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A New Method for Recognizing Quadric Surfaces from Range Data and
Its Application to Telerobotics and Automation

(final phase)
by

Nicolas Alvertos*, Ivan D’Cunha**, and Roland Mielke***

Abstract

In the final phase of the proposed research a complete top to down three dimen-
sional object recognition scheme has been proposed. The various three dimensional
objects included spheres, cones, cylinders, ellipsoids, paraboloids, and hyperboloids.
Utilizing a newly developed blob determination technique, a given range scene with
several non-cluttered quadric surfaces is segmented. Next, using the earlier (phase 1)
developed alignment scheme, each of the segmented objects are then aligned in a
desired coordinate system. For each of the quadric surfaces based upon their intersec-
tions with certain pre-determined planes, a set of distinct features (curves) are
obtained. A database with entities such as the equations of the planes and angular
bounds of these planes has been created for each of the quadric surfaces. Real range
data of spheres, cones, cylinders, and parallelepipeds have been utilized for the recog-
nition process. The developed algorithm gave excellent results for the real data as

well as for several sets of simulated range data.
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1. INTRODUCTION

One of the most important tasks in computer vision is that of three-dimensional
object recognition. Unlike the recognition procedure developed for intensity-based
images, the recent development of active and passive sensors extracting quality range
information has led to the involvement of explicit geometric representations of the
objects for the recognition schemes [1,2]. Location and description of three-
dimensional objects from natural light images are often difficult to determine. How-
ever, range images give a more detailed and direct geometric description of the shape

of the three-dimensional object.

The laser range-finder makes use of a laser beam which scans the surfaces in the
scene of observation from left to right and top to bottom. Thus the distances obtained
measure both depth and scanning angle. The principle of triangulation is often utilized
to obtain the three-dimensional coordinate of each pixel. Unless a specific algorithm
demands a special form of the range images, it is usually this depth information which
is utilized for the recognition process. Active triangulation techniques use an extra
source of light to project some pattern onto the objects to be measured, thereby reduc-
ing complexity of the stereo matching problem [3,4]. Many industrial and navigational
robotic tasks such as target identification and tracking, automated assembly, bin pick-
ing, mobile robots, etc., will be better accomplished if such explicit depth information

can be efficiently obtained and accurately interpreted.

L.1 Objectives and Organization of the Report

An approach based on two-dimensional analytic geometry to recognize a series of
three-dimensional surfaces is presented in this research. Among the various three-
dimensional surfaces considered are the hyperboloids of one and two sheets, ellipsoids,
spheres, circular and elliptical quadric cones, circular and elliptical cylinders, parabolic

and hyperbolic cylinders, elliptic and hyperbolic paraboloids, and parallelepipeds.



The difficulties in recognizing three-dimensional surfaces stems from the com-
plexity of the scene, the number of surfaces in the database and the lack of a priori
information about the scene. Techniques vary based upon the difficulty of the recogni-
tion problem. In our case we attempt to recognize segmented surfaces in range
images.

Location and orientation of three-dimensional surfaces has always been the most
complex issue in many computer vision applications. Algorithms for a robust three-
dimensional recognition system must be view-independent. Herein, we have developed
a new technique to determine the three-dimensional surface location and orientation in
range images. We consider objects which are composed of common quadric surfaces
such as the ones described earlier. With this iterative technique the rotation parame-
ters (product terms) of the general description of a quadric surface are eliminated, thus,
aligning the surfaces with a common coordinate system. Convergence is achieved in
less than seven iterations. Once the object lies in a desired stable rest position, it is
intersected by a sufficient and necessary number of planes with different orientation so
that an unique set of curves characterizing the surface is obtained. This minimum
number of such planes can be estimated utilizing the analysis presented in this
research, where angular (orientation) bounds within which any plane intersecting a sur-
face results into the same type of curve are determined. In comparison to most of the
present day methods applied for range image object recognition, the proposed approach
attacks the problem in a different manner and is computationally inexpensive. This
new work on surface recognition, combined with existing segmentation methodologies,

could lead to the creation of a complete recognition scheme.

Section 2 reviews some of the earlier and current work in this area. Section 3
describes in detail newly developed techniques for range image edge detection and

range image segmentation. In sections 4 and 5 we discuss, in detail, our proposed



three-dimensional approach. Results are summarized in Section 6. Six different sets
of real range images of spheres, cylinders, and cones were utilized to test the proposed
recognition scheme. Results obtained for simulated data of other quadric surfaces,
namely, hyperboloids and paraboloids are also tabulated in Section 6. Section 7 con-

cludes with a discussion of possible areas for future investigation.



2. BACKGROUND

Many of the currently available techniques for describing and recognizing three-
dimensional objects are based on the principle of segmentation. Segmentation is the
process in which range data is divided into smaller regions (mostly squares). These
small regions are approximated as planar surfaces or curved surfaces based upon the
surface mean and Gausssian curvatures. Regions sharing similar curvatures are subse-
quently merged. This process is known as region growing. Other approaches [4-10]
characterize the surface shapes while dealing with the three-dimensional recognition
problem. Levine et al. [11] briefly review various works in the field of segmentation,
where segmentation has been classified into region-based and edge-based approaches.
Again surface curvatures play an important role for characterization in each of these

approaches.

Grimson et al. [12] discuss a scheme utilizing local measurements of three-
dimensional positions and surface normals to identify and locate objects from a known
set. Objects are modeled as polyhedra with a set number of degrees of freedom with
respect to the sensors. The authors claim a low computational cost for their algorithm.
Although they have limited the experiments to one model, i.e., data obtained from one
object, they claim that the algorithm can be used for multiple object models. Also,
only polyhedral objects with a sufficient number of planar surfaces can be used in their

scheme.

Another paper by Faugeras et al. [13] describes surfaces by curves and patches
which are further represented using linear parameters such as points, lines and planes.
Their algorithm initially reconstructs objects from range data and consequently utilizes
certain constraints of rigidity to recognize objects while positioning. They arrive at the
conclusion that for an object to be recognized, at least a certain area of the object
should be visible (approx. 50%). They claim their approach could be used for images

obtained using ultrasound, stereo, and tactile sensors.



Hu and Stockman [14] have employed structured light as a technique for three-
dimensional surface recognition. The objects are illuminated using a controlled light
source of a regular pattern, thereby creating artificial features on the surfaces which are
consequently extracted. They claim to have solved the problem known as “grid line
identification." From the general constraints, a set of geometric and topological rules
are obtained which are effectively utilized in the computation of grid labels which are
further used for finding three-dimensional surface solutions. Their results infer that
consistent surface solutions are obtained very fast with good accuracy using a single
image.

Recognition of polyhedral objects involves the projection of several invariant
features of three-dimensional bodies onto two-dimensional planes [15]. Recently,
recognition of three-dimensional objects based upon their representation as a linear
combination of two-dimensional images has been investigated [16]. Transformations
such as rotation and translation have been considered for three-dimensional objects in
terms of the linear combination of a series of two-dimensional views of the objects.
Instead of using transformations in three-dimensions, it has been shown that the pro-
cess is the equivalent of obtaining two-dimensional transformations of several two-
dimensional images of the objects and combining them together to obtain the three-

dimensional transformation. This procedure appears computationally intensive.

