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The improved simulation of sonic boom propagation through the real atmosphere re-
quires greater understanding of how the transient acoustic pulses popularly termed
sonic booms are affected by humidity and turbulence. A realistic atmosphere is in-
variably somewhat turbulent, and may be characterized by an ambient fluid velocity
v and sound speed c that vary from point to point. The absolute humidity will also
vary from point to point, although possibly not as irregularly. What is ideally de-
sired is a relatively simple scheme for predicting the probable spreads in key sonic
boom signature parameters. Such parameters could be peak amplitudes, rise times, or
gross quantities obtainable by signal processing that correlate well with annoyance or
damage potential. The practical desire for the prediction scheme is that it require a
relatively small amount of knowledge. possibly of a statistical nature, conceming the
atmosphere along the propagation path trom the aircraft to the ground. The impact
of such a scheme, if developed, implemented, and verified, would be that it would
give the persons who make planning decisions a tool for assessing the magnitude of
environmental problems that might result from any given overflight or sequence of
overflights.

Realistéc‘ Somcéoom Propagation Probleh
o Turbulent atmosphere

¢ diffraction by smaller turbulent eddies

o focusing and defocusing by larger turbulent eddies
o Molecular relaxation important

e Humidity controls molecular relaxation
¢ Nonlinear distortion

¢ tendency toward waveform steepening

o stretching of waveform

¢ more rapid elimination of very narrow spikes
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The technical approach that has been followed by the author and some of his col-
leagues is to formulate a hierarchy of simple approximate models based on fundamen-
tal physical principles and then to test these models against existing data.

For propagation of sonic booms and of other types of acoustic pulses in nonturbu-
lent model atmospheres, there exists a basic overall theoretical model that has evolved
as an outgrowth of geometrical acoustics. This theoretical model depicts the sound

as propagating within ray tubes in a manner analogous to sound in a waveguide of
slowly varying cross-section. Propagation along the ray tube is quasi-one-dimensional,
and a wave equation for unidirectional wave propagation is used. A nonlinear term

is added to this equation to account for nonlinear steepening, and the formulation has
been carried through to allow for spatially varying sound speed, ambient density, and
ambient wind velocities. The model intrinsically neglects diffraction, so it cannot take
into account what has previously been mentioned in the literature as possibly impor-
tant mechanisms for turbulence-related distortion. The model as originally developed
could predict an idealized N-waveform which often agrees with data in terms of peak
amplitude and overall positive phase duration. It is possible, moreover, to develop
simple methods based on the physics of relaxation processes for incorporating molecu-
lar relaxation into the quasi-one-dimensional model of nonlinear propagation along ray
tubes.

Simpler Propagation Models

e Propagation along ray tubes
o stratified atmosphere
¢ turbulence ignored
e spiking and roundening effects not predicted
e Model can account for
e gross magnification and demagnification
¢ nonlinear distortion
e molecular relaxation contribution to rise times
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There are currently two methods that are in use for carrying out such an incorporation
of relaxation phenomena into propagation predictions; one is a numerical algorithm
that arose out of the 1973 doctoral dissertation by Pestorius, which carries forward the
propagation along a ray tube as an altemating sequence of two basic types of steps.
In one step one has linear propagation of a Fourier superposition of frequency eompo-
nents, and each frequency component is shifted in phase and attenuated in an appro-
priate manner with propagation along a given distance interval. In the other step, the
nonlinear distortion is carried out according to inviscid weak shock theory through the
same distance interval.

The author and his colleagues, on the other hand, have been working with an explicit
set of approximate partial differential equations analogous to Burgers’ equation, an
early version of which can be found in the author’s 1981 textbook. One very sim-
ple model that has been used by the author and his colleagues is what is termed the
asymptotic quasi-steady theory of sonic boom wavefonns.

_Solution Techniques

¢ Transient evolution using Pestorius algorithm

o split-step algorithm

¢ nonlinear distortion step

o molecular relaxation step using Fourier transforms
e Asymptotic quasi-steady theory

¢ basic waveform shape predicted with neglect of molecular
relaxation

e rise-phase corrected for molecular relaxation

e correction based on local humidity, temperature, and net
PENNSTATE ~ pressure jump in shock




The asymptotic quasi-steady theory predicts an explicit waveform shape near the lead-
ing shock, given the waveform peak amplitude and the local humidity and tempera-
ture. The model incorporates modecular relaxation, which is slower for dryer air and
consequently a cause of sharper bangs in humid air.

