POLYIMIDES CONTAINING PENDENT SILOXANE GROUPS

Inventors: John W. Connell, Yorktown; Terry L. St. Clair, Poquoson; Paul M. Hergenrother, Yorktown, all of Va.

Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration, Washington, D.C.

Abstract

Novel polyimides containing pendent siloxane groups (PISOX) were prepared by the reaction of functionalized siloxane compounds with hydroxy containing polyimides (PIOH). The pendent siloxane groups on the polyimide backbone offer distinct advantages such as lowering the dielectric constant and moisture resistance and enhanced atomic oxygen resistance. The siloxane containing polyimides are potentially useful as protective silicon oxide coatings and are useful for a variety of applications where atomic oxygen resistance is needed.

11 Claims, No Drawings
POLYIMIDES CONTAINING PENDENT SILOXANE GROUPS

ORIGIN OF INVENTION

The invention described herein was made by employees of the United States Government and may be manufactured and used by or for the Government for governmental purposes without the payment of any royalties thereon or thereof.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to polyimides. In particular, it relates to polyimides containing siloxane groups, especially pendant siloxane groups.

2. Description of the Related Art

Polyimides (PI) comprise a large family of heterocyclic polymers which were first prepared in the late 1950s. Since then a large volume of information has been generated concerning the synthesis, characterization, use, physical and mechanical properties of these polymers. There are a number of reports concerning polyimides containing siloxane groups in the main-chain (i.e., polymer backbone). A patent describing polyimides containing siloxane groups in the backbone dates back to 1961, (D. L. Bailey and M. Pike, U.S. Pat. No. 2,998,406 to Union Carbide Corporation). These polymers were first described in the open literature in 1966, [V. H. Kuckertz, *Die Makromolekular Chemie*, 98, 101 (1966)], and they were prepared from 1,3-bis(3-amino-phenyl)-1,1,3,3-tetramethyldisiloxane and pyromellitic dianhydride. Another paper involved the preparation of silicon containing dianhydrides and their subsequent reaction with aromatic diamines to form polyimides, [J. K. Gilliam and H. C. Gilliam, *Polymer Engineering and Science*, 13(6), 447 (1973)]. Other papers that followed include: I. Yilgor, E. Yilgor, B. C. Johnson, J. Eberle, G. L. Wilkes and J. E. McGrath, *Polymer Preprints*, 24(2), 78 (1983); S. Maudal and T. L. St. Clair, *International Journal of Adhesion and Adhesives*, 4(2), 87 (1984); B. C. Johnson, I. Yilgor and J. E. McGrath, *Polymer Preprints*, 25(2), 54 (1984); A. Berger, *Society for the Advancement of Material and Process Engineering Series*, 30, 64 (1985); and C. J. Lee, Ibid., 30, 52 (1984).

All of the above mentioned related art pertain to polyimides containing siloxanes in the polymer backbone.

SUMMARY OF THE INVENTION

A primary object of the present invention is to provide what is not available in the prior art, viz., novel polyimides containing pendant siloxane groups, which polyimides are resistant to atomic oxygen, have low dielectric constants and low moisture absorption characteristics along with unique separation characteristics, and which polyimides are useful as coatings, adhesives, films, membranes, moldings, and composite matrices.

According to the present invention, this primary object and other objects and benefits were achieved by providing novel polyimides containing pendant siloxane groups, which were prepared by the reaction of a hydroxy containing polyimide with either hydrogen terminated siloxane compounds or oligomers, or by the reaction of chloro terminated silicon compounds or oligomers. The resulting solutions were cast into thin films and the solvent subsequently removed by heating under vacuum. In some cases the films were translucent with the color varying from light tan to dark brown. The glass transition temperatures of the polyimides containing pendant siloxane groups ranged from 167° to 235° C. Thermogravimetric analysis showed a 5% weight loss occurring around 380° C. in both air and nitrogen. Thin film tensile properties determined at 23° C. gave tensile strengths and moduli from 8.2-15.6 ksi and 248-453 ksi, respectively.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Synthesis of the polyimides containing pendant siloxane groups (PISOX) involved the initial preparation of hydroxy containing polyimides (PIOH). The PIOH were prepared as depicted in equation 1 below from the reaction of a diamino benzhydrol compound and an aromatic dianhydride in at 23° C. to yield a poly(amide-acid). The poly(amide-acid) was added to a refluxing solution of DMAc/NMP or m-cresol and the solvent subsequently removed by heating under vacuum. In some cases the films were translucent with the color varying from light tan to dark brown. The glass transition temperatures of the polyimides containing pendant siloxane groups ranged from 167° to 235° C. Thermogravimetric analysis showed a 5% weight loss occurring around 380° C. in both air and nitrogen. Thin film tensile properties determined at 23° C. gave tensile strengths and moduli from 8.2-15.6 ksi and 248-453 ksi, respectively.
The PIOH must remain soluble in order to prepare the PISOX. The PISOX was prepared as shown in equation 2 from the PIOH and a hydrogen terminated siloxane compound or oligomer or a chloro terminated silicon compound or oligomer. A commercially available PIOH [Cemota Syntorg IP 605 or IP 608 (U.S. Pat. No. 3,609,123)] was also used to prepare PISOX as shown in equation 3.
Random copolymers which contained various amounts of pendent siloxane groups and hydroxy groups were also prepared. These copolymers were synthesized as depicted in equations 4 and 5 by reacting less than 100% of the stoichiometric amount of the appropriate silicon or siloxane compound with the Cemota Syntorg IP 608 PIOH. The polymer solutions were cast into thin films, dried under vacuum and characterized.
Where \(p \) = fraction (percentage) of hydroxyl containing repeat unit and \(q = 1 - p \) fraction (percentage) of oxoane containing repeat unit.
In one aspect the invention is a polyimide containing siloxane groups and having repeating units selected from the group consisting of

