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The improved simulation of sonic boom propagation through the real atmosphere re-
quires greater understanding of how the transient acoustic pulses popularly termed
sonic booms are affected by hu,nidity and turbulence. A realistic atmosphere is in-
variably somewhat turbulent, mad may be characterized by an ambient fluid velocity
v and sound speed c that vary from point to point. The absolute humidity will also
vary from point to point, although possibly not as irregularly. What is ideally de-
sired is a relatively simple scheme for predicting the probable spreads in key sonic
boom signature parameters. Such parameters could be peak amplitudes, rise times, or
gross quantities obtainable by signal processing that correlate well with annoyance or
dan_age potential. The practical desire lor the prediction scheme is that it require a
relatively small amount of knowledge, possibly of a statistical nature, concerning the
atmosphere along the propagation path from the aircraft to the ground. The impact
of such a scheme, if developed, i,nplemented, and verified, would be that it would
give the persons who make planning decisions a tool for assessing the magnitude of
envirorunental problems that might result from any given overflight or sequence of
overflights.
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Realistic Sonic Boom Propagation Problem
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• T'tubulent atmosphere

• diffraction by smaller turbulent eddies

• focusing and defocusing by larger turbulent eddies

• Molectdar relaxation important

• Httmidity controls molecttlar relaxation

• Nonlinear distortion

• tendency toward waveform steepening

• stretching of waveform

_, more rapid elimination of very narrow spikes

• overtaking of closely-spaced shocks
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Thetechnicalapproachthathasbeenfollowedby theauthorandsomeof hiscol-
leaguesis to fommlatea hierarchyof simpleapproximatemodelsbasedon fundamen-
tal physicalprinciplesandthento testthesemodelsagainstexistingdata.

For propagationof sonic booms and of other types of acoustic pulses in nonturbu-
lent model atmospheres, there exists a basic overall theoretical nmdel that has evolved

as an outgrowth of geometrical acoustics. This theoretical model depicts the sound
as propagating within ray tubes in a manner analogous to sound in a waveguide of
slowly varying cross-section. Propagation along the ray tube is quasi-one-dimensional,
and a wave equation for unidirectional wave propagation is used. A nonlinear term

is added to this equation to account for nonlinear steepening, and the fommlation has
been carried through to allow for spatially varying sound speed, ambient density, and
ambient wind velocities. The model intrinsically neglects diffraction, so it cannot take

into account what has previously been mentioned in the literature as possibly impor-
tant mechanisms for turbulence-related distortion. The model as originally developed
could predict an idealized N-wavefonn which often agrees with data in terms of peak
amplitude and overall positive phase duration. It is possible, moreover, to develop
simple methods based on the physics of relaxation processes for incorporating molecu-
lar relaxation into the quasi-one-dimensional model of nonlinear propagation along ray
tubes.

Simpler Propagation Models

• Propagation along ray tubes

• stratified atmosphere

• turbulence ignored

• spiking and roundening effects not predicted

• Model can account for

• gross magnification and demagnification

• nonlinear distortion

• molecular relaxation contribution to rise times
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There are currently two methods that are in use for carrying out such an incorporation

of relaxation phenomena into propagation predictions; one is a numerical algorithm
that arose out of the 1973 doctoral dissertation by Pestorius, which carries forward the
propagation along a ray tube as an altematiqg sequence of two basic types of steps.
In one step one has linear propagation of a Fourier superposition of frequency compo-
nents, and each frequency component is shifted in phase and attenuated in an appro-
priate manner with propagation along a given distance interval. In the other step, the
nonlinear distortion is carried out according to inviscid weak shock theory through the
same distance interval.

The author and his colleagues, on the other hand, have been working with an explicit
set of approximate partial differential equations analogous to Burgers' equation, an
early version of which can be found in the author's 1981 textbook. One very sim-
ple model that has been used by the author and his colleagues is what is termed the
asymptotic quasi-steady theory of sonic boom wavefonns.

