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Disk arrays are a cost-effective approach for building large, reliable and high per-

formance storage subsystems. They provide high transfer rates by striping data over

multiple disks and use a parity scheme for recovering from any single disk failure. Trans-

action processing is a large and growing segment of commercial computing. There is a

major need in that environment for large, highly available and fast I/O subsystems.

In this thesis, we address various issues dealing with the use of disk arrays in trans-

action processing environments. We look at the problem of transaction undo recovery

and propose a scheme for using the redundancy in disk arrays to support undo recovery.

The scheme uses twin page storage for the parity information in the array. It speeds up

transaction processing by eliminating the need for undo logging for most transactions.

The use of redundant arrays of distributed disks to provide recovery from disasters as well

as temporary site failures and disk crashes is also studied. We investigate the problem

of assigning the sites of a distributed storage system to redundant arrays in such a way

that the cost of maintaining the redundant parity information is minimized. Heuristic

algorithms for solving the site partitioning problem are proposed and their performance

is evaluated using simulation. We also develop a heuristic for which an upper bound on

the deviation from the optimal solution can be established.
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Another part of the thesis focuses on the performance of various disk array organi-

zations in transaction processing environments. Trace data from large scale commercial

transaction processing sites are used to evaluate and compare the performance of those

organizations. We investigate the use of a nonvolatile cache in the disk array controller

to reduce the effect of the high cost of small writes. For noncached systems, we eval-

uate two redundant disk array organizations and compare them to mirrored disks and

nonredundant, nonstriped organizations. For cached systems, we consider the above four

organizations as well as a disk array organization that uses a dedicated disk for parity

in each array and buffers parity updates in the controller cache before spooling them to

the parity disk.

iv



DEDICATION

Dedicated to my parents.

V



ACKNOWLEDGMENTS

I gratefully acknowledge the advice and guidance rendered by my co-advisors Profes-

sors W. Kent Fuchs and Daniel G. Saab during the course of my work at the University

of Illinois. I would also like to thank the members of my doctoral committee: Jane Liu,

Prithviraj Banerjee, and Wen-reel Hwu for their support and helpful advice.

I am grateful to Robert Horst, Jim Carley, Srikanth Shoroff, Robert van der Linden,

and Susan Whitford of Tandem Corporation for providing the TMF audit tapes and

for answering numerousquestions. Kumar Goswami helped with the CSIM simulation

package. His efforts are' greatly appreciated. I would like to express special thanks to

Professor Weiping Shi of the University of North Texas for his suggestions on the site

partitioning problem. Thanks are also due to Kent Treiber, Ted Messinger, Honesty

Young and Robert Morris of the IBM Almaden Research Center for providing the DB2

traces and for clarifying several issues. My sincere appreciation to A.L. Narasimha Reddy,

Arun Swami and Jai Menon, also from the IBM Almaden Research Center, for some very
m

useful discussions. I am especially grateful to Dr. Joseph Rahmeh for his support and

encouragement throughout my graduate studies.

My work at the Center for Reliable and High Performance Computing was supported

by NASA under Contract NAG 1-613 and by the Office of Naval Research under Grant

N00014-91-J-1283.

vi



I would also like to thank my friends Jalal Wehbeh,Bob Janssens,Paul Chen, Shyh-

kwei Chen,Neal Alewine, Yi-min Wang, NancyWarter, Kumar Goswami,Luke Young,

GwanChoi, AlokeGupta, Vicki McDaniel, Carolin RouseandSunitha Bellino for making

my experienceat CRHC a pleasantone.

vii



TABLE OF CONTENTS

CHAPTER
PAGE

INTRODUCTION ................................ 1

1.1 The I/O Bottleneck .............................. 1

1.2 Media Recovery ................................ 2

1.3 Redundant Disk Arrays ............................ 2
" ° ° • ° • • • , • • , ° ° • ° ° ° °1.3.1 Data striping ........... 2

1.3.2 Parity striping ............................. 4

1.4 Organization of the Thesis .......................... 5

2 RECOVERY ISSUES IN DATABASES USING REDUNDANT DISK

ARRAYS ..................................... 6

2.1 Introduction .................................. 6

2.2 Recovery Techniques ............................. 7

2.3 RDA-Based Recovery ............................. 9

2.3.1 General description of the approach ................. 9

2.3.2 Twin page management ....................... 13

2.3.3 Recovery from system failure .................... 15

2.4 Performance Analysis ............................. 16

2.4.1 Evaluation of the probability of logging ............... 20

2.4.2 Page logging .............................. 21

2.4.3 Record logging ............................ 29

2.5 Experimental Evaluation of FORCE, TOCAlgorithms .......... 34

2.6 Conclusions .................................. 38

3 SITE PARTITIONING FOR DISTRIBUTED REDUNDANT DISK

ARRAYS ..................................... 40

3.1 Introduction .................................. 40

3.2 Distributed Redundant Disk Array Organization ............. 42

3.3 The Model ................................... 43

3.4 Approximation Algorithms .......................... 46

3.4.1 Description of the heuristics ..................... 46

3.4.2 Experimental evaluation ....................... 49

3.5 Heuristics with Performance Guarantees .................. 52
3.5.1 Balanced load and uniform edge weights .............. 52

3.5.2 Balanced load and arbitrary edge weights .............. 55

3.6 Generalization of the Model ......................... 59

3.6.1 Nonuniform load within site ..................... 59

.°.

Vlll



3.7

3.8

3.6.2 Nonuniform site capacity .................... • . . . 61

3.6.3 Disaster recovery in OLTP systems ................. 63

Applying the Algorithms ........................... 65

Summary ................................... 66

4 PERFORMANCE OF REDUNDANT DISK ARRAY ORGANIZATIONS

IN TRANSACTION PROCESSING ENVIRONMENTS ....... 67

4.1 Introduction .................................. 67

4.2 Workload and System Model ......................... 70

4.3 Experiments ....... ........................... 77

4.3.1 Synchronization ............................ 78
784.3.2 Uncached arrays ...........................

4.3.3 Performance of cached organizations ................ 89

4.3.4 Parity caching ............................. 96

4.4 Conclusions .................................. 105

5 CONCLUSIONS ................................ 108

REFERENCES .................................. 111

VITA ........................................ 1 l 5

ix



LIST OF TABLES

Table

2.1 Disk parameters ........................... .......

3.1 Comparison between approximate solutions and the optimal solution .....

4.1 Disk and channel parameters ...........................

4.2 Trace characteristics ................................

4.3 Disk array organizations ..............................

4.4 Default parameters .................................

Page

36

5O

71

71

73

78

X



LIST OF FIGURES

Figure Page

1.1 RAID5 with four disks ............................... 3

1.2 RAID4 with four disks ............................... 4

1.3 Parity striping of disk arrays ........................... 5

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

State transition diagram of a page parity group ................. 11

Data striping organization with the twin page scheme for the parity ...... 12

Parity striping organization with the twin page scheme for the parity ..... 12

The contents of a page parity group ....................... 13

Algorithm Current_Parity determines the current parity page ........ 14

State transition diagram of the twin parity pages ................ 15

Results for ",ATOMIC, STEAL, FORCE, TOC. ................ 25

Results for "-,ATOMIC, STEAL, -',FORCE, ACC. ............... 29

Results for --,ATOMIC, STEAL, FORCE, TOC, in the case of record logging. 31

Results for -',ATOMIC, STEAL, --,FORCE, ACC, in the case of record logging. 33

Benefit of RDA recovery as a function of the number of pages referenced by

a transaction .................................... 35

Empirical results for FORCE, TOC algorithms with page logging ....... 372.12

3.1 Organization of a distributed redundant disk array (N = 6) .......... 43

3.2 Alternative placement pattern for parity and spare blocks ........... 44

3.3 Comparison between the three heuristics ..................... 51

3.4 Evaluation of the heuristics for the refined model ................ 62

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

Response time for different synchronization methods vs. array size ...... 79

Response time vs. array size ........................... 80

Distribution of accesses to disks in the Base organization (Trace 1) ...... 83

Distribution of accesses to disks in the RAID5 organization (Trace 1) ..... 84

Response time vs. striping unit for RAID5 .................. 86

Comparison of parity placements for parity striping ............... 88

Response time vs. trace speed .......................... 90

Hit ratio vs. cache size .............................. 92

Response time vs. cache size ........................... 93

Response time vs. array size for cached organizations .............. 95

Response time vs. striping unit for RAID5 with cache ............. 97

Hit ratio with parity caching vs. cache size .... " .............. 99

Response time vs. cache size .......................... . . 99

Respons e time vs. array size ........................... 101

xi



4.15 Responsetime vs. trace speed................ " 102
4.16 Responsetime vs. striping unit .......................... 103
4.17 Responsetime vs. destageperiod......................... 104

xii



CHAPTER 1

INTRODUCTION

1.1 The I/O Bottleneck

Processor speeds have been improving by almost a factor of two every year. Memory

densities have been doubling every two years. Memory access speeds have also been

improving rapidly. Disks, however, have moving parts. Their access speeds have not

kept pace with improvements in processor and memory technologies. Seek times have

only improved by about 7% a year [I]. This mismatch between processor/memory speeds

and disk speeds has created a bottleneck for most applications. The CPU-I/O gap is

expected to widen in the future and affect even more applications. Another important

trend is the significant decrease in small disk prices due to the high volumes in the PC

market. The above trends have led to the development of disk array systems.

Striped disk arrays have Deen proposed and implemented for increasing the transfer

bandwidth in high performance I/0 subsystems [2-5]. In order to allow the use of a

large number of disks in such arrays without compromising the reliability of the I/O

subsystem, redundancy is included in the form of parity information [6].



1.2 Media Recovery

Reliable storage is a necessary feature in transaction processing systems requiring

high availability. Media failure in such systems is traditionally dealt with by periodically

generating archive copies of the database and by logging updates to the database per-

formed by committed transactions between archive copies into a redo log file. When a

media failure occurs, the database is reconstructed from the last copy and the log file

is used to apply all updates performed by transactions that committed after the last

copy was generated. In such a case, a media failure causes significant downtime and the

overhead for recovery is quite high. For large systems, e.g., with over 150 disks, the mean

time to failure (MTTF) of the permanent storage subsystem can be less than 28 days. 1

Mirrored disks have been employed to provide rapid media recovery [7]. However, disk

mirroring incurs a 100% storage overhead which is prohibitive in many cases. Redundant

disk array organizations [6, 8] provide an alternative for maintaining reliable storage. 2

1.3 Redundant Disk Arrays

1.3.1 Data striping

Patterson et al. [6] have presented several possible organizations for Redundant Ar-

rays of Inexpensive Disks (RAID). One interesting organization for transaction processing

environments is RAID with rotated parity (RAID5) in which blocks of data are inter-

IAssuming an MTTF of 100,000 hours for each disk.
2However, even when disk mirroring or redundant disk arrays are used, archiving and redo logging

may still be necessary to protect the database against operator errors or system software design errors.

2
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Figure 1.1 RAID5 with four disks.

leaved across N disks while the parity of the N blocks is written on the (N -t- 1)st disk.

The parity is rotated over the set of disks in order to avoid contention on the parity

disk. Figure 1.1 shows the data and parity layout in a RAID5 organization with four

disks. This pattern is repeated for the next set of blocks. An important parameter in the

RAID5 organization is the striping unit, which can be defined as the "maximum amount

of logically contiguous data stored on a single disk" [9].

The RAID5 organization allows both large (full stripe) concurrent accesses or small

(individual disk) accesses. For a small write access, the data block is read from the

relevant disk and modified. To compute the new parity, the old parity has to be read,

XORed with the new data and XORed with the old data. Then the new data and new

parity can be written back to the corresponding disks.

The RAID4 organization shown in Figure 1.2 is similar to the RAID5 organization

except for the fact that the parity for the N data disks is written on one parity disk. One

disadvantage of the RAID4 organization is that the parity disk may become a bottleneck.

The RAID4 organization becomes attractive when a nonvolatile cache is used in which

case parity blocks can be cached and written asynchronously to the parity disk. This

will be discussed further in Chapter 4.

3
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Figure 1.2 RAID4 with four disks.

Parity striping

Gray et al. [8] studied ways of using an architecture such as RAID in transaction

processing systems. They argued that because of the nature of I/O requests in OLTP

systems, namely, a large number of small accesses, it is not convenient to have several

disks servicing the same request. In other words, since in transaction processing systems

I/O time is dominated by seek time and rotational latencies rather than by transfer

time, it is not advantageous to have a request spread over multiple disks because that

will make all those disks spend a significant amount of time seeking and rotating in order

to decrease an already small transfer time. Hence, the organization shown in Figure 1.3

was proposed. The shading in the figure indicates the areas that belong to the same

parity group. It is referred to as parity striping, which consists of reserving an area for

parity on each disk and writing data sequentially on eac_h disk without interleaving. For

a group of N + 1 disks, each disk is divided into N + 1 areas; one of these areas on

each disk is reserved for parity and the other areas contain data. N data areas from N

different disks are grouped together in a parity group and their parity is written on the

parity area of the (N + 1)st disk.

4
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Figure 1.3 Parity striping of disk arrays.

Organization of the Thesis

The rest of this thesis is organized as follows. In Chapter 2 we propose a technique

for using disk arrays to support transaction UNDO recovery in database s_stems. A de-

tailed analytical model is developed to evaluate the performance of the proposed scheme

and describe some simulations results that validate our findings. Chapter 3 deals with

issues involved in using a disk array scheme in a distributed setting to provide for dis-

aster recovery as well as recovery from disk crashes and temporary site failures. We

investigate the problem of partitioning the sites of a geographically distributed storage

system into redundant arrays in such a way that the cost of the communication needed

to update the remote parity information is minimized..Several heuristic algorithms for

solving this NP-hard problem are proposed and their performance is evaluated. In Chap-

ter 4, the performance of redundant disk array organizations in transaction processing

environments is studied. The RAID5 and parity striping organizations are compared to

mirrored disks and nonredundant, nonstriped disk subsystems. We also study the use of

nonvolatile caches for buffering data and parity in order to reduce the effect of the small

write penalty. Finally, Chapter 5 contains our conclusions.



CHAPTER 2

RECOVERY ISSUES IN DATABASES USING

REDUNDANT DISK ARRAYS

2.1 Introduction

In a database system, rapid recovery may be necessary for restoring the database to

a consistent state after a failure. Several types of failures can occur. The most typical

are transaction aborts which can be due to program errors, deadlocks, or can be user

initiated. When a transaction aborts, the recovery manager has to restore all database

pages modified by the transaction to their previous states. The second type of failure

is a system crash. In this case system tables maintained in main memory are lost. The

recovery mechanism has to UNDO all updates made to the database by transactions that

were active when the crash occurred and to REDO modifications performed by complete

transactions and not yet reflected in the database at the time of the crash.

In this chapter, we present a technique that exploits the redundancy in disk arrays to

support recovery from transaction and system failures in addition to providing fast media

recovery. This is achieved by using a twin page scheme for storing the parity information

making it possible to keep the old version of the parity along with the new version. The

old version of the parity is used to undo updates performed by aborted transactions or

6



by transactions interrupted by a system failure. The proposedschemeworks for both

the RAID5 or Parity Striping disk array organizations.

In Sections2.2and 1.3webriefly reviewseveraltechniquesfor transaction recoveryin

databasesystems. In Section2.3, wepresentour databaserecoveryscheme.The results

of our performanceanalysis are detailed in Section 2.4. Finally, in Section 2.4.3.2, we

shbw somesimulation results using data from a real application. Section 2.6 presents

someconclusions.

2.2 Recovery Techniques

Recovery algorithms typically use some form of logging or shadowing. In the logging

approach [10], before a new version (after-image) of a record or page is written to the

database, a copy of the old version (before-image) is placed into a sequential log file. If

a transaction aborts or the system crashes, the log file is analyzed and the state of the

database is restored. In the shadowing approach, the update of a page is placed into a

new physical page on disk [11, 12]. The physical pages containing the old versions are

released after all updates of the committing transaction have been written to disk. One

problem with the shadowing approach is dynamic mapping since it requires maintaining

a very large page table which leads to high I/O overhead during normal processing.

