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METHOD OF IMPLEMENTING DIGITAL PHASE-LOCKED LOOPS

The present invention comprises a method of implementation of
a digital phase-locked loop with loop constants derived from
roots placed in the s-plane on a root-by-root basis in terms of
root-specific damping and root specific decay rates. The
method provides improved flexibility in tailoring high-order
loop performance and the design is more straightforward and
understandable for high-order loops. The inventive method
provides a fully digital formulation, free of analog
complications. Further, loop bandwidth and damping do not
change for high-gain loops.

FIG. 1 is a block diagram of a digital phase-locked loop with
phase and phase-rate updates; FIG. 2 is a graphical illustration
of the relation between the conventional second-grder loop filter
parameter r and the controlled-root parameter nj] in the
continuous update limit; FIG. 3 is a graphical illustration of
relations between third-order loop filter parameters r, k and
controlled-root parameters n, A, in the continuous update limit
with the shaded area representing values of r, k where all roots
are real; FIG. 4 is a graphical illustration of the relationship
between fourth-order loop filter parameters r, k, a and
controlled-root parameters n;, 2, , n, in the continuous update
limit; FIG. 5 is a graphical illustration of traq;fer functions
for loops of order 1 to 4 for various values of n° and A,;

FIG. 6, comprising FIGs. 6a and 6b, is a graphical illustration
of normalized loop bandwidth By T versus root reference-scale
parameter BT for a third-order loop without, and with computation
delay, respectively; FIG. 7, comprising FIGs. 7a and 7b, is a
graphical illustration of transfer functions for first and second
order loops with phase and phase-rate feedback and no computation
delay; FIG. 8, comprising FIGs. 8a and 8b, is a graphical
illustration of transfer functions for third and fourth order
loops with phase and phase-rate feedback and no computation
delay; FIG. 9, comprising FIGs. 9a and 9b, is a graphical
illustration of transfer functions for first and second order
loops with phase and phase-rate feedback and computation delay
of one update interval; FIG. 10, comprising FIGs. 10a and 10b,
is a graphical illustration of transfer functions for third and
fourth order loops with phase and phase-rate feedback and
computation delay of one update interval; FIG. 11, comprising
FIGs. lla and 1lb, is a graphical illustration of root-locus
plots for a second order loop using discrete-update formulation
(thick line) and continuous-update approximation (thin line)
as a function of B;T; FIG. 12, comprising FIGs. 1l2a and 12b,
is a graphical illustration of mean time to first cycle slip
for discrete-update loops with supercritical damping, phase and
phase-rate feedback, no computation delay and sine phase
extractor; FIG. 13, comprising FIGs. 13a and 13b, is a
graphical illustration of quantities describing steady-state
phase error in discrete-update loops with phase and phase-rate
~feedback and no computation delay; and FIG. 14, comprising
FIGs. l4a and 1l4b, is a graphical illustration of quantities
describing steady-state phase error in discrete-update loops
with phase and phase-rate feedback and computation delay of
one update interval.

The novelty of the invention resides in providing a method
for establishing loop filter constants from loop roots in a
digital approach that avoids analog considerations and thus
Cﬁ/ makes DPLL design more straightforward and provides more
< accurately-controlled loop performance.

FOLDOUT FRAME
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METHOD OF IMPLEMENTING DIGITAL PHASE-LOCKED LOOPS
ORIGIN OF INVENTION

The invention described herein was made in the
performance of work under a NASA contract, and is
subject to the provisions of Public Law 96-517
(35 USC 202) in which the Contractor has elected not to

retain title.
TECHNICAL FIELD

The present invention comprises a method of
implementation of a digital phase-locked loop with loop
constants derived from roots placed in the s-plane on a
root-by-root basis in terms of root-specific damping
and root specific decay rates. The method provides
improved flexibility in tailoring high-order loop
performance and the design is more straightforward and
understandable for high-order loops. The inventive
method provides a fully digital formulation, free of
analog complications, Further, loop bandwidth and

damping do not change for high-gain loops.
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BACKGROUND ART

It is desired to simplify and improve the design,
analysis and synthesis of high-order digital phase-
locked loops; to f£ind a technique for selecting loop
constants in high-gain loops in a manner that leads

directly to desired damping and loop noise bandwidth.

Previous analyses of digital phase-locked loops
(DPLLs) are based on the traditions of analog loops and
introduce unnecessary analog considerations such as
loop-filter time constants and uncontrolled gain
variations. This reliance on analog tradition makes
digital-loop analysis unnecessarily cumbersome and
circuitous and impedes the progress of analysts with
little analog training. Theory for digital loops can
be rigorously developed from first principle without
reference to analog concepts. With an appropriately
formulated "digital analysis," one discovers that DPLL
theory and design become more straightforward
(particularly for third and fourth order loops) and
that loop performance is more accurately controlled for

"high gain" loops.
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Previous analyses have begun with the closed-loop
equation in the "continuous update" (CU) limit in which
BLT + 0, where BL is the loop noise bandwidth and T is
the loop update interval. For sufficiently small BLT
(eeg., B;T< 0.02), the CU approximation can provide an
adequate starting point for loop anaiysis and design.
When B, T is inCcreased in this model to larger, "high-
gain" values, however, loop roots can move away from
their initial "small B;T" paths in unplanned directions
and the loop can diverge from expected behavior. For a
loop with discrete update (DU) intervals, a solution to
the loop equation can be developed in which root
locations follow predetermined paths as a function of
B, T. This feature, which is an automatic benefit of a
new controlled-root parameterization of the present
invention, can provide, for example, supercritically-

damped response for all allowed BLT values.

The following U.S. Patents were found in a search of
relevant prior art but none is deemed to affect the

patentability of the inventive method hereof.
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3,772,600 Natali
4,426,712 Gorski-Popiel
4,769,816 Hochstadt et al
4,771,250 Statman et al
4,794,341 Barton et al
4,820,993 Cohen et al
4,821,294 Thomas, Jr.
4,890,305 Devries
4,975,930 Shaw
5,016,005 Shaw et al
5,036,296 Yoshida
5,073,907 Thomas, Jr.
5,109,394 Hjerpe et al

5,122,761

Wischermann
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STATEMENT OF THE INVENTION

The instant invention comprises an approach that
reverses the conventional procedure of design for
obtaining loop filter constants. The instant
innovation is a method in which loop roots are first
placed in the s-plane on the basis of new root-
specific-damping and root-specific-decay-rate
parameters. Loop constants are then calculated on the

basis of these roots.

In the present invention, loop-filter constants are
specified in terms of new loop parameters. By design,
each of these parameters has a simple and direct
physical meaning in terms of a useful loop property:
loop noise bandwidth, transient decay time or damping.
For example, a simple choice of parameter values will
automatically give a loop a particular selected loop
bandwidth and supercritically-damped behavior (i.e.,
all roots real, negative, and equal). Thus, the need
to solve for root location as a function of standard

loop parameters (e.g., B r and k for a third-order

LI
loop) is eliminated and analysis is simplified. The

new parameterization is made feasible in a practical
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sense by the fact that digital loops can usually be
designed so that they do not suffer significantly from
the effects of gain variations. That is, variations in
signal amplitude, due to either gain instability or
signal-power changes, can usually be accounted for by
using a normalized phase extractor. So comprised, a
"fully digital" DPLL does not require the analysis or
precautions necessitated in other DPLL designs by
potential gain variations. A particularly appealing
benef it of the invention is the elimination of the
equivocal practice of using the loop parameter r as

both "damping factor” and an overall gain factor.

The analysis is extended to fourth-order loops
because of the potential advantages of such loops. In
some spacecraft applications, loop bandwidth can be set
to a smaller value for a fourth-order loop than for a
third. Consequently, lower signal strengths can be
reliably tracked. Fourth~order DPLLs, unlike their
analog counterparts, are easy to design and implement,
given the new fully-digital formulation. Accurate
placement of loop roots results from a simple selection
of parameters values rather than complicated analog

circuit design.
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Acquisition in third- and fourth-order loops should
be carefully crafted. The customary approach for a
third-order loop has been to acquire first with a
second-order loop with "wide bandwidth" and then "hand
over" tracking to a "narrow-bandwidth" third-order
loop. This approach sacrifices the opportunity of
directly acquiring weaker signals with the "narrow-
bandwidth" third-order loop. High-order DPLLs unlike
similar analog loops, can be easily initialized so that
they acquire directly, without first acquiring with a
lower-order loop. Furthermore, if sufficient a priori
information is supplied, DPLLs will start off tracking
in-lock, with no transients. The necessary a priori
information (in the form of a signal phase and its
derivatives) can be supplied by FFT analysis and/or
predicts. When a direct acquisition scheme is
incorporated, fourth-order DPLLS gain even greater
significance as an option to third-order loops for

acquiring and tracking weak spacecraft signals.

To establish a foundation for analysis, a high-level
description of a DPLL is presented by way of
background. For loops of first to fourth order, the
new controlled-root parameterization is used to derive

a CU-limit solution and to develop a general approach
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from which numerical, controlled-root solutions to the
DU loop can be derived. Solutions are given for phase
and phase-rate feedback, with computation delay for
closing the loop set to either zero or one update
interval. To tie in with traditional analysis, the new
loop parameters are related to old loop parameters in
the CU limit. Loop transfer functions are presented
for each loop order. The technique for direct
transient-free acquisition is extended to fourth-order
loops. Finally, results for two measures of loop
performance, mean time to first cycle slip and steady-

state phase error, are described.
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OBJECTS OF THE INVENTION

It is therefore a principal object of the present

invention to provide a method for specifying loop-

filter constants of digital phase-locked loops in terms

of loop parameters having direct physical meaning as a

useful loop property.

It is another object of
method of simplifying the
locked loops by obviating

location as a function of

the invention to provide a
analysis of digital phase-
the need to solve for root

standard loop parameters.

