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This article describes a recently introduced transform algorithm called the integer
cosine transform (ICT), which is used in transform-based data compression schemes.
The ICT algorithm requires only integer operations on small integers and at the
same time gives a rate-distortion performance comparable to that offered by the
floating-point discrete cosine transform (DCT). The article addresses the issue of
implementation complexity, which is of prime concern for source coding applications
of interest in deep-space communications. Complexity reduction in the transform
stage of the compression scheme is particularly relevant, since this stage accounts
for most (typically over 80 percent) of the computational load.

I. Introduction

The rate-distortion performance of three transform-
based coding schemes used to compress the test images for
the Comet Rendezvous Asteroid Flyby (CRAF)/Cassini
Project was presented in [1]. More recently, the issue
of implementation complexity, which is of prime concern
to spacecraft applications, was addressed. The compu-
tational bottleneck of transform-based algorithms lies in
the front-end transform stage, which accounts for over
80 percent of the computational load of these compres-
sion schemes. This article describes a recently introduced
transform algorithm called the integer cosine transform
(ICT), which requires only integer operations on small in-
tegers and at the same time has rate-distortion compa-
rable to that of the floating-point discrete cosine trans-
form (DCT), which is the most practical and near optimal
approach known for data compression. The implementa-
tion complexity of the ICT is substantially lower than that
of the DCT, and is comparable to that of the Hadamard
transform (HT). The ICT is a practical approach to achiev-
ing the high-rate deep-space communications that are pos-
sible with the DCT.

II. Background: Transform-Based Schemes

In preparing the test images for the CRAF/Cassini
Project, three transform-based encoding algorithms were
used to compress a set of seven planetary images [1], which
are continuous-tone gray-scale, with pixel values ranging
from 0 (black) to 255 (white). All three algorithms can be
viewed as consisting of three stages, as illustrated in Fig. 1:
the data transform stage, the quantization stage, and the
entropy-coding stage. The compression algorithms work
on a block-by-block basis, i.e., they compress an 8 x 8
block of the picture at a time. In each algorithm, the
encoder first applies an 8 x 8 floating-point DCT or an
8x8 HT to the picture block to generate an 8 X 8 block of
transform coefficients. These numbers are then quantized
by a predetermined 8x8 quantization template to inte-
ger values. Most quantized values have small magnitudes.
Due to the skewed distribution of the quantized transform
coefficients, compression is achieved by assigning shorter
transmission-bit patterns to the more frequently occurring
integers. This is realized in the last stage of the compres-
sion scheme, the entropy coder, which maps the quantized
values to appropriate transmission-bit patterns.
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In the CRAF/Cassini data compression experiment, all
three transform-based schemes used the same DCT or HT
(stage 1) and the same quantization template (stage 2).
The difference lies in the choice of entropy coder in the
third stage, where one may use the Joint Photographic
Expert Group (JPEG) Huffman code [2,12], an arithmetic
code [2], or the Gallager^van Voorhis-Huffman (GVH)
code [3]. In general, the DCT-based schemes are more
effective (0.1 to 0.3 bits per pixel) than the HT-based
schemes, especially in the high bit rate (near lossless)
range. However, the more effective DCT-based schemes
are more computationally intensive than the HT-based
schemes. The major computational burden of DCT-based
schemes lies in the DCT stage, which requires a large num-
ber of floating-point multiplications and additions. HT-
based schemes, on the other hand, require only integer
additions and subtractions in the transform stage. From
the hardware's point of view, floating-point operations are
much slower and more difficult to implement than the
corresponding integer operations. For a general W-point
DCT, a straightforward algorithm [4] that yields a simple
regular implementation and a small chip size requires 2N3

multiplications and 2N3 additions. A more sophisticated
Appoint fast DCT [5], where A^ has a power of 2, that uses
complex data^shuffling strategies still requires N2 Iog2 N
multiplications and N(3N Iog2 N — N + 1) additions. The
large number of floating-point operations required to per-
form DCT, particularly for large A'', is the computational
bottleneck for all DCT-based signal-processing schemes.

cients were quantized by using the same quantization tem-
plate as in the aforementioned DCT-based schemes. The
entropy of the quantized transform coefficients and the
mean square error (MSE) of the reconstructed picture were
computed, and the results are shown in Fig. 3. These simu-
lation results indicate that any difference in rate-distortion
performance resulting from using the floating-point DCT
or the ICT is unnoticeable.

Although the 8-point ICT proposed by Choy, Cham,
and Lee performs remarkably well, it is quite ad hoc, and
no general mathematical formulation of the ICT is given
in [6]. The contributions of this article are to put the ICT
into a more formal mathematical setting, and to gener-
alize their idea to any Ar-point ICT. The mathematical
properties of the ICT are investigated in the following sec-
tions. Since the ICT is separable, and the extension of
the one-dimensional ICT to two dimensions is straight-
forward, this article focuses on the one-dimensional case.
Section IV gives a characterization of ICT matrices. An
8x8 ICT matrix that is multiplication-free and requires
only binary additions and shifts is given in Section V (the
MSE versus entropy performance of the multiplication-free
ICT, the original ICT of [6], and that of the floating-point
DCT are shown in Fig. 3). A general procedure for the
construction of an N x N ICT matrix is obtained in Sec-
tion VI; and two 16 x 16 ICT matrices, one with only
small integer entries and one with all entries' powers of
two (multiplication-free) are exhibited in Section VII.

