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Preface

This quarterly publication provides archival reports on developments in programs

managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In
space communications, radio navigation, radio science, and ground-based radio and

radar astronomy, it reports on activities of the Deep Space Network (DSN) in plan-
ning, supporting research and technology, implementation, and operations. Also

included are standards activity at JPL for space data and information systems and

reimbursable DSN work performed for other space agencies through NASA. The pre-

ceding work is all performed for NASA's Office of Space Communications (OSC). The

TDA Office also performs work funded by another NASA program office through and

with the cooperation of OSC. This is the Orbital Debris Radar Program with the
Office of Space Systems Development.

The TDA Office is directly involved in several tasks that directly support the
Office of Space Science (OSS), with OSC funding DSN operationM support. In radio

science, The TDA Progress Report describes the spacecraft radio science program

conducted using the DSN. For the High-Resolution Microwave Survey (HRMS), the
report covers implementation and operations for searching the microwave spectrum.
In solar system radar, it reports on the uses of the Goldstone Solar System Radar for

scientific exploration of the planets, their rings and satellites, asteroids, and comets.

In radio astronomy, the areas of support include spectroscopy, very long baseline
interferometry, and astrometry.

Finally, tasks funded under the JPL Director's Discretionary Fund and the Caltech
President's Fund that involve the TDA Office are included.

This and each succeeding issue of The TDA Progress Report will present material

in some, but not necessarily all, of the following categories:

OSC Tasks:

DSN Advanced Systems

Tracking and Ground-Based Navigation;

Communications, Spacecraft-Ground; Station Control and System Technology;
Network Data Processing and Productivity

DSN Systems Implementation

Capabilities for Existing Projects; Capabilities for New Projects;

New Initiatives; Network Upgrade and Sustaining
DSN Operations

Network Operations and Operations Support;

Mission Interface and Support; TDA Program Management and Analysis

Ground Communications Implementation and Operations
Data and Information Systems

Flight-Ground Advanced Engineering

Long-Range Program Planning

OSC Cooperative Tasks:

Orbital Debris Radar Program

OSS Tasks:

Radio Science; High-Resolution Microwave Survey;

Goldstone Solar System Radar; Radio Astronomy

Discretionary Funded Tasks

Iii
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Toward Astrometric Tracking With the Infrared

Spatial Interferometer

R. N. Treuhaft

Radar Science and Engineering Section

M. Bester, W. C. Danchi, and C. H. Townes

Space SciencesLaboratory,Universityof Californiaat Berkeley

Infrared interferometric demonstrations with the University of California, Berke-

ley's infrared spatial interferometer (ISI) on Mr. Wilson explore the potential of in-
frared and optical astrometry for deep space tracking, reference frame development,

and DSN science. Astrometric data taken and analyzed over the last 5 years from the

ISI have shown that instrumental and atmospheric effects limit current demonstra-

tions. The benefits of sensitivity upgrades, which were performed in 1991 and 1992,

have been demonstrated by comparing point-to-point phase fluctuations for the fall

1989 and fall 1992 observing epochs. This comparison showed that point-to-point

phase fluctuations due to tropospheric and quantum noise, for optimal integration

times of 0.2 sec, are approaching the 0.1-cycle level needed to reliably connect the

interferometric phase. The increase in sensitivity, coupled with that arising from

very recent hardware upgrades, will greatly enhance phase-connection capabilities
necessary for astrometry in the presence of atmospheric refractivity fluctuations.

The current data set suggests that atmospheric fluctuations on Mr. Wilson during

the best seeing are dominated by a low-lying component, approximately 25 m high,

which may be minimized with in situ calibration in the future. During poor seeing

conditions that currently prohibit the interferometric phase connection necessary for

astrometry, fluctuations seem to be generated by atmospheric inhomogeneities at

much higher altitudes above Mr. Wilson. Data taken over the last year suggest that
the ISI will soon be able to achieve 50- to 100-nrad astrometry in a single observing

session, employing current ground-based laser distance interferometer calibrations

to minimize atmospheric effects.

I. Introduction

Infrared and optical astrometry support three areas

of potential interest to the Deep Space Network (DSN):

tracking of laser-carrying spacecraft; reference frame de-

velopment, including locating solar system objects in in-

frared/optical, radio, and planetary reference frames; and
DSN astrometric science of the future. Because optical

telemetry is being considered for high data-rate trans-

mission within the next few decades [1], development of



an infraredor opticalmetrictrackingcapabilitywill re-
duceor eliminatethe needfor bulkyradioequipment
on laser-carryingspacecraft.Evenin theabsenceof op-
tical telemetry,the developmentof infraredandoptical
referenceframes,and the locationof solarsystemob-
jects in thoseframes,will enablemoreaccuratetarget-
relativetrackingwith radiosystemsutilizingradio-optical
frameties. Opticalmeasurementsof GlobalPosition-
ing System(GPS)satellitesconstituteoneexampleof a
radio-opticalframe-tietechnique.Suchmeasurementsare
plannedfor theTableMountainRonchitelescopein the
nearfuture.CurrentDSNsciencefrequentlyinvolvesthe
measurementofelectromagneticphaseoramplitudeat ra-
dio wavelengths.Similarmeasurementsat infraredand
opticalwavelengths--suchassolardeflectionexperiments,
freeofcharged-particleeffects,andasteroidimaging--will
probablybeperformedbytheDSNof thefuture.

Stellarastrometricdemonstrationswith theUniversity
of California,Berkeley'sinfraredspatialinterferometer
(ISI)bearoneachof thethreeareasofDSNinterest men-
tioned above. ISI astrometric demonstrations, which help

to determine the limiting accuracy of ground-based in-

frared or optical astrometry, provide a valuable assessment

of the limiting accuracy of tracking, reference frame work,
and science at infrared and optical wavelengths. For exam-

ple, atmospheric refractivity fluctuations studied with ISI
are likely to be the dominant astrometric error for track-

ing spacecraft., galactic, or solar system targets. Refrac-
tivity fluctuations are similar in spatiotemporal character-

istics at infrared and optical wavelengths. In the presence

of refractivity fluctuations, interferometry at the longer

infrared wavelengths enables larger apertures than those

practical at optical wavelengths. On the other hand, two-
color methods at optical wavelengths may help to reduce

atmospheric effects [2]. Data from the ISI have already

helped to characterize the Mt. Wilson atmosphere, as will
be discussed in Section III. Descriptions of Mt. Wilson at-

mospheric behavior may well apply to other mountain-top
astronomical sites.

In addition to the description of atmospheric fluc_

tuation errors, tracking the trajectories of asteroids is

another potential application of infrared interferometry
in the DSN. Asteroid astrometry benefits both reference

frame development and science [3]. Figure 1 shows the

approximate flux of an asteroid located at 1 astronomical

unit (AU) from the Sun. Various simplifications regarding

the angular distribution of thermal flux from the asteroid

make the figure approximate at the 30-percent level, but
the illustrated wavelength dependence of the radiation is

much better than that. The figure applies to the two eases

noted, a 10-km-diam asteroid at 0.05 AU from the Earth or
a 200-km-diam asteroid at 1 AU from the Earth. The ISI

operates at ll _m and, with recent sensitivity upgrades,
should be able to make astrometric measurements of ob-

jects with flux in the 1000-Jy range. Optical or infrared

measurements of GPS satellites will help to locate the as-

teroids in the radio VLBI frame used for angular spacecraft

tracking. Astrometry of asteroid trajectories will also help

to determine their masses [3].

Ground-based demonstrations with the ISI will suggest
improvements to the infrared and optical astrometric tech-

niques, as well as the nature of future space-based tracking

systems. This article describes recent ISI data acquisition

and analysis that help to establish an instrumental and

atmospheric error budget. Ill the next section, the current
instrumental characteristics of the ISI and the restrictions

they impose on astrometric performance will be discussed.
Section III shows characteristics of the Mt. Wilson atmo-

sphere that must bc addressed in future demonstrations,
and Section IV describes the potential for upgrading both

the instrumentation and analysis algorithms to achieve as-

trometry below the 50-nrad level.

II. Instrumental Sensitivity and Systematics

A single telescope of the ISI is shown in Fig. 2. Each of

the two telescopes consists of a steerable flat mirror (on the

right), a focusing parabolic mirror, optics, and electronics

that detect the infrared signal and convert it to a 2-GtIz-

wide radio signal for cross-correlation. Helium-neon laser

distance interferometers (HeNe LDI's) in each telescope
monitor the path lengths between the flat and parabolic

mirrors and behind the flat mirror to the optics table. The

sensitivity of the ISI for infrared astrometry is limited by

the noise in the output of the heterodyne receivers, which

is about twice the quantum limit, or equivalent to a single-

sideband system temperature of approximately 2600 K. An
ISI interferometric time series for the star Alpha Orionis is

shown in Fig. 3. These data were taken on September 8,

1992, on a 13-m baseline. There are points in the time

series when a cycle may have been incorrectly assigned,
but by and large the phase seems properly connected.

A general requirement on the sensitivity of astromet-

ric devices is that the white (quantum or thermal) noise

be low enough to allow short integration times as com-
pared to those characteristic of appreciable propagation

media effects. For interferometric devices, both white

noise and low-frequency-peaked propagation noise [4,5]

contributions to the phase must be small enough to allow



phaseconnection.Usuallyrmsphasevariations<0.1 cy-

cle guarantee reliable phase connection. These qualitative

statements are illustrated quantitatively in Fig. 4, which
shows the point-to-point rms phase variation as a function

of integration time for data taken from Fig. 3 and from Al-

pha Orionis on October 12, 1989. Between the two epochs
shown in Fig. 4, a number of sensitivity enhancements were

made, including the installation of an improved hetero-

dyne detector in one telescope of the ISI. Low-frequency-

peaked atmospheric effects increase as the integration in-
terval increases. Quantum noise from the heterodyne de-

tectors, on the other hand, is white or frequency inde-

pendent and should therefore average and produce smaller

rms phase variations with increased integration time. The

decreasing trend with increasing integration times until

about 0.2 sec is presumably due to quantum noise, while

the increasing trend from 0.2 sec on is associated with
atmospheric refractivity fluctuations. The minimum rms

phase fluctuation--i.e., the point at which the system noise
and atmospheric trends cross--determines the optimal in-

tegration time. As can be seen from the figure, sensitivitity

upgrades improve performance by lowering the point-to-

point fluctuation associated with the optimal integration
time between about 0.2 and 0.13 cycle. If there were no

rise in Fig. 4 due to atmospheric fluctuations, then in-

tegration times could be extended indefinitely and poor

sensitivity could be tolerated. During nights of excellent

seeing, for example on October 10, 1989, integration times

of 1 sec or more were used to connect phase. Figure 4 thus

illustrates the relationship between sensitivity and atmo-

spheric fluctuations. Based on Fig. 4, "good seeing" will
be defined from here on as atmospheric phase fluctuations

less than 0.1 infrared cycle on 0.2-see time scales. Reliable

phase connection requires slightly better sensitivity than

that evidenced in Fig. 4 for typical Mt. Wilson observing
conditions. Future hardware upgrades, including installa-

tion of a new heterodyne detector in the other telescope of

the ISI, should improve the potential for phase connection
and therefore for infrared astrometry.

In addition to ISI sensitivity, systematic instrumental

effects were studied by examining HeNe LDI path delay

time series. They revealed resonances that may originate

from the movement of the telescopes while tracking, or
from resonances in the power supply. The resonances were

at about 7 Hz, but sometimes multiple resonances between

1 and 10 Hz were found. The amplitudes of those reso-

nances are such that they just barely contribute to infrared

phase instability, but because they occur at frequencies

which might cause additional problems with phase con-
nection, we will attempt to identify and minimize them

when analyzing data taken this past summer and fall.

III. Atmospheric Limitations in Current ISI
Astrometric Demonstrations

The discussion of atmospheric errors in this section as-

sumes that phase-connection problems will be solved by
improved ISI sensitivity, as mentioned above. With reli-

able phase connection, the atmosphere still limits astro-

metric accuracy by causing different path-length changes
between the two telescopes of the ISI. This section dis-

cusses the optimal use of HeNe LDI data to minimize at-

mospheric effects and the altitude dependence of the fluc-
tuations as derived from model calculations.

In Fig. 5, the Alpha Orionis data from September

8, 1992, are shown again, plotted with the telescope-
differenced IIeNe LDI path lengths, scaled to infrared cy-

cles, and multiplied by three to demonstrate the approxi-

mate 0.6 correlation. This correlation suggests that simple

subtraction of the telescope-differenced HeNe LDI path

delays from the interferometric delays is suboptimal [4].
The time series in Fig. 5 prompted a model calculation

to explore the optimal utilization of the tleNe LDI data

in the astrometric analysis and to assess the resulting as-

trometric accuracy. A calculation of the expected level of

correlation between HeNe LDI and interferometric path

delays was performed using the formalism of [5], and im-

plemented with the numerical techniques of [6]. The total
interferometric path length due to nonzero tropospheric

refractivity rt_ov(O,¢,t) at elevation angle 0, azimuth ¢

relative to the orientation of the ISI trailers, and time t is
given by

rtrop(O,¢,t) = r_tm(0, ¢, t) + 2frieNd(t) (1)

where 7"atrn(O , ¢,t) is the contribution to tile interferomet-

ric path delay from the differences in atmospheric refrac-

tivity along the electromagnetic paths from the observed

object to each of the two telescopes of the ISI, and rHeNe(t)

is the ground-based, one-way, telescope-differenced HeNe

LDI path delay due to nonzero refractivity. The HeNe

LDI path lengths are defined to lie along the x-axis at

(0,¢) = (0,0). The factor of 2 in Eq. (1) accounts for

the double traversal of the HeNe LDI path by the infrared
interferometric signal: once from the flat mirror to the

parabola (propagating to the left in Fig. 2) and once from

the parabola through the cat's eye to the optics table in

back of the flat mirror (propagating to the right in Fig. 2).

The atmospheric and HeNe LDI path delay terms in

Eq. (1) are



1/0hra,m(0, C,t) - csina [X(_2,_tm(O,C,z,t))

- ¢, t))]d:

lfo'c - x(.,,..N.(x))]ax

(2)

where X(_,_t,_) is the refractivity at the point denoted by

the vector _,_t_ along the line of sight at height z above
the ith telescope. For the HeNe LDI delay, X(_i,HeNe(X))

is the refractivity at the vector position a distance x along

the HeNe path for the ith telescope. In Eq. (2), h is the

height of the turbulent atmosphere, l is the length of the

HeNe LDI path (which is 5 m), and c is the speed of light

in a vacuum. Using these expressions, the correlation p

plotted in Fig. 6 is

< TtropTHeNe > (a)
P--'_ 2

where <> means ensemble average. The abscissa of Fig. 6

is h in Eq. (2). The ensemble averages of refractivity were

evaluated using Kolmogorov-Taylor structure functions as

in [5], with a structure constant of 4 x 10-Tm -1/3, an

atmospheric height of 25 m, a wind speed of I m/see, and
a saturation scale of 10 m. These parameters were chosen

because they produce temporal structure functions similar

to those of the data of Fig. 5. The line-of-sight coordinates

(0,¢) = (37.6, 71 deg) were taken from the data of Fig. 5,
and the horizontal line in Fig. 6 is p derived from the

data of Fig. 5, assuming that a temporal average of p over

a single scan is equal to an ensemble average over many
scans (ergodicity). From Fig. 6, a 25-m height is inferred
for the turbulent atmosphere. This is a model-dependent

result, and the sensitivity of the result to departures from

the Kolmogorov-Taylor assumptions will be discussed in
future articles.

The above atmospheric modelling can be used to con-

struct an optimal least-squares estimator for the interfer-
ometrie delay at the middle of an observation interval,
which is the fundamental quantity of astrometric interest.

The observed interferometric delay is modelled as

= T0(0,¢,t0) + (t - to)e(o,¢,to)

+ troop(O, ¢, t) (4)

where v0(t0) is the delay at the reference time to, and the
changes in 0 and ¢ due to sidereal tracking have been ig-
nored. The 7"o delay and the linear delay rate 4" include
contributions due to baseline and celestial source coordi-

nates that differ from those used in the lobe rotator model

of the I$I correlator. An optimal estimator for 7"0 can

be formed [7], and its error standard deviation calculated

using the covariance of rt_op between all times ti and t j,

which, suppressing the 0 and ¢ arguments, is given by

cov(n odt ), n odtj)) = < >

- ><  ,ro (tj) >

(5)

The two ensemble averages in the second term on the

right of Eq. (5) are nearly zero for an interferometer with
both telescopes at the same site. Again, the formalism of

[5] can be used to evaluate the ensemble averages that re-
sult after inserting expressions from Eq. (2) into the first

term on the right of Eq. (5). Figure 7 shows the calculated,

troposphere-limited, error standard deviation for angular
astrometry, which is c/B times the standard deviation for

7-o for a 13-m baseline length B as a function of scan in-

tegration time. The upper curve shows the effect of the
refractivity fluctuations in the absence of HeNe LDI cali-

bration, and the lower curve shows the improvement if the

current HeNe LDI calibrations are optimally used. For

1000-see scans, an approximate 100-nrad accuracy seems

attainable for interferometry with optimal HeNe LDI cali-
bration. For azimuths along the HeNe LDI path, the HeNe

LDI-calibrated accuracy is improved by about 20 percent.

It should be noted that estimation procedures, which

are calculationally simpler that the optimal procedure de-

scribed above, may be used in actual data analysis; a neg-

ligible loss in astrometric accuracy may result. The for-

mulation using Eqs. 1-5 was presented to give insight into
the turbulent atmospheric distance scales, the nature of

p, and the reduction in astrometric error using HeNe LDI
calibration.

In addition to the optimal analysis of the HeNe LDI and

interferometric path delays, the results of Fig. 6 suggest
that local measurements of refractivity in the first 25 m of

the atmosphere may yield better than 100-nrad astrometry
for observations when the tteNe LDI correlation is high.

These local measurements could be meteorological or could

consist of additional tteNe LDI's that sample the vertical

paths above the ISI. It is very important to note that the

- 4



aboveapproaches,whichexploitthehighcorrelationbe-
tweenthe HeNeLDI andatmosphericpathdelays,may
havelimitedutility. Onmanynightsin thefall of 1992,
withpoorerseeingthanthatof September8, 1992,HeNe
LDI fluctuationlevelsnot muchdifferentfromthoseof
Fig.5wereobserved,whiletheinterferometricfluctuations
weremuchlargerthanthoseof Fig.5. Becausethelarge
fluctuationspreventedreliableinterferometricphasecon-
nectionon thosenights,thewidthof thepowerspectrum
ofthefringeamplitudescomingfromtheISIcorrelatorwas
usedasthemeasureofthefluctuationlevel.Thefactthat
the interferometersignalwascorrelatedwith the HeNe
LDI delaysonnightsof goodseeingandmuchlesssoon
nightsofpoorerseeingsuggeststhefollowingpicturechar-
acterizingtheMt. Wilsonatmosphere:Duringrelatively
goodseeing,theatmosphericfluctuationsarefairlylowto
theground(within tile first 25m) andoptimalincorpo-
rationof HeNeLDI dataand/orotherground-basedcal-
ibrationstrategiesmayyield 100-nrad-or-betterinfrared
astrometry.Duringpoorseeing,atmosphericfluctuations
occurmuchhigherthan25m abovetheISI andneither
HeNeLDIdatanorground-basedcalibrationschemeswill
beofmuchhelp.In thatcase,laserguidestartechnology
[8]maybeof use.Thishypothesisis consistentwith the
pictureof the atmospherein [4],in whichlargerlateral
saturationscalesareattributedtonightsofpoorerseeing.
Thevalidityof thisdescriptionof theatmosphereabove
Mt. Wilsonandtheultimateastrometricaccuracyof the
ISI will beexploredwithdatatakenin thesummerand
fall of 1993.

IV. Summary and Future Directions

Applications of infrared astrometry to DSN tracking in-

clude research into techniques for tracking infrared or op-
tical space-borne lasers, reference frame development, and

astrometric science at infrared or optical wavelengths. The
commonality of atmospheric problems at infrared and op-

tical wavelengths and the capability of larger apertures at

infrared wavelengths make infrared interferometry a good

tool for studying atmospheric astrometric limitations. As-

teroid astrometry and the measurement of gravitational
deflection close to the Sun are examples of reference frame

development and science that may be enabled by infrared

interferometry in the DSN.

By comparing astrometric data from 1989 and 1992, we

have verified that instrumental upgrades have indeed im-

proved interferometric phase determination at short time

scales. The point-to-point phase scatter on 0.2-see time

scales is about 0.13 infrared cycle for good seeing con-

ditions. A factor of 2 improvement in the point-to-point

phase scatter would greatly increase the reliability of inter-

ferometric phase connection. This factor of 2 may be real-

ized with additional hardware sensitivity upgrades. Reso-
nances have also been identified in the instrumental tteNe

LDI calibration path lengths. These resonances are mainly

at 7 Hz and are just barely strong enough to affect the in-
frared astrometric phase.

Analysis and modelling of ISI data taken in the fall

of 1992 suggest a two-component model for the turbulent

atmosphere above Mt. Wilson. For good seeing condi-

tions, a 25-m turbulent atmospheric height has been in-
ferred, based on the correlation between HeNe LDI and

interferometric path-length fluctuations. A small satura-
tion scale of 10 m was also inferred from the ISI data for

good seeing. For poorer seeing conditions, the IteNe LDI-

interferometric correlation is weaker, suggesting that tile

turbulent atmosphere has substantial components above

25 m. This modelling was also used to determine that the

atmosphere-limited astrometric accuracy on an ISI 13-m

baseline during good seeing, with optimal HeNe LDI cali-

bration, was about 100 nrad for a 1000-see scan. Accuracy
at this level would be a factor of 4 better than previous

infrared astrometric results [9]. This level of astrometric

accuracy has yet to be demonstrated on multiple sources

with the ISI. Single-source phase traces and atmospheric

modelling have been used to infer the potential accuracy
of the ISI.

Reliable phase connection, optimal application of HeNe

LDI calibration, and the resulting 100-nrad single-source
astrometry will be demonstrated with data taken in the

next observing season. Multiple-source astrometry will

also be attempted. This will require developing acquisition
or analysis techniques to resolve cycle ambiguities between

observations of multiple sources. Future astrometric im-

provements may include local monitoring of atmospheric

effects to improve accuracy on nights of good seeing. Such

monitoring could involve a combination of meteorological
sensors and new HeNe LDI paths. In the more distant fu-

ture, the development of an infrared reference frame and

asteroid astrometry will be pursued. A direct-detection (as
opposed to heterodyne) system is being considered for the

ISI on 5-year time scales. Direct detection would greatly

increase the usable ISI bandwidth and sensitivity, enabling
astrometry in a much wider variety of seeing conditions.

It should be noted that because of the apparent small

saturation scale during periods of good seeing, increases

in baseline length will yield almost proportionate improve-
ments in accuracy. Data taken on azimuths closer to that

of the HeNe LDI will be more effectively calibrated by op-



timalapplicationof tleNeLDI data. Consideringthese
factors,astrometricaccuracyof theorderof50-100nrad
isprobablycharacteristicof futureISIsingle-observation
performancein theabsenceof the above-mentionedme-
teorologicalcalibrations.Becauseof thesmallsaturation

scales,troposphere-inducederrorsfor observationsfrom
thesamesession,or fromdifferentsessions,shouldbeun-
correlated.By averagingresultsovermanyobservations,
astrometricaccuraciesof muchbetterthan50-100nrad
shouldbepossible.
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Line-of-Sight Tropospheric Calibration From

Measurements in Arbitrary Directions

J. Z. Wilcox

Tracking Systems and Applications Section

Tropospheric inhomogeneities limit the accuracy with which a path delay in an

arbitrary direction can be estimated from calibration measurements in different
directions. This article demonstrates a mathematical procedure that has the po-

tential for minimizing errors in the estimated geometrical and tropospheric path

delays. The error is minimized by applying least-squares estimation to a combined
set of observables in the calibration directions and the direction to be calibrated.

A simulated test of this procedure was conducted using a model set of error-free
calibration measurements. In the absence of geometrical delay mismodeling, the

simulation yielded delay errors which vary from about 1 mm at zenith to about

I cm at 10 deg. The main principles of how this procedure could be applied to

improve accuracy of deep space tracking using Global Positioning System (GPS)
data are also discussed.

I. Introduction

Uncertainties in tropospheric path delays are a major

source of error in deep space tracking. Inhomogeneities in

tropospheric water vapor can result in zenith path delay
calibration errors at about the 1-cm level, and inhomo-

geneities in the dry troposphere at about the 1- to 3-mm

level, over a period of several hours [1]. The 1-cm error
limits the tracking accuracy of DSN-based very long base-

line interferometry (VLBI) to about 1 nrad for the an-

gular position (at the intercontinental baselines of about
10,000 km) and to 2 x 10 -14 sec/sec for the delay rate

(at zenith) for a 1000-sec scan [1]. Future missions would
benefit from troposphere calibration at the l-ram level.

The error in the estimated path delay is determined

by a variety of error sources whose relative importance
depends on the calibration instrument. For example, for

instruments which measure radio emission, such as water

vapor radiometers (WVRs), the error is limited by the

accuracy with which path integrals involving the imagi-

nary part of the index of refraction can be related to in-

tegrals which involve the real part of the refraction index

[2]. Whereas WVRs may be pointed in the direction to
be calibrated, this may not be true in general for other

instruments. If off-line-of-sight measurements are used in

the calibration process, the error will inevitably be affected

by tropospheric inhomogeneities, and its magnitude will

depend on mathematical analysis of calibration data.

This article suggests and illustrates a mathematical

procedure that minimizes the tropospheric inhomogeneity-
induced error for path delays inferred from observables in

other directions. The procedure involves the application of

least-squares estimation to a combined set of observables
in the calibration directions and the direction to be cMi-
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brated, and the use of the observable variance-covariance

matrix during estimation. In order to demonstrate the

procedure simply, this article makes the following assump-

tions: The calibration instrument is error-free (i.e., no
other error source besides tropospheric inhomogeneities is

present), and it detects path delays. These assumptions
are used for clarity of the presentation; the method may

be generalized to other types of measurements. An exam-

ple of how it can be adopted to more realistic (noisy) data
is discussed in Section IV of this article. If all other er-

ror sources are neglected, the calculated error determines

the maximum achievable accuracy for path delay estimates

using observables in other directions. Another (more com-

monly used) procedure determines the delay in the zenith
direction by averaging over delays projected into the zenith

from many calibration directions. This technique will be

referred to in this article as "zenith mapping." Strictly

speaking, zenith mapping produces minimal error only

for a horizontally homogeneous troposphere. This article

will quantify the error reduction obtained from the use of

the present technique for an inhomogeneous troposphere.

Since the technique's principal intended application is to

improve the accuracy of deep space tracking, the direction
to be calibrated will be sometimes referred to in this article

as the DSN antenna pointing direction.

Section II describes the mathematical procedure used

to minimize the estimated delay error. The procedure is

exemplified in Section III for a model set of calibration

directions (assuming error-free instrumentation) that co-

incides with directions of lines between a ground-based re-

ceiver and Global Positioning System (GPS) satellites visi-
ble at Goldstone. 1 These directions were selected as a mat-

ter of convenience and because they are known with great

accuracy. 2 Tropospheric inhomogeneities were assumed to

be generated by Kolmogorov turbulence and transported

past the observer by the wind [1]. Section IV discusses the

possibility of adapting the procedure to GPS data. Sec-

tion V is a summary with recommendations for further
studies.

II. Mathematical Approach

This section outlines the main principles of the mathe-

matical procedure that minimizes the estimated delay er-

1 Listings of CPS coordinates were provided by G. Purcell, Track-

ing and System Application Section, Jet Propulsion Laboratory,
Pasadena, California, October 1992.

2 Other off-line-of-sight measurements to which the method may be

adapted include microwave temperature profiler [3], lidar [4], radio

acoustic sounding [5], and tracking using a number of proposed
communication satellites systems, such as Motorola's IRIDIUM
constellation.

ror in an arbitrary direction. The main principle of the

procedure is the application of least-squares estimation to
a combined set of observables in the calibration directions

and the direction to be calibrated (also referred to as the

pointing direction of the DSN antenna), and the use of the

eovariance-variance matrix of observables to weight the
quadratic form of observable residuals during estimation.

To simplify the illustration, all measurements are assumed

to be error-free and to have produced path delays.

The coordinate system is shown inFig. 1. A calibration
instrument, located at the distance R from the axis of the

DSN antenna, measures tropospheric path delays L,r,i in
N different directions (Ei, ¢i), where Ei and ¢i are eleva-

tions and azimuths, respectively, and i = l, ..., N. A DSN

antenna (the direction to be calibrated) points in the di-
rection of the elevation, E,, and azimuth, ¢,. By assum-

ing that the ionospheric delay has been calibrated (e.g.,

by using two frequency measurements), the DSN antenna-

measured delay is Lto_,_ = Lg,_ + Ltr,_, where Ltot,,, Lg,_,

and Lt_,_ are the total, geometric, and tropospheric delays,
respectively. The combined set of observables in the DSN
antenna and calibration directions is:

Ltot,8 = Ltr,s q- Lg,s (la)

Li = Ltr,i i = 1,...,N (lb)

where the symbol Li designates the observable Ltr,i. The

delay of interest for deep space tracking is the geometrical

delay Lg,_. To obtain the best estimate Lg,, , we (1) note
that Lit,8 and Ltr,i's are related through tropospheric cor-

relations, (2) parameterize Eqs. (la) and (lb) with the

help of the statistically averaged zenith delay Lt_,z (that

is, Ltr,z is not the instantaneous zenith delay, but rather

a delay averaged over all possible tropospheric patterns

for the site [1]), and (3) apply least-squares estimation to

the parameterized Eqs. (la) and (lb). Assuming that
long-range refraction gradients [6] are absent, a the param-

eterized Ltr,s = (Lt_,,) + err,, and Ltr,i = (Ltr,i) q- fir,i,

where (Lt_,,} = A, Ltr,z and (Lt_,i) = AiL, .... (... } des-

ignates the expectation value, As and Ai are air masses,

and et_,_ and ¢tr,i represent tropospheric inhomogeneities

in (E,, ¢,) and (Ei, ¢i) directions, respectively. Note that

because of (2) above, correlations of eta,, and et_,i can be
evaluated in the statistical sense. By defining the observ-
ablel parameter, and tropospheric inhomogeneity column

vectors r - [Ltot,,/A,, Li/Ai], X =_ [Lt_,_, Lg,,/A,],

3 Unmodeled horizontal gradients may be on the 1-cm level for dry

delays at 10-deg elevation [6]; the error can be reduced by gradient

modeling during estimation.
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and • --- [err,s, Qr,i], respectively, and by assuming that

Qr,i'S have zero means and a variance-covariance matrix
W -1, the parametrized Eqs. (la) and (lb) are solved by

minimizing the quadratic form of the weighted residuals

(F- Mr() T W (F- AfO, where ,4 is the mapping matrix

inF=AX+•,

1 1

1 0

1 0

(2)

The result is [7]

f( = (ATWA)-IATw F (3)

where 2 is the column vector 2 - [Ltr,z, Lg,,/A,], and

the superscript T designates the transpose matrix. The

error in Lg,, is given by the square root of the matrix
O.2 2.element ( X.)2,2 of the variance _r)?.

= B-aATw coy (F, F T) W A _-1 (4)

where coy (F, F T) is the observable covariance-variance
matrix, and B = .AT W ,4.

The above-described procedure yields the best estimate

Lg,s and Ltr,z. Note, however, that once gg,s has been es-
timated, Eq. (la) can also be used to estimate the actual

line-of-sight tropospheric delay Lt,.,_. By using Eq. (la),

the estimate Ztr,_ - Ltot,s - Zg,s. Ztr,_ is the best

estimate for Lt,.,s because L¢,, is the best estimate for

Lg,,, and because the measured Ltot,s contains the effect of

line-of-sight inhomogeneities (note that Lt_,s differs from

Lt_,_ A_, which is the best estimate for the statistically av-
eraged delay). Note also that in the absence of other error
sources, the error in Lt_,, is equal to the error in Zg,,.

It will be usefld for the ensuing discussion to explicitly

write Ztr,_ as4
N

L...s -- Lto,., - Zg., = Ltot., - A,22 = E ciLt,.i (5)
i----1

4 The proportionality coefficient between L0,s and Ltot,, is equal to

1 because no other observable depends on Lg,s.

where ci = -(A,/Ai) ((ATwA)-1ATw)2,i+I represents

contributions from the ith calibration direction. By us-

ing Eq. (5), the estimated delay error can be expressed as
follows:

2 0"5 = Ltr,s -- ciLtrfi_L,tr,s _ L,g,s
i=1

N

L 2 (Lt_,, Ltr,i)<
i=1.

N

+ E cicj (Lt_.i Lt_.j}
i,j=l

(6)

Equation (6) displays an explicit dependence on the
coefficients ci's and on correlations between tropospheric

path delays. When ci's are determined by using some as-

sumed W -I (the so-called consider analysis [1]), the error

will be bigger than the error obtained by using the ac-

tual observable W -1 [7]. A W -1 often used during the

estimation procedure is the diagonal matrix, W_ 1 = _i,j

(where 5i,j is the Kronecker delta). The use of a diagonal
W -1 corresponds to assuming that observable errors are

uncorrelated, and Eq. (3) yields s c_ = A,/(NA_), which
are the same ci's as those which would be obtained if one

set Lt_,z = _N= 1 Lt_,_/(Ai N), and mapped Lt_,_ from the

zenith to the (E_, ¢,) direction by using the air mass A_.

The use of zenith mapping will minimize the error only

for a horizontally homogeneous troposphere. For an inho-

mogeneous troposphere, the error is minimized by using
the observable W -1 = coy (F, FT); ci's will then depend

on the full (in elevation and azimuth) angular separations
between the observed and calibration directions (includ-

ing the offset /_). By setting W -1 = coy (F, FT), Eq. (4)

2 = (ATW A) -1reduces to c_2

III. Results for an Error-Free Calibration
Instrument

Equation (6) was evaluated for a model set of calibra-
tion directions assumed to coincide with directions of lines

between a ground-based receiver and GPS satellites visible
at Goldstone. These directions were selected because there

are between 6 and 10 satellites visible from any ground-

based site, and the satellite trajectories are known with

5 For elevation-independent correlations, W_-j I = 6i,._/Ai A 3 , the eo-

efflcients would become ci = zsa,/_N t A2,.
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great accuracy. Other directions could be selected; con-

clusions similar to those derived here will apply to all

other selections. The error was quantified by using the

Kolmogorov turbulence model for the evaluation of cor-

relations between wet troposphere inhomogeneities, with

numerical constants given in Ill (see also Appendix A of

this article). The inhomogeneities were frozen into the

troposphere slab transported past the observer with the

wind velocity g = 10 m/sec. The structure function con-

stant C = 1.1 x lO-Tm -1/3 corresponds to average DSN

observation conditions of about a 6-cm zenith wet delay

for h_ = 2-km-thick wet troposphere slab [8]; in more hu-

mid weather, the structure constant will be greater, de-

pending on turbulence. The dry fluctuation was assumed

to be 30 percent of the wet fluctuation Ill, which for un-

correlated fluctuations contributes less than 10 percent of

the total error for correlations added in quadrature. The

error evaluated with the optimized ci's was compared to

the zenith mapping error; the zenith mapping error was

greater, especially at low elevations, as expected. The er-

ror was quantified for a number of directions (E_, ¢s), for

satellite constellations stepped by 6 min during an 8-hr
period following 12:00 a.m., July 23, 1992, and for four

values of the separation R = 0,200,500, and 1000 m. The

biggest contribution to the estimated delay comes from a
calibration direction nearest to the direction to be cali-

brated; the error vanishes when the two lines coincide. In

the absence of a clearly nearest direction, all calibration

lines contribute, increasing the error.

A. Delay Error

The error was found to depend in a relatively well-

defined manner on the elevation Es, but not (because the

satellites are distributed over the azimuth fairly uniformly)
on ¢, nor on satellite constellation. Figures 2(a) and 2(b)

plot the azimuthally averaged error (dashed line) versus

E, for R = 0 and 1000 m. The error spread due to (1) a

360-deg range in ¢,, (2) a 360-deg range in the azimuth

of/_, and (3) changes in the satellite constellation is also

shown. The spread's lower bound is 0 for all E, in Fig. 2(a)

(E, extends from 10 deg in Fig. 2(a) because the satel-
lites were cut off at 10 deg). The bound is 0 because at

R = 0, any direction Es will, for some combination of

¢_ and satellite constellation, eventually coincide with one

of the calibration lines, in which event the tropospheric

inhomogeneity-induced error vanishes. Note that the av-
erage error is closer to the error upper bound than to the

lower bound, indicating that the error is nearly equal to

the error upper bound in the majority of observations.

Comparing Figs. 2(a) and 2(b), the average error has in-
creased only very little, while the lower bound has become

nonzero by increasing R from 0 to 1 km. The average

error has increased little because the DSN-observed and

calibration lines intersect (and thus probe the same sky

region) even when R = 1 km; the lower bound has become
nonzero because there are no coincident lines when R > 0.

The average error is fairly flat (about 1 mm) for all E_

between zenith and 40 deg, and it increases rapidly with
decreasing E, at lower elevations; the error is about 1.6

and 12 mm at E_ = 30 and 10 deg, respectively.

Figure 3 illustrates how close the calibration and DSN
line must be for the error to be less than some desired

value. The error (the solid-line curve) will be less than

0.5 mm when the angular separation between the DSN

and the nearest calibration line (R = 0 in Fig. 3) is less

than 3 deg. How small the angular separation must be de-

pends on elevation: modeling results suggest that for the

error to be less than 1 mm, the separation must be less

than 5 and 2 deg when E_ = 30 and 20 deg, respectively.

Many estimation strategies estimate zenith delays by aver-

aging over all calibration directions. The zenith mapping

error (the dash-dot line) is bigger than the optimized, az-

imuthally averaged error (the dashed line) by an amount

which decreases monotonically with increasing elevation,

until, near zenith, the errors are nearly the same (because
the mapping distance is short there).

Signal integration averages out the tropospheric in-

homogeneity-induced error as the inhomogeneities are car-

ried by wind. Figure 4 shows the effect of the signal in-

tegration time T and wind velocity v on the errorf The

error decreases and its spread (due to different wind direc-

tions) increases slowly with increasing T. Note that the

average integration time, T1/2, required to reduce the error
to one-half of its instantaneous value is (for v = 10 m/see)

less than 8 min for all E_ > 30 deg, and it increases to
about 12 min at E_ = l0 deg. To minimize the error, ci's

used for Fig. 4 were optimized for the wind. A similar cal-

culation using ci's optimized for zero wind has produced

curves (not shown) that look the same as those in Fig. 4

except that the error was approximately 10 to 30 percent

higher (depending on elevation). This relatively small in-
crease is good news, since the determination and inclusion

of wind distribution in the estimation procedure could be
nontrivial.

The use of more than one calibration instrument will

(in principle) increase the probability that one calibration

line will be close to the observed line. Figure 5 shows the

minimum error for three instruments positioned in corners

6 R = 200 rn is used in most figures in this article, since the az-
imuthally averaged errors do not differ too much for all RIs <
1 kin, and since mounting a calibration instrument in the center of
the DSN antenna is nontrivial.

13



of an equilateral triangle around the DSN antenna. Com-

pared to one instrument (positioned at R = 0 and 200 in),

the error is smaller by up to 50 percent at high elevations

(where it is already small), but only by several percent at
low elevations (where it would be needed the most because

the error is big there). The result suggests that multiple
on-site instruments will be of limited use.

B. Delay Rate Error

Figures 6 and 7 show the inhomogeneity-induced delay
rate error. Rate measurements are used for navigation

and gravitational wave searches; it is desirable that the

inhomogeneity-induced rate error not, dominate the total
error on any time scale. The rate error was evaluated as

the square root of the variance _ (T_c),
B

where/3(T,_) and B(T,c) are the estimated and actual de-

lay rates, respectively, over the scan duration T,c (see [1]

and Appendix B). The variance was evaluated by using a
linear fit to three equally spaced points v within T_c. Fig-
ure 6 shows the error evaluated by using the optimized

ci's, and compares it. with the uncalibrated error and the

error evaluated by using zenith mapping for two elevations,

E, = 10 and 60 deg. All three errors decrease with increas-

ing T_c (as they should). However, whereas the optimized
error is actually slightly bigger than the uncalibrated and

zenith mapping errors for extremely short scans (T,¢ <

10 sec), the optimized error decreases with increasing T,c
more rapidly than the other errors, becoming smaller at

a T,c that. depends on E_. For example, at Es = 10 and

60 deg, the error becomes smaller at Ts¢ = 500 and 30

sec, respectively. For the error to be reduced by using the

optimized ci's, the scan must be longer than some criti-

cal T_c, which is longer at low E, than at high Es. At

T_ = 1000 see (R = 200 m), the average error is about

4 x 10 -1_ sec/sec and 7 x 10 -14 see/see at E, = 60 and 10

deg, respectively.

The rate error can also become very small when the

angular separation between the observed and nearest cali-
bration line is sufficiently small; however, the condition for

the separation smallness is tighter than that for the delay

error. This is illustrated in Fig. 7 for R = 0. For the error

to be less than 10 -15 see/see, the angular separation must

be less than about 0.5 deg when Ts = 1000 sec and less

than about 0.05 deg when T, = 100 sec.

7 It can be shown that as the number of fitted points increases to

infinity, the rate error changes by only about 20 percent [1].

IV. Application to GPS

This section discusses how the mathematical procedure

described in Section III could be adapted to path delay es-

timation using GPS data. GPS tracking depends directly
on path delays, s However, because of the complexities of

GPS delay modeling and data reduction, the present ap-

proach to GPS data analyses, driven by the requirement

to eliminate or estimate clock errors and geometrical pa-
rameter uncertainties, 9 entails estimation of instantaneous

zenith delays [9]. Parameter estimation is performed with-

out the use of the tropospheric covariance variance matrix.

The zenith tropospheric delay is constructed by spatial av-

eraging over all satellites. This zenith delay could be used
to estimate tropospheric delays in the direction of the DSN

antenna by scaling it (using the air mass) into the DSN
antenna direction. This article suggests that in the ab-

sence of other error sources, line-of-sight delays could be

estimated more accurately by modifying the estimation

strategy to include the tropospheric correlations between

different lines of sight and by applying the estimation pro-
cedure to the combined GPS and DSN data.

The coordinate system is the same as in Fig. 1 ex-

cept that receivers (which are a part of a large global

network consisting of about 40 continuously operating re-
ceivers set up to estimate the geometrical parameters and

to determine the clock uncertainties with the best possi-

ble accuracy) are separated by large (several hundred-km)
distances. For M receivers, one can introduce M sta-

tistically averaged, mutually uncorrelated zenith delays,

Ltr,j,z, where j = 1, ..., M. The DSN antenna is assumed
to be at the site j = 1. At its completion, the GPS con-

stellation will include 24 navigation satellites at about a

20,000-km altitude and equally spaced in six orbit planes.

A receiver at any ground-based site will track between 6
and 10 satellites distributed more or less uniformly in az-

imuth and typically above l0 deg in elevation. The col-

lected data set covers a time period long enough for the
number of data in the set to exceed the number of solve-

for parameters. Including the delay for the radio signal
received by the DSN antenna, the observables are

L_ot., = Ltr,s + Lg,s (8a)

s GPS receivers axe used in an automated operating mode, work

in all weather conditions, and sense the total (wet and dry) path
delays. The satellites transmit carrier signals at two L-band fre-

quencies (1.227 GHZ and 1.575 GHz), so that the ionospheric delay
can be calibrated.

0 S. M. Lichten, personal communication, Tracking Systems and Ap-

plications Section, Jet Propulsion Laboratory, Pasadena, Cafifor-

nia, October 1992.
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Ltot,i,j = Lt_,i,j + Lg,i,j q- L¢t,i,j

i =I,...,N j=I,..,M

(8b)
which is sufficiently small to argue that the use of ci's opti-

mized for zero additional uncertainty will not significantly
increase the total error.

where N is the total number (assumed to be the same for

all receivers) of calibration data at one receiver site (the
subindex i counts both the visible satellites and the data

sequence for each satellite), and Lcl,i,j is a delay caused
by clock estimate errors at both the satellite and the re-

ceiver. All other symbols are the same as in Section II,
and the ionospheric delays have been assumed to be cali-

brated. Similar to Eqs. (la) and (lb), Eqs. (8a) and (8b)

can be parameterized by setting (Ltr,_) = As Ltr,l,z and

(Ltr,i,j) = Ai Ltr,j,z, where Ltr,L_ are the statistically av-

eraged tropospheric delays in the zenith direction at jth
site. By assuming that the observable errors have zero

means and a variance-eovariance matrix W-l, the param-

eterized Eqs. (8a) and (8h) can be solved by least-squares

estimation for the geometrical delays Lg,, and Lg,i,j (or
rather, by using geometrical delay modeling for parameters

which determine Lg,_ and Lg,i,j), clock errors Ld,i,j, and

zenith delays Lt_j,z. As was discussed in Section II, it is
this parameterization, accompanied by the statistical eval-

uation of W -1, that allows the solution to produce best

estimates. Note also that once Lg,s has been estimated,

the best estimate for line-of-sight Lt_,s can in principle be

obtained as the difference Lt_,s = Ltot,, - Lg,_.

For real data, the accuracy of path delay estimates, in

addition to tropospheric inhomogeneities, will be affected

by other error sources, including instrument and multi-

pathing noise and uncertainties in geometrical delay mod-

eling. Neglecting the specifics of geometrical delay model-

ing and error statistics, the effect of an overall uncertainty
level contributed by various error sources has been mod-

eled by adding to each cov (Ltr,i, Ltr,i) a term assumed to
be uncorrelated between different directions and propor-

tional to the air mass. Figure 8 shows the effect of the
assumed 0.1-, 0.3-, and 1-em uncertainty levels. 1° Note

that these levels exceed the tropospheric inhomogeneity-

induced errors at E_ = 50, 22, and 12 deg, respectively.

That is, to achieve the tropospheric inhomogeneity-limited
accuracy at some elevation, the additional uncertainty

must be reduced below the inhomogeneity-induced error

at that elevation. The dashed curves in Fig. 8 show the

error resulting from the use of ei's which were optimized for

zero measurement and modeling uncertainty. The errors

are bigger than for the optimized ci's by about 15 percent,

s0 Analysis of recent GPS data shows that assumption of uncorre-

lated errors is not entirely correct. Efforts to understand the error

statistics are under way.

V. Conclusions and Recommendations

This article has outlined a mathematical procedure

which has the potential for minimizing the tropospheric

inhomogeneity-induced mapping error for estimated path

delays along arbitrary lines of sight by using observables
from different directions. The main principle of the proce-

dure is the application of least-squares estimation to the
combined set of observables in the calibration directions

and the direction to be calibrated, and the use of an ob-

servable variance-covariance matrix during estimation. A

numerical example was given for a set of calibration direc-

tions assumed to coincide with directions from a ground-
based receiver to GPS satellites visible at Goldstone. For

these directions, assuming an error-free calibration instru-

ment and zero geometrical delay mismodeling, and using

the Kolmogorov turbulence model, the azimuthally aver-
aged error is found to be about 1 mm in the elevation

range from about 40 deg to zenith. At elevations less than

40 deg, the error increases with decreasing elevation, reach-
ing about 1.2 cm at 10 deg. Because of its stochastic ori-

gin, the inhomogeneity-induced error cannot be removed

by improved modeling or instrument design, and repre-

sents the ultimate accuracy for line-of-sight estimates.

The minimum error was compared to the error obtained

by using zenith delays which were averaged over many cal-

ibration directions, and to error obtained by using line-of-

sight estimates optimized for zero wind. The zenith map-

ping error is nearly twice as large (in the absence of other

error sources) as the minimum error, indicating that the
effort spent to minimize the error is worthwhile. On the

other hand, the error increase resulting from the use of zero

wind was less than 30 percent, indicating that it may not

be necessary to include the wind in the estimation proce-

dure. Signal integration reduces tile error; the integration
time required to halve the instantaneous error is less than

8 rain for elevations between 30 deg and zenith, reaching
about 12 rain at 10 deg. The use of nmltiple on-site re-
ceivers will not help to reduce the error at low elevations
where it would be needed the most.

The suggested procedure could be used to estimate path

delays in the direction of the DSN antenna by using GPS

data. The present strategy for GPS data analyses en-

tails construction of a tropospheric zenith delay by av-
eraging over all satellites; the estimated zenith delay error

is at the 1-cm level due to the combined effect of tropo-
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spheric inhomogeneities, uncertainties in geometrical de-

lay modeling, and measurement (thermal noise and mul-

tipathing) uncertainties [9]. The combined effect of ad-
ditional uncertainties has been modeled by adding to the

tropospheric variances a term assumed to be uncorrelated
between various measurements. As expected, the accuracy

of the estimate was limited by this additional term when-

ever it exceeded the tropospheric inhomogeneity-induced

level. Further work should be performed to establish levels
and statistics of additional error sources, incorporate their

correlations into the analysis, and, if possible, reduce their

effect on path delay estimates.

In spacecraft tracking, observing epochs and scan

lengths are specified by mission considerations, and the
tracked directions differ from satellite directions. How-

ever, experiments could be designed in which the direction
to be calibrated coincides with one of the satellite direc-

tions. For example, by directing WVRs towards satellites,
the WVRs themselves could be calibrated.
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Appendix A

Tropospheric Correlations Using the Kolmogorov Turbulence Model

Path delay correlations are evaluated by writing the path delay at site i and time t as the integral

h_,A_Lt,,i(t) = X(f},t)dri (A-l)
dO

where the air mass Ai = 1/sin Ei, h_ is the wet troposphere slab height, and X(_,t) is the index of refraction - 1 at
location _ and time t. For example, the correlation

cov (Ltr,i(t), Ltr,j(t + T)) = ({Lt_,i(t), Lmj(t + T)} - (Lt_,i) (Lt_,j)) (A-2)

is evaluated by substituting Eq. (A-l) and the expression (Eq. (A.3) of [1]):

1
{X(V/, t)x(Yj, t + T)} = (X 2) - _Dx(ri - _j + ff T) (A-3)

where _" is the wind velocity, and Dx(_i - gj -4-Y T) =_-((X(Yi,t) - X(_j,t + T))2_ is the structure function for inhomo-
/

geneities correlated both spatially and temporally. By interchanging the order of integration and ensemble averaging

and setting dri = Aidz and drj = Ajdz', Eq. (A-2) becomes

_hv foh_ ( Dx(_i _ f,j + _ T) ) (A-4)cov (Ltr,i(t),Lt_,j(t + T)) = AiAj dz dz' Cr_ -- 2

= (X 2) -- (X} 2 is independent of spatial coordinates and is obtained by letting the distance R gowhere the variance _r×
to infinity in D×,

Assuming that the troposphere is described by the Kolmogorov turbulence model, the structure function for the frozen
inhomogeneities is

2) C2 IR + _ tl_/a (A-6)+_t) = 14(IR+_;tIIL_)2/3

where /_ is the spatial interval over which the structure function is evaluated, the saturation scale length L_ __ 3000

km, and the turbulence strength C = 1.1 x 10-Tin -Uz [1,8] (for the wetMab height ho __ 2 km, corresponding to about
a 6-cm zenith wet path delay at Goldstone).

Equations of the same type were also used to quantify the effect of dry fluctuations. Assuming that the dry

fluctuation is one-third of the wet fluctuation [1] with the scale height hd -- 8 kin, the dry turbulence strength
C_ " (C_/3)(h_/hd) 4/z __ 9.2 x 10 -9. For uncorrelated fluctuations, dry and wet errors add in quadrature.
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Appendix B

The Delay Rate Error

The delay rate error was evaluated as the square root
of the variance of the estimated delay rate,/_(Tsc), which

is the slope of the path delay over the scan duration Tsc

[1]. By dividing T_¢ into N sections of equal length, and

assuming that the time origin is in the middle of T,_, a
linear fit to points at the centers of the sections gives the

following formula:

where Lt,.,(t), Lt,,,(t), Lt,,,, and ]-t_., are the actual

and estimated tropospheric path delays in the observed,

(E,, Cs), direction, at times t and o, respectively.

