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1571 ABSTRACT 
The invention fulfills new goals for redundancy resolu- 
tion based on manipulator dynamics and end-effector 
characteristics. These goals are accomplished by em- 
ploying the recently developed configuration control 
approach. Redundancy resolution is achieved by con- 
trolling the joint inertia matrix or the end-effector mass 
matrix that affect the inertial torques, or by reducing the 
joint torques due to gravity loading and payload. The 
manipulator mechanical-advantage and velocity-ratio 
are also used as performance measures to be improved 
by proper utilization of redundancy. Furthermore, end- 
effector compliance, sensitivity, and impulsive force at 
impact are introduced as redundancy resolution criteria. 
The new goals for redundancy resolution allow a more 
efficient utilization of the redundant joints based on the 
desired task requirements. 

15 Claims, 11 Drawing Sheets 
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KINEMATIC FUNCTIONS FOR REDUNDANCY 
RESOLUTION USING CONFIGURATION 

CONTROL 

ORIGIN OF THE INVENTION 
The invention described herein was made in the per- 

formance of work under a NASA contract, and is sub- 
ject to the provisions of Public Law 96-517 (35 USC 
202) in which the contractor has elected not to retain 
title. 

BACKGROUND O F  THE INVENTION 
1. Technical Field 
The invention relates to robotic control methods 

using configuration control techniques disclosed in U.S. 
Pat. No. 4,999,553. 

2. Background Art 
1. Introduction 
Redundant robot manipulators possess more joint 

degrees-of- freedom than are required for the basic task 
of controlling the end-effector motion. The “extra” 
joints can provide high dexterity and versatility by 
enabling the robot to accomplish additional tasks. This 
is based on the observation that for a given end-effector 
location, the manipulator can assume infinite distinct 
configurations, each with a different measure of task 
performance, such as manipulability index. This pro- 
vides a basis for utilization of redundancy to improve 
the task performance measure by formulating this re- 
quirement as an additional task. However, since the 
robot performs a variety of diverse tasks, the motivation 
for utilizing the redundancy in each task can be widely 
different. For instance, in a free-space motion task, the 
redundancy can be used to reduce the inertial torques or 
increase the eficiency of end-effector motion; whereas 
in a constrained contact task, improvement of mechani- 
cal-advantage or reduction of impulsive impact force 
are appropriate goals. Therefore, the resolution of re- 
dundancy must be based on the particular task to be 
performed. 

In the description that follows, reference is made to 
individual publications listed numerically at the end of 
this specification by number (e.g., such as “[ 11”). 

While redundancy is a desirable feature in a robot 

proach. Maciejewski and Klein [8] describe a method 
for obstacle avoidance based on pseudoinverse control. 

In recent specifications [9-161, a new approach called 
configuration control is proposed for resolution of re- 

5 dundancy and control of redundant manipulators. This 
approach is based on task augmentation and resolves the 
redundancy at the position (i.e., task) level, thereby 
yielding cyclic motions. In this approach, the basic task 
of end-effector motion is augmented by a userdefined 

10 additional task for redundancy resolution. In previous 
specifications, the additional task is chosen as posture or 
self-motion control [IS, 161, optimal joint movement 
[14,16], or collision avoidance 113,161. This specification 
introduces further options for additional task based on 

15 manipulator dynamics and end-effector characteristics. 
The structure of the specification is as follows. Sec- 

tion 2 describes new additional task options for redun- 
dancy resolution within the configuration control 
framework. A simple planar three-link manipulator is 

20 used in the computer simulation studies of Section 3 to 
illustrate some of the concepts introduced in the specifi- 
cation. Section 4 discusses the results of the specifica- 
tion and draws some conclusions. 

25 SUMMARY O F  THE INVENTION 
2. Task Options for Redundancy Resolution 
In this section, we present a number of task options 

that can be accomplished through redundancy resolu- 
tion, in addition to the basic task of end-effector motion. 

30 This provides a suite of additional tasks from which the 
appropriate task can be selected by the user based on the 
particular application at hand. The user can also attempt 
to achieve multiple additional tasks simultaneously 
using the method described in [14]. 

Consider a kinematically redundant robot manipula- 
tor having n joints with its end-effector operating in an 
m-dimensional task- space, where m<n. The forward 
kinematic model which relates the m x 1 end-effector 
coordinate vector Y to the n x  1 joint angular position 

35 

40 vector 8 is given by 

Y=Je) (1) 

and the differential kinematic model is represented by 
45 

i=JdO)Q (2) 

manipulator, the presence of redundant joints compli- 
cates the manipulator control problem considerably. where the m X 1 vector f denotes the nonlinear forward 

- kinematic functions, and The control of redundant robotshas been the subject of 
considerable research during the past two decades. 

often focused on the Jacobian pseudoinverse approach 
Despite this long history, previous investigations are 

proposed originally by Whitney [l] in 1969 and im- 
proved 

Je = -$- 
is the mXn end-effector Jacobian matrix. For free- 

55 space (i.e., unconstrained) motion, the dynamic mode] by Licgois r21 in 1977- This 
proach resolves the redundancy at the velocity level by 
optimizing an objective function, and produces non- 
cyclic motions. For instance, using the Jacobian pseu- 

methods for minimization of instantaneous joint 60 
torques. Khatib [4] proposes a scheme to reduce joint where M(8) is the n x n  joint inertia matrix, N(i,8) is the 
torques by using the inertia-weighted Jacobian pseu- n x 1 vector of Coriolis, centrifugal and frictional 
doinverse. Dubey and Luh [SI and Chiu [6] use the torques, and G(8) is the n ~ 1  vector of gravitational 
pseudoinverse approach to optimize the manipulator torque. It is seen that the total joint torque 6 7  is com- 
mechanical-advantage and velocity-ratio using the 65 posed of three components. The first and second com- 
force and velocity manipulability ellipsoids. Walker [7] ponents in (3) are the acceleratjon-dependent and 
resolves the redundancy by reducing the impulsive velocity- dependent torques M(8)8 avd N(8!8). How- 
force at impact using the Jacobian pseudoinverse ap- ever, the coefficients through which 8 and 8 generate 

of the manipulator relating the n x 1 joint torque vector 
to the joint angles 8 can be described by 

doinverse approach, Suh and Hollerbach [3] suggest T =M(e)b+we,i)+cce) (3) 
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4 
DETAILED DESCRIPTION OF THE 

INVENTION 

joint torques are functions of the joint angles 8. On the 
other hand, the third component in (3), namely the 
'gravity torque G(B), depends only on the manipulator - -  . -  
configuration e. 
defines a set of r (=n-m) kinematic functions 9=h(8) 
to be controlled during the basic task of sDecified end- 

Referring to FIG. 1, the configuration control 
In the configuration control approach [9-111, the user 5 method described in U.S. Pat. No. 4,999,553 (the disclo- 

sure of which is hereby incorporated herein by refer- 
ence in its entirety) finds the required ioint motions such 

effector motion Y=Y;;<t). The kinematic'model (1) is 
then augmented to include 9 as 

10 

(4) 

15 
where X is the n X 1 configuration vector. The user can 
then set up an additional task for redundancy resolution 
by imposing the constraint @(e)=@&), where @At) is 
the user-specified desired time variation of 9. Once 9 
and 9 d  are defined, the manipulator control problem is 20 
to ensure that the configuration vector X tracks the 
desired trajectory 

using either a kinematic or a dynamic control law [9,14]. 
This formulation puts the redundancy resolution con- 
straint on the same footing as the end-effector task, and 
treats both Y and @ equally in a common format. 

Because of the user's freedom in the selection of the 
kinematic functions 9, the configuration control ap- 
proach provides a general methodology for task-based 
resolution of redundancy. In this section, we present 
various alternatives for redundancy resolution through 
the definition of the kinematic functions 9 within the 
configuration control framework. 

BRIEF DESCRIPTION OF THE DRAWINGS 
FIG. 1 is a block diagram of a robot control system 

embodying the present invention. 
FIG. 2 illustrates a three link robot coordinate system 

employed in analyzing the invention. 
FIGS. 30-3d illustrate, respectively, robot configura- 

tions, tip x-position response, tip y-contact force and 
variation of kinematic function in one application of the 
invention. 

FIGS. 4 0 4  illustrate, respectively, robot configura- 
tions, tip x-position response, tip y-contact force and 
variation of kinematic function in another application of 
the invention. 

FIGS. 5o-5d illustrate, respectively, robot configura- 
tions, tip x-position response, tip y-contact force and 
variation of kinematic function in yet another applica- 
tion of the invention. 

FIGS. Q-6d illustrate, respectively, robot configura- 
tions, tip x-position response, tip y-contact force and 
variation of kinematic function in a further application 
of the invention. 

FIGS. 7a and 76 illustrate, respectively, variation of a 
sensitivity function and variation of a kinematic func- 
tion in a still further application of the invention. 

FIGS. & and 86 illustrate, respectively, variation of a 
sensitivity function and variation of a kinematic func- 
tion in still another application of the invention. 

