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In order to meet the requirements for precision pointing of 34-m antennas, ade-
quate control design and simulation software have to be developed, with a detailed
description of the supporting analytical tools. This article describes a control sys-
tem model for the elevation drive of the DSS 13 antenna. The model allows one
to simulate elevation dynamics, cross-coupled dynamics in azimuth and elevation,
and RF pointing error. A modal state-space model of the antenna structure was
obtained from its finite-element model with a free rotating tipping structure. Model
reduction techniques were applied separately for the antenna model and rate-loop
model, thereby reducing the system order to one-third of the original one while
preserving its dynamic properties. Extensive simulation results illustrate properties
of the model.

I. Introduction
In order to meet the requirements for the 34-m antenna

pointing accuracy, an appropriate control system model
has to be developed. The purpose of this article is to
give a detailed description of the antenna control system
modeling. This analytical approach is the background for
the computer software development, which is used for the
simulations of antenna dynamics due to control input, dis-
turbances, and parameter variations, and is a tool for the
control system design.

A state-space control system model for elevation point-
ing of the DSS 13 antenna is described. Special attention
is paid to antenna structure modeling. A finite-element
model of the antenna structure with a free rotating tip-
ping structure is used to obtain its state-space model in
modal coordinates. The model was developed with the
following assumptions:

(1) Linearity of the model (nonlinear effects due to dry
friction are omitted).

(2) The structural model consists of mode shapes up to
5 Hz.

(3) The elevation angle of the tipping structure is 90 deg.

(4) The azimuth rotation joint is locked.

(5) No disturbances act on the structure.

The balanced reduction technique was applied to re-
duce the structural model and subsequently the rate-loop
model. The order of the resulting reduced model is one-
third of the original one, while the modeling error is in-
significantly small. Extensive simulations were performed
and are described below to illustrate the control system
properties.1

1 W. Gawronski, "Software Package for Modeling and Simulation of
the Elevation Control System for the DSS 13 Antenna," JPL In-
teroffice Memorandum 3324-91-016 (internal document), Jet Pro-
pulsion Laboratory, Pasadena, California, February 6, 1991.
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II. Structural Model
Here and throughout the article, the state-space repre-

sentation of a system is used. This representation is de-
noted by a triple (A,B,C), which represents a first-order
differential equation in the form

x = Ax + Bu, y = Cx (1)

Assuming the state vector x of dimension n x 1, the input
u of dimension p X 1, and the output y of dimension q x 1,
the matrices A, B, and C are of dimensions n x n, n x p,
and q x n, respectively.

The state-space model for an antenna structure with
a 90-deg elevation angle and locked azimuth rotation is
obtained. A balanced reduction technique applied to the
structural model gives the smallest acceptable model.

A. Full Model

In this section the state-space triple (A,, BS,C,) for the
antenna structure is determined. The triple is obtained in
modal coordinates. The state vector of the structure xt

consists of modal displacements q, and modal velocities

where Im is the identity matrix of dimensions m x m. De-
tails of the derivation of A, are presented in Appendix B.
The numerical values of J7, Z, and other parameters are
given in Appendix A.

2. Matrix Bs. The bull-gear-pinion connection is
shown in Fig. 1. The rollers of the connection are redun-
dant; they compensate for gravity forces. The rigid pinion
housing includes two drive systems. A torque applied at
the pinion of the gearbox is the input to the structure. The
pinion radius is rp = 6 inches. A node labeled no = 86302
in the finite-element model is a point of contact between
the pinion and the bull gear, while a node with the la-
bel nu = 86881 is located at the joint of the supporting
truss structure and the pinion housing. The joint nu is at
distance p from node no. The distance p is small in com-
parison to the bull gear radius; thus, in further analysis
the nodes nu and no coincide. The torque T applied to
the pinion is in equilibrium with tangential (to the bull
gear and the pinion) forces Fno and Fnu, see Fig. 2. For
the force Fno with y and z components Fnoy and Fno2, and
the absolute value |Fno|, one obtains from Fig. 2

l^nol = \T\/rp,

T
(2)

The antenna structural model is generated from the
natural frequencies u>i and mode shapes <£,•, obtained from
the finite-element model generated by JPL/IDEAS, and
presented in Appendix A. Modal damping of the struc-
ture £,• is assumed to be 0.5 percent, i.e., £,• = 0.005 for
i = 1,. . . ,10. The antenna is a free rotating structure
with a joint between the alidade and tipping structure.
Hence, the open-loop structural model is unstable. From
the finite-element model, m = 10 modes are obtained;
the first one is the rigid-body mode with zero natural fre-
quency. The modes are determined for selected p points
of interest. Thus, <j>i = [<j>u, 0,-2 , . . . , <j>ip]T for i = 1,.. .,10.