By using L,t_._ = _, ckLt_.k (see the discussion follow-

ing Eq. (5) of the main text), Eq. (B-2) was evaluated by

substituting Eq. (B-3) into Eq. (B-2). This yields

B(T_) - _i L(tl)tl (B-I)
E;q

where L(ti) is the delay at the time point ti at the center
of the /th section• By using a similar expression for the

actual delay rate, B(Ts¢), the delay rate variance is derived

as

,4(:rs_) _ (E,q)_1 ,_Z_, tj [coy(L_,,(_,- _), L,_,s)
• j

+ E_c_c, cov(L,_,k(t,- t_),L,_,,)
k I

%(,_) =
- _ c_(cov(L,_,_(t,- t_),L_,k)

k

2 tj)
1 _'f_ti tj aL,t_(ti-

- (E, q)_ . j
(B-2) +cov (Lt_,k(ti - tj), Lt_.,))] (B-4)

where i, j = 1, ..., N, and the path delay variance, a_,t_(t ),

is

where Lt_,k(t) are tropospheric path delays in (Ek, Ck) di-
rections at time t. Eq. (B-4) was evaluated for i =1,...,

3 equally spaced sections within T_¢ (tl = -T,¢/3, to =

O, t_ = T, J3) by using the Kolmogorov turbulence model

described in Appendix A.
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An error budget analysis is presented which quantifies the effects of different
error sources in the orbit determination process when the enhanced orbit determi-

nation filter, recently developed, is used to reduce radio metric data. The enhanced

filter strategy differs from more traditional filtering methods in that nearly all of

the principal ground system calibration errors affecting the data are represented as

filter parameters. Error budget computations were performed for a Mars Observer

interplanetary cruise scenario for cases in which only X-band (8.4-GHz) Doppler
data were used to determine the spacecraft's orbit, X-band ranging data were used

exclusivelk; and a combined set in which the ranging data were used in addition

to the Doppler data. In all three cases, the filter model was assumed to be a cor-

rect representation of the physical world. Random nongravitational accelerations
were found to be the largest source of error contributing to the individual error

budgets. Other significant contributors, depending on the data strategy used, were
solar-radiation pressure coet_cient uncertainty, random Earth-orientation calibra-

tion errors, and Deep Space Network (DSN) station location uncertainty.

I. Introduction

Development of improved navigation techniques which

utilize radio Doppler and ranging data acquired from

NASA's Deep Space Network (DSN) have received con-

siderable study in recent years, as these data types are

routinely collected in tracking, telemetry, and command

operations. Furthermore, the availability of high-speed

workstation computers has made possible the use of com-

putationally intensive data processing modes for reducing

all radio metric data. A new sequential data filtering strat-

egy currently under study is the enhanced orbit determi-

nation filter, in which most if not. all of the major system-

atic ground system calibration error sources are treated

as filter (estimated) parameters, along with the spacecraft

trajectory parameters. This strategy differs from the cur-

rent practice, in which the ground system calibration error
sources are represented as unestimated bias parameters,

accounted for only when computing the error covariance

of the filter parameters.
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The motivation behind the enhanced filter is not so

much to improve upon the a priori ground system cali-
brations, but to incorporate a more accurate model of the

physical world into the filter [1]. Previous studies suggest

that medium-to-high navigation accuracies (40 to 15 nrad
in an angular sense) are achievable when the enhanced or-

bit determination filter is used in conjunction with X-band

(8.4-Gttz) Doppler and ranging [2]. Studies are also being

conducted to demonstrate the utility of this new filtering
strategy with actual flight data acquired from tile Galileo

spacecraft. 1 Critical to understanding the potential bene-

fits and/or deficiencies of this type of orbit determination

filter is the development of an error budget, which cata-

logs the contributions of a particular error source or group
of error sources to the estimation errors. This form of sen-

sitivity analysis identifies the major sources of error and
where future work may need to be focused in order to im-

prove overall navigation system performance.

This article first reviews the fundamental concepts of

reduced-order filtering theory, which are essential for sen-

sitivity analysis and error budget development. The the-

ory is then applied to the development of an error bud-

get for a Mars Observer interplanetary cruise scenario in
which the enhanced orbit determination filter is used to

reduce X-band Doppler and ranging data. The trajectory

characteristics of this scenario are reviewed along with the
data-acquisition strategies. The filter model is described

and error budgets are given for three different data strate-

gies: X-band Doppler only, X-band ranging only, and X-

band Doppler plus ranging. For this initial study, the fil-
ter model is assumed to be a correct representation of the
physical world.

!1. Reduced-Order Filtering

In some navigation applications, it is not practical to
implement a full-order or truly optimal filter when the

system model, with all major error and noise sources, is of
high order. This is often the case in applications such as

a multisensor avionics navigation system, in which there

are memory limitations in the onboard flight computer. 2

Moreover, it is implicitly assumed in tile development of

the filter equations that exact descriptions of the system
dynamics, error statistics, and the measurement process

I S. Bhaskaran (personal communication), Navigation Systems Sec-

tion, Jet Propulsion Laboratory, Pasadena, California, October
1993.

2 j. Vagners, Development o] the Minimum Variance Reduced Or-

der (MVRO) Estimator Equations in Upper Triangular Diagonal

(U-D) Factored Form, Boeing report D229-10602-1 (internal doc-

ument), The Boeing Company, Seattle, Washington, February 21,
1979.

are known; unfortunately, this is rarely true in practice
[3]. Use of reduced-order filtering techniques allows the

analyst to obtain estimates of key parameters of interest,
with reduced computational burden and with moderate

complexity in the filter model [3,4]. Thus, reduced-order,

or, suboptimal, filters are the result of design trade-offs

in which the designer performs a sensitivity analysis to
determine which sources of error are most critical to overall
system performance.

In general, tile spacecraft, orbit determination process is
executed entirely on the ground and thus flight computer

memory limitations are not a significant factor. Never-

theless, there are reasons for not always using a fifil-order
optimal filter for spacecraft orbit determination. Some of

the reasons include: (1) certain parameters, such as fidu-
cial station locations, may be held fixed in order to define

a reference frame and/or length scale; (2) there may be

a lack of adequate models for an actual physical effect;
(3) the existence of computational ]imitations when at-

tempting to adjust parameters of high order, such as the

coefficients in a gravity field; or (4) if estimated, the com-
puted uncertainty in model parameters would he reduced

far below the level warranted by model accuracy [5,6].

A. Filter Evaluation Modes

There are a number of error analysis methods which

can be used to evaluate filter models and predict filter per-
formance. Reduced-order error analysis techniques enable

an analyst to study the effects of using incorrect a priori

statistics, data-noise/data-weight assumptions, or process

noise models on the filter design. This is usually referred

to as the general filter evaluation mode and accomplished

by establishing a fidly detailed reference model (a truth
model) against which the behavior of a filter can be com-

pared [5]. If the filter is optimal, then the filter and truth

models coincide. If the filter is suboptimal, then the fil-

ter model is of equal or lower order (i.e., reduced-order)

than the truth model and possibly (but not necessarily)

represents a subset of the states of tile truth model [3].
In practice, a fully detailed truth model may be diffi-

cult to develop and thus one typically evaluates a range
of "reasonable" truth models to assess whether the filter

results are especially sensitive to a particular element(s)
of the filtering strategy being used [5]. The objective is

to design a filter model to achieve the best possible accu-

racy, but which is also robust, so that its performance ;viii

not be adversely affected by the use of slightly incorrect
filter parameters. In the design process, the filter struc-

ture and the truth model remain fixed while repeated ad-
justments are made to the a priori statistics, data noise
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values, or process noise values, until acceptable behavior

is achieved [4].

In a special case of reduced-order error analysis, often
referred to as a consider state analysis, various system-

atic error sources are treated as unmodeled parameters

which are not estimated, but whose effects are accounted

for (i.e., "considered") in computing the error cowariance of
the estimated parameters [7]? In a consider state analysis,

the sensitivity of the estimated parameter set to various
unmodeled consider parameters can be computed via the

partial derivatives of the state estimate with respect to the

consider parameter set [8]. Depending on the magnitude of

the resulting sensitivities, the filter-computed estimation
error covariance is modified to account for the unmodeled

effects in order to generate a more realistic estimate of pre-

dicted navigation performance. The filter has no knowl-

edge about the contribution of the unmodeled parameters
to the uncertainty in the state estimate since the modi-

fied covariance (the consider covariance), which includes
effects from both the estimated and consider parameters,
is not fed back to the filter. Reduced-order filters of this

type have been known to experience failure modes, such
as cases in which the addition of data yields an increase

in the consider covariance, or cases when the consider co-

variance propagates to an unreasonably large result over
time. In these instances, it may be necessary to empir-

ically "tune" the filter (e.g., adjust data weights, model

assumptions, etc.) to obtain useful estimates. A mathe-
matical description of these so-called "failure modes" and

suggested remedies is described by Scheeres [6].

B. Optimal and Suboptimal Filter Equations

Restricting the discussion to the filter measurement up-
date equations, the mathematical model presented here is

the covariance form of the measurement update for scalar
measurements. Let _ represent the state estimate and P

represent the error covariance matrix. Using the conven-

tion that "(+)" denotes a postmeasurement update value

and "(-)" denotes a premeasurement update value, the

(optimal) filter measurement update equations for a lin-

ear, sequential estimator are given by

state estimate _+) = f¢_-' +/_'_ [z_ - Axk_ -)] (1)

error covariance P_+)= [I-/_'kAx_] P_-) (2)

3 This is the more traditional filtering method most often used in

practical applications of interplanetary navigation (see introduc-
tory remarks), operationally referred to as the consider option.

,,.- 1 p(-)AT
(optimal) gain matrix [<k = =k " _ "'*k (3)

where zk is the observation vector defined by the mea-

surement model, A_ is the measurement matrix of ob-

servation partial derivatives, I is simply the unit or iden-
P(-)A T + W[ 1 is the inno-tity matrix, and oe_ = -'_k k _

vations covariance. Wk represents the weighting matrix,

the inverse of which is taken to be the diagonal measure-

ment covariance Rk; thus, for i = 1, ..., rn observations,

W[ I = Rk = diag It1,... ,rm] for measurement variances
ri. 4 The filter equations described by Eqs. (1) through (3)

can be employed without loss of generality, since "whiten-

ing" procedures can be used to statistically decouple the
measurements in the presence of correlated measurement

noise and obtain a diagonal Rk [7]. The gain matrix Kk is

used to update estimates of the filter parameters as each
measurement is processed. Note that Eq. (2) is valid only

for the optimal gain /_'k.

The use of Eq. (2) to compute the error covariance ma-
trix has historically been suspect due to finite computer

word length limitations, s As a result, a frequently utilized
alternative is the stabilized Joseph form of the update, ex-

pressed as

P¢+) = (I - I<kA,_) P_-)(I - KkA_k) T + IfkW['K[k

(4)

Although this form of the covariance measurement up-
date is more stable numerically than Eq. (2), it requires a

greater number of computations; however, a further advan-

tage is that it is valid for arbitrary gain matrices; therefore,
Kk in Eq. (4) need not be optimal.

In some cases, the Joseph form of the update may also

be deficient numerically [9]. As a result, factorization
methods have been developed to help alleviate the nu-

merical deficiencies of the measurement update algorithms

[7,10,Ill. Specific details of the factorization procedures
will not be discussed here; however, an important obser-

vation from the literature and critical to the general eval-
uation mode of the filter is the observation that Eq. (4)

can be written in an equivalent form as

4 It is assumed that the measurements are corrupted by a vector

of independent, zero-mean Gaussian random noise quantities with

covariance Rk.

5 Recall from optimal estimation theory that the error covariance

matrix is defined as the expected value of the mean-square estima-

tion error, Pk = E [(Xk --_k)(Xk --Rk)T]-
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(5)

where Kk is an arbitrary (e.g., suboptimal) gain matrix
and /_k is the optimal filter gain matrix. This form of

the error covarianee measurement update is often referred

to as the suboptimal measurement updale since it includes

a correction based on the gain difference between the fil-

ter evaluation run (which generally assumes an incorrect

model) and the original filter (estimation) run. In the gen-

ral evaluation mode, the filter uses suboptimal gains saved
in an evaluation filter from an earlier filter which is run

purposely with what is believed to be an incorrect model,

in order to generate suboptimal gains [5]. It is this form of
the suboptimal measurement update which will be critical

to the error budget development described in the follow-

ing section. In practice, Eq. (5) is typically mechanized
in a U-D factorized form for numerical stability. A final

note about the filter equations: Although the equations
for the time update were not presented, it is important

to note that the time update in the general filter evalua-

tion mode takes the same form as the original filter time

update, except that in the presence of process noise model-

ing parameters, the original filter stochastic time constants
and process noise uncertainties are replaced with evalua-

tion mode time constants and process noise terms [5]. 6

III. Mission Scenario, Data Acquisition,
and Filter Modeling Assumptions

A. Mars Observer Interplanetary Cruise Scenario

The Mars Observer spacecraft was launched success-
fully on September 25, 1992, and was scheduled to initiate

the Mars Orbit Insertion (MOI) burn on August 24, 1993;

however, communication with the spacecraft was tragically
lost just days prior to MOI. Despite the loss of the space-

craft, the interplanetary cruise phase of the mission, which

extended from injection to initiation of the MOI burn, rep-

resented a challenging navigation scenario, as the declina-

tion of the Mars Observer at encounter was within 1 deg

of zero. This is a geometry which has historically yielded

relatively poor performance with Doppler tracking, due to
Doppler data's relative insensitivity to some components

of the spacecraft's state in this regime. The Mars Observer

6 The software is described in S. C. Wu, W. I. Bertiger, J. S. Bor-

der, S. M. Lichten, R. F. Sunseri, B. G. Williams, P. J. Wolff,
and J. T. Wu, OASIS Mathematical Description, V. 1.0, JPL D-

3139 (internal document), Jet Propulsion Laboratory, Pasadena,

California, April 1, 1986.

was also the first spacecraft to carry an X-band transpon-
der and the first to rely solely on a single-frequency X-band

telecommunications system7 Thus, this scenario repre-

sents a realistic scenario with which to study the relative
merits of using the enhanced orbit determination filter to

reduce X-band Doppler and ranging data.

The trajectory segment selected for this analysis was

taken to be a 182-day time period extending from early

February 1993 to early August 1993, which represented
the longest leg of the interplanetary cruise, and had the

most stringent navigation accuracy requirements in order

to support the final maneuver prior to MOI. The trajectory

characteristics over the time span of the data arc, which

extended from encounter minus 194 (E - 194) days to E
- 12 days, are summarized in Table 1.

B. Data-Acquisition Strategy

A fairly sparse DSN data-acquisition schedule was as-

sumed, containing no more than one or two passes of

Doppler and ranging data per week. In all cases, the
data were assumed to be acquired from the DSN's 34-m

high-efficiency (HEF) Deep Space Stations (DSSs) located

near Goldstone, California (DSS 15), Canberra, Australia

(DSS 45), and Madrid, Spain (DSS 65). This reduced level

of coverage is representative of the level anticipated for
telemetry acquisition in future missions such as Pathfinder

and Cassini. The data schedule consisted of one horizon-

to-horizon tracking pass of two-way Doppler and ranging
data acquired from the Madrid site on a weekly basis from

E - 194 days to E - 90 days, two weekly tracking passes
acquired from the Madrid and Canberra sites from E

- 90 days to E - 30 days and from E - 30 days to E

- 12 days (data cutoff), and a single pass per day from all
three DSN sites.

To account for data noise, an assumed one-sigma ran-
dom measurement uncertainty of 0.0126 mm/sec was cho-

sen for two-way Doppler, and for two-way ranging, the
one-sigma random measurement uncertainty was assumed
to be 1 m; these noise variances were used in all cases

in a manner similar to an earlier study [2]. It should be

noted that the data weights quoted here are for the round-

trip range-rate and range, respectively. Both data types
were collected at a rate of one point every 10 rain, and the

noise variances were adjusted by an elevation-dependent

function for all stations, to reduce the weight of the low-
elevation data; furthermore, no data were acquired at ele-

vations of less than 10 deg.

7 p. B. Esposito, S. W. Demcak, D. C. Roth, W. E. Bollman, and

C. A. Halsell, h_rars Observer Project Navigation Plan, Project

Document 6,t2-312, Rev. C (internal document), Jet Propulsion
Laboratory, Pasadena, California, June 15, 1990.
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C. Orbit Determination Filter Model

Table 2 summarizes the parameters which make up the

enhanced orbit determination filter model, along with a

priori statistics, steady-state uncertainties for the Gauss-

Markov parameters, and noise densities for the random-

walk parameters, s All of the parameters were treated as

filter (estimated) parameters and grouped into three cate-

gories: spacecraft epoch state, spacecraft nongravitational

force model, and ground system error model. Effects of

uncertainty in the ephemeris and mass of Mars were ne-

glected, as they were believed to be relatively small in this
scenario. 9

The simplified spacecraft nongravitational force model

was based on past experience and modeling spacecraft sim-
ilar to Mars Observer. 1° There were filter parameters rep-

resenting solar radiation pressure forces as well as small
anomalous forces due to gas leaks from valves and pres-

surized tanks, attitude control thruster misalignments, etc.

For processing the two-way ranging data, the filter model
included a stochastic bias parameter associated with each

ranging pass from each station, in order to approximate
the slowly varying, nongeometric delays in ranging mea-
surements that are caused principally by station delay cal-

ibration errors and uncalibrated solar-plasma effects. No

explicit model parameters were employed for the effect of

solar-plasma delays as relatively large (>45 to 60 deg)

Sun-Earth-Probe (SEP) angles were assumed for rang-

ing data acquisition, leading to small (<1 m) solar plasma

delays.11

The station location covariance represents the uncer-

tainty in the station location and pole model solutions de-

veloped by Finger and Folkner [13]; this covariance matrix
and its associated station location set were used opera-

tionally by the Mars Observer Navigation Team during

s For process noise, first-order Ganss-Markov (exponentialy corre-

lated) random processes were assumed. The process noise covari-
ance is given by q = (1 - m2)a_s where m = exp[--(tj+l - tj)/_'].

Here, tj is the start time for the jth batch and _" is the associated
time constant. The term ass is the steady-state uncertainty, i.e.,

the noise level that would be reached if the dynamical system were

left undisturbed for a time much greater than "r. For the random

walk, both ass and r are unbounded (r = oo) and a steady-state
is never reached. The noise density for the random walk is char-

acterized by the rate of change of the process noise covariance,

q = Aq/At where At is the batch size and Aq is the amotmt of
noise added per hatch. For this analysis, At = 10 rain.

9 E. M. Standish, "Updated Covarianee of Mars for DE234," JPL In-

teroffice Memorandum 314.6-1452 (internal document), Jet Propul-

sion Laboratory, Pasadena, California, July 27, 1992.

10 Esposito, op. cit.

11 A recent study of a simple solar plasma delay model and its use in
the reduction of precision ranging data is presented in [12].

interplanetary cruise. 12 Additionally, three exponentially

correlated process noise parameters were included to ac-
count for the dynamical uncertainties in the Earth's pole

location and rotation period. The tropospheric and iono-

spheric zenith delay calibration uncertainties were repre-
sentative of current calibration accuracy. A sequential

U-D factorized estimation scheme was employed, in order

to track the short-term fluctuations in the transmission

media.

IV. Error Budget Calculations

The purpose of developing an error budget is to deter-
mine the contribution of individual error sources, or groups

of error sources, to the total navigational uncertainty. In

general, an error budget is a catalog of the contributions
of all of the error sources which contribute to errors in

the filter estimate at a particular point in time, whether

explicitly modeled in the filter or not [3]. For this first

analysis, it is assumed that the filter is "optimal," i.e.,
that the truth model and filter model are the same. This

implies that the filter model is an accurate representation

of the physical world.

In order to establish an error budget, it is necessary

to compute a time history of the filter gain matrix for

the complete filter model and to subsequently use these

gains in the sensitivity calculations [Eq. (4)] during re-

peated filter evaluation mode runs, in which only selected

error sources or groups of error sources are "turned on"
in each particular run. In this way, the individual con-
tributions of each error source or group of error sources

to the total statistical uncertainty obtained for all of the

filter parameters for a given radio metric data set can be
established.

Using the reduced data schedule and enhanced filter
model derived for the Mars Observer interplanetary cruise

scenario described in Section III, orbit determination error

statistics were computed for DSN Doppler-only, ranging-

only, and Doppler-plus-ranging data sets. The orbit deter-
mination statistics were propagated to the nominal time

of Mars encounter and expressed as dispersions in a Mars-
centered aiming plane, or B-plane, coordinate systemJ 3

12 W. M. Folkner, "DE234 Station Locations and Covariance for

Mars Observer," JPL Interoffice Memorandum 335.1-92-013 (inter-

hal document), Jet Propulsion Laboratory, Pasadena, California,

May 26, 1992.

I3 The aiming plane, or B-plane, coordinate system is defined by three
unit vectors: S, T, and R; S is parallel to the spacecraft velocity
vector relative to Mars at the time of entry into Mars' gravitational

sphere of influence, T is parallel to the Martian equatorial plane,

and R___completes an orthogonal triad with S and T. The aim point
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specifically, the one-sigma magnitude uncertainty of the
miss vector, resolved into the respective miss components

BoR_ (normal to Martian equatorial plane) and BoT (par-
allel to Martian equatorial plane), and the one-sigma

uncertainty in the linearized time-of-flight (LTOF). The

LTOF defines the time from encounter (point of closest ap-

proach) and specifies what the time of flight to encounter

would be if the magnitude of the miss vector were zero. In

some cases, the errors were expressed as dispersion ellipses

in the B-plane to graphically illustrate the contributions

of the most statistically significant groups of error sources.

A. Doppler Only

With the enhanced filter, the Doppler data allowed

determination of the Belt component of the miss vec-

tor to about 22 km and the BeT component to about

46 km, with the LTOF determined to approximately 7 sec

(--_16 km in positional uncertainty). These results are sum-
marized in Table 3, which gives the magnitude of the B-

plane dispersions around the nominal MOI aim point (in

the form of an error budget) for all groups of truth/filter
model error sources to the total statistical uncertainty, in

a root-sum-square sense. (Recall that for this analysis, the

truth model and filter model are the same.) As seen from

the table, the most dominant error source groups were

the random nongravitational accelerations, followed by so-
lar radiation pressure coefficient uncertainty, and random

Earth-orientation calibration errors. A graphical illustra-

tion of these contributions is shown in Fig. 1, in terms of B-

plane dispersion ellipses. For this encounter scenario, the

direction of the Earth-spacecraft range is closely aligned

with the semimajor axis of the B-plane dispersion ellipse.

The Doppler data alone were able to determine this com-

ponent of the solution to only about 50 km.

B. Ranging Only

Orbit solutions computed with ranging data using the
enhanced filter are summarized in Table 4, also in error

budget format. In this case, the ranging data were able
to determine the Belt component of the miss vector to

about 12 km and the BeT component to about 6 km.

The LTOF accuracy for this case was not much better

than the Doppler-only case, an improvement from 7 sec to

approximately 6 sec (_14 km in positional uncertainty).

The most dominant error source groups for this data strat-

egy were random nongravitational accelerations, as in the
Doppler-only case, followed by measurement (data) noise,

and DSN station location uncertainty. Although range

for planetary encounter is defined by the miss vector B, which lies

in the T_.-__.R plane and specifies where the point of closest approach

would be if the target planet had no mass and did not deflect the

flight path.

bias parameters were included in the ground system error

model, they did not adversely affect the performance of

the enhanced filter. Figure 2 illustrates these major error

sources in terms of B-plane dispersion ellipses along with

the full filter-generated root-sum-square uncertainty. The
orientation of the full filter dispersion ellipse is rotated

about 90 deg from tile Doppler-only result, indicating the

strength with which the ranging data are able to deter-

mine the Earth spacecraft range component of the trajec-

tory. In this case, the semimajor axis is oriented roughly
normal to the Earth-Mars line.

C. Doppler Plus Ranging

For the final case in which both Doppler and ranging
data were used, the Be___Rcomponent of the miss vector

was determined to about 9 km and the BeT component to

about 5 km, with the LTOF determined to approximately

4 sec (---9 km in positional uncertainty). Error budget cal-
culations for this case are summarized in Table 5. Similar

to the results for the Doppler-only and ranging-only data

strategies, random nongravitational accelerations were the

dominant error source group. The next two most signifi-

cant error source groups were Earth-orientation calibration

error and DSN station location uncertainty, respectively.

As with the ranging-only case, solar radiation pressure co-

efficient uncertainty and random ranging delay calibration

errors were of roughly the same magnitude, but did not
contribute to the total error budget as much as the previ-

ously cited error sources. B-plane dispersion ellipses are

also provided (see Fig. 3), illustrating the contributions
of the major error source groups to the total root-sum-

square error and the orientation of the ellipses in the aim-

ing plane. In this case, the accuracy with which the Earth

spacecraft range component at encounter was determined

was roughly ll kin.

VoSensitivity Curves

Another benefit of the linearity assumptions used to

develop error budgets is that sensitivity curves can read-
ily be generated. Sensitivity curves graphically illustrate

the effects of using different prescribed values of the error

source statistics on the estimation errors, with the assump-

tion that the filter model remains unchanged. The proce-

dure for sensitivity curve development is straightforward

and, although described in [3], is repeated here for com-

pleteness: (1) subtract the contribution of the error source

under consideration from the total mean-square navigation
error; (2) to compute the effect of changing the error source

by a preset scale factor, multiply its contributions to the

mean-square errors by the square of the scale factor value;

(3) replace the original contribution to mean-square error
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by tile one computed in the previous step; and (4) take
the square root of the newly computed mean-square error

to obtain the total root-sum-square navigation error.

Several cases were used to generate sensitivity curves

for the major groups of error sources in the filter model;

for example, Figs. 4 through 6 give the sensitivity curves

for the random nongravitational accelerations and illus-

trate the sensitivity of this error source group to various
scale factor values. Recall that random nongravitational

accelerations dominated the error budget in all three data

strategy eases considered (c.f., Section IV). As seen from

the figures, a quadratic growth in the sensitivity is evident
for scale factor values ranging from 1 to 3, and a nearly

linear growth is exhibited for scale factor values ranging
from 4 to 10. On average, for all three data strategies con-

sidered, an order of magnitude increase in the preset scale
factor resulted in about a factor of three to six increase in

the root-mean-square estimation errors.

VI. Summary and Conclusions

A sensitivity analysis was conducted for a recently de-

veloped sequential data filtering strategy referred to as the
enhanced orbit determination filter. In practice, the en-

hanced filter attempts to represent all or nearly all of the

principal ground system error sources affecting radio met-

ric data types as filter parameters. Reduced-order filtering
methods were reviewed and utilized to perform the sensi-

tivity analysis, and, in particular, to develop navigation

error budgets for three different data acquisition strate-

gies. The mission scenario assumed for the analysis was
based on the Mars Observer interplanetary outer cruise

phase. Two-way radio Doppler and ranging were the data
types analyzed, with assumed accuracies chosen to reflect

actual performance of the DSN's X-band tracking system,

as observed in recent interplanetary missions such as Mag-

ellan, Ulysses, and Mars Observer.

Error budget computations performed for the assumed

mission scenario revealed that the most significant er-

ror source for all three data-acquisition strategies stud-

ied (i.e., Doppler-only, ranging-only, and Doppler-plus-

ranging) was spacecraft random nongravitational acceler-
ations, indicating that, for the reference error model, the

enhanced filter is most sensitive to mismodeling of small

anomalous forces affecting the spacecraft. Other sources

of error which had a significant impact on tile overall er-

ror budget were, in the case of Doppler-only navigation,

solar-radiation pressure coefficient uncertainty and Earth-
orientation calibration error. In the case of ranging-only

navigation, measurement noise and Earth-orientation cali-

bration error were the other significant contributors to tile

overall error budget. Earth platform errors, namely DSN
station location uncertainty and Earth-orientation calibra-

tion error, were the next most significant contributors to

the overall error budget for the Doppler-plus-ranging nav-

igation case. These results suggest, that if high-precision
navigation performance is to be achieved, the error sources

requiring the most accurate modeling are spacecraft non-

gravitational accelerations and Earth platform calibration
errors. Future work will focus on the use of .Monte Carlo

sinmlation techniques to evaluate the sensitivity of the
enhanced orbit determination filter to a variety of truth

model assumptions, and will include additional model pa-
rameters to account for trajectory-correction lnaneuver ex-

ecution errors and uncalibrated solar-plasma delays.
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Table 1. Mars Observer outer cruise phase trajectory character-

istics over an assumed data arc extending from E -- 194 days to

E -- 12 days.

Parameter Value

Earth-to-spacecraft range, km

Geocentric declination, deg

SEP angle, deg

80x 106 to 330x 106

22 to 1

125 to 45

Table 2. Enhanced orbit determination filter with ground-system error model representative

of current DSN calibration accuracy.

Estimated parameter set Uncertainty (la) Remarks

Spacecraft epoch state A priori,

Position components 105 km

Velocity components 1 krn/sec

NongravitationaJ force model

Solar radiation pressure A priori,

Radial (Gr) 10% (= 0.13)

Transverse (G_/Gy) 10% (= 0.01)

Anomalous accelerations Steady-state,

Radial (ar) 10-12 krn/sec2

Transverse (az/av) 10-12 kin/sec2

Range biases (one per station A priori,

per pass, ranging data only) 4 m

Ground system error model

DSN station locations A priori,

Spin radius (re) 0.18 m

Z-height (zs) 0.23 m

Longitude (_) 3.6 × 10 -8 rad

Earth orientation Steady-state,

Pole orientation 1.5 × 10 -8 rad

Rotation period 0.2 msec

Transmission media A priori,

Zenith troposphere 5 cm

(each station)

Zenith ionosphere Steady-state,

(each station) 3 cm

Constant

parameters

Constant

parameters

Markov parameters

10-day time constant

10-day time constant

Uncorrelated from

pass to pass

Constant parameters,

relative uncertainty

between stations is

1 to2cm

Markov parameters,

1-day time constant

12-hr time constant

Random walk,

1 cm2/hr

Markov parameters

4-hr time constant
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Table 3. Enhanced-filter error budget for DSN X-band Doppler-only navigation.

Error

source

group

B-plane dispersions

B*___R, km BoT, km LTOF, sec

Epoch state 2.92 8.33 0.753

SRP parameters 10.25 27.69 2.164

Nongravitatlonal accelerations 16.52 30.61 4.950

Ionosphere 1.87 3.82 0.891

Troposphere 3.56 6.65 1.500

Station locations 4.29 4.63 1.590

Earth orientation 6.23 14.58 3.428

Measurement noise 3.45 6.41 1.501

Total (root-sum-square) 21.72 45.90 7.024

Table 4. Enhanced-filter error budget for DSN X-band ranging-only navigation.

Error

source

group

B-plane dispersions

B,R, km B,T, km LTOF,

Epoch state 0.27 0.13 0.23

SRP parameters 2.26 1.11 0.91

Nongravltatlona] accelerations 7.27 3.54 4.13

Ionosphere 0.78 0.39 0.27

Troposphere 1.54 0.75 0.64

Station locations 5.36 2.63 2.66

Earth orientation 2.47 1.26 0.63

Range biases 2.06 1.00 0.97

Measurement noise 6.59 3.21 3.18

Total (root-sum-square) 11.98 5.86 6.08

sec
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Table 5. Enhanced-filter error budget for DSN X-band Doppler-plus-ranging navigation.

Error B-plane dispersions

SOlJ]'ce -- -

group Bolt, km BoT__, krn LTOF, sec

Epoch state 0.10 0.05 0.10

SRP parameters 1.57 0.76 0.64

Nongravitational accelerations 5.73 2.83 2.87

Ionosphere 0.87 0.41 0.56

Troposphere 1.46 0.69 0.81

Station locations 2.99 1.53 0.97

Earth orientation 2.98 1.50 1.26

Range biases 1.40 0.67 0.68

Measurement noise 5.11 2.46 2.51

Total (root-sum-square) 9.17 4.51 4.35
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factor (ranging-only case): (a) BeT and BeR and (b) LTOR
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Navigation Systems Section

The theoretical aspects of an orbit determination filter that incorporates ground-

system error sources as model parameters for use in interplanetary navigation are

presented in this article. This filter, which is derived from sequential filtering theory,
allows a systematic treatment of errors in calibrations of transmission media, station

locations, and Earth orientation models associated with ground-based radio metric
data, in addition to the modelling of the spacecraft dynamics. The discussion

includes a mathematical description of the filter and an analytical comparison of its

characteristics with more traditional filtering techniques used in this application.

The analysis in this article shows that this filter has the potential to generate

navigation products of substantially greater accuracy than more traditional filtering
procedures.

I. Introduction

In JPL's interplanetary orbit determination process,

ground error sources associated with radio metric data,

such as station location, Earth orientation, and transmis-
sion media calibration errors, are usually treated as un-
modelled "consider" parameters in a scheme known as the

consider option. This method does not utilize any infor-

mation pertinent to the consider parameters in computing
estimates of the trajectory parameters. Rather, the effects

of the consider parameters are accounted for by modify-

ing the computed estimation error covariance with pre-

assigned uncertainties of these parameters. In many cases,
this method gives satisfactory results and allows reason-

able navigational accuracy. However, the consider option
sometimes yields unstable and unpredictable results when

used for interplanetary navigation.

Recently, an enhanced orbit determination scheme

(which wilI be referred to throughout this article as tile
"enhanced" filter) has been developed. The enhanced fil-

ter explicitly models ground error sources as random pro-

cesses simultaneously with the trajectory-related parame-
ters. This method exploits the fl, ll information content of

the data pertaining to these ground errors in the filtering
process and may thereby improve the knowledge of these

parameters and the overall accuracy of the estimated flight
path.

The enhanced filter has been successfully applied.to se-

lected navigation problems in some interplanetary orbit-

determination case studies at. JPL [1,2]. These studies

have shown an increase in orbit-determination accuracy
using the enhanced filter method of factors of two to four
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over the use of more conventional techniques. Interest-

ingly, in the field of Earth satellite orbit determination,

similar filtering techniques have been in use for some time.
Numerous articles exist in the literature. For example, in

the article by Lichten and Border [3], stochastic models

for the tropospheric delays are used for problems in Global

Positioning System orbit determination.

This article describes the framework of the enhanced

filter model and gives an analytical comparison of the en-

hanced filter with the traditional consider option. Since

there are many concepts involved, a quick review of the
basic filter model from which the enhanced filter evolved

will be given first. A detailed discussion of the consider

option will also be presented, so that its characteristics can

be compared with those of the enhanced filter.

II. Basic Filter Model

All of the filters discussed herein employ a linear repre-

sentation of the process dynamics and the measurements.

In this formulation, the state space and measurements are

described as follows:

xj+l = (I)(j + 1,j)xj +wj (1)

Zj : Hj xj + vj (2)

where x denotes the extended state, which includes the

spacecraft state and the dynamic process perturbation pa-
rameters. The dynamic process perturbations may be
treated as random or deterministic parameters. The tran-

sition matrix from time tj to tj+l is (I)(j + 1,j), and w

represents the state-space modelling errors. The jth data

point is zj, and vj is the corresponding data noise. The

term Hj is a matrix that contains the partial derivatives
of the jth data point with respect to the extended state.

The computations for the estimate and covariance ma-
trix follow the basic square-root information filtering pro-

cedure discussed by Bierman [4]. This procedure can be
described as follows: The a priori values and covariance

matrix for the estimated parameters are first transformed

into the a priori residual and the a priori information ma-
trix. To ensure numerical stability, the Cholesky decom-

position is applied to the a priori information matrix to
obtain an upper triangular factorization, hence the term

"square root" of the matrix. This a priori square-root in-
formation matrix is augmented by the a priori residual.

Measurements are then included into this augmented ma-

trix using the Householder orthogonal transformations, re-

sulting in the following a posteriori square-root informa-
tion and residual matrix:

(R:) (3)

where R denotes the information matrix, z denotes the

residual, and e denotes the sum of squares of the residual

errors as defined in the classical least-squares problem.

The extended state estimate :_ and the error covariance

matrix P_ for the extended state are computed using the
values in the above matrix.

_= R-Iz (4)

p_= R-1R -7 (5)

III. Consider Option

The consider option is based on the assumption that

there is a set of parameters that affects the performance
of the filter and that it is unnecessary or impractical to

model these parameters accurately. These parameters are
referred to as consider parameters. Since consider parame-
ters are not included in the model, they are not estimated.

Moreover, the estimation and covariance computation pro-
cess for the extended state is not aware of the presence of

these parameters and any errors in their values. Instead,
once the state estimation is performed and the error covari-

ance computed, the consider filter modifies the computed
error covariance to account for a constant uncertainty in

the consider parameters. This new covariance is called the
"consider covariance." If P_ denotes the computed error

covariance matrix and Puo denotes the a priori covariance
of the consider parameters, then the consider covariance,

Pc, is computed as follows:

Pc = P_ + SPyo ST (6)

The matrix S above is commonly called the sensitivity ma-

trix and contains the partial derivatives of the estimated

state with respect to the consider parameters. In the con-
sider filter, it is a function of the measurements only. More

details of the sensitivity matrix can be found in [4].

The consider option is often used to treat ground error
sources that affect the measurements. The rationalization

is that since these error sources do not affect the spacecraft
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dynamics, estimating them will not improve the knowledge
of the spacecraft state, and therefore it is adequate to just

characterize them by their uncertainties. In this approach,

the presence of the ground errors is acknowledged in a con-

servative fashion, which overlooks the important fact that

these error sources, since they affect the measurements, do

affect the spacecraft state estimates. Note also that this

method assumes that the ground error parameters are con-

stants with no dynamics. This simplified modelling does
not allow an improvement in knowledge of these parame-
ters to be obtained.

The most obvious disadvantage of the consider option

is that when the sensitivity of the state with respect to the

ground error parameters increases, the consider covariance

increases, as can be seen clearly from Eq. (6). This im-

plies a greater uncertainty in the spacecraft state. When

this happens, the only remedy available within the con-

text of the consider option is to decrease the "weight" of
the data, i.e., assume that each measurement contains less

information than it does in actuality. This and other char-

acteristics of the consider option are discussed by Scheeres
[5].

There is, however, a deeper significance here. If the

sensitivity of the state with respect to the ground error

parameters grows large, then this implies that there is sig-
nificant information contained in the measurements con-

cerning these parameters. The logical recourse would be to

exploit this information in order to learn something about

the characteristics of the ground error sources. This im-

plies that the ground error parameters should be incorpo-
rated into the filter model.

IV. Enhanced Filter

The enhanced filter provides for the inclusion of the

ground error parameters in the filter model so that the

estimation process incorporates the information pertinent

to the behavior of these parameters. In this treatment, the

ground error sources are modelled as dynamic entities. By
doing this, an automatic feedback mechanism is created

so that no artificial data weighting is needed to keep the

covariance of the state estimate from diverging.

A. Enhanced Filter Model

The enhanced filter uses the extended state model for

the basic batch sequential model given by Eq. (1). In ad-
dition, there are models for ground error parameters and

a modified measurement model. The ground error param-

eters are modelled as a discrete first-order Markov process
in a vector form given by

Y/+I = k_(j + 1,j)y/ + uj (7)

where y denotes the vector consisting of the ground error

parameters, k_(j + 1, j) accounts for the time dependency

of y from time tj to lj+l, and u represents the random
driving term.

The measurement model given by Eq. (2) is modified

to include information pertaining to the ground error pa-
rameters.

zj = Hjxj +Gjyj +vj (8)

where the meanings of Hj and vj are the same as before

and Gj contains the partial derivatives of tile jth data

point with respect to the ground error parameters.

The enhanced filter model thus consists of Eqs. (1), (7),
and (8). The characteristics of this model can be described

as follows. Ground error sources are treated as system pa-

rameters that can be estimated. The extended spacecraft

state space evolves independently from the ground system

parameters. The measurements have explicit dependency
on the ground system parameters.

B. Estimate and Covariance

In the enhanced filter, estimated parameters include

both the extended spacecraft state and the ground system
parameters. The computations for the estimate and co-

variance matrix follow the basic square-root information

filtering procedure described in Section II. After process-
ing measurements, the a posteriori information and the

residual matrix have the following form:

(9)

In Eq. (9), subscripts are given to show the relationship of
the quantities in the matrix with respect to the parame-

ters. ttere, R_ represents the information with respect to

the extended state and is the same as R in Eq. (3) ; Ry rep-
resents the information with respect to the ground system

parameters; R_ u denotes the information concerning the

extended state affected by the ground system parameters;

and z_ and zy are residual components corresponding to
the extended state and ground system parameters, respec-

tively. From this matrix, the extended state and ground

system parameter estimates are computed as
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= R;' [zx- Rx, 5-] (lO)

5-= -lzu (i1)

Equations (10) and (ll) show that the information con-

tent pertinent to the ground system parameters, R, and

z,, is used to estimate these parameters, yielding a new
estimate, 5". This estimate is then used to obtain a new
state estimate, _, together with the information pertinent

to the state, R_, the state with respect to the ground

system parameters, R_,, and the residual, z,. In the con-
sider option, the state estimate would have used only R_

and z_, and no estimate for the ground system parameters

would have been computed.

Since all parameters are estimated, the covariance ma-
trix for the extended state is then

p = R_-,R_-T+ [_I:t;1R,,R_ -1] [-R_-lnxyn2'] T (12)

Recognizing that -R_-_R_, is the definition of the sensi-

tivity matrix, Eq. (12) may be represented as

= p_ + SP, S T (13)

In this equation, Px = Rx-IR_ -T and 15u = l:l.y'lRy -T,

where P, and 1h, represent the blocks of the computed
covariance matrix corresponding to the extended state and

the ground system parameters, respectively.

Using the same notations, the full covariance matrix
corresponding to the estimate for both the extended state

and the ground system parameters is

(14)

Note that the P_ in both Eqs. (13) and (14) is ex-

actly the computed covariance in the consider option.

Equation (13) has the same form as Eq. (6), which gives
the computation for the consider covariance. But the

important difference here is that the covariance for the

ground system parameters, P, in Eqs. (13) and (14), is

updated using the measurements and their modelled be-

havior, while in the consider option only the constant a

priori covarianee is used.

Further, in the enhanced filter, the full covariance ma-

trix is used to automatically weight the measurement data,
thus using the modelled behavior of ground system param-

eters to control the relative weight given to the measure-

ments. In the consider option, only the computed covari-

ante 15_ is used to weight the measurements; therefore,

the ground system parameters have no effects on the data

weights. In particular, using the enhanced filter formula-

tion, the computed covariance stabilizes as the informa-

tion contained in R u increases. This is transparent since

P, = R_-IR_ -w. Thus, there is no need to artificially
deweight the data when the information content of the

ground system parameters is large. On the other hand,
when there is little or no information pertinent to the

ground system parameters, the enhanced filter then be-
haves as in the consider option. In this case, the covariance

matrix with respect to the ground system parameters, P,,

will consist primarily of the a priori constant covariance

for these parameters.

C. Features of the Enhanced Filter

The advantage of modelling measurement error sources

as system parameters is that this makes it possible to esti-

mate these parameters. Thus, the knowledge of them may

be improved. This approach distinguishes the enhanced fil-

ter strategy from other commonly used schemes that treat

ground system errors as measurement noise. Many prob-
lems arise with such schemes. For example, because of the

very assumption that the ground system errors are noise-
like, no information regarding these parameters can be ex-
tracted from the measurements. Very often, this leads to

degenerate covariance matrices; see [6,7] for more discus-
sions on such treatments.

The advantage of modelling the evolution of the ground

system parameters independently from the state dynamics
is that, while not affecting the state evolution, the ground
errors are allowed to evolve according to their own dy-

namics. This is necessary since some of the error sources,

such as Earth orientation and transmission media, are dy-

namic. This model demonstrates that system parameters

do not have to be included in the state dynamics in order

to improve the state estimation. Finally, the advantage

of modelling the dependency of the measurements on the

ground system parameters explicitly is that the best pos-
sible weighting of the data can be utilized in the filtering

process to generate estimates of the spacecraft trajectory.

The net combination of the above features provides a

procedure that fully exploits the information content of the

measurements pertaining to the ground system parame-
ters and systematically assigns the proper weight for each
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measurement according to the modelled behavior. This

is achieved in the enhanced filter by using user-input pa-

rameters that describe the stochastic nature of the ground

system parameters. By choosing the statistics of these pa-

rameters properly, accurate estimates of both the ground

system parameters and the spacecraft state may be ob-

tained. In addition, the covariance of the ground system

parameters may be effectively controlled, ensuring that the

estimates for these parameters will be within the accuracy
with which they can be modelled.

V. Conclusions

To summarize, the enhanced filter has been shown to

offer some advantages over the traditional consider option

in the following ways: First, the enhanced filter allows the

behavior of the ground system parameters to affect the

spacecraft state estimates. This helps to ensure that the

spacecraft state is being estimated with a more complete
representation of the physical world. Second, the enhanced

filter can exploit the information contained in tile data per-

taining to the ground system parameters, possibly helping

to improve the knowledge of these parameters. Moreover,

the improved knowledge is fed back into the filtering pro-

cess automatically, which effectively adjusts the weighting
of the data systematically, helping to stabilize the state

covariance. Third, the performance of the enhanced filter

is no worse than that of the consider option in the case

when the information content of the data with respect to
the ground system parameters is small.

In reviewing the history and evolution of the sequen-

tial filtering techniques, a major motivation for using the
consider option in the past was that it was cost effective,
in terms of computation time, to deal with a lower dimen-

sional model, even if the accuracy of the filtering product

was compromised. With modern computers, this moti-
vation is no longer a valid concern. The enhanced filter

model can use this computational power to achieve an un-

precedented degree of accuracy and robustness in many
orbit determination problems.
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A new 34-m research and development antenna was fabricated and tested as a

precursor to introducing beam waveguide (BWG) antennas and Ka-band (32 GHz)

frequencies into the NASA/JPL Deep Space Network. For deep space use, system

noise temperature is a critical parameter. There are thought to be two major con-
tributors to noise temperature in a BWG system: the spillover past the mirrors

and the conductivity loss in the walls. However, to da_e, there are no generally ac-

cepted methods for computing noise temperatures in a beam waveguide system. An
extensive measurement program was undertaken to determine noise temperatures

in such a system along with a correspondent effort in analytic prediction. Utiliz-

ing a very sensitive radiometer, noise temperature measurements were made at the

Cassegrain focus, an intermediate focal point, and the focal point in the basement

pedestal room. Several different horn diameters were used to simulate different

amounts of spillover past the mirrors. Two analytic procedures were developed for

computing noise temperature, one utilizing circular waveguide modes and the other

a semiempirical approach. The results of both prediction methods are compared to

the experimental data.

I. introduction

Noise temperature due to a beam waveguide (BWG)

system is one of the major contributors to antenna-receive

system noise, especially for an ultralow noise system or a
system with high spillover power in the BWG shroud. A

reasonably accurate prediction of the BWG noise tempera-
ture is essential. Direct analytical computation of the noise

temperature of elaborate BWG systems, including all mir-

rors, is an extremely complex problem and, to date, there

is no generally accepted method. This article presents two

new techniques, one a purely analytical method and the

second a semiempirical approach.

The analytical method extends the approach of [1],

which computes the waveguide modes that are propagat-

ing in the oversized waveguides. Reference [1] describes a

physical optics (PO) integration procedure of the currents
on the BWG mirrors using a Green's function appropriate

to the circular waveguide geometry. Once all the modes in

the waveguide are known, it is a simple matter to use stan-
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daxd approximations to determine the attenuation con-

stant and, thus, the conductivity loss if the conductivity

of the wall material is known. Also, all energy that prop-

agates toward, but spills past, a BWG mirror is assumed
to he lost in the walls of the BWG as well. The noise tem-

perature is computed assuming both loss components see

ambient temperature.

The second method uses a technique that combines an

analytical approach with data from measurements to con-

struct a specific expression to compute the BWG noise

temperature.

To validate both approaches, a series of measurements

were made on DSS 13, the recently completed research

and development 34-m BWG antenna (see Figs. 1 and 2).
The experiments consisted of making very accurate noise

temperature measurements for different gain horns located

at both the Cassegrain focus (fl) and the BWG focus of

the upper portion of the BWG system (f'2) (designed to

image the horn at the Cassegrain optics focal point). This

portion of the BWG optics is enclosed in a 2.44-m-diameter

tube. By taking measurements at both focal points, the

noise temperature of the BWG portion of the optics can be

accurately determined. The results of both computation

methods are compared to the measured data.

An arbitrary field in a waveguide can be represented as

an infinite sum of the normal modes for the guide. Let the

normal modes be represented by

= + e Fo

(1)

where E--(+) represents a mode traveling in the +z direction

and E--(_-)is a mode traveling in the -z direction. For a

basic normal mode description, see [2].

Let the field radiated in the +z direction by the current

be represented by

E--(+) = Z anE---(2 )

:E
Z,,

n

(2)

II. Waveguide Mode Theory

The BWG tube analysis is conceptually similar to the

PO analysis used in reflector antenna analysis. Currents

induced in the BWG mirror are obtained using a standard

PO approximation of J = 2h × Hi,_ where h is the sur-

face normal and Hint is the incident field. However, this

analysis differs in the methods by which the incident field
on a mirror and the scattered field are calculated.

One approach to calculating the scattered field is to use

a dyadic Green's formulation [1] where the field scattered
from a BWG mirror is computed using the Green's func-

tion appropriate to the cylindrical waveguide geometry.

While it is conceptually convenient to use Green's func-

tions to discuss the comparison with PO, the actual com-

putation using this approach is rather cumbersome. In-

stead, a simpler method is used to calculate waveguide

fields, based upon the reciprocity theorem. The basic

problem is to find the fields radiated by an arbitrary cur-

rent (the PO currents on the reflector) in a cylindrical

waveguide. The problem is easily solved by expanding the
radiated field in terms of a suitable set of normal modes

with amplitude coefficients determined by an application

of the Lorentz reciprocity theorem.

and the field radiated in the -z direction by

V-) : ]Ebo¢:)

(3)

Recalling the Lorentz reciprocity theorem, if Ex, H1

and E2, H2 are the fields due to J1, J2, respectively, then

j_v [E2 • Jl - E1 • 72] dV (4)

if we let El, H1 be the fields due to the sources J

and E--(n:1:), and H--{: ) be the modal (source-free)solutions,

substituting in the Lorentz reciprocity theorem gives
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[ f_ _Z ) ×_,-T, × --_jj ._,_= j• ,, .J,_v

If we choose a volume bounded by the perfectly con-

ducting guide walls and the two cross-sectional planes Sa

and $2 (see Fig. 3), then

x.q d8

ds (6)

Note that the integral along the wall does not con-

tribute because on $3 h• Ex x H2 = H_:•). h x E1 =
H2* tangential E = 0 for either E (+) or E (

Also only transverse fields enter into computations be-
cause _ • E x H selects transverse components.

For the normal mode function E +, H +, it is readily

found that

J_s-- 2b,_ (7)zn

when the expansion for E + and E- are used in conjunction

with the orthogonal property and

j_ (-6_ x -hm) " _ds = { O if n _ mlif m = n (8)

Also, if we use the normal mode function E---i,-), H--'(_-),

we find that

= -2 a" (9)

We have therefore shown that

a,_ =- 2 ,

bn :- _Z, *

(10)

Since we have only surface currents, the integral for the
PO currents is over the surface of the reflector. If we let

1 f E--(_-)ds (11)c.=-_ J,.

where J, is the PO currents on the mirror, then

n

_-E
(12)

and the total power contained in the fields is

p = _ Z.l_.l _ (13)
n

If the spillover past the mirror is small (i.e., >25 dB

edge taper), the PO currents induced on the first mir-
ror are computed in the standard way, by utilizing the

free-space near-field radiating H field of the horn and

J8 = 2fi x Hi,,c. Or they may be computed by utilizing

a technique similar to the one just described to compute

the propagating modes from the horn, radiating in the
oversized waveguide and utilizing the appropriate H field
derived from these modes as the incident field. On subse-

quent mirrors, PO currents are computed from the H field
derived from the propagating waveguide modes. The tech-

nique is summarized in Fig. 4, where it should be noted
that

H = f_ Jx •_ogds = E c"H-H-(_) (14)
n

Power loss in the conductor is obtained utilizing the

standard technique to compute the power dissipated in

the conductor per unit !eugth [2] as

27rP_(z) = R lfi,l _ .de
dO

where

(15)

R= w_ (16)
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and a is the wall conductivity, a the radius, and IHtl 2 the
tangential H field. It should be noted that Pd is a function

of Z since IHtl 2 is a function of Z (i.e., it is composed of

more than one waveguide mode).

Power loss is computed from

P = Poe -2`_d (17)

where d is the distance from Zx to Z2 and the attenuation

constant is computed as

Pd(z)dz
c_d--_-_1 (18)

2P_

where P! is the power flow in the waveguide.

To compute noise temperature, it is convenient to sepa-

rate the total RF power originating from the horn aperture

(viewed in transmission, for convenience) and propagating
into two parts

PBWG = P,,, + P,,pitr (19)

where P, piH is the portion that spills past the mirrors

(since the mirrors do not fill the waveguide). P_piu can be
computed for each mirror by integrating the total power

radiated from the induced mirror currents and comparing

it to the incident power. Note that the computation uses

the induced currents derived from the waveguide modes.

