(Si) and W; = Wh (S;). For example, the following numerical flux functions can

be used to construct H('):

e Roe's Scheme [A8]

4^ R (U, V, v) =	 2	 — d(U V, v)	 (22)	 .

where d (U, V, V) is a numerical diffusivity defined as:

d (U, V, v 1 =` A(W, v 1 ^ (V 2 U)	 (23)

and W is some mean value of U et V.

G 2, ij	 y

G1. it

Fig. A3. Splitting of BC;j

• Steger and Warming's scheme [A9]

4DTw (U, V, V ) = A+ (U, V ) U + ,A — (V, v ) V	 (24)

where A=A+ +A — and IAI=A+ —A — .

The viscous integral < 4 > is evaluated via a classical Galerkin finite element P1 method
which results in a centered scheme. Since the approximations of the physical variables are taken
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in Vh, the components of the stress tensor and those of ON° are constant in each triangle. The
velocity vector in a triangle is computed as:

3

kU o = 3	 U	 (25)
k-1,ke0

Consequently, the viscous fluxes are evaluated as:

J R (Wh ).V N°dxdy =	 area(A) I Ro aN  ̂  + So 2 ^ I	 (26)
D , S i EA 0	 A'S; ED	 \	 y

where RA and So are the constant values of R(W) and S(W) in the triangle A.

3.3. Higher order extension

The numerical integration with an upwind scheme described above leads to a spatial approximation
that is only first-order accurate. Here, we focus on constructing a second-order accurate solution
without changing the space of approximations. We develop a second-order scheme that is an
extension of Van Leer's MUSCL method [A7] to the case of unstructured meshes.

Usually, a second-order approximation requires the evaluation of the gradient of the solution
at each vertex. Clearly, the gradient of a function Vh of Vh is constant in each element and
discontinuous in the flow domain. Following the MUSCL method, one way to achieve second-
order spatial accuracy is to evaluate the fluxes with extrapolated values W;J , W;; at the interface
aC; naC;. Basically, this leads to substituting H^J ) in the previous scheme by H;? ) which is given
by:

TT(2)
H 	 (W%i,Wii, v =i )

	

W;; = W; +2( V W)Q.S S	 (27)

W;; = W; — 2(D W)Q• S;S;

where the approximate nodal gradients (V W)e J are obtained via a ^3-combination of centered
and fully upwind gradients :

( VW )^ = ( 1 — a)(VW)
Cent + /̂ (VW)i	 (28)

Here, a centered gradient (OW)Cent = (VW) p- 0 can be chosen as any vector satisfying:

—Cent .-(OW ) i S; S; = W; — W;

A nicely parallelizable scheme for computing the upwind gradients (GW)Upw goes as follows.

First, we note that (vW)U pw = (VW) 0= ', and from (28) we derive:

(29)
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_I

	

(VW )j P- = 2(OW ), 2 — (VW )Cent	 (30)

We compute the half-upwind gradients (0 = Z) via a linear interpolation of the Galerkin gradients
computed in each triangle of Ci, so that:

J VWjadxdy

1CVW\ Q z =

J	 J dxdy	
(31)Ci

	

)	
E

area(T) 	k

	

area(C;	 3	
W V^pk

AfC;	 k=1,keT

Finally, we evaluate the nodal gradients using the following third-order biased scheme:

(OW)i 3 = 3(OW)Q =0 + 3(OW)A=1

= 3(VW), + 3 (2(;WW)f 2 — ( W)0 =0 i	 (32)

J
= 3(OW)A =0 + 3(oW)i

3.4. Boundary conditions

The second term < 2 > and the third term < 3 > of the right-hand side of (19) contain the
physical boundary conditions. These are represented by the vector W h which involves quantities
that depend on the interior values of Wh , and quantities that are determined by the physical
boundary conditions.

Wall boundary : the no-slip condition is enforced in a strong form (9, 10) so that the corre-
sponding boundary integral < 2 > does not need to be evaluated.