Most of the techniques and algorithms mentioned above have a common criterion
for classifying the three-dimensional objects in the final phase. They have a database
of all the objects they are trying to recognize and hence try to match features from the

test samples to the features of the objects in the database.

Fan et al. [17] use graph theory for decomposing segmentations into subgroups
corresponding to different objects. Matching of the test objects with the objects in the

database is performed in three steps: the screener, which makes an initial guess for



each object; the graph matcher, which conducts an exhaustive comparison between
potential matching graphs and computes three-dimensional transformation between
them; and finally, the analyzer, which based upon the results from the earlier two
modules conducts a split and merge of the object graphs. The distinguishing aspect of
this scheme is that the authors used occluded objects for describing their proposed

method.

Forsyth et al. [18] use stereo images to obtain a range of invariant descriptors in
three-dimensional model-based vision. Initially, they demonstrate a model-based
vision system that recognizes curved plane objects irrespective of the pose. Based
upon image data, models are constructed for each object and the pose is computed.

However, they mainly describe three-dimensional objects with planar faces.

Lee and Hahn [19] have actually dealt with an optimal sensing strategy. Their
main objective is to obtain valuable and effective data or information from three-
dimensional objects, which subsequently could be used to describe and recognize

natural quadric surfaces. Works on stereo vision can be found in references 20, 21, 22

and 23.



3. RANGE IMAGE SEGMENTATION

A robust segmentation scheme is one of the primary requirements for three-
dimensional object recognition. Partitioning a given image into homogeneous
regions-this task has been the centerpiece of investigations of several major researchers
all of these years.

In this research we propose a simplistic segmentation scheme for un-occluded clut-
tered three-dimensional objects in a scene. A assumption relating to the three-
dimensional objects being quadric in nature, would further enable us demonstrate an

object recognition scheme proposed in an earlier paper.

The proposed method involves the extraction of jump edges which we refer to as
global edges. After having median filtered the resultant image thereby eliminating
some of the spurious edges, a thinning algorithm is implemented which facilities the
utilization of a blob determination algorithm thereby completing the segmentation pro-
cess. The blob finding algorithm which has been published earlier [30], the various
objects in a scene are marked, each area representing a particular surface. Using few
basic image processing techniques, such as image addition, subtraction, etc., each
marked area is further mapped into a data file, which is further utilized to determine
whether a given surfaces is quadric or some other surface.

3.1. Background

Most of the present day Segmentation techniques are classified as either region-
based approach or edge based approach [11]. While in a region-based approach an
image is segmented into regions corresponding to surface primitives which are further
defined using analytical functions, an edge-based approach looks into
discontinuity in range images in both the surface as well as the surface orientation.
Many of the segmentation techniques, both region-based and edge-based have been

reviewed in detail by Levine et. al [11].



Aggarwal et al. [28] proposed a segmentation technique of Range images using
pyramidal Data Structures. This approach consists of two levels of segmentations, a
lower-level, which groups pixels based on local properties irrespective of the surface
type, the higher-level segmentation is a surface based representation which groups pix-
els into homogeneous regions. Since local surface operations are involved, we con-
sider this technique to be very computationally intensive.

3.2. Segmentation Scheme

As in the case of most segmentation based recognition schemes, our proposed
technique has the following hierarchial outlook:
1. Edge marking,
Median filtering,
Image Thinning,
Contour filling,
Blob determination,

Image Data Mapping, and

A T R

Classification of the object as a quadric or non-quadric surface.

Since procedures 1 through 4 are well defined image processing routines, apart
from a brief discussion about them, the succeeding part of the report will mainly con-

centrate from procedures 5 onwards.

Since three-dimensional range images are in question, edge-based approaches
have been utilized. As mentioned earlier, objects in the image being cluttered but not
occluded, we are only concerned about jump edges. After computing the difference in
depth values, and using a suitable threshold, edges are marked on the real images.
Subtracting these edge-marked images from the original range images yields the image

of edges in the scene.

The classical thinning algorithm [29] is then implemented, whereby most of the

edges are thinned to a pixel thickness. Since specks of isolated pixels and small



streaks of lines may result in some cases, a median filter eliminates most of these
abnormalities to a large extent. Places where edges are prominent but have one or two
pixels missing are filled using a contour filling algorithm proposed in [29]. At this
instant the thinned-edge marked images are ready to undergo the blob or area determi-

nation routine. The procedure is explained next in detail.

The N x M image array is augmented by two columns (one to the left and one to
the right) and two rows (one to the top and the other to the bottom) all filled with

white pixels.

The white pixels of the first row are assigned an arbitrary value v. Beginning
with the second row, whenever a white pixel is encountered the minimum assigned
value of the two neighboring pixels, as shown in Figure 1a, is assigned to this pixel.
All the black pixels encountered are assigned the value NM + v, where NM is the total
number of all the pixels (black and white) in the character array and v is the initial
value assigned to the white pixels of the first row. This value of NM + v never
changes. Whenever a white pixel has two neighboring black pixels as in Figure 1b,
the value of v is incremented and the new value is assigned to this white pixel. The
second step of the process involves the reassignment of all the white pixels with the
minimum assigned value of the four neighboring sites as shown in Figure 1b. The
assignment remains the same (NM + v) for black pixels. Step 2 is repeated for N (the
number of rows) iterations. In step 3, the number of distinct integers other than v and
NM + v (assigned to black pixels) are detected as the number of levels L. The value

of L then denotes the number of closed areas in a image.

This procedure can be summarized as follows. Let the pixels of the image array

be denoted as

Pj)ISiSN+2, ISj<M+2

p(i,j) = 0 refers a white pixel and
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p(i,j) = 1 refers a black pixel.
For all

p(1)), 1ISj<M+2
PIN+2,j), ISj <M + 2,
p(i,1), 1Si £ N + 2,
and

p(i,M+2), 1<i <N + 2, we assign the value n;=v.

Beginning from the second row,

For 2€i<N+1, 2<j<sM+1
If p(i,j) = 1, assign n;=NM+v
If p(i,j) = 0, then

if pi — 1,j) =p@i,j — 1) = 1, then n;. = max(ny,) +1,

J
for all 1<i, k<j, where nj,# NM + v

otherwise assign n;; = min(n;_y 5 ,nj;;)

During the second step, for

2€iSN+1, 2€js M+ 1,

for each pixel p(i,j), with assignment n# NM+v
iJ

Step 2 is repeated N times.

In the third step,

aSSign n.= min(ni_l_j s ni'j R ni'j_l R ni'j+1 R ni+1.j )

initialize L(level) = 1
initialize maximum = 0
initialize minimum = NM + v
Forall 2€i <N+ 1, 2€j <M +1,
For all n;; # NM + v, and n;#V,
Find maximum and minimum of n j,
If maximum = zero, then,

Stop. The number of enclosed areas is Zero.