It is then assumed that this spillover power sees ambient

temperature since it would be lost in the tube due to mul-
tiple bounces in a lossy material.

The total noise temperature then is composed of two

parts--the noise due to the spillover power added to the

noise from the attenuation of Pm due to the conductivity
loss.

III. Semiempirical Approach

The noise temperature of elaborate BWG systems, in-

cluding mirrors and shroud, can also be computed by us-

ing a new technique that combines an analytical approach

with data from measurement tests to construct a specific

expression. This technique begins by separating total RF

power into two parts; that is, the power that originates
from a horn aperture and propagates through a BWG

shroud (PBwG) (see Fig. 5) is separated by

PBw a =Pm + P.,.1 (2o)

where Pm is the majority of the total power that is always
confined inside all BWG mirrors. Pm does not contact the

BWG wall and there are no multiple reflection, diffraction,

and creeping wave components. Pm can be computed eas-
ily and accurately because all BWG wall and mirror in-

teractions are not included. In this analysis, mirrors are

assumed to radiate in free space, making the P, piJi differ-

ent from the P, pitt of the waveguide mode theory. P_pill is
the sum of spillover powers of each mirror. It creeps and

bounces around the BWG walls, mirrors, brackets (be-
hind the mirrors), and edges, and suffers dissipation loss

and consequent noise. On an average, the Pspin power
largely dissipates before a small remainder exits the BWG

opening near fl (see Fig. 2). Even though P_piH can be
computed accurately ( Pspiu = PBwG - Pro), its field dis-

tribution and its chaotic behavior inside the lossy BWG is

virtually impossible to compute analytically.

From Eq. (20), the corresponding noise temperatures
are

Tzwa =Tm + T, pi. (21)

where TBwa is the total noise temperature (in kelvins) due

to the BWG system (including the shroud, mirror, brack-

ets, etc.). The values Tm and Tspil 1 are the noise temper-

ature contributions from Pm and Pspill, respectively. Be-

cause of the simplicity of Pro, its corresponding noise tem-
perature Tm can be computed with acceptable accuracy.

For 6061T6 aluminum with conductivity of 2.3 x 107 S/m
and a 270-K physical temperature, the noise temperature

Tm at X-band (8.45 GHz) [3] is

Tm = 0.734 P_a -- 0.734am (22)

where (_m is the Pm fraction of PBWG, dimensionless.

The noise temperature due to spillover power P_piu is
given in a very simple form as

where P1 is the total spillover power of the two mirrors

(M5 and M6) in the basement and the value/°2 is the total

spillover power of the four mirrors (M1, M2, M3, and M4)
above the basement ceiling. The values (_1 and a2 are the
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normalizedpowers(withrespectto Pswa) of P1 and P2,

respectively.

By substituting Eqs. (22) and (23) into Eq. (21), the

BWG noise temperature at X-band becomes

Tl?wa = 0.734c_m + chT1 + o_2T2 (24)

By performing various measurements at the NASA DSN
BWG research station at Goidstone, the coefficients T1

and T2 at X-band have been obtained [3].

No basement shroud T1 = 300 ± 10K
T2 = 240 ± 45K (25)

Full shroud 7'1 = 280 ± 20 K
T_ = 230 :i=45 K (26)

Figure 6 shows the comparison between predicted and
measured BWG noise temperatures for various total spill-

over powers at X-band. The results indicate a very good

agreement, especially in the operating range (0.5 percent

< PspiU < 1.2 percent).

IV. Measurements Program

Figure 1 shows a recent photograph of the 34-m-
diameter BWG antenna at the NASA/JPL Goldstone

tracking facility near Barstow, California. It is the first
BWG antenna built for NASA and is primarily intended

for research and development. One of its uses has been to

develop and verify theoretical models that can be used as

tools for designing future improved BWG antennas.

Focal points fl, f2, and 1"3are depicted in Fig. 2. Focal

point fl is the Cassegrain focal point near the main reflec-
tor vertex. An intermediate focal f2 lies above the azimuth

track, and f3 is the final BWG focal point located in a

subterranean pedestal room. Degradations caused by the

BWG system mirrors and shrouds were determined from

comparisons made of operating system noise temperatures
measured at the different focal points.

As discussed earlier, the goal of the experimental tech-

nique was to determine the degradations caused by. noise

temperature contributions from wall losses and mirror

spillovers in the BWG system. The experimental tech-

nique that was conceived and implemented involved mea-

suring operating system noise temperature at fl, f2, and
f3. The difference between noise temperatures at fl and

f2 gives information on total losses from the BWG system

that include (1) dissipative losses due to finite conductiv-
ity of four mirrors, (2) spillover losses associated with four

mirrors, and (3) shroud wall losses between fl and f2. Sim-

ilarly, information about total losses from the remaining

two mirrors, shroud walls, and unshrouded path between
1"2 and f3 are determined by measuring the difference in

noise temperatures at those focal points.

To obtain information on losses pertaining only to the

Cassegrain portion of the BWG antenna, the experimen-
tal procedure involved measuring operating system noise

temperature with the test package on the ground, and

then with the test package installed at fl. The differ-

ence between fl and ground noise temperatures reveals

the amount of degradation caused by spillover of power
from the horn into the region between the subreflector and

main reflector, scattering from the tripod legs, noise con-

tribution from illumination of the ground and sky region as

seen from the subreflector focus, and leakage through gaps

between panels and perforations in the main reflector sur-

faces, as well as noise temperature due to illuminating the
area between the horn aperture and BWG shroud walls.

To yield the information described above, the experi-

ment required that absolute noise temperature at the dif-
ferent test locations be accurate to about ±0.5 K and be

repeatable to about ±0.2 K. The accuracy of values ob-
tained for differential measurements is estimated to be

±0.3 K, which is more accurate than absolute values due to

common errors canceling each other out in the differencing

process.

To achieve these goals required an ultrastable radiome-

ter and good mechanical stability of the test package at
the various focal points after installation. It was shown

in a previous article [4] that a number of measurements
were made with the test packages installed at the different

focal points, then back on the ground, and then back at

the focal points. Such repeatability tests confirmed that

the X-band test package and radiometric system met the

accuracy requirements stated above for making absolute

and differential noise temperature measurements.

Figures 7 and 8 show the X-band test package installed
at fl and 1"2. Horns of different gains at fl and f2 were

easily achieved by beginning with the 29-dBi horn and

systematically removing horn sections to produce a lower

gain horn. At both fl and t"2, test package adjustments
were used to align the phase centers for the different gain

horns to the desired geometric focal points.

Special radiometric calibration techniques were em-
ployed, such as (1) correcting for changes in atmospheric
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noise contributions due to changes in air temperature and

relative humidity and (2) performing periodic real-time

calibrations of the radiometric system for measuring noise
temperatures. Further details of the microwave perfor-

mance of these test packages and radiometric techniques

used to achieve the desired stability and precision have

been reported elsewhere [5].

V. Results

The measurements described above were made at

Cassegrain focus fl, intermediate focus 12, and basement
focus t"3.

For contrasting the two theories, the most interesting
measurements were those made at t2, where the shroud

surrounds the mirrors. Since there is no shroud in the

pedestal room, both methods give the same result for the
basement mirrors.

A horn pattern input at 12 is imaged at fl so measure-

ments made with the same horn gain at fl and 12 can be

differenced to give the noise temperature due only to the
BWG portion of the system. A plot of the measured data

for the upper BWG (12 to fl) is compared to both theories

in Fig. 9 for horn gains from 25 to 29.8 dE. Obviously,

the lower gain horn spills more energy past the mirrors
and has a higher noise temperature contribution. Inter-

estingly, both methods do a fairly good job of predicting
noise temperatures. For reference, the BWG system was

designed to operate with the 29.8-dB gain horn.
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Fig. 7. Partial view of the X-band 29-dBi horn test package and mounting structure installed at the
Cassegraln focal point fl.

Fig. 8. The 8.45-GHz 22-dBi horn test package and mounting table installed at focal point f2.
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Ka-Band Link Experiment
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A 33.6&GHz dual-cavity ruby maser was built to support the Ka-Band Link

Experiment (KABLE) conducted with the Mars Observer spacecraft. It has 25 dB
of net gain and a 3-dB bandwidth of 85 MHz. Its noise temperature referred to the

cooled feedhorn aperture is 5 K.

I. Introduction

The purpose of this article is to describe the design,

construction, and performance of a dual-cavity ruby maser

used to support the first Ka-band telemetry downlink

demonstration from a spacecraft in deep space. The Ka-

band downlink from the Mars Observer spacecraft was at

either 33.6709 or 33.6926 GHz. The low transmitted-signal
level necessitated that the best possible receiver sensitiv-

ity be available. (The link margin for the Ka-band signal
was estimated to be 1.6 dB, whereas the margin for the

X-band (approximately 8.4-GHz) signal was estimated to

be 38.2 dB). Therefore, a low noise temperature for the

maser was a primary goal. This was achieved by operat-

ing the maser between 1.5 and 1.6 K physical temperature

and including the feedhorn and other feed components in

the cryogenic package.

Since the two possible downlink frequencies differ by

only 22 MHz, a center frequency of 33.68 GHz was selected,

and the design goal was to achieve sufficient instantaneous

bandwidth to receive either frequency without retuning
the maser. Since broad tunability was not a requirement,

and the instantaneous bandwidth requirement was fairly

narrow, a waveguide cavity design was chosen to give the

best performance for the least complexity.

The maser package utilizes superfluid helium in a com-

mercial cryogenic dewar with superinsulation. This pack-

age was not intended to tilt and was mounted in a sta-

tionary, vertical position in the pedestal room of the 34-m

DSS-13 beam waveguide antenna.

II. General Design Considerations

The first parameter to be determined in the design of a
cavity maser is the number of cascaded cavities. The total

maser gain need only be large enough that the noise contri-

bution from the follow-up high electron mobility transistor

(HEMT) amplifier is not significant. For example, with a
HEMT amplifier noise temperature of 40 K, a maser net

gain of 25 dB results in a HEMT amplifier contribution to

the total front-end amplifier noise temperature of 0.13 K.

If the maser net gain is 25 dB, the ruby electronic gain
will need to be several dB more to overcome losses in the

53



maser cavities, isolators, filters, and connecting waveguide.

The estimated necessary ruby electronic gain was approx-

imately 28 dB.

A. Gain Stability

One of the primary concerns in determining tile re-

quired number of cavities is the gain stability. The fewer

the number of cavities, the higher the required gain per

cavity. Higher gain implies less stability because, to

achieve a power gain of 100 or more in a single cavity,

you must operate close to the onset of oscillation.

A rough estimate of the gain stability of the maser as
a function of the bath temperature can be obtained in the

following way: The temperature dependence of the gain of
tlle maser is determined by the temperature dependence of

the magnetic Q, Q,,_. The magnetic Q is a useful quality

factor ill determining the gain of a maser. It. quantifies the

ability of a maser material, such as ruby, to amplify a sig-
nal. Ill circuit terms, it describes how heavily the "spins"

(magnetic moments associated with the chromium ions in

the ruby) load the cavity circuit. (For a thorough expla-
nation of the maser process and definitions of terms used

to explain the process, the reader should refer to Siegman

[1] or other appropiate inaterial.)

Qm has two temperature dependent factors, the inver-

sion ratio, I, and the thermal equilibrium spin population.

(The inversion ratio is the ruby electronic gain in dB di-
vided by the ruby absorption in dB.) For ruby oriented at

the push-pull angle of 54.735 deg, the thermal equilibrium
spin population is essentially independent of temperature

at 1.5 K, and its variation will not be considered. Earlier

theoretical work [2] suggests that the temperature depen-
dence of the inversion ratio varies as

I cx T -°r (1)

for 1.5 K < T < 2 K. Since Qm is inversely proportional

to the inversion ratio [1], Qm must vary as

Qm oc T 0"7 (2)

The power gain ratio of a maser cavity at resonance is

given by

G= 2 (3)Qm Q_

where Qe is the external cavity Q. A more general expres-
sion will be given later. Solving for the ratio of the Q's

gives

Qm V_+ 1
(4)

For example, a single cavity with 28 dB (ratio of 630.96)

of gain requires a Q_/Qm ratio of 0.9234. Assuming a bath

temperature of 1.55 K,

(Qe/Q,,,)T=;.54= (1.55_ °'7
(Qe/Qm)T=I._ \]-_] = 1.00454 (5)

Therefore, (Q_/Qm)T=l.54 will be (1.00454)(0.92343) =
0.927623. Putting this new value into Eq. (3) yields a

gain of 709.33, or 28.51 dB. Thus, a 0.01-deg bath tem-

perature change will result in a 0.51-dB gain change if all

the gain comes from one cavity. Similar calculations have
been done for two, three, and four cavities. These results

are shown in Table 1. There is a significant reduction in

gain variation going from one to two cavities, but further
improvement in going to three or four cavities is small.

Therefore, a two-cavity design offers significantly better

gain stability without adding considerably more complex-

ity.

B. Bandwidth

Siegman [1] has compared the bandwidth of the trav-

eling wave maser and the "ideal" cavity maser. An ideal
cavity maser has a magnetic Q much smaller than the

atomic Q. (This will be shown shortly to be the case for
this maser. In this case, the maser action is strong and the

gain-bandwidth product is limited by the magnetic reso-

nance linewidth.) For maser gains of about 14 dB, the
ratio of the maser amplifier bandwidth to the magnetic

resonance linewidth is approximately 0.5, and is the same

for the ideal cavity maser and the traveling wave maser.

For larger maser gains, the ideal cavity maser bandwidth

is substantially less than the traveling wave maser band-

width. For smaller maser gains, the ideal cavity maser

bandwidth is greater than the traveling wave maser band-
width. Therefore, a cavity maser with a 14-dB gain or less

has good bandwidth potential if the magnetic Q is low.

C. Magnetic Q, Atomic Q, and External O

The magnetic Q and atomic Q should now be computed

to verify that we are in a regime of strong maser action, i.e.,

Qm << Qa. The value of magnetic Q can be calculated

using
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Q--2 = h A-----?_ = 1.3 (10 -is) A----YL---_ (6)

where AlL is expressed in MHz. A discussion of this equa-

tion is given in the Appendix and in [1].

The thermal equilibrium spin density population dif-

ference at 1.55 K can be calculated since the spins follow

a Boltzmann population distribution. For a 0.05-percent

chromium-doped ruby crystal oriented at the push-pull

angle, the spin density population difference between lev-

els 2 and 3 is AN = (0.144)(2.35 x 1019) = 3.38 x 1018
spins/cc. The inversion ratio is approximately 2.0.

The filling factor for the cavity, r/, must be estimated.

The magnetic susceptibilty of the ruby for the signal tran-

sition (2-3) is essentially circularly polarized. The stand-

ing wave field in the cavity can be thought of as being

half right circularly polarized and half left circularly po-

larized. Therefore, the maximum filling factor would be

0.50. Since some of the magnetic field extends beyond the

ruby, the estimated filling factor is closer to 0.3.

For use in this formula, the signal transition should have

a Lorentzian line shape. Since the natural linewidth of

ruby is 60 MHz, some artificial broadening of the linewidth

is necessary to achieve the goal of 85-MHz instantaneous

bandwidth. This is accomplished with both a linear field

gradient and single-step staggering. The linear field gra-

dient is achieved by changing the length of the air gap

between the hiperco pole pieces where the ruby is lo-

cated. The single-step staggering is achieved with trim
coils placed in the lid of the cavity structure.

Siegman has dicussed how the ratio of the maser am-

plifier bandwidth to the ruby resonance linewidth is im-

proved with various types of stagger tuning. For a maser

gain of 28 dB, the improvement with linear staggering
and single-step staggering is comparable. In both cases,

the maser bandwidth is approximately 80 percent of the

resonance linewidth. Therefore, for an amplifier band-

width of 85 MHz, the Lorentz equivalent linewidth is about
106 MHz.

The transition probability, tr 2 = 0.9616, can be deter-

mined from the spin Hamiltonian for ruby [3]. Substituting

the above values in Eq. (6) gives a magnetic Q of 41. The
atomic Q is roughtly 33,700 MHz/106 MHz, or 318. There-

fore, Qm << Qa, as we assumed earlier. Using Eq. (4),
the ratio of Q_/Q,,, for a 14-dB gain cavity is 0.66732. A

magnetic Q of 41 implies an external Q of 27.

D. Overall Layout

A schematic drawing of the dual-cavity maser is shown

in Fig. 1. As seen by the signal, the cavities are one-port

reflection cavities with commercial WR-28 waveguide cir-

culators used to separate the ingoing and outgoing signal.
There is a wavegnide transition between the circulator and

the ruby cavities from the WR-28 waveguide to a reduced-

height waveguide (WR.-30). This was done to increase the
coupling to the ruby cavity and will be discussed in the

next section. The WR-30 waveguide has cross-sectional

dimensions of 0.777 cm (0.306 in.) by 0.127 cm (0.050 in.).

The second port of each cavity is beyond cutoff to the sig-

nal and is where the pump power (required to invert the
ruby) is supplied to the cavity.

Experimentally, a single isolator between cavities did

not provide enough isolation to prevent noticeable gain
ripple. Therefore, two isolators were used. There are also

waffle-iron bandpass filters in the output and input to keep

the RF pump energy from reaching the HEMT post ampli-

fier or escaping out the feedhorn. The ruby resonators are

contained in the WR-10 waveguide, whose dimensions are

0.254 cm (0.10 in.) by 0.127 cm (0.050 in.). The 69.5-Gttz

pump energy is normally propagated in the WR-15 wave-
guide. Therefore, a waveguide transition from the WR-15

to the WR-10 waveguide was necessary. The coupling of
the pump energy will be discussed in a later section. A

photograph of the maser and HEMT post amplifier is pro-

vided as Fig. 2. An early photograph (showing only one
interstage isolator) with part of the hiperco magnet return

yoke removed is provided as Fig. 3.

!!1. Cavity Design

The magnetic Q of a cavity maser is determined by

the maser material, its orientation relative to the dc mag-

netic field, the RF pumping scheme employed, the signal
linewidth, and the bath temperature. The magnetic Q

depends mostly on atomic parameters, and the cavity af-

fects its value only through the polarization. The discrep-
ancy between the desired and the actual polarization is

accounted for with a "filling factor." To control the maser

mid-band gain, the external Q is adjusted by changing the

degree of coupling between the external line and the cav-

ity. For stability, the positive external coupling must load

the cavity more heavily than the negative resistance of the
spin system [1].

The value of Q,_ = 41 computed in the prior sec-

tion indicates that the maser action is fairly strong. A
strong external coupling, Qe = 27, will therefore be re-

quired. In general, a coupling iris or aperture is used to
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adjust the degree of coupling of the cavity to an exter-
nal transmission line. When a cavity filled with a high

dielectric-constant maser crystal is coupled to a waveguide,

it is difficult to obtain the strong coupling required. The

impedance mismatch between the maser crystal dielectric
and the helium-filled waveguide may be large enough that

sufficiently strong coupling can only be obtained with a

coupling aperture consisting of one entire side of the cav-

ity. This was the case with this maser. The role of the

aperture is played by the helium-dielectric interface and

the change in waveguide width.

The strength of the coupling can fall into one of three

categories [4]:

(1) Reflection from the "aperture" dominates over that
from the cavity; this is known as undercoupling.

(2) Reflection from the "aperture" cancels that from the
cavity at the center frequency, and there is no re-

flected power; this is known as critical coupling.

(3) Reflection from the cavity dominates that reflected
from the "aperture"; this is known as overcoupling.

The impedance locus on a Smith chart for these three

cases is shown in Fig. 4. We are interested in the over-

coupled case where the impedance locus encircles the ori-

gin. Microwave cavities may be considered from either a

lumped equivalent circuit viewpoint or from the viewpoint
of a transmission line with discontinuities. We will be-

gin with a lumped-equivalent-circuit description, and then

give a simple transmission-line equivalent circuit.

The principal advantage of the lumped-element model

is that the various Q's are easily identified. We consider

the circuit shown in Fig. 5. (The representation of the

dielectric-filled cavity by a series resonant circuit and of the

ruby spin system by a parallel resonant circuit is discussed

in Siegman [1]. We have chosen to use the dual circuit,

where the cavity is a parallel resonant circuit and the spin

system is a series resonant circuit.) The quantities L, C,
and G refer to the cavity inductance, capacitance, and

conductance. The quantities Lm, Cm, and Gm refer to the

ruby spin system. G_(Yo) is the conductance (admittance)
of the external transmission line that connects the cavity

to the outside world. The reflection coefficient corresponds

to the voltage gain and is given by

Yo - Yload

g(w) = - ro+  o.d (7)

The expression for Yto,,d for the circuit of Fig. 5 is given

by

(8)

For a series resonance, the Q varies as wLG, and for a

parallel resonance, the Q varies as 1](wLG), where w is

the angular frequency. The cavity and spin system angular

resonance frequencies are denoted by wo and wa. The

various Q's can now be identified as:

magneticQ = Q._ = 1/(C,_woL)

external Q = Q_ = 1/(G_woL)
atomic Q = Qa = w,,L,_G,n

cavity Q = Q¢ = 1/(woLG)

(9)

Substituting Yzoad from Eq. (8) into Eq. (7) and using the
definitions above, the voltage gain can be written as

g(w) =
QEtl

1 + 2j Qa (E--_o w )

Qe G

+ +I+ 2j Q.

(I0)

If G << G._, then all specific admittances will drop

out, and the gain is expressed solely in terms of the three

quality factors, Q_, Qm, and Q_. At resonance, w = Wo,

and the voltage gain is given by

56



g(w) - Q'_ +- Qe (11)
Qm Qe

The power gain is the square of this and is the result

we used earlier as Eq. (3). Since the admittance levels

are arbitrary, we set G_ = 1 mho (R_ = 1 ohm). Since

the external Q must be 27, woC = 27. Therefore, C =

1.275 x 10-10 F. Since the resonant frequency is 33.68 Gttz,

L = 1.75 x 10 -13 H. Since Qm = 41 = 1/(woLGm), then

Gm = 0.666 mho (Rm = 1.5 ohm). Since the atomic Q =

33,700 MHz/106 MHz = 318 = waLmGm, then assuming
wa = Wo, Lm = 1.00 x 10 -9 H and C,n = 2.23 x 10 -14 F.

The value of G is unspecified, but must be small compared

to the value of Gin. We assume that G = 0.05 mho (R =
20 ohms), approximately an order of magnitude less than

Gin. The values associated with the spin system, Lm, Cm,
and Gin, are negative when the spin system is inverted.

A plot of the reflection coefficient using the program
Touchstone 1 is shown in Fig. 6. Curve "a" shows the gain

performance, and curve "b" shows the ruby absorption.

The value of Gm for the absorption is decreased by a factor

of 2 since the inversion ratio is about 2 for this frequency,

ruby orientation, and RF pumping scheme. The ruby elec-
tronic gain is about 12.5 dB. The 3-dB bandwidth is about
82 MHz.

The same calculation can be plotted on a Smith chart

to show the phase behavior (Fig. 7). Curve "a," which

stays near the periphery of the chart, is the Sll behavior

of the dielectric-filled cavity. The effect of the ruby spin
system in an absorptive state, curve "b," can be seen to be

quite strong where it crosses the resistance axis, that is,

near resonance. For comparison, experimental data for an
early ruby-filled cavity (where the spin system is not res-

onant) is shown in Fig. 8. (Although the center frequency

of 33.0 GHz is slightly low, the frequency span is 2 GHz).

The aperture reflection coefficient can be estimated

from a knowledge of the respective wave impedances [5].

In terms of the free space wavelength, A, the ratio of the

wave impedances (for transverse electric modes) for the

ruby-filled WR-10 and the helium-filled WR-30 is given
by

Z2 [_1- ()t/)%)2] 1/2z, - = o.31
(12)

Therefore, the reflection coefficient p is given by

1 Touchstone is a trademark of EEsof, Inc., Westlake Village, Cali-
fornia.

Z2 - Z1

P - Z2 + Z1 0.53 (13)

The change in wave impedance gives a substantial re-

flection coefficient. This was measured experimentally

with the test fixture shown in Fig. 9. The tapered sec-

tion between the alumina and the load material prevented

reflection of the wave transmitted through the interface.

The effect of the change in waveguide width is probably

reduced because the ruby was pulled out 0.356 mm past

the plane where the waveguide width changes. The exper-
imental result is shown in Fig. 10. The impedance mea-

surement was 15.9 ohms (relative to 50 ohms). Therefore,
from Eq. (13), the corresponding reflection coefficient was

-0.52 and essentially frequency-independent from 32 to 35
GHz.

Altman [6] has shown that an equivalent lumped-

element resistor-inductor-capacitor (RLC) circuit with

normalized parameters can be replaced by a circuit where

the R, L, and C represent the intrinsic parameters of the

cavity proper, if the effects of the coupling discontinuity

are described by a transformer. In this case, the disconti-
nuity or "aperture" is due to the dielectric material and the

change in waveguide width. In more conventional cavities,

it is due to a thin iris or coupling loop. It is an interesting

theoretical experiment to model the present discontinuity
as if it were simply a thin iris and to see where it leads.

(This approach is not rigorous, and an electromagnetic

field analysis is needed to derive the equivalent circuit.)
Following the usual analysis for a thin iris in an otherwise

homogeneous section of waveguide, the discontinuity can

be represented by a transformer with a turns ratio given
by

n2 = 1+.______pp
(14)

1-p

where p is the reflection coefficient, assuming the output
waveguide is matched. Using the reflection coefficient men-
tioned above, the turns ratio of the transformer is 0.56. A

new lumped-element equivalent circuit incorporating the
transformer can be constructed, where the new values of

U, C _, and R _ representing the intrinsic cavity are

L' = LIn 2

C' = n2C (15)
R' = R/n 2

and the circuit is shown in Fig. ll(a).
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This new parallel R_LIC _ circuit can be formally re-

placed by an equivalent transmission line. This is dis-

cussed in [7] and shown in Fig. 12. The admittance of
the line can be determined by equating the susceptance

slope parameter of the lumped circuit and the transmis-
sion line.. The attenuation constant is related to the cavity

conductance, G. The appropiate equations are

b = _oc - (_oL) 2 \ :_o/
(16)

G = Yoag (c_ in nepers/unit length)

Since the physical transmission-line element in Touch-

stone is nondispersive, we assume A#o/AO = 1. This leads

to a Yo of 2.7. Using G = 0.05, and I = 0.2815 cm, then

-- 0.18 dB/cm, or 0.051 dB per wavelength. The at-
tenuation of the ruby-filled WR-10 waveguide was mea-

sured to be approximately 0.1 dB/cm, or 0.034 dB per

guide wavelength at 33.7 GHz. Therefore, an approximate
transmission-line equivalent circuit for the cavity can be

constructed as shown in Fig. ll(b). A plot of the ruby

absorption and gain for this circuit, using Touchstone, is
shown in Fig. 6 as curves "c" and "d."

The ruby-filled waveguide is approximately one guide

wavelength in length at 33.7 Gttz. A full guide wavelength
rather than a half was chosen so that the linear mag-

netic field taper required to broaden the ruby resonance
linewidth would not be excessive. The resonant frequency

of the cavity was adjusted by varying the length of the ruby

crystal. The degree of external coupling was adjusted by

pulling the ruby out past the plane where the waveguide

changes width. Ruby paramagnetic resonance absorption

plots were made at various magnetic field strengths with
the cavity cooled to liquid nitrogen temperatures to de-
termine the center frequency of the cavity at cryogenic

temperatures. In addition, the tuning range of the maser

is indicated by these plots. Such a plot is shown in Fig. 13.

IV. Magnet Design

The decision to build two cavities determined the vol-

ume over which the magnetic field must be provided. A

circular region of 7.9-cm diameter was required to house

the cavity structure and wavegnides. The depth of the

copper coil form upon which the superconducting wire
was wound was estimated to be 19 mm. Therefore, the

diameter of the region over which the hiperco yoke would

operate is 11.7 cm (see Fig. 14). Assuming a roughly con-
stant field strength of 12,400 G over this region, the total

flux would be approximately (12,400 G) x (107.2 cm 2) =

1,329,280 G-em _.

If the hiperco annulus that provides the vertical return
path for the magnetic field lines is 1.78 cm in the radial

direction, the total magnet diameter will be 15.24 cm.
The total cross-sectional area of the vertical return path

at plane A-A (see Fig. 15) is 75.23 cm 2. Therefore, the

field in the hiperco at this point (neglecting flux leakage

outside the hiperco) is (1,329,280)/(75.2) = 17,677 G. The

top and bottom plates of the hiperco yoke were chosen to
be 2.03-cm thick. Therefore, the total cross-sectional area

at plane B-B is 74.5 cm 2 and the field is 17,843 G. This
is safely below the magnetic saturation for hiperco, which

occurs at 23,600 G.

If the flux in the hiperco is 17,677 G, then from the B

versus H curve of hiperco 27, the magnetizing force in the

hiperco is about 40 Oe. Now the required number of am-

pere turns can be determined. Looking at a cross-sectional

view of the magnet (Fig. 15), we can write Ampere's law
for the contour drawn and find

H • d_ = __4zrNI (17)
e

or

B(gap)L(gap) + H(hiperco)L(hiperco) =

4_rN I
22,854 G-cm-

C

therefore

NI= (22,854G-cm)(3 x 10'°cm/sec)
4r(3 x 109 esu/sec/A)

= 18,187 A-turns (18)

The coil form has an inside cross-sectional area of

15.24 mmx 16.51 mm = 2.52 cm 2. Assuming a wire cross-
sectional area of 0.0613 mm 2 and a usable area (based

on previous experience) of approximately 60 percent of

2.52 cm 2, or 1.51 cm _, implies a total of (151 mm2)/

(0.0613 mm 2) = 2,462 turns, which means the current re-

quired wilt be I = (18,187)/(2462) = 7.4 A.

The total number of turns of NbTi superconducting

wire actually wound on the coil form was 2,850 turns. This
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impliesa current requirement of 6.4 A. The actual current

required to charge the magnet is about 6.5 A. The wire

was epoxied in place on the coil form under vacuum using

Scotchcast 235 epoxy.

The magnetic field over the rubies was broadened by

machining a 1.8-deg linear taper in the round hiperco pole

piece, which is located directly over the rubies. This ta-

per broadened the ruby line width from 60 to 175 MHz.

By rotating the pole piece, each ruby can be placed in a

slightly different magneti9 field. This technique could be
used to achieve broader bandwidth at reduced gain if nec-

essary. In this instance, the amplification bandwidth was

set to approximately 85 MHz.

In addition to the main superconducting magnet, a set

of four trim coils, two for each cavity, were wound on rex-

olite cores and placed into holes recessed in the cover of

the cavity block. The rexolite cores were rectangular and
measured 2.54 mm by 1.27 mm, and each coil was wound

with 88 turns of copper wire. In practice, the current used

to trim the ruby response is of the order of several hun-

dred mA per coil. With 500 mA per coil, the total power

dissipation is about 15 mW.

The main superconducting magnet was operated in the

persistent mode by spot welding the free ends of the wire

from the coil so the superconductor formed a closed loop.

The spot weld was anchored to the negative terminal of a

power supply, and the positive terminal was connected to

the wire a few inches away. In the superconducting wire

between these terminals, a small portion of the copper

cladding was etched away, and a small coil of Nichrome
heater wire was wound around the exposed NbTi wire.

This portion of the wire was covered with Armstrong

epoxy for strength and to thermally isolate the wire from

the liquid helium. Approximately 60 mW of heater power

was required to drive the wire normal. Components of the

magnetic circuit can be seen in Figs. 2 and 3.

V. RF Pump Considerations

In order to invert the spin system, RF energy must illu-

minate the ruby. Since this ruby was oriented at the push-

pull angle (c-axis angle of 54.735 deg to the dc magnetic

field), a single pump frequency of 69.5 GHz was required.
The RF pump energy was supplied by two Hughes solid-

state (model 47134H) impact ionization avalanche transit

time (IMPATT) oscillators. Each oscillator supplies over

100 mW of RF power. Although each oscillator comes

equipped with its own waveguide ferrite isolator, it was
found that additional isolators were required to prevent

the oscillators from affecting each other.

The pump energy entered the cryostat in the WR-15

waveguide. After passing through an E-plane bend, the

energy was passed to the WR-28 waveguide. The oversized

waveguide was used to minimize the attenuation of the

pump energy as it traveled 0.75 m to the maser. Just

before reaching the maser, the waveguide switched back

to WR-15. The two WR-15 waveguides were joined at

a 3-dB sidewall hybrid coupler. The two outputs of the

coupler went to the two cavities. The transitions from
WR-15 to WR-28 were accomplished with commercially

available cosine taper transitions.

The WR-15 waveguide entered the superconducting

magnet and fastened directly to the maser cavity block.

The cavity is one wavelength of a ruby-filled channel of

WR-10, followed by a section of helium-filled WR-10 that

acts as a waveguide beyond cutoff to the signal. A tran-
sition from WR-15 to the helium-filled WR.-10 was neces-

sary. Careful impedance matching of the pump waveguide
to the ruby-filled cavities was necessary to keep the re-

quired RF pump power to a minimum.

The design of the quarter-wave step transformers used

to impedance match the WR-15 waveguide to the WR-

l0 waveguide follows standard design [8,9]. The quarter-

wavelength steps were first made in the waveguide height

and then in the waveguide width. In each case, a two-

section quarter-wave transformer was used (Figs. 16 and

17). In this analysis, Zo and Z3 are the impedances of the

existing waveguides for which the transformers are being

designed. The ratio R is given by

Zo z3
R = "_3 or Z-_ (]9)

whichever is greater than 1. The impedances of the inter-

mediate quarter-wavelength steps, Z1 and Z2, are given
by

where V1 is given by

Zl = V1Zo

(20)

V_ = (D _ + R)1/2 -J- D (21)

In this expression, D is given by
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D= (R-1) k2 (22)
2 (2 - k2)

where k is given by

k -- sin (-_) (23)

In this expression, B is the fractional bandwidth given

by

_= (24)
AgH + lgL

where AgH and _gL are the guide wavelengths of the high-
est and lowest frequencies at which the transformer is to

be operated. Using

zo- b _ (25)
a )%

for the impedance of a rectangular waveguide, the required

height, width, and length (b, a, and L) of the quarter-

wave steps can be determined. The length of all steps is

one quarter-guide wavelength at 69.5 GIh. The results
are shown in Table 2. Finally, a quarter-wavelength trans-

former of dielectric material with a dielectric constant ap-

proximately equal to 3 was used to match the helium-filled
WR-10 to the ruby-filled WR-10.

Vl. Performance

The electronic gain and ruby absorption of this maser

at 1.5 K is shown in Fig. 18. The four magnetic-field trim
coils have been adjusted for a flat response. The electronic

gain is approximately 28 dB, and the 3-dB bandwidth is

85 MHz. The net gain is approximately 25 dB.

The noise temperature of each cavity can be calculated

using [9]

Tc_v G- 1 hf Get r Lo 1 (26)
= G k Gnet r- 1 + Gne< e h]/kT -- 1

where

G = gain of the maser -- 316

Gel = electronic gain = 28 dB

Gne$ _

Lo =

h=

I=

k=

T=

where for

net gain = 25 dB

forward loss = 3 dB

Planck's constant = 6.626 x 10 TM J-sec

frequency = 33.68 x 109 Hz

Boltzmann's constant = 1.38 x 10 -23 J/K

bath temperature = 1.5 K

inverted spin population ratio = 3.76

push-pull pumping, r is given by

r

1+ (N;-
1 - 21 (N_- N3)

(27)

where

I

!

Ni

= inversion ratio = 2.0

= Ni/N

where

gi

N

= number of spins in level i

= total number of spins in levels 1, 2, 3, and 4

Using the values listed above, the noise temperature of

a single cavity is 2.2 K. To calculate the noise temperature
of the complete amplifier, the losses and gains and their

physical temperatures in the circuit must also be known.

These are shown in Fig. 19. We assume all the lines in
the circuit are at the bath temperature. The noise con-

tribution from a line with numerical insertion loss Li > 1

referred to the input is given by

Pi,p_t = (Li - 1)P,(T) (28)

where P,_(T) is given by

hfB (29)
Pn(T) -- eh]/kT _ 1

If this line is preceeded by a lossy line of insertion loss

Lj > 1 or an amplifier of gain G > 1, then the above

expression is modified to

Pinput = Lj (Li - 1) P,(T) (30)
G
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Therefore,thenoisetemperatureof thecompleteam-
plifiercanbewrittenas

i

T,_,e_ = (L1 - 1) T b + L1Tca_ +
L1 (L2- 1)Tb

Vl

L1L2Tcav L1L2(L3- 1) Tb (31)
+ G1 -}- G1G2

where Tb is the effective noise temperature of the 1.5-K

bath. It is defined by

, hf/k (32)
Tb -- eh.t-]-_---- 1

Because of the reduced thermal noise emitted when

hf ,_ kT, the bath really appears to be 0.83 K. The sum of

these five contributions yields a maser noise temperature

at the cryogenic flange of 3.0 K.

Hot and cold load measurements performed at Gold-

stone, California, yielded a system Top (outside the an-

tenna) looking at the sky at zenith of 17.5 K. Subtracting

1.9 K for the cosmic background and 9.6-11.6 K for the
atmosphere results in a noise temperature at the feedhorn

input of 4-6 K. Subtracting 1.7 K for the feedhorn and gas
seals and 0.3 K for the cooled waveguide components leads

to a noise temperature at the cryogenic input of the maser
of 2-4 K. This is consistent with the above calculated value

of 3 K.

Vll. Conclusion

A dual-cavity ruby maser has been built to support

the Ka-Band Link Experiment conducted with the Mars

Observer spacecraft. It operated in a superfluid helium
bath with a physical temperature between 1.5 and 1.6 K.

Its electronic gain was 28 dB; its net gain was 25 dB; the
3-dB instantaneous bandwidth was 85 MHz; and the noise

temperature referred to the cooled feedhorn aperture was

5 K. The maser was installed in the pedestal room of the

beam waveguide antenna at DSS 13.
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Table 1. Gain stability versus number of cavities with 28-dB

fixed total gain.

Number Cavity AG for AT
Total AG,

of gain, of 0.01 K, dB
cavities dB dB per cavity

1 28 0.51 0.51

2 14 0.095 0.19

3 9.33 0.0511 0.15

4 7 0.035 0.14

Table 2. Design parameters and step sizes for the WR-15 to WR-10

transitions.

WR-15 to RH WR-15 to
Parameter

RH WR-15 WR-10

R 1.48 2.30

B 0.20 0.20

k 0.156 0.156

D 2.96(10-3) 8.00(10-3)

111 1.104 1.235

bl 1.40 mm 1.27 mm

b2 1.70 mm 1.27 mm

al 3.76 m.m 3.30 rmm

a2 3.76 m_rn 2.72 n-urn

LI 1.32 mm 1.42 mm

L2 1.32 mm 1.78 mm
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FROM CRYOGENIC
FEED SYSTEM

,so_,o____ _____0_,o_
BANDPASS--B 7 r, COUPLER ,I-_

CIRCULATOR _

SUPERCONDUCTING
MAGNET

TO HEMT POST

AMPLIFIER

FROM RF i_

PUMPS F_ _F---]FILTER

_ ISOLATOR

_F--1FILTER

_IRCUI.ATOR

Fig. 1. The dual-cavity maser.
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PUMP
WAVEGUIDE

INTER_

__ ISOLATORS

_PASS

FILTERS

MAGNET SWITCH
ASSEMBLY

Fig. 2. The cryogenic portion of the completed maser and HEMT post amplifier (the

helium dewers and room temperature components ere not shown).
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Fig. 3. A view of the maser with half of the top magnet pole piece removed end the round hlperco plug raised to
expose the copper superconducting coil form and the structure containing the maser cavities. (At the time of this
photograph, only one interstage Isolator was present, and the trim coils were not yet installed.)

R=01 ,R=oo

OVERCOUPLED

Fig. 4. The reflection coefficient behavior on a Smith chart display
of undercoupled, critically coupled, and overcoupied cavities.
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I 127.5 pF I +_2.23 (10-) pF

< _ CAVITY-- __-[---e- SPIN SYSTEM
EXTERNAL
LINE

Fig. 5. A lumped-element model of one of the ruby maser cavities.

1

.-.0.2_

fstad = 32.70 GHz -1

fstop = 34.70 GHz

Fig. 7. A Smith chart display of the scattering coefficient

(S11) response of the lumped-element parallel RLC cavity

model of Fig. 5 (curve "a"), and a similar display with the

addition of the series RLC network representing the spin

system in a dissipative state (curve "b").

$11 FORWARD REFLECTION 32.0000-34.0000 GHz
IMPEDANCE 1

151 I 1 I 1 I I I
I

lO
/ /P /

E
0

u_ -6

-101 I I I I I I I I
33.30 33.70 34.10

FREQUENCY, GHz ...0.5________ 2

Fig. 6. Calculated ruby absorption and gain In dB versus fre- CH 1-$11 -1 1 32.2880 GHz

quency. Curves "a" and "b" are computed from the lumped- REFERENCE PLANE 2.734 E_
element model of Fig. 5. Curves "c" and "d" are from the trans- 3.7367 cm 49.573 jEz

mission-line model of Fig. 11(1)). >MARKER 2 3 33.6560 GHz

32.9840 GHz 3.000
1.021 K_ -49.285 j_

26.685 j_

Fig. 8. Measured room temperature reflection coefficient

data of one of the ruby cavities (before final adjustment

of the resonant frequency).
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PLANE /-- LOAD MATERIAL
I /

/

0.356 mm--_b,.-! _ _-ALUMINA

WR-10
WAVEGUIDE

Fig. 9. The test fixture used to measure the reflection coefficient

from the cavity aperture (air-ruby interface and WR-30-to-WR-10

transition).

(a)

_ n

(0.56):1

5.58 (10-4) nH 63.78

40.0 pF

+_3.19 nH

R

c_
It

7.0 (10 -3) pF

+9.56 £Z
-4.78

(b)
(0.56):1 +-3.19 nH

Z 0 = 0.37 _ +9.56

1 12 (1 = 0.18 dB/cm _' -4.78
_=10

O

I----02815_m_[ 70(10-3)pF

Fig. 11. Modified lumped-element model of the cavity (a) incorpo-

rating a transformer to represent the aperture and (b) the same

circuit with the parallel RLC circuit replaced by its transmission-

line equivalent.

$11 FORWARD REFLECTION 32.0000-35.0000 GHz
IMPEDANCE

1

•-0.5_ -2

-1

REFERENCE PLANE
2.5400 mm

>-MARKER 1
33.6740 GHz

15.865

552.747 jm£z

Fig. 10. Measured reflection coefficient, S11, of the test

fixture in Fig. 9 from 32 to 35 GHz.

(3 O

Y0' (1

O O

2

Fig. 12. The equivalence used to replace the

parallel RLC lumped-element model of the cav-

ity with a transmission line.

0.2

m

0
Z

o
-0.2
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<
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-0.6
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-0,8

I I I I t I I I I

I I I t t I t I I

32.298 34.298

FREQUENCY, GHz

Fig. 13. Ruby absorption versus frequency for different values of

the external magnetic field. The cavity was near liquid nitrogen

temperatures (77 K).
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COPPER

COl_ ACE cm

F "
HIPERCO _ _

Fig. 14. Cross-sectional view of the magnet assembly, including

the hiperco magnet yoke, superconducting coil, and air space for
the ruby cavities.

RH WR-15
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I
t

t i ,

I
t

Z 3

t
0.254 cm

(0.100 in.)
WR-10

Fig. 17. The impedances and widths to be calculated in the

quarter-wave transformer matching of the reduced-height WR-15

waveguide to the WR-10 waveguide. (Width and length values are

given in Table 2).
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Fig. 15. The transverse dimensions of the magnet assembly, in-

cluding the contour used for the Ampere's law integration.
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Fig. 18. Ruby gain and absorption versus frequency for the

completed dual-cavity maser.
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HEIGHT
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Fig. 16. The impedances and heights to be calculated in the

quarter-wave transformer matching of the WR-15 waveguide to

the reduced-height WR-15 waveguide. (Height and length values

are given in Table 2).

0,_ ldB L2 0 L8_B

(1.202) 13.5 dB (1.318) 13.5 dB (1,202)

(22.4) (22.4)

Tca v = 2.2 K Tca v = 2.2 K

Fig. 19. Loss and gain elements used to estimate the noise temp-

erature of the complete dual-cavity maser at the cryogenic flange.
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Appendix

Equation 6 for the magnetic Q is given as

1 292f12#° IANa2rl (A-l)
h AlL

h = 6.626 x 10 -27 erg-sec

then an additional factor of 47r is necessary in the numer-
ator. This is due to the fact that magnetic susceptibility,

X, in MKS and CGS units are given by

This expression is correct for m-kg-sec (MKS) units,

9.27 x 10 -24 J/T (Bohr magneton)

1.26 x 10 -6 H/m

6.626 x 10 -34 J-sec

2.0 (g-factor of the electron)

thermal equilibrium spin density population dif-
ference for the signal transition, spins/cc

AlL = resonance linewidth, MHz

I = inversion ratio (dimensionless)

a 2 = transition probability (dimensionless)

r/= filling factor (dimensionless)

If the same equation is to be evaluated using cm-g-sec

(CGS) units, where

/3 = 9.27 x 10 -21 ergs/G

#o = 1 G/Oe

where

/3=

h=

g=

AN =

(;o )X = - 1 MKS

p-1
CGS (A-3)

X- 4_"

where #/#o is the relative permeability in the MKS case

and # is the relative permeability in the CGS case.

Therefore, setting #o = 1 in Eq. (A-2) is not the same

as the CGS definition in Eq. (A-3). Since the inverse mag-

netic Q is essentially the same as the magnetic suscepti-

bility [1], the numerator must have an additional factor of

4r when the other variables are expressed in CGS units.
There is an additional factor of 1.0 x 10 -6 in the numer-

ator for the CGS case when converting from Hz to MHz.
This same factor does not appear in the MKS case because

the conversion from FIzto MHz is compensated for by the

conversion from spins/m 3 to spins per cm 3.
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The Rb 780-Nanometer Faraday Anomalous Dispersion

Optical Filter: Theory and Experiment
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The Faraday anomalous dispersion optical filter may provide ultra-high back-

ground noise rejection for free-space laser communications systems. The theoretical
model for the filter is reported. The experimental measurements and their com-

parison with theoretical results are discussed. The results show that the filter can

provide a 56-dB solar background noise rejection with about a 2-GHz transmission

bandwidth and no image degradation. To further increase the background noise
rejection, a composite Zeeman and Faraday anomalous dispersion optical filter is

designed and experimentally demonstrated.

I. Introduction

An important technical issue in free-space laser com-

munications and remote sensing is to effectively reject the

optical background while efficiently transmitting the sig-
nal through the device. In general, an optical filter with

high transmission, narrow bandwidth, wide field of view

(FOV), and fast temporal response is needed to extract

weak, narrow-bandwidth signals from strong, broadband

background radiation, such as the ambient daytime solar

illumination (Fig. 1).

We have been exploring a new technology, the Fara-

day anomalous dispersion optical filter (FADOF) [1-9],
that provides a solution to this problem. The performance

of the FADOF and other existing state-of-the-art narrow-

bandwidth optical filters is summarized in Table 1. The

noise rejection factor (NRF) is defined as

NRF : 10log
0

O0

f
8

(1)

where T(,_) represents the filter transmission spectrum,

dP,_oise/d,_ is the incident noise power spectrum, and )_s is
the signal wavelength. High NRF values of the filter mean

high rejection for out-of-passband noise and high transmis-

sion in the passband. The wide FOV and image-preserving

characteristics make the filter useful for optical tracking in
addition to optical communications. The interference filter
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representsconventional technology and is inexpensive, but
it has a broad bandpass at wide FOV. The Lyot [10] filter

has a moderate bandpass and moderate FOV, but does not

meet the background rejection requirements for free-space
laser communications. The atomic resonance optical filter

provides a narrow bandpass, wide FOV, and high back-

ground noise rejection [11-15]. However, these filters are

not image preserving. Therefore, they have limited useful-
ness in optical tracking. The FADOF clearly shows signif-

icant advantages when compared with the other narrow-

bandwidth optical filters. In addition to the above advan-

tages, the FADOF is insensitive to mechanical vibrations

and misalignment.

This article presents the theoretical and experimental

results of studies on the rubidium (Rb) 780-nm FADOF.

There is excellent agreement between the theoretical cal-

culation and experimental measurements. The measure-

ments of solar background noise rejection and image qual-

ity for the filter are also reported. Finally, a composite
filter that has a FADOF and a Zeeman absorption cell is

discussed. The background noise rejection of the compos-

ite filter is expected to be a factor of 3.5 better than that
of the FADOF.

II. Theory

The theoretical framework for resonant Faraday effects

has been published by many authors [16-19], so the ba-

sic equations are well understood and quite straightfor-
ward. However, those articles either lack the treatment for

atomic hyperfine structure in the intermediate magnetic-

field strength region or are not applied to optical filters.

Therefore, a more general formalism using a quantum me-
chanics treatment of the resonant Faraday effects has been

developed [2].

A FADOF consists of an atomic vapor cell placed in a

dc magnetic field parallel to the optical path. The cell is
situated between 90-deg crossed polarizers (Fig. 2). When

linearly polarized light travels along the direction of the

magnetic field through the dispersive atomic vapor, a po-
larization rotation occurs (resonant Faraday effect). Thus,

only the narrow frequency band that has a 90-deg polar-
ization rotation will be transmitted with high efficiency.

We assume that (1) optical pumping effects are negli-

gible, because the transmission bands of the FADOF are
outside the absorption line centers (for example, the cal-

culated saturation intensity in the filter transmission band
of the Rb 780-nm FADOF is about 2 kW/cm2--4 orders

of magnitude higher than the total solar intensity at the

Earth's surface) and (2) the magnetic field is homogeneous

within the Faraday cell (for inhomogeneous analyses, an
integration over the magnetic field along the Faraday cell

may be implemented). The FADOF calculation takes into

account both Zeeman spectra [20-22] and magneto-optical

rotation (Faraday effects). For an atom with a total or-

bital angular momentum J, nuclear spin I, total angular

momentum F = J + I, and the projection of the total an-

gular momentum along the direction of the external mag-

netic field M, the ttamiltonian matrix elements (F, F') for
each value of M are

{IJFMIHIIJF' M) =

aEF_(F,F')

+ [[_Bz(--1)M+J+I+I(gJ -- gI)

x V/J(J + 1)(2J + 1)(2F + 1)(2F' + 1)

{ J 1 d}( F 1 F')]x F' I F -M 0 M (2)

where the first term represents the hyperfine interaction

energy, the second term represents the external magnetic

energy, and [11]

AEF ----h AK + hB

[3K(K + 1)- 2I(I+ 1)J(J + 1)]× [ gV(27:1- -/KJ- V) (3)

where K : F(F+ 1)- J(J+l)-I(I+ 1), A and B

are the magnetic dipole and electric quadruple constants,
respectively, for the energy level of interest, # is the Bohr

magneton, Bz is the external magnetic field, and gj and

gr are the gyromagnetic factors for the total orbital angu-
lar momentum and nuclear spin momentum, respectively.

The matrix element dependence on M is contained within

the 3-J symbol (enclosed by the parentheses), and the ma-
trix element dependence on F is related to a 6-J symbol

(enclosed by the curly bracket). These symbols are matrix
representations of the spherical coordinate components of

the electron wave function for the single atom.
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The Zeeman energy levels are readily obtained from the

eigenvalues of the Hamiltonian matrix. Figure 3 shows the

simplified energy level diagram for the four rubidium tran-
sitions in the near infrared and blue. The fine structure

energy levels are shown on the left side of the figure. The
hyperfine structure energy levels are shown in the middle

of the figure and were obtained by adding nuclear spin

interaction energy to the fine structure. The magnetic en-

ergy levels are shown at the right side of the figure, and

show the modification to the hyperfine energy level split-
tings caused by the addition of the external magnetic field.

Not only do the energy levels split when the nmgnetic

field is applied, but the transition strengths for the differ-
ent components also change. The Zeeman intensity of each

spectral line is proportional to the transition strength de-
noted by S±(FM, F'MO, where the subscripts + and -

denote the right-circular and left-circular components of

the atomic dipole moment vector _ respectively.