Solution Techniques
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• Transient evolution using Pestorius algorithm

• split-step algorithm

• nonlinear distortion step

• molecular relaxation step using Fourier transforms

• Asymptotic quasi-steady theory

• basic waveform shape predicted with neglect of molecular
relaxation

• rise-l)hase corrected for molecular relaxation

• correction base([ on local humidity, temperature, and net

pressure jump in shocl_
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Theasymptoticquasi-steadytheorypredictsanexplicit wavefoml shape near the lead-
ing shock, given the wavefoml peak amplitude and the local humidity and tempera-
ture. The model incorporates modecular relaxation, which is slower for dryer air and
consequently a cause of sharper bangs in hutnid air.

This can alternately be tenned the "steady-state" model or the "quasi-frozen wave-
foml" model. The terminology is not ideal, and one must first understand the detailed

assumptions involved before adopting any conceptions about what the tenninology im-
plies. The ideas involved go back to early papers by G. I. Taylor and Richard Becker
on the structure of shock waves, only here the mechanisms of interest are molecular

relaxation rather than viscosity or thennal conduction. The first tenet of the theory
is that molecular relaxation is important only in the rise phase of wavefonns. Such
seems justified because the characteristic times, such as positive phase duration, asso-
ciated with other portions of the wavefonn are invariably much longer than the char-
acteristic relaxation times for molecular relaxation. During most of the time at which
the wavefonn is being received, it is reasonable to assume that the air is in complete
quasi-static themmdynamic equilibrium. Molecular relaxation is a nonequilibrium ther-
modynamic phenomenon and is important only when pressure is changing rapidly,
with characteristic times of the order of a few milliseconds or less.

Molecular-relaxation correction

• Rise-phase prediction near t = t._,,:

p = (Ap)._,,f,.i._e(t - t_h, parameters)

./'rise('/', parameters) ---, 0 as 7. _ --_

frise(7.,parameters) _ (Ap)_h as 7- ---, +oo

• parameters are (Ap)sh, temperature, and humidity

• Composite expression:

p =p_,_i_(t)H(t_h - t)

+ (AP)._hfriso(t -- tsh, parameters)

+ tZ(t
Pr.NNSTATE
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A second hypothesis, which is related to the first, but which requires extensive analy-
sis for its justification, is that the rise phase of the waveform is determined solely by
the peak overpressure of the shock and the local properties of the atmosphere. Strictly
speaking, one expects the wavelbnn received at a local point to be the result of a
gradual evolution that took place over the entire propagation path, so it depends in
principle on the totality of the atmospheric properties along the path. However, an N-
wave shape, or at least the positive phase portion, is often established fairly close to
the source (i.e., the flight trajectory ill the case of sonic boom generation) relative to
the overall propagation distance. With increasing propagation distance, the peak over-
pressure decreases, but does so very slowly, and the positive phase duration increases,
but also does so very slowly. There is a net loss of energy from the wave and the
loss takes place almost entirely within the rise phases of the shocks. However, the
manner in which the peak overpressure decreases and the positive phase duration in-
creases is virtually independent of the energy loss mechanism.

One should note in particular that the model based on the asymptotic quasi-steady
theory predicts rise times.

Rise-time prediction

# (At)rise is time interval for fri._e(/-t._a, parameters) to rise fi'om 0.1
to 0.9.

• parameters are (Ap)_h, temperature, and humidity

• (At)rise iS flmction of "parameters"

(At)rise = F([Ap]sh, temperature, humidity)

where F is "universal" fimction.
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The viewgraph here sketches tile principal ideas that are embodied in calculating the
rise-phase of a sonic boom profile according to the quasi-static theory. The parameter
,_ in the diagram is x -- Vsht. Ahead of the shock the overpressure p is asymptoti-
cally zero, and the theory predicts the manner in which it approaches zero. Behind
the shock p asymptotically approaches the net shock overpressure Psh, and here again
the theory predicts the manmer in which this asymptotic limit is achieve. For points in
between one must must numerically solve a set of coupled ordinary nonlinear differen-

tial equations. One interesting aspect of the solution is that the nitrogen relaxation is
only important is the later portion of this rise phase.