If maximum = minimum (# zero), then,
Stop. The number of enclosed areas is L .
Else,



(when maximum # minimum ), then,
LevelL) =L +1.
Now for all n;; .EQ. minimum ,

assign , n;; = maximum .

re—initialize, minimum = maximum, and continue.
At the end of the loop the value of "L" gives the number of closed areas in a
image. Each area is further marked an distint integer so as to map the particular range

values to different data files.

The experimental section consists of a particular image of a printed circuit board,
wherein some of the objects have been classified as spheres, ellipses, and planar sur-
faces. Now that the surfaces have been segemented, in the next section we describe

the recognition scheme in detail to recognize all of the quadric surfaces.



4. FORMULATION OF THE RECOGNITION SCHEME

Figures 2, 3, and 4 illustrate the following three-dimensional quadric surfaces
which are considered for the recognition process: ellipsoids, the hyperboloids of one
and two sheets, quadric cones, elliptic paraboloids, hyperbolic paraboloids, elliptic

cylinders, parabolic cylinders, hyperbolic cylinders, and parallelepipeds.

Most three-dimensional objects of practical use which are usually man-made, may
be assumed to consist of at least one of the surfaces described above. All the
representations of surfaces which were described above hold true under ideal condi-
tions, i.e., when the source data is perfect, exact pose and orientation of the objects are
known, the system is noiseless, etc. However in the real world, practically none of
these conditions hold true. Any set of data, whether it is derived or generated from a
passive (camera) or an active sensor (laser range mapper), can at best be approximated
to a second-degree polynomial. Whether this polynomial accurately represents a sur-
face or not, and if so, how these coefficients (representation) can be chosen to come
close to recognizing a three-dimensional object, is the whole issue of the recognition

problem.

However, before elaborating on the recognition scheme, an overview of the tech-
nique is presented. The recognition scheme utilizes a two-dimensional discriminant
(which is a measure for distinguishing two-dimensional curves) to recognize three-
dimensional surfaces. Instead of utilizing the ten generated coefficients and attempting
to recognize the surface from its quadric representation, the quadrics are identified
using the information resulting from the intersection of the surface with different
planes. If the surface is one of those listed above, there are five possible two-
dimensional curves that may result from such intersections, (i) a circle, (ii) an ellipse,
(iii) a parabola, (iv) a hyperbola, and (v) a line. Thus, a feature or pattern vector
with five independent components can be formed for characterizing each of the sur-

faces.
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Figure 2. Quadric representations of Real ellipsoid. Hyperboloid of one sheet,
Hyperboloid of two sheets, and real quadric cone.
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Figure 3. Quadric representations of Elliptic paraboloid, Hyperbolic paraboloid,
Elliptic cylinder, and Parabolic cylinder.
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4.1 Recognition Scheme

Our recognition scheme consists of the following steps:

(1) acquisition of the range data and conducting the pre-processing steps,

(2) description and representation of objects as general second degree surfaces,

(3) determination of the location and orientation of the objects with respect to a
desired coordinate system,

(4) performance of the rotation and translation transformations of the object so as to
place it in a stable desired coordinate system,

(5) use of the principle of two-dirﬁensional discriminants to classify the various curves
obtained by intersecting the surfaces with planes, and

(6) acquisition of an optimal set of planes sufficient enough to distinguish and
recognize each of the quadric surfaces. Angular bounds within which every

surface yields a distinct set of curves are also determined in this step.

The range data, as mentioned in Section 1, is a pixel-by-pixel depth value from
the point of origin of the laser to the point where the beam impinges on a surface.
The objects are scanned from left-to-right and top-to-bottom. A grid frame may con-
sist of 512 x 512 pixels. Before this range data is applied to the object classifier, it is

median filtered and segmented.

As in our case [24], experiments were performed with square windows of mask
sizes 3 x 3 and 5 x 5. Based upon certain curvature analysis, the 5 x 5 median filtered
was found to be the most suitable for our purposes. Since isolated objects instead of
complex scenes are considered, a simple thresholding whereby the object is separated
from the background is utilized for the segmentation process. In the case where
objects are irregular or a scene consists of a cluster of objects, Gaussian and mean cur-
vatures have to be utilized to sub-divide the scene into planar or curved surfaces.
Each surface is then recognized separately. Range image segmentation has been

extensively studied by Levine et al. [11].



The processed range data is next utilized to obtain the quadric surface which best
fits the data. Using the procedure described in [25], we determine the coefficients of a
second degree polynomial representation for the three-dimensional surface. We
assume that the data is a set of range-image samples obtained from a single surface

which can be described by a quadric equation

F(x.y,2) = ax? + by? + c22 + 2fyz + 2gzx + 2hxy + 2px +2qy + 2rz +d = 0, (1)

where the values of the coefficients a, b,cf g h,p, g, 1, and d are known. Generally
speaking, all of the objects in the experiments generate all ten coefficients as is shown
in Section V. The question now is: How can we distinguish one object from the
another and how accurately can we describe the recognized object? In the following
sections of this section and Section IV, we describe the necessary scheme to solve the

recognition problem of quadric surfaces.

4.2 Evaluation of the Rotation Matrix

The determination of the location and orientation of a three-dimensional object is
one of the central problems in computer vision applications. It is observed that most
of the methods and techniques which try to solve this problem require considerable
pre-processing such as detecting edges or junctions, fitting curves or surfaces to seg-
mented images and computing high order features from the input images. Since
three-dimensional object recognition depends not only on the shape of the object but
also the pose and orientation of the object as well, any definite information about the

object’s orientation will aid in selecting the right features for the recognition process.

In this section we suggest a method based on analytic geometry, whereby all the
rotation parameters of any object placed in any orientation in space are determined and
eliminated systematically. With this approach we are in a position to place the three-

dimensional object in a desired stable position, thereby eliminating the orientation



problem. We can then utilize the shape information to explicitly represent the three-

dimensional surface.

Any quadric surface can be represented by Equation (1) in terms of a second

degree polynomial of variables x, y, and z.

The rotation parameters (product terms, 2f, 2g, and 2h) after undergoing a set of
sequential rotations about the three coordinate axes (rotational matrix formulated and

described in Appendix 1), have the following representations:

27 = [(b-cosza + a'sin®a + h-sin2a — c)sin2P + (2g-sina. + 2f'cosa)c052[3] cosy

+ [((b — a)sin2a — 2h-cos2a)cosf + (2g-cosot — 2f-sinar)sinpB|siny. 2)

2g" = sinZY[—cosza(a - brsin?P) — sino(-a-sinB + b) + C'COSZB]

+ sin2y|sin2PB(f-cosa + g-sina) + h-sin20(1 + sinz[})] 3)
+ cos2y|sin2asinP(a — b) + 2h-sinBcos2a + cosP(2g-cosa - 2f‘sina)].