25 
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that the Configuration vector X(0) tracks the desired 
trajectory u t ) .  This formulation puts the redundancy 
resolution constraint on the same footing as the end 
effector task motion and treats both Y and CP equally in 
a common format. As illustrated in FIG. 1, a basic (de- 
sired) task trajectory Yd is defined as a function of time 
to a basic task controller while an additional task trajec- 
tory is defined as a function of time to an additional task 
controller. The basic task controller and the additional 
task controller produce torque commands T, and Tc 
respectively which are summed at a summing node and 
input to manipulator dynamics. The manipulator dy- 
namics produces a new vector 8 of joint angles from 
which augmented forward dynamics compute the latest 
values of Y and 9 which are fed back to the controllers 
and compared with the current desired values of Ydand 
@d in a feed-back control architecture. As indicated in 
FIG. 1, the additional task trajectory is specified by r 
kinematic functions defining a minimization of an objec- 
tive function over r joints which the user may select 
from among the n joints of the robot. It is a discovery of 
the invention that the objective function may specify 
gravity loading, joint inertia, mechanical advantage, 
velocity ratio, end effector sensitivity, end effector 
compliance or end effector impact force, so that these 
quantities may be controlled or optimized (minimized) 
using the self-motion available to a redundant robot 
performing a required task motion of its end effector. 

2.1 Gravitational Torques 
In this case, the redundancy is utilized to minimize 

the effect of gravity loading on the joints or to reduce 
the gravity torque due to a payload during a specified 
end-effector motion. This yields the optimal configura- 
tion for which the payload capacity of the manipulator 
is maximized. It also enables the user to optimally pre- 
configure the redundant manipulator before picking up 
the payload. 

The joint torque due to gravity loading is represented 
by G(8) in (3), and is configuration-dependent. Let us 
define the scalar weighted gravity loading objective 
function as 

(5) 

where the n x n  constant matrix W=diagdwj} repre- 
sents the weighting factors assigned by the user to the 
joints. In order to optimize Lg subject to the end-effec- 
tor constraint Y =f(O), from Appendix 5.1 we require 

where Ne is the r Xn matrix whose rows span the null- 
space of the end-effector Jacobian Je, that is, N&T=O. 
The optimality condition (6) can be treated as a set of 
kinematic constraints by defining the r kinematic func- 
tions 
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a result, a choice of 8 that reduces M(8) may yield a 
large joint acceleration profile eit> and consequently 
demand a large inertial torque T o‘ Nonetheless, it is 
possible to use the redundancy to affect the norm or 

and their desired trajectory as @&)=so. Therefore, the 5 some entries of the inertia matrix. For instance, the 
optimal joint torque requirement can be stated as redundancy can be used to influence certain elements of 
*(@=*d(t), and the configuration control approach the joint inertia matrix. Consider a typical joint of the 
can be adopted to ensure that the optimality condition manipulator &where the joint dynamics can be written 
(6) is satisfied while the end-effector is tracking the as 
desired trajectory Y&). Note that the manipulator must 10 
be initially at an optimal configuration which satisfies 
condition (6). This scheme for redundancy resolution is 
illustrated by a numerical example in Section 3. 

The redundancy can alternatively be used to reduce 

erted at the manipulator joints due to a payload carried 
by the end-effector are functions of the manipulator 
configuration. In general, the payload contributes both 
dynamic and static terms to the manipulator dynamic 
model. 

cg = h(e) = Nxe) * ae 

T, = Mi,(@$; + .$ M&$9; + N,(O, i) + GXe) 
(lo) 

J =  1 
j#i 

the gravity torque due to a payload‘ The torques ex- l5 It is Seen that the inertia Mi,{@ Seen at joint i is a func- 
tion of all joint angles 8, i.e., the robot configuration. 

there are cOuplings between the 
joints, represented by ZMd8)’& with the coupling fac- 

with the 2o tor My dependent on the robot configuration. To sim- 
plify the joint control system design, it is sometimes 

this case, we are concerned 

desirable to ensure that -the inertia-Mid8) is invariant 
with respect to the manipulator configuration 8, that is, 
Mil(@ is a predefined constant. Let the manipulator be 

25 at the initial joint configuration 8’ with the correspond- 
ing joint i inertia Mi,(O0). In order to ensure that 

Mj,(O)=Mj,(e’)=constant (1 1) 

static torque due to gravity. In particular, for a given 
payload and end-effector position and orientation, the 
redundancy is resolved to yield the optimal joint config- 
uration where the payload gravity torque is at a mini- 
mum. 

Suppose that the end-effector is holding a payload 
represented by a point mass p. Then, the static joint 
torque due to the payload is 

Tp=PJeTg (7) 

where g is the m x  1 vector of gravitational accelera- 
tions. The weighted sum-of-squares of joint torques due 
to the payload is 

where {wi} are the joint weighting factors specified by 
the user. The optimization of Lp subject to the end- 
effector motion constraint leads to the condition 

aL 
Ne(@-& = 0 (9) 

By satisfying (9), we ensure that the manipulator config- 
uration is kept at the minimum payload gravity torque 
during the end-effector motion. 

2.2 Joint Inertia and End-Effector Mass 
In this case, the redundancy is utilized to obtain some 

desirable characteristics for the manipulator inertia 
matrix in joint space or the mass matrix in Cartesian 
space. This is motivated by the fact that the inertia and 
mass matrices depend solely on the manipulator config- 
uration 8, and thus by suitable defmition of the kine- 
matic functions, we can influence the inertial torque 
directly. It is important to note that often the inertial 
torque is the dominant term in the manipulator dyanmic 
model, particularly during slow motions where the 
contributions from the velocity-dependent torques are 
insignificant. As a result, this approach can lead to reso- 
lution of redundancy based on torque reduction. 

Despite the fact that the joint inertia matrix M(8) in 
the dynamic model (3) is configuration-dependent, the 
reduction of the “size” of M(8) does not necessarily 
reduce the inertial torque ;I a=M(0)8. This is because 
the trajectory for the joint acceleration 8(t) depends on 
the evolution of the manipulator configuration 8(t). As 

30 throughout the end-effector motion, we define the kine- 
matic function as $,@) =Mil(@ and its desired trajec- 
tory as $dl{t)=Mi,(Oo). Note that since r kinematic func- 
tions can be controlled independently, in general this 
formulation can be used to make r joint inertias configu- 

35 ration-independent. The configuration control scheme 
can then be employed to ensure that the joint inertias 
are held constant and configuration-invariant, while the 
end-effector is traversing the prescribed path. This ap- 
proach is illustrated in Section 3. 

An alternative approach is to utilize the redundancy 
to decrease the off-diagonal elements of the joint inertia 
matrix M(8). This is a desirable feature for control pur- 
poses since it can reduce the inter-joint couplings and 
thereby enhance the stability and improve the system 

45 performance. In the ideal case, we wish to make the 
joint inertia matrix diagonal so as to ensure inertial 
decoupling. To this end, the objective function can be 
defined as 

40 

j#i 

Following the method of Section 2,1, we can utilize the 
55 manipulator redundancy to minimize Lmi by satisfying 

the optimality criterion 

Using the configuration control approach, the off-dia- 
gonal elements in the inertia matrix M(8) are reduced 
optimally, while the end-effector is following the pre- 

65 scribed path. However, note that since the inertial cou- 
pling torque ?iMd8>’8j is also dependent on the joint 
accelerations 8(t), this approach does not necessarily 
lead to a reduction in inter-joint couplings. 
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The redundancy can also be utilized to affect the 
end-effector mass matrix. The manipulator dynamic 
model (3) used so far is in joint-space, as it relates the 
joint torques T to the joint angles 8. An alternative 
approach is to use the manipulator dynamic model in 
the Cartesian-space for redundancy resolution. The 
Cartesian-space dynamic model relating the m X 1 ap- 
plied end-effector force/moment vector? ,to the mX 1 
end-effector coordinate vector Y can be obtained as [4] 

‘F y=M,@)’r;N,@b)+G,.(0) (14) 

lar and and &e above terms are related S&gtheir joint-space 
counterparts by 

MA@= [JAe)M-l(e)JeT(e)]-l 

NAe,e) = M,.~~)[JAB)M- l(e)N(e,i) - i ~ e & ]  (15) 

Gu(e)=Mv(eyAe)M- l(e)qe) 

where Md8) is the m x m end-effector Cartesian mass 
matrix, and JA8) is assumed to be of full rank. The end- 
effector Cartesian force F, is then mapped into the 
equivalent joint torque *I through the Jacobian matrix 
Je, that is, ;I e=JJ(O) rF y’ Thus, the dynamic model 
that relates the joint torque q-’,required for end-effector 
motion to the end-effector Cartesian coordinates Y is 
given by 

8 7 ’  ,=JeT(0)Md8) y+JeT(0)Ndf3,i) +JeT((B)Gy(B) (16) 

It is noted that in the configuration control approach, 
the total joint torque 11‘ is the sum of the two compo- 
nents 8 7 ’  JeTrF, due to the end-effector motion (basic 
task) and $7 c=Jc7iFc due to the kinematic constraints 
(additional task), where Jc and rF are the Jacobian 
matrix and control forces related to Q [9]. 