Inflow and outflow boundaries : at these boundaries, a precise set of compatible exterior data
which depend on the flow regime and the velocity direction must be specified. For that purpose,
a plus-minus flux splitting is applied between exterior data and interior values. More precisely,
the boundary integral < 3 > is evaluated using a non-reflective version of the flux-splitting of
Steger and Warming [A9]

J ^(W h ). v ;dQ = a+ (W;, v ;^).Wi + A — (W;, v ;.).W.	 (33)
aC;nr^
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4. Time discretization

The resulting semi-discrete fluid flow equations can be written as:

dW +'i(W) = 0	 (34)
dt

Because it lends itself to massive parallelism, the explicit Runge-Kutta method is selected for
integrating the above equations. A 3-step variant is used here. It is summarized as :

W(0) = Wn

W(k) = W ( °) — 4AtkO(W(k-1))	 k = 1,2,3	 (35)

Wn +1 = W(3)

The above scheme is often referred to as the low-storage Runge-Kutta method as only the solution
at substep a — 1 is used to compute the one at substep a. It is third-order accurate in the linear
case, but only second-order accurate in our case.

5. Parallel implementation on the Connection Machine CM-2

Clearly, expressions (19) and (27-35) reveal that both the spatial and temporal integrations are in
principle nicely parallelizable. In this section, our interest lies in investigating the most efficient
way to implement these computations on a Single Instruction Multiple Data (SIMD) massively
parallel computer such as the Connection Machine CM-2. Special care is given to interprocessor
communication because mesh irregularities: (a) inhibit the exploitation of the NEWS grid, so
that the relatively slow router must be used, and (b) induce a different amount of communication
steps within each processor, which is not particularly desirable on a SIMD machine. Rather
than overviewing the CM-2, we refer the reader to the technical summary of Thinking Machines
[A10] for architectural details, and to Farhat, Sobh, and Park [A3] for an in-depth analysis of
interprocessor communication on the CM-2 when computing over an irregular mesh.

5.1. Parallel data structure

Behind the performance of any parallel algorithm lies the choice of the corresponding parallel
data structure. The latter is closely related to both the entity and the task to be assigned to
each processor. Therefore, all of the computational, communication and memory requirements
should be considered before the distributed data structure is determined. For the mixed finite
volume/finite element method presented here, we consider four candidates for a fundamental
entity (Fig. A4):

• the vertex Si,
• the edge E;; joining the vertices Si and S;,
• the element (here the triangle) O;ik connecting the vertices S i , S; and Sk,
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•
Si

/E,j

A- 
0 ijk

The reader should note that for the edge case, the machine automatically selects a VP ratio of 4,
since it is the closest power of two to the theoretical VPR. Clearly, the vertex and cell entities are
the best candidates on the sole basis of efficient memory usage.
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and the cell C; defined in Section 3.1.

Fig. A4. Fundamental entity candidates

Memory considerations

While regular grids are most often characterized (in terms of memory requirements) by their
number of vertices Nv, irregular triangular grids can be also characterized by either their number
of elements No, or by their number of edges NE . Here, we assume for simplicity that T, is
characterized by its number of vertices. Euler's relations for a triangulation state that :

Nv+No—NE=1

2NE — NBV = 3No

where NB v denotes the number of vertices at the boundary of the triangulation. This implies
that :

No .^ 2Nv and NE 3Nv
	 (37)

Therefore, if Ti, is designed, for example, so that its number of vertices matches a given Connection
Machine size, the VP ratio associated with each data structure candidate varies as indicated below:

Vertex	 Edge Element Cell

VPR	 1	 3	 2	 1

(36)



Operation count

The numerical algorithms discussed in Section 2 and Section 3 can be organized around three
basic computational steps :

(Step a) evaluation of the Galerkin gradients (32),
(Step b) evaluation of the diffusive fluxes (26),
(Step c) and evaluation of the convective fluxes (27).

While Step (c) is most efficiently performed using edge-wise computations, Step (a) and Step
(b) are inherently element-level calculations. Therefore, whatever fundamental entity is selected,
it must contain both edge and element information, which rules out the edge Eij data structure.

On the other hand in an element-based partition, every triangle Ajik provides direct access
to all of the three edges Eij , Ejk and Eki . However in that case, two VP sets must be used;
one containing No processors which store triangle related data (geometrical data), and another
one containing Nv processors which store vertex related data (physical data). Otherwise, if only
one set of virtual processors is used and assigned to both triangle and vertex data, a nodal result
would be duplicated in as many processors as there are triangles connected to that vertex.

The vertex entity Si is an effective candidate only when augmented with the auxiliary data
structures that can handle the data associated with the elements and edges connected to a given
vertex — that is, when transformed into a cell data structure.