Another problem is the disk scrambling effect which decreases the sequentiality of disk

accesses.

7



In describing and in analyzing our method, we will use the following taxonomy of

database recovery algorithms introduced by Haerder and Reuter [13]. They classify

recoveryalgorithms with respectto the following four concepts:

Propagation 1 of updates. The propagation strategy can be ATOMIC in which

case any set of updated pages can be propagated to the database in one atomic action.

In the ",ATOMIC case, propagation of updates can be interrupted by a system crash and

database pages are updated-in-place.

Page replacement. Two policies can be used: the STEAL policy allows pages

modified by uncommitted transactions to be propagated to the database before end-of-

transaction (EOT); the opposite policy is referred to as -STEAL. No UNDO recovery is

necessary with a --,STEAL policy.

EOT processing. Two categories exist: the FORCE discipline requires all pages

modified by a transaction to be propagated before EOT; the opposite discipline is called

FOR CE.

Checkpointing Schemes. Checkpointing is used to propagate updates to the

database in order to minimize the number of REDO recovery actions to be performed

after a crash. In the Transaction Oriented Checkpointing (TOC) scheme, a checkpoint

is generated at the end of each transaction. This is equivalent to using the FORCE

discipline in EOT-processing. Two other types of checkpoints can be used: Transaction

Consistent Checkpoints (TCC) are generated during quiescent periods where no transac-

t Propagation to the database means that the new version is visible to higher level software. Updates
can be written to disk without being propagated (e.g., shadowing).

8



tions arebeing processed,Action ConsistentCheckpoints(ACC) are lessrestrictive and

require that no update statementsareprocessedduring checkpointgeneration.

2.3 RDA-Based Recovery

In the remainder of this chapter, we consider an I/0 subsystem that is a collection

of redundant disk arrays. The organization of the arrays is either parity striping or data

striping (RAID with rotated parity). In the case of data striping, we assume that a large

striping unit is used to ensure that I/O requests will typically be serviced by a single

data disk. We also make the following assumptions: Communication between the main

memory and the I/O subsystem is performed using fixed-size pages; Database pages are

updated in place which implies that propagation is -ATOMIC; A STEAL policy is used,

thus allowing modified pages to be propagated before COT.

2.3.1 General description of the approach

The RDA-based recovery scheme makes use of the parity information present in the

disk arrays to undo updates performed by aborted transactions. However, the parity is

not sufficient by itself to undo all updates performed by an aborted transaction. Updates

that cannot be undone using the parity are dealt with using one of the traditional recovery

schemes.

A page parity group is the set of pages that share the same parity page. In the

following, unless there is ambiguity, we will use the term parity group to denote a page



parity group. A parity group can be in one of two states: clean or dirty. A parity

group is dirty when one of its data pages has been modified by a transaction and the

modified version has been written back to the database before the transaction modifying

it commits (using the notation of Haerder and Reuter, the page has been stolen from the

buffer). Otherwise, the parity group is called clean. Only one modified data page per

parity group can be written back to the database by uncommitted transactions without

UNDO logging. If additional pages in the parity group have been modified and have to

be written back to the database, then their before-images must be logged first. A dirty

parity group goes back to the clean state when the transaction that caused it to become

dirty commits. Figure 2.1 shows the state transition diagram of a parity group. A table

in main memory contains the numbers of all parity groups that are in the dirty state. It

also contains the number of the data page within the group that caused the group to be

in the dirty state and the number of the parity page holding the updated parity. Only

log N bits have to be used to store the data page number and one bit for the parity page

number. The table is used to check whether a page updated by an active transaction can

be written back to disk without UNDO logging,

When a transaction updates a page, that page can be written back to the database

without UNDO logging if its parity group is clean or if its parity group is dirty and

the update is for the same page that caused the group to move into the dirty state,

i.e., the same page has been updated, stolen from the buffer then rereferenced by the

10



Transaction T modifies page Di and Di is

written back to the database before EOT

d ty

T rereferences Di,

modifies it and Di

is written back to

the database

before EOT

Transaction T commits

Figure 2.1 State transition diagram of a page parity group.

same transaction, updated and stolen again from the buffer before EOT. 2 Note that this

does not affect the degree of concurrency or interfere with the locking policy used in the

system. We do not specify when a transaction can or cannot modify a page. We only

specify when a modified page can be written back to disk without UNDO logging.

If a single parity page is used, then when a group becomes dirty, the old parity

information has to be kept in the parity page to be able to recover in case of a transaction

failure. That would mean that when the transaction commits, the new parity has to be

recomputed in order to update the parity page. That would require reading all of the

data pages in the group in order to compute the new parity. To avoid that problem, a

twin page scheme is used for the parity pages. The basic mechanism of the twin page

scheme is as follows: one of the parity pages always contains the valid parity of the group

while the other page contains obsolete parity information. When a data page is modified

in a parity group, the obsolete parity page (P for example) is updated with the new parity

2Normally such an event should not occur often since buffer management algorithms are not supposed

to replace a page that will be referenced again in the near future.

11
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Figure 2.3 Parity striping organization with the twin page scheme for the parity.

of the array. If the transaction performing the update commits, then the modified parity

page (P) becomes the valid parity page; otherwise, the other parity page (P') remains the

valid parity page and its contents are used to recover the data page that was modified

by the failed transaction. Figures 2.2 and 2.3 show the data striping organization and

the parity striping organization when the twin page scheme is used for the parity. Twin

parity pages are denoted Px" and Px _ in the data striping case and Pzy and Pz¢, with

z = (z + 1)mod(N + 2), in the parity striping case. Figure 2.4 shows the contents of a

parity group including the twin parity pages. To recover the old version of a data page

after a transaction abort, it is sufficient to XOR the contents of both parity pages and

the new data page: Dol d = (P _ P_) $ Dnew. When a parity group is dirty because

one of its data pages Di has been stolen from the buffer and another page Dj has to be

12



Do D1 D_:-1 P P-'

Figure 2.4 The contents of a page parity group.

written to disk, UNDO logging must be performed for Di 3 then both parity pages P and

P' have to be updated, since when the group is dirty, it is necessary to maintain a current

parity page reflecting the actual parity of the data on disk and an "old" parity page that

would be used to recover the uncommitted data page D_ in case of a transaction abort.

In all cases, when writing a data page to disk the corresponding parity page(s) must be

updated first.

2.3.2 Twin page management

The twin parity pages are stored on different disks. This is required for the purpose

of enabling the system to recover from transaction aborts following a disk failure. To

identify which of the twin parity pages contains the valid parity information, a timestamp

is stored in the page header. The page with the highest timestamp contains the valid

parity information. When an update is undone after a transaction or system failure, the

timestamp of the current parity page is reset to 0. Algorithm Current_Parity shown

in Figure 2.5 selects the current parity page. When a data page is updated, both parity

pages are read and one of them is selected for modification. Then the parity is computed

and the modified parity page is written back to disk. To avoid reading both parity pages,

a bit map can be maintained in main memory indicating the current parity page for each

3The before-image of the page in the case of page logging or of the modified record(s) in the case of

record logging must be written to a log file.
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Current_Parity(pg)

begin

Read twin parity pages in parity group pg;

if Timestamp(P) > Timestamp(P') then

Current_Parity _ P;

else

Current.Parity _ P';

end

Figure 2.5 Algorithm Current_.Parity determines the current parity page.

of the parity groups in the database. However, such a bit map may not survive a system

crash. Hence followinga crash that destroys the map, algorithm Current_Parity will

have to be used to identifythe current parity page and to reconstruct the bit map. In

this case, two bits would have to be used in the bit map for each parity group to code

the three possiblestates:parity page P isthe current parity page, parity page P' isthe

current parity page or the information isnot availableand algorithm Current_Parity

has to be used. Following a system crash, a background process that runs during idle

periods of the system can be initiatedto reconstruct the bit map.

Each of the twin parity pages can be in one of four states: committed, obsolete,

working or invalid [14]. A parity page is committed when it contains the last committed

parity update. It is obsolete when it contains old committed parity information. It is

in the working state when it has been updated by an active transaction, and it is in the

invalid state if the last transaction updating it has aborted. Figure 2.6 shows the state

transition diagram of the twin parity pages.
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2.3.3

PO PI_ PO PI

C: committed; O: obsolete; I: invalid; W: working

Figure 2.6 State transition diagram of the twin parity pages.

Recovery from system failure

Following a system crash, we have to identify the transactions which have to be

backed out and the pages which have been modified on disk by those transactions. A

Begin-Of-Transaction (BOT) record has to be written to a log file after the transaction

begins and before it writes back any modified pages to disk, and an EOT record must

be written to the log file when the transaction commits. Modified database pages for

which UNDO logging has been performed can be recovered by reading their before-images

from the log. Modified database pages for which UNDO logging has not been performed

can be recovered using the parity pages. However, information on these pages which

have been written to the database without UNDO logging has to be saved in permanent

storage. To solve this problem, a technique similar to l;he one used in TWIST [15] can

be employed. In TWIST, a twin page scheme is used to store all database pages, no

15



before-imagelogging is performed and the sameproblem of identifying which pagesto

undo after a crashis encountered.The solution makesuseof a log chain which consistsof

pointers stored in the pageheadersthat link together pagesmodified by the sameactive

transaction. In our case,only modified pageswritten back to the databasebeforeEOT

without UNDO loggingwill be part of the tog chain. The head of the chain though has to

be logged along with the transaction id. I/0 operations to maintain the log chain can be

hidden behind regular I/O requests and do not significantly affect system performance.

2.4 Performance Analysis

To evaluate the benefit of R,DA-recovery, an analytical model is developed to evaluate

transaction throughput for different algorithms. Since the cost of maintaining parity

information in a system with redundant disk arrays is relatively high, we do not advocate

the use of RDAs solely for the purpose of supporting transaction and crash recoveries.

The benefit of using RDA recovery in a system that already needs RDAs for the purpose

of rapid media recovery is examined. This is done by comparing the throughput of

systems using traditional recovery algorithms and redundant disk arrays to systems with

the same recovery algorithms in combination with RDA recovery. Both page and record

logging are considered and, in each case, we examine two different recovery algorithms

and evaluate the improvement achieved by adding RDA recovery to them. As far as

storage is concerned, the extra cost involved in using RDA recovery is that of the twin

page scheme for the parity which is (100/N)% of the initial data storage cost.
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RDA recovery reduces the amount of UNDO logging and, hence, is appropriate for sys-

tems using update-in-place, which implies -_ATOMIC propagation and a STEAL policy

for page replacement. We therefore restrict ourselves to the analysis of such algorithms.

Within this class of algorithms, we examine both the FORCE and -,FORCE strategies

for EOT-processing. For algorithms of the type ",ATOMIC, STEAL, FORCE, only a

TOC checkpointing policy can be used. For algorithms of the type -,ATOMIC, STEAL,

-,FORCE, both AgCor TCCcheckpoints could be used; however, algorithms using ACC

checkpointing were shown to outperform those using the Tggtype [16]. 4 Hence, we only

look at the former type of checkpointing.

We use the same basic model as the one introduced by Reuter in his evaluation of the

performance of several database recovery techniques [16]. We assume that the system is

I/O bound and therefore we look only at the number of I/O requests required to perform

a given operation. We also assume that the system is running continuously with no

periodic shutdown. This implies that all cleanup activities required by the algorithm are

accounted for in the cost calculations instead of assuming that they are performed by

some background process or during shutdown periods.

The workload considered consists of a set of P transactions executing concurrently in

the system. Transactions are of two types: update or retrieval. The fraction of update

transactions is f=. Each transaction accesses s database pages. The fraction of accessed

pages that are modified by an update transaction is p=. To characterize the behavior

4Also TCC checkpointing contradicts our assumption of a continuously running system since it re-
quires the establishment of a quiescent point where no update transactions are present in the system.
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of the database buffer, we use the communality C which denotes the probability that a

page requested by an incoming transaction is present in the buffer. The number of page

frames in the buffer is denoted by B. It is assumed that the buffer is sufficiently large so

that once a transaction has referenced a page, the page will remain in the buffer until it

is no longer needed by the transaction, s

The cost of recovery after a system crash is denoted by c, and is measured by the

number of page transfers between main memory and the disk subsystem required to

perform recovery. The cost of executing a transaction is denoted by ct. The transaction

throughput rt is defined as the number of transactions processed during an availability

interval. An availability interval T is the period between two system crashes. Since all

cost measures are evaluated in terms of number of I/0 operations, we assume that the

availability interval is measured in units of page transfers. 6

If checkpointing is used, then the length of a checkpointing interval is denoted by I and

is also measured in units of page transfers. The cost of generating a checkpoint is denoted

by co. Assuming that the crash occurs in the middle of a checkpointing interval, the

number of page transfers available for processing transactions in an availability interval

is T - c, " cc((T - c, - 1/2)/1). Hence the throughput is given by

,-,= ((r- +

SThe page could still be replaced before the transaction commits if a STEAL policy is used; however
if it is replaced it will not be rereferenced by the transaction.

length of availability interval in seconds
6Mathematically, T can be defined as follows: T = time to transfer a page to/from disk in seconds
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We assume that cc is independent of I. Hence the optimal checkpointing interval can

be easily derived from the following equation [16]:

"di "=(1/c') dI 1-cc/I)+(T-c')(c_/I2) =0. (2.1)

Let c, denote the cost of updating a .retrieval transaction and c_ that of an update

transaction. Then c_ can be expressed as follows:

c,= (1 - f,_)c.,.-i-f,,c,,,

where c_ itself includes two components: the cost of reading pages that are not found

in the database buffer and the cost of writing back the replaced pages if they have been

modified. Hence,

c, = s(1 - C) + as(1 - C)p_, (2.2)

where p,_ denotes the probability that the replaced page was modified and c_ denotes the

number of page transfers necessary to perform one write to the disk array, a is equal

to 3 or 4 depending on whether or not the old data page is in the buffer at the time of

writing the new data. For c_ we have two additional components which represent the

cost of logging the transaction (c_) and the cost of backing out the transaction (cb) in the

case where an abort occurs. Hence,

c,, = s(1 - C) + c_s(1 - C)p_ + cz + pbcb, (2.3)

where pb denotes the probability of an abort.
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2.4.1 Evaluation of the probability of logging

We consider a set of K pages that have been modified by active transactions and

compute the expected value of the size of the subset of pages that can be written back

to the database without UNDO logging. N is the number of data pages in a parity

group and S is the total number of data pages in the database. The K pages are

assumed to be randomly chosen from the S pages in the database. Note that by using

data striping (RAID) with a large striping unit or parity striping, any sequentiality in

database accesses will act in favor of our scheme by distributing the pages accessed over

distinct parity groups.

The parity groups in the database are numbered from 1 to S/N. Let Xi, 1 < i < S/N,

be the random variable whose value is i if one of the K pages is a member of parity group

i, and 0, otherwise. Let X be the random variable denoting the number of parity groups

that contain all K pages. X is also the number of pages that can be directly written

back to the database since one page per parity group can be written back. We have

S/N

X=F_.X,.
_=1

Since the K pages are assumed to be randomly chosen, each parity group has the same

probability of being accessed by those K page references. Hence the Xi's are identically

distributed. Therefore, the expected value of Z is E[X] = _is/_ E[X/] = sE[X1]. Since

Xt is a Bernoulli random variable, E[X,] = Pr(X, = 1) and E[X] = s(1 - Pr(Z_ = 0)),

(which can be written: E[X] = s 1- (s) /. Hence if K modified, "uncommitted"
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pagesare to be written to the database,the probability of having to log one of those

pagesis given by

p, = I - E[XI/K = 1- S 1

2.4.2

2.4.2.1

Page logging

Algorithm of the type "-,ATOMIC, STEAL, FORCE, TOC

With the FORCE discipline, the checkpoint is taken at the end of each transaction.