From the robot dynamic model (16), the inertial 
torque required to cause end-effector motion is given by 
;Im=MX8)Y, where Me(8)=Jer(B)Mv(8) is an nXm 
configuration-dependent coefficient matrix. Thus, the 
coefficient matrix Me(@) can be viewed -9 the operator 
that maps the end-effector acc+.eration Y into the iner- 
tial torque T ,,; that is MA@): Y-+ Tm. By considering 
the mapping properties of this operator, we can influ- 
ence directly the inertial torque required for a given 
end-effector acceleration. One suitable measure of this 
mapping operator is the spectral norm [17] of the coeffi- 
cient matrix Md8) defined as 

where the scalar I I Y I I = w%i denotes the Euclidean 
norm of the end-effector acceleration vector Y. The 
spectral norm of Me defined in (17) is a measure of the 
largest amount by which any acceleration vec@r is 
amplified by-the matrix mdtiplication, Le., 11 MeY 1 1  S 
[[Me 119 IIY 1 1  for all Y .  In other words, IIMeIls 

bounds the “amplification factor” of the coefficient 
matrix Me Let My-l=JeM-lJeTdenote the inverse of 
the end-effector mass matrix, where the dependency on 
8 is omitted for simplicity. Note that M,-1 and My are 
m X m symmetric positive-definite matrices with posi- 
tive eigenvalues {Am,. . . , AI} and {Al--l, . . . , 
respectively, arranged in increasing order, with 0 <A,. 

8 
. . <AI .  Then, using the norm inequality [17], from 
Me= J e w y ,  we can write 

II Me II ~srn~-hrn- ’  (19) 

where ul= 11 JJ 11 s=wax Eigenvalue(JJeq]6 (from 
lo Appendix 5.2) and A,-]= 11 My 11 s=Max Eigen- 

value(My). Equation (19) establishes an upper-bound on 
II Me II s the Je 
JeT Hence, using I l T m  11 5 11 Me 1 1  9 11 Y 1 1 ,  we obtain 

l5 l117-m 1 1  dcrl.A,--l. IIY 1 1  (20) 

Now, cr1 and Am are both functions of the manipulator 
configuration, Le., the current values of the joint angles 
8. Therefore, we can utilize the redundancy to reduce 

2o the inertial torque for a given end-effector acceleration 
by reducing the configuration-dependent quantity 
Lm(8)=crlAm-l. To this end, Lm(8) is defined as the 
objective function to be minimized through redundancy 
resolution, and the condition for optimality of L, sub- 

25 ject to the end-effector motion is stated as 

30 
As in Section 2.1, the configuration control scheme can 
now be used to ensure that the end-effector follows the 
desired trajectory while the redundancy is utilized to 
optimally reduce an upper- bound on the inertial torque 

When efficient real-time computational tools for 
spectral analysis are available, the spectrums of JJer 
and My can be computed and Lm(8)=al.Am-l can be 
controlled directly. Otherwise, we can compute the 
“traces” of JJeTand My, and noting that al<[trace(- 
JJeq]h and Am-l<trace(My), we can replace cr1 and 
Am-’ in the objective function Lm(8) by their upper- 
bounds [trace(J&q]$ and trace(My) to reduce the com- 
putations and then proceed with the constrained optimi- 

It must be noted that in using the end-effect0r.d~- 
namic model (16), the end-effector acceleration Y is 
speciJied by the basic task, and therefore the inertial 
torque needed for end-effector motion can be reduced 

50 through redundancy utilization as an additional task. 
This is contrast to using the joint dynamic model (3) 
where 8 evoluation is unspecified and therefore inertial 
torque reduction is not necessarily achieved through 
reduction of 11 M 11 s. Finally, it i s  important to note 

55 that the evaluation of the Cartesian terms in (16) is 
computationally very intensive, and therefore this ap- 
proach may not be suitable for real-time implementa- 
tion. 

35 norm. 

45 zation of Lm(8). 

2.3 Mechanical-Advantage 
For a redundant manipulator, the joint torques pro- 

duced when the manipulator makes contact with the 
environment depend on the manipulator configuration. 
In some applications, the manipulator configuration 
requiring lower joint torques for a given contact force is 

65 preferred over other configurations. This results in a 
higher mechanical- advantage and the ability to per- 
form tasks which demand greater end-effector contact 
forces. In applications requiring fine force control, a 

60 
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low mechanical-advantage is preferable so as to in- 
crease the sensitivity of joint torques to end-effector 
forces. 

Suppose that the robot manipulator is interacting 
with the environment by exerting the m x  1 contact 
force/moment vector Fa t  the end-effector, where some 
of the elements of F may be zero. The additional joint 
torque needed to exert the contact force F on the envi- 
ronment is given by 

T p J c 9 e ) F  (22) 

The mechanical-advantage Ma of the manipulator is 
defined as the ratio of the norm of end-effector force to 
the norm of joint torque [SI, that is 

M a =  llFll/ll FII (23) 

A redundant manipulator allows us to obtain different 
mechanical advantages for the same end-effector 
contact force through self-motion. Using (22) and (23), 
we obtain 

where Hm = JJJis an m x m symmetric positive semi- 
definite matrix having m real non-negative eigenvalues 
71, . . . , Ym with ylZy2Z . . . ZymZO. It is seen that 
the mechanical advantage M, is a function of two vari- 
ables: the direction of the applied force F and the ma- 
nipulator configuration 8. We now establish bounds on 
M, regardless of F. From matrix theory [17], we have 
the inequality 

Y m  II F II ' s F T H m F s Y l  II F II ' (25) 

In (25), the equality signs hold when F=F1 or F=Fm, 
where F1 and F m  are eigenvectors of H, corresponding 
to the eigenvalues y1 and Ym, that is 

FITHmFI=YI 1) FI 11 '; 
Fm'HmFm=Ym I1 F m  II' 

Now, using (24) and (25) and assuming ym#0, the me- 
chanical advantage of the manipulator is bounded by 

yl -4 dMoSym-4 

Let us denote the m singular values of the end-effector 
Jacobian matrix Je by cqZu2Z . . . crmZO. In Appen- 
dix 5.2, it is shown that the eigenvalues of Hm are 
squares of the singular values of Je, that is, yi=cF. 
Thus, the bounds on M, can be expressed in terms of the 
singular values of Je as 

o ~ - ~ S M ~ S O , - ]  (26) 

where al=[hmdJJeZ)]i is also equal to the spectral 
norm of Je, c q  = I I Je I I s, and T m  is assumed to be non- 
zero. In other words, the mechanical advantage lies in a 
range defined by the largest and smallest singular values 
of J@). When the manipulator is at an end-effector 
kinematic singularity, 

Jp(8) becomes rank-deficient and C m  = 0. In this case, 
the mechanical advantage grows to infinity, which im- 
plies that a finite contact force can be produced by a 
very small joint torque. Although this is appealing from 
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10 
a force application point of view, the end-effector loses 
mobility in certain Cartesian directions which is clearly 
undesirable [6]. 

Now, since from (26) the bounds on M, are functions 
of the manipulator configuration 8, they can be defined 
as kinematic functions within the configuration control 
framework and controlled directly during the end- 
effector motion. Computationally, it is more efficient to 
evaluate the Frobenius norm [17] of the Jacobian ma- 
trix, where 11 - 1 1   is the square-root of the sum of the 
matrix elementssquared, Le., 11 Je 11 $=Zj=1"Zi=lmJe'- 
(i,j)=trace[H,]. Noting that tr[Y&$iL i m y i q b g e  
obtain the inequality 

II Je I1 A - I S M a  (271 

Inequalities (26) and (27) imply that the joint torque 
norm cannot exceed the Jacobian norm times the ap- 
plied force norm, that is, 

IITFII II Jc II s II F I I  s II Jell F II F II 

Note that the above inequality can also be obtained 
directly from (22). For applications requiring a high 
mechanical advantage, we can define the objective 
function as L(8) = I I J&?) I I f2 and minimize L(8) during 
the end-effector motion. This optimization must be 
confined to a reasonable bound to ensure that the ma- 
nipulator is not at a kinematically singular configuration 

When the direction of the applied force is known, an 
alternative approach to controlling the bounds on the 
mechanical advantage M, is to utilize the redundancy to 
directly control the actual value of Ma for a contact 
task. For a given joint configuration 8, the mechanical 
advantage of the manipulator is dependent on the direc- 
tion of the applied contact force F, and vanes in the 
range given by (26). Therefore, we can utilize the re- 
dundancv to minimize the joint toraues rewired to 

[61. 

40 produce-a given contact force F on ihe environment 
and thus maximize the mechanical advantage. In other 
words, by internal movement of the links without mov- 
ing the end-effector, the robot is reconfigured to opti- 
mally reduce the required joint torques. The objective 

45 function Lffo be optimized in this case can be defined as 

where 6 is a known unit vector in the direction of the 
50 fprce F to be applied by the end-effector, i.e. 

F=F/ I\ F )I . For a given end-effector position/force 
trajectory, the problem is to find the optimal manipula- 
tor configuration such that the end-effector force F 
exerted on the environment is achieved with the mini- 

55 mum joint torque norm Lf The condition for optimality 
of Lpubject to the end-effector motion can be stated as 

As in Section 2.1, we can now ensure that the mechani- 
cal advantage is maximized during the end-effector 
motion. This is illustrated by a simulation example in 

65 Section 3. 
2.4 Velocity Ratio 
for a redundant manipulator, the joint velocities re- 

quired to move the end-effector with a specified Carte- 
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sian velocity depend on the manipulator configuration. 
Often, the manipulator configuration requiring lower 
joint velocities to achieve the Same end-effector veloc- 
ity is preferable over the others. 

vector Y is related to the n x  1 joint velocity vector 8 
through the m X n end-effector Jacobian matrix JX8) as 

position control, such as guarded motion, where a large 
sensitivity of joint velocities to end-effector velocity is 
required. Alternatively, when the direction of 8 is 
known, we can optimize the norm of the normalized 

From. (2), the m~ 1 end-effector Cartesian velocity 5 end-effector velocity, that is 
- -  . 