2h” = sin2Bsiny{a'sin?a + b-cos?at — ¢ + h-sin2a(] +cos2PBsiny{2g-sina + 2f-coso]
+ cosPcosy{sin2a(a ~ b) + 2h-cos2a] + sinPcosy[2f-sina. — 2g-cosat]. 4)

In order to eliminate the product terms 2f”, 2g”, and 2h”, expressions (2) - (4)
must be set equal to zero and solved simultaneously. As seen from these three expres-
sions, each of them is a function of the rotation angles a, B, and 7. It is not possible
to analytically find the rotation angles which eliminate the product terms. Instead, in

the next section we present an iterative technique which performs the elimination of

the product terms.

4.3 Product Terms Elimination Method

The product terms yz, xz, and xy in F(x,y,z), denote the rotation terms which are
to be eliminated. Elimination of all these rotation terms will place the three-

dimensional surface on a coordinate system plane parallel to our coordinate system.



Observe that in the presence of a single rotation term, say yz, Equation (1) takes

the form
F(x,y.z) = ax? + by + cz? + 2fyz + 2px + 2qy + 2rz + d = 0.

The equation of the trace of the surface in the yz plane is obtained by setting x = 0.
An appropriate rotation about the origin in the yz plane by an angle B will eliminate

the yz term.

However, in the presence of two or more rotation terms, trying to eliminate a
second rotation term will force the previously eliminated rotation term to reappear.
Therefore, there will be at least two rotation terms present. The approach we propose
is an iterative process, whereby at each stage the object is rotated in each of the coor-
dinate planes, sequentially. The procedure is repeated until all the product terms are

eliminated, i.e., the coefficients f, g, and h converge to zero in the limit.

Since our aim is to eliminate the rotation terms Xy, yz, and xz, let’s exclusively
consider the coefficients of these rotation terms, namely f, g, and h evaluated in Sec-
tion 3.2. In our iterative procedure we are able to eliminate all of the product terms.
For example, suppose we wish to eliminate the term xy. By a specific rotation of «
about the z axis, we will be able to accomplish our goal. However, while executing
this process, the orientation of the object about the two planes yz and zx, ie., the
angles the object makes with these two planes have been changed. If we wish to elim-
inate the yz term, the object has to be rotated about the x axis by an angle B.
Nevertheless, in this instance, while performing the process, the previously eliminated
Xy term reappears though the magnitude of its present orientation has been reduced.
Hence by iterating the above process, an instance occurs when all the coefficients of

the product terms converge to zero in the limit.

Consider the Equations (2), (3), and (4). First eliminate the coefficient h, i.e, the

xy term. This can be accomplished by rotating the object about the z axis by an angle



a, whereas PB=y=0. Under these circumstances the new coefficients are as shown

below.

2f); = 2gsina; + 2f-cosayy,
2g,; = 2g-cosar; — 2f-sina;,
and
2h;; = (a - b)sin20; + 2h-cos2a; = 0,

b-a
2h

where cot2a,; =

As seen above, the coefficient h has been forced to 0. The first digit of the subscript
refers to the iteration number, whereas the second digit of the subscript denotes the
number of times the object has been rotated by a specific angle. The remaining
coefficients a, b, c, p, g, and r also reflect changes brought about by the above rotation.

The new coefficients are

a;; = acos’a; + brsina; — 2h-sinocosa;,
byy = brcos®a; + a'sin®o; + 2h-sinacosa,
i1 =6,
2p;; = 2pcosa; — 2q-singy,

2q;; = 2p-siney + 2q-cosq,,
and

2ry; = 2r.

The new quadric equation is



F(x,y,2) = a;1x? + by y? + 4922 + 2fy,yz + 2g, ;X2 + 2py X + 2q;y + 2r;z +d = 0.

Consider the second step wherein the coefficient corresponding to the yz term is
forced to zero. In this particular case, the object has to be rotated by an angle f
about the x axis, where a=y=0. Under these circumstances, the new rotation

coefficients (signifying the product terms) become

2f12 = (b12 - 012)Sin251 + 2f11'0082|31 =0,

¢ — bny

where cot2f; = T
11

2g1; = 2g)ycosPy,

and

2hyp = -2g;y'sinf,.
At the same time the other coefficients become
a2 = 4115
by, = cqysin?B; + byqcos?B, ~ 2f;;-sinBcosPl,
¢1p = byy-sin®By + ¢ y-cos?B; + 2f,;-sinB cosPl,
2p12 = 2p11;
2q), = 2q;y-cosPy — 2ryysinfy,

and

215 = 2qy;-sinP; + 2r;;-cosP;.

The new quadric equation is:



F(x,y,z) = a;px? + byoy? + €922 + 2g19XzZ + 2hyoXy + 2ppoX + 2q;5y + 2rppz +d = 0.

In the final step of the initial iteration, the coefficient corresponding to the xz term is
forced to zero. In this case, the object is to be rotated by an angle y about the y
axis, whereas oa=B=0. Under these circumstances, the new rotation coefficients

becomes

2f}3 = 2hyysiny; = —2g;;-sinPsiny;,

2g13 =(aj3 — cy3)sin2y; + (2g;cosa; — fiy-sinay)cosPicos2y; = 0,

C12 — 412

where cot2y, =
2812

b

and
2hy3 = 2hyy-cosy; = —2gyy-sinf;cosy;.

Let’s now carefully analyze the coefficients of xy, yz, and zx obtained in the final step
of the first iteration. Consider, for instance, the coefficient corresponding to the yz
term. It is observed that while proceeding from one step to the other, the new
coefficients are getting multiplied by the sine or cosine of the concerned angle. This
implies that in every succeeding step these coefficients are decreasing in their magni-
tude. To justify the above statement, let us now consider all the coefficients obtained

in the second iteration.

At the end of stage 1 of the second iteration, the rotation coefficients become

2fy; = 2f(3-cosa, = —2g;-sinP;siny cosa,,

2g2] = —2f13-sina2 = 2g11'sinﬁlsinylsina2,
and

bi3 — a3

2hy; = 0, where cot2a, = oh
13



At the end of the second stage of the second iteration, the rotation coefficients

become
Cy1—b
2f5, =0 where cot2, = Lﬂ,
2822 = 2gy;sinP;siny; sinoycosB,,
and

2hy; = —2g,y°sinBsiny;sinosinp,.

Similarly at the end of the final stage of the second iteration, the rotation coefficients

reduce to
2fy3 = —2g11'sinB1sinylsina/zsinﬁzsinyz,
bj3 —a
2gy3 =0 where coa, = LB
2hy;
and
2hy3 = —2g,y'sin;siny;sino,sinp,cosy,

The terms a,, B,, and Y, are the respective rotation angles along the z, x, and y axes
in the second iteration. Hence it is observed with each iteration that the rotation

coefficients get smaller and smaller in magnitude and eventually disappear in the limit.

Once the rotation terms, ie., XY, ¥z, and xz are eliminated, the three-

dimensional surface has the representation of

F(xy,z) = Ax® + By? + Cz2 + 2Px + 2Qy + 2Rz + D = 0, (5)

where A, B, C, P, Q, and R are the coefficients resulting after the elimination of the
rotation terms. A natural question to ask is: Can the terms of the first degree be elim-

inated by means of a translation? The answer is sometimes they can and sometimes



they cannot. The case, where the term can be eliminated, is supported by the follow-

ing theorem.