The cost of checkpointing is therefore accounted for in the cost of logging. In the model,

we set cc = 0. Given our assumption that pages are not rereferenced by the calling

transaction after they have been replaced in the buffer, the cost of writing and logging

a page will be the same whether the page is stolen from the buffer before transaction

commit or whether it stays in the buffer until EOT and is then logged and written to the

database. Hence we will account for all of the costs involved in logging the pages and

writing them back to the database as part of the cost of logging. \This allows us to set
n

p,_ = 0 in the expressions for c, and c_. The expression for ct is

cl = 3 x sp,_ + 4 x (2sp_,) + 4 x 4.

The first term is the cost of writing the pages back to the database. Each write to the

disk array costs three I/O operations since, with the FORCE discipline, the old data are

kept in the buffer until EOT for the purpose of UNDO logging. The second term is the
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cost of writing to the UNDO and REDO log files. REDO information is neededonly

in the casewhere an operator error or a systemsoftwareerror damagesmore than one

disk in the disk array. The log files arestoredseparatelywhich makesreading the log to

backout aborted transactions lesscostly. The last term in the expressionof cz is the cost

of writing BOT and EOT records to each of the log files.

The probability of having to log a page with RDA recovery is dependent on the

number K of pages written back to the database by incomplete transactions. We assume

that when a transaction writes back a page to the database before committing, the other

concurrent transactions are halfway through writing their own modified pages. Therefore,

K is equal to half the total number of pages modified by concurrent update transactions.

Hence the probability of logging is given by Equation (2.4) in which K is replaced with r

Psf_,p,,/2. With RDA recovery, the formula for the cost of logging becomes

c_ = (3 + 2pt)sp,, + 4(sp,_ + sp,,pt + 4) + 4(pt - PT"").

The major difference with cz is that UNDO logging has to be performed only when the

parity group is dirty, i.e., with probability pt. The term 2pt is added to 3 to account for

the fact that when writing to _ dirty parity group both parity pages have to be updated, s

The last term in the expression of dt denotes the cost of writing the log chain header to

the log. The header is normally written along with the BOT record in the same page

except when the first page written by the transaction to the database has to be logged

and not all pages updated by the transaction have to be logged.

rPage logging implies the use of page locking; hence, the sets of pages modified by concurrent update
transactions are disjoint.

8We assume that log file pages and data pages are not mixed in the same parity groups.
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To evaluate cb we assume that a transaction aborts in the middle of processing its

pages and that the other concurrent update transactions have also logged half their

modified pages. The UNDO log has to be read up to the BOT record of the aborting

transaction.

c_ = (p_s/2)(Pf_) + P£ + 4(p_s/2) + 4.

The first term is the number of before-images that have to be read from the log. The

second term is the number of BOT/EOT records to be read. The third term is the

number of page transfers to and from the database to undo the modifications performed

by the aborting transaction and the last term accounts for the writing of a rollback

record. With R.DA recovery the above formula becomes

c_ = (p_pts/2)P f_ + (pt - p_P')P f_ + P f_ + (p_s/2)(6pt + 5(1 - p,)) + 4.

In the first term the number of logged before-images to be read is now multiplied by

pt. The second term is the expected number of log chain headers to be read from the

log. The other major difference is in the fourth term. It is due to the fact that, when

recovering a page that has been logged, up to six I/O operations might be necessary

since its parity group may still be dirty. 9 On the other hand, if the page has been written

to the database without being logged, it is necessary to read both parity pages in its

parity group and the "new" data page and then overwrite the database page with the

old data and modify the state of the parity page from working to invalid by resetting the

timestamp in its header. Hence five I/O operations will be necessary in the latter case.

9In this instance and in other instances in the evaluation, we use an upper bound for the costs involved

in R,DA recovery in order to keep things simple. This will lead to a conservative estimate of the benefit

of our method.
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After a systemcrash,only UNDO recoveryhas to be_performed.Hencethe formula

for cs contains the cost of reading the UNDO log file up to the BOT record of the

oldest transaction alive at the time of the crash and then overwriting the modifications.

The work of the oldest transaction alive overlapped with the work of some committed

transactions; therefore, the log records for half of the work of about 2P f,, transactions

have to be read. Hence, the expressions for c, and d, are

c, = P f_(sp,, + 2) + 4(P.f.p_,s/2)

c', = PL(sp,,pt + 2(p,- p_") + 2) + Pf_(p,,s/2)(4pt + 5(1 - pt)) + S/N.

The term S/N is an upper bound for the cost of reconstructing the bit map for the

current parity page.

We evaluate the algorithms in two different environments depending on the frequency

of update transactions. Figure 2.7 shows the throughput 1° as a function of the commu-

nality C in a system with high update frequency and in a system with high retrieval

frequency. As expected, the improvement in throughput using RDA recovery is much

more significant in the high update frequency environment. For the latter environment

and for C = 0.9, the increase in throughput is about 47%. For the different cost mea-

sures, the relative change in cost is as follows: for the cost of transaction processing (ct)

-30%, for the cost of transaction backout (cb) -34%, and for the cost of recovery from

system crash (c,) -16%. The reduction in the cost of transaction processing is mainly due

to the fact that almost all updated pages can be written back to the database without

l°For clarity, we plot rt/1000.
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Figure 2.7 Results for --,ATOMIC, STEAL, FORCE, TOC.

logging. The reduction in the cost of transaction backout is due to the fact that fewer

pages have to be read from the log to get to the BOT record of the aborted transaction.

The reduction in the cost of recovery from system crash is also due to the fact that less

pages have to be read from the log to recover the aborted transactions. Most of the

values for the different parameters of the model were taken from [16]. These values are

B= 5000, S=5 x 106 , N = 10, P = 100, pb =0.01 andT =5.107 . For the high up-

date frequency environment, s = 10, f_ = 0.8 and p_, = 0.9, while for the high retrieval

frequency environment, s = 40, f_ = 0.1 and p_ = 0.3.

2.4.2.2 Algorithm of the type --,ATOMIC, STEAL, --,FORCE, ACC

In this case, at EOT, before- and after-images of modified pages are written to the

log but the modified pages are not written back to the database. They remain in the
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buffer until they are replaced.REDO recoveryhasto beperformed after a systemcrash

and ACC checkpointing is used to reduce the amount of REDO during crash recovery.

First, we have to evaluate p_. To do so, we have to compute the number of trans-

actions that successively reference a page during its life in the database buffer. If we

look at the stream of references to a page by successive transactions, we can see that

with probability C the page is referenced when it is in the buffer, and with probability

1 - C, it is referenced when it is not in the buffer. Hence, the number of references to

the page during its life in the buffer follows a geometric distribution with parameter C

which implies that the average number of references to the page while it is in the buffer is

1/(1 -C). Since the probability of a page being modified by a transaction that references

it is f_,p,,, the probability of a replaced page being modified during its life in the buffer

is 11

p,,,-- I - (I - f_p,):/(:-c).

The cost of logging is simply the cost of writing before- and after-images of modified

pages and the BOT/EOT records to the log:

cz = 4(2sp_ + 2).

With RDA recovery, pages that have been stolen from the buffer before EOT do not

have to have their before-images logged. Therefore, we have to evaluate the probability

ps for a page being stolen. The number of references that could cause a given page to be

stolen is (1 -C)s(P- 1), and the probability that any one of those references causes the

lithe same equation for p,,_ was derived in [16] using a slightly different argument.
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replacementof the pageis I/(B - Cs). Hence the formula forp, is

( 1 ) (1-c)_(v-1)p_=l- I B-Cs

In the formula for pt, the value of K is Psf,,p,,ps/2. The before-image of a modified

page will not be logged with probability ps(1 - pz). Hence the cost of logging with RDA

recovery is

c_= 4(_p_+ _p_(1- p,(1 - p,)) + 2)+ 4(v,- p_s,_,.1).

For the cost of backing out a transaction, one difference with the FORCE scheme is

that the log file contains both before- and after-images which will be read until the BOT

record of the aborting transaction is found. Another difference is that, with probability

C, the modified pages to be undone are still in the buffer. Hence,

cs = 2 × (p,,s/2)(Pf,,) + Pf,, + 4p,(s/2)(1 - C) + 4.

With RDA recovery, the cost of transaction backout becomes

c_ = 2 x (p_.s/2)(P£) + Pf. + P£(p_ - p/,V.p.]) + p_(s/2)((4 + 2pl)(1 - C)(1 - ps)

+6pspt + 5p,(1 - p_)) + 4.

The costs of performing a checkpoint for -,RDA and for RDA are given by

cc ----4(Bp,_ + 2),

< = (4 + 2p,)(Bp_ + 2).

To evaluate the cost of recovery after a crash, we assume that a crash occurs in the

middle of a checkpoint interval. All transactions executed since the last checkpoint have
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to be redone. Let rc denote the number of transactions executed during a checkpoint

interval, rc is given by rc = I/c, and the expression for c, is

= + 4sp ) + P/ (cz/4 + 4(s/2)p - 1).

The -1 term corresponds to the EOT record which is accounted for in ct/4 but is not

read. The cost of recovery from a crash with the RDA recovery technique is

cp, = (r'c/2)f,(c_/4 + 4sp,) + Pf,(c_/4 + (s/2)p,, (4(1 - p,) + 4p, pt + 5p,(1 - pt)) - 1) + S/N.

The value of the optimal checkpointing interval I is obtained by plugging the expression

for c, in Equation (2.1), which yields

I = (2c, c¢(T - Pf,(c_ + 4(s/2)p,) - Pf_)/(f_(cl + 4sp_)))l/2.

The formula for I in the case of RDA recovery is derived in a similar fashion. The value

of a in the expressions of c, and c_ is 4 for ",RDA and 4 + 2pl for RDA because with

the ",FORCE discipline, when replacement takes place, the old version of the data is not

available any more in the buffer.

Figure 2.8 shows the results for both environments. It can be seen that the improve-

ment is not significant in this case. However, the interesting result is that while with-

out RDA recovery, the -,FORCE, ACC type algorithm outperforms the FORCE, TOC

scheme; when RDA recovery is used, the situation is reversed and the latter algorithm

outperforms the former by a significant margin.
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Figure 2.8 Results for --,ATOMIC, STEAL, --,FORCE, ACC.

I

1.0

2.4.3 Record logging

In this section we look at recovery algorithms in which only modified records are

logged. The unit of transfer between main memory and secondary storage is still a

page; however, when logging is performed, logged records are encapsulated into pages

and then written to the log file. Some additional parameters of the system have to be

introduced for the analysis of record logging: d denotes the number of update statements

per transaction; r denotes the average length (in bytes) of a long log entry such as a data

record; e denotes the average length of a short log entry such as a table entry; Ibc denotes

the length of the BOT and EOT records; lp denotes the length of a physical page; and

lh denotes the length of a log chain header. The values for the first five parameters are

taken from [16]. These values are d = 3 for high update frequency environments and

d = 8 for low update frequency environments, r = 100, e - 10, Ibc = 16 and lp = 2020.

The value for lh was set to 4. Assuming that each update statement causes one long log
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entry and that s > d, the average length of a log entry can be derived [16]:

L = (dr + (s - _)e)ls.

2.4.3.1 Algorithm of the type -,ATOMIC, STEAL, FORCE, TOC

With record logging, the locking granule can be less than a page. We assume that

record locking is used in order to enhance concurrency. This implies that the total number

of pages modified by a given set of P concurrent transactions is not the same as for the

above algorithms for which page locking was assumed. We will denote this number by

su. An expression for s_ is derived in the following.

Let S (k) deno_;e the number of pages in the buffer updated by k update transactions.

Since there are Pf_ update transactions executing concurrently in the system, we have

s_ = S (Plu). If we number the P f,, update transaction from 1 to Pf_, in the order of their

entry in the system, then when the kth update transaction enters the system, it will find

Csp_, of the sp_ pages it has to modify already in the buffer. We make the assumption

that out of those pages, Csp_, x S(k-l)/B belong to the k - 1 update transaction already

executing in the system, t2 Hence, we have the following recurrence equation:

S (k) - S (k-l) = sp_,(1 - CS(k-1)/B).

Using S O) = spu, we obtain s_ = S (PI_) =ca-(1 - (1 -- Capu/B)PI").

The value of K in the expression of pt is sJ2. We assume that group commit is

used so that log records from different transactions can be grouped in the same page

t2Update transactions can share pages because record logging is used instead of page logging.
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Results for --,ATOMIC, STEAL, FORCE, TOC, in the case of record log-

and written to the log. The derivations of the cost equations are similar to those in

Section 2.4.2.1. We simply list the equations without detailed explanation.

cz = 3sp_, + 4 × 2(2/bc + sp,,(Ibc + L))/Ip

c'l = (3 + 2pt)sp,, + 4(2/bc + sp_,(Ibc + L))/l v -4-4(2/b_ + sp_,(Ibc + L)pt + (Ibc + lh)(pl --

cb -- Pfu(Ibc -4- spt,(lbc A- L)/2)/Ip + 4(p,,s/2) + 4

c_ = Pf_,(lb_ + sp_,(Ibc + L)p,/2 + (lbc + lh)(pt -- p;_'"))/Ip + (p_,s/2)(6pt + 5(1 -- Pt)) + 4

c, = PA(2lbc + sp,,(Ibc + L))/l,, + 4Pf_(p_s/2)

c', = PL(21b_ + sp_,(lb_ + L)p, + 2(lb_ + l_)(p, -- p_7"))-/Ip + (Pf_p,,s/2)(4p, + 5(1 - p_))

Figure 2.9 shows the throughput for the FORCE, TOC type of algorithms with and

without RDA recovery as a function of the communality in the buffer for the case of

record logging.
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2.4.3.2 Algorithm of the type --,ATOMIC, STEAL, --,FORCE, ACC

The cost equations for this case can be derived using the results of Sections 2.4.2.2

and 2.4.3.1. The value of K in the expression for pl is s,,ps/2.

ct = 4(2/bc+ sp,,(16c+ 2L))/lp
c_ = 4(2Ibc+ sp,,(tbc+ L(2 - ps(1 - pt))) + (lb¢+ lh)(p, - p[*l'"P°]))/lp
cb = PA(cd8) + 4p,,(s/2)(1 - C) + 4
_ = Pf_(_',/8) + p_(_/2)((4 + 2p_)(1- C)(1 - p,) + 6p_W+ 5p_(l - V,)) + 4

_' = (,'o/2)f_,(_/4 + 4_W)+ Pf,,(_',/4 + p_(_/2)(_p,(1 - p,) + 4(1 - W(1 - P_)))/-

!The equations for c¢ and c_ are the same as in Section 2.4.2.2. The equations for c_

and c,, have to be modified to account for the extra cost involved in logging modified

records in pages stolen from the buffer before EOT. The modified record of a stolen page

has to be written to the log before the page can be replaced. Let p_ denote the proportion

of replaced pages modified by uncommitted transactions. We have p_ = s_/(B - Cs),

where s_ is the number of pages in the buffer modified by the concurrently executing

transactions as seen by an irlcoming transaction, s: is obtained by replacing P with

" theP - 1 in the expression for s_. This gives the following equations for c_ and c_,

equations for c_ and c'_ are obtained in a similar fashion:

= s(1 - c) + 4_(1- c)(p_ + 2v,)
4 = s(1 - c) + 4s(1 - C)(p._+ 2pip,).
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Figure 2.10 shows the throughput for the ",FORCE, ACCtype of algorithms with and

without RDA recovery as a function of the communality in the buffer for both evaluation

environments. Unlike the page logging case, ',FORCE, ACC scheme performs much

better than the FORCE, TOCscheme for the range of values of C encountered in typical

applications [17]. Also, for the _FORCE, ACC algorithm, the increase in throughput

achieved by using RDA recovery is higher than for the same algorithm with page logging.

This is the case because, with record logging, the cost of logging the updates of a stolen

page is high relatively to the cost of logging nonstolen pages and RDA recovery reduces

that cost by eliminating the need for logging in most cases. For example, for the high

update frequency environment and for C = 0.9, the increase in throughput is about 15%.