~ , = [ J ~ e 3 ] ~ J ~ e 3 ] = i ~ H ~ e ) ~  (36) 

(30) where t = d /  11 d 11 is a known unit vector in the direc- 
The velocity ratio vr of the manipulator is defined as 10 tion of e. Following a procedure similar to Section 2.3, 
the ratio of the n o m  of end-effector velocity to the we can maximize the velocity ratio Vr through the 
norm of joint velocity [5], that is objective function Lv so that the joint motions are 

mapped into the end-effector motion most efficiently. 
This results in configurations requiring lower joint ve- 

l5 locities to achieve the same end-effector velocity, and 
thus more efficient motion is obtained along the speci- 
fied task trajectory. 

f= JAOG 

vr= - II $ 1 1  (31) 

Depending on the configuration of the redundant ma- 
nipulator, different velocity ratios can be obtained for 

(31), we obtain 

IIGII - 

the -e end-effector Cartesian velocity. From (30) and It is important to not that the configurations for 
2o which the velocity ratio is high yield low mechanical 

advantage and vice versa. For instance, a singular con- 

The n x n  matrix Hv=JeTJe is symmetric and positive 
semi-definite, with n real eigenvalues that are closely 
related to those of the m X m matrix Hrn= JJJ, namely 
[yl, . . . , ym]. In Appendix 5.2, it is shown that the n 
eigenvalues of Hv consist of the m eigenvalues of H, 
and (n-m) zeros, that is [yl, . . . , yrn, 0, . . . ,O] with 
y l Z  . . . ByrnBO. Thus, we can state the inequality 

OSirH$Syl 11 e 1 1  (33) 

The equality signs hold when 6 is an eigenvector of Hv 
corresponding to yl or the zero eigenvalue. Thus, Vr is 
bounded by 

odvrSyll 

This inequality can be written in terms of the largest 
singular value of the end-effector Jacobian matrix Je as 

OdV,SUI (34) 

where el= 1 1  Je I( S. Noting that 
tr[Hv]=tr[Hrn]= 1 1  J, 11 9 and ylStr[Hv], we obtain 

OSVrS llJell,c (35) 

Therefore, the velocity ratio is bounded by the largest 
singular value and by the Frobenius norm of the end- 
effector Jacobian matrix J@). Inequalities (34) and (35) 
imply that the end-effector velocity norm cannot ex- 
ceed the Jacpbian norm times the joint velocity norm, 
that is, IIYIIZ I I J e I l ~ 1 1 ~ 1 1 ~ ~ ~ J ~ I l ~ I l ~ I I .  Note 
that this ineguality can also be obtained directly from 
(30). When 8 is chosen to be an eigenvector of Hvcorre- 
spondingto the zeroeigenvgue, that is H a  =0, then we 
have 11 Y 11 2= 11 J d  11 2=8qJex-]8=0. In this case, 
the joint motions do not produce any movement of the 
end-effector and the velocity ratio becomes zero. This is 
commonly referred to as "self-motion" in a redundant 
robot [12]. 

Based on inequalities (34) and (39,  the upper-bounds 
on the velocity ratio, namely e l  or 1 1  Je 1 1  fi can be 
defined as the kinematic function CP and minimized 
during the end-effector motion in order to decrease V, 
This is an appropriate goal in applications requiring fine 

figuration in which Je is rank-deficient yields a high 
mechanical advantage but a low velocity ratio. Since 
mechanical advantage and velocity ratio are conflicting 

25 measures of performance, in resolving the manipulator 
redundancy based on either Ma or Vr, we must take into 
consideration that the remaining quantity lies within an 
acceptable range [6]. 

2.5 End-Effector Sensitivity 
Manipulators usually have positioning errors at the 

joint angles due to backlash or flexibility of joint gear 
trains, imperfection of joint servo loops and so on. The 
joint errors or displacements A 8  are propagated 
through the manipulator geometry to produce pertur- 

35 bation in the end-effector coordinates AY. Certain com- 
ponents of the end-effector perturbation can play a 
critical role in the execution of a task. For instance, 
when the end-effector is exerting a force on a work- 
piece having stiffness k, then a slight perturbation in the 

40 end-effector coordinate y at contact will be magnified 
considerably by the stiffness k to produce the additional 
contact force kAy. This additional force can be exces- 
sive and may cause severe damage to the workpiece 

45 under contact. In this section, we discuss the utilization 
of redundancy to minimize a weighted sum of the end- 
effector perturbations due to small variations in the 
joint angles. 

From (30), the joint displacement A8 is mapped 
50 through the Jacobian matrix JX8) to produce the result- 

ing end-effector perturbation AY, that is, AY = JX8)AO. 
Therefore, the sensitivity of the ith end-effector coordi- 
nate yi to the jth joint angle 8j is given by 

30 

55 
S;' = = [Jde)]i,j, 

where the subscript i j  refers to the (i,j)th element of the 
matrix. It is seen that Sj is solely a function of the ma- 

@ nipulator configuration 8, and can therefore be con- 
trolled during the end-effector motion. Alternatively, 
we can define a scalar function L,@) to represent a 
weighted sum-of-squares of end-effector perturbations, 

65 that is 
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where W=diagi(wi} is an m X m user-specified figuration of the redundant robot, different compliance 
weighting matrix. Then, we obtain matrices can be obtained for the same end-effector posi- 

tion and orientation. Therefore, by a judicious choice of 
the manipulator configuration, we can choose the opti- 
mal configuration which yields the smallest end-effec- 

Now, for a given joint stiffness K, the end-effector 
compliance C(8) is only a function of the manipulator 
joint angles 8. The Frobenius norm I I C 11  can be used 

lo as a measure of the "size" of the compliance matrix C. 
Therefore, minimizing the Frobenius norm will tend to (39) minimize the matrix elements, leading to a decrease in 

where Amin and h,, refer to the smallest and largest the end-effector compliance. As a result, the Frobenius 
eigenvalues of the matrix. Since J e w  Jeis a symmetric 15 norm of C(O) can be defined as the objective function 
positive semi-definite matrix, we have L,, namely 

(38) u e )  = [~~e )rse ]T~q~~e)~c \e ]  
= ( A ~ ) T [ J J ( O ) W J A ~ ) ] A ~  tor compliance [ 181. 

From matrix theory [ 171, the bounds on LXO) are given 
by 

kmin(JeTW '$11 A0 1 1  'SLd0)SA&JeTW 
Jd II A@ II 

The manipulator redundancy can then be utilized to 
minimize Lc as an additional task, similar to Section 2.1. 
As the norm of C(8) becomes smaller, the stiffness of (41) 

Hence, an upper-bound on L@) is 

L@)StracQeTW Je) 1 1  A0 [I 
the manipulator at the end-effector increases: This de- 

jected to Cartesian forces. An alternative approach is to 
control some entries of c(@ during the end-effector 
motion. This will reduce the deflection of the end-effec- 

30 tor in Certain Cartesian directions under externally ap- 
plied forces. This approach is illustrated in the Example 
of Section 3. 

By defining the Objective function as the upper-bound 25 creases the end-effector deflection when sub- on L@), namely k,nx(JeW Je) or trace ( J e w  Je), and 
minimizing LXe) during the end-effector motion, we 
can minimize the end-effector perturbation due to joint 
displacement. 

When the magnitudes ofthe joint angle variations 
are known, an alternative approach to controlling the 
upper-bound on LJ8) is to directly minimize the actual 
value of LX8) in (38) for a given joint angle variation. 
The condition for optimality of LX8) subject to the 
end-effector motion can be stated as 

2.7 Impact Force 
Robot manipulators often come into physical contact 

35 with workpieces during task execution. At the instant of 
contact, the manipulator undergoes an impact with the 
workpiece for a very short period of time. This impact 
creates an impulsive force at the end-effector which is 
propagated through the manipulator structure. If the 

This method is illustrated by a numerical example in 40 magnitude of this impulsive force is large, it can have 
Section 3. detrimental effects on the manipulator and the work- 

piece. The impact force is a function of the manipulator 

important characteristic in determining the Cartesian redundant manipulator, the redundancy can be utilized 
positioning accuracy in the presence of disturbance 45 to reduce the impact force, and thus aid in the robot- 
forces and payloads. In this section, we discuss the 
resolution of manipulator redundancy based on the workpiece interaction [7]. 