It is still an additional object of the present

invention to provide a method for parameterizing

digital phase-locked loops, wherein loop constants are

computed on the basis of loop noise bandwidth and

controlled-root independent parameters related to decay

times and damping.
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BRIEF DESCRIPTION OF THE DRAWINGS

The aforementioned objects and advantages of the
present invention, as well as additional objects and
advantages thereof, will be more fully understood
hereinafter as a result of a detailed description of a
preferred embodiment when taken in conjunction with the

following drawings in which:

FIG. 1 is a block diagram of a digital phase-locked

loop with phase and phase-rate updates;

FIG. 2 is a graphical illustration of the relation
between the conventional second-order loop filter
parameter r and the controlled-root parameter nf in

the continuous update limit;

FIG. 3 is a graphical illustration of relations
between third-order loop filter parameters r, k and
controlled-root parameters n, », in the continuous
update limit with the shaded area representing values

of r, k where all roots are real;
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FIG., 4 is a graphical illustration of the
relationship between fourth-order loop filter
parameters r, k, a and controlled-root parameters n, ,
A, + N, in the continuous update limit;

FIG, 5 is a graphical illustration of transfer
functions for loops of order 1 to 4 for various values

2
of n and Az;

FIG. 6, comprising FIGs. 6a and 6b, is a graphical
illustration of normalized loop bandwidth B;T versus
root reference-scale parameter B;T for a third-order

loop without, and with computation delay, respectively;

FIG. 7, comprising FIGs. 7a and 7b, is a graphical
illustration of transfer functions for first and second
order loops with phase and phase-rate feedback and no

computation delay;

FIG. 8, comprising FIGs. 8a and 8b, is a graphical
illustration of transfer functions for third and fourth
order loops with phase and phase-rate feedback and no

computation delay;
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FIG. 9, comprising FIGs, 9a and 9b, is a graphical
illustration of transfer functions for first and second
order loops with phase and phase-rate feedback and

computation delay of one update interval;

FIG. 10, comprising FIGs, 10a and 10b, is a graphical
illustration of transfer functions for third and fourth
order loops with phase and phase-rate feedback and

computation delay of one update interval;

FIG, 11, comprising FIGs., lla and 1llb, is a graphical
illustration of root-locus plots for a second order
loop using discrete-update formulation (thick line) and
continuous-update approximation (thin line) as a

function of BLT;

FIG. 12, comprising FIGs, l12a and 12b, is a graphical
illustration of mean time to first cycie slip for
discrete-update loops with supercritical damping, phase
and phase-rate feedback, no computation delay and sine

phase extractor;
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FIG. 13, comprising FIGs. 1l3a and 1l3b, is a graphical

illustration of quantities describing steady-state
phase error in discrete-update loops with phase and
phase~rate feedback and no computation delay; and
FIG, 14, comprising FIGs. l4a and l4b, is a graphical
illustration of quantities describing steady-state
phase error in discrete-update loops with phase and

phase-rate feedback and computation delay of one update

10 interval.
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1.0 DETAILED DESCRIPTION OF THE INVENTION

2.0 HIGH-LEVEL DESCRIPTION OF A DPLL

The block diagram in FIG. 1 shows the basic elements
of a DPLL, The example DPLL shown in FIG. 1 is based
on "immediate update" of the loop filter and feedback
of phase as well as phase-rate. Alternate DPLL designs
might feedback only phase rate and/or have a
substantial computation delay ("transport lag"). The
analysis below also treats the case when the

computation delay is equal to one update interval.

An incoming signal is sampled at a high rate (£5) and
then counter-rotated sample by sample with model phase
values generated by a number-controlled oscillator
(NCO) as directed by loop feedback. The resulting
counter-rotated signal, which should have very low
frequency, is then accumulated over an update interval
length T. A phase extractor then processes the
resulting complex sum to produce a value for residual
phase for the given interval (nth). For an ideal phase

extractor, the nth residual phase 1is equivalent to the
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difference of the n*M input signal phase ¢  and the nth

model phase ¢m’n:

6én = dn — dm,n (2.1)

with each reference to the center of the sum interval.
Even though actual residual phase can deviate from this
linear model due to nonlinearity in the phase extractor
and/or cycle ambiguities, the theory presented here
will be based on the approximation of Equation (2.1).
This ntP residual phase is immediately passed to the
loop filter to assist in the prediction of the phase
rate for the (n + l)th interval. The loop filter

generates an estimate of phase rate, ¢ T, in the

m,n+1
form of phase change per update interval. An estimate
of the next model phase, the (n + l)th + is projected

ahead to interval center by adding this estimate phase

change to the previous nt! model phase:

¢m,n+1 = ¢m,n + &m,n-{-lT (2.2)

th
The (n + 1) model phase, along with estimated phase
rate, is used to initialize the phase and rate
registers of the NCO in a manner that causes the NCO to

produce over the (n + l)th interval, phase
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values characterized by said rate and center~interval
phase. In this manner, the loop is closed and a new
value for residual phase is produced to repeat the

process.

3.0 LOOP THEORY

3.1 LOOP FILTER

As suggested above, residual phase from a given
interval can either immediately enter the loop filter
and influence feedback in the very next interval or its
effect can be delayed to allow more time for
computation. Two cases are considered here: a)
"immediate" updates with acceptably small computation
times and b) updates delayed by one update interval.

Immediate updates are discussed first.

The use of residual phase from a given interval to
update NCO phase in the very next interval can lead to
a "dead time" during which necessary update
computations are performed, and during which no
counter-rotated phasors are accumulated. If the length

of this "dead time" can be made such a small fraction
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of an update interval that the SNR loss is acceptably
small, the immediate update of the loop filter becomes
feasible. For immediate updates, an N'B -order digital
loop filter, using residual phase values 6¢i up to and
including the nth sum interval, estimates phase rate

for the (n + lfh interval according to

(3.1)
n. : n n ¢ J
bt T = K1 6¢n+K2 D 66+ KsD ) 6bi+KiD D D b¢u+...
=1 t=1jy=1 i=1y=1k=1

where ¢ is phase change per update interval T and

T
m,n+l}
the loop constants K; are to be specified below. (An

NP —order loop has N terms.)

In the case of a relatively long computation time,
loss of data can often be eliminated by performing
filter computations in parallel with signal
accumulation in each update interval, and applying the
result one interval later than the immediate-update
approach. For a computation delay ("transport lag") of
one update interval, the loop filter estimates phase

rate by computing during the nth interval the

expression

(3.2)

n—-1 n-1 -1 3 J

$mmirT =K15¢n-1+K2Z§¢i+xszz5¢j+ff4n NS bde..

© o $=1 t=1 y=1 ) i=1j=1k=1
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Note that the only change between Equations (3.l) and
(3.2) is that the nth residual phase is not used in

computing the (n + 1) phase-rate estimate.

In the following discussion, the loop equation will
be solved on the basis of immediate updates Equation
(3.1), while only results are presented for Equation

(3.2).

3.2 CONTINUOUS-UPDATE LIMIT
3.2.1 LOOP EQUATION

In many applications, the update interval T is much
shorter than all other filter time scales, and
considerable insight may be gained by writing Equation
(3.1) in the "continuous-update limit", T+ 0. (One can
easily show that Equation (3.2) leads to the same
result in this limit.) To facilitate this, define new

loop constants k; as

Ki=x; T fori=1,N (3.3)
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so that Eguation (3.1l) becomes

n
¢m.n+lT Pm,n =K1 6én + K3 ZT6¢%’+ (3.4)
) . : 1=1
n | n s J
+ra) T T6; +rad TY TS Téds +...
i=1 gJ=1 t=1 gJy=1 k=1

where estimated phase rate has been rewritten on the
basis of Equation (2.2) under the assumption that the
NCO is updated in both phase and phase rate. In the
limit T+ 0, the first term becomes a derivative and the

sums become integrals:

(3.5)

d t t t' t t' t"
-&;¢m=~1 5+ x2 dt5¢+lc3/ d’t6¢+fc4/ / / a3t 6+ ...
t t! Jt Jto

to 'Vt

Thus, in this limit, the basic equation governing "NCO
rate" is the same equation that governs the VCO rate of

an analog loop, given perfect integrators.,

Solutions of the closed-loop equation can be used on
the theory of differential equations after substituting

Equation (2.l1) and differentiating N - 1 times:

daN dN-1 dN-3
Eﬁ'¢m+'¢lm¢m tRISTGOm t e AN by =
dhN-1 dN-2 (3.6)

FLgnT? trRiggmé +otkng
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Solution of this differential equation will give the

behavior of model phase gnin response to input phase ¢ .

3.2.2 TRANSFER FUNCTION AND LOOP NOISE BANDWIDTH

To £ind the frequency response of the loop, take the
Fourier transform of both sides of Equation (3.6), and

utilize the relation
d™¢(t .

Ay = (2my 7000} (5.7
where F{} represents a Fourier transform. This
produces

(3.8)
[(270) ¥ +rey (5270) V2 4 kg (i2m0) V2 4+ L 4 KN]Bm(v) =

[k1(s2m0) N 4 ko (v2m) N2 4 L+ kx| @(v)

where ¢ (v) and ¢m(v) are the Fourier transforms of
¢ (t) and ¢,(t). The closed-loop transfer function

H(v) is defined by ¢m(v) = H(v)¢ (v), sO we have

H(y) = w1 (1270) N 4 kp(s2m)N2 4 4 kN
(270) ¥ + oy (270) N + kg (1270)N-2 . 4+ Kk

(3.9)
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Plots of the transfer function for various loop orders
and constants are shown in FIGs. 7 to 10. The single-
sided loop noise bandwidth By for the closed loop is

def ined by
o0

2B, = / dv|H()[? (3.10)
-0

This integral is evaluated in Appendix A to find By, as

a function of kl, K, ,ess continuous-update limit and

2
the results are summarized in Table 3-1 for loop fourth

order.