\[
\begin{array}{c}
\text{O} \\
\text{N} \\
\text{Ar} \\
\text{N} \\
\text{O} \\
\text{H} \\
\text{C} \\
\text{O} \\
\text{N} \\
\end{array}
\]

and

\[
\begin{array}{c}
\text{O} \\
\text{N} \\
\text{Ar} \\
\text{N} \\
\text{O} \\
\text{H} \\
\text{C} \\
\text{C} \\
\text{X} \\
\text{X} \\
\text{O} \\
\text{N} \\
\text{O} \\
\end{array}
\]

wherein the catenation of the nitrogen group is selected from the group consisting of: (A) meta and para, (B) meta-meta, para-para, and meta-para and (C) as shown; and wherein Ar is a radical selected from the group consisting of:

\[
\begin{array}{c}
\text{O} \\
\text{N} \\
\text{Ar} \\
\text{N} \\
\text{O} \\
\text{H} \\
\text{C} \\
\text{O} \\
\text{N} \\
\text{O} \\
\end{array}
\]

wherein Y is a bond or is a substituent selected from the group consisting of:

\[
\begin{array}{c}
\text{O} \\
\text{S} \\
\text{S} \text{O}_{2} \\
\text{CH}_{2} \\
\text{O} = \text{C} \\
\text{C} \text{H} \text{H}_{3} \\
\text{C} \text{F} \text{F}_{3} \\
\text{Si} \text{C} \text{H} \text{H}_{3} \\
\text{Si} \text{C} \text{H}_{2} \text{F} \text{F}_{3} \text{F}_{3}
\end{array}
\]

wherein X is a bond or is a substituent selected from the group consisting of:
wherein Z is a substituent selected from the group of:

- \(\text{CH}_3 \)
- \(\text{Si-CH}_3 \)
- \(\text{Si-CH}_2 \text{CH}_3 \)
- \(\text{Si-CH}_2 \text{CH}_2 \text{CH}_3 \)
- \(\text{Si-CH}(\text{CH}_3)_2 \)
- \(\text{Si-CH}_3 \)
- \(\text{Si-CH}_2 \text{CH}_3 \)
- \(\text{Si-CH}_2 \text{CH}_2 \text{CH}_3 \)
- \(\text{Si-CH}(\text{CH}_3)_2 \)
- \(\text{Si-CH}_3 \)
- \(\text{Si-CH}_2 \text{CH}_3 \)
- \(\text{Si-CH}_2 \text{CH}_2 \text{CH}_3 \)
- \(\text{Si-CH}(\text{CH}_3)_2 \)
- \(\text{Si-CH}_3 \)
- \(\text{Si-CH}_2 \text{CH}_3 \)
- \(\text{Si-CH}_2 \text{CH}_2 \text{CH}_3 \)
- \(\text{Si-CH}(\text{CH}_3)_2 \)
- \(\text{Si-CH}_3 \)
- \(\text{Si-CH}_2 \text{CH}_3 \)
- \(\text{Si-CH}_2 \text{CH}_2 \text{CH}_3 \)
- \(\text{Si-CH}(\text{CH}_3)_2 \)
- \(\text{Si-CH}_3 \)
- \(\text{Si-CH}_2 \text{CH}_3 \)
- \(\text{Si-CH}_2 \text{CH}_2 \text{CH}_3 \)
- \(\text{Si-CH}(\text{CH}_3)_2 \)
- \(\text{Si-CH}_3 \)
- \(\text{Si-CH}_2 \text{CH}_3 \)
- \(\text{Si-CH}_2 \text{CH}_2 \text{CH}_3 \)
- \(\text{Si-CH}(\text{CH}_3)_2 \)
- \(\text{Si-CH}_3 \)
- \(\text{Si-CH}_2 \text{CH}_3 \)
- \(\text{Si-CH}_2 \text{CH}_2 \text{CH}_3 \)
- \(\text{Si-CH}(\text{CH}_3)_2 \)
In another aspect the invention is a copolyimide containing a random mixture of pendent hydroxy and siloxane groups and having repeating units selected from the group consisting of:

wherein \(n \) is an integer between 1 and 1000; and wherein \(m \) is an integer between 1 and 1000.