/3,

×(_FMIa_ ' ' ' "_'I/3F M )b,r,M, (4)

(/3FM Id+ I/YF'M') = (- 1)F- i

x(F 1 F')-M 4-1 M'

x (#r IId IIyF') (5)

and

(_F II d 11fl'F') = (--1)J+I+F+lk/(2F + 1)(2F' + 1)

x{ JIF }F' I J'
(JIIdll J') (6)

where the prime denotes excited states, 7 represents per-
turbed states, fl represents diagonalized energy states, Y

represents the eigenvector matrix for the Hamiltonian ma-
trix H, and

ITEM) = _ YZFMI_FM) (7)

The reduced matrix element (J II d I[ J'} is common to all

the hyperfine components of the spectral line and is given
by the relation

(JIIdllY')_- 3
647r 4 (2J' + 1)h_3Ajs, (8)

where )_ and Ajy, are the wavelength and transition prob-
ability between levels J' and J, respectively.

The Rb 780-nm transition is between the ground state

52S1/2 and 52P3/2. Natural Rb has two isotopes with an
abundance of 72-percent SSRb and 28-percent SZRb. The

magnetic energy levels of SSRb 52P3/2 are shown in Fig. 4,
and the spectrum of the relative transition intensities is

shown in Fig. 5.

The horizontal axis of Fig. 5 represents the transi-

tion frequencies, where 0 is the frequency (approximately
3.85 THz) corresponding to 780 nm. The two inside and

two outside hyperfine transition groups are from the SSRb

and SZRb isotopes, respectively. The relative intensity and

transition frequency of each hyperfine component depend
on the magnetic field.

The observed Zeeman spectrum depends on the viewing
direction and the polarization. In our calculations, we as-

sume that the incident radiation is linearly polarized trans-

verse to the magnetic field; therefore, the polarization can

be resolved into equal-amplitude left- and right-circularly
polarized components.

The Faraday rotation is a direct result of the difference

in the frequency dependence of the phase delay between

the right- and left-circularly polarized light. The Faraday
rotation angle ¢(w) is given by

wL ~
¢(w) = _-c Re[n+(_) - h_(w)]

wL

= _c b+(_) - __(_)] (9)

where c is the speed of light, h+ and h_ are the complex

refractive indices for the right- and left-circularly polar-

ized components, respectively, and n+ is the real part of
the complex refractive index fi+. Taking into account the

contribution to the refractive indices from each hyperfine
component,

fi:l:(w)= E fi+(w, FM, F'M') (10)
F,F',M
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If [fi+(w, FM, F'M')- 1l is much less than 1, the com-

plex refractive index for the circularly polarized light is

h+(w, FM, F'M') - 1 = CS+(FM, FtM')W(_FM,F'M ')

(11)

where S+(FM, UM') is the line strength given in Eq. (4),

W((FM,F'M') is the plasma dispersion function given by

1 j e -x2

--OO

dx (12)

(W--WFM,F'M' + i_)
_F M ,F' M' - "frAUD

(13)

where the transition frequency between the levels FM and

F'M'wrM,F,M' is calculated from the eigenvalues of the

ttamiltonian, and

C = 2rN(F) (14)
h(2J + 1)(2I + 1)Auo

where At/D is the Doppler width, and N(F), the popula-

tion density of the ground states hyperfine level F (assum-

ing the optical pumping is negligible), is given by

Ne-E(F)/KT

N(F) _ Z(2F + 1)e_E(F)/K T

F

(15)

where E(F) denotes the ground state hyperfine energy

level F, k is Boltzmann's constant, T is the cell tempera-
ture in Kelvins, and N is the total rubidium ground-state

atomic number density.

The absorption coefficients of the atomic vapor are as-

sociated with the imaginary part of the complex refractive

index,

k+(w) = 2W Im[fi:t:(w)] (16)
e

Therefore, the total attenuation of the linearly polarized

incident light intensity due to the absorbing medium is

a(w) = 0.5 (e -k+(_)L + e -k-('_)L) (17)

With the crossed polarizers at the ends of the cell, the
transmission of the FADOF can be derived. As shown

in Fig. 6, the input polarized radiation Ein can be decom-

posed into left-circular polarization, E+, and right-circular

polarization, E_. At the input of the cell, we have

Ein = Eox

Eo (_
= ff_(_c + i_) + --_-, - i9)

= E+(0) + E_(0) (18)

After traveling through a FADOF cell of length L, the
fields are

E+(L) = E+(0)exp[,_L]

E0 (_
= 5-" + i_))

xexp[-_--_L+i_L] (19)

E_(L) = E_(0)exp[i_L]

E0 (i:
= T" - i_))

xexp[-_Z-_L+i_L] (20)

The output field is

Eo_,t = E+(L)_) + E_(L)_)

= z-_- exp - L+i L

.Eo in-(_)WL] (21)-,-_ exp [-_@L +
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TheFADOFtransmissionisgivenby

EE*

= Z---7-o

: l{exp +exp

-2c°s[ ]c

,{= _ exp[-k+(_)L] +exp[-k_(w)L]

--2c°s[2¢(w)]exp [-k+(w)+k-(W)L]}2 (22)

where ¢(w)is defined in Eq. (9).

In order to compare the FADOF with other types of

filters, we define the total equivalent noise bandwidth

(ENBW) for the FADOF as

III. Filter Transmission Spectra Measure-

ments Compared With Theory

The FADOF was characterized using a tunab]e, narrow-

linewidth laser diode source. The tuning of a laser diode
is accomplished by varying the injection current or the

diode temperature. A single-mode 780-nm laser diode

(HL7802E) emitting 10 mW of optical power was used in

our experiment. The laser diode current and temperature

were controlled by a custom-made diode laser contro]ler.

The experimental setup is shown in Fig. 8.

A 12.5-cm-long solenoid coil generated the required

magnetic field. The magnetic field was controlled by vary-
ing the current through the solenoid. A flexible heater

strip was used to heat the Rb vapor cell. Two Glan-

Thompson polarizers with extinction ratios of 10 -5 served

as the polarizer-analyzer pair. The Rb vapor cell (2.5-
cm long) consisted of a small amount of Rb metal in an

evacuated cell. Two PIN detectors, located as shown in

Fig. 8, were used to simultaneously measure the transmis-
sion spectrum of the Rb cell and of the FADOF.

A small triangle-waveform current ramp was superim-

posed on the laser diode's direct current to sweep the laser

emission wavelength across the FADOF transmission spec-

trum. Knowledge of the Rb hyperfine absorption spectral

features allowed the absolute wavelength calibration from

the frequency (energy) differences between the absorption
peaks of a Rb cell. A typical measurement of the Rb ab-

sorption spectrum is shown in Fig. 9.

co

1 / T(w)dw (23)E N BW - T,,_.

The FADOF transmission spectrum was calibrated

against the measured absorption of the Rb cell. Figure 10

gives the results of such a comparison.

where T(0_) represents the filter transmission spectrum
and Tm_x represents the maximum transmission for the

filter. The equivMent noise bandwidth corresponds to the

bandwidth of a rectangular notch filter with transmission
Tmax that transmits the same amount of noise as our fil-

ter. Using the equivalent noise bandwidth, we can eas-

ily compare different filter designs and even different filter

technologies.

Figure 7 shows the typical calculated spectrum of Rb

780-nm transmission at a temperature of 100 deg C and a
magnetic field of 90 G. The calculations include the con-

tribution from both isotopes. The Rb FADOF shown has

an equivalent noise bandwidth of 4.7 GHz, a transmission

of 93 percent, and a signal bandwidth of 1.3 GHz.

The absolute FADOF transmission was measured by

tuning the diode laser frequency to the center frequency of

the transmission peak and then measuring both the power

transmitted through, and the power incident upon, the
FADOF. The ratio of these power measurements provided

the absolute FADOF peak transmission. The experimental

results were directly compared to the theoretical calcula-

tions after correcting for Fresnel reflection losses.

The Rb 780-nm FADOF transmission spectra are
shown in Fig. 11 for different combinations of B-field and

temperature. The solid lines in the figures are the mea-
sured spectra, and the dashed lines are the theoretical cal-

culations. The sPectra show good agreement between the-

ory and experiment for all aspects of the filter, bandwidth,
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peak transmission, peak center frequency, and spectral re-

sponse. The theory also predicts the observed 2-GHz tun-
ability of the center frequencies and bandwidths of the

FADOF transmission peaks with applied magnetic fields

and cell temperatures.

IV. FADOF Imaging and Solar Noise

Rejection Measurements

An important advantage of the FADOF over atomic
resonance filters is that the FADOF preserves the spatial

direction of the signal while filtering out the background

noise, but the atomic resonance filter does not [23]. For

free-space laser communications applications, this can be
used to advantage in the signal acquisition and tracking

system. We measured the spatial resolution of the optical

system to evaluate its applicability to a signal acquisition

and tracking subsystem. A schematic block diagram of the

imaging experiment system is shown in Fig. 12.

The target was illuminated by a 3-mW, 780-nm laser
diode. A small fraction of the scattered laser light was

then incident on both the reference camera and the fil-

tered camera. This system allowed direct comparison of

the resolution of images recorded using the unfiltered and

filtered cameras. The advantages of the FADOF were

demonstrated by comparing the two images as the back-

ground light level was changed. The image resolution ex-

periments were performed with the room lights off and

using an imaging evaluation test target (Air Force MT-

11). The resolution of both cameras was measured to be
170/_rad. Within the 170-/trad resolution limit of our cam-

era, no image degradation resulting from the insertion of
the FADOF was observed. Equipment with greater spatial

resolution will be needed to measure the resolution limit

of the FADOF.

Figure 13 illustrates both the spatial resolution and the
background rejection of the FADOF. The solar background

rejection was measured at 56 dB. The figure is a photo-

graph of the New Mexico State University (NMSU) logo
illuminated by a 3-mW laser diode and a cigarette lighter.

Also included in this photograph are the images from both
the filtered and unfiltered camera monitors. The unfil-

tered camera image (upper right) is clearly saturated by

the flame of the lighter, while the filtered camera image

(lower right) is unaffected by the flame. In addition, the
letters "MEX" that are lost in the unfiltered camera im-

age due to the saturation are clearly visible in the filtered
camera image. The images were taken with approximately

2-nW/cm 2 of optical power incident on the charge-coupled

device (CCD).

V. The Composite Zeeman/FADOF System

The transmission peaks of the FADOF are at the wings

of the absorption bands of the atomic vapor. For typi-

cal Rb and cesium (Cs) FADOFs, there are four transmis-

sion peaks caused by isotopic and hyperfine splitting. Nar-

rowband laser signals are transmitted in one transmission
band, and light leakage through the other bands consti-

tutes a source of background noise and adds to the filter's

equivalent noise bandwidth. A composite filter system can

isolate a single signal transmission band and eliminate the
other transmission bands.

In the composite system, a Zeeman absorption cell is

placed in series with a FADOF. The Zeeman absorption
cell is tuned to absorb three of the four FADOF transmis-

sion bands. Optimal operating conditions for the absorp-
tion cell were found by calculating the absorption spectra

for different combinations of magnetic field and tempera-

ture and matching these to the FADOF transmissions.

For right- and left-circularly polarized input, the ab-

sorption cell transmission is given as

a+ (w) = exp I-k± (w)L] (24)

where "+" denotes the right- and "-" denotes the left-

circular polarization, k is the absorption coefficient, and L

is the cell length. The total transmission of the composite

system is

T(w) = TFADOF(W)a+(w) (25)

where TFADOF(W ) is the transmission spectrum of the
FADOF.

The block diagram of the composite system for a Rb

780-nm FADOF is shown in Fig. 14. A quarter-wave plate

is used to transform the linearly polarized FADOF output

to right- or left-circularly polarized input for the absorp-
tion cell.

Figure 15 shows the Rb 780-rim FADOF transmission

curve at a magnetic field of 60 G and a temperature of

90 deg C. The four transmission peaks of average band-
width at approximately 0.7 GHz each are characteristic of
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this FADOF under these conditions. Calculations showed

that the absorption of a Rb Zeeman cell at 100 deg C
in a 1300-G B-field could be tuned to match the FADOF

transmission peaks and results in a single-peak transmis-

sion spectrum.

Figure 16 shows the agreement between the theoretical

and experimental absorption curves for right-circularly po-

larized light incident on the Rb Zeeman cell. The resulting

composite filter transmission is shown in Fig. 17.

The single-band transmission spectrum in Fig. 17 was

obtained by tuning the system so that the right-circularly
polarized absorption band of the Zeeman absorption cell

overlapped three of the four transmission peaks in the

FADOF transmission spectrum and left the transmission

of a single peak unchanged. By cascading the filters in this

way, the ENBW was reduced by a factor of 3.5, from 3.0
to 0.86 Gttz.

With the end application of the filter in mind, we com-

pared the bandwidth of the composite filter to that of a

Fourier-transform-limited Gaussian pulse. This is shown

in Fig. 18, where it is seen that a transformed 5-nsec Gaus-

sian pulse just fits under the envelope of the filter. Pulse

position modulation is the preferred modulation format

for deep space optical communications; this experiment

shows that the composite filter can provide good back-

ground rejectio n for detection of 5-nsec-wide laser pulses
at the optical communications receiver.

VI. Summary

The FADOF has been shown to be able to provide

high background noise rejection, high throughput, fast

response, and a wide field of view while preserving im-
age information. The general theory for the FADOF was

presented in this article. It predicts the FADOF perfor-

mance for arbitrary magnetic fields and temperatures of

the atomic vapors with and without hyperfine structure

components. The theory was used to predict the transmis-

sion spectrum and performance of a 780-nm Rb FADOF,

based on the solved quantum mechanics equations for the

atomic levels and transition line strengths for the Rb va-

por. The experimental results show very good agreement
with theoretical predictions.

A composite Zeeman-FADOF filter has been described

and shown to be compatible with a Fourier-transform-

limited 5-nsec laser pulse. The filter pair exhibits a single

ultra-narrow passband in the transmission spectrum and is

expected to reduce the noise rejection factor of the FADOF
by 3.5.
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Table 1. The performance of some narrow bandwidth optical filters.

Atomic FADOF
Parameter Interference Quartz Lyot resonance

Throughput 0.5 0.2 0.1-0.5 >0.8

Noise rejection

factor, dB 20-30 35 40_0 50-60

Field of view, deg 4-2.5-30 4-30 4-90 _ 4-90 b

Bandwidth,

nm 2-20 0.33 0.001-0.01 0.001-0.005

Response

thne, nsec 0.00004_).0004 0.005 10-10,000 0.2-1

Imaging Yes Yes No Yes

The field of view of the atomic resonance filter is limited to 4-30 deg by

practical considerations.
b The field of view is fundamentally 4-90 deg. However, the field of view is

limited to about 4-20 deg by practical considerations.
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Fig. 13. Images from both filtered and unfiltered camera monitors.
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An algorithm for estimating the optimum combining weights for the Ka-band

(33.7-GHz) array feed compensation system has been developed and analyzed. The
input signal is assumed to be broadband radiation of thermal origin, generated by
a distant radio source. Currently, seven video converters operating in conjunction
with the real-time correlator are used to obtain these weight estimates. The algo-
rithm described here requires only simple operations that can be implemented on a

PC-based combining system, greatly reducing the amount of hardware. Therefore,
system reliability and portability will be improved.

i. Introduction

At the present time, there is considerable interest in
operating the DSN at increasingly higher carrier frequen-
cies in order to realize the inherent advantages associ-
ated with shorter wavelengths, namely, greater antenna

gains, increased useful bandwidth, and reduced sensitiv-
ity to plasma effects. Consequently, there is an effort un-
derway to demonstrate the feasibility of using Ka-band

(33.7-GHz) carrier frequencies for deep space telemetry.
However, there are also disadvantages associated with the
use of higher carrier frequencies, such as greater sensitivity
to weather effects, increased requirements on pointing ac-
curacy, and reduced antenna gains due to imperfections in
the antenna's reflecting surfaces. Such imperfections be-
come particularly noticeable on large receiving antennas,

where gravitational distortions, wind-induced vibrations,
and collimation problems can seriously degrade antenna

performance. Some of these losses can be recovered with a
properly designed compensation system employing an ar-
ray of receiving horns in the focal plane of the antenna; a
conceptual design of such a combining system is shown in
Fig. 1. Complete descriptions and analyses of a real-time
array feed compensation system designed for deep space
telemetry can be found in the literature [1-3]. Recently,
a seven-element array feed compensation system has been
installed at DSS 13 for the purpose of demonstrating com-

bining concepts in real time.

Perhaps the most serious problem encountered during
the Ka-band array feed compensation effort was the lack of
reliable coherent sources in the antenna's far field. Since
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this is not an operational frequency band, no spacecraft
has yet been built employing Ka-band carrier frequencies

(Mars Observer did carry a low-power Ka-band beacon,

but this spacecraft ceased to function before reaching its

target). However, since only spatial coherence is required

to demonstrate the array feed combining concept, it is

possible to carry out weighted combining operations using

natural radio sources, such as quasars and planets. Since

these are always in the antenna's far field, the only addi-

tional requirement is that the sources remain unresolved.

This article is devoted to the derivation of the optimum

combining weights for maximizing he signal-to-noise ratio

(SNR) of the combined signal and the estimation of the op-

timum combining weights in real time from natural radio
signals observed in the presence of additive noise.

II. The Received Signal

A functional block diagram of the combining system is

shown in Fig. 2. The array horns receive a broadband sig-

nal of thermal origin from a distant point source, each with
different amplitude and phase introduced by the antenna

distortions. An independent noise waveform is added to

each signal in every channel, the result of receiver noise

plus background radiation received from all directions in

space. After passing through narrowband filters of center

frequency w, the received signal can be represented in the
kth channel as

rk(O = sk(t) + nk(t) k -- 1, 2, ... , If (la)

where

sk(t) = v_Sk {a_(t)cos(wt + Ok)

+ as(t) sin (wt + Ok)} (lb)

nk(t) = vf2 {nck(t)cos(wt) + risk(t)sin (wt)} (lc)

Note that the signal components in the various chan-

nels differ from each other only in their amplitude and

phase, having been generated by the same point source.

Thus, the random processes sk(t) are completely corre-

lated. However, the noise processes nk(t) are assumed
to be uncorrelated in all channels, as these are composed

of thermal noise generated within the receivers and back-

ground radiation arriving from all directions in space.

The received waveforms are downconverted to base-

band in-phase and quadrature signals rlk(t) and rQk(t)

by premultiplying with local oscillator signals of the form

x/_cos (wt) and v_sin (wt), and low-pass filtering:

: + n k(t) (2a)

= sqk(t) + , qk(t) (2b)

Slk(t) = Sk {at(t) cos(0k) - as(t) sin(0k)) (2c)

SQk(t) = Sk {at(t) sin (Ok) + as(t) cos (Ok)} (2d)

nIk(t) = n_(t) -- n_:(t) (2e)

nQk(t) = n,k(t) + n,k(t) (2f)

After sampling the baseband waveforms, the resulting
in-phase and quadrature samples may be treated as com-

plex samples _k(i), defined as

 k(i) = + ik(i) (Za)

where

gk(i) = slk(i) + jsQk(i) (3b)

ilk(i) = nlk(i) + jnQk(i) (3c)

In other words, we shall use complex arithmetic to operate
on these samples.

Defining the complex coefficient Sk = Ske jok, Eq. (3b)
can also be written as

gk(i) = Sk {a_(i) + jas(i)} = :_kfi(i) (4)

which shows that the complex channel scaling factors sep-
arate from the temporal variations.

The real and imaginary parts of the complex noise se-

quence are independent random sequences, each with vari-

ance cry. The components of the signal sequence, a_(i)
and as(i), are also independent random sequences, being

of thermal origin. However, since we are interested in ex-
tracting the complex magnitude Sk, it is reasonable to let

each signal component have variance 1/2, so as not to in-
troduce additional scaling. In the following, the complex
signal coefficients and the noise variances will be assumed

to be constants independent of time.
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Ill. Combining Weights to Maximize SNR

The goal of the combining operation is to maximize
the SNR of the combined sequence. The approach is to

multiply each sequence by a complex combining weight

with the property that the sum of the weighted sequences

achieves the greatest SNR.

Let the kth combining weight be denoted by wk. Mul-

tiplying each received sequence by the corresponding com-

plex weight and summing yields the combined sequence

z(i):

K

_(i) = E ilk(i) tbk(i) (5)
k=l

g gWith go(i) = _k=x k(i) tbk(i) denoting the combined

signal, the SNR of the combined sequence is defined as

E [gc(i)12 k=_ Sk_]2 (6)

-- K ~ 2 2
P_ var{_'(i)} E 21wkl _

k=l

This is the quantity we wish to maximize by judicious

selection of the combining weights.

The optimum combining weights are obtained by means

of the Schwarz inequality. Writing the combined sequence

as

(7)

and applying the Schwarz inequality, yields

(8)

Dividing both sides by the first term on the right-hand

side of Eq. (8), we obtain

Kz
k--1

K

E 2 I_kl2_
k=l

(9)

which shows that for any choice of combining weights, the

achievable SNR is bounded from above by the sum of the

channel SNRs. Except for an arbitrary complex factor,

equality is achieved when we let Vr2tbk_rk = S_,/yC2o'k,

whereby the optimum combining weights are determined

in terms of the signal and noise parameters as

_ k (10)

The combined SNR is maximized when each sequence

is multiplied by the conjugate of the signal scaling factor
and divided by the variance of the additive noise in that

channel. Therefore, these quantities have to be estimated
in real time to determine the correct combining weights.

IV. Parameter Estimates

The estimator described here is based on the observa-

tion that the temporal variation of the signal components

is identical in every channel. This implies that the ex-

pected value of the product of a received sequence with the

complex conjugate of a sequence from any other channel

is equal to the product of the complex coefficients. That

is,

E[i_(i)L_(i)] = E [(Stfi(i)+ ti,(i))" (:_fi(i)+ tim(i))]

-* " (II)= S'tS_

The last equality follows from the definition Ela(i)l 2 =

1, and the assumption that noise sequences are not cor-
related with other noise sequences or with the signal se-

quence. If the received sequences are ergodic, then ensem-

ble and time averages are identical, suggesting the follow-

ing estimates for the coefficient products:

A L

ecru =T

g,m = 1,2,...,K; gem (12)
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Asthenumberoftermsgrowswithoutbound,thees-
timationerrorapproacheszero.With the totalnumber
of channelsequalto K, index the channels according to

the SNR, so that channel number 1 contains the greatest

SNR, channel number 2 the second-greatest, and so on (in

case of equalities, an arbitrary choice can be made). Thus,
we may view channel 1 as the "reference channel," as it

provides the highest fidelity signal. Consider the estimates

of the products StS,,:

A 1 L

S_Sm = _ _--_ _(i)_m(i) m = 2,3,...,K (13)
i=1

If 5_. were known, then we could estimate _hm, m =

2, 3,..., K, by means of the formula

A

A

g., = S Sr.
$1

(14)

Even if only 10611were known (that is, if no phase in-

formation could be obtained), we could still determine
6o,ne-J°', where 01 is the argument of o61. Since in our

application the combining weights may be multiplied by

a complex constant without affecting the combined SNR,
the phase of the reference channel need not be estimated.

Thus, we turn our attention to the estimation of the signal
magnitude in the central reference channel.

An estimate of ISl1 can be obtained in the following

manner, using well-established experimental techniques.
With the antenna pointing "on-source," we obtain an es-

timate of the total power Ptl, by averaging L independent
sample powers:

L

A 1 5'15(i) ill(i) 2
/5/1 = L/_1"= + (15a)

Next, we point the antenna "off-source" and obtain an

estimate of the noise power using subsequent samples:

Since

2L
A 1
&' =L _ Ihl(i)l= (15b)

i=L+I

(16a)

and

(16b)

it follows that

_i 2 Ptl- Pnl; Ptl _ Pnl
I = (17)

not defined; Pn, > P,,

is a reasonable estimate of ]$1[_ when the average signal
power is large compared to the random variations. When

the signal power is not sufficiently great, it is possible for

the estimate to become negative, which is meaningless for
a power estimate and, therefore, should not be used.

The estimate of [gl[ follows from Eq. (17) as

= (18)

Using this estimate, the signal coefficients for the outer

channels may be obtained from Eqs. (12) and (14), except
for a common complex coefficient, as follows:

- sr sm
£

(19)

The complex coefficient e -j°_ has no effect on the com-

biner performance, since the combining weights will in-

clude this factor, effectively setting the average phase of
the combined signal to zero.

V. Statistics of the Weight Estimates

The combining weights that maximize the SNR of the

combined samples are defined in Eq. (10), repeated here
for convenience:

A S*

(20)

Each complex weight may be multiplied by a complex

constant without affecting combiner performance. Thus,
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for our purposes, it is sufficient to estimate the "rotated"

weights

A

21 ,
(21)

instead, without explicitly determining the phase of the

central channel, 01.

The denominator of each weight is simply an estimate

of the noise variance in that channel. The noise variance

in the kth channel, 2cry, is estimated by means of simul-
taneous off-source power measurements in all K channels

(both real and imaginary noise components have variance

a_, hence the factor of 2 in the variance of the complex

noise). If M samples are used, the estimate of the variance
in the kth channel is of the form

M
A 1

= I  (i)1

_ n_(i) + n_(i
2M

"= i----1

(22)

Clearly, the expected value of this estimate is the de-

sired quantity,

A

: (23)

hence the estimator is unbiased. Assuming the underlying

processes are Gaussian, the estimate is a scaled central
ehi-square random variable with 2M degrees of freedom
and variance

var(a2) _- 1 or4- ' (24)

In typical applications, the component of the noise vari-
ance due to the receiver remains constant, while the com-

ponent due to the background changes slowly with ele-
vation and azimuth, but may be considered constant for

many weight estimates. The frequency with which off-
source measurements must be performed depends on the

specific details of the experiment.

The numerator of each rotated weight estimate can be

obtained using Eq. (19). In addition to an estimate of the

product S1S_ (whose expectation is proportional to the
correlation between the first and kth channels), this ap-

proach also requires an estimate of the magnitude of the

complex scale factor in the central channel. This quan-
tity can be updated with each new weight estimate, us-

ing the last noise power measurement, or a separate on-
source measurement can be made periodically for the cen-
tral channel as well. Both cases will be considered. First,

assume estimates are made with each update, using the

same number of samples as for the weights (L). The esti-

mate of the signal power in the central channel then be-
comes

2 1 S,5(i) + fi,(i)]2 1
= 2i=1 if/ _ [_l(i)[ 2 (25)

i=L+I

with expectation

and variance

2varL S1 =
(27)

Again, we observe from Eq. (26) that an unbiased es-
timate is obtained. If a separate power measurement is

carried out for the central channel using N independent

samples, then the signal power estimate becomes

[_1_ _ 1 N_ $15(i) + 51(Q 2 1 N+M= M 1 '(i112 (28/
i=1 imN+I

This estimate is also unbiased; hence, Eq. (26) still

holds. However, the variance of the estimate decreases

if N > L, as shown by comparing the following expression

with Eq. (27):

yarN = "_ +
(29)

The estimate of the signal power can, therefore, be

made arbitrarily good by making both N and M suffi-

ciently large, provided the natural time scales of the rele-

vant process variations are not exceeded.
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Nextconsiderthestatisticsof thecoefficientproduct
estimates,SjS_. As shown in Eq. (11), the expectation

of the product of the received samples between any two
channels is the desired coefficient product, implying the

unbiased estimator structure defined in Eq. (13).

The variance of this estimate can be obtained by first

deriving the second moment of the coefficient product,

subtracting the square of the expectation, and dividing the

result by the total number of independent sample products

averaged to obtain the estimate. If L sample products are

averaged, this can be expressed as

(30)

Consider the second moment first. Writing the received

samples as in Eqs. (3a) and (4), the second moment of the

sample products between two distinct channels j and k
becomes

+ (products whose expectation goes to zero)

= I_l_l_kl_h-_+ IS_I_Ihl_ I_k12+ I_1_ 1_12+ I_1 _ f_l _ (31)

where the overbar denotes expectation. Letting Ihjl 2 =

2a], 1512 = 1, and with 1514 = 2, the second moment
becomes

EI_j_I _ = 21_jl_l_l _ + 21_jl2_ + 21_kl_y + _

(32)

Subtracting the square of the expected value and divid-
ing by L yields an expression for the variance:

+2 + 1  12#)+ (33)

If the estimation errors are sufficiently small, each esti-

mate may be written as its true value plus a small random

deviation. Assuming this to be the case, we have

S_Sk = S_Sk(1 + _) (34a)

I&l 2 = 1_12(1 + fl) (34b)

A

2 = _(1 +7) (34c)ffk

Using Eqs. (24), (27), and (33), it follows that each
error term is a zero-mean random variable with variance

x 1 + 1_,]12l'_t s + 2 + (35a)\ISkl _ ISll2/

1 2

Q = Lor N (35b)
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a,s

1

var (7) -- _ (35c)

The estimate of the rotated weight can now be written

SIS; (1 -[-or)
ff_ke-J°'- 2o'_1,_1[ V/(1+/3)(1+7)

(1 +a)G

(1+_) (1+7)

(36)

where G&sxs_/2_ZIS, I. Expanding the denominator,

multiplying through, and keeping terms up to second order

yields

_ke--JO,=(_'k 1--_- 1-_+a-7

(37)

The expected value of this expression is

(-)8 2
E(_k'_-J°_)'_Ck 1+_-+_ -ff

= C'k [1 + var (_-)+ var (7)] (38)

which shows that the estimate is biased, but becomes

asymptotically unbiased as the number of samples grows

without bound. Writing the rotated weight estimate as

_-,0, = G(1 + ¢) (39)

where(=o_-_ 3' c_7-a_+7_ +p-2-- - 4 + 72, it follows

that

var (tbk'_ -j°*) = [Ckl _ var (_) (40)

Here _ is a random variable with second-order statistics

and

[ .var(¢)=E a-_-7- - fl 2

= _7 + --4 + 72 + 72 + _2 72 + 1`_

+ (products whose expectation is zero)

(41)

(42)

Since E(a) = E(fl) = E(7) = O, and _, fl, and 7

are statistically independent, it follows that all terms in

Eq. (42) containing a, fl, or 1' to the first power go to

zero. Thus, the normalized variance of the rotated weight

may be expressed in symmetric form as

[Ck1-2 var (,a_--/o_) =

var (a)+ var (_)+ var (1`)

+ var (_)var (-_)+ var (7) var Q_)

+ var (a) var (7) (43)

The statistics of these rotated weight estimates for spe-

cific parameter values are examined in the next section.

VI. Numerical Results

The expressions for the normalized bias and variance

of the rotated weights developed in Eqs. (41) and (42)

are functions of the parameters M, N, and L, as well as

of the signal powers and noise variances in the combiner

channels. The noise variance is largely determined by the

physical characteristics of the front-end amplifiers, and in-
cludes contributions from background radiation as well.

The signal power in each channel depends on the strength
of the source, the antenna aperture, and the amount of

distortion suffered by the main reflector. However, the re-

maining parameters can be selected to achieve a desired

level of estimator performance.
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In a typical combining experiment, the antenna is first

pointed off source, and the noise power in each complex

channel is estimated according to Eq. (22). Denote the

number of samples used to make this estimate M. Next,

the antenna is pointed on source, and the signal in the cen-

tral channel is measured by means of Eq. (25) or Eq. (28),
using either L or N samples, where L is the number of sam-

ples per update. Of course, the signal levels in the other

channels could also be determined, but that information is

not used by this algorithm; instead, the rotated complex

weights are estimated according to Eq. (19). Theoretically,
some improvement could be obtained if independent signal

power measurements were used to improve the magnitude
estimates, but that issue will not be addressed here.

After the coefficients are determined, combining weight
updates are obtained every L samples for use in the real-

time combining operation. The inequality (M, N) >> L is
usually valid, since both signal and noise power levels tend

to remain constant over a great many coefficient updates.
However, we shall also consider the case N = L, corre-

sponding to a situation where the signal power in the cen-

tral channel changes fast enough to warrant its measure-

ment with each update. This could occur if wind-induced

dynamics or time-varying pointing errors were present.

Representative values were chosen for the signal power

levels, normalized to the noise variance, which was as-
signed a value of 1 power unit. With a channel noise tem-

perature of roughly 100 K, a strong Ka-band radio source
(such as Venus or Jupiter) may produce a 10-K rise in the
central channel when observed with the 34-m antenna at

DSS 13. At low and high elevations, gravitationally in-
duced distortions of the main reflector generally deflect as

much as 10 percent of the total signal power to some of

the outer channels. Thus, the values a_ = 1, [$1[ _ = 0.1

and ]$1,]2 = 0.01, k # 1 will be assumed for the numerical

examples that follow, meaning that the signal power in the

central (reference) channel is one-tenth of the noise power,

while typical signal powers in the outer channels are 10
times smaller than those in the central channel.

The normalized bias defined in Eq. (41) is shown in
Fig. 3 as a function of N, with M as a parameter. For any

N, the minimum achievable bias is a monotone decreasing
function of M that approaches an asymptotic limit from

above. Minimum values of M and N are clearly specified
for any desired bias level: for example, if we wish to maia-

tain a normalized bias of 0.001, then M must be greater
than about 105 and N must be at least 3 x 10s; at a sam-

pling rate of 2 x 105 samples/sec, this would take a mere

2 x 1.5 = 3 sec, which is short compared to typical time

scales encountered in practice. If we let M exceed 106,

then the above value of N will suffice. Suppose we select

this value of N in order to meet the bias requirements, and

examine the normalized variance defined in Eq. (43).

The normalized variance of the rotated weight esti-
mates is shown in Fig. 4 as a function of L. It is clear

that a given value of N specifies a limit for the smallest

attainable variance and, hence, limits the performance of

the weight estimator. For the specified value of N, this

limit is about 4 x 10 -4, even as M and L grow without

bound. The dependence on N disappears if the signal

power is recomputed with each update, using the previous

L samples, corresponding to the case N = L. Now any de-

sired level of performance can be achieved provided that

both M and L are sufficiently great, as shown in Fig. 5.

Given M and L, the corresponding normalized bias can be

determined from Fig. 3 by substituting L for N. Note that

for very small values of L, the variance increases rapidly

when N = L, due to the greater error in the signal power
estimate as a result of insufficient observations.

VII. Summary and Conclusions

A digital combining-weight estimation algorithm for use

with broadband sources has been described and analyzed.
Although the algorithm provides a biased estimate of the

combining weights, the bias can be reduced to any de-

sired level by observing enough samples. The normalized

variance of the weight estimates can be similarly reduced;

however, care must be taken to obtain accurate signal and

noise power estimates, as these quantities ultimately limit
the performance of the estimator at all update rates. With

this algorithm, only three primitive estimates are needed

to obtain each combining weight estimate: the noise vari-

ance in the kth channel, the signal power in the central
channel, and the complex correlation coefficient between

the central and kth channels. The first two are simple

power measurements requiring magnitude squaring and
accumulation, while the third is a complex multiply-and-

accumulate operation; both operations can be carried out

with current PC-based digital hardware, provided the sam-

pling rates do not exceed roughly 250,000 samples/sec.

Consequently, this approach is useful for reducing estima-
tor complexity while greatly increasing the portability of

the entire array feed compensation system, enabling the

demonstration of combining gain on a variety of DSN an-
tennas.
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The algorithm described in [1] for estimating the optimum combining

weights for the Ka-band (33.7-GHz) array feed compensation system is compared
with the maximum-likelihood estimate. This provides some improvement in per-

formance, with an increase in computational complexity. However, the maximum-

likelihood algorithm is simple enough to allow implementation on a PC-based com-

bining system.

I. Introduction

We consider the problem of estimating combining

weights for a signal received by an antenna array. The

signal is modeled as a Gaussian random variable, and in-
dependent Gaussian noise is added in each channel. An es-
timation method that has been proposed is treated in [1].

Here we compare that method with the method that uses

maximum-likelihood (ML) estimates of the pertinent pa-
rameters. The computations required for these estimates,

while more complex than the computations of [1], are well

within the capabilities of a small on-site computer.

where the hk(i) and _(i) are independent complex Gaus-
sian random variables, ilk(i) is N(0,2_r_), and fi(i) is

N(0, 1). Then I

= = + (2)

If C: is the complex K x K matrix with entries cjk,

then the real and imaginary parts of the _k(i) (for k =

1,..., K, i fixed) have a 2K-dimensional distribution with

density 2

Ih The Maximum-Likelihood Equations

The received signal in the kth channel at time i is as-
sumed to be

_k(i) = Skfi(i) + ilk(i), k = 1,2,...,K (1)

pi = 7rK det((_) exp -j,k=]

1The overbar denotes a complex corrugate.

2The arguments _1 (i) .... , _K (i) of pi are not shown explicitly.

(3)
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Then

It is convenient to introduce the quantities

__ &
vf2cr_

and the elements of the inverse matrix are

1(1 )b_k = (6-')jk - 2a_k 6jk - TjTk

where

K

"f = 1 + E ]_'kl2
k=,

Also, we have

Using these values in Eq. (3),

Pi "=

We define the likelihood function as

1
in PiA= 7

i=1

In terms of the sample covariances

(4)

(5)

(6)

(7)

(8)

(9)

(10)

L
~ 1
ajk = T E _j(i)_k(i)

i----1

It follows from Eq. (9) that

K

A = - E In (2_ra 2) - In (7)
k=l

(11)

1_-_ 1 ( l_jj )--Ski 5jk-- 7'_ (12)
2 trj o_k

j,k=l

I!1. Cascaded Maximum-Likelihood
Estimates

For maximum-likelihood estimates _k and &_, or equiv-

alently _k and #k, we need to solve the equations obtained

by setting the derivatives of A equal to zero. This sys-

tem of equations must be solved iteratively. It need not

have a unique solution, for the parameters are not even

determined by the statistics of the signals [Eq. (1)] un-
less at least three of the Sk are nonzero. For this rea-

son, this approach is not pursued here. We assume that
the crk are estimated from separate observations with the

antenna pointed "off source." These noise estimates are
themselves maximum-likelihood estimates obtained from

the noise samplesby differentiating Eq. (12) with respect
to orj (assuming Tk = 0):

where fi.O is given by Eq. (11). The maximum-likelihood

estimates of the 7_k use these noise estimates.

Differentiating Eq. (12) with respect to Tj, we get

:,
1 v---,K 1 _ -

+ _ _ o.o.----;,:,,_;-Tk= 0

It can be shown that this is equivalent to the simpler con-
dition
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g _ .

k=l O'k O'J

Replacing the parameters by their estimates, we get

K akj _ = 2_Tj (13)

k--1

This equation states that the complex K vector with com-

ponents :_ is an eigenvector of the matrix composed of

the elements akj/(_k_j), with eigenvalue 2_. If we replace
the matrix elements by their mean values, using the true

values of the ak, then this matrix has K - 1 eigenvalues

equal to 2, and one larger eigenvalue 2% corresponding

to the eigenvector 7_k. Hence, the estimates Tk can be
found in terms of the crk by numerically finding the largest

eigenva!ue of the matrix in Eq. (13) and its eigenvector.
The eigenvector must be scaled so that the eigenvalue 2#

satisfies the relation [from Eq. (7)]

&j = crj + 5c9 (17)

Then the estimates Tj are close to the true values,

Tj = _- -4-5Tj (18)

Expand Eq. (15), keeping only those terms which are
of first order in the deviations 5ajk, 5crj, and 57_j. We get

+ + =
_=x L2°k°J 2o'ko'i 2o'_o'._ \ o'_ o'k /J

K

k=l

Using the formula in Eq. (5) and simplifying, the result is

K

_= 1 + _-_'I_k12 (14)
k=l

K

(7-1)5_ + TJ E TkST/c =
k=l

The method for solving Eq. (13) is described briefly in

Appendix A.

K ~ K

k----1 20"kO'J k=l

IV. Variance of the Cascaded ML Estimates

for the T;

For a large L, the sample covariances _jk are close to
their mean values:

ajk --- c-jk + 55jk (15)

where the difference 55j_ has a mean of zero and a small
variance. It is easily shown that

4

x (5_,_ + T-_Tm)(SLi + _T3) (16)

If the estimates &j are close to the correct values,

-(7+1)Ti 5_ (19)

If we multiply this equation by 5T_ and sum over j, we

get

K

k=l

K

" _ 2-,, I
j,k=l j:l

(2o)

This equation determines the real part of ___-_STk. The

imaginary part of this sum is undetermined, since the 7'_

can be multiplied by an arbitrary common complex factor

of absolute value 1. From Eq. (20), we can set
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K K

k=l 2(7-- 1) =1 2_--_m'1 rnlk

K

7 _#_t_ +s_ (21)
7-1k= 1

Square Eq. (22) and take the expected value. We de-

note the deviation of Eq. (22) by the prefix 60 to distin-

guish it from that obtained by other methods below. Using

Eqs. (16) and (23), the result is

1{1[ jE([6°Tjl2)- (7 -1) 2 L7 7-1-1rjl 2+17[Tj]2

where w is a real quantity not yet specified. Using this

expression in Eq. (19), we get 1 [ [TJ[2 _ ,,7+1 - ]4+ _- (__-T)2 ITkl4 -__, _TTT-1E"

K 6akj z. Tj

2(_- 1)" + (7 + 1)2]T/12]} (24)

K
65kr. _

X _-w -- Jm'lk
2Irk Irm

m,k=l

+ _ Irk
k=l

-(7+ 1) 6-_/ % - jwTj (22)

In the following, we will take w = 0, since this turns

out to give the best results. The estimate &j, found with
the signal absent, is

Expanding as above,

The sum over j of this expression leads to

K

Z: E(l_o_i_)=
j=l

1{1[ 1] 1721 _7 K-l+_7 +4_/

[
L(7 + 1)2 (7 - 1)2____

×

Now we consider another estimate, where the first chan-

nel is taken to be the one with maximum signal strength,
and o01 (or 7_1) is estimated first. By Eq. (5),

E(fixx) = 2a_(1 + I_,1_)

This leads to the estimate

= 2#---_ 1 (26)

Using Eq. (16) (with no signal), we get The resulting error 62TI has variance

E k(6IrJ6irkir.iIr_: /] : T'M'j'_I (23) E(I62_112) : (1+ I)(I+_IT___ -IT1[2) 2 (27.)

where M is the number of samples used in the noise esti-
mates.

This estimate can be used to obtain an estimate for Tj for
j >_ 2 by using
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~

Tj alj (j > 2)

2ghSjT1

(28)

The variance of this estimate is

E(IS_TjIs) =

1[ ]4LILI 4 17,/Is(1+ ILl=) s + 4tLI2(i + ILl 2)

I_? (1 + ILl 4) (29)
+ 4MIL 14

V, Variance of the Combining-Weight
Estimates

We now consider estimates for the weights

& Ti

_j = _ - v_j

obtained from the cascaded ML estimates of the signal-to-

noise ratio (SNR) and noise parameters. The estimate

_- s, 7,_ (30)

has a deviation 6ff,j from the true value, given to the first

order by

'_'_- v%'.i : <7_)

The mean-square value of this deviation can be computed
for each of the estimation methods under consideration.

We find

E(16°5_J Is) - 2(7 -- 1) s°'] _3_ - - I_j 124-

+ Tf/[(-r - 0 2 _-': l:/'k1_=, "r-4"_11_ 14+ 4"_217)I'_ (31)

1 [1_1_(1+ iLl_)S + 4(1_ (i,)
E(162_'._Is) = 8Lo'_IL14

x I¢iI_'(1+ 17,_IS)]+
1¢_1_

SM<qILI_

x (1 + 4¢sj,t7,als + 417,_t4) (32a)

A modified form of this last method was considered in

[1]. There, 7"1 was estimated from Eq. (26) based on N
samples, and the other Tj were estimated by Eq. (28) for

a later set of L samples. For this method, it can be shown
that

1_12(1+ ILl=) _
£(1_'_'_I_) = 8No'} IL] 4

+ (1 - 5jl)

(1 -t-ILI2)(1 + 17,jl_) + ILl s
2zo-j_tLI2 8_to-JlLI 4

x (1 + 46._tlL I_ + 4ILl 4) (32b)

These values, divided by I,/_[=, are plotted in Fig. 1.

The values 17,_1= = 0.05 and Iril -_= 0.005, j >_ 2, were
used. M was fixed at the value 100,000, and N = L. There

is no observable difference between the curves based on

Eqs. (32a) and(32b). For a small L, the mean-square error
from the maximum-likelihood formula is lower by 2.2 dB.

For a large L, the other methods are better, but this is in

an impractical range of the parameters. M should be at

least as large as L, since the M samples provide noise esti-
mates on which the subsequent estimates are based. The

failure of the maximum-likelihood method in this range,

which was applied only for estimating the _, shows that

these estimates can be more strongly affected by errors in

the noise estimates.

Figure 2 shows t.he maximum-likelihood curve for var-
ious values of M. These curves have the same general

appearance as the corresponding curves for the method

given in [1]. Again, on the right side of the figure, where
the curves for various M are widely separated, the errors

shown are higher than those shown in [1]. The significant

points on these curves, with M >_ L, show an improvement

over [1].
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VI. Joint Maximum-Likelihood Estimates for

the Equal Noise Case

An important special case which is seen in practice has

all the aj equal. Here maximum-likelihood estimates can

be used to simultaneously determine the noise and signal

levels (the problems cited above no longer apply).

Denote the common value of the _j by _. The formula
in Eq. (12) for A becomes

A = - K In (2rcr 2) - In (7)

g

j,k=l

(33)

To find the noise and signal amplitudes simultaneously
by the maximum-likelihood method, set the derivative of

A with respect to o. equal to zero, and solve this equation

together with Eq. (13). Simplifying the derivative by using
Eq. (13), the equation obtained is

K

2&2(K - 1 + 9) = E fikk (34)
k=l

Eliminating 5 from Eq. (13), we get

- fikk Tj
k=lE akjTk K - + _/ k=l

(35)

As before, this equation is solved by taking the vector with

components 7_j to be the eigenvector of the matrix (akj)

corresponding to the largest eigenvalue. This eigenvalue

must be the coefficient of Tj on the right, which determines

7, and hence determines the Tj up to a common complex

factor of absolute value 1. The noise estimate is then given

by Eq. (34).

To get variance estimates, proceed as before. The equa-

tion analogous to Eq. (22) is

K

(7-1)5_ =EaakJTk-- K-l-7 -
k=l 2o.2 2(K- 1)( 7 - 1) Tj

6akm_ _ 2T_ 6akk
x E _ 1m1_ 2(if--- 1) 2o._
rn,k=l k=l

-- - jw L (36)

where w is again an undetermined real quantity which will
be set equal to 0. The noise error 6_r can be found from

Eq. (34). Eliminating 5Tj by the use of Eq. (36), the result
is

5¢ 1

_r 2(K- 1)

)5fikm'_._Tk (37)
x 2o.2 7 1 E 232

2=1 m,k=l

To get variance estimates, square the expressions in

Eqs. (36) and (37) and take the expected value. Denoting
the deviation in Tj by the prefix 64, we get

E(I5_I _) =

(7--11) 2{1717-1-]_j] 2+ _./____IT]Tj,1 If - 2]} (38) .

\7] 4L(/_- 1)
(39)

Summing Eq. (38),

K

1_-_E(164_tu)- L(7:-l) K-I+4K-I'f (40)
j=l

Using the above formulas with Eq. (30),

1

w/t, .r. , ,_klV4Wjl2)_ 2ct2(7_ 1) 2

1 2x 7(7 - 1 - lT_jI_) + _ I:_j12

(27- 1)_
+ _(I(--T) I_1=] (41)

VII. Performance of the Weight Estimates

We now consider the combined signal, formed by taking
the weighted sum
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K

s(i) = (42)
k=l

where the weights are based on data before time i. If we

use wk = @k + 6t_k and express _k(i) by Eq. (1), we get
four terms:

K K

k=l k=l

K K

k=l k=l

K

= + zl + E2+ E3 (43)
k=l

The first term is the desired signal. The other terms are
contributions to the error which can be considered sepa-

rately, since their cross products have zero expectation.

Averaging over values of the current signal first, we have

K

E(IE1] _) = Y'_ 2o'_tt_k] 2 = 7 - 1 (44)
k=l

E(IE2I=) = 2 2_kTk6+k (45)

(2) Method 2: the method based on Eqs. (26) and (28).

(3) Method 3: the modification of method 2 described
in Section V.

In method 3, T1 is estimated from Eq. (26) based on N

samples, and the other Tj are found from Eq. (28) using a

later set of L samples. This is the method treated in [1].

The quantity E(IE212 + [E3I_)/I _ t_kS_l 2, the relative

mean-square error caused by weight errors, is plotted for
these three methods in Fig. 3. The formulas used are given

in Appendix B. The values are plotted as a function of

the signal-to-noise ratio, with the parameters L, M, and

N fixed. (Throughout the curves, we take the SNR in

every other channel to be one-tenth as large as the SNR

in channel 1.) It is seen that method 2 for N = L is

better than method 3, although the difference is small at

a low SNR. (For N >> L, method 3 would be better

than method 2.) Of course, the ML value (method 1) is
smallest, but the difference from method 2 is small at high
SNR.

If we assume all channels have the same noise level, then

method 4, the maximum-likelihood method of Section VI
can also be considered. Comparing method 4 with the

first three methods, it is seen that those methods can be

improved by using a unifi.ed single noise estimate from the

off-signal data. These improved methods are denoted by
1_, 2_, and 3 t. The relative error for these four methods

is shown in Fig. 4 (formulas are given in Appendix B).

The behavior shown in Fig. 3 occurs here again, with the

curves at a lower level, and method 4 is slightly better
than method I t .

(46)

These quantities are easily evaluated by using previous

formulas.

The following estimation methods are referred to in

Figs. 3 and 4:

(1) Method 1: the maximum-likelihood method of Sec-
tion I.

VIII. Conclusions

Maximum-likelihood methods for combining weight es-

timation provide a consistent decrease in the mean-square

error of the combined signal, as compared with other esti-

mation methods, at the cost of a small increase in compu-
tational complexity. The part of the error which is caused

by weight errors is decreased by over 2 dB, provided that
at least as many samples are used to estimate the noise
variance as the 7_k. This can reduce the number of sam-

ples needed for equivalent performance to 30 percent less

than the number needed by method 3.

104



Reference

[1] V. A. Vilnrotter and E. R. Rodemich, "A Digital Combining-Weight Estima-

tion Algorithm for Broadband Sources With the Array Feed Compensation Sys-

tem," The Telecommunications and Data Acquisition Progress Report _2-116,

vol. October-December 1993, Jet Propulsion Laboratory, Pasadena, California,
pp. 86-97, February 15, 1994.

105



n"
O
ti-
n"
LU
LU
n"

O
CO

<
UJ

LU
;>

UJ
r_

10.0

1.0

0.1

0.01

0.001

SNR IN CHANNEL 1 = 0.05

SNR IN CHANNELS 2-7 = 0.005

M= 100,000

ESTIMATE, E(l_jl2)/l_jl 2

I [ I Io.oool
103 104 105 106 107

NUMBER OF SAMPLES, L

Fig. 1. Relative errors of the weight estimates.

I0 b

0
n"
tr

uJ
rr

0

UJ

W
n"

10.0

1.0

£%1

0.1

_ 0.01
uJ

0.001

0.0001

I I 1 I

SNR IN CHANNEL 1 = 0.05

SNR,NCHAN,EtS2-7:0.005

F Mo1000

103 104 105 106 107 108

NUMBER OF SAMPLES, L

Fig. 2. Relative errors of the ML weight estimates.

n-
O
n"
mr
LU
UJ
n-
<¢

O
CO

<C
UJ

UJ
>_
}--

LU
n-

0.1

L: 10,00O

M= 10,000

N = 10,00O

0.01

0.00t
)D2

0,0001

0.00001 L I I
0.10 1.00 10.00

SNR IN FIRST CHANNEL

Fig. 3. Relative errors in the combined signal caused by weight

errors (independent noise variances).

n-
o
rr
n"
LU
UJ

- <_
O
CO

uJ

uJ

t--

LU
n"

L = 10,000

M = 10,0O0

N= 10,000

0.01

0.0Ol

METHOD 4

1'

!THOD 2'

0.0001

0.000O1 l I I
0.10 1.0O 10.00

SNR IN FIRST CHANNEL

Fig. 4. Relative errors in the combined signal caused by weight
errors (equal noise variances).

106



Appendix A

Method for Solving Eq. (13)

The mathematical problem posed by Eq. (_13) is the
following: Given a K x [( ttermitian matrix A, find its

maximum eigenvalue and the corresponding eigenvector.

If the maximum eigenvalue is also the eigenvalue of

maximum absolute value, then this can be accomplished

by an iterative procedure. Choose any convenient starting
vector _0.

If we take _,, = Ax_-i for n > l, then _,_, when

normalized, approaches the eigenvector which is sought.
Choose positive numbers cn so that

_:n--

Cn

has unit length. Then _, approaches the eigenvector and

ca approaches the eigenvalue.