The relative change in the various cost measures is as follows: for the cost of transaction

processing (ct) -14%, for the cost of transaction backout (cb) +1%, and for the cost of
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recovery from systemcrash (c_) +7%. For the cost of checkpointing (co), the relative

change is almost nil.

The decreasein the cost of transaction processingis mainly a result of not having to

forcethe log block to disk whena pageis stolenfrom the buffer. The increasein the cost

of transaction backout is due to the fact that the savingsresulting from reading fewer

pagesfrom the log to obtain to the BOT record becomemuch smaller in the caseof

record logging, becauselog information is moredensewhile the extra overheadinvolved

in reading the parity pagesto recoverunloggedpagesremainsthe sameasin the caseof

pagelogging. The overall effect is a net increasein the cost of transaction backout. The

increasein the cost of recovery from system crashcan also be attributed to the same

reasons.The cost of checkpointingincreases,becausewhenwriting a modified pageto a

dirty parity group, the old versionmust be logged. However,the probability of logging

is very closeto zero. Hencethe increasein checkpointingcost is negligible.

The benefit of RDA recoveryincreaseswith the amount of work performed by each

transaction. Figure 2.11 showsthe percent increasein throughput achieved by RDA

recovery as a function of the number of pagesaccessedby each transaction (s) for the

high update frequencyenvironmentwith C = 0.9.

2.5 Experimental Evaluation of FORCE, TOC Algo-

rithms

We have conducted some experiments to corroborate the findings of our analytical

model. We have used data from an operational OLTP system, namely a Tandem NonStop
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Figure 2.11 Benefit of RDA recovery as a function of the number of pages referenced

by a transaction.

system. The data were extracted from log files generated by the Transaction Monitoring

Facility (TMF)[18] during normal system operation. The log entries contained transac-

tion status information, before and after images of modified data, names of accessed files

and disks as well as timing information. Using the log entries, we constructed a trace of

update accesses performed by each transaction before it commits or aborts.

Using these data, we simulated the behavior of the database buffer, the recovery

algorithm and the I/O subsystem. As in the analytic_al model, we assumed that the

system was I/O bound; hence, we ignored cpu processing times and accounted only for

the cost of performing I/O. However, in the simulations, we did not simply count the

number of I/O operations performed, but rather we simulated the execution of the I/O

requests in the disk array. We have simulated a parity striping organization. Since the

data did not contain any multiblock references, we expect the performance of a data

striping organization to be similar to that of parity striping. The disk parameters used
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Table 2.1

max. latency

Disk parameters.
16.6 ms

max. seek 47 ms

tracks per platter 1260

sectors per track 52

bytes per sector 512

number of platters 15

in the simulations are shown in Table 2.1. The database accessed in our trace resided on

five disks. We assumed that the log file is stored on a separate disk array.

The data available to us did not include any read access information. Thus it was not

possible to use it to evaluate -,FORCE, ACC algorithms because, for these algorithms,

the improvement afforded by RDA recovery is dependent on the frequency of replace-

ment of modified pages and, hence, requires a detailed simulation of the buffer behavior.

Without a trace of read accesses, we could not obtain reliable simulation results for those

algorithms. However, for FORCE, TOC algorithms, page replacement does not affect the

cost of recovery operations as much as in the "-,FORCE, ACC case. Therefore, we were

able to use the available data to obtain simulation results for such algorithms. Since our

analytical model did not show much promise for RDA recovery in the case of FORCE,

TOC algorithms with record logging, we concentrated instead on page logging. We did

not simulate recovery from system crash since none occurred in the interval during which

the data were collected. Hence, the throughput rt of the system was taken to be the

reciprocal of the average cost per transaction ct which was measured as the total cost

(disk usage time) of executing the I/O requests in the disk array system divided by the
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number of transactions. Figure 2.12 shows the measured throughput 13 of FORCE, TOC

algorithms with and without RDA recovery in the case of page logging as a function of

the number (B) of frames in the buffer.

An LRU buffer replacement policy was assumed. The hit ratio ranged from 77% for

B = 50 to 97% for B = 200. The improvement in throughput decreases from 39% for

B = 50 to 28% for B = 100 and then increases slowly as B increases to reach about 30%

for B = 200. The reason for the decrease in the first part of the curve is that for small
o

values of B, some pages in the buffer are replaced more than once , which increases the

amount of logging in the ",RDA case. For B > 100, pages in the buffer are replaced

once at most, hence the amount of logging remains about constant as B increases while

the amount of I/O to the database continues to decrease. Hence, as B goes from 100 to

13For clarity, we multiplied the throughput values by a constant factor.
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200, the savingsdue to RDA recoverybecomemoresignificant relative to the overall I/O

cost.

2.6 Conclusions

In this chapter, we have presented a scheme that uses redundant disk arrays to achieve

rapid recovery from media failures in database systems and simultaneously provide sup-

port for recovery from transaction aborts and system crashes. The redundancy present in

the array is exploited to allow a large fraction of pages modified by active transactions to

be written to disk and updated in place without the need for undo logging thus reducing

the number of recovery actions performed by the recovery component. The method uses

a twin page scheme to store the parity information so that it can be efficiently used in

transaction undo recovery. The extra storage used is about (100/N)% of the size of the

database, N being the number of disks in the array.

We used a detailed analytical model to evaluate the benefit of our scheme in a sys-

tem equipped with redundant disk arrays. We found that, in the case of page logging,

a FORCE, TOC algorithm combined with RDA recovery significantly outperforms a

FORCE, TOC algorithm without RDA recovery as well as -,FORCE, A CC type of algo-

rithms. In the case of record logging, we found that a -,FORCE, ACCalgorithm performs

best and that the addition of RDA recovery to it improves significantly its performance

especially for transactions with a large number of updated pages. We also performed
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simulations using data from an operational OLTP systemto validate someof the results

of the analytical model.
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CHAPTER 3

SITE PARTITIONING FOR DISTRIBUTED

REDUNDANT DISK ARRAYS

3.1 Introduction

Redundant disk arrays can be used in a distributed setting to increase availability in

the presence of temporary site failures, disk failures, or major disasters. Stonebraker and

Schloss have proposed the Redundant Arrays of Distributed Disks (RADD) scheme [19]

as an alternative to multicopy schemes which are much more costly in terms of storage

requirements. Cabrera and Long [20] have proposed the use of redundant distributed disk

striping in a high speed local area network to support such I/0 intensive applications

as scientific visualization, image processing, and recording and play-back of color video.

The RADD concept can also be used in multicomputer I/0 subsystems such as the one

proposed by Reddy and Barmrjee [21] for hypercubes. The IDA approach proposed by

Rabin [22] provides another way to tolerate failures in distributed storage systems with

limited extra storage cost. However, in that approach, when a file or table is dispersed

over several sites and a portion of it is updated at a given site, the portions on the other

sites have to be read in order to recompute the encoding before they are all written back.
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In the case of RADD, when a block is updated, only one parity block has to be read and

updated.

When RADDs are used, sites are grouped together to form a redundant array con-

taining data and parity and capable of recovering from a single site failure. The size of

each array is fixed and is determined by the tradeoff between the availability require-

ments of the system and the cost of the storage overhead. Hence, a large distributed

data storage system may have to be divided among several arrays of fixed size. In this

chapter we look at the problem of partitioning the distributed storage systems into fixed

size arrays in such a way as to minimize the cost of remote accesses that have to be

performed to update the parity information. This problem is somewhat related to the

problem of file allocation and replica placement in a distributed system, which has been

studied extensively in the literature [23, 24]. However the two problems are different in

nature because, in the RADD case, there is one redundant item for N data items while

in the file allocation problem each file is replicated several times. More importantly in

the replica placement problem, there is no stringent constraint on the number of sites

"sharing" a replica because when the replica becomes dnavailable those sites can access

the second nearest replica while in the RADD case there is a hard constraint on the num-

ber of sites in an array. Note that the assignment of sites to redundant arrays (parity

groups) can occur after all decisions on placing the data have been made. Data placement

decisions are governed by a different set of criteria and are more influenced by the read

access patterns since reads are usually more frequent than updates. Decisions on site

assignment to redundant arrays are based on the update rate at each site and the cost
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of communication betweensites and are independentof the read accessrate.Changing

the assignmentof sites to redundant arraysdoesnot changethe placementof the data.

The purposeof site assignmentis to reducethe parity traffic and doesnot directly affect

the data traffic.

In the following section, we describe the RADD organization. In Section 3.3, we

present the model usedto formulate the problemmathematically and weprove that the

problem is NP-hard. In Section 3.4, heuristic algorithms for solving the problem are

describedand results from an experimental evaluation arepresented. In Section 3.5, we

develop heuristics with guaranteedbounds on the deviation from the optimal cost. In

Section 3.6, we addressthe issueof hot spots and nonuniform site capacity and discuss

the use of RADD for disaster recovery in OLTP systems. Finally, in Section 3.7, we

discussthe issueof when and howoften site reassignmentshould be initiated.

3.2 Distributed Redundant Disk Array Organization

The RADD organization is shown in Figure 3.1. The data at each site are partitioned

into blocks. Data blocks from different sites are grouped into a block parity group. The
o

bitwise parity of the data blocks in each parity group is computed and written at a

different site. In Figure 3.1, D_j denotes a data block, P_ denotes a parity block and S_

denotes a spare block, all at site i. The number under block in the first column of the

figure denotes the physical block number on disk. Each row in the figure represents a

parity group. The position of the parity block is rotated among the sites in order to avoid

creating a bottleneck at the site where parity is stored. For every update to one of the
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block Siteo Site1 Site2 Site3 Site4 Sites
0 Po $1 D2o D3o D4o Dso
1 Doo Pl $2 D31 D41 Dsl

2 Dol Dlo P2 Sz D42 Ds2

3 Do2 Dll D21 P3 S4 Ds3

4 Doz D12 D22 D32 P4 Ss

5 So D13 D23 D33 D43 Ps

Figure 3.1 Organization of a distributed redundant disk array (N = 6).

data blocks in the parity group, the parity block has to be updated using the following

formula:

Pnew = (Dol d • Dnew) q_ Pold"

Spare blocks are provided in order to be able to reconstruct data blocks that become

inaccessible due to a site failure. The failed data block is reconstructed by XORing all

other data blocks and the parity block in its parity group. If K denotes the number of

data blocks per parity group, then N = K+2 denotes the number of sites in a distributed

disk array. The storage overhead for the parity and spare blocks required by RADDs is

(200/K)% compared to a 100% overhead for the case of two copy schemes.

3.3 The Model

We model the distributed computing system by an undirected connected graph G =

(V, E) where V is the set of sites and each edge e E E represents a bidirectional commu-

nication link between two sites. For each e E E, we denotes the cost of communication

over link e. For e = (u, v), we could be the actual distance between site u and site v. We

assume that if n is the number of sites in V then rt = mN for some m. We will assume

that the site capacity is uniform. In Section 3.6.2 we show how to deal with nonuniform
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block Site0 Site1 Site2 Site3 Site4 Sites
6 P0 D14 $2 D34 D44 D54

7 Do4 P1 D24 $3 D4s D5s

8 Dos Dis P2 D3s $4 Dss

9 Dos Dis D2s Pz D4e Ss

10 So D17 D2s D3s P4 D57

Ii Do7 $I D2_ D37 D4_, Ps

Figure 3.2 Alternative placement pattern for parity and spare blocks.

site capacity. In the pattern shown in Figure 3.1, the parity blocks of the N - 2 data

blocks of site i reside on sites i + 1 mod N through /+ N-2 mod N. Therefore there is no

parity update traffic from site / to site / - 1 mod N. To make the problem symmetrical

and thus easier to tackle, we assume that for the next set of N blocks the pattern shown

in Figure 3.2 is used. In all, there are N - 1 such patterns obtained by changing the

distance between the parity block and the spare block on a given row. These N - 1

patterns should be alternated throughout the range of blocks so that update traffic from

a given site is distributed over the remaining N- 1 sites. This will also provide more

load balancing for the parity update traffic in the array.

Let /_. designate the rate of update accesses to data blocks at site v. Each update

will cause communication between the site where the update took place and the site

holding the parity for the given data block. At each site, the set of data blocks that have

their corresponding parity blocks on the same site is called a data group. To simplify

the model, we assume that the N - 1 data groups share equally the update rate. This

implies that the rate at which site v sends parity update information to each other site

in its redundant array is A. = #,,/(N - 1). This assumption is supported by the fact

that consecutive data blocks have their parity blocks on different sites which implies that
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accessesto a heavily usedfile that is stored on consecutivedisk blocks will be spread

over different data groups. In Section 3.6, the above assumption will be removed. The

problem of partitioning the sites into arrays of size N in such a way that parity update

costs are minimized can be mathematically formulated as follows:

Problem 1 (SP) Find a partition of V into m disjoint subsets V1, ½, ..., V,,, of size

N such that if d(u,v) denotes the length of the shortest path between u and v then

tit

E Z A,, Z d(u,v)is minimum.
i=1 uEVi vEVi-{u}

Theorem 1 Problem SP is NP-hard for any fized N > 3.

Proof: We prove that problem SP is NP-hard by showing that there is a polynomial

time transformation from the problem of partitioning a graph into cliques of size N to

problem SP. The Partition into Cliques of size N (PC) problem can be stated as follows:

Instance: A graph G = (V, E), with IWl= Nm for some positive integer m.

Problem: Is there a partition of V into m disjoint subsets 1/i, V2, ..., Vr, such that the

subgraph of G induced by V/is a clique of size N (complete graph with N nodes)?

Problem PC is NP-complete for any fixed N > 3 (see Partition into Isomorphic

Subgraphs [25]). To transforr]a an instance of PC into an instance of SP, it is sufficient

to set A,, = 1 for all v E V, and w, = 1 for all e E E. Then graph G can be partitioned

into cliques of size N if and only if the cost of the optimal solution to the above instance

of problem SP is n(N - 1). []

The cost function _ E A" _ d(u, v) can be rewritten as
i=l u_v, v_V_-{_}

m,_ IT&

_ (,I,, + ,I,,)d(u,v)= _ y_ D(u,v),
i=1 u,vEVi,u#v i=1 u,vEVi,u#v
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where D(u,v)is defined as D(u,v) = (_, + )_,)d(u,v). In this form the general problem

is reduced to a uniform load problem with the distance D replacing d. However, D is

not a true distance since it does not necessarily satisfy the triangular inequality.

3.4 Approximation Algorithms

3.4.1 Description of the heuristics

The first heuristic is based on a greedy strategy that consists of satisfying first the

sites with the largest update rate. Let A be the list of update rates for all sites. When

sites are grouped into clusters, their update rates are removed from A and replaced by a

single update rate for the cluster. The cluster update rate is the average update rate of

the sites in the cluster.

Algorithm 1:

Step I. Select the largest value in A and let a be the corresponding site (or cluster).

Find the site (or cluster) b such that merging a and b results in the smallest increase

in the cost function. Merge the two sites (or clusters)if the resulting cluster has less

than N sites and the total number of clusters does not exceed rn. If the clusters cannot

be merged, find the next best choice for b and repeat. Remove the update rates of the

merged sites (or clusters) from A and replace them with the cluster update rate.

Step 2. Repeat Step 1 until m clusters having N sites each have been formed.

The computational cost of Algorithm 1 is O(Nn2). But it requires that the all-pair

shortest path algorithm be performed first which requires O(n 3) operations.
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The secondapproachconsistsof two stages: in the first stage rn sites are identified

to be used as cluster seeds, and in the second stage, the remaining sites are allocated to

the clusters to form m subsets of N sites each.

Algorithm 2:

Step I. Select the two sites with the largest distance between each other and include

them in the set S of cluster seeds.

Step _. Select the site v with the largest average distance to the sites already in S and

add it to S.

Step 3. Repeat Step 2 above until IS[ = m. Each cluster initially contains one of the m

seeds in S.