In another aspect the invention is a copolyimide containing a random mixture of pendent hydroxy and siloxane groups and having repeating units selected from the group consisting of:

wherein the catenation of the nitrogen group is selected from the group consisting of:

(A) meta and para and (B) meta-meta, para-para, and meta-para; wherein \(\text{Ar} \) is a radical selected from the group consisting of:

wherein \(\text{Ar}' \) is a substitute selected from the group consisting of:

wherein \(\text{Ar} \) is a radical selected from the group consisting of:

wherein \(\text{Ar}' \) is a substitute selected from the group consisting of:
wherein Y is a bond or is a substituent selected from the group consisting of:

O, S, SO₂, CH₂, O=C, C(CH₃)₂, C(CF₃)₂, Si(CH₃)₂,

wherein X is a bond or is a substituent selected from the group consisting of:

wherein Z is a substituent selected from the group consisting of:

-CH₂Cl, -CH₂Br, (CH₂)₃Cl,

-CH₃, -CH₂CH₃,

-CH₂CH₂CH₃, (CH₂)₂Cl,

-CH₃, -CH₂CH₃,

-CH₃, -CH₂CH₂CH₃,

-CH₃, -CH₂CH₂CH₂CH₃,

-CH₃, -CH₂CH₂CH₂CH₂CH₃,

-CH₃, -CH₂CH₂CH₂CH₂CH₂CH₃,
Having generally described the invention, a more complete understanding thereof can be obtained by reference to the following specific examples, which are provided herein for the purpose of illustration only and do not limit the invention.

EXAMPLE 1

The following example illustrates the reaction sequence for the synthesis of a polyimide containing pendant siloxane groups as depicted in equations 1 and 2 above where Ar was 3,3',4,4'-diphenyl ether, X was a bond, the diamine was meta,meta catenated, and the pendant group was 1,1,2,2,3,3,3-heptamethyltrisiloxane.

Synthesis of Polyimide Containing Hydroxy Groups (PIOH)

Into a 100 ml three neck round bottom flask equipped with a mechanical stirrer, nitrogen gas inlet and drying tube filled with calcium carbonate was placed 3,3'-diaminobenzhydrol (3.4067 g, 15.9 mmol) and DMAc (10.0 ml). The mixture was stirred at 23°C until the diamine dissolved (about 15 minutes). To this solution
was added 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride (4.9323 g, 15.9 mmol) and DMAc (15.0 ml) to
give a final concentration of 25.0% solids. The solution
was stirred at 23° C. for about 16 hours under nitrogen
to give a viscous poly(amide-acid) solution (inherent viscosity of a 0.5% solution in DMAc at 25° C. was 1.76
D/L/g). The poly(amide-acid) solution was diluted to
15% solids by the addition of DMAc (14 ml) and trans-
ferred to a pressure equalizing addition funnel which
had previously been flushed with nitrogen.
 Into a 250 ml three neck round bottom flask equipped
with a mechanical stirrer, thermometer, nitrogen gas
inlet, Dean Stark trap and reflux condenser was placed
DMAc (20 ml) and xylene (30 ml). The liquids were
heated to reflux (about 150° C.) and maintained for
about five hours. The poly(amide-acid) solution was
subsequently added dropwise to the refluxing
DMAc/xylene mixture over about a one hour period.
Refluxing was continued for one hour after all of the
poly(amide-acid) solution had been added. The xylene
were subsequently removed via the Dean Stark trap,
and the polyimide was precipitated into water in a high
speed blender. The polymer was washed repeatedly in
water and dried at 150° C. for about four hours under
vacuum. The polyimide had a glass transition tempera-
ture (Tg) of 252° C. and an inherent viscosity of 0.52
D/L/g measured on a 0.5% solution in DMAc at 25° C.

Polyimide Containing Pendent Siloxane Groups
(PISOX)

Into a 100 ml three neck round bottom flask equipped
with a mechanical stirrer, nitrogen gas inlet and pres-
sure equalizing addition funnel was placed the previ-
ously described PIOH (2.00 g, 4.1 mmol based on hy-
droxy group content, assuming a molecular weight of
20,000 g/mole) and DMAc (12 ml, 15% solids). The
mixture was stirred at 23° C. until all of the PIOH dis-
solved (about one hour), and platinic acid (55 mg) was
subsequently added. Into the pressure equalizing addi-
tion funnel was placed 1,1,2,2,3,3,3-heptamethytrisilox-
ane (1.0 g, 4.5 mmol) and toluene (18 ml). The siloxane
dissolved rapidly in the toluene, and the solution was
subsequently added dropwise to the polymer solution
over a 30 minute period. The solution was stirred at 23°
C. for 16 hours, filtered through 5.0 micron filter paper
under about 20 psi and cast into a thin film.
The film was stage-dried to 235° C. and held for one
hour at 235° C. under vacuum. The slightly opaque film
exhibited a Tg of 219° C. Infrared spectroscopic analy-
sis of the film indicated that the reaction had proceeded as
anticipated. Tensile strength and modulus of thin film
specimens at 23° C. of 13.3 and 453 ksi, respectively
were obtained.

EXAMPLE 2

The following example illustrates the reaction se-
quence for the synthesis of a polyimide containing pen-
dent siloxane groups as depicted in equations 1 and 2
above where Ar was 3,3',4,4'-benzophenone, X was a
bond, the diamine was meta,meta catenated, and the
pendent group was 1,1,2,2,3,3,3-heptamethytrisilox-
ane.