Theorem 1. The terms of the first degree of an equation of a quadric surface can
be eliminated by means of a translation if and only if the surface has a center, in
which case the first degree terms are eliminated if and only if the new origin is a

center [26].

All of the above procedures performed until now result in a second degree poly-
nomial describing an unknown object, the center of the object lying at the origin of
our coordinate system. Had the test data been simulated, the three-dimensional
discriminant approach which was mentioned in Section 1 could be used to describe
and recognize the object. Since the test data is not simulated, we should utilize a
recognition algorithm which will distinguish and recognize each of the test surfaces

from one another.

The intersection of a surface with a plane generates a curve. The nature of this
curve depends solely on what type of object is intersected and with which particular
plane and in which orientation. Since we have no knowledge of the surface type, a
priori, one approach is to intersect the surface with a series of planes. We need to
determine the optimum number of planes which will uniquely characterize each of the

quadric surfaces.

Our goal is to derive a consistent method for determining the minimum number
of planes necessary to intersect a given quadric Surface so that the generated conics
uniquely characterize the surface. This goal includes the derivation and formulation of
the angular bounds for which a particular plane intersecting a surface generates the
same two-dimensional curve. In summary, each of the quadric surfaces is represented
by a unique five-tuple, whose elements signify the presence or absence of the follow-

ing curves: circle, ellipse, hyperbola, parabola, and a line.



5. QUADRIC SURFACE CHARACTERIZATION AND RECOGNITION

Our proposed method utilizes a two-dimensional discriminant which is a measure
for distinguishing curves. Since the ten generated coefficients described in Section 3
give a three-dimensional representation of the surfaces, we propose to identify the qua-
drics using the information resulting from the intersection of the surface with different
planes. If the surface is one of those considered for the recognition process (see
figures 2, 3, and 4), there are five possible two-dimensional curves that may result
from such intersections: (i) a circle, (ii) an ellipse, (iii) a parabola, (iv) a hyperbola,
and (v) a line. Thus, a feature or pattern vector with five independent components can

be formed for characterizing each of the surfaces.

The three-dimensional surfaces (objects) to be recognized are listed below:
(a) an ellipsoid,
(b) a circular cylinder,
(c) a sphere,
(d) a quadric cone,
(e) a hyperboloid of one sheet,
(f) a hyperboloid of two sheets,
(g) an elliptic paraboloid,
(h) a hyperbolic cylinder,
(1) a parabolic cylinder,
() a hyperbolic paraboloid, and
(k) a parallelepiped.
As discussed in Section 3.2, we now assume that the three-dimensional objects
have undergone two basic transformations, rotation and translation. Consequently the
product terms in the representation F(x,y,z) for a particular surface have been elim-

inated and the center of the surface lies at the origin of our specified coordinate sys-



pa—

tem. As illustrated in figures 2, 3, and 4, all of the surfaces are contained in the xy
plane with their centers at O (the origin). For each surface, the characterization is per-
formed in two steps. Initially we consider the intersection of each object with two
planes (horizontal and vertical). This step does not require that the surface undergoes a
translation transformation. We refer to plane 1 as the one that intersects the object
parallel to the xy plane, i.e., z constant. Also refer to plane 2 as the one that inter-
sects the object parallel to the xz plane, i.e., y constant. In the second step, the
minimum set of intersecting planes needed to yield a unique feature vector (the various
curves serve as features) is determined. In this step we assume that the object has
undergone the translation transformation. Next we consider the representation pro-
cedure for the quadric cone which is similarly conducted for each of the remaining

surfaces.

Step 1:

The general representation of a circular cone on a plane parallel to the xy plane

and its axis of revolution parallel to the z axis is

F(x,y,z) = bx® + by? + c22 + 2px +2qy + 2rz + d = 0, (6)

2

2 2
where bc <0andd = 2 + 4_ |
b b c

From Equation (6), upon completing squares, we have

p|° al’ ]’ pP_q
F(x,y,z) = b = 1 —| +d- 4+ -2 _ — =0. 7
(x,y,z) [x+b +b[y+bJ +c[z+c] +d b b . ™)
2 2
Since d = % + —%— + —Ici Equation (7) becomes
2 2 2
A N 1
b b c
F(x,y,z) = + - =0. 8)

1 1 -1

b b



In the case of the elliptic cone, Equation (8) reduces to

2 72 2
P q I
oo gl o
F(x,y,z) = 1 + = — - =0, )

1 -1

a b C

where ab > 0, ac < 0, and bc < 0. If ¢ < 0, i.e,, b > 0, the intersection of the cone

represented by Equation (8) with plane 1, ie., z = k, where :cl - —Tl
- =
<k <T + T would generate
2 2 2
P 9 T
+ + = k+ —
+ = ,
T T 1 1o
b b C

where —— is a positive quantity. The above equation is that of a circle. The elliptic
c

cone on the other hand which is represented by Equation (9), upon intersection with

plane 1,ie., z= k, where — - 4/ > <k <—— + \/ , would generate
c c
2 2 2
a b c .
+ - = - ,
T T T o
a b c

which is an ellipse. The intersection of the circular cone with plane 2, ie., y=k,

where j '\f <k<H ‘\/ , would generate
2 2 2
x+ £ z+ L k+ 1
b c b
- = , (12)




where —% is a positive quantity. Equation (12) represents a hyperbola. A similar

result is obtained when the elliptic cylinder is intersected with plane 2.

Step 2:

The quadric representation of the elliptic cone illustrated in Figure 5 is

X2 yz 272
atpETe 43

Intersection of the cone with horizontal planes z = k, where < < k < ¢, generates
ellipses as intercepts. Let us consider the horizontal plane Z = -C and determine the

various intercepts formed by its inclined sub-planes. The equation of the plane passing

through the points E(A,0,-C), F(0,-B,-C), and G(0,0,L) where -C <L < C,is
—-A(C+L)Y + ABZ + B(C+L)X - ABL = 0.
Substituting Z in Equation (13) results in br
B?[C? - (C+L)2IX? + A%[C? - (C+L)?]Y2 — 2AB(C+L)2XY + .... = 0,
thereafter,
8 = 4A7B2[(C+L)* - (L3+2LC)Y2).
Analyzing 6 leads to the following bounas:

For L 2 0 the intersections are hyperbolas.

For all values of L, -C < L < O, except for L=-C+£, the intersections are

V2

ellipses.

. C . L
For the one particular case where L=—C+—=, the intersection is a parabola. In

V2

terms of @, the angle between the Z = -C plane and its inclined sub-plane is

AB
V(AAC+L)? + A2B2 + BX(C+L)?)

cosO =




DETAILED VIEW : HORIZONTAL INTERSECTIONS

Figure 5. Plane P1 and planes paralle! to it within the range -c 10 ¢ (except
the one passing through the origin) generate ellipses. Plane P2 is the inclined
sub-plane which denotes the maximum inclination or range (of plane P1) wit-
hin which ellipses are generated. 8 is the angular bound in terms of the angle.



Next, consider the intersections formed by the plane X = 0 and its sub-planes.