For derivation of the impact force, it is more conve- end-effector compliance. 
applied at the nient to express the manipulator dynamics in Cartesian- 

manipulator joints causes the displacement AO, where 50 space as in (14), that is 
A 8  is dependent on the gains of the joint servo loops. 

by a spring with stiffness coefficient k so that 

aL5 
NAe),, = o (42) 

2.6 End-Effector Compliance 
The of the manipulator end-effector is an configuration at the instant of impact. As a result, for a 

suppose that a disturbance torque 

The behavior of each manipulator joint can be modeled 'F (I + 'F~= M , m  i.+ ivde, 8) + Gde) (47) 

where T (I, 'F , and Y are the Cartesian actuator force, 
(43) 55 impact force and end-effector acceleration, My=[- 

JeM-'Jeq-' is the end-effector mass matrix, and N,, 
and Gyare defined in (15). Suppose that the manipula- 
tor-workpiece initial impact occurs at time t for an 
infinitesimally short time per id  At, Then integrating 

T =KAO 

where K-diagdkj} is the nXn constant joint stiffness 
matrix. Let us now apply the end-effector force F and 
define the resulting end-effector displacement by AI'. 
Then, F and AY are related by 60 both sides of (47) from t to t + At gives 

AB= K-"T=K-  lJer((B)F (4) 
(48) 

therefore 

A u=Je(e)Ae= [ u e ) K -  ~ J ~ T ( ~ ) ] F =  qe)F 
I + At (45) 65 

Mhe)ihr + 1, AyO,(&ff + I : + Gy(e)dr 
where C(8)= Je(8)K-1JeT(8) is the m Xm symmetric 
end-effector compliance matrix. Depending on the con- 
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Since CF (I, 8 and e are finite at all times, the integrals 
(I, Ny and G, from t to t+At of the finite functions 

becomes zero as At-&. Thus, (48) reduces to Nxe),, aLc = o 

16 

t + At .. (49) 5 Alternatiyely, the upper-bound on t,, namely 
-(1 +e)Y*n.h,-1(8) can be reduced by defining the 

configuration 8 that maximizes the smallest eigenvalue 
of My-](@), namely hm(8). Note that the reduction of 

(50) lo impulsive force at impact can lead to undesirable manip- 
ulator configurations, and this goal may need to be 
considered in conjunction with other criteria. A numer- 
ical example is given in Section 3 for illustration. 

? = MA@) I Ydf = M,(O)A+ 
t objective function as L#)= km(8) and finding the joint 

where 

f + At 

is defined as the impulsive force at impact, and AY- 3. Case Studies 
=Y(t+At)-Y(t) is the change in end-effector velocity l5 In this section, we illustrate some of the concepts 
before and after impact. Note that the impulsive force developed in the preceding section through simple ex- 

,is the time-integral of an ordinary finite impact force amples. 
T , which is very large but acts only for a very short Consider a Planar three-link manipulator with no 
time At. Equation (49) implies that the impact force is 2o Payload operating in a vertical Plane as shown in FIG. 
equal to the change in momentum before and after im- 2. The forward kinematic equations relating the absolute 
pact, which is the generalization of a well-known p h -  joint angles 8=[81, 82, 83]* (w.r.t. x-axis) to the tip 
ciple of mechanics for a point mass [lg]. Equation (49) (end-effector) position coordinates Y =[x,y]Tin the base 
can be written as frame are given by 

-., 

+ 
A i = M y - 1 ( 8 f l c  (51) 25 x = mSel + wse2 + cose3 (57) 

y = sinel + sin82 + sin83 

Suppose that the end-effector impacts a fixed stationary 
workpiece with zero before and after velocities. Then, 
from the theory of collisions [19], we have 

where the link lengths are taken to be unity. The differ- 
ential kinematic model is obtained as 

30 
. .  

[ Y+ A YJ Tn = -e  YTn (52) (58)  

where n is the unit vector normal to the plane of impact, 
and e is the constant coefficient of restitution denoting 35 
the type of collision taking place and lies in the range 
O S e S l ,  with e=O for purely plastic and e=J, for 
purely elastic collisions. Since the impact fqrce qar is 
directed along ;, it can be expressed as Tdr=Tcn, 

(48) and (49), we obtain 

The 1 x 3 null-space spanning vector Ne of the Jacobian 
Je is found by solving the equation NJe*=o to obtain 

where the scalar7 ,denotes the magnitud; of 7 From 40 (e3-e2), sin si,, (e2-el)l (59) 

The dynamic model relating the joint torques T =[TI, 
72,  ~3]Tto  the joint angles 8 is found to be - (53) -(I + e) +rl 

45 T=M(eje’+N(e, B)+qe)+ vi (604 
= n W; l (e )n  

EqUatiOn (53) giV‘S an expression for the magnitude of 
the impact force ‘F in terms of the manipulator config- 
uration 8 at impact and end-effector velocity Y before 
impact. This equation is also obtained in [71 using the Tn 

where the above terms are given by 

M I  1 =a+ 30 COS (e2 - el)+ IO COS (e3 -e2)+ io COS 

(63 -el) -- 
M12=M21=16.67+15 COS (e2-01)+5 COS 

joint-space dynamic model (3). Since My-i(6) is asym- 
metric matrix and I ]  n 11 = 1, from matrix theory [17] we (e3-el)+io COS (e3-e2) 

In order to utilize the redundancy to “soften” the e=15 g COS e2+5 g COS e3 

G3=5 g cos 83 

(@w 
impact for a given Y and n, we can define the objective 
function LX8)=n%fy-l(@n and find the manipulator 65 
configuration 8 that maximizes L@) subject to the 
end-effector motion. This can be achieved by formulat- 
ing the additional task as 

while g=9.81 m/sec2 is the gravitational constant, and 
the elements of N are complicated functions of 8 and 8 
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given in Appendix 5.3. In the derivation of the dynamic 
model (a), it is assumed that the robot links can be 
modeled by thin uniform rods with masses of 10 Kg 
each, and the joint viscous friction coefficients are 
V=diagXvi), VI =v~=v3=30 Nt.m./rad.sec.-l. Since 5 
the end-effector workspace is of dimension two (m=2), 
the degree-of-redundancy of the manipulator is 
r=n-m= 1. ms single degree-of-r,.dundancy will 
now be used to achieve different additional tasks. Six 

- wl sin 201 

The condition for optimality of Lfis now given by 

cases are considered: 
3.1 Mechanical-Advantage 
In this case, the tip is assumed to be in contact with a 

frictionless horizontal reaction surface at y=l with where 
stiffness coefficient &=100, as shown in FIG. 2, and 
the desired contact force is represented by +(e)=wlsin(e3-e2)sin 2e1+ysin (e1-e3)sin 

2e2+w3 sin (e2-el) sin 2e3 
15 

To simplify the analysis, suppose that wi = 1, 
w2=w3=O so that only the torque on joint 1, namely 

2o TB =cos 81, is optimized. Then, the optimality condition 
simplifies to 

(63) 

To apply the constant tip force of Fy= 1 in the y-direc- 
The additional joint torque required for tip contact 25 tion, the tip vertical coordinate must satisfy the Hook& 

F =  ( y ) .  
We wish to move the tip on the reaction surface with 
Fy= 1, while utilizing the redundancy to m i n i i e  the 
joint torques needed to produce Fy, thereby maximizing 
the mechanical-advantage of the manipulator. 

force is given by law 

+(e)=sin (e3-e2) sin 2e1=0 

It is seen that for a given tip contact force F, the re- Suppose that the initial joint angles are 8*=[90", -45", 
quired joint torque LTFis independent on the manip&- 35 4 5 ' ] T ~ ~  that initially the tip is at x o = f l y o =  1 and the 
tor configuration 8. From Section 2.3, the mechanical- optimality condition (63) is met with 7j-1 =O. Then the 
advantage of the manipulator Ma= 11 F I I / p' F 11 is desired trajectory for the tip y-coordinate is 
bounded by 

~ ~ ~ ) = y o + F Y / K e = I + l / l O O  (65) 

Let the desired trajectory for the tip x-coordinate be 
given by 

11 Je~~~-l<v~-lSMoSrm-l 40 

Using the end-effector Jacobian matrix given in (58) ,  
the above bounds are found to be 

(66) 
45 x ~ i )  = K + f ( I  - cos0.5r) 1/2 1R *<[&I .,z[-j&-] 

In order to control the tip as well as minimize the joint 
torque ~ f l ,  we require the following conditions 

where 

a=[3+2 COS 2(e1-e2)+2 COS 2(el-e3)+t COS 

2(e2--83)1$ 

He) = sinel + sinez + sin e3 = 1.01 
It is seen that the bounds on Ma are dependent on the 
manipulator configuration 8, and furthermore 55 +(e) = &(e3 - e 2 ) s i e 1  = o 

11 'I F 11 < f i l l  F 1 )  regardless of F. In this case, since 
the direction of the applied force F is known, we can The robot dynamic model (60) and the configuration 
maximize Ma by directly minimizing the joint torque controller given in Appendix 5.4 are simulated on a 
norm 11 F 11 . To this end, we utilize the redundancy to DECstation 3100 computer with a sampling period of 
minimize the weighted sum-of-squares of joint torques 60 one millisecond. The simulation results are shown in 
Lfdefmed as FIGS. 30-3d. FIG. 30 shows the evolution of the robot 

configuration throughout the task. It is seen that link 1 
is kept as closely as possible to the initial optimal config- 
uration 81=W @e., vertical) so that T A  is small, subject 

(62) 

65 to performing the specified tip motion FIGS. 36 and 3c 
illustrate that the tip x-msition and y-contact force 
track their desired trijectbries very closely. The varia- 
tion of the hemat ic  function 4 representing the opti- where {wl, w2, ~ 3 1  are the joint weighting factors. The 

gradient of Lfis obtained as 
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(72) 

mality condition is shown in FIG. 3d. It is seen that 4 
stays close to its initial value of zero throughout the 
task. 