Step 4. For each of the m clusters, compute the average update rate of the sites in the

cluster. In decreasing order of their average update rate, allocate to each cluster the site

that is closest to it in terms of the distance metric D.

Step 5. Repeat Step 4 above until all sites have been allocated to the rn clusters.

We use the distance metric D in Step 4 because it provides the actual increase in

the cost function of a cluster when a node is added to it. The computational cost of
m

the Algorithm 2 is O(Nn2). It also requires that the all-pair shortest path algorithm be

performed first.

The third approach is based on the hierarchical clustering technique [26]. We use

the distance matrix whose entries are d(u,v) for all u,v E V. Clusters are formed by

merging together sites or smaller clusters that are close to each other. When two sites

(or clusters) are grouped together, the distance matrix is modified by eliminating the
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columns and rows correspondingto the mergedsites (or clusters) and replacing them

with a singlecolumn anda single row reflectingthe averagedistancebetweenthe merged

sites and other sites (or clusters). The procedureis as follows:

Algorithm 3:

Step 1. Find the smallest entry in the distance matrix and merge the two sites (or

clusters) together if the resulting cluster has N sites or less and if the total number of

clusters does not exceed m. If any of the latter conditions is not satisfied, select the next

smallest entry and repeat. Once two sites (or clusters) have been merged, update the

distance matrix and the number of clusters accordingly.

Step 2. Repeat Step 1 above until rn clusters having N sites each have been formed.

The complexity of Algorithm 3 is O(n3).

After an initial partition has been found, the following procedure may be used to

improve it.

Procedure Improve:

Step 1. Select the site u with the highest update rate. For each site v outside site u's

partition, compute the change in cost AC(u, v) if u and v were swapped. Let v* be the

site corresponding to the minimum change in cost: AC(u, v') = min._v_ AC(u, v). If

AC(u, v') < 0, then swap u and v'.

Step 2. Repeat Step 1 for all sites in V in decreasing order of their update rate.

The complexity of the above procedure is O(n3). The procedure may be repeated

several times to improve the total cost. The procedure may also be repeated until a local

minimum of the cost function is reached. However, it is not guaranteed that such a local
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minimum will be reachedin finite time. The procedure can also be employed as the basic

move in meta-heuristics, such as simulated annealing [:27] or tabu search [:28] that avoid

getting trapped in a local minimum.

3.4.2 Experimental evaluation

We have conducted experiments to evaluate the approximate solutions obtained using

the heuristics and to compare the three proposed approaches for site assignment. In the

experiments, we used randomly generated graphs. The distance on each edge in the

graph was drawn from a uniform distribution over the interval [1,K_o]. The update rates

at each site were drawn from a uniform distribution over the interval [1,K_].

In our experiments we found that Algorithm 2 performs better when the distance D

is also used in the first stage of the algorithm. This can be explained by the fact that

using D in the generation of the cluster seeds ensures that edges with large D(u, v) will

not be used within a cluster, i.e., sites that have large loads and that are far apart are

not placed in the same cluster. The results shown here for Algorithm 2 were obtained

using D instead of d.
o

In the first experiment, we compare the approximate solution provided by the heuris-

tics to the optimal solution. The optimal solution was obtained using exhaustive search.

N was taken to be equal to 5 and n equal to 15. Table 3.1 shows the results for three

situations: one where the edge weights vary more widely than the site loads, one where

both are picked from the same interval and one where the site loads vary more widely

than the edge weights. Each entry represents the average over 100 randomly generated
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Table 3.1 Comparisonbetweenapproximate solutionsand the optimal solution.

1000,10
Random
68400

Algorithm 1
52439

Algorithm2 Algorithm3 Exhaustive
53462 52649 47475

I00, i00 66071 50012 51347 51237 45661

I0, i000 96757 76388 77361" 77062 70004

graphs. The costs of the approximate solutions are within 10% of the cost of the optimal

solution. In the first column of the table, we have listed the cost of a random solution.

Since, in the first experiment, an exhaustive search was used to find the optimal

solution, the number of nodes n could not be very large. In a second experiment, we

compared the performance of the three heuristics for larger values of n. Figure 3.3 shows

the results for the second experiment. For clarity of the figure, we plotted the cost of

the approximate solution divided by 1000. In the case N = 10, Algorithm 3 outperforms

Algorithms 1 and 2 for all values of n except when n = 20, in which case, Algorithm 2

performs better. For the first and second environments Algorithm 1 outperforms Al-

gorithm 2 for large values of n but for the last environment Algorithm 2 outperforms

Algorithm 1. For N = 5, Algorithm 2 does not do very well except in the last envi-

ronment in which the range of site loads is much larger than the range of edge weights.
o

Algorithm 3 performs best in the first two environments. The main point that can be

deduced from this experiment is that, in spite of the fact that Algorithm 3 does not use

any information about site loads, it outperforms the other two algorithms when n and N

are relatively large, and, in the other cases, its performance is always very close to that of

the best algorithm. This means that, in a large system, it is more important to minimize
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the sum of the edgeweights within each cluster than to use the greedy approach that

attempts to assign to the sites with large loads their nearest neighbors.

3.5 Heuristics with Performance Guarantees

The heuristics described in Section 3.4 provide in general a good approximate solution.

However, there is no guarantee that the approximate solution will not diverge significantly

from the optimal one in certain cases. In this section, we seek to find a heuristic for which

it is possible to establish a bound on the error between the approximate solution and the

optimal one. We develop such a heuristic first for the case of a system with balanced load,

_. = _, for all v E V, and uniform edge weights, then we look at the more general case

of a balanced load system with arbitrary edge weights. Since a problem with arbitrary

site loads can always be transformed into a problem with uniform site load as shown in

Section 3.3, then the heuristic for the balanced load case with arbitrary edge weights will

also provide performance guarantees for the arbitrary load case.

3.5.1 Balanced load and uniform edge weights

The heuristic requires the use of a spanning tree with many leaves. The problem of

finding a spanning tree with a maximum number of leaves is NP-hard [25]; however, poly-

nomial time algorithms exist for generating spanning trees with many leaves. Typically

these methods guarantee that a certain fraction of the nodes will be leaves. The fraction
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of leavesis a function of theminimum degreek of the graph. Kleitman and West proved

the following result [29]:

Theorem 2 (Kleitman-West) If k is sufficiently large, then there is an algorithm that

constructs a spanning tree with at least (1- bin k/k)n leaves in any graph with minimum

degree k, where b is any constant ezceeding 2.5.

It was also conjectured that a spanning tree can be constructed with a larger fraction

of leaves. More specifically, Linial conjectured that the number of leaves could be at least

k-2 2 and for k = 4 with
k---_n + ck. This stronger result was proved for k = 3 with c3 =

c4 = 8/5 [291.

Algorithm 4

Step I. Find a spanning tree with many leaves.

Step 2. Partition the spanning tree into m clusters of N nodes each using procedure

Partition_Tree described below.

The partition found for the tree will be used for the original graph. In the description

of the procedure Partition_Tree, we assume that the tree is levelized starting from the

root.

Procedure Partition_Tree:

The procedure partitions the tree from the bottom up. As the clusters are built,

whenever the size of a cluster reaches N nodes, that cluster is removed from the tree.

Starting from the deepest level in the tree, sibling leaves are placed together in a cluster.

If all siblings have been used, then their parent is included in the cluster. At an internal
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node v, all subtrees rooted at its siblings must be processed so that only less than N

nodes are left in each subtree. Those subtrees are numbered from 1 to d(v) - 1, d(v) being

the degree of v. Then the clusters are formed by adding to the nodes of subtree i enough

nodes from subtree i + 1 to make an N node cluster. If there are not enough nodes in

subtree i + 1 to form a complete cluster, the nodes of the two subtrees are placed together

and the next subtree is used to complete the Cluster. If all of the subtrees have been

used, and an incomplete cluster remains, then the parent node is added to the remaining

cluster and the procedure continues at the next level. When adding a portion of the

nodes of a given subtree to the preceding subtree(s) to complete a cluster, the nodes at

.the deepest level in that subtree are used first so that removal of the newly completed

cluster will not disconnect the tree.

Theorem 3 The cost (HEU) of the approximate solution found using a spanning tree

with many leaves and the cost (OPT) of the optimal solution satisfy the following rela-

tionship:

HEU N 2

< 2a+(1 -a)N - 1OPT -

where a is the fraction of leaves in the spanning tree.

Proof We need to establish an upper bound on the cost of the approximate solution

and a lower bound on that of the optimal one. The cost in the graph of the approximate

solution is at most the cost of that solution in the tree. We evaluate the cost in the tree

by adding the contributions of each edge in the spanning tree to the overall cost. If an

edge connects a leaf node to the tree, it will be referred to as a leaf edge; otherwise, it
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will be called an internal edge. A leaf edgewill be used in only one cluster and only

for communication between the leaf node and the other (N - 1) nodes in the cluster.

Therefore, the contribution of a leaf edgeto the overall cost is 2(N - 1). An internal

edgewill be usedin at most two clusters,and in eachcluster, it will be usedby i nodes

to communicate with the other N - i nodes in the cluster. If a designates the fraction

of leaf nodes in the tree, we have

HEU < an×2(N-1)+(n-l-cm)×2× max 2i(N-i)
-- I<i<N-I

< n(N - 1)(2c_ + (1 - a)N2/(N - 1))

For the cost of the optimal solution, an obvious lower bound is the cost in a complete

graph which is n(g- 1). Hence HEU/OPT <_ 2a+(1-a)N2/(N - 1). []

As stated in Theorem 2, for large k, c_ converges to 1 and the above bound approaches

2. Note that it is reasonable to assume that the minimum degree will be large in practice

because the underlying network has to have sufficient connectivity to enable communi-

cation under node failures and hence requires a reasonably large minimum degree.

The complexity of the algorithms for generating trees with many leaves [29] is O([E[).

The complexity of the Partition_Tree procedure is O(n).

3.5.2 Balanced load and arbitrary edge weights

For arbitrary edge weights, the problem of finding a heuristic with guaranteed per-

formance bounds is much harder. In the following, we describe a heuristic for which

a worst-case performance bound can be established. The bound is more significant for
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systemswhere link communication costs(edgeweights) do not vary widely. The heuris-

tic consistsof finding a minimum spanningtree, partitioning the tree into clustersusing

procedurePartition_Tree and that partition asan approximatesolution. The following

result will be usedto establisha lower bound on the cost of the optimal solution.

Lemma 1 In a complete graph, the average weight of the edges in a minimum spanning

tree is at most the average weight of all edges.

Proof We use induction on the number of nodes n. The lemma is obviously true for

n = 2 or n = 3. Suppose it is true for graphs with n - 1 nodes and consider an n-node

graph. Select node v such that the average weight of edges incident on v is at least the

average weight of all edges in the graph. Remove v from the graph and find a minimum

spanning tree in the remaining (n - 1)-node graph. Then add to this spanning tree the

lightest edge e* connecting v to the other nodes to form an n-node spanning tree. Let

MST,_I and MST, be the total weights of the (n - 1)-node and the n-node spanning

trees, respectively. Let E(v) be the set of edges incident on v. Using the induction

hypothesis, we have

- _ w_
MST,,__ < ,es-e(,)

n-2 - (n-1)(n-2)/2"

Therefore,

MST_ < MST,,=I + w,. <

< _es-e(_,) +
- (n-1)/2

E We E We

+
(n-I)/2 n- I

Ewo Zw..
•ee(,) ,ee(,) ,eE

+
n- 1 n- 1 n(n- 1)/2

>0
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Hence the average weight of the edges in the minimum spanning tree is MST,_/(n - i) _<

- 1)/2). []

To obtain a lower bound on the cost of the optimal solution, we consider the optimal

partition and build a spanning tree by first finding a minimum spanning tree in each

cluster and then replacing each cluster by a single node and connecting each pair of these

nodes by the lightest edge linking the initial clusters. An intercluster minimum spanning

tree is then found. The intracluster spanning trees along with the intercluster spanning

trees form a spanning tree for the entire graph.

Lemma 2 The list of edge weights of the intercluster minimum spanning tree ([CMST)

is included in the list of edge weights of the global minimum spanning tree (GMST).

Proof Let e be an edge in the ICMST that does not appear in the GMST. Let u and

v be its endpoints in the original graph and w be its weight. The path in the GMST

from u to v induces a path in the intercluster graph from the cluster of u to that of

v. If the path is a single edge, then this edge must have weight w and could replace

the edge e in the ICMST. If the induced path has more than one edge, then, since the

ICMST cannot contain a cycle, some of the edges on the induced path must not appear

in the ICMST and at least one of these induced edges that do not appear in the ICMST

forms a cycle containing e when added to the ICMST. Let e' be such an edge, which

must have weight at most w; otherwise, it could be replaced in the CMST by (u, v) to
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obtain a spanning tree with a smaller cost. In addition, e/ cannot haveweighi_lessthan

w because it would then be possible to replace e by eI in the ICMST and obtain a smaller

intercluster spanning tree. Hence, the weight of e' is w and we could remove e and replace

it with e_ in the ICMST. This process can be repeated until all edges in the ICMST also

appear in the GMST. Hence, the lemma is proved, rn

Theorem 4 The cost (HEU) of the approzimate solution found using a minimum span-

ning tree and the cost (OPT) of the optimal solution satisfy the following relationship:

HEU MST

OPT- MST-(m-1)W'

where MST is the total weight of the edges in the minimum spanning tree and _ is the

average weight of the rn - 1 heaviest edges in the minimum spanning tree.

Proof In evaluating an upper bound on the cost of the approximate solution, we fol-

low the same procedure as in the proof of Theorem 3 but we will not distinguish between

leaf edges and internal edges. Each edge e in the tree will be used by at most two clusters

and the contribution of e to the overall cost is bounded by 2 x w, x maxl<i<y-I 2i(N-i).

Hence we have HEU _ N2MST.

Let MSTi be the weight of the minimum spanning tree of cluster i for 1 < i _< rn

and MSTc be the weight of the intercluster tree. We have _=1 MSTi + MSTc >__MST.

Using Lemma 2, we have _'=1 MSTi + (m - 1)N _> MST. Let OPTi be the contribution

to the optimal cost by cluster i. Using Lemma I we have OPTi/N > MSTi therefore

OPT >_ N(MST- (m- 1)_). D
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Let r be the ratio of the largestedgeweight to the smallestedgeweight. A looser but

simpler bound than the oneestablishedin Theorem4 canbederivedusingthe parameter

7":

HEU/OPT _ N (1 + --m-l)- --r <_N(1.+r/(N-I)).
_--T/%

3.6 Generalization of the Model

3.6.1 Nonuniform load within site

In our model, we assumed that each site sends parity updates to each other site in its

partition at the same rate. This implies a uniform update rate to each of the N - 1 data

groups of a given site that have parity information on each of the N - 1 other sites. If

the update rate information for each data group at each site is available, then the model

can be refined to account for the difference in the rate of parity update requests issued

by a given site and destined to the other sites in the array. The refined model should

yield better results in the presence of hot spots. The update rate )_,, of site u is replaced

by N - 1 update rates _,,1,...-, _,,,N-1 corresponding-to each of its data groups. In

this case, an obvious optimization would be to have the parity of the ith most frequently

accessed data group of a given site placed on the i tb nearest site in its partition. Note

that this can be implemented without having to reshuffle the data on disk by saving the

permutation describing the remapping of the N - 1 data groups for each site and using

it to send parity update requests to the proper site. Given the above optimization, the

algorithms of Section 3.4 with some minor modifications can still be used to partition the
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sites. The site update rate usedin Algorithms 1 and2 is set to the sum of all N -1 data

group update rates at that site. We have evaluated the three algorithms of Section 3.4 in

the case of the refined model along with a new greedy strategy that looks at data groups

instead of sites and tries to place the parity of the data groups with the largest update

rates on the closest sites.

Algorithm Greedy

Let A be the list of update rates for all data groups at all sites.