Finally, we note that the cell entity stores both vertex and element data, and therefore
provides access to all of vertex, element and edge information. Consequently, only element and
cell partitions are retained for further discussions.

Next, we evaluate the operation count for each of Step (a), Step (b) and Step (c), as-
suming an element- or cell-based data structure. We denote by CE and C b, the number of
arithmetic operations associated with one edge computation during Step (c), and with one tri-
angle computation during Step (a) and Step (b), respectively. The computational complexities
characterizing the two retained candidates are tabulated below.

Element	 Cell

Step (c)	 2 x CE	 2 x CE
Step (a) + Step (b)	 C °	 3 x Cab

In both an element- and cell-based partition, an edge is shared by two virtual processors, so
that the flux H;? ) across [S;S,] is computed twice. Only an edge partition would eliminate
these redundant computations, but that choice has already been eliminated. In a cell-based
partition, a triangle Aijk is shared by three virtual processors, and therefore additional redundant
computations are generated.

Communication costs

The computational steps discussed above require four communication steps denoted here by (cl),
(c2), (c3), and (c4). These are discussed below for the element and cell parallel data structures.
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First, we consider the case of an element-based partition. During the first communication
step (cl), each virtual processor assigned to a triangle A ij k gets the physical states at vertices
Si, S; and Sk from neighboring processors. Then, the computations in Step (a) and Step (b)
are carried out. During the second communication step (c2), the element-wise results are sent
back to the virtual processors holding vertex data. The latter virtual processors use these values
to compute the nodal gradients (32) and diffusive fluxes (26). In step (c3) the nodal gradients
are communicated to neighboring processors. Next, each virtual processor evaluates three second-
order convective fluxes (15) across the three edges connected by triangle 0;; k . During the last
communication step (c4), the edge-wise fluxes are sent to the virtual processors holding vertex
data.

Communication with a cell-based partition is more complex, as each cell may have a differ-
ent number of neighbors. However, fewer communication steps are needed because each virtual
processor stores within its local memory all of the element-wise values that are necessary for the
evaluation of the nodal gradients and the diffusive fluxes, as well as the elemental convective
fluxes.

The communication count associated with the four steps (cl) to (c4) is tabulated below
for each of the two retained data structure candidates. NR ' denotes the maximum number of
neighboring cells.

Element Cell

cl max3	 Nneigh
(c2) 3	 0
(c3 max3	 Nne:gh
(c4) 6	 0

Selected candidate

The operation and communication counts are summarized below for both the element and cell
data structures. Equations (36) are used to express the results in terms of the number of vertices
in the mesh.

Element	 Cell

Operation count	 (6xCE +2xCb)xNv	 (6xCE+6xCb)xNv
Communication count	 30 x Nv	 12 x Nv

Clearly, redundant arithmetic operations can be avoided only at the expense of additional com-
munication characterized by an irregular pattern, which is usually not beneficial on a massively
parallel processor such as the CM-2. Therefore, we have chosen the cell-based parallel data struc-
ture and have accepted the additional cost of redundant flux computations. Hammond and Barth
[A5] have invoked a graph theory result due to Chrobak and Eppstein [A17] to eliminate redun-
dant edge-based flux computations for Euler flows. This result states that for any planar graph,
there exists an orientation of the edges such that no vertex has more than three edges directed
out from it. This means that there exists a cell partition where no processor needs to compute the
convective fluxes across more than three edges of the computational cell. However, this graph the-
ory result does not apply for our viscous computations because these also include element-based
operations.
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WIRE 3

WIRE 4
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5.2. Grid decomposition and processor mapping

Efficiency in arbitrary communication on the CM-2 requires the minimization of both the "ham-
mering" on the router — that is, wire contention, and the distance that information has to travel
— that is, the number of hops between the sender and receiver processors. Here, this implies that
: (a) adjacent cells must be assigned, as much as possible, to directly connected processors or
processors that are lying in directly connected chips, and (b) contention for the wire connecting
neighboring chips must be reduced.