1. Matrix A,. Denote

Q = diag(u>i), Z = diagfa), i = 1 ,2 , . . . , m (3)

Then, the system matrix A, for the antenna structure is

A.= (4)

Fnoy = \Fno\ sin a, Fnoz = \Fno\ cos a

Hence,

Fno —

F noz rp cos a
T = BnoT

where Bno = ^[sina coso]T and a = 28 deg. From
Fig. 2, one can see that Fnu = —Fno; hence, Fnu =
-BnoT. In global coordinates, the force F, acting on
the structure is a vector F? = [0 0 • • • F%0 0 • • • Fju

0 ••• 0]. Thus,

F, = B0T

where BT
0 = [0 0 • • • B£ 0 ••• - B£ 0 ••• 0]. The

matrix B0 is transformed into modal coordinates:

B, = M-l*TB0 (5a)

where Mm = diag(mmi , . . . ,mmm) is the modal mass ma-
trix. Denoting (j)no = [c£ l no , . . . ,</>mno], <j>nu - [</>i n u , . . . ,
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4>mnu], 4>Tno ~ [^«noy <t>inoz\, and <£,-„„ = [4>inuy <j>inuz],

where </>jnoy is the ith mode component at node no, at
y direction (mode shapes are listed in Appendix A), the
above equation reduces to

and their y and z components by vpy, vpz, vty, and vt,z,
respectively. Projections of vj and vp onto directions tan-
gential to the bull gear at node no are denoted v\ and v?,
respectively.

(5b) v i = vty sin a + in* cos a, = vpy sin a + vpz cos a

3. Matrix C,. The following outputs of the antenna
structure are considered: elevation angle Oe, elevation rate
0e, pinion rate 0, pointing error angle in the x direction
£x, and pointing error angle in the y direction £y. Hence,
the antenna output matrix C, consists of five rows: C,i
for the elevation angle, Csi for the elevation rate, C,3 for
the pinion rate, C,\ for pointing error in the x direction,
and C,5 for pointing error in the y direction:

(6)

The first two rows of C, are determined as follows. In
the finite-element model, the node at the bull gear center
has a label nb = 5380, and the node at distance R to n6
has a label nc = 41212 (see Fig. 2). High stiffness of the
bull gear and the close location of the two nodes allows one
to determine the elevation angle as a rigid-body rotation:

0, = (ync - yni,)/R

= (Cncy$ - Cnby$)x,/R = (<j)ncy - <j>nby)x,/R

where Cncy and Cnby denote rows with all but one zero
elements. The nonzero element of Cncy is equal to 1, and
is located in the position corresponding to the location of
y displacement at node nc in the vector x,. The nonzero
element of Cnty is equal to 1, and located in the position
corresponding to the location of y displacement at node nb
in the vector xa . Furthermore, <t>ncy - [<j>incy, •• -, 4>mncy],
where <j>incy is the ith mode component at node nc at y
direction, and <j>nt>y = [^in jy , . . . , (j>mnky], where <j>inby is
the ith mode component at node nb at y direction. From
the above, it follows that

C., = [0 C.e], C)2 = [C,e 0] (7a)

where C,e = (<j>ncy - <t>nby)/R-

For the determination of the pinion rate measurement
matrix (7,3, denote the velocity at pinion housing vp (at
node nu), bull gear velocity vb at node no (see Fig. 2),

The pinion rate is 6 = (v\ — vt)/rp, and noting that
Vby — <l>noyV,, Vbz = ( f rnozVl , Vpy = <j> nuyV,, and Vpz =

<J>nuzV, , where v, is a modal velocity defined in Eq. (2), one
obtains

"1 - «2 = [(<i>noi - ^nuz ) COS a + (<j>noy ~ <j>nuy ) Sin Of] V,

Therefore, 0 = Cspv, = [0 C,p]xt, giving finally

CS3 = [0 C,p] (7b)

where C,p = [(</>n0z -</>nu*) cosa + (<j>noy - ^nuy ) sin a] /rp .