3.2.3 PARAMETERIZATION OF LOOP CONSTANTS

Loop bandwidth B; provides us with one parameter for
parameterizing the loop constants. Conventional loop
theory (e.g., 2) specifies additional parameters at
this point (e.g., r, k,...) to complete the
parameterization. However, since r, k, etc. cannot be
given direct physical significance for loops higher
than second order, they are less useful than more

carefully chosen parameters.
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To begin the process of defining new parameters,
define the higher k's in terms of k, :

ki=aiki fori=2,N (3.11)

No loss of generality is suffered at this step since
three new parameters replace the three k's. When this
equation is substituted for the k's in the expression
for loop bandwidth, one obtains B; as a function of

the a's, as shown in Table 3-1l. This equation can be
solved for k; in terms of B; and the a's, as shown by
the first line of equations for each loop order in
Table 3-2. Based on this expression for k; and
Equation (3.11l), the loop constants can be expressed as

a function of BL and the a's,

The variables Gpreeesly 4 will now be parameterized
in terms of physically significant quantities. To
begin the search for such parameters, return to
Equation (3.6). When the roots are unequal (i.e., non-
degenerate), the general solution to the homogeneous

equation (¢{(t) = 0) is of the form

N
Pm(t) = Za;c“‘

=1

(3.12)
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where each s; is a root of the characteristic equation

sV +K.18N-1 +I¢28N-2 +...+knxy=0 (3.13)

and where the a; are amplitudes to be determined by the
initial conditions. We can use characteristics of

these roots to parameterize kl, kz,..., k so as to

NI
create a more physically interpretable representation.

Since the loop constants ki are real, we can

parameterize the roots without loss of generality as

‘(3.14)
{s1,925 83,845 95,961 ...} = {=B1(1 £ my); =B (1 & n2); —PBa(1 £ na); ...)

where n; and Bi are real. For an odd number of roots,
the unpaired root is not given an n2 parameter. This
parameterization takes advantage of the fact that
complex roots of a polynominal equation always occur in
conjugate pair when the polynominal coefficients are
real. Our goal here is to create parameters which
dictate the relative behavior of the roots once Bj

has been specified. Thus we can choose one root
factor, B,, as the reference decay-rate parameter,

which is to be determined below as a function of B,
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and form new parameters A, which indicate magnitude

i
relative to the first:

Bi = N1 fori >2 (3.15)

Our root parameterization is now given by:

The overall scale factor 61, which we choose to be a
positive real number for loop stability, is
proportional to B; in the CU limit, as can be inferred

from the specific example in Section 3.2.4.

The ni + which we will refer to as the damping

parameters, contain useful information about each root
. . 2 . \ .
pair. The sign of n, for a given root pair determines

the damping behavior for that root pair:

n? >0  two real roots: overdamped
17:-" =0 two real, equal roots: critically damped

n?<o complex conjugate pair: underdamped/oscillatory

2 .
and the magnitude of n; is a measure of the separation

of the root pair:

84 — 8-
S+ + s~

= |nil | (3.17)

(3.16)

{81,82; 33,843 85,363,y = { =P1(l £ m1); =P122(1 £ n2); —L1As(1 £ ns);...}
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The Ai's, which we will refer to as the relative
magnitude parameters, control the relative magnitudes
of different root pairs. Furthermore, a negative
(positive)xi for a given root indicates an
exponentially growing (decaying) solution to (3.6),

since B; is chosen to be a positive real value. Some
interesting values of A's and n's are:
all \¢=1 all real parts of roots equal

allp? =0, =1 all roots real and equal (supercritically damped)

allp? = -1, =1 “standard” underdamped response
where "standard" underdamped response for a given root

corresponds to the response of a 2nd -order loop with

To express the k's as a function of these new root
parameters, equate each term in Equation (3.13) with

the like term in the same polynominal factored into its

roots:

(s—s1)(s—83)...(6—sy)=0 (3.18)
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The k's are then given by

k1= =) & (3.19)
Ky = +E$,’8,’

K3 = — Z 8; 85 8k (3.21)

.

kn = (1) (s18283...3n) (3.22)

When the root expressions in Equation (3.16) and the k
expressions in Equation (3.11) are substituted into
these equations for the k's, one can solve for B, and
a's in terms of By, Ai, and ni. Results for the a's
are given for loops of order 1 to 4 in the second line
of equations for each loop order in Table 3-2. To tie
in with traditional parameters, the o's are also given
in terms of r, k, and a in the third line in Table 3-2.
A graphical mapping between the new parameters and
traditional parameters is presented in FIGs. 2, 3, and
4 for second-, third- and fourth-order loops,
respectively. For reference, plots of the transfer
functions for loops of order 1 to 4 are presented in

. 2
FIG. 5 for various values of Ai and n, e
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Since the transient response of a loop is
characterized by the solution Equation (3.12) to the
homogeneous equation, knowledge of root locations
provides a basis for predicting transient behavior and
settling time. Because the ni and Ay values, along
with the loop bandwidth, completely specify the roots
by location in the complex plane, loop transient
response is directly selected at the outset when the
new loop parameters are chosen. For loops of first to
fourth orders, Table 3-3 presents loop constants for
two likely implementations: a) standard underdamping,
where all roots have the same decay time (all A = 1)
and all ni= -1 and b) supercritical damping, where all
roots have the same decay time and are critically
damped (all ni= 0). For comparison, Table 3-3 also

presents the corresponding conventional parameters.

3.2.4 DETAILED DERIVATION FOR A FOURTH-ORDER DPLL

To illustrate the method hereof, a fourth-order loop
will be treated in detail. As indicated by Equation
(3.16) , the roots for a fourth-order loop are expressed

in terms of the controlled-root parameters as

{s1,82783,84} = {~B1(1 £ m); =f1As(1 £ n3)} (3.23)
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Using Equations (3.19) through (3.22) and Equation

(3.23), we can write:
Ky = —-(81 + 83 + 83 +84)

= (2+2X3)5 (3.24)

Kq = 8187 + 8183 + 8184 + 8383 + 8384 + 8384
> = (423 + (1 = n}) + 23(1 — n2))B} (3.25)

K3 = — (818283 + 818284 + 818384 + 32833) :

= (2X2(1 = n{) +223(1 - n3))B} (3.26)
Kq = 818328334 .

= A3(1 - nj)(1 - n3)B] (3.27)
Equation (3.24) can be used to express 8, in terms of

10 ky:
K1
b= (3.28)

This expression and Equation (3.11) can be substituted
15 in Equations (3.25) to (3.27) and the three resulting

equations can be solved for the a's to give

_ 2+ (1 -nf) +23(1 -0

. 2l = nf) +203(1~n)
ag = (2 " 2)«3)3 (3.30)
20 _ M- -nd
ay = (2 T 2A2)4 (3.31)

Analytical evaluation of the loop bandwidth integral in
Equation (3.10) gives loop bandwidth in terms of the

k's:

By = KiKaKs — K1KF — K3k + K3Ks — K1K2K4 — KoKy (3.32
4(x1x2K3 — 3 — k3Ky) -32)
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Substitution of Equation (3.11) into this expression

allows a solution for k, in terms of B, and the a's:

2
aa03 — Q3 — (4
K1 =4BL 3

azag — o3 — ay + adag ~ azaq — azay

Note that this equation in combination with Equation

(3.28) shows that B, is proportional to B, .

Thus, 1if ni, Ap e and ni are specified, one can
calculate the a's using Equations (3.20) to (3.31).
These values of o, can then be substituted in Equation
(3.33) along with B, to obtain a value for k,. This
value for k,, along with the a's, lead to values for
k,» k3, and k, through Equation (3.11). As shown in
Equation (3.3) and listed in Table 3-2, the k's are
multiplied by an appropriate power of T to obtain the
K's to be used in the loop filter. In this manner, the
loop constants for a fourth-order loop (in the limit
T+ 0) can be calculated in terms of loop bandwidth and

the controlled-root parametersré and Ai.

(3.33)
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3.3 LOOPS WITH DISCRETE UPDATE INTERVALS
3.3.1 LOOP EQUATION

A loop with phase and phase-rate feedback and
immediate updates will be analyzed in the text while
‘Appendix B summarizes differences found in the analysis
of loops with a computation delay of one update
interval. Equation (2.1) can be used to rewrite
Equation (3.1) in terms of the model phase and signal

phase:

n n o4
A¢m,n+l + K ¢m.n +K22¢m,t’+xszz¢m,j +...=

i=1 C1=1y=1
n 4 (3.34)
Kign +Ki) & +Ks> ) & +...
=1 1=15=1
where the operator A is defined by
Az, =2z, ~
n=%n = Tn-1 (3.35)
and where Equation (2.2) has been used to replace
estimated phase rate ¢m,n+1 T with A¢m,n+l , under the
assumption that the NCO is updated with both phase and
phase rate. To convert Equation (3.34) to a difference
equation, apply the A operator (N - 1) times:
N N-1; . - '
AV ¢mnt1+ K1Y o + K3 AN 0+ 4+ Ky = (5.36)

KiAN 19, +K;AY3¢, +...+ Knén
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where N is the loop order. 1In analogy with Equation
(3.6), solution of this difference equation will give
the behavior of model phase ¢m in response to signal

phase ¢ .