Let p. be the number of site v's partition. Initially p_ = -1 for all v E V.

Let n_ be the number of sites in partition i. Initially, n_ = 0. Assume n__ = 1 throughout.

Let k be the current number of partitions. Initially k = 0.

Let A/'(v) = V - v, for all v E V.

Let l = 0.

Step 1. Select the largest value ,k in A and let u be the corresponding site. If r_ - N

go to Step 4.

Step 2. Find the site v in A/'(u) that is nearest to u and satisfies: p,, or p, # -1 and

rip. + rip. < N or if p_, = p. = -1 and k < m. If none exist go to Step 4.
m

Step 3. Remove v from A/(u).

Ifp_,=p, =-1 setp_=p.---l,n_=2,1=l+l, andk=k+l.

If p_, = -1 and p_ # -1 set p,, = p. and np.

If p_ _ -1 and p. = -1 set p. = p,, and np_

= np, +1.

=n_u + I.

If p_, -fi -1 and p, -fi -1, set the partition number for every site in v's current partition

to p,,, set rip, = n w + np_, np. = O, and k = k - 1.
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Step _. Remove A from A.

Step 5. If _i ni < n, go to Step 1, otherwise, stop.

Algorithm Greedy is similar to Algorithm 1 in that it tries to satisfy first the nodes

with the highest data group update rates. The complexity of the algorithm is O(Nn 2)

but as in the case of Algorithm 1, it requires the all-pair shortest path algorithm.

Figure 3.4 shows the results of the comparison between the four algorithms. The

individual data group update rates are chosen randomly from the interval [1, Ka] while

the edge weights are chosen from [1, K_]. We found that Algorithms 2 and 3 perform best

for N = 10 with Algorithm 2 being the winner for lower values of n while Algorithm 3

is better for the high values of n. For N = 5, Algorithm 3 performs best in almost all

situations. We also found that the parity assignment within a cluster is as important as

the problem of partitioning the sites into clusters. The policy that consists of placing

the parity of the ith most accessed data group on the ith closest site within the cluster

reduces the cost by 15 to 20%.

3.6.2 Nonuniform site capacity

The case of nonuniform site capacity can be handled in the same fashion as proposed

by Stonebraker and Schloss [19]. We assume that the total number of disks is Np for

some p and that the number of disks at any given site is at most p.i The system could

then be partitioned using the following procedure.

IThis replacesthe assumption that IV[ = raN.
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Figure 3.4 Evaluation of the heuristics for the refined model.
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Step 1. Select the NLIVI/Nj sites with the largest number of disks and apply one of the

partitioning algorithms described in the previous sections to assign one disk from each

of the selected sites to an array.

Step P. Remove the assigned disks and remove sites with no disks left.

Step 3. Repeat the above steps until all disks have been assigned.

Nonuniform disk capacity can be dealt with by using logical disks of size B blocks

such that the site capacities are multiples of B [19].

3.6.3 Disaster recovery in OLTP systems

Disaster recovery is an important issue in On-Line Transaction Processing (OLTP)

systems [30-32]. However, in such systems, updating the remote parity after each disk

update may be too expensive especially since there are usually stringent requirements on

transaction response time in those systems.

Typically, disaster recovery in OLTP systems is implemented by duplicating the data

of a given site at a remote backup site and shipping Redo log information to the backup

site where the updates are apt_lied to the backup database. There are two approaches used

in shipping the log [33]. In the first approach, the log records are shipped asynchronously

to the backup site. Therefore, the transaction response time is not affected by the

communication with the backup. However, some transactions may be lost in the case

of a disaster. This configuration is called 1-safe. In the second approach, log records

are sent to the backup at commit time and the transaction waits for an acknowledgment
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before it is allowed to commit. No transactionsare lost in this case.This configuration

is called 2-safe.

Similar configurationscanbe implementedusing RADD. In a I-safe implementation,

parity updates (XORs of old and new data) can be accumulated at the originating site

and shipped to the remote parity locations periodically. In a P-safe implementation, the

parity updates originated by a transaction are grouped according to their destination

site and shipped to that site while the transaction waits for an acknowledgment. If the

updates performed by the transaction involve only one of the N - 1 data groups, then

only one remote message has to be sent by the committing transaction and the delay will

be the same as in the traditional remote backup scheme. The advantage of RADD over

the traditional schemes is that it uses much less storage space than full duplication.

Our model can still be used to solve the site assignment problem in both of the above

implementations. However, instead of using the update rate at each site, the frequency

of the periodic updates should be used in the 1-safe case and the update transaction rate

should be used in the 2-safe case.

Another optimization that might be useful in OLTP environments consists of using

the scheme proposed by Bhide and Dias in [34] to reduce the number of random I/O's

performed in updating the parity at the remote site. The scheme consists of storing

the parity updates in nonvolatile memory or sequentially on a dedicated disk and then

periodically propagating them to their permanent locations. The scheme was originally

proposed for use with a RAID level 4 organization [6] to reduce the load on the parity
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disk. When the parity updatesare storedsequentiallyon a dedicateddisk, disk sorting

is used to apply the parity updates to their permanent location.

3.7 Applying the Algorithms

Another important question is when and how often to apply the algorithm in order

to obtain a lower cost site assignment. Clearly the algorithms can be used when the

RADD scheme is first implemented as long as information on the site loads is available.

As these loads change, the performance of the system degrades and the site assignment

may have to be modified. Changing the site assignment is a costly operation. It involves

reading large amounts of data to recompute the new parity and then updating the parity.

This operation should be performed when the following two conditions are met: 1/ the

difference between the cost of the current assignment and the cost of the best solution

found by the algorithms should be large enough, and 2/ the parameters of the system

(site loads) should be relatively stable so that the benefits of the new site assignment

last long enough to offset the cost of performing the reassignment.

The cost of reassignment can be reduced if some clusters are kept unchanged. Hence

one might be better off choosing a solution that is not the best possible but that preserves

most of the current clustering. Procedure Improve described in Section 3.4 can be used to

perform a limited number of swaps that decrease the cost of updating the parity without

a full scale reassignment.
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3.8 Summary

We looked at the problem of partitioning the sites of a distributed storage system

into redundant disk arrays while minimizing the communication costs for updating the

parity information. The problem was shown to be NP-hard in its general form. Several

heuristic methods were investigated to obtain approximate solutions to the site parti-

tioning problem. It was found that the heuristic that minimizes the sum of distances

between sites within each cluster performs consistently well in all environments especially

in large systems with a relatively large array size. In such systems, the above approach

outperforms greedy methods that attempt to satisfy first the sites with the largest loads

by placing their nearest neighbors in their partition. The solutions produced by this

heuristic are also more robust because they provide good performance under different

site loads. Guaranteed upper bounds were established on the deviation from the optimal

cost for some of the heuristics. It was also found that modifying the parity assignment

within each cluster to place the parity of the heavily accessed data groups on the nearest

sites within the cluster can significantly decrease the parity update cost. Finally, we

discussed implementations of the RADD scheme for disaster recovery in OLTP systems

and described various optimizations that can be helpful in those environments.
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CHAPTER 4

PERFORMANCE OF REDUNDANT DISK

ARRAY ORGANIZATIONS IN TRANSACTION

PROCESSING ENVIRONMENTS

4.1 Introduction

Disk arrays provide high data transfer rates by striping data over multiple disks.

They also balance the load among disks in the same array. Redundant arrays use parity

information to allow recovery from media failures in systems requiring high availability.

In transaction processing environments, the high transfer rates of disk arrays are not

fully exploited because I/0 requests are typically small. However, redundant arrays

are especially useful in such environments because they achieve media recovery at a

significantly lower storage cost than mirrored disks.

In this chapter, the performance of RAID5 and parity striping is analyzed and com-

pared to those of mirrored disk systems and systems using no striping and no redundancy.

Trace data from large scale commercial transaction processing systems are used to evalu-

ate the performance of the above organizations. Methods for reducing the write penalty

in arrays using parity are investigated and their effect on performance is analyzed.

One such method uses a nonvolatile cache in the controller. Nonvolatile caches can

provide significant improvements in the performance of disk arrays in transaction pro-
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cessing environments. We also examine the benefits of using parity caching as a way to

reduce the cost of individual writes, and we compare a RAID4 organization that caches

both parity and data in the same nonvolatile cache to a RAID5 organization that caches

only data.

Chen et al. [35] compared the performance of P_AID0, I RAID1, 2 and RAID53 sys-

tems. They used a synthetic trace made of a distribution of small requests representing

transaction processing workloads combined with a distribution of large requests repre-

senting scientific workloads and actual disk measurements on an Amdahl 5890. Gray et

al. [8] proposed the parity striping organization and used analytical models to derive the

minimum (zero load) response time and the throughput at 50% utilization for fixed size

requests. Their results suggest that parity striping is more appropriate than RAID5 for

database and transaction processing systems. Their model does not take into account

the effect of skew in the distribution of accesses to disks, which turns out to be an im-

portant element in favor of R.AID5. Chen and Towsley [36] developed queuing models

for comparing the performance of RAID5 and parity striping. Menon and Mattson [37]

analyzed the performance of RAID5 systems in the transaction processing environment

using analytical models. They compared the performance of arrays made of different size

building blocks and studied the effect of caching. Reddy [38] analyzed the effect of various

parameters and policies used in the design of a nonvolatile I/O cache for systems where

the cost of writes is higher than the cost of reads. He does not assume any particular

l Data striping without redundancy.
2Data striping with mirroring.
3Data striping with rotated parity.
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array organization and the effect of the parity update traffic on read miss access time

is not modeled. Ganger et al. [39] studied the benefits of data striping in reducing disk

load imbalance and showed that it performs better than conventional data placement

schemes.

In our evaluation of cached systems, we concentrate on comparing the behavior of the

various array organizations when an I/O cache is used. Both read miss accesses and write

(destage) accesses to data and parity are simulated. Bhide and Dias [34] have analyzed

the R,AID4 system with parity buffering in OLTP environments using analytical models.

Their model suggests that a relatively large amount of nonvolatile memory is necessary.

We show that this is not the case in the I/O traces examined in this study. They also

propose an alternate scheme which writes parity updates sequentially on a log disk and

then periodically writes them back to the parity disk. The log-based scheme uses up

to four extra disks per array. The RAID 7 disk array system built and marketed by

Storage Computer [40] uses the R,AID4 disk organization with data and parity caching.

Stodolsky et al. [41] proposed a parity logging scheme in which parity and log regions

are distributed over the disks in the array.

Section 4.2 describes the trace data and the system model used in our simulations.

In Section 4.3, we present the experiments conducted and discuss the results. Finally,

Section 4.4 contains some conclusions.
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4.2 Workload and System Model

To evaluate the different redundant disk array organizations, we have used data from

operational transaction processing systems, from [BM customer sites. We use one very

large trace containing over 3.3 million I/O requests accessing an active database residing

on 130 data disks and a second trace from a smaller system containing about 70 thousand

I/O's and accessing an active database consisting of 10 data disks. The traces were

collected using a low overhead tracing facility at installations running the DB2 database

management system. The trace entries contain the absolute address of the block accessed,

the type of access (read, write) and the time since the previous request. The time field

is set to zero when both accesses are part of the same multiblock request.

Using these data, we simulate the behavior of the I/O subsystem. We account for

all channel and disk-related effects, but we ignore cpu and controller processing times.

The disk parameters used in the simulations are shown in Table 4.1. The total capacity

of each disk is about 0.9 GByte. To compute the seek time as a function of the seek

distance, we use a nonlinear function of the form av_ - 1 + b(x - 1) + c, x denoting the

seek distance. Table 4.2 sho_s the characteristics of the traces used. We see that 98% of

the accesses in Trace 1 and 95% of the accesses in Trace 2 are single-block accesses. The

percentage of writes is 10% for Trace 1 and 28% for Trace 2.

We compare four different organizations: Base, Mirror, RAID5, and Parity Strip-

ing. In the Base organization, disks are accessed independently without any striping or

redundancy. The disks are divided into arrays of equal capacity. Each array can hold
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Table 4.1 Disk and channelparameters.

Rotation speed 5400 rpm

Average seek 11.2 ms

Maximal seek 28 ms

Tracks per platter 1260

Sectors per track 48

Bytes per sector 512

Number of platters 15

Channel transfer rate 10 MB/s

Table 4.2 Trace characteristics.

Trace 2

# of I/O accesses

Trace l

Duration 3hr 3rain. lhr 40min

# of diska 130 10

3,362,505 69,539

# of blocks transferred

# of single block reads

# of single block writes

4,467,719

2,977,914

312,961

47,324

24,306

# of multiblock reads

# of multiblock writes

143,105

48,339

17,557

2,029

2,098.
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the equivalent capacity of N independent data disks. In the Base organization, there

are N disks per array. In the Mirror organization, an array consists of 2N disks. In

the case of the RAID5 and parity striping organizations, data and parity in each array

are spread over N + 1 disks. Each array has one controller and an independent channel

connecting it to the host. When comparing the various organizations, we make equal

capacity comparisons as opposed to equal cost comparisons. We basically assume that

we have a given database that has to be stored and that, for each organization, only

the minimum number of disks needed to store the data is used. Therefore, the Mirror

organization uses twice as many disks as the Base organization while a RAID5 or parity

striping organization with N + 1 disks per array uses N + 1/N times the number of disks

in the Base organization. For RAID5 and parity striping, the total number of disks used

changes with N. For Trace 1 and N = 5, RAID5 and parity striping use 26 arrays con-

taining 6 disks per array or a total of 156 disks while, for N = 10, 13 arrays containing

11 disks per array or a total of 143 disks are used.

We compare the organizations both with cached controllers and noncached controllers.

In the case of cached controllers, we also consider a R.AID4 organization that uses N +

1 disks per array: N disks for data and one for parity. Table 4.3 shows the various

organizations considered in our study. No spindle synchronization is assumed. Block

size is 4 kBytes. For the RAID5 and parity striping organizations, we study the effect

of various parameters such as the striping unit in RAID5, the placement of the parity

areas in parity striping, and the policy used to synchronize the parity access and the

corresponding data access(es) within an update request.
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Table 4.3 Disk array organizations.

Non-cached
organizations

Cached
organizations

Data caching

Data &5 parity

caching

Sa_e

Mirrored disks

RAID5

Parity striping

Base

Mirrored disks

RAID5

Parity striping

RAID4

For parity organizations (RAID5 and Parity striping), when updating a single block

or a portion of a stripe (less than half a stripe), the old data and old parity have to be

read to compute the new parity. The access to the parity disk consists of reading the

old parity block waiting for a full rotation and then writing the new parity block at the

same location as the old. However, the write to the parity disk cannot occur until the old

data have been read and the new parity has been computed. If one or more of the data

disks has not completed the read operation for the old data by the time the head of the

parity disk comes back to the parity block location, then the parity cannot be written

and another full rotation time will be spent before the parity write can be performed.

This can occur more than once if one of the data disks is very busy. We compared five

different strategies for handling the synchronization between the parity disk and the data

disks. The first strategy is Simultaneous Issue (SI) in which the parity access is issued at

the same time as the accesses to data, and if the old data are not available by the time

the parity disk reads the old parity and accomplishes a complete rotation, then the parity
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disk is held for the duration of somenumberof full rotations until the old datahave been

read. The secondstrategy is Read First (RF) and consistsof waiting for the old data

to be read before issuingthe parity access.This strategy minimizes disk utilization but

it might unnecessarilyincreasethe responsetime of update requests. Another strategy

that alsominimizes disk utilization without unduly increasingupdate responsetime is

the ReadFirst with PRiority (RF/PR) method, which waits for the old data to be read

beforeissuing the parity access,but givesthe parity accesshigherpriority than nonparity

accessesqueuedat the samedisk. The fourth strategy consistsof waiting for the data

access(es)to reach the head of the queueand acquire the correspondingdisk(s) before

issuing the parity request.This strategy is calledDisk First (DF). This strategy reduces

the responsetime of the update accesscomparedwith the RF policy but may increase

disk utilization slightly sincethe parity accesscould finish reading the old parity block

and perform a full rotation before the read of the old data is completed. A variation

on the DF policy consistsof giving parity requestspriority over other requests.This is

called Disk First with PRiority (DF/PR). An analytical model for the performance of

the DF/PR policy wasdevelopedby Chen andTowsley [36].