The rate of convergence of this procedure depends on

the size of the next largest eigenvalue, as compared with

the first. In our application, the convergence is slow for low

SNR. However, the method can be modified to speed up

the convergence. When suitably modified, the difference

between _. and the eigenvector decreases by a factor of
the order of (7 - 1)/v/T at each step.
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Appendix B

Formulas Used for Figs. 3 and 4

The formulas used for Figs. 3 and 4 are presented here.

For method 1,

_(IE21_ + IE3I_) : _(¼3,2+ K - 1)
L(7- 1)

+ 7 1 - 87 + 43,2 _ [7_k14 +
M(7_ 1) _'-_" ]_ 7

1¢----1

(B-l)

For method 2,

1 [7(3,ff 1)(1 + t2_112)_+ (K - 1) 1+ ITl[2]E(IE212+ JE3J2)= T [ 4[Tll4 " ITxJ2

1 [7(3,--_1) 3,-1

+ M- [ 417114 ITxl2
+ 2 + 21e_I_ + _ le_I_

k=l

(B-2)

For method 3,

1 (1+]7_112) 2 1 [K-2+3, 2 ]E(IE2t 2+[E312)= _7(7-1) _[_l 2 +Z _12 +If-7-1

1 [7(7-- 1) 3"- 1
+ m L 41y_14 lEaP

÷ 2 + 21_1_÷ X_ IT_t_
k=l

(B-3)

For method 4,

E(IE212 + IE3I2) -

1 2

L(*(-- 1) 3,2 ( 3_- 7) ]
(B-4)

For method I',

E(IE21_ + [Ea]2)= 3,(¼_u+ K - 1)
L(7- x)

7(7 - ½)_
+ MK(7 - 1)

(B-5)

For method 2',

+ITII2] 1 [7(_2; i)1 [7(7 .Z 1)(,1+ 17_i.,)= _.1_(K _ 1) 1 +
E(I E21=+ IE312)= _ [ 41T,14 " _[_ ] _ t 417'114

72- 1 ]_2 +72+3,+1
(B-6)
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For method 3 t,

1 + 1_I=)= 1 r,,-=+_=
E(IE212 + [E312) = _"r(7 - 1)(1 + +K-7-1]

1 [7(7_1) 3,2- 1 72 ]+_t 41T_I_ IT_I_ + + _ +1 (B-7)

109



N94- 29662

TDA ProgressReport42-116
February 15, 1994

Convolutional Encoding of Self-Dual Codes

G. Solomon I

There exist almost complete convolutional encodings of self-dual codes, i.e., block

codes of rate i/2 with weights w, w = 0 rood 4. The codes are of length 8m
with the convolutional portion of length 8m-2 and the nonsystematic information

of length 4m-1. The last two bits are parity checks on the two (4m-I) length

parity sequences. The final information bit complements one of the extended parity

sequences of length 4m. Solomon and van Tilborg [I] have developed algorithms

to generate these for the Quadratic Residue (QR) Codes of lengths 48 and beyond.
For these codes and reasonable constraint lengths, there are sequential decodings
for both hard and soft decisions. There are also possible Viterbi-type decodings

that may be simple, as in a convolutionaI encoding/decoding of the extended Golay

Code [2]. In addition, the previously found constraint length K = 9 for the QR

(48, 24;12) Code is lowered here to K = 8. In future articles, we shall search for
candidates with small K constraint lengths for the (80,40;16) Quadratic Residue

Code or some isomorph.

I. Technique

There exist almost complete convolutional encodings of

self-dual codes, i.e., block codes of rate 1/2 with weights

w, w = 0 mod 4. A new technique applied here is to gener-
ate convolutional codes of lengths 2(4m - 1) using specif-

ically related irreducible polynomials to give a tail-bitten
block code of distance d - 2. Adjoining an additional in-

formation bit that complements one of the sequences of

length (4m - 1) and then appending two bits of parity

t Independent consultant to the Comrmmications Systems Research

Section.

on these individual (4m - 1) sequences, one obtains an

(8m,4m; d) code where all code words have weights that
are multiples of 4. The minimum distance d will be opti-
mal or near optimal for binary codes of rate 1/2 and length

8m, if the polynomials have been chosen well.

Let n = 4m - 1. We choose the polynomials p(z) and

q(x) to be taps of a convolutional encoder of K stages.
We feed in a sequence of n + K - 1 information bits to
the encoder with the first and last (K - 1) bits the same.

This generates a (2n,n;d) block code. We append two
additional parity checks on the two sequences of length
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n. A final information bit is modulo two added to the

sequence generated by one of the polynomials, say p(x).

The final result is an (Sin, 4m; d) code.

Notice that this definition of the code differs from the

one in the preceding paragraph. Clearly it does not matter

in which order the parity checks are appended and the final

information bit is added. For certain proofs, one definition

will be preferable. The choice of p(x) and q(x) guarantees

the even weights of the convolutionally encoded portion to
be multiples of 4. The last two parity bits and the choice

of the lengths guarantee that all weights of the code will

be multiples of 4. This will be proven in the next section

using the Solomon-McEliece F_ formula. (See [3].)

In order to compute d, choose an irreducible polynomial

p(x) of degree K - 1 that is relatively prime to x '_ + I.
Define q(x) = xli-lp(x-1). Find p(x)/q(x) - f(x) (rood

x" + 1). Test for the distance d relative to the total length

of the convolutionally generated (2n, n; d) code.

II. A Construction Theorem

For any positive integer m> 3, let n =4m - 1. We

may construct a block code of rate 1/2 of length 2(n + 1) =
8m so that

(1) All of the weights are multiples of 4.

(2) The portion of length 2n is convolutionally gener-
ated by a K stage register p(x) and q(x) of degree

K - 1 whose entries are n + K - 1 bits long with

the first and last (K - 1) bits identical. Two parity

sequences, each of length n, are nonsystematically
generated, one for each polynomial.

(3) The (n + 1)th information bit is added to each bit

of the p(x) parity sequence.

(4) The last 2 bits are overall parity checks on the n bit
parity sequences.

(5) The minimum distance d = 4£ is determined by
the encoder polynomials p(x) and q(x) of degree

K- 1. The polynomials are related thus: q(x) =

xK- lp(x--1).

(6) p(x) is chosen to give the maximum Hamming dis-
tance possible for the lengths 2(n + 1). For example,

it is shown in [1] that a p(x) with I( = 9 can be used

to construct the (48,24; 12) Quadratic Residue Code.
This is improved to K = 8 here.

Proofi Let us examine the parity sequences of lengths

n = 4m - 1 generated by p(x) and q(x) of degree K - 1.

These are of the form I(x)p(x) (rood x _ + 1) and I(z)q(x)
(rood x n ÷ 1). We shall obtain the Mattson Solomon (MS)

representation for the code word above. Let ci be the

MS coefficients of the information sequence I(x) of length
_7-_(n-- 1) ..

n = 4m - 1. For a suitably chosen z, ci = z..,j=o aJ z-U,

where z is a primitive nth root of unity and ai is the in-

formation sequence associated with I(x). Then we get
cip(z -_) and c_q(z -_) for the MS coefficients of the par-

ity sequences I(x)p(x) (mod x n + 1) and I(x)q(x) (mod

x n + 1).

If Co = O, both the parity sequences have even weight

and the even weights mod 4 are given by the Solomon-

McEliece F2 formula. If d, are the MS coefficients, then

F2 = _l"=o 1)/2 didn-i. For the p(x) parity sequence, this

gives

(n-1)/2

i=O

For the q(x) parity sequence, one obtains

(.-1)/2

r2= c,q(z')c_,q(z-')
i=0

Using the relationship ofp(x) to q(x), one obtains equality
of I'_ for the two sequences. Thus, the weights rood 4 are

the same for the two parity sequences, and the sum of the

weights mod 4 is therefore zero. This conclusion is un-

changed when the two overall parity checks are appended
to the convolutionally encoded parity sequences because,

for this case, the parity checks are both zero. Finally,

when the nth information bit is added to the p(x) parity

sequence of full length 4m, the weight mod 4 is also un-
changed. Thus, the total weight sum in this case is again

a multiple of 4.

The odd weights of the parity sequences are generated

by complementing the even-weight words. Consider the

all-one I(z) with only co = 1. This yields two all-one

parity sequences. Appending the overall parity checks to

both gives two all-one vectors of length 2(n+ 1) = 8m. All

odd weights extended by even parity are thus transformed

now to even weights divisible by 4.

From Solomon-van Tilborg [1], one obtains for m = 3

the Golay Code with K = 4 and p(x) = x 3 + x + 1. For
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m = 6, one obtains the (48,24;12) Quadratic Residue Code

with [£--9andp(x)=x s+x 4+x 3+x+l.

QR Code determines whether the b(j) sequence is comple-

mented. The above sequence is the (48,24;12) Quadratic
Residue Code.

III. New Construction of the (48, 24;12)
Quadratic Residue Code

In this section, we introduce an improved construction

of the (48,24;12) Quadratic Residue (QR) Code that re-
quires a convolutional encoding with K = 8 instead of
I(=9.

Letn=23, K=8, p(x)=x 7 + x _ + x 5 + x 2 + l,

and q(x) = x 7+x 5+x 2+x+1. One obtains the QR

(48,24;12) Code in the following manner.

A. Encoding

Let the information bits be i(0), i(1), i(2), i(3), ...,

i(22), i(ec). Extend this sequence 7 bits backward by
defining i(-j) = i(23 - j);j = 1,2, ..., 7.

The encoded bits are b(j), c(j), j = 0, 1, ..., 23, where

for j--0, 1, ..., 22,

b(j) = i(j-7)+i(j-6)+i(j-5)

+ i(j - 2) + i(j) + i(cc)

c(j) = i(j-7)+i(j-5)+i(j-2)

+ i(j- 1) + i(j)

22

b(23)=__b(j)
j=0

22

c(23) = _ c(j)
j=O

Transmit the sequence b(j), c(j); 0 < j < 23.

Thus, a (46,22;10) tail-biting convolutional code is
transmitted, initiated by a 7-bit sequence that repeats af-
ter 16 more. To these two parity sequences are adjoined

overall parity checks. The 24th information bit of the

To see this, let the additive recursion or check polyno-

mial for the code be given in powers of x by 0, 1, 4, 6, 9,

12, 13, 15, 16, 19, 20, 24. This generates the (47,24;11)

code, with the additional 48th bit the overall parity check.

This gives the proper rate 1/2 and the distance = 12.

There exist a code word at coordinates 0, 2, 5, 6, 7,

13, 15, 22, 23, 28, 37 (in powers of, say, fl, a 47th root

of unity) and the overall parity check bit. Identify the
quadratic residues with the trace one elements and the

nonquadratic residues as the trace zero elements. If we

take x = 1, the 0th power coordinate, as the overall parity
check on the other 23 trace one elements, and x = 0, the

additive identity in the field GF(223), as the overall parity
check on the 23 trace zero elements, there are 5 coordinates

in each set. In the trace one elements, choosing fl so that

Trfl = 1, one has coordinates 2, 6, 7, 28, 37. In the trace

zero elements, the powers or coordinates that occur are 5,

13, 1, 5, 22, 23. The powers of 2 are 1 2 4 8 16 32 17 34

21 42 37 27 7 14 28 9 18 36 25 3 6 12 24. In powers of 4,

starting with 37, one gets (37 7 28 18 25 6 24 2 8 32 34 42

27 14 9 36 3 12 1 4 16 17 21). Similarly, the nonquadratic
residues in powers of 4, starting with 22, are (22 41 23
45 39 15 135203338 11 44 35 46 43 31 30 26 1040 19

29). Note that if we choose p(x) = x 7 + x 5 + x 2 + x + 1

and q(x) = x 7 + x 6 + x 5 + x _ + 1, this will generate a

convolutional portion of length 46 and, adding the overall

parity checks, this will yield the QR Code. Thus, K = 8.

Note p(x)/q(x) (mod x 23 + 1) = x 2° + x 19 + x 17 -t- X 16
+ X 14+ X 12 + X 1° + X6 + X a. This implies that the following

positions form a code word: 37, 45, 13, 38, 44, 46, 3I, 30,

10, 40, 0, x = 0 (the additive identity).

Cyclically shifting from 30 on, one obtains a code word

in code coordinates starting from 0: [0, 1, 7, 8, 10, 14, 15,

16, 17, 27, 30].

IV. Viterbi Decoding

The following is a procedure for decoding the convolu-

tionally encoded self-dual code based on Viterbi decoding.

First, we decode assuming that the 24th information bit is

0, i.e., the received length 23 (p(x), q(x)) parity sequences

are usable for the Viterbi decoding. One needs only to

guess or know the initial 7 bits and one can apply Viterbi
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decoding using tall-biting techniques or try all 128 possible

initial 7-tuples.

If one does not know the initial 7 bits, one may take the

received encoded sequences (assuming that the 24th infor-

mation bit is 0) and concatenate them until they form a
chain of about 3 or 4 and then Viterbi decode as if start-

ing in the middle. We use the parity information and take

advantage of Hamming distance 12.

Alternatively, assume that the p(x) sequence has been

complemented and so concatenate the parity sequences

(1 +p(z), q(x)) to a length of 3 or 4, i.e., 69 or 92 bits, and
Viterbi decode.

V. Future Work

In encoding and decoding the (80.40;16) extended QR

Code, one uses the (78,39;14) tall-biting convolutional sub-

code. We shall try to find the smallest constraint length K

for which our construction will work. If K is small enough,
then a Viterbi decoding will do. Otherwise, a sequential

decoding procedure or its modification may be necessary.
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Optimizing the Galileo Space Communication Link
J. I. Statman

CommunicationsSystems Research Section

The Galileo mission was originally designed to investigate Jupiter and its moons

utilizing a high-rate, X-band (8415 MHz) communication downlink with a maximum

rate of 134.4 kb/sec. However, following the failure Of the high-gain antenna (HGA)
to fully deploy, a completely new communication link design was established that is

based on Galileo's S-band (2295 MHz), low-gain antenna (LGA). The new link relies

on data compression, local and intercontinental arraying of antennas, a (14,1/4)

convolutionaI code, a (255,M) variable-redundancy Reed-Solomon code, decoding

feedback, and techniques to reprocess recorded data to greatly reduce data losses

during signal acquisition. The combination of these techniques will enable return

of significant science data from the mission.

..4

I. Introduction

The Galileo spacecraft was launched in October 1989

for a 6-year cruise toward Jupiter [1]. Its Venus-Earth-

Earth Gravity Assist (VEEGA) trajectory, shown in

Fig. 1, includes encounters with Earth and two key as-

teroids, leading to its prime objective--long-term inves-

tigation of the Jovian system. During the investigation,
Galileo will release a probe into Re Jovian atmosphere,

encounter Jupiter and its moon Io at close range, and con-

duct an 18-month, 10-encounter orbital tour of Europa,

Ganymede, and Calisto. Throughout its travel, a variety
of sensors will collect scientific data such as images, mag-

_ic fields, and chemical composition for transmission to
NA.SA's Deep Space Network (DSN) tracking stations.

The Galileo downlink was originally designed to uti-

lize a 15-ft-diam (4.572 m) parabola-shaped ttGA on the
spacecraft. This antenna was folded during the launch

and early flight awaiting an unfurling sequence that was

scheduled for April 1991. However, the HGA did not open

properly, resulting in a nonsymmetrical antenna pattern

with wide gain fluctuations, rendering it ineffective for re-
liable communications. After repeated attempts to solve

this anomaly, the mission was reoriented in March 1993 to
use the S-band LGA.

Because of the great reduction of the power received

at the ground stations, the Galileo project has teamed

with TDA and the appropriate technical organizations to

develop a communications plan that maximizes the data
return for the LGA-based S-band link) The remainder

of this article describes in some detail the techniques uti-

lized in this design and their applications to future space
missions.

II. Link Design

In redesigning the link, the team searched for methods

that maximize the "bang for the buck," i.e., those that

1L. Dcutsch a_adJ. Marr, Low Gain Antenna S-Band Contingency
Mission, 1625-501 (internal document), Jet Propulsion Laboratory,
Pasadena, California, April 10, 1992.
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provide the most cost-effective increases in science return.

This proved to be a delicate task--unlike measures like

transmitter power or data rate that are objective and lend

themselves to easy quantifying and comparison, "science

return" is a subjective measure and depends on the end-

user's preferences. The resulting design relies heavily on

data compression, augmented by channel coding, arraying,
and antenna improvement, to both increase the rate of the
downlink and the "value" of each downlinked bit.

As shown in Fig. 2, when implementing this new design,

JPL will be loading new software on the Galileo space-
craft, enhancing the Deep Space Communications Com-

plexes (DSCCs) at Goldstone, California; Canberra, Aus-

tralia; and Madrid, Spain, and upgrading other process-

ing facilities. The DSCC improvements consist of a new

subsystem, denoted DSCC Galileo Telemetry (DGT), that

will be installed at the DSCCs in late 1995 and improve-
ments to the Canberra antennas.

A. Data Compression

Galileo generates three types of data: images, low-rate

science, and engineering. With a large number of algo-
rithms available in the published literature, the overrid-

ing issue was to identify those algorithms that meet the

spacecraft constraints and can be implemented in software

in the spacecraft computers. Galileo, of a late 1970's de-

sign, uses what, at the time, was modern technology: 8-bit

and 16-bit microprocessors with total memory of less than

1 MByte, well below what would be considered acceptable
for a modern desktop workstation.

The design team has elected to compress the image data

primarily with an integer cosine transform (ICT) [2,3], a
derivative of the conventional discrete cosine transform

(DCT) method. The ICT is an especially economical im-

plementation for fixed point processors. In the past, lossy

algorithms such as the DCT or ICT have been rejected

from use in deep space probes due to the uniqueness of

the data. With the Galileo predicament, a team of de-

velopers and scientists determined that with compression

ratios as high as 10:1, the resulting images, though not
ideal, are of acceptable quality.

The ICT implementation for Galileo is augmented with

an error-containment capability. This is important be-
cause the deep space link often operates with reduced mar-

gins and is sensitive to data gaps. The ICT error contain-

ment is applied to minimize the impact of the gaps that
could not be avoided.

For the low-rate science and engineering data, the de-

sign team considered lossless algorithms focusing on the

Rice [4], Lempel-Ziv-Welsh (LZW) [5], and Huffman code

[6] approaches. These approaches are still being evaluated,

with emphasis on minimizing the additional loading on the
restricted spacecraft computer resources.

B. Data Rate Averaging

Figure 3 shows qualitatively how the "science capture"

and "downlink capacity" vary for a typical deep space mis-
sion. The downlink capacity varies primarily with the dis-

tance of the spacecraft from Earth. In contrast, science

capture is often massive during short events (e.g., plan-

etary encounters) with long "cruise" periods in between,
when a much lower volume of science data is captured.

Missions communications systems are designed to handle

the peak science capture, resulting in excess link capac-

ity during the "cruise" phases. Prior to the Galileo HGA

anomaly, this was the planned Galileo strategy. However,
with the anomaly, it became desirable to buffer data dur-

ing peak science capture periods to reduce the variation in
downlink rate.

Galileo has two such buffering areas: an onboard tape
recorder and the resident memory. The tape recorder, with

a total capacity of approximately 100 MBytes, is used to

record images and other data at encounter periods and

then replay the data at a much slower rate during cruise

periods. The resident memory is used to store and replay
the probe data and to add a further buffer between the

tape recorder replay and the downlink transmitter.

This buffering allows for spreading of the data return
to optimize the link utilization and minimize unused link

capacity, in line with the low achievable data rates and

the high goals of the Galileo mission. However, it also

imposes a heavy burden on the ground receiving stations.

As currently stated, Galileo requires continuous support

(24 hours per day for almost 2 years) from the DSN 70-m
network, plus augmentation from some 34-m antennas.

C. Improved Channel Coding

Galileo planned on utilizing a channel coding scheme

similar to the standard Consultative Committee for Space

Data Standards (CCSDS) channel coding: concatenated

(7,1/2) convolutional code and (255,223) Reed-Solomon

(R/S) code. To improve performance, a modified coding
scheme [7], shown in Fig. 4, is implemented. Its key fea-
tures are listed below:

(1) A (14,1/4) convolutional code that provides an ap-

proximate 1.2-dB coding gain over the (7,1/2) code.
The selection of the (14,1/4) code is forced by the

hardware configuration of Galileo--it is impossible
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to bypass the hardware (7,1/2) encoder, hence the

higher-constraint code is constructed by cascading

an (11,1/2) software encoder to the (7,1/2) hard-
ware encoder. Though not optimal among (14,1/4)
convolutional codes, it provides remarkable coding

gain.

(2) A variable redundancy R/S code. The particular
implementation utilizes a four-redundancy code.

(3) A redecoding path, where data that have been de-
coded by the Viterbi decoder and R/S decoder are

then passed a second time (and, if needed, addi-

tional times) through the Viterbi and R/S decoders.

During each pass, the Viterbi decoder operation is

"aided" by the knowledge that some bits were de-
termined "true" in previous pass(es).

(4) An improved synchronization scheme [8] that accom-
plishes frame synchronization and Viterbi decoder

node synchronization jointly.

Overall, the decoder provides a coding gain of approx-

imately 1.8 dB as compared with the standard published

by the CCSDS. Note that the decoder performance is mea-
sured at a bit error rate of 5 x 10 -3.

(2)

D. Minimization of Gaps

As described earlier, the downlink will operate continu-

ously and transmit compressed data. Because of the com-

pression and coding, even minute interruptions pose the
risk of data being undecodable, with resulting severe dam-

age to the decompression process. Such gaps occur in the

deep space communications link due to receiver and de-
coder acquisition periods, pointing errors, and momentary

equipment failures. Though it is impossible to fully pre-

vent these gaps, the DGT incorporates two capabilities

that greatly reduce their impact:

(1) The DGT's recording and buffering, as shown in

Fig. 5, provides extensive recording of the signals,
including those prior to any synchronization. This

protects against data loses during acquisition.

The DGT uses adaptive gap-closure algorithms con-

sisting of software that attempts to recover data by

reprocessing recorded data while adjusting the pro-
cess parameters (e.g., tracking loop bandwidth) to
recover data that were lost due to mismatches be-

tween the actual signal and the processing parame-

ters.

Clearly, gaps caused by complete signal loss (e.g., large

antenna pointing errors) are likely to be not recoverable.

But, by and large, these techniques are expected to provide

the decompressor with a minimal-gap bit stream.

E. Arraying

A popular technique for increasing the data rate is to

array the signals from multiple antennas. For the weak

Galileo signals, only large DSN antennas with diameters of
34 m and 70 m are used. Two arraying techniques are ap-

plied: full-spectrum combining [9,10] and complex-symbol

combining [11].

Unfortunately, while arraying increases the overall ratio

of antenna gain to system noise temperature (G/T), it also
tends to reduce the overall reliability: the link, marginal

as it is, becomes dependent on the correct operation of a
number of antennas. In addition, the operational complex-

ity of such a configuration, and the associated probability
of human error, must be considered. Nevertheless, judi-

cious application of arraying is expected to improve the
overall science return.

F. Improved Antennas

Finally, the G/T of the individual antennas involved in

the Galileo support was examined. It was observed that
the DSN antennas were designed for multifrequency sup-

port, primarily at the S- and X-bands. The multifrequency
support, as well as the extensive test capability, resulted

in receiving systems with less-than-optimal S-band G/T.
Since Galileo is visible primarily from the southern hemi-

sphere, the DSN embarked on modifying the S-band re-

ceiving system in the Canberra 70-m antenna to improve

its G/T by 0.97 dB. This is achieved, primarily, by reduc-

ing the system noise temperature from 15.6 to 12.5 K.

III. Future Uses

Is the approach taken in the improvement of the down-

link suitable for Galileo only, or does it have a long-term

payoff? The answer depends on the direction that the

space program takes.

The DGT design is especially appropriate for the space

program that NASA envisions, focusing on a large number
of low-cost missions. For such missions, highly-directional

antennas (mechanical or steered-beam) are costly; broad-

beam antennas may be the norm. With these antennas,
and the limited power offered by nonnuclear-based power

supplies, the communications engineer must contend with
lower data rates and tighter utilization of any communica-

tion link excess. The DGT approach provides an avenue to

optimize the science return for a relatively low data rate.

Three classes of missions are of special interest:

(1) Multiple objects-in-a-beam missions. For missions
that use several vehicles to land and/or orbit a
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planet, a single antenna can be used for tracking.
With the DGT approach, a single recorded stream

can be processed sequentially to extract the data for
the individual vehicles in near-real time. Transmis-

sions for individual vehicles can be separated using
any of the multiple-access techniques currently in
use.

(2) Large uncertainty-in-predict missions. At times,
spacecraft experience events where the character-

istics of the downlink signal pose large uncertain-

ties. Often these are associated with high dynamic

events--change of trajectory, release of a probe, etc.

The DGT, not requiring synchronization prior to

the first recorder, allows capturing of the signal and
postevent recovery.

(3) Short, intense, science-capture missions. For some

missions, all the science data are captured during a
short encounter period. The DGT enables the space-

craft to buffer the data on board and slowly downlink

it, assuring the ability to close gaps and recover an
uninterrupted science stream.

Overall, the DGT approach seems highly applicable to

future missions. In fact, the only part of the DSCC aug-
mentation that will find minor usage after this mission is

the enhancement for the 70-m antenna. It will likely be
dismantled after the end of Galileo support.

IV. Conclusions

A science-rich Galileo mission is being enabled through
a concentrated effort to optimize the communications
downlink with modifications both on Galileo and in

NASA's ground tracking system. Much of the techniques,
approach, and equipment can be applied to support other
deep space missions.
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The Consultative Committee for Space Data Standards (CCSDS) recommends
that space communication links employ a concatenated, error-correcting, channel-

coding system in which the inner code is a convolutional (7,1/2) code and the

outer code is a (255,223) Reed-Solomon code. The traditional implementation is to

perform the node synchronization for the Viterbi decoder and the frame synchro-

nization for the Reed-Solomon decoder as separate, sequential operations. This

article discusses a unified synchronization technique that is required for deep space

missions that have data rates and signal-to-noise ratios (SNRs) that are extremely
low. This technique combines frame synchronization in the bit and symbol domains

and traditional accumulated-metric growth techniques to establish a joint frame

and node synchronization. A variation on this technique is used for the Galileo
spacecraft on its Jupiter-bound mission.

I. Introduction

The traditional approach to decoding the channel error-

correcting coding in the space communication links [1] is
for the implementation to follow the CCSDS functional

model [2] shown in Fig. 1, i.e., establish a concatenated de-

coder consisting of two distinct stages: a Viterbi decoder
and a Reed-Solomon decoder, with no feedback between

the two stages. Each of the two decoders requires appro-

priate synchronization: the Viterbi decoder requires node

synchronization (the grouping of n-tuplets of soft symbols

that correspond to a single information bit), and the Reed-

Solomon decoder requires frame synchronization (the de-
tection of the transport frame and the extraction of Reed-

Solomon words). In most applications, data received prior

to the accomplishment of synchronization are lost; how-

ever, as long as the symbol-signal-to-noise ratio (SSNR,

Es/No) is relatively high, the synchronization time is short

and the data loss is often ignored.

For a deep space communications environment, such an

approach is often deficient--Es/No could he low, hence

the synchronization time, measured in number of bits,

would be longer. As the data rate decreases, the synchro-
nization time, fixed in terms of number of bits, can result

in loss of a significant percent of total data. Also, the se-

quential nature of the synchronization process compounds

the data loss. To speed the synchronization process and

reduce the data loss, we introduce here a joint synchroniza-

tion technique that is being applied in the ground support

for the Galileo deep space mission to Jupiter [3].

Section II introduces the core algorithms and the joint

synchronization approach. Section III discusses the ap-
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plication of joint synchronization in several scenarios, and

Section IV presents two specific cases where the joint syn-

chronization approach is applied.

II. Description of Synchronization

Algorithms

The structure of the general joint synchronization de-

coder is shown in Fig. 2. It consists of the traditional

series of processing functions, namely a Viterbi decoder, a
deinterleaver, and a Reed-Solomon decoder, preceded by a

soft symbol buffer. The processing functions are controlled

by a joint synchronization function, which in turn relies on

several core synchronization algorithms. In this article, we
select three such core synchronization algorithms: a frame-

marker correlator in the symbol domain, a frame-marker
correlator in the bit domain, and an accumulated-metric

growth-rate indicator. It is worth noting that decoders of-
ten contain other synchronization indicators that can be

integrated into a joint synchronizer using techniques sim-
ilar to those described below.

A. Bit-Domain Correlation

This algorithm examines the Viterbi-decoded bits at

the output of the Viterbi decoder for presence of the frame

marker pattern. When the pattern is detected, it indicates
that the node synchronization hypothesis is "true" and, by

definition, frame synchronization was accomplished.

Let the transport frame be of length M, including a

frame marker of length N at the beginning of each frame.
Let the frame marker be (do(i), i = O, ..., N-l, do(i) =

-4-1). Then, the transmitted data stream can be repre-
sented as

D(i) = ( do(i rood M), i mod M < N) (1)data, i rood M >_

The bit-domain correlation algorithm computes the

running correlation, Jbit_(k), between the frame marker

and the received signal s(i)

1 N-1

Jbit_(k) = -_ Z do(i)s(i + k) (2)
i=0

where s(i) is D(i) contaminated by the effects of trans-

the expected value of Jbit,(k) is near zero. In practice,
there are two methods to implement the bit-domain cor-

relation algorithm:

(1) Testing for threshold, where the value of dbit,(k) is
compared against a threshold for a large number of

k's. When the value of Jbit, (k) exceeds the threshold
for the first time at k0, the hypothesis that s(i+ ko)

is the beginning of the frame marker is declared true.

(2) Testing for maximum, where the value Jb,,(k) is
maximized over all 0 < k < M, regardless of a

threshold. Let k0 be the location where Jbit,(k)

reaches its highest value over the search range; then

the hypothesis that s(i + ko) is the beginning of a
frame marker is declared true.

In the special interest of transparent convolutional

codes (i.e., if the soft symbols are inverted, the Viterbi-
decoded bits are inverted as well), Jbi_,(k) may take the
values of + 1 for "correct symbol phase correlation" or - 1

for "inverted symbol phase correlation," indicating that

the Viterbi decoder is synchronized but the soft symbols
are inverted and must be returned to the correct phase

(i.e., reinverted) prior to deinterleaving. For transparent
codes, implementing the bit-domain correlation requires

searching for both a maximum and a minimum of Jbit,(k),

or alternatively employing high and low thresholds.

The bit-correlation approach is powerful and usually

highly reliable. Its main disadvantage is that it requires
hypothesis testing at all possible offsets of the soft symbol

n-tuplets, as well as the correct and inverted symbol phases

(only for nontransparent convolutional code). Thus, for a

(15,1/6) nontransparent convolutional code, a large num-
ber of attempts (12 attempts in the worst case, 6 attempts

on the average) are required before synchronization is ac-

complished.

B. Symbol-Domain Correlation

This algorithm examines the soft symbols prior to the
Viterbi decoder for presence of an encoded version of the

frame marker pattern. When the pattern is detected, it

provides both the node and frame synchronization prior

to any decoding operation. In this case, the symbol corre-

lation function is

N

J, um(k) - N - (K - 1) F_ (do(i)) S(i + k) (3)

mission, reception, and decoding. The expected value of

Jbi,,(k) is 1 when the received sequence is perfectly aligned where Fe (do(i)) is the n-tuplet of soft symbols correspond-
with the frame marker. Elsewhere, for a properly selected ing to a single bit of the frame marker, S(i + k) is an n-

frame marker, its autocorrelation properties ensure that tuplet of received symbols, and the operation on the two
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n-tuplets is a dot product. The main disadvantage of this

algorithm is that correlation can be performed only over
part of the frame marker. For a frame marker of N bits

and convolutional code of length K, only the symbols cor-

responding to the last N - (K - 1) bits are known in the
symbol domain--the symbols that correspond to the first

K - 1 bits of the frame marker are corrupted by the un-

known previous contents of the encoder. Depending on

N, K, and E_/No, the partial correlation may degrade
the correlation SNR sufficiently to make synchronization
difficult.

To assess the performance of synchronization using

symbol-domain correlation, let us compute the probability
of false detection. Let the soft symbol be modeled as hav-

ing a value of :t=m + nsym(i), where +m has an equal proba-

bility of being +m and -m and nsum(i) is N(0, _r_um). 1 Let
us assume that the frame marker has been selected such

that its autocorrelation is near ideal, i.e., no significant
secondary correlation peaks exist. Let us further assume
that the correlation between the frame marker and a noise-

less set of received symbols contains no significant peaks.

Then, when the received symbols are not aligned with the

frame marker, J, vm(k) can be modeled as g(0, a),

o" = o'svm/_/n(N - (K - 1)) (4)

while when the received symbols are aligned with the frame

marker, J, um(k) is modeled as X(m,o'). The probability
of selecting an incorrect peak is given by

O0

1 _ _-m2Pro= _--_r e _
--00

---!--1 dy (5)
x I- v'_o"

If the effect of correlation between a random symbol

pattern and the frame marker is included, the result-

ing probability of selecting an incorrect peak is given by
Eq. (6) below. Figure 3 plots Pro as a function of the

correlation SNR, 10 log (m2/2a 2)

I A zero-mean, normally distributed random variable with a stan-
dard deviation of as_m.

OO

X_m _

1 e-_

[ (' £(:)x 1- 2ffi=O

1 -2_o dy dx (6)x v ge
-- OQ

C. Accumulated Metric Growth Rate

This algorithm examines the accumulated metric at all

the Viterbi decoder states, indicating the level of "mis-

match" between the received soft symbol stream and the

bit stream associated with the specific state. Even though

the accumulated metric varies from state to state, its peak-

to-peak variation is bounded by

(constraint length - 1)(max branch metric)

Because of this bound, implementors often monitor

the growth rate of a single selected accumulated metric

where at high Eb/No there is a clear distinction between

in-node-synchronization and out-of-node-synchronization
conditions. The distinction between the two conditions be-

comes more blurry as Eb/No decreases; the thresholds for

detecting the in-lock and out-of-lock hypotheses must be

chosen carefully to meet the probability-of-detection and
false-alarm requirements. Unfortunately, threshold selec-

tion must be accomplished empirically, as the growth rate

measurement does not lend itself to analytic expressions.

III. Unified Synchronization

The objective of the unified synchronization approach

below is to realize the attractive benefits of the symbol-

domain correlation; namely, accomplish node and frame

synchronization prior to the Viterbi decoder, while miti-
gating the algorithm's degraded performance at low SNR.

Case 1: Independent frames, minimal restric-

tion on latency. Let us first observe that many communi-

cations links consist of transport frames that are indepen-

dently encoded as a result of the fact that the frame syn-

chronization marker is longer than the constraint length
of the convolutional code, therefore serving as an effec-

tive barrier between the frames, resetting the encoder to
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a known state. Let us also assume that there are mini-

mal restrictions on latency. 2 In this case, a simple decoder

architecture is possible, 3 as shown in Fig. 4.

In this architecture, no decoding is initiated until the

input stream has been separated into frames, using frame-
marker correlation in the symbol domain. Once the frame

detection is verified, the frames are processed indepen-

dently; the function labeled "Viterbi and Reed-Solomon
decoders" is replicated as many times as needed to meet

the required data rate and latency. This architecture is es-

pecially suitable for implementation with parallel proces-
sors and for cases where a "pool" of resources is available

to cover the needs of many users with diverse needs.

Case 2: Independent frames, restriction on la-

tency. The process of frame detection often requires per-

forming the correlation over multiple frames and bridging

"gaps" that eliminate frame markers, therefore introduc-

ing a substantial, and sometimes unacceptable, latency.
In this case, the architecture can be modified as shown in

Fig. 5, utilizing the symbol-domain frame-marker corre-

lator only for tentative frame identification. Decoding of
frames starts immediately following this tentative detec-

tion. However, results from the other synchronization al-

gorithms are used to verify the synchronization and are fed
back to allow correction of the synchronization, if needed.

The extent of input buffering and feedback depends on
a trade-off between the latency requirement and the imple-

mentation restrictions on data rate and available storage.

Case 3: Nonindependent frames or tight latency

requirements. This case occurs either when the frame
marker is shorter than the convolutional code constraint

length (hence, the encoding is not independent from frame

to frame) or when the tight latency requirement dictates
that Viterbi decoding must be initiated even prior to

2Latency is the time delay between the signal arrival at the antenna
and the time a fully decoded transport frame is available at the
output of the decoder.

3 E. Creenberg, JPL Interoffice Memorandum 3171-93-20 (internal
document), Jet Propulsion Laboratory, Pasadena, California, April
6, 1993.

frame synchronization. The resulting decoder architecture

is shown in Fig. 6--the Viterbi decoder relies on its in-

ternal measures, e.g., accumulated-metric-growth rate, to

achieve node synchronization, but receives feedback from

the symbol-domain and bit-domain frame-marker correla-
tors. In this architecture, multiple Viterbi decoders could

be employed to expedite the detection of the node syn-
chronization over multiple symbol phase offsets.

IV. Examples

The joint synchronization approach has been applied in

two decoder systems developed at JPL. The first decoder,

the Maximum-Likelihood Convolutional Decoder Mark III

(MCD III) [4,5], is a fully programmable (If., 1/n) Viterbi
decoder with 3 < K < 15 and 2 < n < 6. It is imple-

mented in a fully parallel architecture using 64 identical,

custom, very large-scale integrated circuit (VLSI) devices

capable of operating at bit rates of up to 1.1 Mbits/sec.

The MCD III incorporates all three synchronization algo-
rithms described in Section II, resulting in a flexible syn-

chronization architecture.

A more recent example is the Feedback Concatenated

Decoder (FCD) developed slbecifically for the Galileo mis-

sion [6]. This decoder is implemented in software on a four-
central-processing-unit (CPU) SUN workstation. It is ca-

pable of performing (14,1/4) Viterbi and four-redundancy

(255,z) Reed-Solomon decoding as well as the associated
redecoding at 160 bits/see. As an integrated decoder, it
is oriented toward symbol-domain frame synchronization,

while attempting to minimize latency (case 2 above).

V. Conclusions

We have presented a method of performing joint frame

and node synchronization for a concatenated decoder.

This approach enables a design that shortens the acquisi-
tion time and allows for parallel implementation of the de-

coder resource-demanding tasks, thus improving the over-

all decoder efficiency.
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Full-spectrum combining (FSC) and complex-symbol combining (CSC) are two

antenna-arraying techniques being considered for the Galileo spacecraft's upcoming
encounter with Jupiter. This article describes the performance of these techniques

in terms of symbol signal-to-noise ratio (SNR) degradation and symbol SNR loss.

It is shown that both degradation and loss are approximately equal at low values

of symbol SNR but diverge at high SNR values. For the Galileo S-band (2.2 to

2.3 GHz) mission, degradation provides a good estimate of performance as the

symbol SNR is typically below-5 dB.

For the following arrays--two 70-m antennas, one 70-m and one 34-m antenna,
one 70-m and two 34-m antennas, and one 70-m and three 34-m antennas--it is

shown that FSC has less degradation than CSC when the subcarrier and symbol

window-loop bandwidth products are above 3.0, 10.0, 8.5, and 8.2 mHz at the

symbol rate of 200 sym/sec, and above 1.2, 4.5, 4.0, and 3.5 mHz at a symbol rate

of 400 sym/sec, respectively. Moreover, for an array of four 34-m antennas, FSC has

less degradation than CSC when the subcarrier and symbol window-loop bandwidth

products are above 0.32 mHz at the symbol rate of 50 sym/sec and above 0.8 mHz
at the symbol rate of 25 sym/sec.

I. Introduction

In deep-space communications, combining signals from

multiple antennas is commonly referred to as arraying.

Arraying techniques are important because they can sig-

nificantly enhance system performance. For example, if

signal power-to-noise density ratio (P/N0) is a measure

of system performance, then the effective P/No after ar-
raying ideally should be equal to the sum of the P/No's

corresponding to individual antennas. A typical array-
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ing design trades complexity and gain (or improvement

in system performance). Arraying is an attractive option
for communication links operating near threshold. For in-

stance, consider the Galileo spacecraft, which is currently

on its way to Jupiter. Due to a malfunctioned high-gain
antenna, Galileo must rely on its low-gain S-band antenna

(and a much reduced link margin) for data transmission to

Earth. The Galileo S-band mission will employ arraying,
as well as other techniques such as suppressed carriers and

data compression, to improve its link margin and maxi-

mize data return. The current plan is to implement an

intercontinental array between antenna complexes in Aus-

tralia, Spain, and the United States. Each complex has one

70-m and several 34-m antennas available for arraying.

This article compares the full-spectrum combining (FSC)
and complex-symbol combining (CSC) arraying techniques
for the following five antenna combinations: two 70-m an-

tennas; one 70-m and one 34-m antenna; one 70-m and

two 34-m antennas; one 70-m and three 34-m antennas;
and four 34-m antennas. Even when communication links

are operating above threshold, arraying is an economically
attractive option to increase the scientific return of a mis-

sion without having to build larger antennas. Smaller,
inexpensive antennas (i.e., 34-m) can be built at less cost

than a single larger antenna (i.e., 70-m), but with at least

an equivalent performance after proper arraying.

A recent study [1], which presented an overview of sev-

eral antenna-combining techniques, concluded that FSC

resulted in the least degradation for weak signals. That
study didn't consider the CSC arraying technique, which

has been made possible by the advent of all-digital re-

ceivers in NASA's Deep Space Network (DSN) [2]. The

CSC technique is an attractive arraying option because it

requires little modification to existing systems. In FSC,

depicted in Fig. l(a), the received radio frequency (RF)
signal at each antenna is downconverted to an intermedi-

ate frequency (IF), transmitted to a central location where

it is aligned and combined with signals from other anten-

nas, and then demodulated by a single receiver chain. The

chain consists of one carrier loop, one subcarrier loop, one
symbol-synchronization loop, and one matched filter. The

RF/IF downconverter is assumed to output a complex IF

signal (two IF signals that are orthogonal) denoted by the

double lines in Fig. l(a). The processing needed to align

and combine the IF signals is shown in Fig. l(b) for an
array of two antennas. The details of this scheme are dis-

cussed in the section on FSC performance.

In CSC, depicted in Fig. 2(a), the received RF signal

at each antenna is first open-loop downconverted to IF; it,

in turn, is open-loop downconverted near baseband using

a complex IF reference. The IF in-phase (I) and quadra-

ture (Q) references are tuned to the predicted IF carrier

frequency. The resulting complex signal near baseband,
centered at the carrier predict error, is used for subcarrier

tracking and symbol synchronization, which can be accom-
plished using either the I arm of the carrier alone or both

the I and Q arms. The latter requires more complexity but
results in an improved performance, as one would expect.

After subcarrier demodulation, the signal is input to a

pair of matched filters that output soft-quantized complex
symbols that modulate a tone with frequency equal to the
carrier-predict error. Since there are two channels in the

down-conversion process (carriers I and Q), the symbols at
the matched filter output modulate quadrature tones and

can be viewed as complex symbols. The complex symbols
from multiple antennas are then transmitted to a central

location, aligned and combined at baseband, and demod-

ulated using a baseband Costas loop. The CSC output is
a single real-combined symbol stream. The combiner for

CSC is shown in Fig. 2(b) and discussed in the section on
CSC performance.

The key difference between FSC and CSC is the order

of carrier-phase alignment between the antennas. In FSC,

carrier-phase alignment precedes subcarrier demodulation,

symbol synchronization, and matched filtering; in CSC, it

follows. In both cases, the carrier phases are aligned and

the signals are combined prior to carrier phase tracking
and demodulation. As a result, for an array of two 70-m

antennas, the effective P/No at the input to the subcar-

rier and symbol loops in CSC is about 6 dB lower than

FSC. Three of the 6 dB are due to the signals in CSC be-

ing combined after the subcarrier and symbol loops; the

remaining 3 dB result from subcarrier and symbol syn-
chronization that is performed without carrier lock.

Assuming the carrier is locked, the effective P/No at the

input to the subcarrier and symbol loops in CSC is about
3 dB lower than FSC. Another key difference between FSC

and CSC arises when arraying a 70-m and 34-m antenna.

In the Galileo case, the signal is so weak that it is harder

for a stand-alone 34-m antenna to lock to the signal than

a stand-alone 70-m antenna. Consequently, when imple-
menting CSC between the two, the 70-m antenna needs

to enable the 34-m antenna in tracking the subcarrier and
symbols. When they are located within a few miles of

each other, the 70-m antenna can transmit subcarrier and

symbol-loop frequency and phase information to the 34-m

antenna. However, when implementing FSC between a 70-
m and 34-m antenna array, no aiding of the 34-m antenna

is required since the carrier, subcarrier, and symbol-timing

loops operate on the combined signal. Furthermore, since

it is difficult for a single 34-m antenna to lock on to the sig-
nal by itself, an array of four 34-m antennas is less effective
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using CSC than FSC. These differences are summarized in
Table 1.

In this article, the performances of FSC and CSC are

measured both in terms of symbol SNR degradation and

symbol SNR loss. Symbol SNR degradation is defined
as the ratio of the SNR at the matched filter output in

the presence of nonideal synchronization to the SNR in

the presence of ideal synchronization. On the other hand,

symbol SNR loss is defined as the additional symbol SNR
needed in the presence of imperfect synchronization to
achieve the same symbol error rate (SER) as in the pres-

ence of perfect synchronization. Mathematical representa-

tions of degradation and loss are given in the next section.

Comparatively, loss gives the absolute, while degradation

gives the relative, performance advantage of an arraying
scheme. Moreover, since the calculation of degradation is

less demanding than computation of loss [3], it is the pre-
ferred calculation method at low-symbol SNR's where it

is approximately equal to loss. In the following sections,
the degradation and loss for a single antenna, FSC, and
CSC are derived and then illustrated via various numerical

examples.

II. Single Receiver Performance

In deep-space communications, the downlink symbols

are first modulated onto a square-wave subcarrier; the
modulated subcarrier then modulates an RF carrier [4].

This allows transmission of a residual carrier component

whose frequency does not coincide with the data spectrum.

At the receiver, the deep-space signal is demodulated us-

ing a carrier-tracking loop, a subcarrier-tracking loop [5],

and a symbol-synchronizer loop [6], as shown in Fig. 3.

Depending on the modulation index, carrier tracking can
be achieved by a phase-locked loop (PLL), Costas loop,

or both [7]. The PLL or a combination of loops is used
for modulation indices less than 90 deg, whereas a Costas

loop is used when the modulation index is equal to 90 deg.

The deep-space signal with the carrier fully suppressed t

can be represented as [8]

r(f) = x/r2-Pd(t)Sqr(woc t + O,e) cos (wet + 0e) + n(0 (1)

where P is the received data power in watts (W); we and

0c are the carrier angular frequency in radians per second

(rads/sec) and phase in fads, respectively; and Sqr(w,ct +

0,_) is the square-wave subcarrier with subcarrier angular

1 This article considers the Galileo S-band scenario in which the

carrier is fully suppressed.

frequency w,c in rads/sec and subcarrier phase 0,¢ in rads.

The symbol stream d(t) is given by

d(O = fi dkp($ - kT) (2)
k=-oo

where dk is the 4-1 binary data for the kth symbol and T

is the symbol period in seconds. The baseband pulse p(t)

is unit power and limited to T seconds. The narrow-band

noise n(t) can be written as

n(t) = v%,(0 cos (_t + o_) - v%,(0 sin (_ot + or) (3)

where he(t) and n,(t) are statistically independent, sta-
tionary, band-limited, white Gaussian noise processes with

one-sided spectral density level No (W/Hz) and one-sided

bandwidth W, (Hz), which is large compared to 1/T. Af-

ter signal demodulation, the symbol stream at the output
of the matched filter in Fig. 3 can be written as [8]

{ v/-'PC_C_dk + nk d_, -7-dt_-i
V k -- v/-fC_C,c(1 - )dk + nk dk ¢ dk-,

(4)

where the noise nk is a Gaussian random variable with

variance cr_ = No/2T. The signal reduction functions Cc

and C_¢ are due to imperfect carrier and subcarrier syn-
chronization and are given by [1]

C_ = cos ¢_ (5)

C,, = 1 - 2-1¢,,I (6)
7r

where ¢, and ¢,c (in rads), respectively, denote the carrier-

and subcarrier-phase tracking errors. The symbol tim-

ing error ¢,v, which affects the output only when there
is a symbol transition, reduces the signal amplitude by

1 -I¢,,1/_. Ideally, $_ = ¢,¢ = ¢,u = 0 and Eq. (4) re-
duce to the ideal matched filter output vk = V/ffdk +nk, as

expected. In writing Eq. (4), it is assumed that the carrier,
subcarrier, and symbol loop bandwidths are much smaller

than the symbol rate so that the phase errors ¢_, ¢,¢,

and ¢,v can be modeled as constant over several symbols.
Throughout this article, ¢c is assumed to be Tikhonov

distributed, and Csc and ¢,v are assumed to be Gaussian

distributed. Let Pc(Co), P,c(¢,_), and P,v(¢,v) denote re-

spectively the carrier, subcarrier, and symbol phase error

density functions. Then
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otherwise

(7)

2 and 2where _rsc _rsy are the reciprocals of the subcarrier and

symbol loop SNR's, respectively, denoted as P,c and P_v"
The carrier [8], subcarrier [8], and symbol [6] loop SNR's
are respectively given as

where Ik(x) denotes the modified Bessel function of order

k, and pc is the suppressed carrier or Costas loop SNR.

Also, P,c(¢,c) and P,y(¢,y) are given by P/No( 1 )-1pc- l + 2zT/No (9)

pi(¢i) = exp (-¢_/2a?)
2X/T_-i , i ---- sc, sy (8) (2) 2 P/No( 1 )--1Psc = W, cBs-----_c1 + 2Es/N-------_ (10)

Psy

P/No W,- 2V V eXP
(11)

where E,/No = PT/No is the symbol SNR, erf (x) =
2/_/_ f0_ exp (-v 2) dv is the error function, and Be, B,c,

and Bsy (in Hz) denote the single-sided carrier, subcarrier,

and symbol loop bandwidths, respectively. The parame-

ters W_ and Wsv, which denote the subcarrier and symbol

window, are unitless and limited to (0, 1]. The loop SNR's

for the subcarrier and symbol loop are valid only when

rr/2 Wsc > O'se and 7rWsv >,_ O'sy.

A useful quantity needed to compute degradation and

loss is the symbol SNR conditioned on ¢c, ¢,¢, and ¢,v"
The conditional symbol SNR, denoted SNR I, is defined

as the square of the conditional mean of vk divided by the
conditional variance of vk, i.e.,

2

SNRI= (vk/¢c, ¢,¢, ¢,v)

2PT p2r,2- (2PT f,2p_
--_-o ,_,__. 1 - _

(12)

where (x/y) denotes the statistical expectation of x con-
2ditioned on y, and vk and _,_ are defined earlier.

A. Degradation

The symbol SNR degradation is defined as the ratio
of the unconditional SNR at the output of the matched

filter in the presence of imperfect synchronization to the

ideal matched filter output SNR. The unconditional SNR,

denoted SNR, is found by first averaging Eq. (12) over
the symbol transition probability, and then over the car-

rier, subcarrier, and symbol phases. Letting _ denote the

average of x, the unconditional SNR is given as

SNR= 2PT-_ C_e C_v"
No

(13)

where the signal amplitude reduction due to symbol timing

errors (averaged over the symbol transition probability) is
denoted C,v , and given as

c,_=1 1¢,,I2r (14)
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Averaging over the phases yields [1]

-- 1[ l+ j
(15)

1 4 1

c;c= +
(t6)

= 1- 2 1 + 47 = fi_y
(17)

Ideally, when there are no phase errors (i.e., when pc =

Psc = Psy = oo), C_ = C2sc = C_y = 1 and Eq. (13) reduce
to SNRide_Z = 2PT/No, as expected. The degradation,

D, for a single antenna is thus given by

( SNR _ = _10 log,0C_C_cC_y
D = -10 log10 \S_,l /

(18)

B. Loss

For the single receiver shown in Fig. 3, the SER, de-

noted P,(E), is defined as

2 OO OO

-- -_ --00 -- ¢:X)

(19)

wh_*) is the functional relationship between SER and

and P_(E) is the SER conditioned on the phase
errors ¢c, ¢_e, and Csy. Following similar steps as in [9],
the conditional SER can be shown to be

1 (x/SNR, when&: )P'(E) = _ eric # dk-1

+ 41 erfc (x/SNR' when dk = dk-, ) (20)

where

2/erfc (x) = _ exp (-v 2) dv = 1 - err (x)
(21)

is the complementary error function. Substituting Eq. (12)

for SNR' in Eq. (20) yields

p'(E)=_erfc [ Eft' C (1

lerfc [ _ C (22)

Ideally, when there are no timing errors (i.e., when pc =

P- = P,u = oc), Cc = C,¢ = (1-l¢,ul/_) = 1 and Eq. (19)
reduce to the well-known binary phase-shift keyed (BPSK)

error rate, P,(E) = (1/2) erfc (V/-_).