3.3.2 TRANSFER FUNCTION

To find the frequency response of the loop, take the

z-transform of both sides of Equation (3.36) to obtain
(1— 2K 8(2) + ...+ Knd(2)

where ¢ and ¢ are the z-transforms of ¢, ., and ¢,
bl
respectively. To reach this expression, we have used

the relations

Z{AN zp} = (1= 2YYN 2{z,}

and

(3.38)

Z{zn41} = z Z{z,) (3.39)

(3.37)
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where Z{} represents a z-transform. Since the closed-

loop transfer function is defined by

8,n(2) = H(z) 3(2) (3.40)
5 we find that Equation (3.37) yields the expression

~ 2z) — - 1)V
o = 25t

(3.41)

where

o (3.42)

D(z) = (z=1)¥ + -V 'K +2(z - 1)V 2K+ 22 (2 - 1)V 3 K3 +.. .+ 2V 1 Ky
The frequency response of the loop is obtained by
substituting

z =T (3.43)
15
in Equation (3.41) where v is the frequency in H,.
Plots of the transfer function for various loop

implementations are presented in FIGs. 7-10.
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3.3.3 LOOP-NOISE BANDWIDTH

In analogy with Equation (3.10), the single-sided

noise bandwidth for the closed loop is defined by
¥ o 2xv T\ |2
2By = | |H(*T)2dv (3.44)
-¥

which can be rewritten as a contour integral in the

form

1 S N ~1y —
2&J=§?fH@H&Uzwz (3.45)

where the closed path is along the unit circle. This
integral can be computed on the basis of residues
within the unit circle to obtain BT as a function of
the poles of the integrand. For simple poles, the

integral is given by

2B,T = 3 { (z - z.-)ﬁ(z)ﬁ(z-l)z-l} (3.46)

T—rZ;

where the z, are poles of the integrand within the unit
circle. (For cases with poles of order greater that

first, the residue evaluation must be appropriately

modified.)
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As seen in Equation (3.41), the poles of ﬁ(z) are the
roots of the polynominal D(z) in the denominator of

ﬁ(z) and therefore satisfy the characteristic equation

(3.47)
D(z) = (z_l)N+(z—1)N°‘K1+z(z-1)N'2K2+zz(z-1)"'31(3+...+zN'1KN =0

Let the N roots of this polynominal be z, so that this

i
equation can also be written as

D(z) =(z—z1)(z—23)(2—23)...(z—2x) =0 (3.48)

Since the N roots of D(z) must all lie within the unit
circle if the loop is to be stable (see next
subsection), all poles of H(z"!) will lie outside the
unit circle and will not contribute to the contour
integral. Furthermore, one can easily show that the
residue for the pole at z = 0 is zero since H(z"!) =+ 0
as z +» 0. Thus the contour integral can be evaluated
in a straightforward though algebraically tedious
fashion on the basis of the N poles of ﬁ(z). The
resulting expressions for BLT as a function of the
roots z; are lengthy and uninformative, particularly
for the higher-order loops, and will not be presented

here.
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3.3.4 LOOP CONSTANTS FRQM LOOP ROOTS

To obtain the relationship between the roots and the
loop constants, first collect terms according to the
power of z in Equations (3.47) and (3.48). When the
coefficients of like powers of z are equated, one

obtains N equations relating roots and loop constants:

zee(:
O N L L

Z zzizx = (g) - (Nz.l) Ky - <N2.2> Ki~...~ Kn-a (3.51)

i<y<k

(”)-K,-—K:-...—KN (3.49)

It

2122...ZN_: N _ N-1 _
2 % ‘(N4> (Na)K’ K (3.52)

. 4
13

[[z=1-x (3.53)
L}

where (ﬁ ) is the binomial coefficient. These N
equations can be used to solve for each of the N loop
constants in terms of the N roots, z;. First solve
Equation (3.53) for K,. The result can then be
substituted in Equation (3.52) to allow a solution for
K, in terms of the z2;,. Proceeding sequentially in this
manner through the rest of the equation, one can obtain
an expression for each loop constant in term of the

roots. Thus, if the roots are known, the loop

constants can be calculated.
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When the contour integral for B;T is evaluated as a
function of roots for a given loop order, the result
can be reduced to a form that contains only the
functions of z; found on the left-hand side of
Equations (3.49) to (3.53). When this form is reached,
B;T can then be easily expressed as a function of only
the loop constants. The results are presented in Table

3-4 for loops of order one to four.

3.3.5 SOLUTION TO HOMOGENEOUS EQUATION

Solutions to the homogeneous form of Equation (3.36)
provide information as to the transient behavior an
stability of the loop. The general non-degenerate

solution to the homogeneous equation is given by
N
S = ) @iz} (3.54)
)

where the N amplitudes a; are to be determined from
initial conditions and where the N complex numbers z;
are again the roots of the polynominal D(z) in Equation
(3.47) . (To see that these roots provide solutions to
the homogeneous equation, substitute ¢m’n = z" in the
left-hand side of Equation (3.36), where the right-side

set equal to zero, and reduce to the form of Equation
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(3.47).) Thus, the roots from the homogeneous equation
are also the poles of the transfer function. 1In order
for the loop to be stable, the loop constants Ki; must
be set to values that cause all the roots to fall
within the unit circle. With a modulus less than 1, a
root cannot cause the homogeneous solution in Equation

(3.54) to diverge.

3.3.6 LOOP PARAMETERIZATION

Loop parameterization in the case of discrete updates
interval parallels Section 3.2.3 for the CU limit.
Loop noise bandwidth B; and the same root-location
parameters are adopted as independent loop parameters.

The roots will be parameterized in the form

!

{z1,22; 2z3,24;...} = {e" P (1EMIT, ~2aBi (1£na)T, ...} (3.55)

where Ay and n, are the N - 1 independent parameters
specified in Section 3.2.3, with A= 1. These
parameters and "normalized" loop bandwidth B, T will
comprise the N independent loop parameters needed to

completely specify the loop.
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In Equation (3.55), the reference decay-rate
parameter B, , which will be represented in the
normalized, dimensionless form 8, T in the DU case, must
be determined as a function of these N parameters. In
the CU limit, determination of B) in terms of By, X,
and Ny could be carried out explicitly, as shown in
Section 3.2.3. For DU loops, however, the complexity
of the equations makes a closed-form solution in the
general case impractical. Thus, a numerical solution
has been carried out by first selecting a value for 8, T
and the N - 1 independent parameters, A and N and
then computing numerical values for the N roots z;
through use of Equation (3.55). The resulting zj
values can be used to compute the normalized loop
bandwidth, B,T, as shown in Section 3.3.3, and the loop
constants, as shown in Section 3.3.4. Repeating the
process in this fashion on the basis of the same Ai
and n, values, one can vary the parameter B8 T
numerically to obtain B;T and the loop constants as a

function of 8,T.
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In general, B;T inCreases as BT increases from zero
but can go no higher than a loop-specific maximum
value. Plots of ByT versus BT are shown in FIGs. 6a
and 6b for two supercritically-damped third-order loops
with phase and phase-rate update, one with a
computation delay of zero, the other with a computation
delay equal to one update interval. 1In the zero-
computation delay case, BT can get no higher than 9.5,
which corresponds to a B8, T value of +=» . In the other
case, B;T reaches a peak at 8, T = -1n(3/4) as BT
increases, where B;T = 0.3 is the maximum attainable

value.

For a given BT, therefore, one can find the
corresponding B,T, if any, and the corresponding loop
constants on the basis of the analysis outlined above.
Thus, loop constants can be determined for given Ai
and n, as a function of B, T. Results are presented in
Tables 3-5 and 3-6 for loops of order one to four,
given phase and phase-rate feedback, supercritical
damping and standard underdamping. Once B8; and the
loop roots are known, the transfer function can be
computed on the basis of Equation (3.41l). Results are
plotted in FIGs. 7a and 7b through FIGs. 10a and 10b

for the two standard loop configurations.
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Even though a general solution to the DU loop has not
been obtained, the equations can be expanded as a power
series in BLT to obtain the higher-order terms relative
to the CU limit. Results are presented in Table 3-7
and 3-8 for the loop constants as a power series in BLT

for the standard loops.

3.4 EXAMPLE OF STRAYING ROOTS AT LARGE B T VALUES

IN THE CONTINUOUS-UPDATE APPROXIMATION

As BLT increases in the CU approximation for loop
constants (e.g., Table 3-3), the path of the loop roots
can stray from their original intended course and true
loop noise bandwidth can exceed the B; parameter value
used to compute the loop constants. This deviation is
illustrated in both the sT-plane and z-plane in FIGs.
lla and 1llb for a second-order DU loop with phase and
phase~rate feedback, standard underdamping, and no
computation delay. The thick straight lines, which are
based on the exact DU solution presented in preceding
subsections, show the paths taken by standard-
underdamped roots as (true) BT increases from 0 to
1.4, The thin curved lines, which are produced by the

CU approximation, follow the DU lines until about
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BT = 0.1 and then curve toward the real axis. (Note
that the CU-approximation curves are marked by both
true B;T values and "parameter" BT values. True B, T
is the actual effective noise bandwidth for a DU loop,
while "parameter" B;T is the value used to compute the
loop constants in Table 3-3.) Where the curves
separate, the CU approximation starts to diverge from
standard underdamping and loop transient response
changes. The inset plot illustrates this divergence in
terms of the corresponding damping parameter nz, which
starts at the intended underdamped value of -1 at

B T = 0, increases to a critically-damped value of 0

at true B; T = 0.8, and then approaches +1 at true

B;T ~1.2. Thus, loop response at high BLT values will
not match original intended response. In contrast, as
indicated by the thick lines, the DU exact solution

. . . . 2
maintains standard underdamping (i.e., n

i = -1) for

allowed values of BLT.
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4,0 TRANSIENT-FREE ACQUISITION WITH DPLLS