In a first step, the unstructured grid is decomposed into a series of subgrids each containing
16 adjacent numerical cells. Each subgrid is assigned to a certain CM-2 chip that is subsequently
identified, so that adjacent cells within asubgrid are assigned to directly connected processors lying
in the same chip. As a result, off-chip communication is needed only across the subgrid boundaries.
Wire contention is reduced if each of the defined subgrids is surrounded by the largest possible
number of neighboring subgrids. Indeed, wherever a subgrid boundary is shared with several other
subgrids, off-chip communication is split between distinct chips and is distributed across several
of the available inter-chip wires (Fig. A5). On the other hand, if for example a subgrid is adjacent
only to two other subgrids, a maximum of two wires can be used during off-chip communication,
which may create a severe wire contention that would serialize communication and significantly
increase its cost. Here, we use the mesh decomposer of Farhat [All] which has proven to be very
effective at reducing wire contention on the CM-2 (Farhat, Sobh and Park [A3]).

WIRE 1

WIRE 6

Fig. A5. Grid decomposition urith reduced wire-contention

The next step is to reduce the distance that information has to travel during off-chip commu-
nication, that is when data is exchanged between centers of cells that are assigned to processors
lying on different chips. This can be achieved by assigning adjacent subgrids as far as possible to
directly connected chips. A combinatorial optimization-like procedure known as Simulated An-
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nealing (see, for example, Flower, Otto and Salama [Al2]) is probably the most popular technique
for tackling this mapping problem. However, it is a very expensive procedure which has often
proved to be impractical. Alternative heuristic-based schemes have been developed by several au-
thors including Bokhari [A13], Farhat [A14], and recently Hammond and Schreiber [A15]. In this
work, we have adopted the mapper of reference [A14]. It is based on a combined greedy/divide
and conquer approach and is tuned for hypercube topologies.

A detailed analysis of interprocessor communication on the CM-2 for unstructured grids can
be found in Farhat, Sobh and Park [A3]. In that reference, it is shown that mesh irregularities
induce an MIMD (Multiple Instruction Multiple Data) style of programming for the communi-
cation phase which dominates the cost of communication. It is also suggested that since the
irregular pattern of communication is fixed in time, a considerable improvement can be achieved
if that pattern is evaluated during the first time step, then compiled or stored in the CM-2 for
re-use in subsequent time steps. However, no software was available at that time for validating
the proposed communication strategy. Recently, a communication compiler prototype has become
available (Dahl [A16]) and can be used for storing the routing pattern. In Section 6, we report
on its performance.

6. Numerical Experiments

(This Section reports on numerical experiments on the CM-2 and Cray 2. Since airfoil problems
are of limited important for the present research, they are not presented here.)

7. Closure

Mixed finite volume/finite element spatial schemes for fully unstructured grids are developed and
implemented on the CM-2, and applied to the simulation of two-dimensional viscous flows. Second-
order accuracy in the discretization of the convective fluxes is achieved through a Monotonic
Upwind Scheme for Conservation Laws (MUSCL) technique. The diffusive fluxes are computed
using a classical Galerkin finite element method, and the resulting semi-discrete equations are
time integrated with an explicit Runge-Kutta algorithm.

A strategy for mapping thousands of processors onto an unstructured grid is presented.
Its key elements are given by the selection of an appropriate parallel data structure, the careful
partitioning of a given unstructured grid into specific subgrids, and the mapping of each individual
processor onto an entity of these subgrids. Whenever the communication patterns are compiled
during the first time step, the total time elapsed in interprocessor communication using the router
is drastically reduced to represent only 15% of the total CPU time of the simulation.

References

[Al]	 A. Saati, S. Biringen and C. Farhat, "Solving Navier-Stokes Equations on a Massively Parallel
Processor: Beyond the One Gigaflop Performance," Int. J. Supercomp. Appl., Vol. 4, No. 1, pp.
72-80, (1990).

[A2] S. Lanteri, C. Farhat and L. Fezoui, "Structured Compressible Flow Computations on the Con-
nection Machine," INRIA Report No. 1322, (1990).

[A3] C. Farhat, N. Sobh and K. C. Park, "Transient Finite Element Computations on 65536 Processors
: The Connection Machine," Int. J. Num. Meth. Eng., Vol. 30, pp. 27-55, (1990).

A-16



[A4] R. A. Shapiro, "Implementation of an Euler/Navier-Stokes Finite Element Algorithm on the Con-
nection Machine," AIAA Paper 91-0483, 29th Aerospace Sciences Meeting, Reno (1991).