I Early rise phase:" 0 s relaxation dominates
Later rise phase: Ns relaxation dominates

The theoretical rise phase Is determined using asymptotic
and numerical solution methods:

Asymptotic
solution

P

]Early rise phm#e

o_s.P.,.

o _ 1' _,

Numerical intes ration 1 Asymptotic

or"nonlinear coupled solution

equadons
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Kang carded out detailed comparisons of the predictions of the frozen-profile model
with actual wavefonns of sonic booms, recorded by the US Air Force in the Mojave
Desert in 1987. The original comparison reported in Kang's doctoral thesis, unfortu-
nately, was flawed because the reflection at the ground was incorrectly taken into ac-
count. (That such may have been the case was first suggested to the author by Gerry
McAninch as a result of a conversation with Alan Wenzel.)

Waveforms measured during flight tests

at ground level

* (At)rise can be measured for each data sample.

• Theory predicts

(At)ri._e = F([Ap]sh, temperature, humidity)

where F is "universal" flmction.

• For comparison of data with theory, what value of [Ap]sh does one
use in the "universal function" F?

* Theory is bmsed on idealization of plane wave propagating in one
direction through unbounded medium. Measurements were made

on the ground

f_u,_Srh_
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The corrected procedure takes the ground as rigid and the reflection process as lin-
ear, so that the wavefonu at the ground has the same time dependence as the incident

wave, only the mnplitude is twice as great. The theoretical predictions based on accu-
mutated nonlinear effects for a unidirectional propagating wave are applicable to the
so-inferred incident wave.

Rigid ground idealization:

Pground = 2pine; (Ap)sh,gr,,d = 2(Ap)sh,i,,c

• Theory predicts a flmction F, where

(A t)rise = F ([Ap]._h,hlc, temperature, humidity)

decreases with increasing (Ap) roughly _ (Ap) -I

• Previous comparisons were erroneously based on above with

argument taken as [AP]._h,_r,,d rather than (1/2)[Ap]_h,_N,a

,, Using a (Ap) that is too large by a factor of 2 means you tend to

underpredict the rise time.

_N_

W



This su,nmarizes d_e comparison of rise time data with the asymptotic quasi-steady-
state theory. The overpressures on the horizontal axis are those actually observed in
wavefonns recorded at the ground. The theoretical curve is derived assuming that the
incident wave's overpressure is one-half of what is measured. All of the data was
taken at times when the humidity a,ad temperature were very nearly the same, so one
theoretical curve suflices for the entire data set. The data was taken in 1987 in the

Mojave desert, with various airplanes, flying at various altitudes and with various
Mach numbers. The relative humidity was 24% and the te,uperature at the ground
was 33 ° C.

• rise
: time
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Theoverall result of the comparison, with ground reflection taken into account as here
described, is that the theoretically predicted rise times are roughly the same as the av-
erage rise time of the experimental wavefonns under conditions of the same incident

wavefonn pressure amplitude and the same atmospheric humidity.

Inferences from updated theory-data comparison:

• Relaxaticm theory predicts rise times of correct order of mag-nitude

• Theoretical predictions of vise times tend (but not in all cases) to
be lower than observed in field data

• Turbltlence is major factor ira rise times.

W
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The risephasestructureof thewavelbnnis basicallyatug-of-warbetweennonlin-
earsteepeningandmolecularrelaxation.Whentheboompassesthrougha region
wherethemolecularrelaxationis weaker,thenonlinearsteepeningcausesthewave-
formto sharpenupandcausestherisetimeto decreaseuntil themechanismsbalance
eachotherout. Onecanassociateacharacteristicadjustmenttimewith thisrestora-
tionof thebalancebetweenthetwomechanisms.Thequasi-steadyhypothesisused
in thesimplermodelshypothesisrestson theassertionthatthischaracteristicadjust-
menttimeis substantiallylessthananycharacteristictimeit takesfor thewaveform
to propagateoverapathsegmentwithinwhichtherelevantatmosphericproperties
(especiallytheabsolutehumidity)changeappreciably.A currentquestionregarding
thecloselyrelatedandcompetingeffectsof molecularrelaxationandnonlinearsteep-
eningis just howresilientis thesteady-statcmodel.