Synthesis of Polyimide Containing Hydroxy Groups
(PIOH)

Into a three neck round bottom flask equipped with a
mechanical stirrer, nitrogen gas inlet and drying tube
filtered with calcium carbonate was placed 3,3',4,4'-
diaminobenzhydrol (3.3210 g, 15.5 mmol) and DMAc
(15.0 ml). The mixture was stirred at 23° C. until the
diamine dissolved (about 15 minutes). To this solution
was added 3,3',4,4'-benzophenonetetracarboxylic dian-
hydride (4.9944 g, 15.5 mmol) and DMAc (10.0 ml) to
give a final concentration of 25.0% solids. The solution
was stirred at 23° C. for about 16 hours under nitrogen
to give a viscous poly(amide-acid) solution (inherent viscosity of a 0.5% solution in DMAc at 25° C. was 0.81
D/L/g). The poly(amide-acid) solution was diluted to
20% solids by the addition of DMAc (8 ml) and trans-
ferred to a pressure equalizing addition funnel which
had previously been flushed with nitrogen.

Into a 250 ml three neck round bottom flask equipped
with a mechanical stirrer, thermometer, nitrogen gas
inlet, Dean Stark trap and reflux condenser was placed
DMAc (20 ml) and xylene (30 ml). The liquids were
heated to reflux (about 150° C.) and maintained for
about five hours. The poly(amide-acid) solution was
subsequently added dropwise to the refluxing
DMAc/xylene mixture over about a one hour period.
Refluxing was continued for one hour after all of the
poly(amide-acid) solution had been added. The xylene
were subsequently removed via the Dean Stark trap,
and the polyimide was precipitated into water in a high
speed blender. The polymer was washed with water
repeatedly and dried at 150° C. for about four hours
under vacuum. The polyimide had a Tg of 267° C. and
an inherent viscosity of 0.43 D/L/g.

Polyimide Containing Pendent Siloxane Groups
(PISOX)

Into a 100 ml three neck round bottom flask equipped
with a mechanical stirrer, nitrogen gas inlet, and pres-
sure equalizing addition funnel was placed the previ-
ously described PIOH (1.56 g, 3.1 mmol based on hy-
droxy group content, assuming a molecular weight of
20,000 g/mole) and DMAc (9 ml, 15% solids). The
diluted to 30% solids by the addition of DMAc (12 ml,
15% solids). The poly(amide-acid) solution had been
added. The xylene were subsequently removed via the
Dean Stark trap, and the polyimide was precipitated into water in a high
speed blender. The polymer was washed with water
repeatedly and dried at 150° C. for about four hours
under vacuum. The polyimide had a Tg of 267° C. and
an inherent viscosity of 0.43 D/L/g.

EXAMPLE 3

The following example illustrates the reaction se-
quence for the synthesis of a polyimide containing pen-
dent siloxane groups from the Cemota Syntorg IP 608
PIOH as depicted in equation 3 where the pendent
group was 1,1,2,2,3,3,3-heptamethytrisiloxane.

Synthesis of Polyimide Containing Pendent Siloxane
Groups (PISOX)

Into a 100 ml three neck round bottom flask equipped
with a mechanical stirrer, nitrogen gas inlet, and pres-
sure equalizing addition funnel was placed Cemota Syn-
torg IP 608 PIOH (10.12 g, 40.2 mmol based on hy-
droxy group content, assuming a molecular weight of
36,000 g/mole) and NMP (58 ml, 15% solids). The
mixture was stirred at 23°C under nitrogen until all of the polymer had dissolved (about one hour) and platinic acid (105 mg) was subsequently added. Into the pressure equalizing addition funnel was placed 1,1,2,2,3,3,3-heptamethyldisiloxane (9.86 g, 44.3 mmol) and toluene (25 ml). The siloxane solution was added to the PIOH solution dropwise over a one hour period. The solution was stirred at 23°C under nitrogen for 16 hours and subsequently filtered through a 5.0 micron filter under pressure (about 20 psi). A thin film was cast from the solution onto plate glass. The thin film was dried to a tack-free state in a dust-proof chamber and stage-dried to 225°C and held at 225°C for one hour under vacuum. The translucent yellow/green film exhibited a Tg of 167°C. Tensile strength and modulus of thin film specimens at 23°C of 16.9 and 404 ksi, respectively were obtained. Polymer characterization is presented in the following Tables 1 and 2, and thin film properties are presented in Tables 3 and 4.

EXAMPLE 4

The following example illustrates the reaction sequence for the synthesis of the polyimide containing 20 pendent siloxane groups from the Cemota Syntorg IP 608 PIOH as depicted in equation 3 above where the pendent group was trimethyl silyl.