The last two rows of C,, the output matrices for the
pointing error in the x and y directions, are:

C.4 = [Cex 0], C.5 = 0] (7e)

where Cez = [333.26, 0.07973, -0.60701, 0.15431, 48.635,
4.0901, -40.343, 113.24, 225.17, -39.59] and Cey =
[-9.0557, -24.706, -6.6233, 3.6844, -19.179, 23.571,
43.871, 180.87, -59.909, -227.56] are obtained from the
JPL/IDEAS.

B. Model Reduction

The structural model under consideration consists of
10 modes or 20 states. The set of modes may consist of
modes which are not important in system dynamics and
can thus be eliminated. Observability and controllability
properties are used to determine which modes to eliminate.
Observability is a property of a system that indicates the
participation of each system state in the output with all
states equally excited. Controllability, on the other hand,
indicates the excitation of each state due to white noise,
or impulse input. A balanced representation [1] is a state-
space representation with its states equally controllable
and observable, and the Hankel singular value is the mea-
sure of the joint controllability and observability of each
balanced state variable. The states with small Hankel sin-
gular values can be deleted, since they are weakly excited
and weakly observed at the same time, causing minimal
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modeling error. For flexible structures, modal represen-
tation is almost balanced, assuming small damping and
distinct poles [2,3]. Each mode has almost the same con-
trollability and observability property, hence, each mode
can be considered for reduction separately. The Hankel
singular value for the »th mode is given by Eq. (53) of [2]
and Eq. (14) of [4]:

7i = (8)

where bai is the t'th row of B, and csi is the t'th col-
umn of C,. For the rigid-body mode, the Hankel singular
value does not exist—its value tends to infinity—hence,
the rigid-body mode is always included in the reduced
model. For each mode, the Hankel singular value is de-
termined to help the designer decide on the number of
modes in the reduced structural model.

Hankel singular values of the 10-mode model of the an-
tenna (A,,B,,C,) are plotted in Fig. 3, where the Hankel
singular value of the rigid-body mode is omitted. The
reduced-order model consists of five modes: the rigid-
body mode and four elastic modes with natural frequen-
cies 3.1358, 4.1149, 4.4503, and 4.5688 Hz, indicated in
Fig. 3. The transfer functions of the full and reduced mod-
els of the antenna are shown in Fig. 4, indicating that the
reduced model fully represents properties of the original
system. Note that disturbances are not included in the
model; therefore, they are not considered in model reduc-
tion. One should note, however, that a different reduced
model would be obtained for a model with disturbances
included.

The subsystem G0, Fig. 6(b), consists of four subsystems
itself: GI, GI (both amplifiers), G3 (motor armature), and
£4 (motor and gearbox mechanical properties). The state
equations for G\ are

X-2 = X3

= X\ — T3 X3 —

where x^ — uim. Similarly, for G?:

(lOa)

(lOb)

(lla)

(lib)

where XG = i0- For G3, from Fig. 6:

x5

-R a L- l x 6 -k b L~ l x 7

T0 =

(12a)

(12b)

The system G^ denotes the motor and gearbox model.
There are two inputs to the system: motor torque T0 and
pinion rate 0. The output is the pinion torque T. The
gearbox flexibility is described either by the input or the
output stiffness, as shown in Figs. 7(a) and 7(b). For the
output stiffness model, with notations as in Fig. 7(a), one
obtains equations for the gearbox rate

III. Rate-Loop Model
This section presents details of rate-loop modeling and

introduces model reduction.

A. Full Model

The rate-loop model of the antenna is shown in Fig. 5.
It consists of two identical subsystems denoted G0, an-
tenna structure G,, command amplifier Gc, and the bias
loop, with the bias command vt,ias.