?i; corresponding to the tip force F attains its minimum 
value of zero when 81=&=83=900,  disregarding the 
tip position constraint. This corresponds to the robot 
fully stretched out vertically, which puts the robot in a 
singular configuration with the tip on the workspace 
boundary. In other words, the maximally singular con- 
figuration of the robot results in the absolute minimum 
joint torque for a given tip force, and hence maximum 
mechanical- advantage. Therefore, in order to preclude 
singular configurations, the maximization of mechani- 15 
cal-advantage must be considered in conjunction with 
other criteria such as manipulability [6]. 

X ~ I )  = \r; + sin 0.51 

ydr) = cos 0.51 Finally, from (61), it is observed that the joint torque 

so that the tip a circle with center ( x = q y y = ~ )  
and radius 1; since we have (w-a2+y2= 1. mere- 
fore, for tip motion and gravity we re- 
quire 

(73) 
de) = mel + mez + me3 = V7 + sin 0.51 

fie) = S W  + Sin82 + Sine3 = 

He) = w e 2  - el)si 2e3 = o 

0.5r 

3.2 Gravitational Torque 
In this case, we wish to move the tip on a Circular 

The robot dynamics (60) and the configuration con- 
troller in Appendix 5.4 are simulated, and the simulation 

path, while utilizing the redundancy to minimize the 2 0  results are presented in FIGS. &&. The evolution of 
gravity loadings on the joints. the robot configuration throughout the motion is shown 

in FIG. 4a. It is seen that link 3 stays as closely as possi- 
gravity loading is given by ble to the initial optimal configuration 83=W &e., 

vertical) so that rg3 is small, compatible with the execu- 
(68) 25 tion of the specified tip motion. FIGS. 4b and 4c show 

the responses of the tip x and y coordinates, and illus- 
trate that the desired trajectories w and yd are tracked 
very closely. The variation of the kinematic function 4 
is depicted in FIG. 4d, which shows that 4 stays close 

From (m), the component of joint torques due to 

30 to its desired value 4d=O throughout the task. 
I 5 + 3 COse2 +  COS^) 

= ae) = 5 3 c0se2 i.  COS^^ I coSe3 

It is seen that for a given tip position, the joint torque 
Tg due to gravity loading is configuration-dependent. 
The goal for redundancy resolution in this case is to 
configure the internal links of the robot such that a 
weighted sum-of-squares of gravity torques Lg is mini- 35 throughout the tip motion. 
mized, that is 

3.3 ~~~~i~ control 
In this case, we wish to move the tip on the vertical 

straight line at X =  1.5, while utilizing the redundancy to 
make the inertia Seen at joint 1 configuration-invariant 

From (60b), it is seen that the joint inertia matrix 
M(0) is dependent only on the manipulator configura- 
tion 8. Thus, the redundancy can be resolved based on 
the inertia matrix. For instance, let the initial joint an- 

4o gles be 80=[60°, -60", 60"]Tso that the tip is initially at 
XO= 1.5, 

(69) 
Lg = IITgl i  d = wiri1 + wri2 + w37$ 

= 25g2w1[s cosel + 3 cosez +  COS^^]^ + 
2 5 g 2 ~ [ 3   COS^^ +  COS^^]^ + 2 5 g 2 ~ ~ [ ~ 0 s e ~ ] 2  

where {wl, wz, w3} are the joint weighting factors. For 45 
instance, let us choose w1=wz=O, w3= 1 so that only 

K m = 2 ,  
the gravity torque on joint 3, namely rg3 = 5 g cos 83, is 
optimized. Thus, we obtain and from ( a b )  the initial value of joint 1 inertia is 

M ~ ~ ( ~ O ) = K I + ~ O  cos (e20-e10)+ IO COS 

(7W 50 (eao-eZo)+ IO U)S (em-el0)=3o (74) 

(70b) Let the desired trajectories for the tip coordinates be 

Xd(1) = 1.5 
55 

(75) 

Y7 ydr) = 7 ~ ~ 0 . 5 1  
Therefore, in order to optimize L, subject to the tip 
constraint, we require 

Therefore, in order to keep Mll(8) constant and control 
~ '7  % = - 2 5 2  sin(e2 - el)si 283 = o (71) 60 the tip coordinates, we need 

Suppose that the reaction surface used in Case One is 
removed (i.e., F=O), and the tip is free to move in both 
x and y directions. Initially, the joint angles are 65 
80=[45", -45", 90"ITand hence the tip is at xo= fi 
yo= 1 and the optimality condition (56) is met with 
rg3=o. Let the desired tip trajectories be given by 

He) = emel + &.e2 + me3 = 1.5 (76) 

Ae) = sinel + + sine3 = $., coso,51 

Mll(e) = KI + 3h0s(,92 - el)  + Iocos(~3 - e2) + 
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-continued configuration in FIG. 60 shows the internal movement 
Iws(e3 - 0,) = 30 of the robot links to maintain the compliance 4 0 )  

constant. FIGS. 66-6d show the variations of the tip x 
The robot dynamics (60) and the configuration Con- and Y coordinates and compliance c22(0), and illustrate 

troller in Appendix 5.4 are simulated, and the simulation 5 that close trajectory tracking is achieved throughout 
results are given in FIGS. So-Sd. FIG. So depicts the the motion. 
evolution of the robot configuration during the task. It 3.5 Tip Sensitivity 
is observed that as the tip moves closer to the base in In this case, the tip is assumed to be at the point 
mid-motion and joint 1 inertia is decreased, the inner p[X=o, Y=(l -l-fi)m], and make contact with a stiff 
links move outward to increase the inertia, as to 10 horizontal reaction surface at y = ( l + * a  We 
mainwin the total inertia M1l constant. For Some tip wish to find the optimal configuration of the manipula- 
trajectories, it may not be possible to keep constant tor SO that the joint displcements A0=(A01, A&, A83)T 
throughout the motion; e.g., when the tip is required to due to servo errors have the least effect on the y-coor- 
move out toward the workpace boundary, all dinate of the tip, Le., the sensitivity of y to A8 is mini- 
have lo move out accordingly and Mll is increased 15 mized. This is because any perturbation Ay in y will be 
inevitably. However, in this case, the variations of Mll magnified by the stiffness K of the reaction surface and 
from its initial value Mll(ea) can be minimized. FIGS. will produce and undesirable additional contact force 
56 and SC show that the tip x and y coordinates track KAY. 
their reference trajectories very closely. The variation TO find the optimal configuration, we first parameter- 
of the joint 1 inertia is depicted in FIG. 5d and indicates 20 ize the self-motion of the manipulator in terms of the 
the invariance of MI I(@) throughout the motion. first joint angle 01 for the given tip location P=[O, 

(l+d%@. A simple geometrical anaylsis shows that 
the range of variation of 81 which keeps the tip fixed at 
p is given by 45”581S 135”. Let the points A and B 

25 represent the ends of the first and second links of the 
arm. For each value of 01, the point A is fixed and we 
have a two-link arm (AB, BP) formed from the second 

3.4 Compliance Control 
The goal for redundancy resolution in this case is to 

maintain a constant tip compliance while the tip is tra- 
versing a prescribed path. 

The compliance matrix C(0) relating the tip forces to 
the tip deflections is given by (43) as 

sin%l &e2 sin203 -sin2e1 sin2e2 sin2e3 
2k3 1 2k1 2k2 

sin2e1 sin2e2 sin2e3 c d e l  ------ - 
2k3 kl +-+- kz k3 

c(e) = ie(e)K-1Q(e) = 

where {kl, k2, k3} are the joint stiffness coefficients. Let 
us suppose that kl=kz=k3=0.1 and the tip is carrying 
a payload of mass m so that the Cartesian force 

and third links. Given A and P, there are two inverse 
kinematic solutions ABIP and AB2P for (02, 03) corre- 
sponding to the “elbow-up’’ and “elbow-down’’ config- 
urations. Because of symmetry of the solutions, here we 

40 only consider the “elbow-up” solution ABlP for which 
B1 is to the right-hand side of B2. We now wish to find 
the value of 01, the redundancy parameter, for which 
the tip sensitivity in the y-direction is minimized given 
the joint displacements A0. From Section 2.5, the tip 

45 and joint displacements are related through the Jaco- 
bian matrix J, as 

is acting on the tip. The tip deflection caused by the 
payload is 

(80) 
-sine1 -sine2 -sine3 
msel mez 

-sin201 - sin202 - sin203 

 COS^^^ + 2 ~ 0 ~ 2 0 ~  + zCos2e3 
A Y  = C(0)F = - 5  mg 

We now wish to utilize the redundancy to ensure that 
the tip vertical deflection under the payload is indepen- 
dent Of the robot configuration. The robot is assumed to 
be initially at 80=[90”,0”,-90”]T, so that the tip is at 55 by 
xo= 1, yo=O, and the corresponding tip y-compliance is 
c22(Oo)=10. We wish to keep c22(0) constant while 
moving the tip on the vertical straight line at x= 1. This 
requires 

Hence the objective function to be is given 

L=(Ay)2=(Ael COS e 1 + ~ e 2 ~  e2+he3 COS e3)2 (81) 

The necessary condition for optimality subject to the tip 
constraint is 

de)=m el+- e2+- e3=1 

v(e)=sin el+sin e2+sin e2=o.s(i--cOs 0.52) aL 
(79) +((e) = N~~ = o 

c22(e)= Iqcos2 el + W S ~   COS^^+ IO 
65 where N, is given by (59), that is 

2[A& c o s ~ ~ + A ~ ~ c o s ~ ~ + A 0 ~ c o s ~ ~ ] [ A 0 1  sin elsin 
(02-03)+AO2 sin 02 sin (03-Bl)+A03 sin 03 sin 
(el - e2)i =o 

The robot dynamics (60) and the configuration con- 
troller in Appendix 5.4 are simulated, and the results are 
presented in FIGS. 6u-6d. The evoluation of the robot (82) 
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Given the numerical values of the joint displacements 
as A8=]5’, lo, 1’3 the value of the objective function L 
and its projected gradient +(e) are plotted in FIGS. 
70-76 for variations in the redundancy parameter 81. 
From FIG. 70, for the “elbow-up” solution, the opti- 
mum configuration of the manipulator for which the tip 
y-sensitivity is minimized is found to be 

el =w,e2= ~2.w.e~ = 127.91‘ (83) 

Note that since A82=A83 in this case, the contributions 
from joints 2 and 3 to the tip displacement Ay cancel 
out, and the value of 81=90“ makes the contribution of 
A81 to Ay zero. Furthermore, note that from FIG. 76, 
the necessary condition for optimality is satisfied at 
three different sets of joint angles. However, from FIG. 
70, the other two sets do not correspond to truly opti- 
mal solutions. 