In noncachedorganizations, we assumethat a number of track buffers is used in

the controller to reducethe effectsof channel contention on performance. Write data

are transferred on the channel to the buffers and when the disk head arrives at the

appropriate location they arewritten to the disk surface. Similarly readsare transferred

from the disk to the buffers and whenthe channel is available they are sent to the host.

This avoidshaving to wait anextra rotation if the disk headis at the appropriate location
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but the channelis busy. The buffersarealsousedto hold the old data and parity that are

read from disk in order to compute the newparity. The number of track buffers in the

controller is proportional to the number of disks in the array attached to the controller.

In our simulations weusefive track buffersper disk.

In cachedorganizations,nonvolatile memory should be used to protect against the

loss of write data in the event of a power failure. If volatile memory is used, then

the cacheshould be flushed frequently to reducethe extent of data losswhen a failure

occurs [42]. There is one cacheper array. Read hits are satisfied from the cache. The

responsetime for a read hit is equal to the responsetime (waiting time and transfer

time) at the channel. On a readmissthe block is fetchedfrom disk. If the replacedblock

is dirty, it has to be written to disk. The cachereplacementpolicy is LRU. On a write

hit, the block is simply modified in the cache.In organizationsusing parity (RAID5 and

Parity striping), when a block is modified, the old data are kept in the cacheto savethe

extra rotation neededto read the old data when writing the block back to disk. The

old parity still has to be read and an extra rotation is required at the disk holding the

parity. On a write miss, the block is written to the cacheand the block at the head

of the LRU chain is replaced. A backgrounddestage process groups consecutive blocks

and writes them back to disk in an asynchronous fashion. By using such a process, dirty

blocks are destaged to disk before they reach the head of the LRU chain. Hence, write

misses typically do not incur the cost of a disk access to write back a dirty replaced block.

Only read misses have to wait for the block to be fetched from disk. The overall I/O

response time is mainly determined by the read miss access time. The destage process
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turns small randomsynchronouswrites into largesequentialasynchronouswrites. In our

simulations, the destageprocessis initiated at regular intervals. The time betweentwo

initiations of the processis the destage period. The write accesses issued by the destage

process are scheduled progressively so that they will cause minimal interference with the

read traffic.

For organizations using parity, the destage process accomplishes two purposes: it

groups several dirty blocks together to perform a single multiblock I/O and frees up

space in the cache by getting rid of blocks holding old data. Decreasing the destage

period increases the write traffic seen by the disk. Increasing it reduces the hit ratio and

increases the likelihood that the block at the head of the LRU chain is dirty which may

cause a miss to wait for the replaced block to be written to disk.

One might wonder whether the destage policy used is better than the basic LRU

policy in which dirty blocks are written back only when they get to the head of the LRU

chain and a miss occurs. The question is even more relevant in the case of the Base

and Mirror organizations in which old data blocks are not kept in the cache. We have

compared the two policies for various cache sizes and found that the periodic destage

policy always performs better for all organizations. In [38] a background process is used

to write dirty blocks from the head of the LRU chain along with other dirty blocks in

the cache that belong to the same track. In organizations using parity, there is a need

for freeing old data blocks periodically even if the corresponding dirty block is not at the

head of the LRU chain. It might be useful though to decouple the two issues by using the

destage process that writes dirty blocks from the head of the LRU chain more frequently
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while a flushing process is only initiated from time to time to scan the entire _cache and

free old data blocks.

We also examine the use of parity caching in combination with a RAID4 organization.

In this case, when a write is performed, the parity is computed and written to the cache

instead of writing it directly to the parity disk. The parity blocks are sorted by cylinder

number and spooled to the parity disk using the SCAN policy. In the case of single block

accesses, what is kept in the cache is not the actual parity but the xor of the old and

new, data and when the block is to be updated on the parity disk, the old parity must

be read to compute the new parity. In the case of full stripe writes, the actual parity is

computed and held in the cache and then written to the parity disk without reading the

old parity. For partial stripe writes, either case may occur depending on the size of the

request. In the case where the parity disk queue becomes large enough to occupy the

entire cache, reads and writes are serviced directly from disk and writes have to wait for

a block to become free in the cache in order to store the parity update.

4.3 Experiment.s

Unless otherwise specified, the parameters shown in Table 4.4 are used by default in

the following experiments.
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Table 4.4 Default parameters.

Array size ] N = 10

Block size 4KB

Synchronization method Disk first

Striping unit for RAID5 1 block

Parity placement for ParStrip Middie cylinders

For cached organizations:
Cache size 16MB

4.3.1 Synchronization

Figure 4.1 shows the results for the various synchronization policies for both RAID5

and parity striping. We see that the naive strategy (SI) has significantly worse perfor-

mance than the other policies and DF performs better than RF because it reduces the

response time of update accesses without significantly affecting disk utilization. The

variation that gives priority to the parity access achieves better performance with both

the DF and RF policies. Hence, overall, DF/PR is the best synchronization strategy.

For larger array sizes, the gap between the performance of the various strategies narrows

because the amount of queuing is smaller for large arrays because of better load balancing

in the case of RAID5 and because of the reduced correlation between increases in load

in the case of parity striping.

4.3.2 Uncached arrays

In a first experiment, we looked at noncached organizations and measured the per-

formance of all four organizations for different array sizes. Figure 4.2 shows the response

78



R
e
$
P

t
i

m
e

i
n

m
s

50-

40-

30-

2O

RAID5

SI

RF

RF/PR

DF

DF/PR

OS___..----°'a_,\

\

........ =g

m _ ..i_ ....

D.-,_ ....

O

I I 1 I

5 10 15 20

Array Size, N

R
e
s

P

t
i

rn
e

i
n

m
s

Figure 4.1

70-

60-

50-

40-

30-

ParStrip

%, SI ----_ ....

\ RF ---_ .....

\ RF/PR --+--

'\, DF --.-,x ....

\, DF/PR o

20 i i i i

5 10 15 20

Array Size, N

Response timer or different synchronization methods vs. array size.

79



R
e
$
P

t
i

m
e

i
n

m
s

60-

45-

30-

15-

Trace 1

[] ParStrip
[2] Raid5

[] Mirror

• Base

r
5

l
10

m

i

15 20

Array size, N

R
e
s

P

t
i

m
e

i
n

m
s

60-

45-

30-

15-

m

[] ParStrip

[] Raid5

[] Mirror
• Base

Figure 4.2

Trace 2

5 10

Array size, N

Response time vs. array size.

8O



time in millisecondsfor valuesof N from 5 to 20. In the parity striping organization, the

parity areas were placed on the middle cylinders.

For mirrored disks, the response time for writes is the largest of the response times

at the two disks in the mirrored pair. Reads, however, encounter less queuing since both

disks of the pair can service reads in parallel. Moreover, the shortest seek optimization 4 is

used to further reduce read response time. Since there are many more reads than writes,

the overall performance of mirrors is better than the Base organization. For N = 10, the

response time of mirrors is shorter than that of the Base organization by 12% for Trace 1

and 25% for Trace 2. The reason mirrors perform better for Trace 2 in spite of the higher

write fraction is their ability to split the read load over two disks which reduces queuing.

Comparing RAID5 to the basic organization, we notice that for Trace 1, there is a

significant decrease in performance associated with RAID5. Given that the fraction of

large requests is small, the advantage of RAID5 in terms of high transfer rates cannot be

fully exploited. There are two major effects that determine the performance of RAID5:

one is the the cost of small write requests and the other is the load balancing issue. To

service a single-block write request, the data and parity disks have to be read to get

the old data/parity; then, the new data and parity blocks have to be written to the

disk. Reading the old data/parity adds an extra rotation time to the response time of

the request at each of the two disks involved. However, the response time of the parity

update can be affected by queuing delays at the data disk since the parity write cannot

be initiated until the old data have been read. The increased cost of write requests

4A read is directed to the disk that has its arm nearest to request's location.
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also affects read requestssince it increasesqueuing for the disks. RAID5 b_lancesthe

load over the disks in the array which reducesqueuingdelays. Another parameter that

affects both read and write requestsis seek affinity, which is a measure of the spatial

locality that may exist among disk accesses. The higher the seek affinity, the smaller the

disk arm movements. Data striping decreases seek affinity and hence increases average

seek distance and seek time. In the case of Trace 1, the write penalty issue is more

important than the load balancing issue. For Trace 2, load balancing seems to have a

more important effect on performance than the write penalty. This is due to the fact

that there is a lot of skew in the accesses to the disks in Trace 2. Note that for N = 10,

the results for Trace 1 represent the average over 13 different arrays while for Trace 2,

there is only one array.

The difference in performance between parity striping and RAID5 is mainly a result

of the ability of RAID5 to balance the load over all of the disks in the array. For single

block accesses, the service time at the disk (seek + latency + transfer) is higher in the

case of RAID5 because of decrease in seek affinity, but RAID5 more than makes up

for it by reducing queuing delays. The main argument iased in [8] against RAID5 is the

increased disk utilization due to having many arms service a single request. This does not

happen, however, if the striping unit is chosen appropriately. In transaction processing

workloads, most requests are for single blocks. If the striping unit is a multiple of the

block size, then most small requests are serviced by a single disk.

Note that tuning the placement of the data on disk can reduce the skew in disk

accesses and, hence, reduce the gap in performance between RAID5 and parity striping.
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Figure 4.3 Distribution of accesses to disks in the Base organization (Trace 1).

However, RAID5 provides a way to balance the load automatically. Figures 4.3 and 4.4

illustrate this effect. In Figure 4.3, the total number of accesses to each disk is plotted

for Trace 1 for the Base organization, while in Figure 4.4 the distribution is plotted in

the case of the RAID5 organization with 4KB striping unit. Figure 4.3 shows that there

is a significant amount of skew in the disk access rate. Most of the skew within the array

is smoothed out in the RAID5 organization.

4.3.2.1 Array size

Changing the array size does not significantly affect the performance of the Base and

Mirror organizations. There is only a very small increase in response time as the array

size increases due to added channel contention since the same channel is servicing more
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disks. In the case of RAID5, the performance is affected by the fact that smaller arrays

use more disks (for N = 5, there is one extra disk for every five data disks, while for

N = 10, there is one extra disk for every ten disks). The other effect is that for large

arrays the load is balanced over more disks, which means that the risk of encountering

large queuing delays is further reduced. For Trace 1, N = 20 has the lowest cost and very

good performance. However, large arrays are less reliable and have worse performance

during reconstruction following a disk failure.

Figure 4.2 shows that, for Trace 1, the parity striping performance deteriorates for

small arrays. One cause of this behavior is the fact that the parity area becomes larger

for small arrays which increases the seek distance Of reads and data writes since the
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parity area is in the middle of the disk. This is more apparent in Trace 1 because it

has a higher read fraction. The effectof the placementof the parity is analyzedin more

detail in Section4.3.2.3. Another causeof the performancedegradationis that the parity

striping organization aggravatesthe skewproblem becausewhen a hot spot appearson

onedisk and the disk becomesa bottleneck, the disk holding the corresponding parity

area also experiencesincreasedload and possibly long queues,which, in turn, affect the

performanceof other disks in the array. This phenomenonis moreseverefor small array

sizes. One possiblesolution to this problem would be to usea finer grain in striping

the parity so that the parity update load is more balanced over the disks. Such an

organization would preservethe benefits of seekaffinity in the caseof read accessesand

writes to the data. It also preservesother useful propertiesof parity striping, such as

better fault containment than RAID5, control over the distribution of data over the disks

and varioussoftwarebenefits.

4.3.2.2 Striping unit in RAID5 organizations

The striping unit for RAID5 was varied from 1 block to 64 blocks with N = 10. The
o

tradeoff between small and large striping sizes is similar to the tradeoff between RAID5

and parity striping. Large striping sizes provide better seek affinity and reduce total

disk utilization by avoiding situations in which multiple arms move to service a small

multiblock request. However, they do not balance the load as well as with small striping

units. Figure 4.5 shows the results. For Trace 1, the optimal striping unit is 8 blocks or

32 kBytes. There is little difference in performance, however, between values from 1 to
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J .

16 blocks. For Trace 2, the optimal striping unit is i block which indicates that there is
J

more need for load balancing in the case of Trace 2. For a striping size of 32 blocks or

more, the performance starts degrading significantly and, for very large striping units, it

approaches that of parity striping.

4.3.2.3 Parity placement in parity striping organizations

In [8], it was suggested that since the parity area is accessed frequently, it should be

placed on the cylinders at the center of the disk. We found that this does not always

improve performance especially for small arrays where the parity areas are quite "big and

when the workload has a high read-write ratio. A simple model can be used to explain

this effect. Assuming that accesses are uniformly distributed over all disks in the array

and that accesses to a given disk are uniformly distributed over all data areas on the

disk, the access rate to any one of the N data areas on each disk is equal to 1/N 2 times

the total access rate to the array while the access rate to any given parity area is win

times the total access rate to the array, where w is the fraction of accesses that are

writes. Hence the parity areas are accessed more often than the data areas if and only

if w > 1/N. In the workload of Trace 1, we have w = 0.1. Hence according to the

model, for N > 10, the parity area should be placed in the middle of the disk while for

N < 10, it should be placed at the end of the disk. In Figure 4.6 the results for the

two placements are shown for various values of N. For Trace 1, we observe that the rule

established by the above model is verified except that the cutoff point occurs somewhere

between N = 5 and N = 10 (probably closer to 10 than to 5 given the large difference
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in performance seenfor N = 5). For Trace 2, the rule does not seem to be satisfied

which means that the uniform access assumptions break down in this case. However, we

see that the middle cylinder placement is worse for small N, which confirms the trend

suggested by the above model.

4.3.2.4 Modifying trace speed

To get an idea of the performance of the various organizations at higher or lighter

loads, we have conducted an experiment in which the trace was speeded up by a factor

of 2 and another one where the trace was slowed down by a factor of two. Note that

the workloads obtained by speeding up the trace do not reflect the characteristics of

any real system. Doubling the processor speed does not imply that I/O's will be issued

twice as fast since transactions may have to wait for one I/O to finish before issuing

another one. RAID5 response time degrades gracefully as the load increases. RAID5

does even better than mirrors when the load doubles. The response times for parity

striping and to a lesser degree that of the Base organization degrade severely as trace

speed is doubled. Figure 4.7 shows the results. For Trace 2 and for a trace speed of 0.5,

the base organization performs better than RAID5 because at low trace speed there is

little queuing and RAID5 loses its load balancing advantage.

4.3.3 Performance of cached organizations

The cache hit ratio is slightly lower for RAID5 and parity striping because of the

space held by the old blocks in the cache. The read and write hit ratios are plotted
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in Figure 4.8 for both traces and both for organizations using parity (RAID5, parity
' i !,_t

striping) and for those not using parity (Base, Mirror). Multiblock accesses are counted

as hits only if all of the blocks requested are in the cache. For Trace 1, the write hit

ratio is almost one for large caches because blocks are usually read by the transaction

before being updated. For Trace 2, the write hit ratio starts at about 20% and increases

to over 60%. The workload in Trace 2 seems to contain large working sets that require

a relatively large I/O cache. The read hit ratio is relatively low for a small cache size

(_ 9% for Trace 1 and < 1% for Trace 2 for an 8 MB cache) but it increases to about

54% for Trace 1 and 40% for Trace 2 for a cache size of 256 MB. The effect on hit ratio

of keeping the old blocks in the cache is minimal. The difference between the parity and

the nonparity organizations is always less than 1% for writes. For reads, the difference

in hit ratio is higher. For Trace 1, the hit ratio of the parity organizations is 6% lower

for an 8 MB cache but the difference goes down to 2% for a 16 MB cache and keeps

decreasing for higher cache sizes. For Trace 2, the relative difference is highest for the 32

MB case, where the hit ratio goes from 4.6% for Base to 3.5% for RAID5, but the gap

narrows significantly for higher cache sizes.