Substituting X = 0 in Equation (13) leads to the intersection

which is a degenerate hyperbola. For all -A < X < A, the intercepts are hyperbolas.
The equation of the plane passing through the points H(0,-B,-C), 1(0,B,-C), and
J(L,0,C), where L > 0 is

LZ -2CX +LC=0.

Solving for Z and substituting in Equation (13) leads to the representation of the inter-

cept as
X(L? - 4A1B? + L2A2Y? + 4APB2XL + - - - = 0. (14)
Solving L2-4A2, indicates the following conditions for the various intercepts:
For L = 2A, the intercept is a parabola.
For all values of L, -2A <L < 2A, the intercepts are hyperbolas.

For all L > 2A, the intercepts are ellipses.
Figure 6 illustrates all of the above results. The angle between the X = 0 plane and

its inclined sub-planes for the above obtained interceptions is

+2C
oSO <« —————.
VL2 + 4CY)
Figure 7 shows a lateral view of all possible curves intercepted in a quadric cone by
the various planes. Table 1 summarizes the results obtained for the quadric cone.
Table 2 lists out the various discriminants obtained which aid in differentiating the

several quadric surfaces. The variables A, B, C, L, and K signify the radius and
height of the quadric surfaces.



DETAILED VIEW : VERTICAL INTERSECTIONS

A

Z

Figure 6. Plane P1 and planes parallel to it within the range -b to b generates
degenerate hyperbolas. Plane P2 is the inclined sub-plane which shows the outer
region or the maximum inclination (of plane P1) within which hyperbolas are int-
ercepted. 8 is the angular bound in terms of the angle. Plane P3 is the only exce-
ption where the intersection is a parabola. In this case the inclination of the plane
P3 is equal to the base angle of the cone.



LATERAL VIEW

INTERSECTION OF A PLANE AND A CONE

Figure 7. P1, P2, P3, and P4 are the four planes which generate all the
intersections with the quadric cone. Plane P1 which has the same base angle
as that of the cone intercepts a parabola. Plane P2 intercepts a hyperbola.
Plane P3 intercepts a circle and finally plane P4 intercepts an ellipse. (The
quadnc cone under question has a circular base).



PLANE INTERSECTION
Z=K Circle, Ellipse
X=K Hyperbola
Inclined sub-planes of Z=K, 1L.>0 Hyperbolas
Inclined sub-planes of Z=K, -C <L < O Ellipses
Inclined sub-planes of Z=K, L=—C+% Parabola
Inclined sub-planes of X=K, L = 2A Parabola
Inclined sub-planes of X=K, L < 2A Hyperbolas
Inclined sub-planes of X=K, L > 2A Ellipses

Table 1. Intersection of quadric cone with planes.

Table 3 summarizes the various curves (conics) derived from intersecting each of
the eleven surfaces with the two planes z =k and ¥ =k. These observations follow
the results obtained in step 1 of each of the quadric surfaces. As seen from Table 3,
the quadric cone and the hyperboloid of one and two sheets all generate similar curves.
However, after using the results of step 2 (where angular bounds have been deter-
mined), we are able to distinguish each of the quadric surfaces from one another.
Each of the quadric surfaces can be represented by a binary five-tuple, where the
numeral 1 indicates the presence of a particular curve and the numeral 0 refers to the
non-existence of that curve. Table 4 presents the feature vector for each of the quadric

surfaces.

Quadric surfaces which seem to have identical feature vectors in the table above,
get differentiated when the angular bounds theory as defined and derived for each of

the surfaces (step 2) is applied.
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Table 2. Discriminants and bounds associated with the various quadnc surfaces.



OBJECT PLANE 1:x =k PLANE2 :y=k
Ellipsoid Ellipse Circle
Circular cylinder Circle Line

Sphere Circle Circle
Quadric cone Circle Hyperbola, Parabola
Hyperboloid of one sheet Circle Hyperbola, Parabola
Hyperboloid of two sheets Circle, Point Hyperbola, Parabola
Elliptic paraboloid Ellipse Parabola
Hyperbolic cylinder Hyperbola Line
Parabolic cylinder Line Parabola
Hyperbolic paraboloid Hyperbola Line
Parallelepiped Line Line

Table 3. The various curves intercepted by the quadric surfaces when intersected with
the planes z=k and y = k.



3-D SURFACE

CIRCLE

ELLIPSE

PARABOLA

HYPERBOLA

LINE

Ellipsoid

Circular cylinder

Sphere

Quadric cone
Hyperboloid of one sheet
Hyperboloid of two sheets
Elliptic paraboloid
Hyperbolic cylinder
Parabolic cylinder
Hyperbolic paraboloid
Parallelepiped

o O o ©

(== T e R o

o o o

[ e B )

Table 4. Feature vectors (representing the prescence or absence of curves) for each of

the quadric surfaces.




6. EXPERIMENTAL RESULTS

Range images were obtained using the Laser-Range-Mapper. The range image
sensor is based upon FMCW coherent laser radar (CLR) systems previously developed
by the Digital Signal Division of Coleman Research Corporation [27]. In these sys-
tems, a laser diode source is frequency chirped via its injection current such that the
output optical frequency is swept linearly as a function of time. The laser output is
divided and used both as a local oscillator (LO) ans as the signal to be transmitted.
After being time delayed by the round trip transit time to the target, the received signal
is mixed with the optical LO on a photodiode. The resultant beat frequency is equal
to the optical signal multiplied by the time delay between the received signal and the
local oscillator. Since this time delay is proportional to the target distance, the RF
beat frequency is also proportional to the target distance. Most of the processing and
computations were conducted on a Micro Vax 750 system.

The experimental work was performed in the following order :
(1) The effect of median filtering on range images was studied.
(i) The proposed recognition scheme was applied to filtered range images.
(iii) The quadric alignment algorithm was applied to simulated and real data.
(iv) The three-dimensional discriminant approach was tested with simulated data.

Range images of objects like spheres, cylinders and cones were segmented in
order to separate the object from its background. The resulting image, which is
referred to as the raw image, was then median filtered with mask size 5 x 5. Once the
data files were obtained for each of the filtered images, the depth information of each
of these files was converted into rectangular coordinates. The operation manual for the
laser radar three-dimensional vision system [27] describes the equations used for the
transformations of the range information from spherical coordinates to rectangular

coordinates:



X = (R — L)sinBy,

) .
Y =(R - —06~ L)sinf 0,
( oS — L)sin 4C0S0¢;
and

)
Z=R- a'ef— L)cosB,cos0y,

where 6; is the horizontal scanning angle and 8, is the vertical scanning angle.

8¢ = 25° — (horizontal pixel #) (0.1961 deg/pixel).
8, = (vertical pixel #) (0.1961 deg/pixel) —25°.
L =0.362m.

R is Range in meters = (0.00459 m/pixel)(Range pixel) + (n — 1/2),

where n is the electronic range in meters set by the operator. The cartesian coordi-
nate information was then utilized for determining the coefficients which describe each

of the three-dimensional surfaces.