This can altemnately be termed the “steady-state” model or the “quasi-frozen wave-
form” model. The terminology is not ideal, and one must first understand the detailed
assumptions involved before adopting any conceptions about what the terminology im-
plies. The ideas involved go back to early papers by G. I. Taylor and Richard Becker
on the structure of shock waves, only here the mechanisms of interest are molecular
relaxation rather than viscosity or thermal conduction. The first tenet of the theory

is that molecular relaxation is important only in the rise phase of waveforms. Such
seems justified because the characteristic times, such as positive phase duration, asso-
ciated with other portions of the waveform are invariably much longer than the char-
acteristic relaxation times for molecular relaxation. During most of the time at which
the waveform is being received, it is reasonable to assume that the air is in complete
quasi-static thermodynamic equilibrium. Molecular relaxation is a nonequilibrium ther-
modynamic phenomenon and is important only when pressure is changing rapidly,
with characteristic times of the order of a few milliseconds or less.

Molecular-relaxation correction

¢ Rise-phase prediction near t = t:
P = (Ap)sn frise(t — tsh, parameters)
frise(T, parameters) - 0 as 7 — —oo
Jrise(T, parameters) — (Ap)sy, as 7 — 400
® parameters are (Ap)s),, temperature, and humidity
o Composite expression:

p =Pbasic(t)H(tsh - [»)
+ (Ap)an frise(t = tsi, parameters)
+ [Poasic(t) = (Ap)sn) H(t — ta)
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A second hypothesis, which is related to the first, but which requires extensive analy-
sis for its justification, is that the rise phase of the waveform is determined solely by
the peak overpressure of the shock and the local properties of the atmosphere. Strictly
speaking, one expects the wavefonn received at a local point to be the result of a
gradual evolution that took place over the entire propagation path, so it depends in
principle on the totality of the atmospheric properties along the path. However, an N-
wave shape, or at least the positive phase portion, is often established fairly close to
the source (i.e., the flight trajectory in the case of sonic boom generation) relative to
the overall propagation distance. With increasing propagation distance, the peak over-
pressure decreases, but does so very slowly, and the positive phase duration increases,
but also does so very slowly. There is a net loss of energy from the wave and the
loss takes place almost entirely within the rise phases of the shocks. However, the
manner in which the peak overpressure decreases and the positive phase duration in-
creases is virtually independent of the encrgy loss mechanism.

One should note in particular that the model based on the asymptotic quasi-steady
theory predicts rise times.

Rise-time prediction

o (At)yise s time interval for fiise(t— tsn, parameters) to rise from 0.1
to 0.9.

e parameters are (Ap)g,, temperature, and humidity
o (At)rise is function of “parameters”
(At)rise = F([Ap]sh, temperature, humidity)

where F is “universal” function.
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The viewgraph herc sketches the principal ideas that are embodied in calculating the
rise-phase of a sonic boom profile according to the quasi-static theory. The parameler
£ in the diagram is & — vsnt. Ahcad of the shock the overpressure p is asymptoti-
cally zero, and the theory predicts the manner in which it approaches zero. Behind
the shock p asymptotically approaches the net shock overpressure Fsp, and here again
the theory predicts the manner in which this asymptotic limit is achieve. For points in
between onc must must numerically solve a set of coupled ordinary nonlinear differen-
tial equations. One interesling aspect of the solution is that the nitrogen relaxation is
only important is the later portion of this rise phase.

Early rise phase:’ O, relaxation dominates
Later rise phase: N, relaxation dominates

The theoretical rise phas;e is determined using asymptotic
and numerical solution methods: '
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Kang carried out detailed comparisons of the predictions of the frozen-profile model

with actual waveforms of sonic booms, recorded by the US Air Force in the Mojave
Desert in 1987. The original comparison reported in Kang’s doctoral thesis, unfortu-
nately, was flawed because the reflection at the ground was incorrectly taken into ac-
count. (That such may have been the case was first suggested to the author by Gerry
McAninch as a result of a conversation with Alan Wenzel))

Waveforms measured during flight tests

at ground level

o (At)rise can be measured for each data sample.
e Theory predicts
(At)rise = F([Ap]sh, temperature, humidity)
where F' is “universal” function.

e For comparison of data with theory, what value of [Ap|s, does one
use in the “universal function™ F?7

o Theory is based on idealization of plane wave propagating in one
direction through unbounded medium. Measurements were made
on the ground
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The corrected procedure takes the ground as rigid and the reflection process as lin-
ear, so that the waveform at the ground has the same time dependence as the incident
wave, only the amplitude is twice as great. The theoretical predictions based on accu-
mutated nonlinear effects for a unidirectional propagating wave are applicable to the
so-inferred incident wave.