Polyimide Containing Pendent Siloxane Groups

Into a 100 ml three neck round bottom flask equipped with a mechanical stirrer, nitrogen gas inlet and pressure equalizing addition funnel was placed Cemota Syntorg IP 608 PIOH (5.3 g, 21.1 mmol based on hydroxy group content, assuming a molecular weight of 36,000 g/mole) and DMAc (31 ml, 15% solids). The mixture was stirred at 23°C under nitrogen until all of the polymer dissolved (about one hour). Into the pressure equalizing addition funnel was placed the chlorotrimethylsilane (2.65 g, 24.3 mmol) and toluene (10 ml). The toluene/silane solution was added dropwise to the PIOH solution over a 30 minute period. The solution was stirred at 23°C for about 16 hours and subsequently filtered through a 5.0 micron filter under pressure (about 20 psi). The solution was used to cast a thin film on plate glass which was air dried to a tack-free state. The film was stage-dried to 240°C and held at 240°C for one hour under vacuum. The clear orange film exhibited a Tg of 210°C by differential scanning calorimetry. Tensile strength and modulus of thin film specimens at 23°C of 16.9 and 404 ksi, respectively were obtained.

Polymer Characterization

TABLE 1

<table>
<thead>
<tr>
<th>Glass Transition Temperature, °C</th>
<th>Film Appearance, Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>235 orange, translucent, tough, creasable</td>
<td></td>
</tr>
<tr>
<td>239 brown, translucent, tough, creasable</td>
<td></td>
</tr>
<tr>
<td>211 light tan, translucent, tough, creasable</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2

<table>
<thead>
<tr>
<th>Glass Transition Temperature, °C</th>
<th>Film Appearance, Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>167 yellow/green, semi-translucent, tough, creasable</td>
<td></td>
</tr>
<tr>
<td>210 orange, clear, tough, creasable</td>
<td></td>
</tr>
<tr>
<td>250 orange, clear,</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2-continued

POLYMER CHARACTERIZATION

<table>
<thead>
<tr>
<th>Z</th>
<th>Temperature, °C</th>
<th>Film Appearance, Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP 608 Polyimide</td>
<td>23°C</td>
<td>tough, creasable</td>
</tr>
</tbody>
</table>

TABLE 3

THIN FILM PROPERTIES

<table>
<thead>
<tr>
<th>Ar N</th>
<th>Ar N</th>
<th>CH₃-Si-CH₃</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tensile Strength, ksi</th>
<th>Tensile Modulus, ksi</th>
<th>Elong., %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>12.5</td>
<td>390.6</td>
</tr>
<tr>
<td></td>
<td>13.3</td>
<td>453.3</td>
</tr>
</tbody>
</table>

*Tensile properties determined at 23°C.

TABLE 3-continued

THIN FILM PROPERTIES

<table>
<thead>
<tr>
<th>Ar N</th>
<th>Ar N</th>
<th>CH₃-Si-CH₃</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tensile Strength, ksi</th>
<th>Tensile Modulus, ksi</th>
<th>Elong., %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>8.2</td>
<td>360.6</td>
</tr>
</tbody>
</table>

*Tensile properties determined at 23°C.

TABLE 4

THIN FILM PROPERTIES

<table>
<thead>
<tr>
<th>Z</th>
<th>Tensile Strength, ksi</th>
<th>Tensile Modulus, ksi</th>
<th>Elong., %</th>
<th>Dielectric Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃</td>
<td>16.9</td>
<td>404.1</td>
<td>28.8</td>
<td>—</td>
</tr>
<tr>
<td>CH₃-Si-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃-Si-</td>
<td>10.9</td>
<td>250.0</td>
<td>34.3</td>
<td>2.8</td>
</tr>
<tr>
<td>CH₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃-Si-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H (Cemota Syntorg)</td>
<td>18.1</td>
<td>442.3</td>
<td>10.4</td>
<td>3.4</td>
</tr>
<tr>
<td>IP 608 Polyimide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Tensile properties determined at 23°C.
The following example illustrates the reaction sequence for the synthesis of a random copolyimide containing pendant siloxane groups from the Cemota Syntorg IP 608 PIOH as depicted in equation 4 above where the pendant group was 1,1,2,2,3,3,3-heptamethyltrisiloxane, p = 0.50 and q = 0.25.

Copolyimide Containing Pendent Siloxane Groups

Into a 100 ml three neck round bottom flask equipped with a mechanical stirrer, nitrogen gas inlet, pressure equalizing addition funnel and drying tube filled with calcium carbonate was placed Cemota Syntorg IP 608 PIOH solution (25.5% solids in NMP) (8.79 g solution = 2.24 g polymer, 8.9 mmol based on hydroxy group content, assuming a molecular weight of 36,000 g/mol) and DMAc (6 ml, 15% solids). The mixture was stirred at 23° C. until all of the polymer had dissolved (about one hour), and platinic acid (45 mg) was subsequently added. Into the pressure equalizing addition funnel was placed 1,1,2,2,3,3,3-heptamethyltrisiloxane (0.50 g, 2.2 mmol, 25% of theoretical hydroxyl content) and toluene (3 ml). The siloxane solution was added dropwise over a 10 minute period. The solution was stirred at room temperature under nitrogen for about 16 hours. The solution was centrifuged and a thin film was cast onto plate glass. The film was dried to 225° C. and held at 225° C. for one hour under vacuum. The translucent dark yellow/orange film exhibited a Tg of 216° C. by differential scanning calorimetry. Tensile strength, modulus and elongation of thin film specimens at 23° C. of 15.6, 378.9 ksi and 21.0%, respectively were obtained.