If the signal phase and its time derivatives are
accurately known at start-up, it is possible to
initialize the loop sums and loop phase so that the
loop starts tracking in-lock, with no transients. In
steady-state tracking, residual phase becomes a
constant (6¢i = 6¢ss) so that Equation (3.1) or
Equation (3.2) becomes (4.1)

n—-n, n—-n, 1§ n-n, ¢

Abnir =K1 6+ K2 Y 6¢i+Ks > }:«w, +Ke Y }J: 5éx
1k=1

1=1 =1 =1 =1 5=

for up to a fourth-order loop. The quantity n. is the
computation delay, which is zero or one update interval
for the present analysis. Note that estimated model

phase rate, ¢m T has been replaced by differenced

0 +1
input phase since model phase tracks input phase
exactly, except for a constant offset, in steady-state
tracking. Based on this expression, higher-order

differences become

A’¢ny1 = Ka6¢ss + K3 D 6¢i + Ky Y D 64 (4.2)
=1 =1 j=1

A’ni1 = K36@ss + Ka Y _ 6 (4.3)
=1

A4¢n+1 = K(b6é,, (4.4)
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One can easily show the differences are related to

input phase values by

A¢n+1 -=-¢n+1 - an (4'5)
5 A2¢ﬂ+l =Pnt1 — 2¢n + Pn—1 (4.6)
A%Pnt1 =Bnt1 — 3Pn + 3bn—1 — Pn—2 (4.7)

A'ni1 =nt1 — 400 + 6Pn—1 —4bn_3 + dn_s  (4-8)

where each phase value is referenced to interval

center. We can relate these phase values to

10 derivatives of incoming signal phase (1) by means of a
Taylor expansion whose origin is the center of the nth
interval (t = tp):
t—t,)2 t—t,)3 t—tn)4
qs(:)=¢,.+(t-t,.)¢$3>+(—_2_")_¢9>+(__6_")_¢5,3>+(_2_;)_¢5:>+... (4.9)
15

This expansion shows that phase at the center of the

nearby intervals is given by

T? T3 T4

bntr = Bltn + T)=én+ T+ ol + o0+ e+ (410)

én = ¢(tn ) = ¢n (4.11)
T2 TS T‘

bn1 = d(tn — T)=dn— TeQ) + 8l = =6l + ool - (412)
T? T3 T4

$n-2 = B(tn — 2T) = ¢ — 2THL) + 4—2—¢£3> -~ s—6-¢$3> + 16;4—:#5;‘) —... (4.13)

| T? T3 T4
dn-3 = ¢(tn — 3T) = ¢pn — 3TV + 9—2—¢$3) - 27-6-455,3) + 81 a—qsg‘) — ... (4.149)
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where T is the separation between intervals ("update
interval"). By substituting Equations (4.10) through
(4.14) in Equations (4.5) through (4.8), one can easily
show the phase differences are related to input phase

derivatives by

T2 . T3 T‘
Adny1 =T + —2;-4653) + ?¢$,3) + 54-¢$,‘) +... (4.15)
T4

A%Pny1 =T3P + o+ (4.16)
4

A3pniy = T3 - T2—¢£" +... (4.17)

A*@nyr =T +... (4.18)

By respectively equating Equations (4.15) through

(4.18) with Equations (4.1) through (4.4), one obtains
a set of equations whose number is equal to the number
of unknowns, where the unknowns are 6¢SS and the loop
sums. Thus, these unknowns can be expressed in terms

of the derivatives of input phase.

To complete initialization of the loop, an estimate
of starting model phase must be computed. To be exact,
this estimate must account for steady-state phase
error. For an arctangent phase extractor, tracking
error is equal to residual phase (neglecting system-

noise error and possible cycle ambiguities). For a
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sine phase extractor, however, steady-state tracking

error becomes

(n — Pm,n)es = arcsin(2xr 6¢,,)/27 (4.19)

where phase is measured in cycles. Thus, model phase
for the nth interval, after accounting for tracking

error, is given by

(4.20)
Srm = Pn — 6d4s for an arctan extractor
T )| n — aresin(2r §,,) /27 for a sine extractor

where phase is measured in cycles.

The solution for a fourth-order loop will be
presented in detail. If we assume that time
derivatives of ¢(t) are negligible above ¢§4) , and
equate Equations (4.18) and (4.4), we obtain a value
for steady-state residual phase for a fourth-order

loop:
4
S§as = %d’&" (4.21)

The loop sums are determined in a similar fashion. By
equating Equations (4.3) and (4.17), one can solve for
the single sum:

n—n,

1 T
D 68i= (T4 — 40 — ks,

1=1

(4.22)
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Similarly, the double sum is determined by equating

Equations (4.2) and (4.16):

5 S g = L (724 () _ K S
2 §5¢: (1760 + Lo - Kabuu — Ko > 64) (4.23)

where the single sum is known from Equation (4.22).
Finally, the triple sum is determined by equating

Equations (4.1) and (4.15):

1 T3 T3 T4 (4.24)
2 2 2 k= (T8 + o+ Tdd + o
. ; 4 4
i=1l j=lk=1
n—n, n—n, ¢
—K16¢ss— Kz ) §¢i— K3 > ZM,
i=1 =1l j=1

where the single and double sums are determined by
means of Equations (4.22) and (4.23). Thus, if a
priori values of signal phase and its derivatives are
available at the start of a track, all of the loop
variables can be initialized through use of Equations
(4.20) through (4.24). 1If the a priori information is
sufficiently accurate, the loop will start tracking in-

lock, with no transients.
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Based on these equations for loop sums and model
phase, the loop can be initialized as follows. Suppose
a priori estimates of signal phase and its derivatives
for a phantom " nth interval" at time t, are available.
Then Equations (4.22) through (4.24) can provide
estimates for loop sums at interval "completion", while
Equation (4.20) provides an estimate of model phase at
interval center, with steady-state phase error given by
Equation (4.21). To project ahead to the first
interval to be processed, the (n + l)ﬂ‘, first estimate
phase rate according to Equation (4.1l) using these
estimates for loop sums and steady-state phase error.
Model phase for the (n + 1)th interval is then computed
according to Equation (2.2) on the basis of this
estimated (n + l)th phase rate and nth a priori signal
phase. The resulting values for the (n + l)th phase
and rate are then used to initialize the NCO for the
(n + 1)*" interval in the usual fashion. At the
completion of the (n + l)th interval, sums are updated
in the standard fashion and substituted in Equation
(3.1) of Equation (3.2) to provide the (n + 2)*B
estimate of rate. (If n, = 1, the estimated steady-
state phase error 6¢Ss is used as residual phase a
second time). Equation (2.2) then provides an estimate
of the (n + th model phase. Loop iteration is normal
after this point, and steady-state lock should be

achieved.
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The above analysis has focused on a fourth-order
loop. Similar analysis can be carried out for loops of
order lower than fourth, and the results are presented
in Table 4-1. The preceding derivation assumed a
signal with polynomial phase so that a steady-state
phase error would develop. Under less ideal dynamics,
the above initialization process will not eliminate
transients but can greatly assist direct acquisition
with higher-order loops. Similarly, if the derivatives
of signal phase are known, but phase is not, the loops
sums can be initialized using Equations (4.22) to
(4.24), with initial loop phase arbitrarily set to
zero. Again, loop acquisition will be greatly

enhanced.

5.0 TWO MEASURES OF LOOP PERFORMANCE
5.1 MEAN TIME TO FIRST CYCLE SLIP

Simulations have been carried out to determine mean

time to first cycle slip, (T, ), for loops with phase

lst
and phase-rate feedback, no computation delay,

supercritical damping, and a sine phase extractor with
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perfect amplitude normalization. the tracking-error
criterion for detecting a cycle slip was

lo - ¢m\ > 0.75 cycles. After each slip, the loop was
reinitialized with perfect a priori so that it would
start off in steady-state lock with no transients. A
Gaussian random-number generator simulated noise for

the counter-~rotation sums.

Loops of 2™ to 4™ order have been simulated on the
basis of the loop constants in Table 3-5. Assumed
values of B;T ranged between 0.02 and 2.0 and loop SNR
between 0 and 6 dB. Results are summarized in FIGs.
12a and 12b, where B; times mean time to first cycle
slip is plotted versus loop SNR. In terms of cycle
slips, loop performance deteriorates somewhat as loop
order increases, given a fixed loop SNR. For a given
loop order and loop SNR, however, cycle-slip
performance improves as BT increases, as shown in
FIGs., l2a and 12b where BL(T1st) is plotted versus BLT
for 28 to 4th order loops, given a loop SNR of 7 dB.
Wwith a 3¢ order loop, for example, FIGs. 13a and 13b

indicates that B (T ) improves by two orders of

1st
magnitude when B; T is increased from 0.02 to 0.5.
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As a test of the simulation software, the cycle-slip
criteria have been made the same as Viterbi's criteria
in his exact closed form solution (5) for a first-order
loop in the CU limit. To within a statistical error of
about 10%, our results for BL(T1st) agree with
Viterbi's theoretical predictions up to SNRy = 4 dB,

the maximum loop SNR attempted.

5.2 STEADY-STATE PHASE ERROR

Loop performance at large values of B, T has also been
assessed in terms of the steady-state phase error
(SSPE). 1In the CU limit, SSPE is proportional to Bl
for an NtP order loop, as can be derived from Tables
4-1 and 3-2. For large values of B; T, however, the

SSPE in a root-controlled loop does not decrease as

-N
L

l4a and 14b. FIGs. 13a, 13b, l4a and 14b plot as a

B as BL increases, as illustrated in FIGs. 13a, 13b,
function of B, T the dimensionless coefficient required
to multiply the CU-limit form for SSPE. These plots
pertain to loops of order 1 to 4, with phase and phase-
rate feedback, with supercritical damping or standard
underdamping, and with the indicated computation delay.

At BT = 0, the coefficient is equal to the CU-limit
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value. As B;T increases, the increase in this
coefficient relative to the zero-B;T value is a measure
of the "excess" SSPE relative to the nominal CU-limit
values. As FIGs. 13a and 13b indicates, for example,
the SSPE at BLT = 0.5 for a third-order, standard
underdamped loop, is about four times as large as the

CU limit would predict.