The subsystem Gc is shown in Fig. 6(a). The first state
variable is denoted x\ — v\ and its state equation is

TN = NT0, 0N =

and the dynamic equilibrium equations

.-i (9)

along with the spring equation for the output stiffness kgo

T=T N = kgo(em - N0)/N

Similar equations are derived for the input stiffness
model in Fig. 7(b). Both models are represented by Fig. 8,
where Nx = 1 /N and kgl = kgo for the output stiffness

86



model and 7Vr = N and kgx = kai for the input stiffness
model. Denoting Zg = T, the state equations are

• ir T— i 7~^! \ I~^T M"^a^

puts v\ and 9, outputs T and i0, and state vector x0

x0 = (14a)

x$ = kgxNxx7 - kgxNzNC,x, (13b)

where Nx = N for kgx = kgi, and Nx = l/N for kgx = kgo.

Combining Eqs. (10)-(13) for models GI, G2, G3>

and 04, one obtains the state-space model for G0 (in- where

(14b)

A1 =

• o

0

0

kr/T3 /

0

0

. 0

B^ = [ 0 1 0

1

-1/T3

0

:rr2/T3

0 kji

0

0

0 0 0 0 ] , L

Gi2 = [ 0 0 0 0 1 00], C

0 0 0

0 0 0 - 1

0 1 0

0 -1/T5 -kcur

0

^

0

0

"i/LaT5 kfk{T^/ LaT$ — Ra/La — kb/La

0 0 km/Jm

0 0 0 Jb,

& = [0 0 0 0 0 0 - kgxNxN], Cn =

i _ i 1 1 i o r D D
1 " 1 s~v \ i D\ — fj i i f) i o

Two systems' G0's are located in the rate-loop system
(see Fig. 5): the first with inputs t>n and 0, outputs T\
and i0i , and state vector x2\ , and the second with inputs

0

,N.

[00

"T2 '

0

0

0

0

0

-l/JmN

0

0 0 0 0 1 ] ,

C / -| n 1 \
1^22 ( lob)

and 0, outputs T2 and io2, and state vector z22. The
equations for these systems are

(15a)

(15b)

and

The subsystem Gc is an amplifier for the bias signal, with
input Avc and output vu. Denoting xa = vu, its state
space equation is obtained:

xa = - , + Arcl/rr6~1Ai;c (17)

The antenna structure equations according to Section II
are

Z22 = (16a) x, = Asxs + B,T, = C,3x, (18)
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The nodal equations are

(19a)

(19b)

= Vi + Vu — Xi + Xa

(19c)

= Vi - Vu - Xi - Xa,

Denoting the state vector xj = [*it*3lt*2ii *•**»]
combining Eqs. (9)-(19), the equations for the whole sys-
tem can be written

xr = A rx r + B ru, y = Crxr (20)

where UT - [90 vbiai] and yT = (6* 6* 0T], and

Ar =

Cr =

Pi =

-i/n o o

BH AI o

flu o AI

o PI -PI

0 B,Cu B,Cn

n o o o o

0 0 0 p2 0

- 0 0 0 0 C , i

0 0 0 0 C,2

. 0 0 0 0 C , 3

0 0

-fln 512C,3

Bn B12C,3

-1/T6 0

0 .4,

, p2 = kc tf rkc t/Te

B. Model Reduction

The rate-loop system model is reduced by applying the
balancing principle. The system is transformed into bal-
anced coordinates where each state is equally controllable
and observable and not correlated with other states. The

balancing procedure from [3] is used, and is summarized in
Appendix C. The procedure from Section II is applicable
to flexible structures only.

The rate-loop system, with already reduced antenna
structural modes, has 26 state variables. A plot of the sys-
tem Hankel singular values is shown in Fig. 9. The Hankel
singular values of component number 15 and larger are
small in comparison to the remaining components. There-
fore, the reduced system consists of 14 state variables. The
transfer functions of the reduced and full rate-loop systems
are compared in Fig. 10. The full system contains the
full structural model: 36 state variables altogether. From
Fig. 10 one can see that the reduced model of 14 state vari-
ables almost exactly approximates the full 36-state model.
In Fig. 11 step responses of full and reduced models are
compared, showing good agreement between the full and
reduced models.