EXAMPLE 5

The following example illustrates the reaction sequence for the synthesis of a copolyimide containing pendant siloxane groups from the Cemota Syntorg IP 608 PIOH as depicted in equation 4 above where the pendant group was 1,1,2,2,3,3,3-heptamethyltrisiloxane, p = 0.50 and q = 0.75.

Synthesis of Copolyimide Containing Pendent Siloxane Groups

Into a 100 ml three neck round bottom flask equipped with a mechanical stirrer, nitrogen gas inlet, pressure equalizing addition funnel and drying tube filled with calcium carbonate was placed Cemota Syntorg IP 608 PIOH solution (25.5% solids in NMP) (8.46 g solution = 2.16 g polymer, 8.6 mmol based on hydroxyl group content, assuming a molecular weight of 36,000 g/mol) and DMAc (7 ml, 15% solids). The mixture was stirred at 23° C. and held at 225° C. for one hour under vacuum. The solution was centrifuged, and a thin film was cast onto plate glass. The film was dried to 225° C. and held at 225° C. for one hour under vacuum. The translucent dark yellow/orange film exhibited a Tg of 216° C. by differential scanning calorimetry. Tensile strength, modulus and elongation of thin film specimens at 23° C. of 13.3, 330.9 and 25.1%, respectively were obtained.

EXAMPLE 7

The following example illustrates the synthesis of a copolyimide containing pendant siloxane groups from the Cemota Syntorg IP 608 PIOH as depicted in equation 4 above where the pendant siloxane group was 1,1,2,2,3,3,3-heptamethyltrisiloxane, p = 0.25 and q = 0.75.

Copolyimide Containing Pendent Siloxane Groups

Into a 100 ml three neck round bottom flask equipped with a mechanical stirrer, nitrogen gas inlet, pressure equalizing addition funnel and drying tube filled with calcium carbonate was placed Cemota Syntorg IP 608 PIOH solution (9.61 g solution = 2.45 g polymer, 9.75 mmol based on hydroxy group content, assuming a molecular weight of 36,000 g/mol) and DMAc (7 ml, 15% solids). The mixture was stirred at 23° C. until all of the polymer had dissolved (about one hour), and platinic acid (75 mg) was subsequently added. Into the pressure equalizing addition funnel was placed 1,1,2,2,3,3,3-heptamethyltrisiloxane (1.63 g, 7.31 mmol, 75% of theoretical hydroxyl group content) and toluene (5 ml). The siloxane was added dropwise to the PIOH solution over a 10 minute period. The solution was stirred at 23° C. under nitrogen for about 16 hours. The solution was centrifuged, and a thin film was cast onto plate glass. The film was dried to a tack free state in a dust-proof chamber and subsequently stage-dried to 225° C. and held at 225° C. for one hour under vacuum. The translucent yellow/orange film exhibited a Tg of 186° C. by differential scanning calorimetry. Tensile strength, modulus and elongation of thin film specimens at 23° C. of 11.5, 281.3 and 34.3%, respectively were obtained.

EXAMPLE 8

The following example illustrates the reaction sequence for the synthesis of a random copolyimide containing pendant siloxane groups from the Cemota Syntorg IP 608 PIOH as depicted in equation 5 above where the pendant group was trimethylsilyl, p = 0.75 and q = 0.25.

Copolyimide Containing Pendent Siloxane Groups

Into a 100 ml three neck round bottom flask equipped with a mechanical stirrer, nitrogen gas inlet, pressure equalizing addition funnel and drying tube filled with calcium carbonate was placed Cemota Syntorg IP 608 PIOH solution (25.5% solids in NMP) (8.46 g solution = 2.16 g polymer, 8.6 mmol based on hydroxy group content, assuming a molecular weight of 36,000 g/mol) and DMAc (7 ml, 15% solids). The mixture was stirred at 23° C. until it was homogeneous (about one hour). Into the pressure equalizing addition funnel was placed chlorotrimethylsilane (0.23 g, 2.5 mmol, 25% of theoretical hydroxyl content) and toluene (5 ml). The toluene solution was added dropwise to the PIOH solution over a 10 minute period. The solution was stirred at 23° C. under nitrogen for about 16 hours. The solution was centrifuged, and a thin film was cast onto plate glass. The film was dried to a tack free state in a dust-proof chamber and subsequently stage-dried to 225° C. and held at 225° C. for one hour under vacuum. The translucent yellow/orange film exhibited a Tg of 186° C. by differential scanning calorimetry. Tensile strength, modulus and elongation of thin film specimens at 23° C. of 11.5, 281.3 and 34.3%, respectively were obtained.

EXAMPLE 9
EXAMPLE 9

The following example illustrates the reaction sequence for the synthesis of a random copolyimide containing pendant siloxane groups from the Cemota Syntorg IP 608 PIOH as depicted in equation 5 above where the pendant siloxane group was trimethylsilyl, \(p=0.50 \) and \(q=0.50 \).