FIGs. 13a, 13b, 1l4a and 14b plot effective loop
bandwidth as determined from SSPE, where "effective"
denotes the decrease in bandwidth relative to the BE
model. In FIGs. 1l3a and 13b, for example, the
effective bandwidth is about 0.6 times the actual loop

bandwidth when B/ T = 0.5 for a second-order loop.

SUMMARY

A first-principles analysis of DPLLs has led to a new
approach for parameterizing loops. Loop constants are
computed on the basis of loop noise bandwidth and new
controlled-root independent parametefs that have direct
physical significance relative to decay times and

damping. In the continuous-update limit, loop
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constants of loops of first to fourth order are
obtained in closed form as a function of these new
parameters. In a solution for a discrete-update (DU)
loop, however, complexity of the equations leads to a
numer ical approach. The analysis has been applied to
loops with phase and phase-rate feedback, given either
zero computation delay or a computation delay equal to
one update interval. With the new parameterization,
exact selection of loop bandwidth and damping behav ior
can be carried out for high order loops, even when B, T

is large.

A method for direct, transient-free acquisition has
been presented. Given adequate a priori estimates of
phase and its derivatives, steady-state signal clock
can be obtained directly with third- and fourth-order

loops without first acquiring with lower-order loops.

Simulations of loop behavior in terms of mean time to
first cycle slip have been carried out for loops of
first to fourth order based on the new
parameterization, including the larger values of B, T.
For a given loop bandwidth, loops with larger BT
exhibited a considerably better (larger) mean time to

first cycle slip than those with smaller B;T values.
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Loop performance has been assessed on the basis of
steady-state phase error (SSPE). As BT increases for
a given value of By, SSPE is essentially constant for
small BLT values (e.g., BT < 0.02) but increases for
larger values of B;T. Plots provide a measure of this
"excess" SSPE for large B;T values for loops with phase

and phase-rate feedback.
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' APPENDIX A. LOOP BANDWIDTH FRQM LOOP

CONSTANTS IN THE CONTINUOUS-UPDATE LIMIT

We wish to solve for loop bandwidth

2B; = [ : dv |H()|? (4.1)

in terms of loop constants ki, where the transfer

function is given by
(4.2)
Icl(t'27l’V)N-1 + lCz(iZ?l'V)N-z +...+ &N
((27V)N + k1 (S270) N1 4 kg (270) N2 + ..+ kN

H(v) =

Under the change of variable u = 2wv, we have

H(u) = 20 s 4 v ey (43)
(ﬂl.)N + Rl(iu)N'l + ;cz(iu)N-2 + ...+ Ky

8= [ g = ["wm@ae 49

o0 -00

From Gradshteyn & Ryzhik (3.112) (I.S. Gradshteyn and
I.M. Ryzhik,Table of Integrals, Series and Products,
Corrected and Enlarged Edition, Academic Press, New

York, P. 218 (1980), we have

/wdu on(y) __ i My
=00 hN(u)hN(“u) a0 AN

(4.5)
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where

gn (u) = byu(N-1) g 2(N-2)
hv(u) = aou® +ayu®1 4 | 4 aN

and a1
ao
Ay=1|0

My =|0

Comparing Equations

55

et by (4.6)
(4.7)
az ag 0
az a4 0
ay as 0 (A.8)
0O 0 ... an
by b3 by
a a4 ... O
a, as 0 (A.Q)
0O O ... an

(A.3) and (A.4) with (A.5), we get

an expression for gyf(u):

gn () = [m1(Gu)V + k2(1u)¥ 2 + ... + k] [;cl(—iu)h‘r’1 +rg(—iu)¥ T 4.+ kp]

N .
=Y ulN=9) 1242
7=1

min(N=-y,5-1)

Z (-l)k Kiox Kipn (A.10)

k=1

and an expression for hy(u):

hav(u) = (+0) 7" + (+0) Vw4 (1) N2,082

(A.11)

oot KN

where the choice of +i rather than -i has been made to

place the roots of hN(u) in the upper half-plane.

Finally, by equating like terms in (A.6) with (A.10)
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and (A.7) with (A.ll), we have the coefficients aj and

b:; in terms of the loop constants kj:

_ { (+9)¥, if j = 0; (A.12)

%4 = (+6)V¥7 xj, otherwise.
min(N=5,5-1)
bj = K] +2 Z (1% &,k K50 (A.13)
k=1

One can now express loop bandwidth as a function of
loop filter constants by combining (A.4) and (A.5) to
obtain

3 My

By = 4a0 AN

(A.14)

where the right side is given by Equations (A.8) and
(A.9) with the substitution of Equations (A.l2), and

(A.13).

Table 3-1 lists results of Equation (A.l14) and
presents By as a function of k; for the first four loop
orders. The table also presents B; as a function of

the a's after substitution of Equation (3.12).
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APPENDIX B. ADAPTATION OF ANALYSIS
TO LOOPS WITH COMPUTATION DELAY OF

ONE UPDATE INTERVAL

The preceding DU analysis is based on a loop filter
with no computation delay. Even though the analogous
derivation for a loop filter'with a computation delay
of one update interval is in many ways a
straightforward generalization, there are a few
differences that are worth mentioning. 1In analogy with
Equation (3.34), the loop equation for a loop with a
computation delay of one update interval and phase and

phase-rate feedback becomes

(B.1)

A¢m n+l+K1 ¢m n—-1t K2 Z ¢m i + K3 Z qumd +.

t—l) 1

K1¢,._1+K22¢.+K32\;¢,

1=1j5=1

Based on this equation, we find in a fashion similar to
Section 3.3.1 through 3.3.3 that the closed-loop

transfer function is given by

~ 2) —z(z-1)V¥
fi() = 22) D((z) 1)

(B.2)
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where the denominator is defined by
D(2) = 2(z=1)¥ + (= D)V K1+ 2(z - )V Ko + 2% (2~ 1)V Ks +.. .+ 2N Ky (B.3)

This polynomial has N + 1 roots in contrast to the
zero-computation-delay case in Equation (3.42) and can

be represented by

D(2) = (z—zl)(z—zg)(z—za)...(z—zN+1) =0 (B.4)

Upon expansion of D(z), a constraint equation for the
st
extra (N + 1) root comes from the coefficient of zV

when Equations (B.3) and (B.4) are equated:
. N
2N+ =N - Zz.- (B.5)
)

Thus if roots Z)s Zyseseq Zy are designated as

selectable roots, the (N + 1)St dependent root is
determined by this equation. As explained in Section
3.3.6, we are free to place the N selectable roots, as
before, according to loop noise bandwidth, damping
parameter and relative-magnitude parameter. The DU
analysis of a computation-delay loop is otherwise
parallel to the analysis for zero-computation-delay
loop. The linear equations relating the loop constants

to the independent roots are similar to
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Equations (3.49) through (3.53) and will not be shown
here. Results for this implementation have been

presented in the text.

Having thus disclosed a preferred mode of carrying

out the invention, what is claimed is:



Table 3-1. Loop Bandwidth from Loop Constants in the Continuous-update Limit

1*t order

3¢ order

2
By = F1f2 — Kifs +~§) _Koe2—aztag
4(&1&2 - I63) 4 a3 — Qg
4*» order

2 2 3 2 2
Bp = K)K2K3 — K1K3 — K1K4 + KoK3 — K1K2K4 — IC3!C4) _ Kk aza3z — ag — a4 + aogz — 0204 — Q304
4(&1!62!&3 - K.g -_ n’llq) 4 03 — ag - 0y

09



Table 3-2. Loop Filter Constants in the Continuous-update Limit

1%t order . -
K 1= 4B LT
2" order
K 1=4B LTﬁLa—z
Controlled-root:
Standard:
374 order
Ky =4B,T—%2 "¢
az — ag + a;
Controlled-root:
Standard:
4t* order
— 2 —
K1 =4B.T e —

Controlled-root:

Standard:

2
Q03 — 03 — 04 — Q204 — O304 + agaa

Kz = agK,’
2
o= 17
az = %
Kg = agKf
_ 22+ (1-nd)
@z = (2 + 4\2)
az = -}-
Kg = CtzI(l2
g = P2t (1-n]) + A3 (1-n3)
(2 +212)*
gy = ;1~

Ka = a;;Kf
_ A,(l-g’,g
BE2+ )
_k
ag ;f
Ka = a3K13

oy = 2a(1-ni) + 233 (1-n7)

ag

(2 + 272)°

_k
"]

K = aK}

'iula

o = ,\2211-712, “l—n%)
1T T2+ 2)0)

19



Table 3-3. Loop-filter Constants for Typical Implementations
in the Continuous-update Approximation

Supercritically damped: 9? =0, ); =1, for all roots

Loop constants Conventional parameters
K, K, Kg K, r k a
(a2 K7) (asK7) (adKY) (1/a2) (aar?) (a4r®)

1¢t Order 4 B, T

2rd Order  ¥p, 7 1k7 4
3 Order  32B,T 1K} K3 3 3
4 Order  ¥8B, T BK? f6K: oKt % § il

29



Table 3-3. CONTINUED Loop-filter Constants for Typical Implementations
in the Continuous-update Approximation

Standard underdamped:

Loop constants

K,

n? = -1, A\; =1, for all roots

Conventional parameters

1°t Order 4 B.T
2"¢ Order gBLT
374 Order g—gBLT

4%* Order %‘}BLT

r k a
(1/ex2) (aar?) (cear?)
2
9 3
4 8

1 1
2 3 8

€9



~ Table 3-4. Loop Bandwidth from Loop Constants for Discrete-update Loops with
Phase and Phase-Rate Feedback and No Computation Delay