3.6 Impact Force 
In this case, the redundancy is utilized to reduce the 

impulsive force when the tip impacts a reaction surface 
and the collision has the coefficient of restitution e=  I .  
As in Section 3.5, sup ose that the reaction surface is 

toward the contact point P[x=O, y = ( l + * m  on 
the surface with the approaching Cartesian velocity 
Y=[O l]T just before impact. From Section 2.7, the 
magnitude of the impact force is given by 

located at y=(l + P 7)/* and the tip is moving 

where n=[O 1]T, My-l=JeM-lJeT, and the subscript 
2,2 refers to the (2,2) element of the matrix. It is seen 
that the size of the impact force i cis dependent on the 
manipulator configuration 8, and can therefore be af- 
fected through redundancy resolution. As in Section 
3.5, the redundancy is parameterized in terms of the first 
joint angle 81, while the remaining joint angles 82 and 
83 are solved for given 81 and the tip position (x,y)..In 
order to find the optimal value of 81 that minimizes T c, 
we define L(8)= [My-1(8)]2,2 as the objective function 
and express the necessary condition for optimality as 
+(8)=0, where 

is the projected gradient of L. FIG. & shows the varia- 
tion of the kinematic function +(e) representing the 
optimality condition as a function of the redundancy 
parameter 81 for the “elbow-up” solution. It is seen that 
+(8)=0 when 81=67.95” or 81= !32.80”, indicating 
that the impact force maanitudeiF will have ex- 

24 

trimums (maximum or minimum) at th&e two values of 
81. FIG. 86 shows the variation of &,as a fyction of 
81. It is seen that the impact force magnitude T varies 
in the range (3.4,20.5) when 81 changes in the allowable 60 
range (49 ,  135”), with the maximum occuring at 
81 = 132.80”. The minimum value of $ ,at 3.4 is found to 
occur for 81=67.95” and the corresponding values of 
82 and 83 for the “elbow-up” solution are found to be 
82=70.65” and 83=134.96”. Hence the optimal arm 65 
configuration 

e=[67.95’, 70.65’, i34.96yT (85)  

prior to contact produces the minimal impulsive force 
at impact with the reaction surface. Note that in this 
case the links one and two are nearly colinear (to within 

5 2.7”) which is not a desirable configuration from the 
manipulability point of view. 

4. Conclusions 
New goals for redundancy resolution based on ma- 

nipulator dynamics and end-effector characteristics are 
10 introduced in this specification. These goals include 

reduction of joint torques due to gravity or inertial 
effects and improvement of mechanical advantage, ve- 
locity ratio, end-effector compliance, sensitivity or im- 
pact force. Thus in the manipulator dynamic model, the 

15 static torques due to payload, contact force and gravity 
loading can be controlled directly, while the inertial 
torque can be influenced through the end-effector mass 
matrix. The configuration control approach used previ- 
ously to obtain desirable kinematic characteristics is 

20 now employed to improve end-effector or dynamics- 
based measures of performance. Although some of the 
goals for redundancy resolution described here can be 
computationally intensive for on-line control implemen- 
tation, they provide a viable approach for off-line mo- 

25 tion planning. The control schemes presented in this 
specification utilize the redundancy of a robot based on 
the task to be performed. These task-based redundancy 
resolution schemes exploit the redundant joints to a 
much greater extent. 

There is a subtle difference in optimization using the 
conventional Jacobian pseudoinverse control and the 
configuration control approach. In the pseudoinverse 
control, the objective function L is locally improved 
(increased or decreased) at each incremental step, and is 

35 not necessarily optimized (maximized or minimized) 
during the end-effector motion. In other words, the 
pseudoinverse control provides a feasible direction 
without solving the complete optimization problem [5 ] .  
In the configuration control approach. however. the 

30 

40 optimality condition (Le., 

45 is forced explicitly as the additional task constraint 
during the end-effector motion, and thus locally optimal 
configurations are closely maintained throughout the 
trajectory. Note that for a general objective function 
L(@, the gradient aL/a8 is not readily available analyti- 

50 cally and must often be computed numerically using 
differencing. 

The individual additional tasks described in this spec- 
ification for redundancy resolution can be combined 
together with user-assigned priorities. In fact, it is often 

55 advisable to consider the main goal for redundancy 
resolution in conjunction with other criteria to ensure 
that the manipulator configuration is desirable from an 
overall standpoint. The “optimal” joint trajectory that 
will best satisfy the individual additional tasks, as well 
as the basic task of end-effector motion, can then be 
found using the method described in [14]. This frame- 
work can also be used to avoid potential conflicts be- 
tween the end-effector motion and the redundancy 
resolution constraints, so that the end-effector tracking 
accuracy is not sacrificed unduely for satisfaction of the 
constraints [14]. 

Further research on expanding the redundancy reso- 
lution goals and improving the computational aspects of 



5,294,873 

the end-effector and dynamics-based configuration con- 
trol schemes is currently underway. 
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speaking, equation (89) is only a necessary condition for 
optimality. However, by choosing L(8) to be a convex 
function, as is usually possible in robotics applications, 5.3 Coriolis/centrifugal torque 
condition (89) becomes both necessary and sufficient. In this appendix, expressions are given for the Cori- 
Equation (89) was first derived by Baillieul [20] using a 5 olis/centrifugal torque in the Example of Section 3. 
different approach and used for redundancy resolution In the dynamic model (60) of the three-link robot, the 
in the extended Jacobian method. By treating elements of the Coriolis and centrifugal torque vector N 

(e, 8) are as follows: 

the m eigenvalues of Hm and (n-m) zeros; that is, [a+, 
. . . , am', 0, . . 

VT 

y e )  = N+ ae 10 N~ = +C$~(~Z.- il)si(ez - el) - Idl(83 - iz)si(e3 - ez) - 
ioel(e3 - 01)5in(03 .- 3) - IS (ez - B&m(ez - el) - 

iq82 - e l X e 3  - t~)si(e3 - e2) - . 5ib2,- e l ~ e 3  - el)5in(e3 81) - 
s(e3 - e w ( e 3  - el) - s(b3 - e~xb3 - 61)sin(e3 - el) 

as the kinematic function and setting Q(t)=O, the opti- 
mization problem is formulated as an additional task 
within the configuration control framework. Therefore, . .  . 
the extended JaGobian method of Baillieul is obtained as 15 NZ = --10e1(e3 - .e2)sinp3 
a special case of the configuration control scheme. 

eigenvalues of the mXm matrix Hm(8)=J@)JeT(8) and 
the n X n matrix HY(8) = J,T(8)J@). 

Je in the singular-value decomposition (SVD) form 

e2).- 
iqe2 - elxe3 - ezbin(e3 - e2) - 

loBl(e2 - e l ) s ~ 3  - 02) t 

5.2 Relationship between eigenvalues of Hm and H, 
In this appendix, we find the relationship between the 

5 ( i 3  - - e2) + isB1%ii(ez - el) + si1%in(e3 - el) 
N3 = 5i1qj(e3 - ez) +. 5i1z+,(e3 - el) + 

20 s(e2 - Bl)si(e3 - ez) 
Let us express the m X n end-effector Jacobian matrix 

5.4 Configuration Controller 
In this appendix, we describe the configuration con- 

Following [9], the configuration controller for the 
Je= Lrz Vr (91) 

where U and V are m x m  and n x n  orthogonal matri- 
ces, Le., U-I=U*and V-l=Vr, while Z is an m x n  

troller used in the Example of Section 3. 

robot in Section 3 is given by 
25 

matrix, m<n, with the special diagonal form 'I' = Jr[d(t)+Kp(f)E+Kdt),6+ C(t)&+B(t)x 
d+A(f)Xdl (94) 

30 where J is the 3 x 3  augmented Jacobian matrix, 
E=Xd-X is the 3 x  1 configuration tracking-error 
vector, and the controller terms {d, Kp, K ,  C, B, A are 
generated on-line according to the following adaptation 
laws: 

35 

q = 5000E + SWk; d(t) = 0.5 I b g(t)dr 

Kp(f) = 2 I q(t)Efit)dt; v(t) = 2 I b q(f)kr(r)dt 

urn . 

in which ui, . . . , a m  are the m singular values of Je. 
Then, we obtain 40 

(92) H ,  = JJeT = (LrzVr)(VZrUT) = U(ZZr)UT 

(95) 

0 
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30 
-continued 

Case 3.4 

joints and comprises a sum over all of said n joints of 
squares of elements of a vector of gravity loading on 
respective joints. 