Symbol SNR loss is defined as the additional symbol

SNR needed in the presence of imperfect synchronization
to achieve the same SER as in the presence of perfect syn-

chronization. Mathematically, the SNR loss due to im-

perfect carrier, subcarrier, and symbol timing references

is given in dB as

LaB = --20log [f-I(p,(E))] [[infinite loop SNR]

+ 20log [f-'(P,(E))] I[finit _ loop SNR] (23)

where P,(E) is defined in Eq. (19). The first term in

Eq. (23) is the value of Es/No required at a given value of

Ps(E) in the presence of perfect synchronization, whereas
the second term is the value of E,/No required for imper-

fect synchronization. Note that loss defined in this way is

a positive number.

III. FSC Performance

The FSC technique, depicted in Fig. l(a), combines IF

signals from multiple antennas and then demodulates the
combined signal using the single receiver described in the

previous section. The resulting gain is maximized by align-

ing the IF signals in time and phase prior to demodulation

[1]. The alignment algorithm for an array of two antennas
is shown in Fig. l(b). Here signal 1 is assumed to be de-

layed by r seconds, with respect to signal 2. The IF signal
from antenna 2 is first delayed by _- seconds, where _ can

be the output of the delay estimation loop, or it may be

predicted from the geometric arrangement of the antennas
and spacecraft. After delay compensation, both signals

are input to the phase estimator, which outputs 021, the
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estimate of 021, which is the phase of signal 2 relative to

signal 1 at the estimator input. Subsequently, signal 2 is
phase shifted by an amount equal to -021, scaled by 2/32,

and then combined (or added) with signal 1. Notice in

Fig. l(b) that the phase estimator filters the IF signal so

that only the L,¢ harmonics of the IF spectrum are used

for phase estimation. It is shown later that the accuracy
of the estimates depends on B¢or_, the bandwidth of the

bandpass filter (BPF) centered at IF, and T_, the estima-
tion period.

The symbol SNR degradation and loss analysis for FSC

closely follows the analysis of the previous section as the

combined signal is demodulated by a single receiver. As

before, imperfect carrier, subcarrier, and symbol synchro-

nization are expected to reduce the symbol SNR. In addi-

tion to those effects, however, the reduction due to imper-

fect combining must be accounted for as well. Assuming

that the IF signals in Fig. l(b) are perfectly aligned in
time (_" = r) but misaligned in phase, 3 the matched fil-

ter output for FSC is given by Eq. (4) with the modifica-

tion that the one-sided noise power spectral density (PSD)
level No is now equal to the effective one-sided noise level

N0.1 j of the combined signal, and the data power P is
now equal to the combined power P' conditioned on the

phase-alignment error. The effective one-sided noise PSD

level at the matched filter input is given by [1]

L

N0_j, = Nol E % (24)
7t----1

where

P. N0a

7. - P1 Non (25)

and where Pn and Non denote, respectively, the signal
power and one-sided noise PSD level of antenna n. Ta-

ble 2 lists the % factors 4 for several DSN antennas at

both S-band (2.2 to 2.3 GHz) and X-band (8.4 to 8.5 GHz).
Throughout this article, the ratio P1/Nol is taken to be the
signal power to one-sided noise PSD level of the reference

antenna which, by convention, is taken to be the antenna

2 Here, [32 _ _(Nol/No2)is the weighting factor [3].

3 This is a simplifying assumption consistent with the assumption in

[1].

Deep Space Network/Flight Project Interface Design Handbook, D-
810-5, Rev. D, vol. I (internal document), Jet Propulsion Labora-

tory, Pasadena, California, Modules TCI-10, TCI-30, and TLM-10,
1988.

with the highest gain. Consequently, in this article % < 1.
Table 2 lists the gamma values for 70-m and 34-m anten-

nas assuming the 70-m antenna is the reference antenna.

The same table can be reused for an arbitrary reference

antenna as follows. Consider a three-element array con-

sisting of one high-efficiency (HEF) 34-m antenna and two
standard (STD) 34-m antennas operating at X-band. Let

the 34-m HEF be the reference antenna with 71 = 1, then

the 34-m STD antennas have 72 = ")'3 = 0.13/0.26 = 0.5.

Let the phase-alignment error between signal n and sig-
nal 1 be denoted by A¢, 1 = 0_l - 0,1; then the combined

signal power conditioned on A¢, 1 is given as [1]

L L

n=l rn=I

where

Cnm = e j(A¢"I-A¢=1) (27)

is the complex signal-reduction function due to phase mis-

alignment. To summarize, the matched filter output of

FSC is given by Eq. (4) after replacing P by Pt as given

by Eq. (26) and replacing No by N0.j s which is given by
Eq. (24).

A useful quantity needed in later calculations is C,,,,.

In Eq. (27), assuming the residual phase error for each

antenna pair, A¢, 1 for n -= 2,..., L, to be Gaussian dis-

tributed with zero mean and variance o'_¢,_ and statisti-
cally independent from icrnl for n _ m, then it can be
shown that [1]

_1 2

e _[°_*-,+°_*..,1 n ¢ m
Cnm =

1 n----m
(28)

where the variance of the residual phase error can be re-
lated to the SNR of the correlator as follows:

o"2 : 1
A¢,,, 2SNP_nl,fsc (29)

Here, SNRnl,fsc denotes correlator SNR [or SNR of the

complex signal k in Fig. l(b)], and it is shown in Ap-
pendix A to equal
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SNI_I,I,c - Vat(}) E(5:_*)- E(_.)E(_2")
(3o)

/V01 [J{°=dld (31)

j=l

j:odd

where Bco,.r is the single-sided bandwidth of the IF filter

preceeding the correlator, Tc is the averaging time of the
correlator, and L,c is the number of subcarrier harmonics

at the BPF output. Note that if all the subcarrier har-
X.-,L,c

monics pass unfiltered, then limLoc--.oo Z_.,i=l,j:oda 1/J 2 =

2(_/4)2.

The SNR conditioned on ¢c, ¢**, ¢*v, i(_nl denoted

SNR_s_, is defined as before to be the square of the con-
ditional mean of Vk divided by the conditional variance of

vk, i.e.,

/ L L L \

/ E + E E %,%,,C,m
ln=l n=l m=] /

51V [Q s, = / L L L

. _/E_'X+ E E %,,_.,c,,,_)
2P'T_2_ {1 I¢,yl'_ /"=' ,,=, =22

--N'_°I C"c(J'c t- T)t n_=l"f"

dk = dk- 1

dk # dk-1

(32)

Comparing Eq. (32) with the single receiver conditional SNR in Eq. (12), it is clear that the term inside the large

parentheses in Eq. (32) represents the less-than-ideal gain that results from phase misalignment of the IF signals prior

to combining.

=-

A. Degradation

The FSC SNR degradation is defined as the unconditional FSC SNR divided by the ideal SNR. The unconditional

SNR is found by averaging Eq. (32) over the phases ¢¢, ¢_¢, ¢_y, and A¢,l and is given as

L L --/

n=l n=l :_ (33)2P_T C_ CL C_y L
SNRssc- N01 _ ")'n

rl=l

where C,_m is provided in Eq. (28). The quantities C2'_, C28¢, and C-'_y are given in Eqs. (15)-(17) with the modification

that the loop SNR's p_, p,_, and p,y presented in Eqs. (9) (11) are now computed using the average combined power

P'/No.jz, which is found by averaging Eq. (26) over the phase A¢,_ and dividing by the effective noise level in Eq. (24).

= ( En: 1 "'frl) -Ideally, when there are no phase errors, C_ = C]< = C]y = Cam 1 and Eq. (33) reduce to 2P, T/Nol L

Dividing Eq. (33) by the ideal FSC SNR yields the degradation in dB, namely,
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Disc = -10 log10 ( LL))17_ + E E 7.TmC_m
n=l m=l

n#m

n=l

(34)

B. Loss

The FSC SER for an L antenna array, denoted Plsc(E), is defined as

_- cx_ c_ oc

P},c(E) P¢(¢,)P,c(¢,c)P,y(¢,v) pA¢.,(ACnl) d_.¢ d¢,y d¢,c dec (35)

where J:-_oo is the (L - 1)-tuple integral over the residual phases A¢ = (A¢2t, ..., A¢(L-I)t). Following similar steps as
in the single antenna case, the conditional SER becomes

1
P},_( E) =-_ eric

)7_ + E E 7.7_.c..,

E,, "=' _:' ._ c<c,, (1 _ V).o, (1)%

1

+ _ erfc

L L L /

E 7_ + E E 7,,7,,,c...
r_-----i n=l ,-n=l

"#"_ CcCsc

,,o1 (A,,.)
(36)

where E,i/Nol = P1T/Nol is the symbol SNR at an-

tenna 1. Ideally, when there are no phase errors, Cc =

C,c = (1-I¢.vl/_) = C... = l, and Eq. (35) reduces

Ps=(E) = (1/2)erfe (_) for an arrayto of L

antennas of the same size (i.e., when 7n = 1 for all n).

The symbol SNR loss for FSC is given by Eq. (23) after

replacing P,(E) with Pf,c(E), as presented in Eq. (35).

IV. CSC Performance

As depicted in Fig. 2(a), signals from multiple antennas
in CSC are open-loop downconverted to baseband, par-

tially demodulated using multiple subcarrier loops, multi-

ple symbol loops, and nmltiple matched filters, then com-

bined and demodulated using a single baseband carrier

loop. Tile subcarrier and symbol loops used for CSC can

be the same as those used in FSC, or they can be slightly

modified versions that take advantage of both the I and Q
components of the baseband signal. CSC implementations

with the same loops as those in the FSC would use either

the I or Q component of the baseband signal. In either

case, the loop SNR's of the subcarrier and symbol loops

need to be recomputed as the loop input can no longer

be assumed to have carrier lock. Let P_c.,csc denote the
loop SNR of the nth subcarrier loop when either the I or

Q arm is used (i.e., the unmodified loop), and let rqP$Cn_C3C

denote the subcarrier loop SNR when both the I and Q
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arms are used (i.e., the modified loop). Similarly, define
s and IQ for the nth symbol loop. Then fromPsy. ,csc Psy. ,csc

Appendix B,

,  o,.0o( 1 ),P,_.,c,c = 2_c. 1 + P.T-/Non

I 1 P./No,_ £t
Psv.,_s_ = 27r2 Wsy. Bsy.

(38)

and

IQ (2) 2 P./Non ( 1 )-1 (39)

so, 1 P,,/No. £sO,
Psu,.,ese-- 2_.2 Wsy Bsy"

(40)

where Wsc. B.c. and W.u. Bsy. are the window-loop band-
width products of the nth subcarrier and symbol loops,

respectively. The squaring loss/:t for the unmodified loop

and _.tQ for the modified loop are defined in Appendix B,
Section II. For the Galileo scenario, using the unmodified

subcarrier and symbol loop reduces the loop SNR by 6 dB

compared to the carrier-locked case, while using both the

I and Q arms recovers 3 of the 6 dB. Consequently, since
the modified subearrier and symbol loops result in an im-

proved performance, they will be used in this article when
comparing CSC to FSC. s

Refering to Fig. 2(a), the combining gain is maximized
by aligning the baseband signals in time and phase, prior

to combining. The alignment algorithm for an array of two
antennas is shown in Fig. 2(a). Here signal 1 is assumed

to be delayed by m symbols with respect to signal 2. The

signals are time aligned by delaying signal 2 by rh symbols
where rh is an estimate of m. As in FSC, we assume perfect

time alignment so that rh = m. After time alignment,

the phase of signal 2 with respect to signal 1 is assumed
to be 0_1 fads. Hence, signal 2 is phase shifted by an

amount equal to -0_x, scaled by 732, and then combined

with signal 1.

The analysis of CSC degradation and loss begins with
the expression for the output of the matched filter in

Fig. 2(a). Note that there are actually 2L matched filters

5 The actual operating bandwidth for the modified and unmodified

subcaiwier and symbol loops are investigated in Appendix B.

per L antennas because after subcarrier demodulation, a
real symbol stream is modulated by I and Q tones near

baseband. Using complex notation, the matched-filter out-

put stream corresponding to the kth symbol and the nth

antenna, conditioned on Cs_. and ¢_., can be written as

"v"-'_.C,¢.dke [j( a`_ctk +°"' )] + fik,,_

dk = dk- 1

x/_-_C,c. (1 lea.l) dkeb(A,octk+o.,)]

dk # dk-i

+ fik,n

(41)

where the noise fik,,_ is a complex Gaussian random vari-
able with variance No/T. The subcarrier reduction func-

tion, C,¢., is given by Eq. (6) after replacing ¢_c by ¢ ....
the subcarrier phase error for loop n. In addition, the

phase ¢,y. denotes the symbol-synchronization phase er-
ror for loop n, and Onx is the phase relative to signal 1, i.e.,

Oil = 0. The baseband carrier frequency Af_ or Aw<i2rc

is equal to the difference between the predicted and actual

IF carrier frequency and is assumed to be much less than

the symbol rate, i.e., Aft << liT. The degradation at the

output of the matched filter when the carrier is open-loop

downconverted is approximately given as

(sin (TrAf<T)'] 2 (42)

Figure 4 illustrates the matched-filter degradation as a

function of AfcT, and it is clear that the degradation is
less than 0.013 dB when Af_T < 0.03.

The combined signal after phase compensation, 5_ in

Fig. 2(a), is given as

e-JO i

n=l

(43)

where _., is given in Eq. (41) and Oril is an estimate of
Onl. The optimum combiner weights are given as [3]

,/-_ NOl (44)n. = V-b---T, --2o"
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After substituting Eq. (41) for _k,n in Eq. (43), the com-
bined signal can be rewritten as follows (see Appendix C,

Section I):

zk = v/-fiTdke j(''_¢tk+O') + fik (45)

where the variance of the combined complex noise is given
as [3]

L

O'ri

i=1

The conditional combined signal power pi is given as

L L

Pl _ E "[n%nC, c,_ C,c,,_ Cnm dk = dk_,
p_ = n=l rn=l

P1 _ _ 7nTmCsc. Csc,. 1 1 Cnm dk 7k dk-1
n=l m=l

(47)

where Cnm is given by Eq. (27). The signal ;?k is then demodulated using a baseband Costas loop with output equal

to e-J(a'°ctk+°'), where 0_ is an estimate of 0_. The demodulator output is a real combined symbol stream and can be
represented as

zk = v/_C¢dk + n_ (48)

where Cc and P' are respectively given by Eqs. (5) and (47). The noise nk is a real Gaussian random variable with

variance _,,2 = 1/2_r_ where _a2 is given by Eq. (46). The SNR conditioned on ¢c, ¢ .... Csy., A¢_, denoted SNR_,c, is
defined as the square of the conditional mean of zk divided by the conditional variance of z_, i.e,

!

SNRcsc =

2PIT c2 c
NOl

n=l mini

dk = dk-l

L dk # dk-1

n=l

(49)

The last equation is useful in computing the symbol SNR degradation and loss for CSC as shown below.

A. Degradation

As before, the degradation is found by dividing the unconditional CSC SNR, which includes the effects of synchro-

nization and alignment errors, by the ideal SNR. The unconditional SNR, denoted SNRc,_, is computed by taking the
statistical expectation of Eq. (49) with respect to ¢c, ¢,c., ¢,v., and A¢,_ 1. The phase densities are assumed to be the

same as before. In addition, ¢_.. and ¢,_. are assumed to be independent when n ¢ m, and the same is true for ¢,u_.
and ¢,u." Consequently,
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SNRc_¢ --
2PI____T--_ ,_ = 1 n = 1 ,_#=l_

L

No, c_ _ 7.
n=l

(5o)

where the average signal reduction function due to phase misalignment between baseband signals n and m, denoted C,m,

is given by Eq. (28) with _¢., = 1/(2SN/_l.c_c). The CSC correlator SNR or SNP_I.c,c is shown in Appendix C,

Section II to be

2 3 2 2

P, TcC, c, C,¢. C,v, C,v.

SNR,_I.c,¢ = No1 C2,c. C_,_. + C_c , C_y,2(_._)1 "t- Nonp.T

(51)

where Tc is the averaging time of the correlator and T is the symbol period. The loop reduction functions C,2¢. and C,2w
for the nth subcarrier and symbol loops are respectively given by Eqs. (16) and (17) where the loop SNR's are given by

Eqs. (39) and (40). Similarly, C,c. and C,v. can be computed using the same loop SNR as follows [1]:

=1 (52)

V I 1 (53)C,_. = 1 - 27r3 pv/_#;._.

The carrier loop degradation C-_ is given by Eq. (15), with the loop SNR Pc computed using the average combined

I Npower P / 0._I, which is found by averaging Eq. (47) over all the phases and then dividing by the effective noise level,

Noah = T_r_,. Ideally, when there are no phase errors, C--'_= C,2¢ -- C_-"_= C',_ = C_u = C,,m = 1 and Eq. (50) reduce to

[ ](2P_T/Nm) _,=1 7, as expected. Degradation is defined as before and given as

Dcsc: -10 log10 LL //,'r"_c'L" clv° + E E -r.-r.,c,_° c.,. c,,,_ c,_. c,,.,
_-- n=l m=l

'n=l

(54)

B. Loss

The CSC SER for an L antenna array, denoted Pc,c(E), is defined as

w
co oo oo

-- _-- 00--00-- O0

L L

Pc_,c(E) Pc(¢¢)II [p¢..,(¢,c,)P¢.,,(¢,v,)] H [PA¢"'(ACnl)] dACdCscd¢,yd¢c
i=1 n=2

(55)

where the three J:_°°ooare with respect to ¢,_ = (¢,,,, ...,¢,cL),C,y = (¢,v,, ...,¢,vL), and A¢ = (h_21, ...,A¢(L_I)I).

P:SC'The conditional SER, denoted is given as
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Es 1

L

No: F,".
Cc

1

+ _- erfc l( LL )n Cc
No: _ 7n

n----1

(56)

Ideally, when there are no losses, C¢ = C,,, = (1
-I¢,v,I/rr) = Cam = 1 and Eq. (55) reduce to P(E)c,c -=

(1/2)erfc(_), for an array of L antennas of the

same size (i.e., when 7, = 1 for all n). The loss for CSC

is given by Eq. (23) with P,(E) now replaced by Eq. (55).

V. Numerical Results and Discussion

The discussion section is divided into two parts. The
first part compares FSC and CSC for an array of two 70-m

antennas when the symbol SNR at each antenna is very

low (-11 dB) and very high (6 dB). The quantitative re-
sults obtained in Section I confirm that degradation and

loss are equal at low SNR values, but show that degrada-
tion is a lower bound for loss at high symbol SNR values.

The second part focuses on the Galileo S-band mission sce-

nario, where the received SNR is expected to be very low.

For this part, the FSC and CSC techniques are compared
for severM different antenna combinations with different

symbol rates, using degradation as the performance mea-
sure.

A. Degradation Versus Loss

The FSC and CSC performance for an array of two

70-m antennas when the received signal is weak is shown in

Fig. 5; results for a strong signal case are shown in Fig. 6(a)
for Be = 70 Hz and Fig. 6(b) for Bc = 160 Hz. The carrier
bandwidth for the strong signal case was widened from 70

to 160 Hz to demonstrate the difference between degrada-
tion and loss as the carrier loop SNR becomes low. Inspec-

tion of these figures shows that degradation and loss are

equal (within 0.01 dB) for weak signal levels, but degra-
dation is a lower bound for loss at strong signal levels.

Consequently, the generally relative performance measure

of degradation can be used at low symbol SNR's to make

an absolute assessment of the received system. It is shown

later that the advantange of being able to use degradation

instead of loss at low symbol SNR's is a significant savings
in computation time. Clearly, if all harmonics of the sub-

carrier are used (see Section V-B), FSC outperforms CSC

except at narrow W,_B,c = W_vB, v where both curves
converge.

The weak and strong signals are characterized as

follows: weak signal is P1/Nol = P2/No2 = 15 dB-Hz,

R, vm = 1/T = 400 sym/sec; strong signal is P1/Nol =

P2/No2 = 32 dB-Hz, R, vm = 1/T = 400 sym/sec.

Note that the weak signal's uncombined SNR E,:/Noi =

E,2No: = -11 dB, whereas the strong signal's E_i/Nol =
E,2/Nol = 6 riB. For an ideal system, there is a 3-dB

arraying gain so that the combined E,/No for the weak

signal case is -8 dB, which corresponds 6 to an SER =

0.286942, and the combined E,/No in the strong signal
case is9dB, for which theSER= 3.4 x 10 -5 . The re-

ceiver parameters for FSC and CSC in the weak signal case

are assumed to be as follows: Bc = 0.1 Hz, B,c and Bey
are variable, Bcorr = 4 kHz (FSC only), and Tc = 120 sec.

The following parameters apply to the strong signal case:

B¢ = 70 Hz and B, = 160 Hz, B,¢ and B,v are variable,
Bcor_ = 4 kHz (FSC only), and Tc = 120 sec. Furthermore,

the FSC correlator is assumed to operate only on funda-

mental subcarrier harmonics, i.e., L,¢ = 1 in Eq. (31).

The degradation in these figures is found through
Eq. (34) for FSC and Eq. (54) for CSC. The loss curves

6P(E)ideat=½erfc(_)forLantennasofthesamesize.

139



are computed using Eqs. (23) and (35) for FSC and

Eqs. (23) and (55) for CSC. The loss computation is an
iterative process that uses a trial-and-error method as

shown by the following example. Suppose the FSC loss for

W_cB,c = W_uB, y = 2 mHz in Fig. 5 is to be com-

puted. First, the FSC SER is computed 7 through Eq. (35)

with E,/No = -11 dB. The resulting SER is 0.2916693,
which is higher that the ideal SER of 0.286942. Conse-

quently, a second computation of Eq. (35) is made with

Es/No = -11 dB + AEs/No. If the resulting SER is
0.286942, then the loss is said to be AE_/No. If the result-

ing SER is greater or less than 0.286942, then Eq. (35) is
recomputed with different AE_/No values until the SER

is equal to the ideal SER. The value of AE,/No, which

results in Eq. (35) equaling the ideal SNR, is by defini-
tion the loss. For this example, AE_/No or the symbol

SNR loss was found to be 0.2 dB. This method is clearly

more difficult than degradation, which is a single com-

putation devoid of integrals. Nevertheless, symbol SNR

loss gives the absolute performance advantage of an ar-

raying scheme, while symbol SNR degradation gives the
relative performance advantage. The loop and correlator
SNR's used in obtaining Figs. 5 and 6 are shown in Ta-

bles 3 and 4. The FSC loop SNR's are computed from

Eqs. (9)-(11) using the average combined power found by
averaging Eq. (26) over the residual phase and dividing by
the effective noise level in Eq. (24). The CSC subearrier

and symbol loop SNR's are computed using Eqs. (39) and

(40), respectively. However, the carrier loop SNR for CSC
uses the average combined power PI/No_s _ , which is found

by averaging Eq. (47) over all the phases and then divid-

ing by the effective noise level. Moreover, the correlation
SNR's for FSC and CSC were computed using Eqs. (31)

and (51), respectively.

B. Galileo S-Band Mission Scenario

The FSC and CSC performance for different combina-
tions of 70-m and 34-m antennas is discussed in this sec-

tion. Since Galileo has a weak signal, the performance

measure used is degradation, although loss could have also

been used, as demonstrated in Fig. 5. As pointed out in
the introduction, the IF signals in FSC are typically trans-

mitted to a central location before being combined and

demodulated using a single receiver. However, since the

retransmission channel is band-limited, signal energy may

be lost prior to combining. Table 5 shows energy lost as a
function of the number of subcarrier harmonics present at

the central location (i.e., at the combiner input). For the

Galileo scenerio, four subcarrier harmonics are present at

TNote that the SER in Eqs. (35) and (55) requires numerical inte-
gration. An approximation to SER can be derived, however, using
the moments techniques described in [10].

the combiner input, and the energy lost is 0.22 dB. The

retransmission of CSC signals to a central location, on the

other hand, does not result in an energy loss because the

symbol rates for Galileo (less than 640 sym/sec) can be

easily supported by the retransmission channel.

1. Array of Two 70-m Antennas. With that back-

ground, consider first an array of two 70-m antennas when
the signal characteristics and receiver parameters are the

same as those in Fig. 5 with R_u,_ = 400 sym/sec. FSC

performance for the Galileo scenerio is obtained by adding

0.22 dB to the FSC degradation in Fig. 5. The shifted

FSC curve along with the CSC degradation (which is the

same as in Fig. 5 since no energy is lost in CSC) is plotted

in Fig. 7. Notice that both techniques have equal per-

formance when W_¢B_¢ = W_yB_y = 1.2 ml:[z. In addi-

tion, Fig. 7 shows results using the same parameters as

in Fig. 5, but now with R,_,_ = 200 sym/see (combined

E_/No = -5.0 dB). In this case, FSC and CSC have equal

performance when W_¢B,c = W, yB, y = 3.0 mHz. The
degradation due to individual components (carrier, sub-

carrier, symbol, and correlator) is discussed below, indi-

cating the relative contribution of each to the total degra-

dation shown in Fig. 7 for R_ym = 400 sym/sec.

The degradation due to a single component is defined

as the degradation that would be observed when all but

a single component are operating ideally. For example, in

FSC the degradation due to the carrier loop is given as

D fscl[SNR,,l,.C.c=p,¢=p._=oo ] :-10 logtoC-'_ 2 (57)

which is derived by setting the correlation SNR, the sub-

carrier loop SNR, and the symbol loop SNR to infinity in

Eq. (34). The degradation due to individual components

is shown in Figs. 8(a), (b), (c), and (d). Table 6 lists the

degradation breakdown for FSC and CSC at WseBsc =

W_B,_ = 5 mHz and R, ym = 400 sym/sec. It is evident
that the combiner degradation for both schemes is negli-

gible. Also, the carrier degradation is the same for FSC
and CSC since the carrier loop SNR for both schemes is

about the same. The subcarrier and symbol degradation,

however, are significantly different for FSC and CSC, with

CSC being greater because the carrier is not tracked nor

the signal combined until after the subcarrier and sym-

bol loops. Comparing the sum in Table 6 to Fig. 7 for

Rsy,_ = 400 sym/sec indicates that total degradation can
be approximated as the sum of individual degradations.

2. Array of a 70-m and One 34-m STD An-

tenna. The performance of a 70-m with one 34-m STD
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antenna array is shown in Fig. 9(a) using the same param-

eters as in Fig. 5 except P1/Nol = 15 dB-Hz and P2/No2

= 7.3 dB-Hz, i.e., 71 = 1 and 72 = 0.17 as shown in Ta-

ble 2. Figure 9(a) also shows the results when R_yr_ = 200
sym/sec. At these signal levels, the 34-m antenna is not

expected to achieve subcarrier and symbol lock without

being aided by the 70-m antenna. Consequently, the CSC

arraying scheme is implemented by passing frequency and
phase information from the 70-m to the 34-m antenna. As

a result, the effective subcarrier and symbol loop SNR's of
the 34-m are identical to that of the 70-m antenna. The

modified CSC is called CSCA or complex-symbol combin-

ing with aiding. In this scenario, the practical FSC outper-

forms CSCA when W, cB_c = W_B_y is greater than 4.5

mHz at R_ym = 400 sym/sec and 10 mHz at Rs_m = 200
sym/sec.

3. Array of a 70-m and Two 34-m STD An-

tennas. The result for an array of one 70-m and two

34-m antennas is shown in Fig. 9(b). Practical FSC, in

this case, outperforms CSCA when W, cB, = W, yB, y is
greater than 4.0 mHz at R,y,_ = 400 sym/sec and 8.5 mHz

at R,_m = 200 sym/sec.

4. Array of a 70-m and Three 34-m STD An-

tennas. For an array of one 70-m and three 34-m an-

tennas, practical FSC outperforms CSCA when W_cB,_ =

W, yB,y is greater than 3.5 mHz at R,_,n = 400 sym/sec

and 8.2 mHz at R,ym = 200 sym/sec. See Fig. 9(c).

5. Array of Four 34-m STD Antennas. Fig-

ure 9(d) shows the result for an array of four 34-m anten-

nas for Rs_m = 50 sym/sec and R,_,n = 25 sym/sec with

B¢o_r = 400 Hz. For this array, FSC has less degradation

than CSC when W,_B,c = W,_B,y are above 0.32 mHz

when R,y,n = 50 sym/sec and above 0.8 mHz when R,_m
= 25 sym/sec. Practical FSC is able to operate for the

given WscB,_ = W,_ B_y without losing lock, assuming the

subcarrier and symbol loops are able to lock to the signal
if their respective loop SNR's are greater than 12 dB. For

CSC, however, the maximum W_cB,_ = W, yB,_ that can
be supported without losing lock is about 0.9 mHz s at

Rs_,n = 50 sym/sec and 2 mHz at Rsym = 25 sym/sec.
Table 7 lists the break-even points for the different combi-
nations of a 70-m and 34-m antennas mentioned.

VI. Conclusion

This article describes the performance of FSC and CSC

in terms of symbol SNR degradation and symbol SNR loss.

Both degradation and loss are approximately equal at low

values of symbol SNR, but diverge at high SNR values. For

arrays of two 70-m antennas, a 70-m and three 34-m anten-

nas, a 70-m and two 34-m antennas, and a 70-m and one

34-m antenna, FSC has less degradation than CSC when

WscB_c = W_Bsy are above 3.0, 10.0, 8.5, and 8.2 mHz

at R,_,_ = 200 sym/sec, and 1.2, 4.5, 4.0, and 3.5 mHz at

R, ym = 400 sym/sec, respectively. Moreover, for an array

of four 34-m antennas, FSC has less degradation than CSC

when W,_B,_ = W_B,y are above 0.32 mHz at R,y,_-- 50
sym/sec and above 0.8 mHz at Rs_m = 25 sym/sec.

8 This point can be increased by using the average of the four phase
estimates of the subcarrier and symbol loops to effectively improve
the loop SNR by about 6 dB, so that the degradation is lessened.
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Table 1. Comparison of FSC and CSC.

Parameter FSC CSC

Combining bandwidth

Carrier loop

Effective P/No at input of subcarrier

loop for two 70-m antennas

Effective P/No at input of symbol

loop for two 70-m antennas

Array of a 70- and 34-m antenna

Array of four 34-m antennas

Sample rate

Closed before subcarrier and

symbol loops

Loops operate on the combined

signal power

Irnplementable

Sample rate

Closed after subcarrier and

symbol loops

At least 6 dB lower than FSC when

carrier is unlocked and 3 dB lower

when carrier locked

At least 6 dB lower than FSC when

carrier is unlocked and 3 dB lower

when carrier locked

Phase and frequency information

passed from 70- to 34-rn antenna

Harder to implement

Table 2. Gamma factors for DSN antennas.

Antenna Frequency
size band "Y'_

70 m S-band 1.00

34 m STD S-band 0.17

34 m HEF S-band 0.07

70 m X-band 1.00

34 m STD X-band 0.13

34 m HEF X-band 0.26

143



Table3(a).FSCloopSNR'sforSER=0.286942.

Carrier Subcarrler Symbol Correlator
WscB_c = WsuBsy, loop SNR, loop SNR, loop SNR, SNR,

mHz
dB dB dB dB

0.01 21.8 57.9 46.0 15.9

0.1 21.8 47.9 36.0 15.9

0.3 21.8 43.1 31.3 15.9

0.5 21.8 40.9 29.0 15.9

0.7 21.8 39.4 27.6 15.9

0.9 21.8 38.3 26.5 15.9

2.0 21.8 34.9 23.0 15.9

4.0 21.8 31.8 20.0 15.9

6.0 21.8 30.1 18.2 15.9

8.0 21.8 28.8 17.0 15.9

10.0 21.8 27.9 16.0 15.9

Table 3(b). CSC loop SNR's for SER = 0.286942.

WscBsc = WsuBsu,
mHz

Carrier Subcarrier Symbol Correlator

loop SNR, loop SNR, loop SNR, SNR,

dB dB dB dB

0.01 21.8 49.7 37.2 24.1

0.1 21.6 39.7 27.2 24.0

0.3 21.5 35.0 22.5 23.8

0.5 21.4 32.7 20.2 23.7

0.7 21.4 31.3 18.8 23.7

0.9 21.3 30.2 17.7 23.6

2.0 21.1 26.7 14.2 23.3

4.0 20.8 23.7 11.2 23.0

6.0 20.5 21.9 9.4 22.7

8.0 20.3 20.7 8.2 22.5

10.0 20.1 19.7 7.2 22.3
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Table 4(a). FSC loop SNR's for SER = 3.4 X 10 -5.

WscBsc = WsyBsv,
mHz

Carrier loop SNR,
dB

Bc = 160 Hz Bc = 70 Hz

Subcarrier Symbol Correlator

loop SNR, loop SNR, SNR,

dB dB dB

0.01

0.1

1.0

10.0

100.0

1000.0

12.7 I6.3 80.8 72.1 47.8

12.7 16.3 70.8 62.1 47.8

12.7 16.3 60.8 52.1 47.8

12.7 16.3 50.8 42.1 47.8

12.7 16.3 40.8 32.1 47.8

12.7 16.3 30.8 22.1 47.8

Table 4(b). CSC loop SNR's for SER = 3.4 × 10 -5.

W_cB,c = W, vB, u,
mHz

Carrier loop SNR,

dB

Bc = 160Hz Bc = 70Hz

Subcarrier Symbol Correlator

loop SNR, loop SNR, SNR,

dB dB dB

0.01

0.1

1.0

10.0

100.0

1000,0

12.7 16.3 77.1 67.3 49.3

12.7 16.3 67.1 57.3 49.3

12.7 16.3 57.1 47.3 49.3

12.7 16.3 47.1 37.3 49.2

12.6 16.2 37.1 27.3 49.1

12.3 15.9 27.1 17.3 48.7
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Table5.Numberofsubcarrierharmonics
versuslossinenergy.

Number of Loss in
subcarrier

energy, dB
harmonics

1 0.91

2 0.45

3 0.30

4 0.22

5 0.18

6 0.15

7 0.13

8 0.11

9 0.10

10 0.07

Table 6. Degradation breakdown for two 70-m antennas

at Wsc Bsc = Wsy Bsy = 5 mHz.

Degradation FSC, dB CSC, dB

Combiner 0.034 0.002

Carrier loop 0.029 0.038

pc =21.8 pc = 20.6

Subcarrier loop 0.126 0.324

psc =30.8 psc = 22.7

Symbol loop 0.124 0.342

Psu =19.0 Psv =10.2

Energy loss 0.22 0

Sum 0.533 0.708

Table 7. Break-even point for FSC and CSC.

Antenna array

Value of

WsyBsy = WscBsc (mHz)

where Dis c = Dcsc

Rsym = 200 Hz Rsvrn = 400 tiz

Value of

WsyBsy = W_cBsc (mHz)

where Disc > Dcsc

Rsym = 200 Hz Rsym = 400 Hz

Value of

WsyBsv = WscBsc (mHz)

where Disc > Dcsc

Rsyrn = 200 Hz Rsym = 400 Hz

Two 70-m 3.0 1.2 >3.0 >1.2 <3.0 <1.2

70- and three 34-m 8.2 3.5 >8.2 >3.5 <8.2 <3.5

70- and two 34-m 8.5 4.0 >8.5 >4.0 <8.5 <4.0

70- and one 34-m 10.0 4.5 >10.0 >4.5 <10.0 <4.4
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Appendix A

The Performance of the FSC Correlator

The performance of the FSC correlator is derived here for the general case when total power is divided between

data as well as the carrier. Once the general correlator SNR is derived, it will be simplified for the Galileo case, which

operates with the carrier fully suppressed. As shown in Fig. l(b), combining at IF requires both delay and phase

adjustments in order to coherently add the signals. Here, perfect knowledge of the time delay is assumed and only
phase compensation is needed before adding the IF signals. The IF signal at antenna n, denoted by the double lines in

Fig. l(b), consists of an in-phase (I) and quadrature (Q) component given as rnl(t) and rnq(t), respectively, as follows:

rni(t) = 2X/c_ cos (wJ + 0_,,) - 2V/_dd(t)Sqr(w,¢t + 0..) sin (wj + O¢n) + n,_l(t) (A-l)

rnq(t) = 2V_ sin (wJ + 0_,_) + 2v_ad(t)Sqr(w,¢t + 0,¢.) cos(w_/+ 0¢.) + nnQ(t) (A-2)

where the total power P in watts (W) is divided between the residual carrier and data by controlling the modulation

index, A. Specifically, the carrier power Pc = Pcos 2 A and the data power I Pa = Psin _ A. Also, n_t(t) and nnQ(t)
are statistically independent with a flat one-sided PSD level equal to No W/Hz, and all other relevant parameters are
defined in the main text. The square-wave subcarrier defined above can be expressed as follows:

Sqr(w,J + 0,c.) = _4 _ sin[j(wsJ + 0,c.)]
_r ¢=, j

jzodd

(A-3)

where L,c, the number of subcarrier harmonics, is infinite. As shown in Fig. l(b), the IF signal from antenna 1 and n are

first bandpass filtered with single-sided bandwidth Bco_r, and then complex correlated. The output of the correlation,
denoted ;_, is a complex signal consisting of a real (I) and imaginary (Q) component, i.e.,

_.= I+jQ

The correlator SNR at ;_, denoted as SNR'Ijs_, is defined as

(A-4)

, a E(_,)E(5*) E(5)E(_.*)

SNR"I'I'c - Vat(2) - E(;_'*) - E(5)E(_*)

E_(I) + E2(Q)

va,(r) + Va,(Q) (A-5)

where • represents the complex conjugate operation. Following the correlation, an averaging operation over T¢ sec
is performed to reduce the noise effect. In that period, N = 2Bcor_Tc independent samples are used to reduce the

variance by a factor of N. The SNR at k, denoted SNP_I,I,c, is thus given by

a For the Galileo case, A = 90 deg so that Pc = 0 and P = Pa.
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i

SN tL_I,/,c = SNRnl,IscN

= SNR',_,,/s c (2Bco_Tc) (A-6)

For the general ease of any L,c, the correlator SNR using Eq. (A-5) can be shown to be

l;/4 I i;l ]+
, 4PclPc, + 4 x/PclPc,_Pd, Pd,, L/o__, L,o..J=' (A-v)

SNR,_Ijs¢ :

1 (Pdl + P_,,) + Bcorr
4NoBcor_ P_I + Pc,, + _ \ ]o=J_

where Booer is assumed to be sufficiently wide to pass the Ls_ subcarrier harmonic unfiltered. The correlator SNR at

the output of the accumulator is now obtained by using Eq. (A-6) and, after simplification, is given as

SNR,_I =

2

(_ Pcl Pcn 14)21 Pcl Pen Pdl Pdn (LI_) 2) .gff ll4)4pdlPdn (L(_)2) )T_ z_--_o1 _ + 2 No1 No. No x No. j=, 2 NO l No. i---,
todd jodd

Pc1 + + +

N0---q- _ 2 \ N--_o_ N-_0n] So_]

(A-8)

For A = 90 deg, Eq. (A-8) is reduced to Eq. (31). In addition, setting A = 0 deg in Eq. (A-8) results in the same

expression for the correlator SNR as that given in [1].
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Appendix B

Subcarrier and Symbol Loop SNR Performance

I. Subcarrier Loop SNR Performance

Compared to the conventional unmodified subcarrier loop, which employs the I-arm as shown in Fig. B-l, the

modified subcarrier loop, depicted in Fig. B-2, utilizes both the I and Q arms of the baseband signal for tracking. The

loop SNR for both schemes is derived here and compared to the case when the carrier is locked. For CSC, the I and Q
channels at the input of the subcarrier loop are respectively given as

I(tn) = v/-fid(tn)Sqr(w,ct,_ + O,c) cos (Awctn) + n1(t,_) (B-l)

Q(tn) = vFfid(tn)Sqr(w,ctn + 0_¢)sin (Awctn) + nq(t,_) (B-2)

where nz(t,_) and nQ(t,_) are independent Gaussian noise processes and all other parameters were previously defined.

As shown in Fig. B-2, both the I and Q components are multiplied by the square-wave references and averaged over

one symbol period (assuming perfect symbol synchronization), resulting in [5]

/_(k) = vrfidk/(¢._) cos (A,_ctk) + n1.(k) (B-3)

It(k) = v_d_g(¢._) cos (±_ct_) + n.(k) (B-4)

Q,(k) = v_dkf(¢,,)sin (Awctk) + nQ,(k) (B-5)

Q_(k) = V'-fidkg(¢,_) sin (Aw_tk) + nQ¢(k) (B-6)

where k denotes the symbol index, f(¢,c) = 1 - 2/_1¢._1for I¢_1 _ _, g(¢.¢) = 2/_ ¢,_ for ICs,l _ _w_c/2, and
2 = No/2T. The error signals of the conventional andVar[nl,(k)] = Var[nlc(k)] = Var[nQ,(k)] -- Var[nqc(k)] -- (rn

modified subcarrier loops are respectively given as

e(k)1 = Pf(¢._)g(¢.c) cos2(A_¢tk) + Ni(k) (B-7)

e(k)jQ = Pf(O,_)g(¢,_) + Niq(k) (B-8)

where the variance of the noise terms respectively (after averaging over Aw_tk, assuming uniform distribution) are
given as

_r_v,,_ = Pa_ + 2_ (B-9)

_r2N' Pa_ 4 (B-10)= --_-+ _.

The slope of the S-curve can now be found by taking the first derivative of the average error signal with respect to 5,¢,

and afterwards setting ¢,¢ = 0. Accordingly, the slopes of the conventional and modified subcarrier loop are given as
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., 1p (B-11)
I_g'SC ----* 71"

.,q = 2_e (B-12)
K 9'8c 7r

Note the slope of the IQ-arm is identical to the slope of the I-arm when the carrier is locked [5]. Assuming linear

theory, the loop SNR for the subcarrier loop is given as

1 /£92 (B-13)
Pse - 2B.T o'_

where BL is the one-sided noise bandwidth of the loop. Simplifying, the I- and IQ-arm loop SNR's are respectively

given as

(_)2 P/No( 1 )-1
P_c =

2B----_,_ 1 + pT_/No
(B-14)

(2) _ P/No ( 1 )-1p;? = 1+ e No (B-15)

For comparison, the I-arm loop SNR when the carrier is locked is given in Eq. (10). Figure B-3 illustrates the subcarrier

loop SNR's when the I-arm, IQ-arm, and the I-arm with the carrier locked are used. For low-symbol SNR's, the I-arm

has a loop SNR that is 6 dB lower than when the carrier is locked. Using the IQ-arm recovers 3 of the 6 dB, but at

the expense of more hardware. At high-symbol SNR's, the performance of the IQ-arm is identical to the I-arm when

the carrier is locked.

The behavior of the I- and IQ-arm for the subcarrier loop is investigated when the carrier is actually locked. For the

I-arm, the subcarrier is normalized by a slope that is less than the actual operating slope. Consequently, the operating
bandwidth of the loop is actually narrower than the one specified. Fortunately, the subcarrier is normalized by the

correct slope for the IQ-arm .

II. Digital Data Transition Tracking Loop SNR Performance

Similar to the subcarrier loop, the conventional digital data transition tracking loop (DTTL) shown in Fig. B-4 will

be modified to utilize both the I and Q channels as depicted in Fig. B-5. Assuming perfect subcarrier demodulation,

the I and Q components for CSC are given as

= cos + ,4 (B-16)

Qk = _/'ffdk sin (¢c) + n_ (B-17)

2 No/2T, and ¢¢ = 2zrAf¢ + 0_ is the
where n_ and n_ are independent Gaussian random variables with variance _,_ =
difference between the predicted and actual IF carrier frequency.

The performance of the DTTL has been derived in [6] assuming the carrier is locked (¢_ = 0). When this is not

the case, as in CSC, the loop suffers degradation; the objective is to quantify the decrease in performance for both
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the conventional and the modified DTTL. This analysis closely follows that of [6], except that the data are modulated

by a slowly varying cosine function. Assuming the equivalent mathematical model of the DTTL in terms of a phase-

locked loop, all the relevant parameters (slope of the S-curve and normalized equivalent noise spectrum) are derived
conditioned on ¢c- Afterwards, these parameters are averaged over ¢c assuming ¢c is uniformly distributed from -rr
to rr.

The normalized mean of the error signal e_ conditioned on the normalized timing error X (in cycles) and the carrier

predict error ¢_ is the normalized phase-detector characteristic gn(X, ¢_) commonly termed the loop S-curve. Following
similar steps as in [6], g_(,X, ¢¢) and gXnQ(x , ¢c), the S-curves of the conventional and the modified DTTL, are respectively
given as

g_(A,¢¢) = A [cos (¢c)[ erf (B) W,u - 2A
8 ]cos (¢¢)[ [erf (A) - erf (B)] (B-IS)

g_Q(A,G) = A [cos (¢c)1 err (B) + ), Isin (G)I erf (B')

w - 2,X

8 [sin (¢_)1 [ erf (a') - erf (B')]

W, u - 2A
S I c°s (¢c)1 [ erf (A) - erf (B)]

(B-19)

where A = _lcos ¢_1, A'= E,v/-_-]_01sin GI, B = _(1-2_)Icos ¢_1, and B' = E,_/-_0(1-2_)Isin GI.

To compute, the S-curve conditioned only on ,X, g_(A, ¢c) and g_O(1, ¢,) are numerically integrated over ¢, assuming
uniform distribution. Setting ¢_ to zero in Eq. (B-18) results in the same S-curve as that in [6].

The first derivative of the S-curve at A = 0 is given as

Kg,,u(¢_ ) = Icos (¢c)1 erf (A) - T c°s2 (¢c) exp (-A 2) (B-20)

.xQ W,yKg,,u(¢¢ ) = [cos (¢c)l erf (A)- --if-- cos 2 (¢,) exp (-A 2)

+ I sin (¢¢)1 erf (A')- --_ sin 2 (¢¢)_f_ exp (-A '2) (B-21)

where K_,,u(¢_) and /QKg,,u(¢¢ ) denote the slope of the S-curve for the conventional and modified DTTL conditioned

on ¢c, respectively. Numerically integrating over the carrier phase ¢c results in the unconditional slopes denoted v
[{ g,sytQand Kg,_y, respectively.

Setting ¢c in Eq. (B-20) to zero results in

Ka,, u = erf E, Wsu/--Es --_o- 2 V NoTr exp (B-22)

which is identical to the slope given in [6]. Figure B-6 lists the ratio of -z - "tO .-I(.9,,_/K#,s u and I_g,_/I.ig,, u for different
symbol SNR's and window sizes. At low-symbol SNR, Ka,,u and rqKg,, u are about the same, while Kd,,u is about twice
as large.
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Also, the normalized noise spectrum at _ = 0 can be shown to be

ht(0,¢c)= l+0.5W, u_0 cos2 (¢c)---_ -- _ exp (-A2)+ Icos(¢c)l erf(A)
(B-23)

h 'Q(0,¢¢)=2+0.5 ,v_0 2 _ exp(-A 2)+ Icos (¢¢)1 erf(A)

2 _ exp (-A '2) + [sin (¢_)1 erf (A')
(B-24)

where hi(0, ¢c) and h1Q(0, ¢,) denote the normalized noise spectrum for the conventional and modified DTTL condi-

tioned on ¢c, respectively. Numerically integrating over the carrier phase, ¢_, results in the unconditional normalized

noise spectrum denoted as hi(0) and h1Q(0), respectively. Setting ¢c in Eq. (B-23) to zero results in

h(0) = 1 -4-0.5Wsv Es
No

(n-25)

which is the same as the normalized noise spectrum given in [6]. Figure B-7 lists values of h(0), hi(O), and htQ(0) for

different symbol SNR's at W_ v = 1. It is evident that h(0) is slightly greater than hi(O) but significantly less than

hrQ(0).

Assuming linear theory, the loop SNR for the DTTL is given as [6]

1 P
£' (B-26)

Psv = 27r2 NoWsvBsv

I and IQ
where f--.= K2,_y/h(O). Furthermore, the loop SNR for the conventional and modified DTTL, denoted Psv p,y, are

found by normalizing Eq. (B-26) by £I =. (K_,,v)2/hi(O) or f_.1Q = (K_Qv)2/htQ(O), respectively. Figure B-8 illustrates

the loop SNR of the DTTL using the I-arm, IQ-arm, and I-arm when the carrier is locked. At low-symbol SNR, it is
clear that using only the I-arm reduces the loop SNR by 6 dB compared to the case when the carrier is locked, and

utilizing the IQ-arm recovers 3 of the 6 dB.

The behavior of the I- and IQ-arm for symbol loop is investigated when the carrier is actually locked. For the I-arm,

the symbol loop is normalized by a slope that is less than the actual operating slope, as shown in Fig. B-6. Consequently,

the operating bandwidth of the loop is actually narrower than the one specified. Fortunately, at low-symbol SNR, the

symbol loop is normalized by the correct slope for the IQ-arm. For high-symbol SNR, however, the symbol loop for
the IQ-arm is normalized by a slope that is greater than the actual operating slope and, consequently, the operating
bandwidth of the loop is actually wider that the one specified.
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Fig. B-5. The modified digital data transition tracking loop.
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Appendix C

Derivation of Equations

I. Derivation of Eq. (45)

Substituting Eq. (41) into Eq. (43) yields

L

_._/-P_C_¢.dke b'(a_*_+zx¢"')] + hk,ne [-j(6"_)] d = dk-1

_'k = ,_=1 (C-l)

( )_]/3,,V"-_C._. 1 I¢_.1 dke[i(A_.tk+A¢.,)]+fik,ne[_j($.,)] dkTkdk_l
n-----i

where men 1 : 0nl -- 0nl and all other symbols are defined in Eq. (41). The conditional combined power, denoted P',
in Eq. (45) is found by deriving the conditional mean of %k, i.e.,

P' = E(#k/¢,c,,, eftsy., Afnl)E*(#k/¢sc,., Csv,,,, ACml)

L L

S] S] #,,#-,v'_-g.v/PZ_c-.c,_.,d ['_"_-A+"']
n=l rn=l

L ( (
n=l m=l 71"

which simplifies to Eq. (47). In addition, the phase 0_ in Eq. (45) is given as

_nv_nVscncos (A_.Octk + men1)

tan-1 dk --- d_-i

_n_=lflnX/_nCsc.sin(Awct_ + ACnl))

dk ¢ dk-1

(c-2)

(c-3)

II. Derivation of Eq. (51)

Let C,y,, be the signal reduction function due to symbol timing errors in the nth symbol synchronization loop. Then
the nth matched filter output in Eq. (41) can be rewritten as

where

vk,. = X/_nC_.C.u dke[J(aw°t'+s"')] + fik,n (c-4)
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i  k:d.-1c,,. = (c-5)
1 - dk # dk-1

The relative phase difference between antenna n and the reference antenna is estimated by performing the correlation

operation shown in Fig. 2(b). Assuming perfect time alignment, the correlation output £" is given as

N

= Uk,n _3k,1

k=l

where N = Tc/T is the number of symbols used in the correlation. The correlation time and symbol time are respectively

denoted as Tc and T. Substituting the expressions for _k.,, and _* into Eq. (A-6) yieldsk,1

_, = P_/-P-_lPnCsc,Cse Csy Usy ej(O"') + n_ (c-7)

where

Var(ne) = 2P1C_c , C 2 No,, No1 _NoiNo,",, 2--T-[+ 2P.cyc. c_,,. 2-_ + _-_ (c-s)

Using the definition of SNR for complex signals as defined in Eq. (30), the correlator SNR between antenna n and

antenna 1 for CSC is given as

and simplifying yields Eq. (51).
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Results of operational orbit determination, performed as part of the TOPEX/

POSEIDON (T/P) Global Positioning System (GPS) demonstration experiment,
are presented in this article. Elements of this experiment include the GPS satel-

lite constellation, the GPS demonstration receiver on board T/P, six ground GPS

receivers, the GPS Data Handling Facility, and the GPS Data Processing Facil-
ity (GDPF). Carrier phase and P-code pseudorange measurements from up to 24

GPS satellites to the 7 GPS receivers are processed simultaneously with the GDPF

software MIRAGE to produce orbit solutions of T/P and the GPS satellites. Daily
solutions yield subdecimeter radial accuracies compared to other GPS, LASER, and
DORIS precision orbit solutions.