[A5] S. Hammond and T. Barth, "An Efficient Massively Parallel Euler Solver for Unstructured Grids,"
AIAA Paper 91-0441, 29th Aerospace Sciences Meeting, Reno, Nevada (1991).

[A6] L. Fezoui and B. Stoufflet, "A Class of Implicit Upwind Schemes for Euler Simulations with
Unstructured Meshes," J. Comp. Phys., Vol. 84, pp. 174-206, (1989).

[A7] B. Van Leer, "Towards the Ultimate Conservative Difference Scheme V: a Second-Order Sequel to
Goudonov's Method," J. Comp. Phys., Vol. 32, (1979).

[A8] P. L. Roe, "Approximate Riemann Solvers, Parameters Vectors and Difference Schemes," J. Comp.
Phys., Vol. 43, pp. 357-371, (1981).

[A9] J. Steger and R. F. Warming, "Flux Vector Splitting for the Inviscid Gas Dynamic with Applica-
tions to Finite-Difference Methods," J. Comp. Phys., Vol. 40, No. 2, pp. 263-293, (1981).

[A10] Thinking Machines Corporation, "Connection Machine Model CM-2: Technical Summary," Ver-
sion 6.0, (1990).

[All] C. Farhat, "A Simple and Efficient Automatic Finite Element Mesh Domain Decomposer," Comp.
£f Struct., Vol. 28, No. 5, pp. 579-602, (1988).

[Al2] J. W. Flower, S. W. Otto and M. C. Salama, "A Preprocessor for Irregular Finite Element Prob-
lems," CalTech/JPL Report C3P-292, (1986).

[A13] S. H. Bokhari, "On the Mapping Problem," IEEE Trans. Comp., Vol. C-30, No. 3, pp. 207-214,
(1981).

[A14] C. Farhat, "On the Mapping of Massively Parallel Processors Onto Finite Element Graphs," Comp.
& Struct., Vol. 32, No. 2, pp. 347-354, (1989).

[A15] S. Hammond and R. Schreiber, "Mapping Unstructured Grid Problems to the Connection Ma-
chine," RIACS Technical Report 90.22, (1990).

[A16] E. D. Dahl, "Mapping and Compiling Communication on the Connection Machine System," Proc.
Distr. Mem. Comp. Conf., Charleston, (1990).

[A17] M. Chrobak and D. Epstein, "Planar Orientations with Low Out-Degree and Compaction of
Adjacency Matrices," Theor. Comp. Sci., To appear, (1990).

A-17



Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. 	 Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 	 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 	 20503,

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1994 Final Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

High-Performance Parallel Analysis of Coupled Problems
for Aircraft Propulsion

WU-505-10-11
C—NAG3-12736. AUTHOR(S)

C.A. Felippa, C. Farhat, S. Lanteri, U. Gumaste, and M. Ronaghi

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

University of Colorado
REPORT NUMBER

Department of Aerospace Engineering Sciences and
Center for Space Structures and Controls Boulder, Colorado 80309-0429 E-8658

CU- CSSC-93-16

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Lewis Research Center NASA CR-195292
Cleveland, Ohio 44135-3191

11. SUPPLEMENTARY NOTES

Project Manager, Christos C. Chamis, Structures Division, organization code 5200, NASA Lewis Research Center,
(216)433-3252.

12a. 41STRIBUTIONIAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Category 39

13. ABSTRACT (Maximum 200 words)

Applications are described of high-performance parallel, computation for the analysis of complete jet engines, consider-
ing its multi-discipline coupled problem. The coupled problem involves interaction of structures with gas dynamics, heat
conduction and heat transfer in aircraft engines. The methodology issues addressed include: consistent discrete formula-
tion of coupled problems with emphasis on coupling phenomena; effect of partitioning strategies, augmentation and
temporal solution procedures; sensitivity of response to problem parameters; and methods for interfacing multiscale
discretizations in different single fields. The computer implementation issues addressed include: parallel treatment of
coupled systems; domain decomposition and mesh partitioning strategies; data representation in object-oriented form
and mapping to hardware driven representation, and tradeoff studies between partitioning schemes and fully coupled
treatment.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Structural mechanics; Gas dynamics; Heat transfer multiscale; 41
16. PRICE CODEDecomposition sensitivity; Object oriented partitioning; Tradeoff

A03
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500	 Standard Form 298 (Fiev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102