3. The method of claim 2 wherein said gravity load- 
5 ing function is defined in terms of n individual 

weighting factors associated with respective ones of 
said n joints, said weighting factors determining the 
joints for which gravity loading is minimized. 

4. A method of controlling a redundant robot having 
lo n joints operating in m-dimensional task space with 

redundancy r=n-m, and having an end effector, said 
method comprising: 

first defining a basic task motion Of said robot within 
a set of end-effector coordinates, corresponding to 
m constraints on movement of said n joints; 

second defining not more than r constraints on said 
basic task motion corresponding to a minimization 
of joint inertia on said joints, wherein said second 

defming an n-by-r matrix operator, Ne, spanning a 
null space of a Jacobian operator of said end- 
effector, 

defining an n-by-1 vector which is a partial deriva- 
tive of a joint inertia function with respect to 
angles of said joints, and 

setting the product of said matrix operator and said 
vector to zero as a minimization condition; and 

controlling said joints so as to simultaneously fulfill 
the m constraints of said basic task motion and the 
r constraints of said minimization of joint inertia. 

5. The method of claim 4 wherein said joint inertia 
function is a function of the angles of all of said n joints 
and comprises a sum over all of said n joints of off-dia- 

35 gonal joint-coupling elements of a joint inertia matrix 
for each one of said joints. 

6. A method of controlling a redundant robot having 
n joints operating in m-dimensional task space with 
redundancy r=n-m, and having an end effector, said 

C(r) = 0.5 I : q(r)X,&)dr 

B(f) = 0.5 I q(f),$(r)dt 

4 1 )  = 0.5 I q(r)$(t)dr 

where the initial values of all the controller terms are 
chosen as zero. Note that the same control law (94) and 
adaptation laws (95) are used in all four Cases 3.1-3.4. 15 
For each case, the corresponding augmented Jacobian 

J = (.:.I 2o defining comprises, 

is used in the control law (94), where Je is given in (58 )  
and J, in each case is as follows: 

Case 3.1 25 
Jc=[2 sin (63-02) cos 201, -cos (03-02) sin 201, 

cos (03-02) sin 2 

Case 3.2 
30 

&=[-cos (02-01) sin 2 03. cos (02-01) sin 2 8 3 , ~  
sin (e2-el) COS 2 

Case 3.3 

Jc=[30 sin (02-0l)+lO sin (03-01), -30 sin 
(02-01)+10sin (03-10 sin (83--82)-10 sin 
(03 -e 

40 method comDrisine: 
Jc=[ -  10 sin 201, - 10 sin 202, - 10 sin 2031 

What is claimed is: 
1. A method of controlling a redundant robot having 

n joints operating in m-dimensional task space with 45 
redundancy r=n-m, and having an end effector, said 
method comprising: 

first defining a basic task motion of said robot within 
a set of end-effector coordinates, corresponding to 
m constraints on movement of said n joints; 

second defining not more than r constraints on said 
basic task motion corresponding to a minimization 
of gravity loading on said joints, wherein said sec- 
ond defining comprises, 
defining an n-by-r matrix operator, Ne, spanning a 55 

null space of a Jacobian operator of said end- 
effector, 

defining an n-by-1 vector which is a partial deriva- 
tive of a gravity loading function with respect to 
angles of said joints, and 

setting the product of said matrix operator and said 
vector to zero as a minimization condition; and, 

controlling said joints so as to simultaneously fulfill 

50 

60 

first definGg a byasic task motion of said robot within 
a set of end-effector coordinates, corresponding to 
m constraints on movement of said n joints; 

second defining not more than r constraints on said 
basic task motion corresponding to an optimization 
of joint mechanical advantage of said joints, 
wherein said second defining comprises, 
defining an n-by-r matrix opertor, Ne, spanning a 

null space of a Jacobian operator of said end- 
effector, 

defining an n-by-1 vector which is a partial deriva- 
tive of a joint mechanical advantage function 
with respect to angles of said joints, and 

setting the product of said matrix operator and said 
vector to zero as a minimization condition 
whereby to minimize joint mechanical advan- 
tage; and 

controlling said joints so as to simultaneously fulfill 
the m constraints of said basic task motion and the 
r constraints of said optimization of joint mechani- 
cal advantage. 

7. The method of claim 6 wherein said ioint mechani- 
the m constraints of said basic task motion and the cal advantage function is a function of the angles of said 
r constraints of said minimization of gravity load- 65 joints and comprises a projection of an end effector 
ing. Jacobian matrix of a respective joint and a unit vector of 

a direction of applied force of an end effector for each 
joint. 

2. The method of claim 1 wherein said gravity load- 
ing function is a function of the angles of all of said n 
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8. A method of controlling a redundant robot having 
n joints operating in mdimensional task space with 
redundancy r=n-m, and having an end effector, said 
method comprising: 

first defining a basic task motion of said robot within 
a set of end-effector coordinates, corresponding to 
m constraints on movement of said n joints; 

second defining not more than r constraints on said 
basic task motion corresponding to an optimization 
of an end effector-to-joint angle velocity ratio, 
wherein said second defming comprises, 
defining an n-by-r matrix operator, Ne, spanning a 

null space of a Jacobian operator of said end- 
effector, 

defming an n-by-1 vector which is a partial deriva- 
tive of an end effector-to-joint angle velocity 
ratio function with respect to angles of said 
joints, and 

setting the product of said matrix operator and said 
vector to zero as a minimization condition; and, 

controlling said joints so as to simultaneously fulfill 
the m constraints of said basic task motion and the 
r constraints of said optimization of an end effector- 
to-joint angle velocity ratio. 

9. The method of claim 8 wherein said end effector- 
to-joint angle velocity ratio function comprises projec- 
tions of end effector Jacobian matrices of respective 
joints and an angular velocity vector of respective 
joints. 
10. A method of controlling a redundant robot hav- 

ing n joints operating in m-dimensional task space with 
redundancy r=n-m, and having an end effector, said 
method comprising: 

first defminp. a basic task motion of said robot within 
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a set of end-effector coordinates, corresponding to 
m constraints on movement of said n joints; 

second defining not more than r constraints on said 
basic task motion corresponding to optimization of 40 
end effector movement sensitivity, wherein said 
second defining comprises, 
defining an n-by-r matrix operator, Ne, spanning a 

null space of a Jacobian operator of said end- 
effector, 

defining an n-by-1 vector which is a partial deriva- 
tive of an end effector movement sensitivity 
function with respect to angles of said joints, and 

setting the product of said matrix operator and said 5o 
vector to zero as a minimization condition; and, 

controlling said joints so as to simultaneously fulfill 
the m constraints of said basic task motion and the 
r constraints of said optimization of end effector 

11. The method of claim 10 wherein said end effector 
movement sensitivity function comprises a trace of a 
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product of an end effector Jacobian matrix with its 
transpose. 
12. A method of controlling a redundant robot hav- 

ing n joints operating in m-dimensional task space with 
redundancy r=n-m, and having an end effector, said 
method comprising: 

first defining a basic task motion of said robot within 
a set of end-effector coordinates, corresponding to 
m constraints on movement of said n joints; 

second defining not more than r constraints on said 
basic task motion corresponding to optimization of 
end effector compliance, wherein said second de- 
fining comprises, 
defming an n-by-r matrix operator, Ne, spanning a 

null space of a Jacobian operator of said end- 
effector, 

defining an n-by-1 vector which is a partial deriva- 
tive of an end effector movement compliance 
function with respect to angles of said joints, and 

setting the product of said matrix operator and said 
vector to zero as a minimization condition; and, 

controlling said joints so as to simultaneously fulfill 
the m constraints of said basic task motion and the 
r constraints of said optimization of end effector 
compliance. 

13. The method of claim 12 wherein said end effector 
compliance function comprises a sum of squares of 
matrix elements of a projection of an end effector Jaco- 
bian matrix on a joint stiffness matrix. 
14. A method of controlling a redundant robot hav- 

ing n joints operating in m-dimensional task space with 
redundancy r=n-m, and having an end effector, said 
method comprising: 

first defining a basic task motion of said robot within 
a set of end-effector coordinates, corresponding to 
m constraints on movement of said n joints; 

second defining not more than r constraints on said 
basic task motion corresponding to optimization of 
end effector impact force, wherein said second 
defining comprises, 
defining an n-by-r matrix operator, Ne, spanning a 

null space of a Jacobian operator of said end- 
effector, 

defining an n-by-1 vector which is a partial deriva- 
tive of an end effector impact force function 
with respect to angles of said joints, and 

setting the product of said matrix operator and said 
vector to zero as a minimization condition; and, 

controlling said joints so as to simultaneously fulfill 
the m constraints of said basic task motion and the 
r constraints of said optimization of end effector 
impact force. 

15. The method of claim 14 wherein said end effector 
impact force function comprises a projection of an end 
effector mass matrix on a unit vector of an impact force 
of an end effector. * * * * *  
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