Rigid ground idealization:

Dground = 2Pinc; (Ap)sh,grnd = 2(Z&p)sh,inc

e Theory predicts a function F, where
(At)rise = F([Ap]sh.inc, temperature, humidity)
decreases with increasing (Ap) roughly as (Ap)~!

e Previous comparisons were erroneously based on above with
argument taken as [Ap|s, gmd rather than (1/2)[Aplsh grnd

e Using a (Ap) that is too large by a factor of 2 means you tend to
underpredict the rise time.
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This summarizes the comparison of rise time data with the asymptotic quasi-steady-
state theory. The overpressures on the horizontal axis are those actually observed in
waveforms recorded at the ground. The theoretical curve is derived assuming that the
incident wave's overpressure is one-half of what is measured, All of the data was
taken at times when the humidity and temperature were very nearly the same, so one
theoretical curve sullices for the entire data sct. The data was taken in 1987 in the
Mojave desert, with various airplanes, flying at various altitudes and with various
Mach numbers. The relative humidity was 24% and the temperature at the ground
was 33¢ C.
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The overall result of the comparison, with ground reflection taken into account as here
described, is that the theoretically predicted rise times are roughly the same as the av-
erage rise time of the experimental waveforms under conditions of the same incident
waveform pressure amplitude and the same atmospheric humidity.

Inferences from updated theory-data comparison:

* Relaxation theory predicts rise times of correct order of magnitude

* Theoretical predictions of rise times tend (but not in all cases) to
be lower than observed in field data

e Turbulence is major factor in rise times.

PENNSTATE
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The rise phase structure of the waveform is basically a tug-of-war between nonlin-
ear steepening and molecular relaxation. When the boom passes through a region
where the molecular relaxation is weaker, the nonlinear steepening causes the wave-
form to sharpen up and causes the rise time to decrease until the mechanisms balance
each other out. One can associate a characteristic adjustment time with this restora-
tion of the balance between the two mechanisms. The quasi-steady hypothesis used
in the simpler models hypothesis rests on the assertion that this characteristic adjust-
ment time is substantially less than any characteristic time it takes for the waveform
to propagate over a path secgment within which the relevant atmospheric properties
(especially the absolute humidity) change appreciably. A current question regarding
the closely related and competing effects of molecular relaxation and nonlinear steep-
ening is just how resilient is the steady-staic model.

Raspet has referred to the characteristic distance over which recovery from a perturba-
tion to the asymptotic wavefonn takes place as the healing distance.

Concept of healing distance:

¢ Suppose rise phase of waveform slightly perturbed from asymptotic
quasi-steady-state form

For further propagation through a homogeneous medium, the
perturbation dies out

Rise phase eventually evolves to asymptotic form that depends on
x and ¢ only in combination x — Vit.

What is characteristic additional propagation distance for the
perturbation to die out?

PENNSTATE
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The question of the magnitude of the healing distance has been answered tentatively
by detailed numerical computations of transient evolution of waveforms over large
propagation distances by Raspet and others, with the apparent prediction that it takes
propagation distances of several kilometers (the value depending on the peak ampli-
tude) for the waveform to recover from slight perturbations in the steady-state shape.
Even more so than is the case for the rise lime, there is room for considerable arbi-
trariness in the definition of this healing distance. The present author suspects that
one can devise a meaningful definition for which the numerical value of this healing
distance is less than a kilometer for representative cases of interest.

That the latter speculation has some credibility can be seen at once when one consid-
ers that a typical value for the pertinent relaxation time is about 1 ms (correspond-
ing to the relaxation time of Ny in air with 50% relative humidity). The waveform
moves with roughly the sound speed, which is of the order of 340 m/s, and a pressure
amplitude of 50 Pa would move with an additional speed increment of FP/poc =

1.2)50/400 = 0.15m/s. If such a peak lags a zero-crossing by a distance of

.001)(340) m, then the distance for it to overtake the zero-crossing in the absence
of any dissipation effect is approximately (.001)(340)%/0.15 or 0.8 km. To put such
an estimate in perspective, one can contrast this with a distance of 11 km for a typical
height of the tropopause and with a representative distance of 15 km for a ray trajec-
tory from the aircraft flight track to the ground. The numbers sometimes mentioned
for the thickness of the atmosphere’s turbulent boundary layer, on the other hand, are
much smaller, on the order of 1 to 2 km.

Order of magnitude of healing distance:

e Take pertinent relaxation time as 1 ms
o Waveform moves with speed ¢ = 340m/s
e Pressure amplitude of 50 Pa moves with additional speed increment

of
B(Ap)/poc = (1.2)(50)/(400) = 0.15m/s

¢ Propagation distance for peak to overtake zero crossing in absence
of dissipation:

(0.001)(340)2/0.15 ~ 0.8 km
PENNSTATE
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Kang and the author some time ago initiated a systematic study of the tendency to-
ward the steady-state profile in which the analysis was based more on analytic con-
siderations rather than lengthy numerical case studies. In this theory the steady-state
profile provides a framework whereby perturbations to the profile can be regarded as
a superposition of natural eigenfunctions of fixed shape as seen by someone moving
with the nominal shock speed. Each such natural eigenfunction has its own natural
decay time which results as an eigenvalue in the theory. The task then emerges of
systematically determining these eigenfunctions and the associated eigenvalues.