1°t order
_ K
BiT = 55K,
274 grder
_ 2K} +2K; + K1 K,
BT = 2K, (4 — 2K, - K;)
38rd order
BT = 4K2K; — 4K 1 K3 + 4K2 + 2K1 K2 + 4K2 K3 + 4K, Ks + 3K 1 K2 K3 + K3 + K1 K2
L 2(K1 K2 — K3 + K1K3)(8 — 4K, — 2K2 — K3)
4t* order

20K, K3K, — 8K4 + 6K1K2K3 + 2K§' + 14K12K3K4 + 14K K3 Ky + 4K1K2 K4 - 10K1K4 + 11K1K2K3K4+

(8K Ksz - 8K1K3 - 8K K+ 8K K3 —8K KK, — 8K3K, + 4K1K Kg + 8Kl Ks + 8K2K3 +4K KoK, + 8K2K4
ByT = 2K, K3 + s»m{4 + 71{3}{4 + 6K K2 + 5K\ K3K, + 5K 1 Ko K2 + 4K3KL+ 4K KK + K + K K

)

2(K1K2K3 - Ka K1K4 + K]Ks + K1 KoKq —2K3K, + 2K1 Ks K — K4 + KxK )(16 8K, —4K2 ~ 2K3 — Ky)

¥9



Table 3-5. Loop Filter Constants for a Discrete-update Loop with Phase
and Phase-rate Feedback and Supercritically-damped Response

No computation delay

1st order 2nd order 8rd order 4th order
BLT Kl K1 i Kz Kl K2 Ks Kl Kz K3 K4
0.001 0.003992 0.003193 2.553e-06 0.002903 2.812e-06 9.084e-10 0.002747 2.833e-06 1.299¢-09 2.234e-13
0.005 0.01980 0.01582 6.309¢-05 0.01438 6.941e-05 1.118¢-07 0.01361 6.988e-05 1.597e-07 1.369e-10
0.01 0.03922 0.03130 0.0002488 0.02845 0.0002733 8.778¢-07 0.02692 0.000275 1.251e-06 2.138e-09
0.02 0.07692 0.06125 0.0009677 0.05567 0.001060 6.765¢-06 0.05269 0.001065 9.617e-06 3.265e-08

0.03 0.1132 0.08993 0.002118 0.08174 0.002312 2.220e-05 0.07738 0.002321 0.0000312 1.578e-07
0.05 0.1818 0.1438 0.005576 0.1307 0.00605 9.485e-05  0.1237 0.006059 0.0001337 1.113e-06
0.075  0.2609 0.2051 0.01176 0.1864 0.01267 0.0002936 0.1766 0.01265 0.0004113 5.055e-06
0.1 0.3333 0.2607 0.01965 0.2369 0.02101 0.0006405 0.2245 0.02094 0.0008915 1.439e-05
0.15 0.4615 0.3572 0.03931 0.3248 0.04147 0.001847 0.3080 0.04113 0.002540 5.978e-05
0.2 0.5714 0.4379 0.06264 0.3983 0.06523 0.00378 0.3780 0.06443 0.005139 0.0001570
0.25 0.6667 0.5061 0.08835 0.4606 0.09089 0.006432 0.4375 0.08942 0.008652 0.0003222
0.3 0.7500 0.5643 0.1155 0.5139 0.1175 0.00976 0.4885 0.1152 0.01300 0.0005671
0.35 0.8235 0.6142 0.1436 0.5598 0.1444 0.01371 0.56327 0.1411 0.01808 0.0008996
0.4 0.8889 0.6575 0.1720 0.5998 0.1712 0.01821 0.5712 0.1668 0.02380 0.001325
0.45 0.9474 0.6952 0.2006 0.6348 0.1977 0.02321 0.6050 0.1920 0.03006 0.001844
0.5 1.0 0.7282 0.2291 0.6657 0.2235 0.02864 0.6349 0.2166 0.03679 0.002459
0.6 0.7828 0.2851 0.7173 0.2732 0.04059 0.6852 0.2634 0.05133 0.003967
0.7 0.8257 0.3394 0.7585 0.3196 0.05371 0.7258 0.3069 0.06692 0.005832
0.8 0.8599 0.3915 0.7920 0.3629 0.06769 0.7590 0.3471 0.08318 0.008026
0.9 0.8874 0.4414 0.8196 0.4030 0.0823 0.7865 0.3842 0.09983 0.01052
1. 0.9096 0.4890 0.8426 0.4402 0.09735 0.8097 0.4184 0.1167 0.01328
1.2 0.9425 0.5779 0.8782 0.5065 0.1283 0.8462 0.4790 0.1503 0.01951
1.4 0.9645 0.6588 0.9042 0.5636 0.1597 0.8734 0.5308 0.1832 0.02650
1.6 0.9793 0.7328 0.9237 0.6130 0.191 0.8942 0.5754 0.2151 0.03410

1.8 0.9889 0.8006 0.9386 0.6559 0.222 0.9106 0.6141 0.2457 0.04216
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Table 3-5. CONTINUED Loop Filter Constants for a Discrete-update Loop with Phase
and Phase-rate Feedback and Supercritically-damped Response

No computation delay

2. 0.9950 0.8631 0.9502 0.6935 0.2525 0.9236 0.6479 0.2749 0.05058
2.5 1.0 1.0 0.9697 0.7689 0.3258 0.9466 0.7158 0.3419 0.07270
3. 0.9811 0.8248 0.3947 0.9612 0.7667 0.4011 0.09566
3.5 0.9881 0.8672 0.4591 0.9710 0.8058 0.4533 0.1189
4. 0.9925 0.8997 0.5194 0.9778 0.8366 0.4996 0.1422
4.5 0.9953 0.9248 0.576 0.9827 0.8613 0.5409 0.1652
5. 0.9971 0.9444 0.6291 0.9864 0.8814 0.5779 0.1879

Computation delay = 1 update interval

1st order 2nd order 3rd order 4th order

B.T K, K, K, K, K, K K, K, Ks K,

0.001  0.003976 0.003181 2.538e-06  0.002892 2.796e-06 9.015e-10  0.002737 2.816e-06 1.288e-09 2.211e.13
0.005 0.01942 0.01554 6.135e-05 0.01414 6.749e-05 1.077e-07 0.01339 6.795e-05 1.537e-07 1.306e-10
0.01 0.03779 0.03023 0.0002357 0.02752 0.0002588 8.165¢-07 0.02606 0.0002604 1.163e-06 1.952e-09
0.02 0.07177 0.05734 0.0008737 0.05224 0.0009552 5.897¢-06  0.04951 0.0009599 8.364e-06 2.745e-08

0.03 0.1027 0.08185 0.001832 0.07461 0.001993 1.809e-05 0.07076 0.002000 2.554e-05 1.231e-07
0.05 0.1571 0.1245 0.004476  0.1136  0.00482 7.032¢e-05 0.1078 0.004819 9.836e-05 7.611e-07
0.075  0.2148 0.1685 0.008742 0.15638  0.009282 0.0001955 0.1462 0.009237 0.0002700 3.007e-06
0.1 0.2046 0.01371 0.1869  0.01433 0.0003895 0.1778 0.01420 0.0005309 7.609e-06
0.15 0.2594 0.02487 0.2377  0.02515 0.0009724 0.2265 0.02467 0.001289 2.610e-05
0.2 E 0.2740  0.03595 0.001784 10.2618 0.03495 0.002295 5.906e-05
0.25 . 0.3000  0.04617 0.002793  0.2878 0.04452 0.003473 0.0001076
0.3 0.3071 0.05316 0.004765 0.0001722

0.35 0.3211 0.06074 0.006129 0.0002543
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Table 3-6. Loop Filter Constants for a Discrete-update Loop with Phase

No computation delay

B,T
0.001
0.005
0.01
0.02
0.03

0.05
0.075
0.1
0.15
0.2

0.25
0.3
0.35
0.4
0.45

0.5
0.6
0.7
0.8
0.9

1.

1.2
14
1.6
1.8

and Phase-rate Feedback and Standard-underdamped Response

1st order 2nd order 3rd order 4th order
0.003992 0.002661 3.545e-06 0.002603 3.016e-06 1.311e-09 0.002367 2.804e-06 1.661e-09 4.923¢-13
0.01980 0.01319 8.752¢-05 0.01290 7.437e-05 1.611e-07 0.01173 6.907e-05 2.037e-07 3.008e-10
0.03922 0.02609 0.0003448 0.02552 0.0002926 1.264e-06 0.02321 0.0002716 1.594e-068 4.693e-09
0.07692 0.05106 0.001338 0.04996 0.001133 9.720e-06 0.04545 0.001051 1.222¢-05 7.147e-08
0.1132 0.07499 0.002922 0.07338 0.002469 3.156e-05 0.06679 0.002289 3.955e-05 8.447¢-07
0.1818 0.1199 0.007658 0.1174  0.006445 0.0001355 0.1070 0.005966 0.0001687 2.420e-06
0.2609 0.1713 0.01807 0.1677 0.01345 0.0004177 0.1530 0.01243 0.0005159 1.093e-05
0.3333 0.2179 0.02670 0.2133 0.02226 0.0009073 0.1949 0.02054 0.001112 3.096e-05
0.4615 0.2991 0.05288 0.2929 0.04370 0.002595 0.2683 0.04022 0.003136 0.0001273
0.5714 0.3675 0.08345 0.3599 0.06842 0.005269 0.3305 0.06282 0.006285 0.0003313
0.6667 0.4258 0.1168 0.4171 0.09491 0.008901 0.3838 0.08697 0.01049 0.0006738
0.7500 0.4760 0.1511 0.4662 0.1222 0.01341 0.4299 0.1118 0.01562 0.001176
0.8235 0.5196 0.1862 0.5089 0.1496 0.01871 0.4701 0.1367 0.02156 0.001851
0.8889 0.5577 0.2213 0.5463 0.1768 0.02470 0.5056 0.1618 0.02817 0.00270S
0.9474 0.5914 0.2561 0.5793 0.2034 0.03129 0.5370 0.1853 0.03534 0.003738
0.6214 0.2902 0.6085 0.2294 0.03838 0.5650 0.2087 0.04296 0.00495
0.6721 0.3560 0.6580 0.2788 0.05381 0.6128 0.2532 0.05920 0.007884
0.7134 0.4181 0.6983 0.3247 0.07047 0.6521 0.2944 0.07632 0.01145
0.7475 0.4763 0.7318 0.3671 0.08796 0.6848 0.3325 0.0939 0.01558
0.7762 0.5306 0.7593 0.4061 0.1060 0.7124 0.3675 0.1116 0.02021
0.8007 0.5813 0.7829 0.4421 0.1243 0.7360 0.3997 0.1293 0.02527
0.8399 0.6727 0.8205 0.5059 0.1612 0.7748 0.4569 0.1639 0.03644
0.8699 0.7524 0.8490 0.5603 0.1979 0.8038 0.5058 0.1971 0.04869
0.8936 0.8223 0.8713 0.6072 0.2337 0.8272 0.5479 0.2286 0.06171
0.9127 0.8839 0.8891 0.6478 0.2684 0.8461 0.5846 0.2582 0.07525
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Table 3-6. CONTINUED Loop Filter Constants for a Discrete-update Loop with Phase
and Phase-rate Feedback and Standard-underdamped Response