I. Introduction

The Global Positioning System (GPS) Data Process-
ing Facility (GDPF) was developed to demonstrate op-

erational orbit determination and navigation support for
TOPEX/POSEIDON. Orbit solutions are based on data

collected by the GPS demonstration receiver (GPSDR) on
board TOPEX/POSEIDON and six ground receivers. In
addition, the GDPF is intended to evolve into a NASA

resource for future low Earth-orbiting missions under the
NASA Office of Space Communications.

An updated software set, based on the JPL institu-

tional Orbit Determination Program (ODP), was created
and named "MIRAGE." It stands for Multiple Interfero-

metric Ranging Analysis using GPS Ensemble. MIRAGE

maintains the complete interplanetary capability of the

ODP software with the additional multisatellite and pre-
cision modelling features required for subdecimeter orbit

determination. The GDPF scope of work includes pre-

processing observations, performing orbit determination,

producing predicted GPS and TOPEX/POSEIDON satel-

lite almanacs for mission operations, and archiving raw
and processed data. Figure 1 shows the interfaces of the
GDPF.

II. Observation Preprocessing

Daily TOPEX/POSEIDON flight receiver raw data are

collected from the TOPEX/POSEIDON ground system
within 24 hours of the last observation, The raw data
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consist of carrier phase every second and P-Code pseu-

dorange every 10 sec. In addition, the GPSDR onboard

navigation solution (i.e., clock, position, and velocity) are

provided every l0 sec. Descriptions of these observables
can be found in many publications [1,2].

Automated reformatting and outlier and cycle slip edit-

ing are performed first. Next, the data are decimated to
5-min intervals, and a time-tag correction, based on a lin-

ear fit to the navigation clock solution, is applied. Finally,
linear combinations of the pseudorange (P1 and P_) and

carrier phase (L1 and L2) dual-frequency measurements

are computed to produce ionosphere calibrations. These

are applied to the raw P1 and L1 observations to produce
the orbit determination observables Pc and Lc.

The ground GPS receiver observations are available

from the GPS Data Handling Facility about 36 hr after the
last data are collected. Both the carrier phase and pseudo-

range data are provided in receiver-independent exchange

(R/NEX) [3] format at 30-see samples. The same editing
and calibration steps are performed as described above for

the GPSDR. Besides the six core ground sites, data from

nine backup sites are also collected and processed. The

primary and backup ground receiver locations are shown

in Fig. 2.

For MIRAGE orbit determination processing, a merged

file of edited GPSDR and ground receiver data is created

in standard MIRAGE format. Two additional text files, in

R/NEX format, are produced for export. One is the raw
GPSDR data while the other is the edited, calibrated, and

compressed GPSDR measurements. All files are archived

along with data collection and preprocessing statistics.

III. Orbit Determination Strategy

Thirty-hour data sets are constructed from the prepro-
cessed observations to produce a 24-hr orbit solution. The

additional data are fit to allow for internal consistency

checks of the daily overlaps. Global GPS constellation

coverage is realized by selecting a minimum of six ground
station GPS receiver sites. Additional sites are selected to

fill gaps during primary site outages.

Orbit determination using MIRAGE consists of three

major steps. Iteration through each step is done until con-

vergence of the state solutions and observation residuals is
achieved. The three steps are

(1) Trajectory propagation.

(2) Observation processing.

(3) Filtering and smoothing.

A. Trajectory Propagation

To achieve subdecimeter accuracies, several dynamic

force models are required. Tables 1 and 2 summarize
the force models used in the numerical integration of

the TOPEX/POSEIDON and GPS satellite trajectories.
Reference frame, force, and measurement model parame-

ters are based on TOPEX/POSEIDON and International

Earth Rotation Service (IERS) standards [4].

B. Observation Processing

Both carrier phase and P-Code pseudorange data are

processed. Table 3 lists the measurement models used for

producing observation residuals. Again, these models are

based largely on IERS standards.

C. Filtering and Smoothing

The filter and smoother generate corrections to the

parameters affecting the trajectory propagation and the
observation processing. MIRAGE employs a numerically

stable square-root information filter that can compute

smoothed estimates of time-varying stochastic parame-
ters. Our orbit determination strategy employs a fidu-

cial concept where three ground receivers, assumed to
have well-known coordinates, are held fixed while the filter

estimates the positions of three nonfiducial ground sta-

tions [5]. In addition, the states of the GPS satellites
and TOPEX/POSEIDON are estimated along with the

GPS satellite solar-pressure model parameters. The fil-

tering strategy consists of a two-stage process--dynamic

tracking followed by reduced dynamic tracking. In dy-

namic tracking, the accuracy of the orbit is limited by

the precision of the dynamic models applied during tra-

jectory propagation. In reduced dynamic tracking, the

high-quality geometric information provided by the GPS

measurement system is used to obtain a high-precision

TOPEX/POSEIDON trajectory. Essentially, reduced dy-

namic tracking exploits the extreme precision of carrier

phase tracking by using it to smooth the geometric solu-
tions obtained from the less-precise pseudorange measure-

ments. Although the success of the reduced dynamic tech-

nique is contingent on high-precision modeling of the GPS
observations, the accuracies of the resultant trajectories

are not degraded by deficiencies in the a priori dynamical
models.

1. Data Weighting. The measurement precisions ex-

pected from the GPSDR and ground receiver observations
were determined from ground tests before launch. Data
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weights consistent with these analyses and applied during

filtering are shown in Table 4.

2. Stochastic Clock Estimation. To eliminate syn-

chronization errors due to unstable oscillators, clock bi-
ases at the receivers and GPS transmitters are estimated

at each measurement time. In the filter, one ground clock
is chosen as a reference and a stochastic clock bias is es-

timated at each of the other receivers and GPS transmit-

ters. A white noise stochastic process is employed with

a batch length coinciding with the measurement intervals
and the estimated smoothed clock biases are fed back to

the observation processing module. As with standard dou-

ble differencing techniques, the stochastic clock estimation

strategy eliminates common clock errors. However, the

stochastic method avoids both the difficulties of selecting
a set of nonredundant double-difference combinations and

the data noise correlations inherent in differenced mea-

surements.

3. Stochastic Phase Bias Estimation. The contin-

uously tracked GPS carrier phase precisely measures the

relative range change between a GPS transmitter and its
receiver. However, the carrier phase is ambiguous, which

requires the estimation of a constant phase bias for each

continuous pass between a transmitter and a receiver. In

the filter, each phase bias is estimated as a white noise

stochastic parameter that remains constant over a pass.

At tracking discontinuities, the filter applies a white noise

stochastic update for the bias parameter corresponding

to an individual transmitter-receiver pair. The smoother

generates a time profile of phase bias corrections that are

applied during subsequent observation processing. This

stochastic phase bias estimation strategy is efficient in
terms of computation time and memory requirements, but

does not attempt to resolve the integer nature of the phase
biases.

4. Stochastic Estimation of Tropospheric Fluc-

tuations. The model for troposphere delay is decomposed

into a wet and a dry component.

where Pz is the zenith delay and R is a mapping function

that maps the zenith delay to the line of site at elevation 0.

The fluctuations in the wet zenith delay are modeled as a
stochastic random walk. The wet zenith delay is estimated

at 5-min intervals (coincident with the measurement in-

terval) using an a priori sigma of 5 cm and an effective

batch-to-batch sigma of 3 mm for the noise driving the

random walk process. As with the phase and clock biases,

the smoothed time profiles of the stochastic fluctuations

are fed back into the observation processing module on

subsequent iterations of the orbit determination program.

5. Reduced Dynamic Tracking. The MIRAGE

filter executes the reduced dynamic tracking strategy by

modeling the three-dimensional accelerations on TOPEX/
POSEIDON as exponentially time-correlated stochastic

processes. The relative weighting of the dynamics and ge-

ometry may be adjusted by varying the time constant and

the magnitude of the process noise uncertainty. A large

time constant corresponds to a dynamic strategy while
a short time constant emphasizes the geometry. In the

orbit determination for TOPEX/POSEIDON, the three

accelerations were updated at 5-min intervals; the time

constant was 15 min with a corresponding batch-to-batch
sigma of 7 x 10 -9 m/sec 2 for the radial acceleration and

14 x 10 -9 m/seJ for the spacecraft X and Y accelera-

tions. This choice of filter parameters allowed deficiencies

in the nongravitational force models to be compensated for

by the stochastic accelerations; however, enough dynami-

cal information is retained so that temporary degradation

of the viewing geometry would not seriously reduce the

accuracy of the output trajectory [6,7,8]. A summary of
estimated parameters is given in Table 5.

IV. Orbit Determination Accuracy

Before launch, the MIRAGE software was intercom-

pared with the GEODYN and UTOPIA software sets from

the Goddard Space Flight Center (GSFC) and the Uni-

versity of Texas Center for Space Research (UTCSR), re-
spectively. The intercomparison validated all dynamic tra-

jectory models for TOPEX/POSEIDON and verified the

laser range measurement models. For all cases, including
the combined models case, the maximum radial differences

were approximately 1 cm or less for a 10-day orbit. An ad-
ditional intercomparison with the UTCSR GPS software

MSODP to validate trajectory modelsfor the GPS satel-

lites was performed. All but the occulting solar radiation

pressure produced subcentimeter, 10-day orbit compar-
isons. The solar radiation pressure intercomparison tests

have been postponed due to the expected release of im-
proved models.

After launch, the operational orbit determination accu-

racies have steadily improved as the procedures and tech-

niques have been fine-tuned. Accuracy comparisons are

broken into three distinct processing phases. The dates
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and groundtrack repeat cycles for each are presented in
Table 6.

Data prior to cycle five were not considered for this

analysis due to difficulties in the early days of the GPSDR

plus the occurrence of several anti-spoofing days. Phase 1

processing was performed before most internal and exter-
nal consistency checks (see below) were used; thus, it is

not representative of the achievable accuracies. Phase 2

processing used 24-hr arcs with the dynamic technique

augmented with empirical once- and twice-per-revolution
parameters. Phase 3 consisted of 30-hr arcs with the ad-

ditional reduced dynamic tracking strategy.

Statistics collected for the GPS carrier phase residu-

als (observations minus computed values) are presented
in Fig. 3. These residuals are from phases 2 and 3 only.
A marked reduction in the residuals is seen when the re-

duced dynamic technique is employed. Most of the gaps
are due to GPS constellation anti-spoofing activity when

no GPSDR data were available. Only 15 days of outage

are associated with GPSDR software problems.

TOPEX/POSEIDON orbit comparisons have displayed

subdecimeter agreements in the radial component with

i-day GPS precision orbit determination (POD) solutions
and orbits derived from satellite LASER range (SLR)

and Doppler orbitography and radiopositioning integrated

by satellite (DORIS) data. Figures 4 and 5 show the
three-dimensional and radial rms orbit differences during

phases 2 and 3. The MIRAGE dynamic solutions are com-
pared with dynamic solutions determined from laser data.
These laser solutions are based on 10-day fits from GSFC's

GEODYN program. In Fig. 5, the MIRAGE reduced dy-
namic solutions are compared. They are compared with

another reduced dynamic solution from the GPS GIPSY-

OASIS software that is part of the GPS Demonstration

Experiment POD segment.

V. Processing Automation and Error
Checking

One goal of the GDPF was to automate as nmch of the

processing as possible. Beginning with the data collection
through the delivery of final products, each aspect of the

processing was examined and automated by means of stan-

dard Unix scripts and X-window interfaces to the scripts.

Dashed lines in Fig. 1 denote automatic procedures that

do not require human intervention. User inputs changing

from day to day, such as the date, duration, and transmit-

ting and receiving participants, are controlled via a graph-
ical X-window interface that eliminates user input errors

and ensures operational consistency. Error mail messages

are generated to alert operators of malfunctions in the au-

tomated noninteractive scripts.

Vl. Off-Nominal TOPEX/POSEIDON Attitude

Modelling

Robust processing of off-nominal TOPEX/POSEIDON

satellite attitude events is available in two ways. First, the

actual attitude event change times (e.g., fixed to sinusoidal

yaw steering event) are designed as user inputs. Secondly,

the trajectory processing can use the attitude quaternions

from telemetry. So far, all attitude events, except orbit

maintenance maneuvers, have been accurately modelled

with the user input overrides. The actual telemetry was

required only for the maneuver.

VII, SLR and DORIS Data Types

In addition to the GPS P-code pseudorange and car-

rier phase observables, the MIRAGE software can process
SLR and DORIS data. SLR and DORIS data types were

incorporated to support TOPEX/POSEIDON verification
activities. The SLR orbits are included in the Interim Geo-

physical Data Records (IGDR) science product [9]. Orbit
file formats are identical for all data types (i.e., PFILE

format); therefore, no interface changes are required for
IGDR processing with MIRAGE GPS orbits. A utility

has also been developed as part of the MIRAGE software

to convert any MIRAGE orbit file into the precision orbit

ephemeris (POE) format.

VIII. TOPEX/POSEIDON Mission Operations

Support

A routine GDPF task is to produce GPSDR almanac

predictions for initial acquisition operations. Almanac
data are produced twice weekly as a contingency for rapid

GPSDR failure recovery. The data are delivered to the

Spacecraft Performance Analysis Team for reformatting

and subsequent uplink to the GPSDR by the Flight Con-
trol Team.

IX. GPS Anti-Spoofing Results

During GPS constellation anti-spoofing activities, only

Clear-Acquisition (CA) code pseudorange and L1 carrier
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phase data are available from the GPSDR. However, an in-

ternal receiver calibration provides for an ionosphere cor-

rection to the ground receiver data. Preliminary tests have
produced subdecimeter radial differences for limited sets

of data by producing an approximate ionosphere calibra-

tion. This calibration is derived by subtracting the carrier

phase measurements from the CA-code pseudorange mea-
surements and smoothing the resulting signal to remove

the multipath signal. This yields an ionosphere correction

that can then be applied to both the CA-code pseudorange
and carrier phase data.

X. GDPF Resources

Required GDPF resources in terms of personnel, com-

puter time, and actual time to produce a 1-day (30-hr) so-
lution are given in Table 7. Members of the operational or-
bit determination team work on a five-day-per-week sched-

ule. Weekend backlogs are eliminated during this schedule.

The totals given in Table 7 are for one team member per
workstation. Continuous operation of the GDPF required

a total of three members. The breakdown of tasks for

the GDPF team is shown in Table 8. With the automa-

tion developed thus far, a single person could easily handle
nominal production. The remainder of the team consists

of backups, a lead, and sustaining hardware maintenance
personnel.

Xl. Conclusions

Operational orbit determination has been demonstrat-

ed for TOPEX/POSEIDON using the GPS constellation

(20 to 24 satellites), the TOPEX/POSEIDON demonstra-

tion receiver, 6 ground receivers, the GPS Data Handling

Facility, and the GPS Data Processing Facility. Compar-
isons between the MIRAGE orbit solutions and other pre-

cision orbit solutions based on LASER, DORIS, and GPS

yield subdecimeter radial results. Both the GPS dynamic

and reduced dynamic results from MIRAGE appear to ex-

ceed the original performance requirements (approximate

l-m radial position) and give results comparable to other
geodetic quality software.
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Table 1. Force models for TOPEXIPOSEIDON.

Model Description

N-body

Earth geopotential

Indirect Earth-Moon Oblateness

Solid Earth tides

Ocean tides

Rotational deformation

Relativity

Solar radiation pressure

Atmospheric drag

Albedo and infrared Earth radiation

Empirical accelerations

All planets, Sun, and Moon

50 x 50 truncated Joint Gravity Model-2 (JGM-2)

2 x 2 lunar model

IERS

JGM-2

IERS

Point mass Earth + Lense-Thlrring

Conical shadow model

Drag/temperature air density model

2nd degree zonal model

Once/rev and twice/rev models

Table 2. Dynamic force models for GPS satellites.

Model Description

N-body

Earth geopotential

Indirect Earth-Moon oblateness

Solid Earth tides

Ocean tides

Rotational deformation

Relativity

Solar radiation pressure

All planets, Sun, and Moon

12 x 12 truncated JGM-2

2 x 2 lunar model

IERS

JGM-2

IERS

Point mass Earth + Lense-Thirring

Rock4 and Rock42 models

Table 3. Measurement models.

Model Description

Solid Earth tides

Rotational deformation (pole tide)

Ocean loading

Polar motion

Plate motion

Earth center-of-mass offset

0th-, lst-, and 2nd-order correct;ons

IERS

IERS

Daily values from University of Texas

Linear velocities

Currently zero
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Table4.GPSobservationweights.

Data type GPSDR Ground station

Carrier phase, cm 2 1

Pseudorange, m 2 1

Table 5. Estimated parameters.

Parameter(s)

TOPEX state

GPS states (24 satellites average)

Station locations (3 ground stations)

GPS solar pressure scale factors and Y-bias

Empirical dynamic parameters

Stochastics: (30-hr arcs with 5-rain updates)

Troposphere (six ground stations)

TOPEX and ground clocks (one master clock fixed)

Carrier phase biases

TOPEX body-fixed accelerations (X, Y, Z)

Total

Number of parameters

6

144

9

72

9

6

30

,_160

3

_,439

Phase

1

2

3

Table 6. Dates for groundtrack repeat cycles.

Dates Cycles

November 3, 1992 December 21, 1992

December 22, 1992-May 2, 1993

May 3, 1993-October 28, 1993

5-9

10-23

24-40
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Table7.GDPFprocessingperformance.

Processing phase CPU time, hr Actual time, hr

Data preprocessing a

Collection 0.1 0.1

TOPEX/POSEIDON editing 1.3 1.4

Ground station editing 0.4 0.5

Editing 0.1 0,1

Reformatting 0.1 0.1

Total 2,0 2.2

Orbit estimation (per iteration)

Ini tializat ion 0.1 0.2

Trajectory propagation 0.3 0.3

Observation residual computation 0.5 0.5

Parameter estimation 0.1 0.1

Stochastic parameter smoothing 0.1 0.1

Three-iteration total 3.3 3.6

Archive 0.1 0.2

Total 5.4 6.0

a Automated processing performed prior to start of work day.

Table 8. GDPF personnel requirements.

Task Personnel

Lead a 1

Data conditioning 1

Orbit conditioning 1

Hardware maintenance 0.5

a Lead will also assist and back up data-conditioning and orbit
determination functions.
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Fig. 1. GPS Data Processlng Facility interfaces.
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Design, modeling, analysis, and simulation of a phase-locked loop (PLL) with

a digital loop filter are presented in this article. A TMS320C25 digital signal pro-
cessor (DSP) is used to implement this digital loop filter. In order to keep the

compatibility, the main design goal was to replace the analog PLL (APLL) of the

Deep-Space Transponder (DST) receiver breadboard's loop filter with a digital loop

filter without changing anything else. This replacement results in a hybrid digi-
tal PLL (HDPLL). Both the original APLL and the designed HDPLL are Type I

second-order systems. The real-time performance of the ItDPLL and the receiver
is provided and evaluated.

I. Introduction

Future NASA missions will require low-cost, small-
sized, low-power-consumption spacecraft telecommunica-

tion equipment. To achieve the best design within mis-

sion resources, one must incorporate emerging technolo-

gies in the flight hardware. These requirements motivate

the study of replacing a baseband analog loop filter with

a digital filter in the phase-locked loop (PLL) of the exist-

ing X-band (7.145-7.19 MHz) transponder receiver bread-
board.

Conventional spacecraft transponders employ analog
circuits from the front-end antenna to the baseband car-

rier phase-tracking loop. With new digital technology,
it is possible to build a very reliable all-digital IF and

baseband circuit by using digital signal-processing tech-

niques. However, before building a space-qualified all-

digital transponder, it is preferable to experiment on a

hybrid digital PLL (HDPLL) by using an existing X-band

Deep-Space Transponder (DST) receiver breadboard as a

first step in order to build confidence and obtain design ex-

perience. Furthermore, in order to keep the compatibility,

the main design goal is limited to replacing an analog PLL
(APLL) with an equivalent HDPLL without changing any-

thing else. This implies a restricted design approach to the

HDPLL. Modeling and computer simulation of the

HDPLL are required to validate the algorithm and basic

approach. This article describes the design, analysis, mod-
eling, simulation, and real-time performance of a HDPLL
of the X-band DST receiver breadboard.

The design specifications and functional description of

the carrier tracking loop are summarized in Section II.
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The conventional analog filter and APLL for various input

signal levels are given in Section III. Section IV describes

digital filter design, the HDPLL, and the analysis. Digital
filter implementation and breadboard performance of the

HDPLL are given in Section V. Finally, conclusions and

recommendations are given in Section VI.

II. Design Requirements

The DST receiver specifications are listed as follows:

The carrier signal tracking threshold is -157.3 dBm. The

dynamic range is 88 dB (carrier threshold to -70 dBm).

The noise figure at the DST receiver input is 1.4 dB nom-
inal. The tracking range is 4-250 kHz minimum at the

assigned channel frequency. The steady-state tracking er-
ror at a carrier signal level greater than -110 dBm shall

be less than 1 percent per 40 KHz. The capture range is

4-1.3 KHz at a carrier signal level greater than -120 dBm.

The acquisition and tracking rate is at least 550 Hz/sec at

a carrier signal level greater than -110 dBm.

A DST receiver breadboard was built that met spec-

ifications [1], using all analog components in the APLL.
The carrier phase-tracking APLL is a Type I second-order

system with built-in characteristics, as follows:

(1) The two-sided noise bandwidth (2BL) of the carrier
tracking loop at threshold is 18 Hz.

(2) The signal-to-noise ratio (SNR) in the carrier track-

ing channel at the phase detector input is -25 dB.

(3) The damping factor at threshold (-157.3 dBm)
ranges from 0.4 to 0.6.

(4) The loop predetection filter bandwidth is equal to
5000 Hz.

III. Analog Phase-Locked Loop

The basic block diagram of the receiver breadboard of

the DST is given in Figl l(a). The simplified APLL which
tracks carrier phase is given in Fig. lib ). The equivalent

HDPLL is obtained by replacing the analog loop filter with

a digital filter, as shown in Fig. lib ) and as will be dis-
cussed in the next section. A bandpass limiter is used in

the APLL and HDPLL receivers to maintain a constant

total power at the input to the loop [2,3]. This minimizes
the total mean-square error of the loop over a wide range

of input SNR's. It is also used to protect various loop

components, the phase detector in particular, where sig-
nal and noise levels could otherwise vary over several or-

ders of magnitude and exceed the dynamic range of these

components.

By measuring the analog loop filter of the DST receiver

breadboard, the loop filter parameters 7-1 and r2 are ob-
tained and its transfer function is given as follows:

A0 (1 + r2s) (1)
F(s) - 1 + rls

where r2 = 0.0464 sec, rl = 3655 sec, and A0 = 43.4 dB.

Because the bandwidth of the loop predetection band-

pass filter is 5 kHz, the threshold level at the transponder

input is -157.3 dBm. Consequently, the suppression fac-
tor d is 0.0531 at threshold and 1 at strong signal (50 dB

above threshold) [2]. A detailed discussion on the suppres-
sion factor d is provided in Appendix A. The closed-loop

transfer function of the linearized APLL is given in [3]

with an open-loop dc gain parameter k = 2.2(107). The

parameter A0 is included in parameter k [1].

1+ r2s (2)
H(s)= 1 + [T=+ _A-Z]s + _-1-s2ak

For simulation purposes, the linearized APLL trans-

fer function is computed for the input at threshold and

strong signal. Computer simulations are conducted for
both cases. The magnitude and phase responses of the

APLL are shown in Figs. 2(a) and 2(b) at threshold and

Figs. 3(a) and 3(b) at strong signal, respectively. The

damping factor is 0.5 for threshold and 2.18 for strong sig-
nal. The two-sided equivalent loop noise bandwidth (2BL)

is 18 Hz at threshold and 160 Hz (2BL) at strong input sig-

nal. Time domain responses of impulse, step, ramp error
at both threshold and strong input signal cases are shown

in Figs. 4(a-e) and 5(a-c), respectively.

The phase margins of the APLL are 44.5 deg and

85.6 deg at threshold and strong signal eases, respectively.

Since phase is always greater than 180 deg, the gain mar-

gin is then not used. This APLL is a Type I second-order
system with rl >> v2 and vl >> 1. Therefore, F(s) can
be modelled as a perfect integrator, as follows:

A0 (1 + r2s)
F(s) _ (3)

vls

This mathematical model of F(s) will be used to de-

velop the equivalent digital filter in the next section for

easy DSP implementation.



IV. Digital Filter Design, the HDPLL, and
Analysis

The analog filter F(s) of the APLL is replaced by an

equivalent digital filter and employed together with an

analog-to-digital converter (ADC) and digital-to-analog

converter (DAC) in the HDPLL as shown in Fig. l(b). A
sampling rate must be selected first for the HDPLL. Since

the 3-dB bandwidth of the bandpass limiter is 5 kHz and

the DSP board employed provides the best performance

at a sampling rate of 50 kHz, the sampling rate selected

is 50 kHz. The higher the sampling rate (50 >> 5 kHz),
the more the HDPLL performs like the analog loop.

A. Digital Filter Design

Two design steps are required to obtain digital filters.
In step one, a digital filter algorithm must be developed.

In step two, the digital filter coefficients must be quantized

and scaled properly for fixed-point arithmetic implemen-
tation of the HDPLL.

1. Digital Filter Algorithm. Based on the analog

carrier loop filter transfer function, three digital filter de-
sign methods [4,5] are considered. These are bilinear trans-

formation, hold equivalence (also known as step-invariant),

and impulse-invariant methods. Since the sampling fre-
quency is much higher than the APLL noise equivalent

bandwidth, the bilinear transformation method can be ap-

plied directly without prewarping the analog frequency.

The bilinear transformation is

where

I

F,(z) = F(s) l - bz+ c
s : _ z- 1 (4)I

Ao (T + 272)b-
27-1

Ao (T - 21-2)
C--

2T1

The hold equivalence is

(5)

r2(z) : (1- z-l) (Z [-_]) -

where Z[.] represents a Z-transform of [.],

bz+c
(6)

z--1

b- Ao r_
TI

Ao(T- r_)
C--

T1

The impulse invariance is

where

(7)

F3(z) = T (Z [F(s)]) - bz + cz- 1 (8)

b- A0(T+r_)
7"1

(9)

- Ao 7"2
C--

7"1

The parameters b, c, and associate zeros of the digital

filters are obtained and given in Table 1.

Among these three digital filters, parameters b, c, and
zero location are very close to each other. This is because

the sampling frequency selected is much higher thanthe
analog loop filter 3-dB bandwidth. Consequently, all three
digital filters have nearly the same characteristics. How-

ever, the bilinear transformation is better than the other

two transformations in preserving the phase response [10].

Hence Fl(z) is chosen as the digital filter algorithm and
will be quantized for fixed-point DSP implementation.

2. Quantization and Scaling [5]. Several simula-
tions are conducted with fixed-point arithmetic in order to

determine the number of bits of filter coefficients, digital
gain, and scaling factor for implementation. It is found

that the quantization causes a larger effect than which

transformation is used. This is because the analog loop

filter has an extremely narrow bandwidth in comparison
to the sampling frequency. The pole and zero of the cor-

responding digital filter may cancel out each other if im-

proper scaling and quantization are applied. Finally, 16-

bit coefficients and a high digital gain (gd = 148) are se-
lected for the following reasons:

(1) Easy and fast acquisition.

(2) Accurate digital representation for parameters b and

c and to avoid pole-zero cancellation due to quanti-
zation.

(3) Easy implementation by a TMS320C25.
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(4) To preserve the noise equivalent bandwidth by
choosing g0 = 148 for both strong signal and thresh-

old. (More discussion on the g0 is provided in the

analysis section.)

The 16-bit digital filter is obtained by

Fdz) _ [b z + 2-8 (10)
z--1

where

bq --

eq--

Int [(gdb/Ao)(2s(21_) - 1) + 0.5] = 15764/32767
215 - 1

Int [(gdc/Ao) (28(215) -- 1) + 0.5]
21_ - l = 15758/32767

go = digital gain = 148

Int [.] represents the integer portion of [.].

This digital filter exhibits similar performance to the

analog carrier loop filter. However, an extra 8-bit gain

(2 s) is applied to form bq and Cq in Eq. (10) for maximiz-

ing numerical accuracy and results in 16-bit fixed-point
coefficients for DSP implementation. This 8-bit gain is

then compensated by 2 -s at the output of the digital fil-
ter. Hence the total filter gain remains the same as that

of the analog filter. Notice that distortion due to quanti-

zation is very small and can be ignored.

B. The Hybrid Digital Phase-Locked Loop

The simplified block diagram of a HDPLL is shown

in Fig. l(b). By comparing Figs. l(a) and l(b), one
notes that the analog filter of Fig. l(a) is replaced by

an equivalent digital filter with the 16-bit ADC and DAC

in Fig. l(b). We model the ADC plus digital filter plus
DAC as an impulse modulator, a fixed-point digital fil-

ter algorithm, and a zero-order hold. By using the block

diagram analysis of sampled data systems [4], the sam-

pled (discrete-equivalent) transfer function, H(z), of the
linearized HDPLL is obtained. A detailed derivation is

given in Appendix B. Again, computer simulations are
conducted at both threshold and strong signal cases. The

magnitude and phase responses of the HDPLL are shown

in Figs. 2(a) and 2(b) at threshold, and Figs. 3(a) and

3(b) at strong signal, respectively. Notice that frequency
responses of the APLL and HDPLL are approximately the

same except for the phase response at frequencies above
1 kHz. This shows that the HDPLL preserves both mag-

nitude and phase characteristics very well at frequencies

less than 1 kHz. Consequently, the noise equivalent loop
bandwidth of the HDPLL is the same as that of the APLL

at both strong signal and threshold cases. Therefore, the
phase jitter of the HDPLL is the same as that of the APLL.

The impulse, step responses, and ramp-error response

of the HDPLL at both threshold and strong signal cases

are shown in Figs. 6(a-c) and 7(a-c), respectively. The
ramp-error response shows the dynamic phase error (DPE)

in the acquisition. The digital gain is 148 at threshold

in Figs. 6(a-c). Two different digital gains are used in

Figs. 7(a-c). Notice that these time domain responses of

the HDPLL are significantly different from counterparts
of the APLL. Specifically, the impulse response of the

HDPLL has a much smaller dynamic range than that of

the APLL. On the other hand, the DPE of the HDPLL has

a much larger dynamic range than that of the APLL. How-
ever, the impulse response of the HDPLL becomes larger

with a larger digital gain, as shown in Fig. 7(a). The DPE

becomes smaller with a larger digital gain, as shown in

Fig. 7(c). It shows that digital gain significantly controls
the dynamic range of the time domain response. These
features indicate that the dynamic range of the accumu-

lator of the processor must be large enough to accommo-

date the DPE during the acquisition process. We select

gd = 148 for having a BL which meets the specification. It
is observed that step responses of the HDPLL show that

the damping factor is about 0.5 at threshold and larger
than 1 at strong signal. Notice that there is a smoothing

analogfilter used after digital-to-analog (D/A) conversion

in the HDPLL. Consequently, this HDPLL is a Type I,

second-order closed-loop system.

C. Analysis

1. Digital Gain Versus Stability. It is well known

that second-order, Type I APLLs are unconditionally sta-

ble. However, Type I HDPLLs are only conditionally sta-

ble and Type I second-order HDPLLs are unstable at high

loop gains. The root locus plot of the HDPLL is shown

in Fig. 8. Both poles are forced to remain on or near the
real axis for the maximum possible range of loop gain, as

shown in Fig. 8. The pole of the HDPLL moves outside
the unit circle and becomes unstable when digital gain is

larger than 50,465. By using g_ = 148, the phase mar-
gin and gain margin of the HDPLL are computed at both

threshold and strong signal cases. Table 2 compares the

phase margin between the APLL and the HDPLL. The

phase margin of the HDPLL is about the same as that
of the APLL. Consequently, the HDPLL is very stable at

both threshold and strong signal cases.

2. Digital Gain Versus Noise Equivalent Band-
width. In general, it does not matter whether the gain is

in the digital or analog portion of the loop. However, since
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all analog parts of the HDPLL are fixed components in

the receiver breadboard, only the digital filter gain can be

easily adjusted as a flexible parameter. Consequently, the

relationship between the digital gain and the noise equiv-

alent bandwidth becomes important. The one-sided noise

equivalent digital bandwidth BLd (Hz) of the HDPLL is
given by

1 J_], H(z)H(z-1)d-_ (11)BLe = 2T (H2(1)) 27rj i= 1

where T is the update time in seconds and H(z) is the

transfer function of the HDPLL with H(1) = 1. The BLd

can be calculated by using either numerical integration

or Table III in [6]. At gd = 148, the 2BLd is obtained

as I56 Hz and 17 Hz at both strong signal and thresh-

old, respectively. The noise equivalent bandwidth of the
HDPLL is nearly the same as that of the APLL. Fur-

thermore, the relationship between the gd and the BLd

is depicted in Fig. 9 at strong signal case. It is observed

from Fig. 9 that the noise equivalent loop bandwidth in-

creases when digital gain increases. However, the BLd will

be greater than 25 kHz if the digital gain is greater than

26,400. Consequently, the gd should be less than 26,400 to

avoid aliasing errors.

3. Steady-State Phase Error. Under the assump-

tion of linearity, the phase error (no noise) in the z-domain
is given by the following expression:

@(z) = {1 - H(z)} Oi(z) (12)

where H(z) is the closed-loop transfer function of the

HDPLL and Oi(z) is the z-transform of the phase input.

Furthermore, an instantaneous Doppler, denoted as d(t),
is assumed as follows:

d(0 - + hot) (13)

where

wi = carrier frequency (rad/see)

f_o = spacecraft speed (m/see)

Ao = spacecraft acceleration (m/see 2)

c -- speed of light (m/see)

The input phase Oi(t) of the HDPLL is the integration

of the d(t) with respect to time and is obtained by

Oi(t) - wi(f_ot + 0.5Aot 2)
C

By applying the final value theorem to the phase-error
equation, we get

¢,_ --- lim (z - 1)(1 - H(z))Oi(z)
z_l

-- z_llim(1- H(z))(Wc)

_oTz z + 1

(wi/c)AoT

(k/Ao)(b, + (14)

For the Voyager mission at an 8.4-GHz carrier fre-

quency, we assume acceleration values of Ao = 0.32 m/see 2

for Uranus [7]. The steady-state phase error at the strong
signal case is obtained as 0.607 deg at encounter. Clearly,

this HDPLL meets the specification that requires a steady-

state error of 1 deg, as mentioned in Section II.

4. The Phase-Error Variance of the PLL. The

phase-error variance of the linearized APLL after the

bandpass limiter is calculated as

2= (NoBL_
(r, \pelf

where

No -- the one-sided noise power spectral density

Pc = the carrier power

F = limiter performance factor = (l+pi)/(O.862+pi)

Pi = Pc/NoWi -- the SNR input to the limiter

Wi -- the bandwidth of the bandpass filter = 5000 Hz

The limiter performance factor equation is obtained

experimentally [8]. From the breadboard DST second

IF gain distribution measurements, l parameters of both

1 j. Perret, "Breadboard Uplink Command Channel Performance

Analysis Calibration and Testing Accomplished in 1991," Interof-

fice Memorandum 3367-93-171 (internal document), .let Propulsion

Laboratory, Pasadena, California, May 1993.
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thresholdandstrongsignalcasesareobtainedwiththeau-
tomaticgaincontrol(AGC)on(threshold)andoff(strong
signal),respectively.(SeeTable3.)

BasedontheparametersprovidedinTable3,theSNR
ofboththeAPLLandHDPLLcanbecomputedasfollows:

1
SNRoftheAPLL= 10 log _r--_dB

10
+ log { 5000)] dB

kW)J

SNRoftheHDPLL= 10 log [(-_c 1 )F] dB

The SNR of both APLL and ttDPLL at both threshold

and strong signal is provided in Table 4.

V. Digital Filter Implementation and
Breadboard Performance

A PC board of the Ariel DSP-16 Plus is employed to-

gether with an X-band DST breadboard for real-time digi-

tal loop filter implementation. The bandwidth of both an-

tialiasing (input) and smoothing (output) filters is 20 kHz.
Both ADC and DAC are 16-bit with a selected sampling

rate of 50 kHz for best board performance. A TMS320C25

digital signal processor is employed to implement this 16-

bit digital loop filter. This DSP has a 32-bit-wide accu-
mulator. However, a 40-bit equivalent accumulator is em-

ployed to accommodate the large dynamic range required

during the acquisition process.

Transponder receiver experiment results are obtained

in real-time operation. Evaluation experiments include

receiver tracking threshold sensitivity and static phase er-

rors for X-band uplink frequency offset. All measurements
were made at room temperature (25 deg C). The theoreti-

cal equation used for the calculation of the carrier tracking

threshold is given in Appendix A. The measured tracking
threshold sensitivity at the receiver best lock frequency

(7162.3125 Miiz) is -155.3 dBm, which is higher than
the design threshold value of -157.3 dBm. This is due
to the dc bias at the analog-to-digital (A/D) converter of

the DSP board. However, the measured hybrid digital re-

ceiver threshold characteristics show good correlation with

the actual analog receiver performance and agree with the-
oretical performance over the tracking range, as shown in

Fig. 10. Figure 11 shows a linear relationship between
measured static phase error (SPE) voltage versus uplink

frequency offset over the receiver tracking range. The mea-

sured SPE shows a good correlation with expected perfor-

mance (Appendix C). The measured tracking ranges of
APLL and HDPLL are :L270 and -1-280 kHz, respectively,

which is greater than the required tracking range value of
-t-250 kHz.

Vl. Conclusion

This article presents the design, implementation, anal-

ysis, and performance testing of a ttDPLL of the DST

receiver breadboard. The baseband carrier loop filter has

been successfully replaced by a 16-bit digital filter (digital

integrator). A TMS320C25 DSP is employed to imple-
ment this filter in real time. All simulations show that

the designed fixed-point digital filter works very well in
the HDPLL. The simulated performance in the frequency
domain of the HDPLL is nearly the same as the original

APLL at both threshold and strong signal cases. How-

ever, time-domain responses of the IIDPLL are controlled

by the digital gain. To meet the BL requirement, the gd
is chosen as 148. Hence, the HDPLL's dynamic range of

time-domain responses is different than that of the APLL.

Testing results are in good agreement with predicted

characteristics, with the exception of tracking threshold

(about a 2-dB loss due to the dc bias of the A/D). This
loss can be reduced if the digitization occurs at the IF

signal, instead of the digitizing baseband signal. In con-

clusion, it has been demonstrated that the baseband car-

rier loop filter of the DST receiver can be replaced by a

digital filter. By using this HDPLL as a basic model, an

advanced digital receiver employing digital IF techniques
is recommended for future deep-space transponders [9,10].

An adaptive scheme is also recommended to solve the high

transient DPE problem as follows. First, to reduce the
transient DPE in the acquisition mode, the digital gain

of the digital filter should be increased. Consequently, the

loop bandwidth is opened up. This operation will ensure a

larger acquisition sweep rate. Secondly, after the phase is
locked, the digital gain should be reduced. Hence, the loop

bandwidth is reduced in the tracking mode. This opera-

tion will reduce phase noise and ensure a limited steady-

state tracking error.
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Table 1. Parameters and zeros of digital filters.

Parameter b Parameter c

Deslgn method (x 10 -a) (x 10 -a)
Zero

Billnear transformation 1.879256 - 1.878446 0.999569

Hold equivalence 1.878851 - 1.878041 0.999569

Impulse invariance 1.879661 - 1.878851 0.999569

Table 2. A comparison of phase margin and gain margin

between the APLL and HDPLL.

Phase margin Gain margin

APLL, deg tIDPLL, deg APLL HDPLL, dB

Threshold 44.5 47 N/A a -77

Strong signal 85.6 86 N/A a -51

a Gain margin is not used because the phase of the APLL is always greater than

180 deg.

Table 3. Measured signal and noise power Input to the

limiter and associated parameters Pi and F at threshold and

strong signal.

Pc, dBm NOW,, dBm pi ["

Threshold - 26.5 - 1.5 0.003 1.16

Strong signal --26.5 --87.5 1.2 X 106 1.0

Table 4, The SNR of both the APLL and HDPLL at both threshold a

and strong signal.

SNR APLL, dB IIDPLL, dB

ThreshoId 1.80 2.05

Strong signal 78.96 79.07

a Threshold is defined as the point where probability is 50-percent

lock and 50-percent unlock.
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Fig. 8. The root locus plot of the HDPLL
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Appendix A

A Mathematical Model of the Suppression Factor and

Tracking Threshold Calculation

The mathematic model of the suppression factor a and

calculation of the carrier tracking threshold of a PLL re-

ceiver are provided here.

The carrier tracking threshold of a PLL receiver is de-

fined as the minimum uplink signal required to maintain

a 50 percent probability of lock at any given offset from

best lock frequency (BLF). The worst-case carrier tracking

threshold signal level So at the transponder input port and

at the BLF is determined from the following equations:

So = kToF(2BL)L (A-I)

where

So = the received input signal level for tracking
threshold at receiver BLF

k = Boltzmann's constant

To = the reference system temperature

F = receiver noise figure at the transponder input

L = the receiver carrier channel loss

The So is calculated and is equal to -157.5 dBm (the
receiver carrier tracking threshold) for a 2BL of 18 ttz,

channel loss of 1 dB, and noise figure of 2.9 dB at 290 K.

The PLL receiver limiter suppression factor _ is given
by [3]

_/ 2BLISo (A-2)a= 1/ 1+ 7CBL-_

where

S = the receiver input signal power level

BLI = the noise equivalent predetection bandwidth

In the region near tracking threshold, the phase offset
0_ at the PLL phase detector can be estimated from an

empirical equation

o_0
0_= l--

o/

°_° \ 2BL1 ]

0.5
(A-3)

Notice that s0 is the limiter suppression factor at car-
rier threshold.

The phase-detector output voltage is given by an em-

pirical equation

=  sin(O )cos(O ) (A-4)

The frequency offset at X-band is then obtained as

Af = V_k (A-5)

where k = open loop dc gain of the PLL.
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Appendix B

Derivation of the HDPLL Closed-Loop Transfer Function

The HDPLL closed-loop transfer function derivation is

provided here [4].

From Fig. l(b), the DAC is modeled as (1 - e-ST)/s,

and the voltage-controlled oscillator (VCO) is modeled as

k/s. Then the output of the sampled-data system is ob-
tained as

[ r(k/g)e "T]

where

*

0° - 1 + G" 0* (B-l)

0* = the sampled output of the HDPLL

0* = the sampled input of the IIDPLL

G*= o_ (1- e-'T) F_ (ks-_-) *

and

A- c_kT2-S
g

Z _ e _T

bq and cq are 16-bit digital filter coefficients.

The closed-loop transfer function is then

H(z) = 0"--°= A(bqz + Cq)
Oi z 2 + (Abq - 2)z + Acq + l

(B-2)
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Appendix C

Relationship Between SPE and Uplink Frequency Offset

The relationship between the static phase error (SPE)

and the uplink frequency offset over the receiver tracking

range is found as follows.

The VCO receives SPE as input and provides output

frequency at 12Fx with a gain of 628 Hz/V (measured).
The frequency of the received uplink signal is 749F1, as

shown in Fig. l(a). Consequently, the uplink frequency

offset from the best lock frequency is obtained as

Af = -SPE(628) (71_) (C-l)

The minus sign is used for the negative feedback PLL.
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A 32-GHz Microstrip Array Antenna for
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JPL/NASA is currently developing microspacecraft systems for future deep space
applications. One of the frequency bands being investigated for microspacecraft is

the Ka-band (32 GtIz), which can be used with smaller equipment and provides a

larger bandwidth. This article describes the successful development of a circularly

polarized microstrip array with 28 dBic of gain at 32 Gttz. This antenna, which is
thin, fiat, and small, can be surface-mounted onto the microspacecraft and, hence,

takes very little volume and mass of the spacecraft. The challenges in developing
this antenna are minimizing the microstrip antenna 's insertion loss and maintaining

a reasonable frequency bandwidth.

I. Introduction

JPL is currently considering the development of mi-

crospacecraft for future deep space missions in order to

meet NASA's goal of having small and inexpensive space-
craft. The microspacecraft, 1 having sizes on the order of

0.5 m, will certainly require components that are small
both in size and mass. One of the frequency bands under

investigation for use with microspacecraft is the Ka-band

(32 Gttz). In this frequency range, components are smaller
and larger bandwidths can be achieved as compared with
a lower frequency range. A larger bandwidth will result in

a higher data rate.

1C. Salvo and C. Nunez, "Code R Microspacecraft Subsystem Tech-
nology Task," JPL Interoffice Memorandum 3132-92-099 (inter-
hal document), Jet Propulsion Laboratory, Pasadena, California,
March 23, 1992.

In microspacecraft development, antennas are one of

the major components that warrant attention since they

generally require significant amounts of real estate and
mass. Conventional antennas such as horns and parabolic

reflectors, although efficient radiators, are generally bulky

in size and large in mass. As a result, three different types
of flat antennas with very thin profiles have been proposed

for the microspacecraft. Since they are flat, the antennas

can be surface-mounted onto the spacecraft without ad-

ditional supporting structures, such as those needed for

curved parabolic reflcctors. Therefore, they require very
little volume and mass.

The first type is the microstrip array [1], in which many

printed microstrip patch elements are combined by mi-
crostrip transmission lines. Due to the relatively high in-
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sertion loss that generally exists in microstrip transmission

lines, the microstrip array cannot be very large; otherwise

the antenna will be very inefficient. At Ka-band, the mi-
crostrip array will have an acceptable insertion loss if its

aperture dimension is less than 15 cm. The second'type

is the planar slotted waveguide array [2], which is gener-
ally bulky at low microwave frequencies, but which can be

made low profile with a small mass at high frequencies,

such as Ka-band. Because the slotted waveguide encoun-

ters very little insertion loss, its aperture size can be large.

The upper limit of its size is governed by its metallic mass.

At Ka-band, a reasonable dimension range for the planar

slotted waveguide array is from 5 to 35 cm.

For antennas with dimensions larger than 35 cm, a third

type of flat antenna, called the microstrip reflectarray or

flat reflector [3], can be used. This antenna has similari-
ties to the conventional parabolic reflector, in which both

a feed and a reflecting surface are needed. However, for

the microstrip reflectarray, the reflecting surface can be
flat rather than curved. Many identical but isolated mi-

crostrip patches (which are not connected to each other by

power dividers) with phase delay lines of different lengths

are printed on this flat reflecting surface. It is these phase

delay lines that will cause the reradiated energy originating
from the feed to become coherent in the far field. With-

out power-division transmission lines, the insertion loss of

the antenna will not increase as the size of the antenna in-

creases. Consequently, the aperture size of the reflectarray

can be very large while still maintaining good efficiency.
Since they are flat, these reflecting surfaces can be surface-

mounted onto the spacecraft without additional structure

support, such as is needed for a curved parabola. There-

fore, the spacecraft can have a lower mass and a lower

volume by utilizing the reflectarray antenna.

Due to limited resources in fiscal year 1993, only the

first type of antenna, the microstrip array, was developed.

The other two types of antennas are planned to be devel-

oped in the following years. This article documents the de-

velopment of the Ka-band microstrip array, which must be

circularly polarized with 28 dBic of peak gain. The array

employs a series feed technique [4] for its power-division

transmission lines in order to reduce insertion loss, and it
uses sequentially arranged [5] elements for its subarrays to

improve the quality of the circular polarization (CP).

I!. Antenna Requirements

The antenna technologies studied here are intended for

a series of future JPL/NASA microspacecraft applications.
The set of antenna requirements generated here, however,

are for a particular application called Asteroid Comet Mi-

crospacecraft Explorer (ACME-II). 2 The ACME-II space-

craft, as illustrated in Fig. l, has a hexagonal shape with

dimensions on the order of 0.5 m. The bottom of the space-
craft is used for the propulsion adapter unit and does not

have enough room for the antenna. The top is allocated
for an optical camera, louvers, etc., and also does not have

adequate space for the antenna. The only likely location

for the antenna is on one of the six side panels, which

are allocated for the solar arrays. It seems appropriate

to mount a small and flat array antenna flush with the

solar array. The antenna requirements for the ACME-II

spacecraft are given in Table 1.

The antenna gain of 28 dBic is set for the microspace-
craft's near-Earth encounter with an asteroid or a comet

at a range of approximately 1 AU. This gain yields an

antenna beamwidth of about 5 deg. With this relatively

wide beamwidth, fine beam pointing at the Earth is not

required. Therefore, an automatic antenna tracking ca-
pability is not required; rather, a fixed broadside beam is

adequate for the antenna system. Coarse antenna point-
ing is to be clone by the spacecraft's onboard system, such

as the star tracker. The challenge in developing the pro-
posed microstrip array antenna is to achieve the 28 dBic

of gain with a minimal amount of insertion loss over a

relatively wide bandwidth of l GHz. In other words, the

efficiency of the microstrip array may need some atten-

tion. Low profile, small mass, and low cost are certainly

the attractive features of the microstrip array antenna.

Other antennas, such as horns and parabolic reflectors,

although known to be efficient radiators, may have very
poor efficiency in terms of antenna volume and mass for

microspacecraft applications. For example, for a horn an-

tenna to provide 28 dBic of gain, it will need approximately

9 cm x 9 cm of aperture with 20 cm of length. A significant
amount of the spacecraft's volume is needed to accommo-

date the horn antenna since the spacecraft's dimension is

only 50 cm across. Consequently, the horn antenna will
have a volume at least 50 times and a mass at least 10

times as large as the microstrip array. To summarize, for

microspacecraft applications, the salient physical features

of the microstrip array can compensate for the antenna's
relative inefficiency at Ka-band.

III. Antenna Development Background

To develop a high-gain microstrip array antenna, three

major steps are generally required: the single patch el-

2 Ibid.
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ement development, a building-block subarray develop-

ment, and the full array development. Since the microstrip

patch is a narrow-band device (generally less than three-

percent bandwidth), the development of the single patch is

necessary to ensure its correct resonant frequency, polar-

ization purity, bandwidth, etc. Currently, no mathemat-
ical tool can directly design a complete microstrip array

to operate at the desired frequency. Although some math-
ematical tools are very accurate, one cannot ensure that

the fabrication tolerance and the manufacturer's material

specifications are all within the required accuracy. For

example, the dielectric constant of the substrate is gen-

erally 1 percent off from the manufacturer's specification,
which can cause a similar percentage of change in reso-

nant frequency. The second step is the development of

the building-block subarray, which means that the full ar-

ray consists of many identical subarrays. This subarray

should be developed prior to the full array to ensure good

circular polarization and to minimize overall development
risk. Once the single subarray is developed, many of these

identical subarrays can then be combined by microstrip
transmission lines to form the final array.

A. Single-Patch Element Development

For an array to generate CP, its element is generally

required to be circularly polarized. However, when the ra-

diation efficiency is not a concern, a CP array can be com-

posed of linearly polarized (LP) elements [6,7]. Since the
radiation efficiency is of concern, the patch element must

be circularly polarized. There are basically two techniques

for a single microstrip to generate CP. One is to have a
square or circular patch excited by two orthogonally lo-

cated feeds in time quadrature, as shown in Fig. 2(a). The
other is to have a truncated-corner square patch, as shown

in Fig. 2(b), excited by a single feed. Since the insertion
loss of a mierostrip array is mostly incurred in the mi-

crostrip power-distribution transmission lines, the lengths

and complexity of these transmission lines should be mini-
mized. As a result, the truncated-corner, single-feed patch

rather than the orthogonally fed patch is selected for the

array. There are several other techniques [8] to generate

CP by a single-feed patch, such as using a tilted slot at

the center of a square patch and a circular patch with two

indented edges.

All these single-feed CP methods work as a result of the

fields underneath the patch being perturbed by the small

truncations. The perturbation splits the field into two or-

thogonal modes that are degenerate in frequency and in-

phase quadrature. The amount of perturbation must be

just right so that two orthogonally polarized fields with

equal amplitudes and orthogonat phases can be formed.
Consequently, the CP bandwidth is very narrow and gen-

erally is less than 1 percent. This narrow bandwidth will

cause the resonant CP frequency to be very sensitive to

fabrication tolerance, temperature change, etc. One tech-

nique for increasing the CP bandwidth is to arrange four

neighboring elements sequentially in orientations and in

phases. This technique is discussed in the next subsec-
tion.

The design of the truncated-corner square patch is as-

sisted by both the cavity modal theory [9] and the vari-

ational method [10]. The cavity modal theory, used here

to design an unperturbed square patch, assumes that the
fields underneath the patch can be expanded in terms of

trigonometric functions (modal functions). By solving for
the unknown coefficients of these modal functions through

known boundary conditions, the resonant frequency and

input impedance can be determined. The amount of cor-

ner truncation for CP generation is then determined by
the variational method with the simple close-form equa-

tion given below [10]:

( s,)f' = f 1+._--_ (1)

with

S I 1

,5' 20

where S' is the sum of the two truncated areas, S is the

area of the unperturbed square patch, f is the resonant

frequency of the unperturbed patch, f' is the frequency
for the optimal axial ratio, and Q is the quality factor of

the unperturbed patch.