Experiments were conducted on real range data for spheres and cylinders and
cones. Consider the case of the cylinder shown in Figure 8. The coefficients of the

general equation for a 5 x 5 filtered image were

a = 0.0572
b = 0.599

c =0.4416
2t = -0.807
2g =0.459
2h =-0.149
2p =-0.5915

2q = 1.089
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Figure 8. Processed range ima
cylindrical surface.

ge of a pipe which is described and recognized as a



2r = -1.019

d = 0.664
These coefficients by themselves do not come any close in describing the cylinder.
However, after utilizing the alignment algorithm, a entirely new set of coefficients as

shown below is generated.

a =-0.07251
b =0.977

¢ =0.1930
2t =0.0

22 =0.0
2h=0.0

2p =-0.1764
2q = 1.5696
2r = -1.1902
d =0.664

Three iterations were needed to eliminate the product terms. The rotation matrix was

found to be

0806 - 03 05
0.1032 0.764 0.636],
0.581 -0.565 0.584

from which the orientation of the cylinder with respect to our coordinate system was

determined to be

-12.18°
34.33° |.
41.91°

When these angles of o, B, and y were plugged back in the expressions of the product

terms, f, g, and h, respectively, all converged to zero in the limit. This result validated



our alignment technique. Step 1 of the feature extraction mode results in line being
intercepted when the surface is intersected with the plane y = k. Plane z = k on the
other hand intercepts an ellipse. Utilizing the set of planes derived earlier, the object
is classified as a cylinder. Proceeding further, using the coefficients of the 5 x 5
filtered image of the cylinder, the diameter of this particular cylinder was calculated to

be 4.99 centimeters. The actual diameter of the cylinder was 5.08 centimeters.

A similar set of coefficients obtained from the 5 x 5 filtered image of a quadric

cone are as listed next:

a = 0.995

b = -0.034

¢ = -0.008493
2f = 0.0504

2g = -0.1104
2h = -0.04773
2p = 0.009587
2q = -0.001688
2r = 0.006907
d = -.010696

After the rotation alignment technique is applied, the above set of coefficients change

to
a = 0.688
b = (0.3408
c=-1.09
2 =00
2g =00
2h = 0.0

2p = -0.124



2q = 0.296
2r = -0.0902
d = 0.0789

Three iterations were needed to eliminate the product terms. The rotation matrix was

found to be

099 0.0476 —0.04168
—0.0199 0.86 0.506 |,
0.06 -0.505 0.861

from which the orientation of the cylinder with respect to our coordinate system was

determined to be

-0.21°
28.985°|.
2.77°

When these angles of a, B, and ¥ were inserted back in the expressions of the product
terms, f, g, and h, respectively, all converged to zero in the limit. This result validated
our alignment technique. Step 1 of the feature extraction mode results in a ellipse
being intercepted when the surface is intersected with the plane y = k. Plane z = k on
the other hand intercepts an hyperbola. Utilizing the set of planes derived earlier, the
object is classified as a quadric cone with an elliptic base. Proceeding further, using
the coefficients of the 5 x 5 filtered image of the cone, the diameter of this particular
cylinder was calculated to be 10.12 centimeters. . The actual diameter of the cylinder
was 9.98 centimeters.

Experiments were carried out for four sets of other real range images of spheres,
cylinders, and quadric cones. In all of these cases the surfaces were correctly recog-
nized after utilizing the discriminants and the angular bound information listed in

Table 2.



The rotation alignment technique was utilized for a large group of simulated data.
Listed in Tables 5, 6, 7 and are several upon which the utilization of our recognition
scheme correctly identified the surfaces. Upon application of our recognition scheme
the quadric surfaces represented in Tables 5, 6, and 7 were correctly recognized as an

ellipsoid, a hyperboloid of one sheet, and a hyperbolic cylinder, respectively.

All the simulated data sets of quadric surfaces could be recognized after conduct-

ing the rotation alignment technique on the original quadratic representation.

Experimental results for the newly proposed segmentation scheme is discussed
next. Shown in Figure 9(a) is a range image of a printed circuit board (PCB). Utiliz-
ing a edge detector schme based upon gradient information, two types of edges are
determined. Figure 9(b) is the edge-image along the y-direction, whereas Figure 9(c)
is the edge-image along the x-direction. A step edge-image is formed by overlaying
images in figures 9(a) and (b). Next a thinning algorithm is utilized to thin edges to a
pixel thick. Unwanted edges and streaks of salt and pepper noise is eliminated using a
median filter of size 5 x 5. Figure 9(d) illustrates this new image. Next utilizing the
blob finding technique various enclosed areas, each reflecting a surface is determined,
and subsequently mapped. The resultant image is shown in Figure 9(e). The mapped
images can now be utilized for the recognition scheme which was described in vast

detail in sections 4 and 5.






COEFFICIENT BEFORE AFTER ALIGNMENT
A, COEFF. OF X? 103 49.84
B. COEFF. OF Y? 125 96.887
C. COEFF. OF Z* 66 145.3905
F, COEFF. OF YZ -60 0.0
G, COEFF. OF XZ -12 0.0
H, COEFF. OF XY 48 0.0
P, COEFF. OF X 0.0 0.0
Q, COEFF. OF Y 0.0 0.0

R, COEFF. OF Z 0.0 0.0

D, CONSTANT -294 -294

Table 5. New coefficients of an unknown simulated data obtained after alignment.

COEFFICIENT BEFORE AFTER ALIGNMENT
A, COEFF. OF X? 0.0 20
B, COEFF. OF Y? 20 40
C, COEFF. OF Z* 1.0 -1.0
F, COEFF. OF YZ 4.0 0.0
G. COEFF. OF XZ 4.0 0.0
H, COEFF. OF XY 0.0 00

P, COEFF. OF X 0.0 0.0
Q, COEFF. OF Y 0.0 0.0

R, COEFF. OF Z 0.0 00

D, CONSTANT 4.0 40

Table 6. New coefficients of an unknown simulated data obtained after alignment.



COEFFICIENT BEFORE AFTER ALIGNMENT
A, COEFF. OF X? 0.0 3.0
B, COEFF. OF Y? 0.0 0.0
C. COEFF. OF Z? 0.0 -30
F, COEFF. OF YZ -1414 0.0
G, COEFF. OF XZ . 00 0.0
H, COEFF. OF XY 1.0 0.0

P, COEFF. OF X 0.0 0.0
Q, COEFF. OF Y 0.0 0.0

R. COEFF. OF Z 0.0 0.0

D, CONSTANT -3.0 -3.0

Table 7. New coefficients of an unknown simulated data obtained after alignment.