No computation delay

2. 0.9286 0.938§ 0.9035 0.6832  0.3019 0.8618 0.6167  0.2860 0.08913
2.5 0.9587 1.051 0.9297 0.7544  0.3802 0.8910 0.6817 0.3482 0.1245
3. 0.9827 1.134 0.9470 0.8076  0.4510 0.9111 0.7310  0.4013 0.1599
3.5 0.9592 0.8485  0.5151 0.9256 0.7695 0.4470  0.1945
4. 0.0680  0.8805 0.5785 0.9366 0.8004  0.4867  0.2281
4.5 0.9747 0.9061  0.6269° 0.9452 0.8256  0.5213 0.2605
S. 0.9798 0.9267 0.6760 0.9520 0.8465  0.5519  0.2917

Computation delay = 1 update interval

1at order 2nd order 3rd order 4th order
BT Ky K, K, K Ka K, K, K, K K,
0.001 0.003976 0.00285 3.516e-06 0.002594 2.997¢-06 1.299¢-09 0.002358 2.784e-06 1.645e-09 4.859e-13
0.005 0.01942 0.01299 8.487e¢-05 0.01270 7.229¢-05 1.549¢-07 0.01155 6.717e-05 1.959¢-07 2.862¢-10
0.01 0.03779 0.02533 0.0003248 0.02474 0.0002769 1.170e-06  0.02252 0.0002573 1.478e-06 4.259«-09
0.02 0.07177 0.04827 0.001194 0.04709 0.001019 8.391e-06 0.04293 0.0009475 1.058e-05 5.935e-08

0.03  0.1027 0.06919 0.002479  0.06739 0.002121 2.554e-05 0.061564 0.001971 38.210d-05 2.636e-07
005  0.1571 0.1060  0.005937 0.1030 0.005094 9.769e-05 0.09425 0.004732 0.0001220 1.594¢-06
0.075  0.2148 0.1448 0.01130  0.1401 0.009726 0.0002657 0.1285  0.009020 0.0003292 6.120¢-06
0.1 0.1775 0.01725  0.1709 0.01489 0.000518 0.1571  0.01379 0.0006363 1.503¢-05
0.15 0.2300 0.02063  0.2198 0.02572 0.001236 0.2021  0.02372 0.001494 4.860d-05
0.2 . 0.2713  0.04155  0.255¢ 0.03630 0.002167 0.2360  0.03335 0.002579 0.0001037
0.25 . 0.3071 0.05222  0.2833 0.04616 0.003232 0.2622  0.04227 0.003795 0.0001781
0.3 - 0.3055 0.05518 0.004373 0.2832  0.05037 0.005075 0.0002685
0.35 0.3242 0.06338 0.005530 0.3002 0.05766 0.006374 0.0003710
0.4 ~  0.3143  0.06420 0.007664 0.0004821

0.45 0.3263 0.07006 0.008927 0.0005986
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Table 3-7. Loop Filter Constants as Power Series in B, T in the Case of Phase and
Phase-rate Feedback and No Computation Delay

Supercritically damped:

n? =0, X = 1, for all roots

K, ag = % as = ’II"(:? ay = %
1°* Order 4B.T —8(B,T)?+ 16(B.T)®
2"? Order 8B,T - £28(BLT)? + 4£282(B. T)® 1428, 7 13(B.T)?
3¢ Order %B"T 1331 (BI'T)2 + 1&9‘%_%2(3“1')3 %"' %B“T - %%(BLT)’ 21 + 291BLT+ 323433(BLT)2 g
4** Order S9BLT - Yossr (BLT)* + Sosossscos (BLT)® 3§+ 8B.T - BEH(BLT) 16+ siBLT+ ses115(BLT)? ge5 + a5 BLT + sesnis(BLT)?
Standard underdamped: 9n? = —1, X = 1, for all roots
K, ag = ;—((l} as = -klgl} ay = %
1°t Order 4B.T - 8(B.LT)?+16(B.T)*
2" Order $B,T - 19(B,T)? + 1834(B,T)* 4+ 3BT - §(B.T)
34 Order 33B.T - [5309(BLT)? + 20 (BLT)? +19p, T - £2800(B, T)? Z + A0BLT + J0(BLT)

4" Order %B.T-

10683

100352 (BLT)Q + 163092096 (BLT)S

1+ 4B.T - 2B, T)?

14348007 6561

8+ 37BuT — {5gss(BLT)?

ait+ 19BuT + &5 (BLT)



Supercritically damped:

Table 3-8. Loop Filter Constants as Power Series in B, T in the Case of Phase and
Phase-rate Feedback and Computation Delay of One Update Interval

n? =0, X = 1, for all roots

K,
1°t Order 4B.T —24(B.T)? + 208(B.T)*
2~ Order 18B,T- 2%(B,T)? 4 4312%¢(p, T)°
3¢ Order $2B.T- S1013(B,T)® + 442441424(p, T)°
th
4** Order %QBLT - ’2-16—8:1-1-13‘,2(B[,T)2 + W(BLT)S
Standard underdamped: 5? = —1, A; = 1, for all roots
K,
1** Order 4B,T - 24(B.T)? + 208(B.T)*
nd
27° Order  sp,T- 128(B,T)? + 2SB(B,T)*
d
3" Order  9p,T - 13800(p, T)? 4 £12110000(B, T)?
4t* Order

%BLT 6561 (B’-T)a“' us;:;zs (B"T)3

K. = K = K
= = gy =
as R? as R? _I_(?
} + %BLT - l-%%(B;,T)’
$+ 3598 T - Giant (BuT)? ar + 507 BLT + wrstn (BLT) 3
3+ 89BLT - S (BLT)? RBLT + 5353 (BLT) ats + 31 BLT + 575 (BLT)?
K. - K = K
a = as = 2% aq = 4
K K %

L+38.7 - B(BLT)

50p T M(BLTP

021 085627

1+ 2B, T- 13084 (B, T)?

362600
’221' + %%%B’-T'*' 9:5221(BLT)2

1 +4B,T- 1583(B,T)?

&t BT~ %(BLT)Q



Table 4-1. Transient-free Initialization of DPLLs
Based on APrior:t Information

For a loop filter specified by update interval T', computation delay n. update intervals, constants K,
Ka, ..., Kn and input signal phase known in the form ¢(t) = ¢n+¢$‘l)(t—tn) +...+ ﬁ(ﬁs‘N)(t —t)N
at time t,, loop sums and loop model phase ¢, » are intialized at the end of the “phantom” nt®
interval as indicated.

1°t Order
Sas = vt
2"¢ Order
6das = L4
S shi= (T + o — K164..)
=1
374 Order
600 = Fo e
.Z: b= T - Kabou)

DD bki= (T + LoD + T4 Kibgu— K3 Y 640)

=1

TL



Table 4-1. CONTINUED Transient-free Initialization of DPLLs
Based on APrior: Information

4** Order
4

6¢aa = %¢$¢4)

n=n, 4

Y 6¢i= 2 (T8 — Lol - Ka4.4)

t=1

n-n, ¢ 4 n-ng

DD 8bi= (T - Lol ~ Kab4u - Ks Y 640)

=1 5=1 =1

nn, ¢ J 2 3 n-n, n-n, 1

2023 6tn =gy + Trol® + Tool® + Lol - Kibgu— Ko Y 66~ Ks 3. Y 645)

t=1 j=1 k=1 =1 t=1 y=1
For all orders:

bmm = Pn — 6Pasy Atan extractor
™| #n — Aresin(2m §¢,,)/2x,  Sin extractor

L
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METHOD OF IMPLEMENTING DIGITAL PHASE-LOCKED LOOPS
ABSTRACT OF THE DISCLOSURE

In a new formulation for digital phase-locked loops,
loop-filter constants are determined from loop roots
that can each be selectively placed in the s-plane on
the basis of a new set of parameters, each with simple
and direct physical meaning in terms of loop noise
bandwidth, root-specific decay rate, or root-specific
damping. Loops of first to fourth order are treated in
the continuous-update approximation (B;T +0) and in a
discrete-update formulation with arbitrary B, T.
Deficiencies of the continuous-update approximation in
large-BT applications are avoided in the new discrete-
update formulation. A new method for direct,
transient-free acquisition with third- and fourth-order
loops can improve the versatility and reliability of

acquisition with such loops.
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