Synthesis of Copolyimide Containing Pendent Siloxane Groups

Into a 100 ml three neck round bottom flask equipped with a mechanical stirrer, nitrogen gas inlet, pressure equalizing addition funnel and drying tube filled with calcium carbonate was placed Cemota Syntorg IP 608 PIOH solution (25.5% solids in NMP) (8.52 g solution=2.13 g polymer, 8.47 mmol based on hydroxy group content, assuming a molecular weight of 36,000 g/mol) and DMAc (6 ml, 15% solids). The mixture was stirred at 23° C. until it was homogeneous (about one hour). Into the addition funnel was placed the chlorotrimethylsilane (0.46 g, 4.24 mmol, 50% of theoretical hydroxy content) and toluene (5 ml). The toluene solution was added dropwise to the PIOH solution over a 10 minute period and the solution was stirred at 23° C. under nitrogen for about 16 hours. The solution was centrifuged, and a thin film was cast onto plate glass. The film was dried to a tack-free state in a dust-proof chamber and subsequently stage-dried to 240° C. and held at 240° C. for one hour under vacuum. The transparent orange film exhibited a Tg of 235° C. Tensile strength, modulus and elongation of thin film specimens at 23° C. of 19.0, 498.7 ksi and 9.9%, respectively were obtained.

EXAMPLE 10

The following example illustrates the reaction sequence for the synthesis of a random copolyimide containing pendant siloxane groups from the Cemota Syntorg IP 608 PIOH as depicted in equation 5 above where the pendant siloxane group was trimethylsilyl, \(p=0.25 \) and \(q=0.75 \).

Synthesis of Copolyimide Containing Pendent Siloxane Groups

Into a 100 ml three neck round bottom flask equipped with a mechanical stirrer, nitrogen gas inlet, pressure equalizing addition funnel and drying tube filled with calcium carbonate was placed Cemota Syntorg IP 608 PIOH solution (25.5% solids in NMP) (7.53 g solution=1.92 g polymer, 7.64 mmol based on hydroxy group content, assuming a molecular weight of 36,000 g/mol) and DMAc (6 ml, 15% solids). The mixture was stirred until it became homogeneous (about one hour). Into the addition funnel was placed chlorotrimethylsilane (0.62 g, 5.73 mmol, 75% of theoretical hydroxy content) and toluene (5 ml). The toluene solution was added dropwise to the PIOH solution over a 10 minute period, and the solution was stirred at 23° C. under nitrogen for about 16 hours. The solution was centrifuged, and a thin film was cast onto plate glass. The film was dried to a tack-free state in a dust-proof chamber and subsequently stage-dried to 240° C. and held at 240° C. for one hour under vacuum. The transparent orange film exhibited a Tg of 215° C. Tensile strength, modulus and elongation of thin film specimens at 23° C. of 18.7, 482.9 ksi and 15.6% were obtained.

The chemical structures of the commercially available polyimides containing benzhydrol groups are shown below.

Cemota Syntorg IP 608

Cemota Syntorg IP 605

Polymer characterization is presented in Tables 1 and 2 above. Thin film properties are presented in Tables 3 and 4 above, and copolymer characterization is presented in Tables 5 and 6 below.
We claim:

1. A polyimide containing siloxane groups and having repeating units selected from the group consisting of

\[
\begin{align*}
\text{(A)} & \quad \text{and wherein } \text{Ar is a radical selected from the group consisting of:} \\
\text{(B)} & \\
\text{(C)} & \\
\end{align*}
\]

wherein the catenation of the nitrogen group is selected from the group consisting of: (A) meta and para, (B) meta-meta, para-para, and meta-para and (C) as shown;
wherein Y is a band or is a substituent selected from the group consisting of:

- O, S, SO₂, CH₂, O=CH, CH₂CF₂CF₂, Si(CH₃)₂, Si(CH₂CF₂CF₂)₂,

wherein X is a bond or is a substituent selected from the group consisting of:

- OCH₃, CH₂Cl, CHCl₂, CH₂Br, CH₂CH₂CF₃, (CH₂)₂COBr₂

wherein Z is a substituent selected from the group consisting of:

- CH₃, CH₂, CH₂CH₂, CH₂CH₂CH₂, CH₂CH₂CH₂CH₂, (CH₂)₂CH₃, (CH₂)₂CH₂CH₃, (CH₂)₂CH₂CH₂CH₃
wherein R is a substituent selected from the group consisting of:

\[
\begin{align*}
\text{CH}_3, \text{CH}_2\text{CH}_3, (\text{CH}_2)_2\text{CH}_3, \text{CH}(\text{CH}_2)_2, \\
\text{Cd}_5, \text{(CH}_2)_2\text{CF}_3.
\end{align*}
\]

wherein \(\text{Ar}' \) is a substitute selected from the group consisting of:

\[
\begin{align*}
\text{OCH}_2\text{CH}_3, (\text{CH}_2)_n\text{CH}_3 \\
\text{Si-CH}_3, \text{Si-OCH}_2\text{CH}_3, \text{Si-(CH}_2)_m\text{CH}_3,
\end{align*}
\]

wherein \(n \) is an integer between 1 and 1000; and wherein \(m \) is an integer between 1 and 1000.