Raspethasreferredto thecharacteristicdistanceoverwhichrecoveryfroma perturba-
tion to theasymptoticwavetbnntakesplaceasthehealingdistance.

Concept of healing distance:

• Suppose rise phase of waveform slightly perturbed from asymptotic
quasi-steady-state form

• For flu'ther propagation through a homogeneous medium, the

perturbation dies out

• Rise phase eventually evolves to asyml)totic form that depends on
x and t only in combination x - _ht.

• What is characteristic additional propagation distance for the

perturl)ation to (tie out?

W.NNS'rATE

W

12



Thequestionof tile ,nagnitude of the healing distance has been answered tentatively
by detailed numerical computations of transient evolution of wavefonns over large
propagation distances by Raspet and others, with the apparent prediction that it takes
propagation distances of several kilometers (the value depending on the peak ampli-

tude) for the wavefonn to recover from slight perturbations in the steady-state shape.
Even more so than is the case for the rise time, there is room for considerable arbi-

trariness in the definition of this healing distance. The present author suspects that
one can devise a meaningful definition for which the numerical value of this healing
distance is less than a kilometer lbr representative cases of interest.

That the latter speculation has some credibility can be seen at once when one consid-
ers that a typical value for the pertinent relaxation time is about 1 ms (correspond-
ing to the relaxation time of N2 in air with 50% relative humidity). The waveform
moves with roughly the sound speed, which is of the order of 340 m/s, and a pressure
amplitude of 50 Pa would move with an additional speed increment of flP/poc =

1.2)50/400 = 0.15 m/s. If such a peak lags a zero-crossing by a distance of
.001)(340) m, then the distance for it to overtake the zero-crossing in the absence

of any dissipation effect is approximately (.001)(340)2/0.15 or 0.8 kan. To put such

an estimate in perspective, one can contrast this with a distance of 11 km for a typical
height of the tropopause and with a representative distance of 15 km for a ray trajec-

tory from the aircraft flight track to the ground. The numbers sometimes mentioned
for the thickness of the atmosphere's turbulent boundary layer, on the other hand, are
much smaller, on the order of 1 to 2 kin.

Order of magnitude of healing distance:

• Take pertinent relaxation time as 1 ms

• Waveform moves with speed c _ 340 m/s

• Pressltre amplitude of 50 Pa moves with additional speed increment
of

/:i(Ap)/poc = (1.2)(50)/(400) = 0.15 m/s

• Propagation distance for peal< to overtake zero crossing in absence
of dissipation:

_.NNSrA_
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(0.001)(340)2/0.15 _ 0.8 l<m
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Kangandtheauthorsometimeagoinitiatedasystematicstudyof thetendencyto-
wardthesteady-stateprofilein whichtheanalysiswasbasedmoreonanalyticcon-
siderationsratherthanlengthynumericalcasestudies.In thistheorythesteady-state
profileprovidesaframeworkwherebyperturbationsto theprofilecanbe regardedas
a superpositionof naturaleigenfunctionsof fixedshapeasseenby someonemoving
with thenominalshockspeed.Eachsuchnaturaleigenfunctionhasits ownnatural
decaytimewhichresultsasaneigenvaluein thetheory.Thetaskthenemergesof
systematicallydeterminingtheseeigenfunctionsandtheassociatedeigenvalues.

Eigenfunctions and characteristic healing distances:

• Propagation equations are

Ou Ou Ou 02u

0-7+ c_ + Zu_ - _'c,_:_
OUlJ

+ F_,(A_),,-_x = o

(9u,, 1 cgu
0-'[- + --u,, = --T,, Ot

where p = poxu.

• Steady state solution is

u = F(¢);

where _ = x - _ht.

u,, = F,,(¢)

• Take perturbed solution to be of form

P[NNSTA_

u = F(¢) + 'q,,(_f)c-'x'_; u,, = F,,(_) + ¢,,(_)e -_x
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Thissummarizesthemathematicalproblemthatideallyshouldbesolvedto determine
a sequenceof healingdistances.Oneexpectstheso-posedeigenvalueproblemto have
severalsolutionsthatcorrespondto realeigenfunctions.Thestructureof theproblem
is still to bestudied,andonedoesnothaveanyorthogonalitytheoremsasyet regard-
ing differenteigenvectorfunctions.However,a crudesolutioncanbefoundif one
replacesthegoverningequationsbyBurgers'equationwith aneffectivebulk viscosity.