III. Integer Cosine Transform

Recently Choy, Cham, and Lee [6] proposed a new
8-point transform called the integer cosine transform
(ICT), which requites only integer multiplications and ad-
ditions, and thus is much simpler to implement than the
DCT, An ICT chip was fabricated and was proven to be
efficient in both silicon area and speed [6]. The 8x8 ICT
matrix suggested in [6] is given in Fig. 2(c). Notice that the
elements in the matrix are all integers, and the ICT ma-
trix B in Fig. 2(b) has sign and magnitude patterns that
resemble those of the DCT matrix A in Fig. 2(a). The
similarity of the ICT matrix to the DCT matrix, together
with the orthogonality property of the ICT (BB* = A,
where A is a diagonal matrix), guarantees that the ICT,
as well as its inverse, possesses the same transform struc-
ture as the DCT. Thus, any fast DCT algorithms can be
used to compute a fast ICT.

This 8x8 ICT matrix was used to compute a two-
dimensional 8x8 transform and then compress the plan-
etary images saturnl and saturnS. The transform coeffi-

IV. Mathematical Properties of the ICT

The integer cosine transform and the discrete cosine
transform are closely related. Let C and A be the re-
spective ICT and DCT N x N matrices. An orthonormal
matrix (i.e., AA* = I), A — [ajtn], is defined as follows for
0 < n < N -I:

1

N

Using A as a template, the ICT matrix C = [ctn] is an
orthogonal matrix (i.e., CC* = A, where A is a diagonal
matrix) with the following properties:

(1) Integer property: ctn represents integers for 0 < k,

(2) Orthogonality property: Rows (or columns) of C are
orthogonal.
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(3) Relationship with DCT:

(a) sgn(ckn) = sgn(akn) foi 0 < k, n < N - 1.

(b) If Ojtn = a,t, then ckn = c,< for 0 < k ,n ,s , t <
N-l .

The integer property eliminates real multiplication and
real addition operations. The orthogonality property as-
sures that the inverse ICT has the same transform struc-
ture as the ICT. Notice that C is only required to be or-
thogonal, but not orthonormal. However, any orthogonal
matrix can be made orthonormal by multiplying it by an
appropriate diagonal matrix. This operation can be in-
corporated in the quantization (dequantization) stage of
the compression (decompression) scheme, thus sparing the
ICT (inverse ICT) from floating-point operations, and at
the same time preserving the same transform structure as
in the floating-point DCT (inverse DCT). The relationship
between ICT and DCT guarantees efficient energy packing
and allows the use of any fast DCT technique for the ICT,

V. ICT for N =8

The floating-point 8x8 DCT matrix is shown in
Fig. 2(a). A general structure of the 8x8 ICT matrix
is given in Fig. 2(b). The symbols a, b, c, d, e, and / in
Fig. 2(b) are numbers that satisfy conditions (1) through
(3) given in Section IV. It was suggested in [6] to use a — 5,
b = 3, c = 2, d = I, e = 3, and / = 1 for the N - 8
ICT, as shown in Fig. 2(c). There are many other sets of
(a,b,c ,d,e ,f) that can generate an orthogonal ICT. The
integer set (a,b,c,d,e,f) gives an orthogonal ICT if, and
only if, CC* is a diagonal matrix. This is equivalent to the
requirement

ab — ac — bd — cd — 0 (2)

with e and / arbitrary. The integer set (4,2,2,0,4,2) sat-
isfies Eq. (2) and the corresponding ICT matrix is given
in Fig. 2(d). Notice that the integers chosen are all pow-
ers of 2, and thus only simple binary additions and .shift
operations are required for this ICT. The MSE versus en-
tropy performance of the compression scheme using this
multiplication-free ICT is shown in Fig. 3, In view of the
particular choice of the integers in the multiplication-free
implementation, one expects the performance of this ICT
to be inferior to that of the floating-point DCT and the
ICT of [6]. However, the difference in the performance is
small, as shown in Fig, 3.

VI. A General Procedure for Constructing an
ICT Matrix

A general procedure to construct an N x N ICT matrix
is presented in this section. For any N x N ICT matrix,
this construction is done on the ground prior to implement
tation. The DCT matrix is used as a template to generate
an ICT matrix. The procedure is as follows:

(1) Generate the N x N DCT matrix A,

(2) Construct an N x N matrix B by substituting the N
possible absolute values in A with N symbols, and
preserve the signs of the elements in A.

(3) Evaluate BB*, and generate a set of independent
algebraic equations that force BB( to be a diagpnal
matrix.