2. A copolyimide containing a random mixture of pendant hydroxy and siloxane groups and having repeating units selected from the group consisting of:

\[
\begin{align*}
\text{CH}_3, \text{CH}_2\text{CH}_3, (\text{CH}_2)_2\text{CH}_3, \text{CH}(\text{CH}_2)_2, \text{Cd}_5, \\
(\text{CH}_2)_2\text{CF}_3; \quad \text{OCH}_2\text{CH}_3\text{Cl}
\end{align*}
\]

wherein \(\text{Ar}' \) is a substitute selected from the group consisting of:

\[
\begin{align*}
\text{Si-CH}_3, \text{Si-OCH}_2\text{CH}_3, \text{Si-(CH}_2)_m\text{CH}_3, \\
\text{Si-OSi(CH}_3)_3, \text{Si-OCH}_2\text{CH}_3\text{Cl}
\end{align*}
\]

wherein \(n \) is an integer between 1 and 1000; and wherein \(m \) is an integer between 1 and 1000.
wherein the catenation of the nitrogen group is selected from the group consisting of:

(A) meta and para and (B) meta-meta, para-para, and meta-para; wherein Ar is a radical selected from the group consisting of:

wherein Y is a bond or is a substituent selected from the group consisting of:

O, S, SO₂, CH₂, O=CH, C(CH₃)₃, C(CF₃)₃, Si(CH₃)₃, Si(CH₂CF₂CF₃)₃;

wherein X is a bond or is a substituent selected from the group consisting of:

wherein Z is a substituent selected from the group consisting of:

\[
\begin{align*}
&\text{CH}_3, \text{CH}_3, \text{CH}_3, \text{CH}_3, \text{CH}_3, \\
&\text{CH}_3, \text{CH}_3, \text{CH}_3, \text{CH}_3, \text{CH}_3.
\end{align*}
\]
41

-continued

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 \\
{\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} \\
(\text{CH}_2)_2\text{Cl} & \quad \text{CH}_2\text{Br} & \quad \text{CH}_2\text{CH}_2\text{CF}_3 & \quad (\text{CH}_2)_2\text{C}_6\text{F}_5
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 \\
{\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 \\
{\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 \\
{\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 \\
{\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 \\
{\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 \\
{\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 \\
{\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 \\
{\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 \\
{\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 \\
{\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 \\
{\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 \\
{\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 \\
{\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 \\
{\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 \\
{\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 \\
{\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 \\
{\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 \\
{\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 \\
{\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 \\
{\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 \\
{\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 \\
{\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad \text{CH}_3 \\
{\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} & \quad {\text{Si-CH}_3} \\
\end{align*}
\]
5,304,627

-continued

OSi(CH₃)₃

R=SiAr'⇌SiAr'\,
R

wherein R is a substituent selected from the group consisting of:

CH₃, CH₂CH₃, (CH₂)₂CH₃, CH(CH₃)₂, C₆H₅, (CH₂)₃CF₃;

wherein Ar' is a substituent selected from the group consisting of:

CH₂=CH₂, CH₂CH₂O, CF₂, CF₂CF₂, OCF₂O;

wherein p is a fraction (percentage) between 0.01 and 0.99;

wherein q is a fraction (percentage) equal to 1 minus p;

wherein n is an integer between 1 and 1000; and

wherein m is an integer between 1 and 1000.

3. The polyimide containing pendant siloxane groups of claim 1, wherein the repeating unit is (A) and Z is selected from the group consisting of:

CH₃

- Si-CH₃ and - Si-O-Si-O-Si-CH₃

4. The random copolyimide containing pendant siloxane groups of claim 2, wherein the repeating unit is (A) and Z is selected from the group consisting of:

CH₃

- Si-CH₃ and - Si-O-Si-O-Si-CH₃

5. The polyimide containing pendant siloxane groups of claim 1, wherein the repeating unit is (B) and Z is:

CH₃

- Si-CH₃ and - Si-O-Si-O-Si-CH₃

6. The polyimide containing pendant siloxane groups of claim 5, wherein Ar is selected from the group consisting of:

CH₃

7. The polyimide containing pendant siloxane groups of claim 6, wherein X is a bond.

8. The random copolyimide containing pendant siloxane groups of claim 2, wherein the repeating unit is (B) and Z is selected from the group consisting of:

CH₃

9. A process for synthesizing polyimides and random copolyimides containing pendant siloxane groups, which process comprises reacting a member selected from the group consisting of a chloroterminated silicon compound, a chloroterminated silicon oligomer, a hydrogen terminated compound, and a hydrogen terminated oligomer with a polyimide containing hydroxy groups in the presence of a platinic acid catalyst under ambient reaction conditions in a solvent selected from the group consisting of: N,N-dimethylacetamide, N-methylpyrrolidinone, sulfolane, N-cyclohexylpyrrolidinone, dimethylsulfoxide, toluene, and bis(2-methoxyethyl)ether.

10. A polyimide containing pendant siloxane groups and having a structure selected from the group consisting of:
and
11. A random copolyimide containing pendent siloxane groups and having a structure selected from the group consisting of:

![Diagram of copolyimide structure]

and

![Diagram of copolyimide structure]