I I I • Ilrllll

Equations governing healing eigenfunctions:

u = F(_) + ¢(_)e-_X; u,, = F,,(_)+ _,,(_)e-_x

are inserted into propagation equations; one keeps only linear

terms in the _p's, with result in matrix form

[c]0/,}= ;qM]{v} + ,_[_q(v}

where [£] , [M], and [Af] are 3-by-3 matrices made up of linear

operators, each possibly involving differentiation with respect to

and the steady state profile fimctions F(_), F1 (_), F2(_)

• {_} is an eigenfimction array (_, _b,, _2)

• Nontrivial solution (boundary condition of _b's equal to zero at

= -l-cx_) exists only for special values of )_.

• Special values of _ construed as eigenvalues and as reciprocals of

w.NNsr_haracteristic healing distances.

$
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Predictions of healing distance
based on effective bulk viscosity:

16 _appar ( Pc2Lh_l
]

_appar _--- //,bulk + ...
2p

• Tisza's equivalence:

#b,,Ik _ 2pc(Ac),.r.

* so we infer

\#(Av)s,, )

W.NNS'TA_
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Representative numerical values
based on effective bulk viscosity:

• Typical numerical values (02 relaxation)

(Ap)sh = 50 Pa; pC2 = 2300

(At),, ----_3 X 10-4; rj,= 10 -s s
c

• so we infer Lhe_,t "_ 250 m

• But you can get much larger values using parameters for N2
relaxation.
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Theauthorandhiscolleagueshaverecentlybeenexploringvariousmethodsfor com-
putationof sonicboompropagationthroughturbulentatmospheresandhaveobtained
a generalizationof theBurgersequationwhichhassomesimilaritiesto theKZK equa-
tionandto theNPEequationof McDonaldandKupennan.Theequationcanbe re-
gardedasa stringof "smallterms"tackedontotheinviscidlinearBurgersequation,
with individualtermsaccountingfor nonlinearsteepening,viscousattenuation,refrac-
tion,molecularrelaxation,anddiffraction.

IlI I I II

The Penn State Univ Propagation Equation (PSUPE):

* Generalization of Burgers equation (which really should be called
the Cole equation, as inferred from Cal. Tech literature of late

1940's by ADP)

• Term for diffraction by smaller turbulent eddies

• Molecular relaxation term

• Nonlinear steepening term

• Turbulence can be simulated using Fourier transforms (series)
with random number algorithms used in selection of coefficients.

* Larger scale turbulence and ambient atmospheric stratification can

be incorporated in multiplicative Blokhintzev factor (roughly same
as 1�,c/A, where A is ray tube area) which varies with distance

along central ray.
I_r.NN5"rA_
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Pestorius had a good idea

• Basic Pestorius algorithm alternated between nonlinear distortion

(NL) and absorption-dispersion (AD) steps

• Noise-Con 93 paper by ADP shows that this is rigorously correct

in limit of small step sizes Ax. Taking limit yields partial (lifter-

ential equation

Ou 1 Ou

6q:l--_" "_" ----C0t = J_NL{U} + J_AD{U}

where right-side terms are same as appear in PSUPE.

• Why not use same idea to handle the diffraction term'?

I-_NNSTATE
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Concluding remarks

• Solving PSUPE to realistically simulate sonic boom statistics will

require major theoretical imlovations in computational acoustics.

(But so what'?)

• Two doctoral theses presently in progress at Penn State on

alternate approaches to solving PSUPE

• Kirchhoff integTal for the diffraction step.

• Finite-difference algorithms using flux-corrected transport
methods of Boris and McDonaht.

• Another idea being pursued by the present author indepen-

dently is that the healing eigenfunctions are natural basis set

for a variational (or Galerkin) formulation which reduces the

dimensionality of the problem, and which leads to simpler ways

of decomposing messy waveforms encountered in field data.
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