4.3.3.1 Cache size

The response time results are shown in Figure 4.9. All organizations benefit from

larger cache sizes. The performance of mirrors is still better than for the Base organi-

zation. Since each of the disks in the mirrored pair sees the same destage traffic as the

corresponding disk in the base organization, the contribution of the destage traffic to read
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miss access time is the same in both organizations. In addition, mirrored disks service

reads faster because the read load is shared between the two disks in the mirrored pair

and because of the shorter seek optimization. For a 16 MB cache size, mirrors perform

22% better than the Base organization for both traces.

The gap in performance between RAID5 and the Base organization reduces consid-

erably in the case of Trace l'because the larger cost of writes in RAID5 does not affect

the overall response time directly but only through its contribution to read miss waiting

time. Write costs are also reduced by the fact that old blocks are kept in the cache and

that the number of actual writes decreases because multiple updates to the same block

while it is in the cache result in one actual write to disk. As cache size increases, the gap

gets even smaller in relative terms because the difference in miss ratios becomes smaller;
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the likelihood of having the old block in the cachewhen the write is destagedbecomes

higher and the probability (which shouldbe alreadyvery small) of having to wait for a

replacedpageto be written to the disk on a cachemissbecomesevensmaller thus reduc-

ing further the contribution of the higher costsof write in RAID5 to the response time.

For a cache size of 16MB, RAID5's performance is only about 1% worse than that of the

Base organization. In the case of Trace 2, RAID5 does even better than in the noncached

case especially for small cache sizes, since the write penalty is practically eliminated while

the need for load balancing remains because of the low hit ratio. RAID5 even surpasses

mirrored disks for cache sizes less than 64 MBytes. The gap between RAID5 and Base

narrows as cache size increases because the need for load balancing decreases.

RAID5 still does better than parity striping. The gap between the two narrows for

Trace 1 mainly because of the reduced load at the disks which makes RAID5's load

balancing advantage less important in determining response time. For Trace 2, the

difference is still significant because of the low hit ratio.

4.3.3.2 Array size

In Figure 4.10, we compare three organizations with different array sizes but with

the same total cache size. For N = 5, the cache size in each array is 8 MB while for

N = 10, the cache size is 16 MB and for N = 15, the cache size is 24 MB. For the Base

and Mirror organizations, the performance improves slightly in the case of Trace 1 in the

larger array in spite of the higher channel contention. This implies that a large shared

cache for 10 disks is better than two partitioned caches for every five disks. For Trace 2,
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the effectof channel contention is more important than the increaseof hit ratio due to

the sharedcache. In the caseof RAID5 andparity striping, the number of disk arms and

the load balancing issuehavemoreeffecton performancethan the differencein hit ratio

betweena global and a partitioned cacheor the channelcontention.

4.3.3.3 Striping unit

The responsetime of the cachedRAID5 organization is plotted in Figure 4.11 as a

function of the striping unit. For Trace 1, the optimal striping unit in this case is 16

blocksor 64kBytes comparedwith 8 blocksfor the noncachedorganization. The reason

for the difference is that the load on the array is lighter in the cachedorganization;

therefore, the needfor load balancing is not as high. This makes larger striping units

more efficient becausethey can take better advantageof seekaffinity and reduce disk

utilization on multiblock accesses.For Trace2, the optimal striping unit is still 1 block

as in the noncachedorganization. This is the casebecauseof the low hit ratio for this

trace,

4.3.4 Parity caching

In this section, we examine a RAID4 organization in which the parity resides on

a separate disk in the array. The parity updates are buffered in the controller cache

before being written to the dedicated parity disk. We compare the performance of such

an organization to the RAID5 organization in which only data blocks are cached. We

look at the effect of various parameters such as cache size, array size, trace speed, and
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striping unit. One benefit of using the RAID4 with parity cachingorganization is the

fact that readmissaccesses,will not haveto wait behind parity accesseswhich include an

extra rotation due to the needto read the old block beforeupdating it. Another benefit

is the reduced averageseekdistancebecauseparity blocks are not placed in between

data blocks. Disadvantagesinclude the reducedhit ratio in the cachedue to the space

occupiedby parity blocksandthe fact that the numberof diskarmsavailablefor servicing

the synchronousreadmiss accessesdecreasesby one. Another issueis the fact that the

parity disk may still becomea bottleneck for the entire array if its queuegrowsand fill

A necessarycondition

4.3.4.1 Cache size

The read and write hit ratios are plotted in Figure 4.12 for RAID5 and for RAID4

with parity caching. The effect on hit ratio of buffering the parity blocks in the cache in

the RAID4 organization is minimal for Trace 1. For Trace 2, the gap is wider; however,

the relative difference is significant only in the region where the hit ratio is quite small

and therefore has little effect on overall performance.

The response time results are shown in Figure 4.13. For Trace 1, the difference

between the two organizations is small but the RAID4 organization always does better.

The hit ratio is actually lower for RAID4 than for RAID5 but the fact that parity updates

are performed on a separate disk and do not interfere with the read accesses seems to

outweigh the effect of the lower hit ratio. As cache size increases, the gap between the two

organizations becomes smaller in relative terms because the probability of a synchronous
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I/O due to a readmiss becomingsmaller. The responsetime of RAID4 is 2% lower for

a cachesizeof 8 MBytes and about 1% lower for a cachesizeof 16MBytes.

In the caseof Trace2, RAID4 performsmuchbetter than RAIDS, especiallyat small

cachesizes.This is dueto the higher percentageof writes in Trace 2 (_ 30%) compared

to Trace 1 (_ 10%) and to the lowerhit ratio in the caseof Trace 2. The useof RAID4

and parity cachingsignificantly reducesthe cost of writes and their effecton read miss

responsetime. For a 16Mbyte cachethe responsetime for RAID4 is 15%shorter than

for RAID5. The gap betweenthe two organizationsnarrows significantly as the cache

size increases.

4.3.4.2 Array size

In Figure 4.14, we compare the two organizations for three different array sizes while

maintaining the same total cache size. For N = 5, the cache size in each array is 8 MB

while for N = 10, the cache size is 16 MB, and for N = 20, the cache size is 32 MB. As

N increases, the number of disk arms decreases but the load is better balanced over the

disks. There is also a border effect for Trace 1 and N = 20 since the last array is only half

full. In this experiment, we are mostly interested in how the two organizations compare

with each other at different values of N rather than comparing the same organization for

different values of N.

For N = 5, RAID5 performs better than RAID4 for both traces because, with RAID4,

fewer disks are available to service read requests (5 out 6 disks service read requests for

N = 5 compared with 10 out of 11 for N = 10). This implies that dedicating one disk
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per array for parity updates does not pay off for small arrays. For Trace i, we see that,

going from N = 10 to N = 20, the gap between RAID4 and RAID5 widens. This is due

to the fact that in RAID4, for larger N, a larger proportion of the disks can service read

accesses (the ratio N/N + 1 increases with N). The load on the parity disk increases as

N increases but this does not seem to significantly affect the performance of RAID4.

4.3.4.3 Trace speed

The gap between the two organizations widens as the load increases. Figure 4.15

shows the results. In the case of Trace 2, RAID5's performance degrades significantly at

high loads. The increasing load on the parity disk in the RAID4 organization did not

seem to create a bottleneck. There are periods in the traces where the parity disk queue
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becomes large enough to fill most of the cache in which case writes have to wait for an

empty slot to open in the cache for writing the parity. However these heavy load periods

are rare and do not last very long; there are sufficient idle periods in the traces for the

parity disk to catch up and empty its queue which is stored in the cache.

4.3.4.4 Striping unit

When disk utilization is high such as in the case of Trace 2, load balancing becomes

an important issue, hence, a smaller striping unit is preferred. The response time of the

two organizations is plotted in Figure 4.16 as a function of the striping unit. The shapes

of the curves for Trace 1 and Trace 2 (RAID4 case) are predictable. The response time

decreases at first as the striping unit increases because seek affinity is better exploited to
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reduce average seek time. But as the striping unit becomes larger, the load becomes more

unbalanced which causes long delays at some disks and increases the average response

time. The optimal striping unit is lower for Trace 2 than for Trace 1 because of the

higher disk utilization for Trace 2.

The shape of the first part (striping unit < 4) of the curve for Trace 2 (RAID5 case)

is not predictable and is probably due to the particular reference stream and block layout

encountered in that trace which causes some heavily accessed blocks to land on the same

disk(s) for the striping units 2 and 4.
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4.3.4.5 Destage period

The longer a modified block stays in the cache the more likely it is for another update

to the same block, to some consecutive block, or to some other block on the same track to

occur. Hence a large destage period allows updates to the same track to accumulate and

writes them in one single I/O. On the other hand, with a long destage period, modified

blocks are more likely to reach the head of the LRU chain and cause a synchronous

write due to replacement instead of being written asynchronously by the destage process.

Figure 4.17 illustrates the effect of the destage period on the performance of RAID5.

When the load is higher or the percentage of writes is higher, the cache has to be flushed

more often. The optimal destage period is 25 sec for Trace l, about 12 see for Trace 2
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(RAID4 case), and about 6 sec for Trace 2 (RAID5 case). The optimal destage period

is shorter for Trace 2 than for Trace 1 because the percentage of writes is higher in

Trace 2. It is shorter for RAID5 in the case of Trace 2, because the high cost of writes

makes it even more advantageous to have more asynchronous destage I/O's than more

synchronous write I/O's at replacement time.

4.4 Conclusions

We used traces from commercial transaction processing systems to evaluate the per-

formance of two redundant disk array organizations and compare them to mirrored disks

and to nonredundant nonarrayed systems (Base organization). The I/O workload is

dominated by single block I/O's and contains a significant amount of skew in the distri-

bution of accesses to disks. We evaluated both cached and noncached organizations. We

found that RAID5 outperforms parity striping in all cases because of its load balancing

capabilities.

In noncached organizations, RAID5 and parity striping may perform significantly

worse than the Mirror and "Base organizations because of the high cost of individual

writes. For an organization with 10 data disks per array, RAID5's response time is

32% worse than for the Base organization for one of the traces. It was also found that,

because of the large amount of skew in disk accesses found in the workload, large RAID5

arrays perform better than smaller arrays by balancing the load more evenly over the

disks. By speeding up the trace, it was shown than RAID5 behaves better than the
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other organizations under very high loads. For parity striping organizations, we found

that placementof the parity areaon the disk canaffectperformancesignificantly and we

derived a simple rule for placing the parity in a way that minimizesseektimes.

For cachedorganizations,we found that all organizationsbenefit from higher cache

sizes. The write hit ratio is much higher than the read hit ratio and in one of the

benchmarks is closeto 1 for cachesizesover 32 MB. The read hit ratio on the other

hand keepsincreasingsteadily as cachesize increases.RAID5's performanceis as good

or better than for the Baseorganization's performancein cachedorganizations. A 16

MB cache practically eliminates the RAID5 write penalty. For one of the traces, RAID5

performance goes from 32% worse than the Base organization in the noncached case to

only about 1% worse in the cached cache.

In our evaluation of cached organizations, we also studied a RAID4 organization that

uses the controller cache to buffer parity updates before sending them to the parity disk.

We found that RAID4 with parity caching generally performed better than RAID5 for

array sizes of 10 or more. The improvement achieved is a function of the percentage

of writes in the I/O workload and the load (arrival rate) at the disks. The load at the

disks is a function of the cache size and the amount of locality in the workload. The

improvement in response time varied from 1% for the first benchmark with a cache size

of 16 MB per (10+l)-disk array to as much as 15% for the other benchmark with the

same cache size. At smaller caches sizes, the number of I/O's going to the disks increases

and so does the benefit of parity caching. We have studied the effect of array size on

the performance of RAID4 with parity caching. We found that at higher array sizes,
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RAID4's performanceimprovesbecausea larger proportion of the disks can service read

requests while the parity disk is able to keep up with the increased load. For a small

array size (N - 5), RAID5 performs better than RAID4 with parity caching because it

uses more disk arms to service reads. We have also experimented with speeding up the

trace and found that parity caching can effectively remove the bottleneck on the parity

disk in RAID4 even at high loads. For both benchmarks used, it was found that although

the parity disk queue can grow at times to occupy most of the cache, this did not occur

often and there were sufficient idle periods for the parity disk to catch up.
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CHAPTER 5

CONCLUSIONS

Redundant disk arrays have the ability to use small form factor disks to replace single

large expensive disks and provide better reliability. Transaction processing systems re-

quire high performance I/O subsystems and high levels of reliability. In addition, the I/O

workload in transaction processing systems exhibits special characteristics. The work-

load typically consists of large numbers of essentially random small I/O requests. In this

thesis, we investigated three issues related to the use of disk arrays in transaction pro-

cessing systems: database recovery, distributed redundant disk arrays and performance

of disk array organizations in transaction processing environments.

The first problem we addressed dealt with optimizing the recovery component in the

database management system. We proposed a technique based on twin page storage for

reducing the overhead of logging in transaction processing. The technique consists of

implementing the twin page scheme for the parity data in the disk array so that the old

parity pages can be used to perform UNDO recovery following a transaction abort or a

system failure. To evaluate the performance of the proposed technique, we compared a

transaction processing system using redundant disk arrays to a transaction processing

system using redundant disk arrays and the twin page parity scheme. We analyzed

the performance of both systems under two major transaction recovery paradigms: the
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FORCE policy and the delayed write or ",FORCE policy. We also examined both the case

of page logging and record logging. We used analytical models as well as simulations using

data from operational transaction processing systems. We found that the proposed twin

page parity scheme typically improves transaction throughput by lO to 40% depending

on the recovery paradigm and the granularity of logging. The storage overhead required

for the twin page parity scheme is on the order of 10% for systems using 10 disks per

array.

In distributed transaction processing systems, recovery from site failures is a crucial

issue. Site failures are of two types: temporary outages or permanent disasters. Disaster

recovery is traditionally dealt with by maintaining a remote backup copy of the data

of each site at another site or at some secure location. Temporary site failures can be

dealt with by dispersing copies of essential files at multiple locations. Redundant arrays

of distributed disks can be used to provide an efficient way to deal with temporary and

permanent site failures as well as individual disk failures at a much lower storage cost

than the remote backup scheme or the multicopy scheme. An important problem with

using redundant arrays of distributed disks is optimizing the cost of remote accesses that

are performed to update the parity information. We looked at methods for partitioning a

large distributed storage system into redundant arrays of distributed disks in such a way

that the cost of updating the remote parity is minimized. We develoi_ed a mathematical

formulation for the site partitioning problem and showed that the problem is NP-hard.

We proposed several heuristic algorithms for solving the site partitioning problem and

109



performedanexperimentalevaluationof the proposedheuristics. Wealsoderivedbounds

on the deviation from the optimal solution for someof the heuristics.

Another issueaddressedin this thesis is the performanceof disk array organizations

in transaction processingenvironments.WeusedI/O tracesfrom operational transaction

processingsystemsto comparethe RAID5 and parity striping organizationsto mirrored

disks and nonredundant, nonstriped systems. We found that skew in the accessesto

disks has a major effect on performance. Hence the RAID5 organization performed

much better than parity striping. Wealsofound that the write penalty cansignificantly

affect performanceevenat high read-write ratios. Nonvolatile cachesproved to be very

effectiveat eliminating the write penalty. Largercacheswereshownto bevery beneficial

becauseof the steady increasein hit ratio ascachesizeincreases.Parity cachingcoupled

with a R,AID4 organization that dedicatesone disk per array to parity was found to

improve performanceof large arraysespeciallyfor low read-write ratios and small cache

sizes. In summary, cacheddisk arrays can provide equal or higher performance than

nonarrayed systemswhile providing a high degreeof availability at much lower storage

costs than for mirrored disk solutions.
m
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