IV. Position-Loop Model
The rate-loop system, with the position loop closed, is

shown in Fig. 12. A proportional-pius-integral (PI) con-
troller is applied. For the state x0 defined XT

O = [x;T Zj],
the state-space triple of the series connection of the rate-
loop system and the controller is

A0 =
AT

0 0

(21)

C0 = [Ct 0], Bob =
Bbi

0

where kpp and fc,-,- are the proportional and integral param-
eters of the controller, Bt is the first column of Br, Bj, is
the second column of Br, and C< is the first row of Cr.
The closed-loop system matrix is

Ad = A0- B0C0 (22)

and the closed-loop triple is (Aci,B0,C0). The closed-loop
system performance is illustrated in Fig. 13 in time domain
and in Fig. 14 in frequency domain. One can see that the
x component of the RF pointing error is much larger than
the component in the y direction, and the y component of
subreflector vertex displacement is much larger than the
component in the x direction. In fact, for a symmetric
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structure the RF y component and x displacement of the
subreflector vertex should be zero.

Finally, the action of the bias input VJ,-<M is tested. Two
step inputs are introduced to the closed-loop system: a
Vbiai step of amplitude 2.5 V at the moment t = 0 sec and
a command step 00 of amplitude 0.1 deg at the moment
t — 10 sec. The results are shown in Figs. 15(a) through
15(c). For the first 10 sec, when the command 00 is zero,
the torques T\ and TI are equal but with opposite sign, so
that the resulting torque T acting on the structure is zero:
Vbiat does not influence the structure. Nevertheless, both
motors are active, their rates wml and wm2 are nonzero,
plotted in Fig. 15(c). After 10 sec, when the command is
active, the system behavior is similar to the one without
bias.

V. Conclusions
In this article, modeling techniques for the DSS 13 an-

tenna structure and its rate-loop control system have been

presented. Through balancing the system controllability
and observability properties, a reduced system model has
been obtained. Antenna dynamics, rate-loop dynamics,
and dynamics of a system with a closed position loop have
been simulated. The model allows one to simulate ele-
vation dynamics, cross-coupled dynamics in azimuth and
elevation, and a dynamic RF pointing error.

Section I contains restrictions that need to be relaxed.
The structural model could include modes of up to 10 Hz,
with free elevation and azimuth joints. The elevation and
azimuth control systems could be simulated jointly, expos-
ing the cross-coupling of the two systems. Disturbances
(wind and measurement noise) could be included in the
model. The system could be modeled for several elevation
angles of the range of [0 deg, 90 deg], and the dependence
of the system dynamics on elevation angle investigated.
Nonlinear effects due to dry friction and saturations could
be included. Finally, field measurements need to be per-
formed, and the model parameters adjusted such that a
satisfactory agreement between simulations and field data
is achieved.
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Fig. 10. Magnitudes of transfer function for the full 36-slate (solid line) and the reduced
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Fig. 11. Step responses of the full 36-state (solid line) and reduced 14-state (dashed
line) rate-loop models (input: elevation rate, rad/sec).
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Fig. 12. Position-loop system.
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Fig. 14. Step responses for the closed-loop system; position loop closed, kpp = 0.5,
kjj = 0.1; input: elevation angle, rad.
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30

Fig. 15. Step responses of the closed-loop system to the command and bias inputs:
step Vbjas = 2.5 V at f = 0 and step 60 = 0.1 deg at t = 10 sec.
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Appendix A

Parameters of the DSS 13 Antenna

I. Structural Parameters

The structural parameters for the DSS 13 antenna are:

a = 28 deg

Ci = 0.005, i = 1, . . . ,10

fi = diag(Q, 12.4482, 12.5833, 13.3612, 19.7028,
20.1747, 25.2584, 25.8547, 27.9621, 28.7060)

Mm = dia</(215.4239, 223.8522, 38.1610, 17.1415,
243.8451, 58.5778, 95.1770, 804.4224, 18.4959,
18.3158)

Node numbers: nc = 5380, no = 86302, nu = 86881,
and nb = 41212

Modal matrix: 9 = [</>i,4>2, •• •, 0io]

4>i = ith mode shape, </>,•

where:

<j>i\ = ith mode component, node nc,x direction

4>i-2 = ith mode component, node nc,y direction

<j>i3 = ith mode component, node nc,z direction

<j>i4 = ith mode component, node no,x direction

<j>i5 = ith mode component, node no,y direction

<^6 = ith mode component, node no, z direction

<j>j7 = ith mode component, node nu, x direction

(f>is = ith mode component, node nu ,y direction

0j9 = ith mode component, node nu, z direction

4>no — ith mode component, node nb, x direction

•foil = ith mode component, node nb, y direction

<fci2 = ith mode component, node nb, z direction

The modes (in MATLAB notation):

[0.00000012,
0.00000000,
0.00000000,
0.00000012,

[0.16089562,
0.00000000,
0.00000000,
0.18123627,

[-0.02516621,
0.00000000,
0.00000000,

-0.02842479,

[0.00351127,
0.00000000,
0.00000000,
0.00397642,

[0.01726125,
0.00000000,
0.00000000,
0.01343854,

-0.00000060,
0.17696733,

-0.00000005,
-0.04215388,

-0.04828905,
-0.00320542,
0.00012084,

-0.05316486,

-0.07031944,
-0.00103347,
-0.00024008,
-0.07567856,

0.03635180,
0.00089782,
0.00012046,
0.03904565,

0.21422039,
0.41745298,
0.01317732,
0.25263344,

0.00000003,. . .
0.34187825,...

-0.00000010,...
0.00000003];

-0.01058891,...
0.00104308,...
0.00023455,. . .

-0.01040931];

0.00690156,...
0.00003283,. . .

-0.00046601,...
0.00688137];

-0.00294988,. . .
-0.00009626,...
0.00023381,...

-0.00295351];

-0.02128878,...
-0.03668607,...
0.02557758,...

-0.02139128];

% (node
% (node
% (node
% (node

% (node
% (node
% (node
% (node

% (node
% (node
% (node
% (node

% (node
% (node
% (node
% (node

% (node
% (node
% (node
% (node

nc, x ,y, z components)
no, x , y , z components)
nu, x ,y , z components)
nb, x , y , z components)

nc, x ,y ,z components)
no, x ,y ,z components)
nu, x,y,z components)
nb, x , y , z components)

nc, x,y,z components)
no, x ,y ,z components)
nw, x, y, z components)
nb, x,y, z components)

nc, x,y, z components)
no, x, y, z components)
nu, x, y, z components)
nb, x, y, z components)

nc, x , y , z components)
no, x, y, z components)
nu, x, y, z components)
nb, x, y, z components)
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[0.08392051,
0.00000000,
0.00000000,
0.08607231,

[-0.02218441,
0.00000000,
0.00000000,

[-0.01743287,

[-0.30854177,
0.00000000,
0.00000000,

[-0.23322315,

[-0.00970566,
0.00000000,
0.00000000,

[-0.01092381,

[-0.05660426,
0.00000000,
0.00000000,

-0.05696018,

0.
-0,
-0.
-0,

0,
-0.
0,
0.

0.
0.
0.
0,

-0
-0
-0
-0

0.
0.

00028101,
00560731,
00020205,
00154962,

16344080,
02133899,
00065982,
15653900,

04674442,
14007292,
05702746,
05969981,

01171182,
02275614,
00178816,
01958129,

01088616,
00316858,

0.00090903,
0.00916372,

-0.03029582,. . .
-0.00120284,...
-0.00039219,...
-0.03083227];

-0.01364561,...
0.00544590,. . .
0.00128072,...

-0.01357982];

0.18580163,...
0.79574209,. . .
0.
0
.11069132,...
18902462];

0.00170980,...
0.02106441,...

-0.00347085,. . .
0.00171795];

0
0
0
0,

.01266761,...
00525204,. . .
00176443,...
01287218].

% (node
% (node
% (node
% (node

% (node
% (node
% (node
% (node

% (node
% (node
% (node
% (node

% (node
% (node
% (node
% (node

% (node
% (node
% (node
% (node

nc,
no,
nu,
nb,

nc,
no,
nu,
nb,

nc.
no,
nu,
n&,

nc,
no,
nu,
nb,

nc,
no,
nu,
nb,

x,
x,
x,
x,

r,
x ,
«,
x •

x.
x.
x.
X.

X.

X.

x,
X.