(4) Find a set of N numbers that satisfy the set of alge-
braic equations generated in (3),

Since for a given N, there are N^.ff — 1) npndiagpnal
elements in C, part (3) of the procedure gives N(N — l)/2
quadratic equations. This set of equations is too large to
be handled easily except for small N. However, by set-
ting the most frequently occurring symbol in C to be an
integer such as 1 or 2, the number .of independent equa-
tions decreases substantially. As shown above, when N =•
8, the number of equations is reduced from 28 to 1. The
most tedious part of the above procedure is part (4), that
is, finding N integers that satisfy the set of nonlinear al-
gebraic equations generated in part (3). JBy using such
advanced symbolic manipulation tools as Mathprnfiiica [7],
the effort of generating the set of algebraic equations in
part (3) and solving them in part (4) can be greatly re-
duced. In fact, MathematicQ was used in an interactive
manner to generate the 8 x ;8 and 1.6 x 16 ICT matrices
given in this article.

In order to obtain gopd .compression performance, the
set of N — 1 integers must have a magnitude profile similar
to the N — 1 floating-point elements of A. Furthermore,
if the multiplication-free property is desired, the set of
N integers must be restricted to powers of 2. Some ad
hoc techniques are us.ualjy needed to simplify the above
calculations.

Note also that there is a general procedure for approxi-
mating an orthonormal matrix arbitrarily closely to one
with rational coefficients. .(Jriven an ortjionorma} matrix Q
with no eigenvalue equal .to -1, let S = (I -
Then S is .skew symmetric ;since
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(/ - Q)(i + QT1 + U + Q~ lT l(i -

(i - Q)( J + Q)-1 + (/ + QY\Q -1}

jk — jl — km — Im = 0 (7)

= 0 (3)

Conversely, if 5 is any skew-symmetric matrix such that
— 1 is not an eigenvalue, then by essentially the same com-
putation, the matrix Q = (7-5)(/ + 5)~1 is orthonormal.
Thus, given an orthonormal matrix Q, one can approxi-
mate S = (7 —<5)(/ + <3)~1 by an arbitrarily close rational
skew-symmetric matrix S'. Then, Q' = (I - S')(I + S')'1

is a rational orthonormal matrix close to Q. While this
procedure works well in theory, there are practical diffi-
culties in its application. In practice, one considers XQ'
where X is an integer so that XQ' is integral. The matrix
XQ' obtained by this procedure has generally large entries,.
which makes it unsuitable for many applications.

Notice that n and o are arbitrary. By extensive search
on the sets of numbers that satisfy Eqs. (4), (5), (6), and
(7), the following solution, which has a magnitude profile
similar to that of the N — I floating-point elements of the
16 x 16 DCT matrix, was obtained: a = 1, 6 = 18, c = 18,
d = 16, e = 14, / = 14, g = 1, h = 10, i = 2, j = 10,
k =-9, / = 6, m = 2, n = 56, and o = 2. The corresponding
ICT matrix is shown in Fig. 4(b). Another solution to the
above system of equations is a = 1, 6 = 4, c = 4, d = 0,
e = 2, / = 2, g = 4, h = 0, i = 0, j = 4, k = 1,
1 = 2, m = 0, n = 1, and o = 4. This matrix is shown
in Fig. 4(c). Notice that all.integers in this solution are
powers of 2, so only binary shift and addition operations
are required for this ICT transform. Since there are many
zeros in this solution, one does not expect it to give an
efficient ICT matrix. Intuitively, a transform matrix with
good energy compaction should not have many zeros.

VII. ICT for W=16
In this section, the general procedure of Section VI is

used to construct a 16 X 16 ICT matrix. From Eq. (1), one
obtains the 16 x 16 DCT matrix A. Notice that there are
16 non-negative values in A. The 16 x 16 ICT matrix B
shown in Fig. 4(a) is obtained by using A as a template.
By setting a = 1 and forcing all nondiagonal elements
in BBt to be zero, one obtains the following set of four
independent nonlinear equations:

be + cf — df — bg — eg — eh + di - hi = 0 (4)

bd - ce - de + fg + bh - fh + ci + gi = 0 (5)

-cd + be + bf - eg - dh + gh + ei - fi = 0 (6)

VIII. Conclusion

This article explored the mathematical properties of a
new class of integer transforms called the integer cosine
transform and derived a general construction procedure
for this transform. This procedure can be used to con-
struct integer versions of other transforms, such as the
Fourier [8], sine [9], Gabor [10], wavelet [11], and so forth.
The basic idea is to approximate a floating-point transform
with its integer counterpart in the hope of achieving com-
parable performance with much-reduced implementation
complexity. In the case of the discrete cosine transform,
its integer counterpart, the ICT, has an implementation
complexity substantially lower than that of the DCT and
comparable to that of the Hadamard transform. Simu-
lation results indicate that rate-distortion performance of
the ICT is only slightly inferior to that of the DCT.
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Fig. 1. DCT-based compression system.
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Fig. 4. Three 16 X 16 ICT matrices: (a) structure of ICT matrix; (b) ICT matrix;
and (c) multiplication-free ICT matrix.
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