Eigenfunctions and characteristic healing distances:

e Propagation equations are

ou  Ou Ou ., &u du, _
a0 T oa T oG g Z:(AC)”—E)? ="

(')u,,+ lu _@
oo 1, " 6ot

where p = poxu.
e Steady state solution is
u=F(¢); w =F(¢)
where £ = o — V.
o Take perturbed solution to i)e of form

PENNSTATE _
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This summarizes the mathematical problem that ideally should be solved to determine
a sequence of healing distances. One expects the so-posed eigenvalue problem to have
several solutions that correspond to real eigenfunctions. The structure of the problem
is still to be studied, and one does not have any orthogonality theorems as yet regard-
ing different eigenvector functions. However, a crude solution can be found if one
replaces the governing equations by Burgers’ equation with an effective bulk viscosity.

Equations govefning healing eigenfunctions:

u=F)+¢(e™ u, =F,(&)+ ¢, (e

are inserted into propagation equations; one keeps only linear
terms in the ¥’s, with result in matrix form

[C1{w} = AIMI{w} + ¥ N]{v}
where [L] , [M], and [N] are 3-by-3 matrices made up of linear

operators, each possibly involving differentiation with respect to £
and the steady state profile functions F(£), F1(€), Fa(§) -

o {¢} is an eigenfunction array (v, v¥1,v2)

e Nontrivial solution (boundary condition of ¥’s equal to zero at
& = to00) exists only for special values of M.

o Special values of A construed as eigenvalues and as reciprocals of
haracteristic healing distances.
PENNSTATE & diste
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Predictions of healing distance
based on effective bulk viscosity:

[ ]
6, pc? 2
oa] = 1G22DRAT
Lh al 6 c (/3(A7))5h
Hbulk
5‘ = + .-
appar 2p

o Tisza’s equivalence:

Ibuk = 2pc(Ac), T,

® so we infer

L {(Aa), pct \?
Lheal = IG(,TU( c ) (fj(Ap)sh)

PENNSTATE

Representative numerical values
based on effective bulk viscosity:

(AC),,)( pc? )2
weal = 16T,
Ll ICT( c .B(Ap)sh

Typical numerical values (O, relaxation)

2
pe
Ap)sy = 50Pa;  ———— = 2300
( P) ' ﬁ(Ap)sll
(Ac),
C

=3x107% 71,=10"5%s

e so we infer Lpea ~ 250 m

But you can get much larger values using parameters for Ny
relaxation.
PENNSTATE
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The author and his colleagues have recently been exploring various methods for com-
putation of sonic boom propagation through turbulent atmospheres and have obtained
a generalization of the Burgers equation which has some similarities to the KZK equa-
tion and to the NPE equation of McDonald and Kuperman. The equation can be re-
garded as a string of “small terms™ tacked onto the inviscid linear Burgers equation,
with individual terms accounting for nonlinear steepening, viscous attenuation, refrac-
tion, molecular relaxation, and diffraction,

The Penn State Univ Propagation Equation (PSUPE):

o Generalization of Burgers equation (which really should be called
the Cole equation, as inferred from Cal Tech literature of late
1940’s by ADP)

e Term for diffraction by smaller turbulent eddies
e Molecular relaxation term
¢ Nonlinear steepening term

e Turbulence can be simulated using Fourier transforms (series)
with random number algorithms used in selection of coefficients.

o Larger scale turbulence and ambient atmospheric stratification can
be incorporated in multiplicative Blokhintzev factor (roughly same
‘as 1/y/A, where A is ray tube area) which varies with distance
along central ray.
PENNSTATE
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Pestorius had a good idea

e Basic Pestorius algorithm alternated between nonlinear distortion
(NL) and absorption-dispersion (AD) steps

¢ Noise-Con 93 paper by ADP shows that this is rigorously correct

in limit of small step sizes Az. Taking limit yields partial differ-
ential equation

du 10u

a{ + 'E*b'z = MNL{u} +MAD{u}

where right-side terms are same as appear in PSUPE.

e Why not use same idea to handle the diffraction term?

PENNSTATE

Concluding remarks

¢ Solving PSUPE to realistically simulate sonic boom statistics will
require major theoretical innovations in computational acoustics.
(But so what?)

o Two doctoral theses presently in progress at Penn State on
alternate approaches to solving PSUPE
o Kirchhoff integral for the diffraction step.
o Finite-difference algorithms using flux-corrected transport
methods of Boris and McDonald.

o Another idea being pursued by the present author indepen-
dently is that the healing eigenfunctions are natural basis set
for a variational (or Galerkin) formulation which reduces the
dimensionality of the problem, and which leads to simpler ways
of decomposing messy waveforms encountered in field data.
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