X,

x.
x.
x.

y,
y-
.'/.
y-
y,

y,
y,
y-
y-
y-
.'/,
y-
y-
y-
y-
y-
y-
y-
y-
y-

z
z
z
z

:

z
z
z

z
z
z
z

z
z
z
z

z
z
z
z

components)
components)
components)
components)

components)
components)
components)
components)

components)
components)
components)
components)

components)
components)
components)
components)

components)
components)
components)
components)

II. Rate-Loop System Parameters
The rate-loop system parameters for the DSS 13 an-

tenna are:

fci = 716.197 V sec/rad

km = 15.72 Ib/A

kb = 1.79 V sec/rad

k, = 0.8 V/V

ktach = 0.0384123 V sec/rad

kr = 80 V/sec V, range: 49 - 83

ki = 87.13 V/sec V

ku = 0.1

kpp =0 .5

kcur = 0.12658 V/A

kf = 54 V/V

kgo = 1.5x 107 Ib/rad

kct f r = 0.33

kct = 0.11111

kb, = 0.66

ri = 0.0063662 sec

T2 = 0.094 sec

T3 = 0.002 sec

7-4 = 0.00484 sec

r5 = 0.0021 sec

r6 = 0.7304 sec

N = 354

Jm = 1.236 lb/sec2

Ra = 0.456 0

La = 0.011 H
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Appendix B

From the Finite-Element Model to the State-Space Model

The state-space model of a flexible structure is obtained
from its finite-element model, which consists of the mass
M (m x m), stiffness K (m x m), input B0 (mxs) , output
Coq (r x m), Cov (r x m) matrices, the input u(t) (s x 1),
and output y(t) (r x 1). The input-output relationship is
given by the second-order differential equation

(B-l)

where q is the vector of structural displacements.

Consider now a modal matrix $ (m x p), p < m, which
consists of p eigenvectors <j>i (mode shapes), i = 1, . . . ,p:

which diagonalize M and K:

Mm = Km =

(B-2)

(B-3)

i.e., Mm and Km are diagonal (p x p) matrices of modal
mass and stiffness. When a new variable qm (p x 1) is
introduced such that

q = $qm (B-4)

and left-multiplying Eq. (B-l) by <&T, one obtains either

or

y =

= $ B0u, y =

(B-5b)

or

•qm + M- lKmqm

(B-5c)
y =

Denote Mm
lKm = fl2, where Q is a diagonal (pxp) ma-

trix of natural frequencies (rad/sec). At this stage a damp-
ing matrix Z is introduced, Z = diag^i), i = 1,... ,p, such
that 2ZQ = M^Dm, and Dm is a modal damping matrix
(assumed to be known), so that from Eq. (B-5c) the modal
model is acquired:

(B-6)

y =

Define a state variable x

x =
qm

qm

(B-7)

then, Eq. (B-6) can be presented as a set of first-order
equations:

x\ =

y = Cov<t>x2

(B-5a) or m the following form

x = Ax + Bu, y = Cx (B-8a)

where

A =

C =

-n2 -
, B =

(B-8b)

is the sought state-space model in modal coordinates.
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Appendix C

A Balanced Representation of a Linear System

Consider a stable, linear, time-invariant system:

x = Ax + Bu, y = Cx, x(0) = x0 (C-l)

where x 6 Rn is the system state, u 6 Rp is the sys-
tem input, y 6 Rm is the system output, and (A,B,C)
is the system state-space representation. The system con-
trollability and observability grammians Wc and W0 are
solutions of the Lyapunov equations

AWC + WCAT + BBT = 0, ATW0 + W0A + CCT - 0

(C-2)

The system representation is balanced if its controllabil-
ity and observability grammians are diagonal and equal.
Hence, for the balanced representation (Ai,Bi,Cb) =

), the following is true:

wc = w0 = r2,

where T is a linear transformation and 7,- is the z'th Hankel
singular value of the system.

The transformation T is determined as follows:

T= PUT'1, (c-4)

The matrices F, V, and U are obtained from the singular
value decomposition of the matrix H:

H = VT2UT (C-5)

where H = QP, and P and Q form the following decom-
position of grammians:

= PP1, (C-6)

(C-3) for example, Cholesky, or singular-value decomposition.
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