6. CONCLUSIONS

We have presented a new approach based on two-dimensional analytic geometry
to recognize a series of three-dimensional objects. Among the various three-
dimensional objects considered are the hyperboloids of one and two sheets, the ellip-
soids, the spheres, the circular and elliptical quadric cones, the circular and elliptical
cylinders, the parabolic and hyperbolic cylinders, the elliptic and hyperbolic para-
boloids, and the parallelepipeds. Our proposed method utilizes a two-dimensional
discriminant which is a measure for distinguishing curves. Instead of evaluating the
ten generated coefficients and attempting to recognize the surface from its quadric
representation, we can identify the quadrics using the information resulting from the
intersection of the surface with different planes. If the surface is one of those listed
above, there are five possible two-dimensional curves that may result from such inter-
sections: (i) a circle, (ii) an ellipse, (iii) a parabola, (iv) a hyperbola, and (v) a line.
Thus, a feature or pattern vector with five independent components can be formed for
characterizing each of the surfaces. Although all of the quadric surfaces considered
have been symmetric, our recognition system can be extended to other three-
dimensional objects. To recognize complex objects a suitable segmentation technique

has been developed and implemented for the isolation of each individual surface.

Some of the advantages of our recognition scheme are listed below:
(1) Recognition systems using the curvature approach (evaluation of the mean and
Gaussian curvatures) are very computationally intensive. These approaches never
really describe the quadric surface in question. Our proposed recognition system is
computationally efficient. All of the quadric surfaces are recognized as well as
described in terms of their dimensions.

(2) Unlike some of the traditional techniques which perform well only on simulated,



Our recognition system is shown to work for both simulated and real range data.

(3) The best-fit plot and the curvature analysis techniques [24] used for analyzing pro-
cessed range images can be used to determine performances of various laser range
mappers.

(4) The rotation alignment technique is a new method which systematically and
effectively eliminates the product terms and aligns the quadric surfaces in our desired

coordinate system through an iterative technique.

(5) Although intersections of surfaces with planes has been looked into before,
only in this research a complete set of features for the recognition of all the quadric
surfaces has been determined. Angular bounds determined theoretically have been

proved experimentally for all of the quadric surfaces.

The equations of the planes which determine distinct feature vectors for each of
the quadric surfaces are very sensitive to the quality of the digitized range data. In
case the coefficient determining algorithm does not perform as expected, errors might
be encountered while forming the feature sets. Active sensors like laser range mappers
have only recently been developed. Much improvement is expected in the quality of
range images in the near future. This will make the various recognition schemes much

more reliable and flexible.

The successful performance of the segmentation scheme would enable to extend
our recognition system to recognize irregular surfaces which are made up piece-by-

piece of regular quadric surfaces.



Appendix 1
Formulation of the Rotational Matrix and Determination of the New Quadric

Coefficients

Let (x,y,z) describe the coordinates of any point (Figure (al)) in our coordinate
system. As shown in Figure (a2), consider a rotation of angle o about the z axis, i.e.

in the xy-plane. Then the new coordinates in terms of the old are represented as

x = x'cosa + y’sino
and

y = —x'sinct + y’cosq;
i.e., the rotation matrix is

cosa. sino 0
R, = |-sina cosa 0.
0 0 1

Next, as shown in Figure (a3), consider a rotation about the x’ axis by an angle B,
i.e., in the y’z plane, of the same point. The resultant coordinates and the old coordi-

nates are now related by the following equations:

y =y cosP + z’sinf

and

z = —y”sinf + z’cosp,
where the rotation matrix is

1 0 0
Rg= (0 cosp sinB|.
0 —sinf cosp



Finally as shown in Figure (a4), consider a rotation about the y” axis by an angle ¥,

i.e,, in the xz’ plane, then

Z’ = z"cosy + x”’siny

and

x" = -z"siny + x"cosy.

The rotation matrix for the above transformation is

cosy 0 —siny

Ry=0 1 0
siny 0 cosy
Observing that
x xll
Y| = RaRgRy y’l,
Z ZII

we obtain the following:

x = x"(cosacosy + sinosinBsiny) + y”sinacosP + z”(-sinycoso + cosysinasinf),

y = x"(-cosysina + sinysinfcosa) + y”cosBeosa + z”(sinysina + cosysinfcoso)
and
z = x"”sinycosP — y”sinB + z”cosycosp.

After substituting the new x, y, and z coordinates into Equation (1) (Section 3),
we get an entire set of new coefficients for x”%, y”2, 2’2, y”z”, x"2”, x"y", x”, y”,
and z”.

These new coefficients are are as follows:
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a” = cos?y [a-cos?a + b-sinZa] + sinzBsinzy [asin%a + b-cos?a]

+ 2sinasinPsinycosacosy (a — b) + csin*ycos2B
+ sin2a [h-sin®Bsin®y] + sin2y [f-sinowcosP + g-cosocosf
+ h-cos%asinp - h-sinfsino ]+ sin2Bsin%y (f-cosa. + g-sina) — h-sin20cosy.

b” = (a-sina + b°cosza)cosz[3 + c-sin2B + sin2P [-f-cosa — g'sinat ]
+ hsin2acos?p.

¢” = sin%y (a-cos?t + b-sin?a) + (a-sinot + b-cos?ar)cos?ysinZp

+ 2sinasinBsinycosacosy (b — a) + c-cosZycos?p + sin2a [h-cos®ysin?P — h-siny]
+ cos?ysin2P [f-cosot + gsina] + sin2y [f'sinacosP — g-cosocosPp— h-cos2asinp].

2t7 = [(b-cosza + a-sin®a + h-sin2a — ¢)sin2P + (2g-sina + 2f-cosa)cosZB] cosy

+ |((b — @)sin2a — 2h-cos2at)cosP + (2g-cosa — 2f-sinar)sinp [siny.

2g” = sinZY[—cosza(a — b-sin?B) ~ sino(—a'sin®B + b) + c-coszﬁ:l
+ sin2y|sin2B(f-cosa + g-sina) + h-sin2o(1 + sin2B)]

+ cos2y|sin2asinB(a — b) + 2h-sinfcos2a + cosP(2g-coso — 2f-sina):|.

2h” = sin2Bsiny{a-sina + b-cosZo — ¢ + h-sin2a] +cos2PBsiny{2g-sina + 2f-cosct]
+ cosPeosyfsin2a(a — b) + 2h-cos2a] + sinBcosy{2f sina — 2g-cosay.

2p” = 2cosy [p-cosa — gsinat] + 2sinPsiny [p-sinct + qcosa] + 2r-sinycosp.

2q9” = 2cosP [psina + g-cosa] — 2r-sinf.

2r"” = 2cosysinp [p-sinat + qcosa] + 2siny [—p-cosa + q-sina] + 2r-cosycosp.

d” =d.
We are now in a position to formulate a rotation matrix whose elements
correspond to the directional cosines of the x, y, and z axes of the rotated object.

The rotation matrix = R,RgR,,,



where

r )
cosx sing 0
Ry = |-sina cosa 0,
0 0 1

1 0 o
Rg= [0 cosp sinB/|,
|0 —sinB cosP

and

cosy 0 —siny

R,=[0 1 0

siny 0 cosy

Subsequently,

cosocosy — sinasinBsiny cosysinat + sinysinBcoso —sinycosp
RRgR, = —cosPsina cosPcosa sinB |,

sinycoso + cosysinasinf  sinasiny—cosysinBcoso.  cosPcosy
where

n n n
a=30;, B=3p;, and Y=Yy . n comresponds to the iteration where all the rota-
i=1 i=1 i=1

tion terms go to zero in the limit.
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