The quality factor, Q, is a function of the substrate

dielectric constant, thickness, and loss tangent. It can be

obtained simply through a curve given in [10] or calculated

from [8]. It can also be determined through the impedance

bandwidth (in percent for a 2:1 voltage standing wave ra-

tio [VSWR]) either calculated or measured for the unper-

turbed patch by the following simple relationship [11]:

1

Q = Vz(o a ,an)=",_n-,.v"t'" (2)

With the above formulations, the truncated-corner square

patch was designed with the following dimensions (see
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Fig. 2): a = 0.038 cm, b = 0.297 cm, the relative dielectric
constant = 2.2, and the dielectric thickness = 0.025 cm.

The measured input return loss at 32.0 GIIz is -21 dB,

which corresponds to a VSWR of 1.22:1. The measured

axial ratio is best at 32 GHz but with a relatively large
magnitude of 3 dB. This relatively large axial ratio is the

result of the narrow-band characteristic with a high sensi-

tivity to fabrication tolerance and the manufacturer's ma-

terial specification tolerance. Nevertheless, it is expected

that this large axial ratio can be reduced by the sequen-

tially arranged subarray technique to be discussed in the

next subsection. A photograph of this single patch with

truncated corners is shown in Fig. 3, where the patch is

fed by an impedance-matched microstrip transmission line

and an end-launched OS-50 coax connector. The printed
antenna circuit is etched on Duroid 5880 substrate ma-

terial. Due to its extremely thin profile, the antenna is

mounted on a brass plate for mechanical support.

B. Four-Element Subarray Development

It has been known that the CP quality and bandwidth

can be improved if four elements, each being a narrow-

band CP element, can be arranged sequentially [5,6] in
orientation and in phase, as shown in Fig. 4. The four

elements are arranged in 0-, 90-, 180-, and 270-deg fash-

ion to achieve symmetry and to cancel undesirable higher-

order modes (explained in [6]) and, thus, to achieve purer

polarization. Figure 5 presents the photograph of the se-

quentially arranged four-element subarray with each sin-

gle element having dimensions identical to those presented
in Fig. 3. The element spacing is 0.73 free-space wave-

length, and the required differential phases between ele-

ments are achieved by designing transmission lines of dif-

ferent lengths. A vertically launched OS-50 coax connec-
tor is used to feed the microstrip-transmission-line power-

dividing circuit. The measured input return loss at 32 GHz

is -17.4 dB (VSWR = 1.31:1). Its 1.5:l VSWR bandwidth
is about 0.5 GHz. The radiation pattern measured with

a spinning dipole is shown in Fig. 6, where an axial ratio
of less than 0.25 dB is demonstrated in the broadside di-

rection. This axial ratio is significantly better than that

of the single element. This four-element subarray is used

as the building block in the full array, where all the sub-

arrays are identical and are combined by microstrip power

distributing lines, as discussed in the next section.

IV. Full Array Design

To provide the required antenna gain of 28 dBic, an
aperture size of approximately 10 cm x 10 cm is needed at

32 GHz. The number of radiating elements needed is about

200. When combining such a relatively large number of el-

ements by mierostrip transmission lines at Ka-band, the

insertion loss becomes significant. One technique to mini-
mize this insertion loss is to employ the series-feed method

in which all the four-element subarrays are combined se-

rially by the power distributing circuit. This series-feed

method is illustrated in Fig. 7. The input/output coax
connector, located at the center of the array, feeds the mi-

crostrip transmission line with a two-way power division

that splits the power parallel to the left and right identical

halves. Each half array is then fed serially in columns by
the microstrip line. The upper and lower halves of the ar-

ray are fed in parallel at the array's horizontal center line
and then fed serially at each subarray location.

Figure 8 illustrates the difference between the series-

feed and the parallel-feed techniques for a four-element ar-

ray having uniform power distribution. A series-fed array
means that a certain amount of power is used to feed the

first element; then a certain amount from the remaining
power is used to feed the second element at a delayed time;
and this continues until the fourth element is reached. At

the fourth element, only one-quarter of the total power re-

mains to be transmitted. In other words, full power goes

through the transmission line at the first element location,
and the power diminishes as it travels toward the last el-

ement. Consequently, the largest loss in total power for

the transmission line occurs at the first element, and this
power loss reduces as the power travels down the series-

fed line. For this reason, most of the insertion loss occurs

at the center region of the array, shown in Fig. 7. For a
parallel-fed array, all elements are fed equally at the same

time by parallel transmission lines. Therefore, the inser-

tion loss exists almost uniformly from the beginning of the

transmission line all the way to the end of the line. Thus,

the series-fed array will encounter significantly less inser-
tion loss than will the parallel-fed array.

Note that at each power division point in Fig. 7 the mi-

crostrip line changes width. This was uniquely designed to

ensure uniform power distribution with proper impedance
matches throughout the array. It should be noted that the

microstrip lines are impedance matched at every junction
point throughout the array so that multiple reflections of

tile signal are minimized to reduce insertion loss. Further-

more, the bandwidth of this array is slightly larger than

the conventional "resonant" array, in which impedances

are not matched and multiply reflected signals are sig-

nificant. For the array in Fig. 7, the spacings between
adjacent columns in the horizontal direction and between

adjacent subarrays in the vertical direction are all integral

multiples of the "guide" wavelength, so that the far-field
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radiation from all patches is in phase in the broadside di-

rection. Here the guide wavelength is the effective wave-

length of the transmission line in a dielectric substrate.

Two guide wavelengths are used here so that they are long

enough to physically accommodate the subarrays and yet

short enough to avoid excess insertion loss. Because of

this guide wavelength requirement for phase coherence, the

spacing between two adjacent patch elements becomes ap-

proximately 0.74 free-space wavelength. Also, because the

guide wavelengths are slightly different for different trans-
mission line widths, the spacing between adjacent patches

is slightly different throughout the array (not all exactly
equal to 0.74 free-space wavelength). This is why not all

the patch elements in any given vertical column or hori-
zontal row are precisely aligned. In the array, there are a

total of 8 vertical columns with 6 subarrays in each col-

umn, and, therefore, there are a total of 48 sequentially

arranged subarrays with a total of 192 microstrip patch
elements.

Due to the fact that the array must have integral mul-

tiple numbers of subarrays and preferably be symmetri-

cally fed from the center, it is not possible to have a

square aperture and yet still fully utilize the required
10-cm x 10-cm area (see Fig. 7). Consequently, a rect-

angular aperture is formed. The overall antenna phys-
ical size is 11.4 cm × 8.9 cm. The microstrip patches

and lines are etched on a 0.025-cm-thick dielectric sub-

strate (Duroid 5880), which in turn is mounted on a 0.16-
cm-thick supporting aluminum plate. The total antenna
thickness is 0.185 cm. The array's actual radiating aper-

ture size (10.8 em × 8.3 cm) is slightly smaller than its

physical size. This is because additional ground planes

on the edges of the array are needed to accommodate the
transmission lines.

The power distribution circuit for the full array is a

combination of parallel- and series-feed [4] transmission
lines. It will not be a good design if a sole series-feed

technique is used. This is because a sole series-fed array
will cause its main beam to be scanned away from the

intended direction as frequency is changed due to accu-

mulated phase change. With a relatively wide band sig-

nal, the composite transmit beam of all the frequencies
within the band will appear to be wider and the gain at

the receiver direction will thus be lower. Viewed another

way, the spectrum of the antenna filter response will be
distorted. For the array shown in Fig. 7, the right and

left halves of the array are fed in parallel, while within

each half array, the columns are fed serially. As frequency

changes, the beam of each half array wilt scan. ttowever,
the two half arrays will scan in opposite directions, leav-

ing the composite beam pointed in the broadside direction

with a lower gain. Because the bea.rnwidth of each half ar-
ray is wider than the complete array, its beam scan due to

frequency changes will result in smaller gain changes than

that of a narrowbeam, solely series-fed array. To summa-

rize, this combined parallel and series feed technique will

result in a stable beam direction over a relatively wide

bandwidth with a relatively low insertion loss.

V. Experimental Results

The full array, as sketched in Fig. 7, has been fabri-

cated and tested and is shown in Fig. 9. The input is a

perpendicularly launched OS-50 coax connector. Its mea-
sured input return loss is given in Fig. 10, where a return

loss of -23.6 dB (1.14:1 VSWl_) is noted at 32 GHz. The
1.5:1 VSWR bandwidth is about 2 Gttz, which is signifi-

cantly wider than the four-element subarray's bandwidth

of 0.5 Gttz. This is partly because the full array's input

match is better designed and partly due to the fact that

the full array has a much larger resistive insertion loss in
the transmission lines to lower the returned energy. One

can note that in Fig. 9 there are two tuning stubs located

a quarter-wavelength away from the input connector and
that there is none for the four-element subarray. These

tuning stubs can eliminate a large portion of the mismatch

over a significant bandwidth.

Both the measured narrowbeam and broadbeam prin-

cipal plane patterns of the rectangular aperture array

are shown in Figs. ll and 12, respectively. The 3-dB

beamwidths are 4.5 deg in one principal plane and 5.7 deg

in the orthogonaI plane. These patterns, measured at
32 GHz, show a peak side-lobe level of -12 dB and a

peak cross-pol level of -18 dB (corresponding to a 2-rib

axial ratio). It is believed that the 2-dB axial ratio, which
is worse than that of the four-element subarray, is mostly

caused by the accumulated phase errors in the series-fed

microstrip lines and is partly due to the leakage radiation
from these lines. The measured 3-dB axial ratio band-

width of the full array is 1.3 GHz. The array's peak gain
is 28.4 dBic, which was measured using a standard gain

horn by the comparison method. Based on the radiating

aperture size of 10.8 cm x 8.3 cm, the calculated directiv-

ity of a uniformly distributed array should be 31.0 dBic.

This implies that the array has an overall efficiency of 55

percent with a total loss of 2.6 dB. The loss is mostly the
result of the microstrip transmission line's ohmic losses

(1.0 to 1.5 dB), which occurred in the substrate dielec-
tric and in the copper conductor. The remaining portions

of the loss are mismatch loss, cross-pol loss, side-lobe loss,

patch element loss, and input connector loss. The cross-pol

and side-lobe losses are partly due to imperfect design and
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partly caused by radiation leakage from the transmission

lines. It is expected that the overall loss would be signifi-

cantly higher if the series-fed technique and the single-fed

CP patch were not used. The antenna gain was also mea-
sured across a frequency bandwidth, which demonstrated

that the array has a bandwidth of 0.95 GHz with 1 dB of

maximum gain drop. The antenna's total mass, including

the aluminum supporting plate, is 0.053 kg (1.88 oz). The

characteristics and performance of the array antenna are
summarized in Table 2.

VI. Conclusions

A 32-GHz circularly polarized microstrip array with 192

patch elements has been successfully developed for the mi-

crospacecraft application. It is intended as a downlink

telecommunication spacecraft antenna. Each patch ele-

ment is circularly polarized with a single feed and two
truncated corners.

The stability and quality of the circular polarization is

improved by arranging four adjacent elements in a sequen-
tial fashion. Thus, the full array consists of 48 identical

four-element subarrays. To minimize the insertion loss,
these subarrays are combined primarily by series-feed mi-

crostrip transmission lines, and impedances are matched

throughout the array. The antenna achieved the required
gain of 28 dBic with a physical size of 11.4 cm x 8.9 cm

and a thickness of 0.18 cm. Due to its low profile, the ar-

ray antenna is to be surface-mounted along with the solar

panels. The total antenna mass is only 0.053 kg (1.88 oz).
The antenna has achieved the goal of occupying very little

of the volume and mass of the spacecraft.
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Table 1. ACME-II antenna requirements.

Parameter Requirement

Frequency, GHz 32

Operation DownlJnk transmit only

Gain, dBic >28

Polarization Right-hand circular

Side-lobe level, dB <-13

Cross-pol level, dB < - 15

Beam direction Fixed broadside

Input VSWR at 32 GHz <1.5:1

Bandwidth, GHz > 1

Power handling, W 5

Antenna mass, kg <0.5

Aperture size, cm 10 x I0

Table 2. Characteristics and performance of the array antenna.

Characteristic
Parameter Requirement

or performance

Center frequency, GHz 32 32

Input VSWR at 32 GHz 1.14:1 1.5:1

1.5:1 VSWR bandwidth, GHz 2 1

Peak gain, dBic 28.4 28.0

-1-dB gain bandwidth, GHz 0.95 1.0

Beamwidth, deg 5.7 × 4.5 _5 x 5

Peak side-lobe level, dB -12 -13

Polarization Right-hand CP Right-hand CP

3-dB axial ratio bandwidth, CHz 1.3 1

Radiating aperture size, cm 10.8 X 8.3 <10 x 10

Physical size, cm 11.4 x 8.9 <10 X l0

Antenna thickness, cm 0.18 Not specified

Antenna mass, kg 0.053 <0.5

Power handling, W Expected 10 5
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Fig. 1. ACME-II microspacecraft configuration.
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Fig. 2. Circularly polarized single-patch antenna with (a)
orthogonal dual feeds and (b) single feed with truncated
corners.
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Fig.3.Thecircularlypolarizedsingle-feedpatch.
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Fig. 4. The circularly polarized four-element subarray with
sequential arrangement.
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Fig. 6. Measured spinning-linear pattern of the four-element

subarray.
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Fig. 7. The full array design.

(a)

(b)

I

Fig. 8. Comparison of the microstrip (a) series-feed and
(b) parallel-feed techniques with a four-element array.
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Fig. 9. The 32-GHz full array with 192 patch elements.
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This article describes the performance of the all-digital data-transition tracking

loop (DTTL) with coherent and noncoherent sampling using nonlinear theory. The
effects of few samples per symbol and of noncommensurate sampling and symbol
rates are addressed and analyzed. Their impact on the probability density and

variance of the phase error are quantified through computer simulations.

It is shown that the performance of the all-digital DTTL approaches its analog

counterpart when the sampling and symbol rates are noncommensurate (i.e., the
number of samples per symbol is an irrational number). The loop signM-to-noise

ratio (SNR) (inverse of phase error variance) degrades when the number of samples

per symbol is an odd integer but degrades even further for even integers.

I. Introduction

In modern digital communication systems, analog-to-

digital (A/D) conversion is performed as far toward the
front end as possible using available technology. Usually,

the received signal is amplified and then downconverted to

the appropriate frequency for digital conversion. There-
after, various system functions are performed digitally, in-

cluding carrier, subcarrier, and symbol synchronization, as

well as signal detection and decoding. Depending on the

application, one can either sample the baseband signals

(in-phase and quadrature) or sample the intermediate fie-

quency (IF) signal. Furthermore, the sampling clock can
be free running or controlled by the symbol synchroniza-

tion loop. In the former case, the sampling rate is non-

commensurate with the symbol rate. In the latter case,

the sampling clock can be adjusted to obtain an integer

number of samples per received symbol. All of these is-
sues affect the final architecture and design of a receiver

and influence the amount of cross-coupling among the var-

ious loops.

A receiver called the Advanced Receiver (ARX) has

been developed for Deep Space Network (DSN) applica-
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tions [1,2]. In the ARX, the signal is sampled at the

IF, and the various tracking loops are implemented dig-

itally, e.g., the '!classical" analog integrate-and-dump fil-

ters, which are typically part of the loop arms (in-phase

and quadrature), are replaced by digital accumulators.

This article investigates the performance of the all-digital

data-transition tracking loop (DTTL), used for symbol
synchronization, for any number of samples per symbol.

In the previous version of the Advanced Receiver (ARX
I) [1], the sampling was performed synchronously with the

symbol rate, and an integer number of samples per sym-
bol were available. In the current version of the Advanced

Receiver (ARX II) [2], the sampling is performed asyn-

chronously, and the sampling clock is fixed and indepen-

dent of the symbol rate. At the highest desired data rate

of 6.6 Msymbols/sec and with a fixed 20-MHz processing

rate for the ARX II, only about 3 samples per symbol can

be obtained. We are interested in the all-digital DTTL

response and performance with a small number of samples
per symbol.

Some analytical results for the phase error variance of

the analog DTTL were derived in [3], where the input is
an analog signal and symbol and midphase detection were

performed with analog integrate-and-dump filters. Later,

the analysis was extended in [4], taking into account vari-

ations of the equivalent noise spectrum with respect to

normalized phase error. In this article, we extend the pre-

vious results for the analog DTTL to the all-digital DTTL.

We first note that there are two sampling models. One is
to sample the signal instantaneously and the other is to ob-

tain the sample by integration-and-dump (I & D) sampling

of the signal. The instantaneous sampling technique can

be used when the sampling rate is significantly higher than
the symbol rate. The I & D sampling technique should
be used when the number of samples per symbol is small

[7]. In the absence of prefiltering and noise, the received

symbol pulse is a perfect square wave, and instantaneous

sampling provides voltage values of equal value. In the I

& D case, all samples also have equal value except for the

first one after a transition boundary of two symbols with

different polarity. The all-digital DTTL can operate on

either type of sample.

To illustrate the differences between analog and all-
digital DTTLs, we consider the noiseless case first. Note

that if the input is an analog signal, the midphase inte-

grator can produce a nonzero error voltage no matter how

small the phase error is. Thus, a correction voltage can

be generated at every symbol transition whenever a phase

error exists. Therefore, the analog DTTL has infinite res-
olution for phase detection.

The all-digital DTTL, in contrast, has only finite res-
olution for phase detection. This is illustrated in the fol-

lowing: Suppose that there are an even number of samples

per symbol. When a symbol transition occurs, the digi-

tal midphase accumulator will produce a nonzero voltage

only if the phase error causes sample slipping (assuming
equal amplitude samples). As long as the phase error stays

within a range of values that avoids sample slipping, the

loop always generates a zero error signal. This range of
undetectable phase errors accounts for the finite resolution

of the all-digital DTTL. The more samples per symbol we
use, the higher the resolution we can achieve and the closer

the all-digital DTTL is to its analog counterpart. A key

question is the impact of the all-digital DTTL's finite res-
olution on the S-curve and the phase error variance for few

samples per symbol (say, three or four samples).

Another issue in an all-digital implementation is the ef-

fect of a noninteger number of samples per symbol. If the

sampling clock is driven by the symbol synchronization

loop, the number of samples per symbol can be made an

exact even integer, which reduces the self-noise generated
in the midphase accumulator, as will be discussed later.

Under that sampling scenario, the sampling clock is con-

stantly adapting as the data rate changes due to Doppler

or other effects. One disadvantage of that scheme is that

no fixed time base is available in the system. On the other

hand, if the sampling clock is free running and is derived

from a fixed frequency standard, the sampling period is

fixed although the symbol rate may change. This may

result in a noninteger number of samples per symbol. A

model is derived in this article to analyze the performance
of the all-digital DTTL for any sampling and symbol rates.

In Section II, a nonlinear analysis of the loop is presented

to handle all scenarios along with simulation results. The
conclusion is presented in Section III.

II. Analysis

The performance of the all-digital data-transition track-

ing loop with coherent and noncoherent sampling is ana-

lyzed here. The block diagram of the all-digital DTTL is
shown in Fig. 1. The input r(i) to the DTTL can be ob-

tained by instantaneous sampling or by I _5 D sampling.
In the subsequent derivation, closed form solutions will be

obtained assuming samples of equal value, and results will

be verified by simulation assuming samples of both equal
and unequal value.

Noncoherent sampling means that the sampling clock

runs independently of the estimated symbol phase, i.e.,
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thesamplingtimeis independentoftheestimatedsymbol
phase.Thishasminimalimpactif therearemanysam-
plespersymbol.Asthenumberof samplespersymbol
decreases,theS-curvebecomesmoreandmorecoarse,and
self-noise(to beexplainedlater)increases.Ourgoalis to
quantifytheeffectsofasmallnumberofsamplespersym-
bolonthephaseerrorvariance.A theoryispresentedfora
first-orderDTTL usingMarkovchains.Theapproachisto
derivetheS-curveandto solvetheChapman-Kolmogorov
(C-K) equationto get thedensityfunctionof thephase
error.Theclosed-loopphaseerrorvarianceandthedegra-
dationofthesymboldetectioncanbeevaluatedfromthe
phaseerrordensityfunction.

Toillustratethephenomenonofself-noise,weconsider
asimpleexampleshownin Fig.2,wherewehavefivesam-
plespersymbol.Weassumenothermalnoiseandperfect
trackingat aparticularmoment.Theoutputof thesym-
bol transitiondetectoris notzerobecauseit eithersums
threesamplesfromthefirst symbolandtwosamplesfrom
thesecondsymbol[Pig.2(a)]orsumstwosamplesfrom
thefirst symbolandthreesamplesfromthesecondsym-
bol [Fig. 2(b)]. Noticethat thissituationoccursfor ev-
erysymbolintervalaslongastheloopmaintainsperfect
tracking.Thenonzerooutputof the loopfilterwill drag
theloopawayfromtheperfecttrackingcondition.

In orderto quantifythis phenomenon,wefirst intro-
ducethreeusefulparameters.Let /3 denote the number

of samples per symbol, which may not be an integer, and

o_(1) denote the offset of the first sample mark in a received
symbol from the symbol boundary. By convention, or(k) is
normalized and is measured as a fraction of the sampling

interval. We observe that _(k) remains constant if/3 is an

integer, and it varies from symbol to symbol if/3 is not an
integer. Let us number the received symbols by 1, 2, 3, . ..
and denote the value of o_(k) at the first symbol as c_(1),
which is referred to as the initial sampling offset. The

values of o_(k) at the subsequent symbols, namely, o_(2),

_(3), ..., can be computed from/3 and _(1). The number
of sample marks in a transition detection window and the
number of sample marks in a symbol detection window

are all functions of _(k). Thus, the output of the symbol
detector and that of the transition detector fluctuate from

symbol to symbol as _(k). This subject will be discussed
later in more detail.

Another important observation about the all-digital
DTTL with a low number of samples per symbol is that it

can have an irreducible phase error due to a finite number

of samples per sylr/bol. To illustrate this phenomenon,
let us consider the example shown in Fig. 3, where ev-

ery symbol contains four samples. We can see that as

long as the estimated phase lies between tl and t2, the
error signal is always zero (or nearly zero if the received

symbol does not have a perfect square waveform or if we

have unequal amplitude samples) and the DTTL contin-

ues tracking. However, we see that there still exists unre-
solved phase ambiguity within the interval from/1 to t2.

Mathematically, this phase ambiguity can be explained by

a staircase S-curve. This phenomenon might have little

effect on symbol detection performance if we use straight

accumulation to detect the symbols. However, if we use

weighted accumulation to detect the symbols, the phase

ambiguity can introduce misweighting and thus degrade

performance [5,6].

Before we proceed to the mathematical analysis, let us
examine the all-digital DTTL block diagram again. The

error signal accumulator between the loop filter F(z) and
the multiplier performs an averaging function so that the

subsequent loop filter can operate at a slower speed. The

loop bandwidth is determined primarily by the loop filter

F(z). Thus, the presence of the accumulator is simply
for hardware convenience. In the following analysis, we

consider the DTTL without the error-signal accumulator.

A. Mathematical Model

Assuming that the carrier and subcarrier (if any) have
been removed in an ideal fashion, the received baseband

waveform is given by

r(t) = x/'S Z akp(t - kT) + n(t) (1)
k

where S is the signal power, T is the symbol time, n(t) is
white Gaussian noise with one-sided power spectral den-

sity No W/Hz, ak : +1 represents the polarity of the

kth symbol, and p(t) is the square-wave function having
a vMue of 1 for 0 <_ t < T, and having a value of 0 else-

where. The ith sample can be expressed after normalizing

by 1/v_ as

= + n(i) (2)

where we assume the sample is derived from the kth sym-

bol, n(i) is a zero-mean Gaussian random variable with

variance a 2 = No/(2STs), and Ts is the sampling inter-
val. Let the phase error A (in cycles) be defined as

_ (3)
27r

2O6



where 0 is the actual received symbol phase and 0 is the

estimated symbol phase. Note that A should have a value

between -0.5 and 0.5. The error signal is affected by the

locations of samples within their respective received sym-
bols. In order to quantify this effect, we define a set of four

Ak integer-valued functions. They represent the number

of sample marks contained in their respective intervals, as

illustrated in Fig. 4. The output of the in-phase accu-

mulator x(k) and the midphase accumulator y(k) can be
expressed in terms of the Ak filnctions, namely

for ,_ _> Q32(],:)

&(k)a, + a__(k).k_1 + ,,_(k) + ,_(k)
for A < 0

{ L._I(_ --}-1)ak+_ + A2(k + l)ak+2 + ha(k)

+n4(k) forA_>0

x(k + 1) =

_xl(k + l)ak+, + .x_(k+ 1)ak+ ,,3(k)
+n4(k ) for A < 0

v(k + 1) = a3(k)_ + _X4(k)a,+l+ n_(k) + ,_(k) (4)

where nj (k), j = 1,2, 3, 4 are zero-mean Gaussian random
variables with variances

{ (A_(k) - ,.,_ka(k))_ 2 for A _ 0Varb_(k)} = (a_(k-) + ±:(k) + a:(k + 1) - ±_(k))¢:
for A<0

J" (&a(k) + A2(k)),_ _ for A > 0
Var{n2(k)} / (±_(k) -/',_(k + 1)> 2 for _ < 0

Var{n_(k)}= / (_(k) - &(k))_ _ for _ > 0
( (±_(k) + ±_(k + 1))__ for :_< 0

(A2(k) + Al(k + 1) + A2(k + 1)
Var{n4(k)}= -a4(k))¢ 2 for _ >_0

(Al(k + 1)- A4(k))o "2 for A < 0

L2/3- a(k - 1)J - [(1 + A)/3 - a(k - 1)J

for A>O

hi(k ) =

L(2+ _)/3- _(k 1)] -//3 - _(k - 1)j
for A<0

a2(k) = {

L(_+ .x)/3- o,(k)j - L/3- o,(k)j
for A>_O

[fl - c,(k - 1)J - L(a+ A)/3- _(k - l)/
for A<O

11)

 4(k) = [(1 +  (k)J -  (k)J (6)

with w denoting the width of the transition window and

w _< 1. As previously mentioned, a(k + 1) is the sampling
offset, and is computed recursively from a(k) using

a(k + 1) = [/3 - a(k) + lJ - (/3 - _(k)) (7)

and LyJ denotes the greatest integer strictly less than y

(i.e., [4.2j = 4, [4j = 3). The derivation of the Ai func-

tions are similar and we illustrate only one example here,

A2(k). To derive A_.(k), we use the beginning of the kth

received symbol as the reference point. The number of

samples in the kth received symbol is [/3 - c_(k)J + 1. The

number of samples from the beginning of the kth symbol to

the end of the kth estimated symbol is [(l+A)/3-e_(k)J + 1.
Equation (5) follows by observing that the number of sam-

ples from the end of the kth received symbol to the end

of the kth estimated symbol is A2(k). The error signal
e(k + 1) is given by

e(k + 1)=z(k + 1)y(k + 1) (8)

where z(k+l) denotes the output of the transition detector

and sgn(x) denotes the "signum" fimction, i.e.,

z(k + 1) = sgn [x(k + 1)]- sgn [x(k)]2 (9)

(5) The conditional S-curve is defined by

and the Aj fnnctions are computed from g(Al_(k)) = E,,.{e(k + 1)[A, cffk)} (10)
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where Es,,_ represents the conditional expectation with re-

spect to both the signal (s) and the noise (n), assuming

fixed A and c_(k). Following mathematical manipulation
similar to that in [4], we get

E,,n{e(k + 1)[A, _(/c)} =

0.25[A4(k)(erf [rl(k)] - erf [r2(k)]+ erf [rl(k + 1)]

+ erf [r2(k+ 1)]) - A3(k)(erf [rt(k)] + erf [r2(k)])

_ ra(k)(A3(k) + A2(k))(exp [-r_(k)] + exp[-r_(k)])

+ r3(k)(Aa(k) - A2(k))(exp [-r_(k + 1)1

+ exp[-r_(k+l)])] forA>_0

0.25[A4(k)(erf [rl(k + 1)]+ erf [r2(k + 1)])- Aa(k)

(err [rt(k + 1)1- erf [r2(k+ 1)]

+ erf [rx(k)]+ erf [r2(k)])

- _(k)(_3(k) - _=(k))(exp [-_(k)] + exp[-_(k)])

+ _(k)(A_(k) + A_(k))(exp [-,,_(k + 1)1

+ exp[-r_(k+l)])] forA<0
(11)

where

/Rs(_,(k) - A_(_))2
r,(k) = V _7 _(k))

r_(k) =/_/R'(AI(k) + A2(k))

/3v

2ST
Rs-

No

2 fo e-*_dt
(12)

erf (x) = V_

We observe that g(,_la(k)) is the (unconditional) S-curve

if a(k) is a constant. If a(k) changes from symbol to sym-
bol, its effect will be smoothed in the loop as long as the

loop time constant (inverse of loop bandwidth) is larger
than MT. M denotes the number of distinct o_(k)'s and

is discussed in the subsequent section. Therefore, the S-

curve is obtained by averaging Eq. (11) over the M values

of a(k), which is determined by the initial sampling offset
and the number of samples per symbol/3, that is,

M
1

g(A) = _- _ g(Al_(k)) (13)
k=l

The S-curve g(A) is a function of A, /3, and a(k). In

general, fl can be any real number. When t3 is an irrational
number, then a(k) is nonperiodic. However, when fl is a

rational number, then a(k) becomes periodic and assumes

a finite number of possible values. For example, if fl is of
the form X.0000..., where X is any nonzero integer, then

a(k) will have only one value all the time; if/3 is of the
form X.XO00..., then a(k) will have at most 10 different

values; if/? is of the form X.XXO00..., then o_(k) will have
at most 100 different values, and so forth. For example,

consider /3 = 4.1 and suppose the initial sampling offset

a(1) = 0.7. Clearly, c_(2) = 0.6, c_(3) = 0.5, c_(4) = 0.4,

_(5) = 0.3, _(6) = 0.2,_(7) = 0.1,_(8) = 0, _(9) = 0.9,
c_(10) = 0.8, c_(ll) = 0.7 .... The more values c_(k) takes,
the smoother will be the S-curve of the tracking loop.

For a large fl, ri(k + 1) = ri(k) and i = 1,2,3; for

A _> 0, Ax(k) --* (1-),)fl, A2(k) _ Aft, As(k) ---} (w/2

- ,k)/3, A4(k) --+ (w12 + A)/3; and, as a result, rl(k ) ----4 (1

- 2A)v/-R-_-_,r2(k) ---* v/-_-_, rz(k) ---* 1/rv/-_-R_s. Substituting

back in Eq. (11) and simplifying, one obtains

E,,n{e(A)} _ Aerf (V/-_'_(1 - 2A))
/3

_[wl _ 2A] [erf (V/-_-s)

- erf (v/-R-_,(1 - 2A))] (14)

which agrees with the S-curve derived by Simon [4] for the

analog loop. For ,_ < 0, similar steps can be taken to show
that the resulting S-curve also agrees with the analog ease,

with slope at the origin given by

208



m =/3 err - 2 e-R" (15)

Figure 5 depicts the theoretical and simulated S-curves as
a function of the phase error for various values of/3, namely

4, 5, 10, 4.5, and 4.74, with w -- 1. Note the staircase

shape of the S-curve for all/3, with step size proportional

to 1/Mfl. In this case, the phase detector is insensitive to
variations of the input phase which occur in the fiat regions

of the S-curve. For small integers, the steps are large, while

for large integers, the steps are small. In general, the S-
curve is not symmetric and has a bias (i.e., g(0) _ 0)

proportional to 1/Mfl, except for the case when /3 is an
exact even integer. The sign of the asymmetry depends on

c_(1), which was set to 0.5 in Fig. 5(e). As/3 approaches
an irrational number, the S-curve becomes smooth due to

the averaging over a large set of values and it converges
to the S-curve encountered in analog systems. In all these

figures, the S-curve has a zero slope at the origin, which

prevents a linear analysis because it requires a nonzero

slope. Also depicted in Fig. 5(a) are two cases: when the

signal and noise (s + n) are filtered prior to the loop and

when only the signal is filtered but not the noise. The first
scenario represents the case where the main contribution

of the filtering is occurring at the receiver, while the latter

scenario is representative of filtering at the transmitter.
The filter used in the simulations is a first-order lowpass

with transfer function H(z) = h0/(1 + hlz-1). Note from

Fig. 5(a) that the filtering introduces a bias and a slight
asymmetry in the S-curve which is mainly due to the signal

filtering. The asymmetry in the S-curve can be reduced

by using a raised cosine or square-root raised cosine filter

[7] that results in a symmetrical pulse shape around the

data transition point. In the remaining figures, simulations

with both signal and noise filtering are shown to assess the
impact of imperfect square pulses.

One way to linearize the loop and, hence, to smooth the

shape of the S-curve is to randomly shift by an amount the
position of the window relative to the symbol transition

point. The effect of this random back and forth shifting

is to produce on the average the same amount of samples
in both halves of the symbol transition detector, so that

/3 would appear to have an irrational value to the mid-

phase detector. The performance of the DTTL with such
a detector can be the topic of future work.

We will proceed to perform a nonlinear analysis of the

loop using the C-K equation. However, we will need the

open-loop variance of the error signal at the input to the

loop filter to compute the transitional probability density.
The second moment of the error signal is given by

k----1

M M-1

1 M 2_= "-ME E'''_{e(k'A)2]+ -1 E E,,,{e(k,A)
k:l k--1

× +

__ 1 M [ ] 2 M-1- 8--"ME vl(k) + v2(k) + 16(M - 11 _
k=l k=l

x [v3(k) + v4(k) + vs(k)] (16)

where the variables vi(k), i = 1,2,3,4,5 are defined in

the Appendix. The open-loop variance is then computed

using

= (17)

The open loop variance c_(A) is depicted in Fig. 6 for
various values of/3 as a function of A. Again, note the

staircase shape of the variance which approaches a smooth

fimction for fl = 4.74. The analysis agrees very well with

the simulation points for all values of t3.

B. Probability Density Function of the Phase Error

When the number of samples per symbol,/3, is low and

the decimal part of fl has only a few nonzero digits, the

S-curve takes a coarse staircase shape, as discussed previ-

ously. In this case, the loop behaves nonlinearly, and the

phase jitter of the loop cannot be predicted from the loop's
noise-equivalent bandwidth. However, when the statistics

of the driving noise process are known, the C-K equa-

tion permits one to derive the probability density function

(pdf) of the closed-loop phase jitter even for a highly non-
linear loop. Once this pdf is found, all the moments of

the phase jitter process can be computed, and the noise

performance of the loop can be predicted.

In general, an all-digital phase-locked loop can be de-
scribed by a stochastic difference equation of the form

_(k) = u(k) - [g(A(k)) + n(k)]N(z)F(z) (18)

where A(k) is the phase error at the instant k, u(k) is
the input signal sequence, F(z) and N(z) are the dis-
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crete transfer functions of the loop filter and the numer-

ically controlled oscillator (NCO), respectively, the func-

tion g(A(k)) represents the nonlinearity of the phase de-

tector, and n(k) is the open-loop noise process. In digi-
tal phase-locked loops, this noise process consists of both

thermal and quantization noise. For the all-digital DTTL

under consideration, the noise n(k) is zero-mean with

the variance given by Eq. (17). In general, the product

F(z)N(z) is of the form

bo + bl z-1 + ... + byz -N

r(z)N(z) = (19)
ao + al z-1 +...+aN z-N

Here in the context of the stochastic difference equations,

z -1 should be thought of as the unit delay operator. Using

Eq. (19), Eq. (18) can be rewritten as

_(k) = [a0u(k) + _0(g(_(k))+ .(k))]

+ z-_[alu(k) -- al_(k) -- _lg(_(k)) - bi.(k)]

+ z-2[a2_(k) - a_(k) - _g(A(k)) - b_.(k)]

+ z-N[aNu(k) -- aNA(k) - bNg(A(k)) - bNn(k)]

(20)

Defining Xl as the row with z -_, x2 as the row with z -2,

etc., the above equation can now be expressed in terms of

the following state and output equations:

x(k + 1) : A_x(k) - _bg(A(k)) + a_u(k) - b_n(k)

_(k) ---x_(k) + [_0_(k)+ b0g(A(k))+ _0.(k)]

(21)

where x_ is the state vector, [xa x2 ... xy] t, A is the tran-
sition matrix

-al 1 0 0 i]
A = -as 0 1 0

0 0

--aN 0 0 0

(22)

a = [ix a_ ... aN] t, and b_.= [bl b_ ... bN] t (the superscript

t denotes transpose). The need to rewrite the original
stochastic difference in vector form stems from the fact

that the original equation does not represent a Markov

process while its new form is a vector Markov process.

For a vector Markov process, the C-K equation relates the

probability density function of the state vector x at time

(k + 1), pj:+l(x(k + 1)), to its probability density function

at time k through the following integral:

L/pk+l(x(k + 1) = x_lx_0) -- q_(k

N-dim

+ 1) = _1x(k) =

v_]pk(x_(k ) = v l .__o)dvl . . . dvN

(23)

where x 0 is the initial condition vector and q(.) is the tran-
sition probability density function.

We will now focus on solving the above equation for the

steady-state case (large k) and a periodic phase detector.

In steady state, the initial condition vector $-0 is washed

out and can be dropped from the C-K equation, Pk+l(') -'-*

Pk(') _- P('), so that the index k can be dropped also. With

a periodic phase detector g(.), each state variable takes

values only between 0.5 < xi < 0.5 (i --- 1...N). This
requires the "folding" (or collapsing) of the transitional pdf

q[.] to the bounded region. We define this new transitional
pdf as _[.] and rewrite the C-K as follows:

//_(y = y) = . y(k

N- dim

+ 1) = vl y(k)

----w__]i9(y__= w)dw,.., dwN (24)

where the primed p represents the new pdf restricted to

the {-0.5, 0.5} region. Even in this simplified form of the

C-K equation, closed form solutions can be obtained only

for a few special cases. In general, the C-K equation has

to be solved numerically, and solutions for N larger than

1 can become very computationally demanding.

In order to proceed, we will restrict our attention to the

case of N = 1 with F(z) = bl and N(z) = z-l�1 - z -1

(ideal summer), which corresponds to a type-I loop with no
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computational delay. Rewriting Eq. (19) for this restricted

case, we get

bl z-I
F(z)N(z) - (25)

ao + alz -1

With N = 1, the variables in Eq. (20) are a0 = 1 and al =
-1 with all others being zero. Since we are not considering

any static phase error, we set the input signal u_ _ 0 so

that the loop is driven by noise only. Next, we discretize

the continuous variable y into L + 1 Yi values and, thus,

approximate the Markov process by a Markov chain [8].

The larger the value of L, the better is the approximation.

The continuous pdf on both sides of the C-K equation can

be replaced by discrete probabilities P(Yi) = 5p(y = Yi)

where 6 = l/L, and the transition pdf _[i, j] is replaced by
transition probability mass distribution Q[i,j] = 62_[i, j].

With this substitution, the C-K equation becomes

÷

P(v = v_) = _ Q[v(k + 1) = vii v(k) = w_.]P(v = wj)

(26)

where zi = i6, i = -L/2,... L/2. The above equation has

to be true for all i. Let/9(-) be the (L + 1) dimensional

vector with elements P(y = Yi) and Q be the (L + 1) x

(L+ 1) matrix with elements Q[i, j]; then the C-K equation
can be written in the compact form P = Q__P, which can

be solved by various techniques used in systems of linear

equations [9]. For example, one can write the above matrix

equation as

[q - 1]/9 = 0 (27)

with I being the identity matrix and 0_ the zero vector.

This matrix Q -I will have at most (L + 1) distinct eigen-
values, and the desired solution, the P vector, will be the

eigenvector corresponding to the zero eigenvalue. The last

step in solving for P is to assume a suitable transition

probability density function which will generate the ele-

ments Q[i,j] of the matrix Q. When thermal noise domi-

nates, the noise process n(k) can be assumed to be Gaus-
sian, for which

(28)

2 2
where _ = bl_r,()_), *r,2(A) is the variance given by

Eq. (17) at A = zj, and/_j = -alzj - big(xj).

However, the Gaussian assumption becomes less accu-

rate when the quantization noise starts to dominate over

the thermal noise (the high-SNR case). Our simulations

have shown that, at high SNRs, the pdf on the phase er-

ror process becomes highly irregular and difficult to de-

scribe mathematically. So a trapezoidal or a uniform dis-
tribution function with mean and variance as used for the

Gaussian gives results close to the ones obtained by simu-

lation. In our computations, the singular value decompo-

sition (SVD) algorithm was used, and L was set to 1100

to achieve acceptable resolution at a high SNR. The com-
puted and simulated pdfs are depicted in Fig. 7 for the

case of/3 = 4, 5, 10, 4.5, and 4.74. When /3 = 4, the pdf

exhibits a significant flat region, as expected. However,

for /3 = 5, the flat region disappears due to the effect of

the odd number of samples per symbol. The simulations

were carried out with one-sided loop bandwidth BL set to

0.01 Hz and a symbol rate of 1 symbol/see. For/3 = 10,

the flat region is present again but is significantly reduced
compared to the case of/3 = 4. For/3 = 4.5 or 4.74, the

pdf is a smooth function, as one would expect. Note the

nonzero mean in Fig. 7(e), which is due to the asymmetric

S-curve in Fig. 5(e).

The corresponding variances for all cases are shown in

Table 1. In Table l(a), the loop SNR (inverse of tracking

variance) is higher at 13 = 5 than at fl = 4 and 10 due

to the averaging process over the various offsets, c_(k)'s.
Note that the simulations and predictions agree well in all

cases, with the largest deviation, of about 0.7 dB, obtained

with/3 = 5. Table l(b) depicts the effect of the self-noise

which is dominant at high symbol SNRs (such as 25 dB).

The model predicts the contribution of the self-noise very

accurately for integer as well as noninteger/3. This noise
is the limiting factor in the tracking performance in any

all-digital DTTL implementation and is nonexistent in an

analog design.

III. Conclusion

Nonlinear analysis of the all-digital DTTL is used to

quantify its performance as a function of the number of

samples per symbol/3. It is shown that the probability

density function of the closed-loop phase error can vary

significantly depending upon the number of samples per
symbol,/3, and the symbol SNR.

The performance of the all-digital DTTL approaches its

analog counterpart as/3 increases and the sampling and
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symbol rates are noncommensurate (i.e., /3 is irrational).

The loop SNR (inverse of phase error variance) degrades
when/3 is an odd integer and degrades even further when

/3 is an even integer. In general, the S-curve has a bias

proportional to 1/(Mfl), but for an even-integer/3 the bias

goes to zero.

Acknowledgment

Credit should be given to Dr. J. B. Thomas at JPL, who suggested the advantage

of noncommensurate sampling in systems where the number of samples per symbol
is small.

References

[7]

[s]

[9]

[1] D. H. Brown and W. J. Hurd, "DSN Advanced Receiver: Breadboard Descrip-
tion and Test Results," The Telecommunications and Data Acquisition Progress

Report 42-89, vol. January-March 1987, Jet Propulsion Laboratory, Pasadena,

California, pp. 48 66, May 15, 1987.

[2] S. Hinedi, "NASA's Next Generation Deep Space Network Breadboard Re-
ceiver," [EEE Trans. on Comm., vol. 41, no. l, pp. 246 257, January 1993.

[3] W. C. Lindsey and T. O. Anderson, "Digital-Data Transition Tracking Loop,"
International Telemetry Conference, October 8-10, 1968, Los Angeles, California.

[4] M. K. Simon, "An Analysis of the Steady-State Phase Noise Performance of a

Digital Data-Transition Tracking Loop," Jet Propulsion Laboratory Space Pro-

grams Summary 37-55, vol. III, Jet Propulsion Laboratory, Pasadena, California,

pp. 54-62, February 1969.

[5] R. Sadr and W. J. Hurd, "Detection Of Signals by the Digital Integrate-and-

Dump Filter with Offset Sampling," The Telecommunications and Data Acqui-
sition Progress Report 42'91, vol. July-September 1987, Jet Propulsion Labora-

tory, Pasadena, California, pp. 158-173, November 15, 1987.

[6] R. Sadr, "Detection Of Signals by Weighted Integrate-and-Dump Filter,"
The Telecommunications and Data Acquisition Progress Report 42-91, vol. July-

September 1987, Jet Prgpulsion Laboratory, Pasadena, California, pp. 174-185,

November 15, 1987.

E. A. Lee and D. G. Messerschmitt, Digital Communication, Boston, Mas-

sachusetts: Kluwer Academic Publishers, 1988.

W. B. Davenport and W. L. Root, Random Signals and Noise, New York:

McGraw-Hill Book Co., 1958.

G. Strang, Linear Algebra and Its Applications, 3rd ed., Florida: Harcourt Brace

Jovanovich, Inc., 1988.

212



(a)

Table 1. Predicted and simulated variances: (s) white noise

dominated region and (b) self-noise dominated region.

Symbol Variance, Varimace,

SNR, dB simulation theory

4,0 3 0.00635 0.006324

5.0 3 0.000954 0.00114

10.0 3 0.00234 0.002434

10.0 10 0.000925 0.000972

4.5 3 0.00235 0.0026

4.74 3 0.00253 0.002720

(b)

Symbol Variance, Variance,

SNR, dB simulation theory

4.0 25 0.004448 0.004578

5.0 25 0.000028 0.000030

I0.0 25 0.000910 0.000972

4.5 25 0.000021 0.000024

4.75 25 0.002633 0.002750
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Definition

Appendix

of Variables vl(k), v2(k), v3(k), v4(k), and vs(k)

_(k) = ([A_(k) + A_(k) + _[_X_(k)+A,(k)]]2<

x [4+ (erf [rl(k)] - err [v2(k)])(erf[rl(k + 1)]+ erf [r;(k + 1)])])

- 2Aa(k)A4(k)(erf [rl(k)] + erf [r2(k)])(erf [rl(k + 1)]+ erf [r_(k+ 1)])

+ (Aa(k) + A2(k))_ra(k)((eft [rl(k + 1)]+ erf [r_(k+ 1)])

(&(,) - ±,(k) ))X hl(]g) T As(k) exp [-r2(k + 1)]+ exp [-rg(k + 1)]

- (A4(k) - A2(k))2rz(k+ 1)((eft [rl(k)] - erf [r2(k)])

mx(k-[-1) - A2(k + 1),ex [-r_(k + 1)]+ exp [-r_(k + 1)])) for A> 0x Al(k+l)+A2(k+l){ p
(A-l)

1)l(k)_-_([n1(k)-[-A2(]¢)-[-fl[A3(k){-n4(k)]]2]_8

x [4+ (err [rl(k)] -- erf [r2(k)])(erf [rl(k -Jl-1)]+ erf [r2(k+ 1)])])

- 2Aa(k)A4(k)(erf [rl(k)] + erf [r2(k)])(erf [rl(k + 1)]+ erf [r2(k+ 1)])

+ (Az(k) - A2(k))2rz(k)((erf [rl(k + 1)]+ erf [r_(k+ 1)])

( z_x(k)- m2(k) ))x - A,(k) 7A2(k) exp [-r_(k + 1)1+ exp [-r_(k + 1)]

- (A4(k) + Av_(k))2ra(k+ 1)((erf [rl(k)] -- erf [r2(k)])

(Al(k + l)-Aa(k + l) ))x \_(k+l) T/M(k+l)exp[-r_(k+l)]+exp[-r_(k+l)] for ,_< 0 (a-2)
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v2(k) = 2m3(k)(rz(k)[A3(k) + m2(k)](erf [rl(k + 1)] + err [r2(k + 1)])

x (exp [-r_(k + 1)] - exp [-rg(k + 1)]) - r3(k + 1)[A4(k) - A2(k)]

× (erf [rl(k)] -_-erf [r_(k)])(exp [-r_(k + 1)] + exp [-r_(k + 1)]))

+ 2A4(k)(-rz(k)[A3(k) + A2(k)](erf [rl(k + 1)] + erf [r2(k + 1)])

x (exp [-r2(k + 1)1 + exp [-rg(k + 1)]) + ra(k + 1)[Aa(k) - A2(k)]

x (erf [rl(k)] - erf [r2(k)])(exp [-r_(k + 1)] + exp [-r_(k + 1)])) for A >_ 0 (A-3)

v2(k) : 2m3(k)(r3(/e)[A3(k)+ A2(k)](erf [rl(k -at-1)] - el'f [r2(]¢-[-1)])

x (exp [-r_(k + 1)]+ exp [-r_(k + 1)]) - r3(k + 1)[A4(k)- A2(k)]

x (eft [rl(k)] + erf [r_(k)])(exp [-r2(k + 1)]+ exp [-r_(k + 1)]))

+ 2Aa(k)(-r3(k)[A3(k) + A2(k)](erf [rx(k-[-1)]+ erf [r2(k + 1)]).

x (exp [-r[(k + 1)]+ exp [-rg(k + 1)])+ r3(k + 1)[A4(k)- A2(k)]

x (eft [rl(k)] +eft [r2(k)])(exp[-r_(k + 1)]- exp [-r_(k + 1)])) for A< 0 (A-4)

va(k) = Az(k)A3(k + 1)[(erf [rl(k)] + err [r2(k)])(erf [rl(k + 1)]+ erf [r2(k + 1)])]

- (A3(k)A4(k + 1)(erf [rl(k)] + erf [,2(k)])((erf [_(k + 1)] - erf [r2(k+ 1)])

+ (eft [rl(k + 2)]+ erf [r2(k+ 2)])))

- A3(k + 1)A4(k)(4+ [(eft [,'l(k)] - err [r_(k)])(erf [rl(k + 1)]

+ erf [r2(k+ 1)])]+ (eft [rl(k + 1)]- err [r2(k+ 1)])

x (erf [rl(k + 2)]+ erf [r2(k+ 2)]))

+ A4(k)A4(k+ 1)((erf [rl(k)] -- erf [r2(k)])((erf [rl(k + 1)]- erf [r_(k+ 1)])

+ (eft [rx(k+ 2)]+ erf [r2(k+ 2)])) + (eft [rt(k + 1)]+ erf [r2(k+ 1)])

x (eft [rl(k+2)l+erf[r2(k+2)])) forA>0 (A-5)
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va(k) = A4(k)A4(k+ 1)[(err [rl(k -I-1)]+ erf [r2(k+ 1)])

x (eft [rl(k + 2)]+ erf [r2(k+ 2)])]

- (Az(k)A4(k + 1)(erf [rl(k + 2)]+ err [r2(k+ 2)])((err [rl(k)] + erf [r2(k)])

+ (err [r,(k + 1)1- err [r2(k+ 1)])))

-zX3(k + 1)±4(k)(4+ [(err [rl(k)] + erf [r2(k)])(erf [rl(k + 1)]

- erf [r2(k+ 1)])]+ (err [rl(k + 2)] - erf [r2(k+ 2)])

x (erf [rx(k+ 1)]+ err [r2(k+ 1)]))

+ ±3(k)Az(k + 1)((erf [n(k)] + erf [rz(k)])((erf [rl(k + 2)] - err [rz(k + 2)])

+ (erf [rl(k + 1)]+ erf [r2(k+ 1)]))+ (eft [rl(k + 1)] - erf [r2(k+ 1)])

x (err [_l(k --[--2)]- erf [r2(k--[-2)])) for _ < 0 (A-6)

v4(k) = (ra(k)[Aa(k) + A2(k)]ra(k + 1)[A3(k + 1) + A2(k + 1)](exp [-r_(k + 1)]

+ exp [-rg(k + 1)])(exp [-r_(k + 1)] + exp [-rg(k + 1)]))

+ (Aa(k)[A4(k) - A2(k)]ra(k + 1)[Aa(k + 1) - A2(k + 1)]

x (exp [-rl2(k + 1)] + exp [-rg(k + 1)])(exp [-rl2(k + 2)] + exp [-rg(k + 2)]))

- (ra(k)[Aa(k) + A2(k)]ra(k + 1)[A4(k + 1) - A2(k + 1)](exp [-r_(k + 1)]

+ exp [-r_(k + 1)])(exp [-r_(k + 2)] + exp [-r_(k + 2)]))

- (erf [rx (k)] - erf V _rRi

(( (Al(k + 1) - A2(k + 1)) [-(At(k + 1) A2(k+l))2_× (A,(k) - _ T_5 YT)- _(k + 1))'.__xp

[1+ [/,3(k+ i)+ A2(k + I)] l[A3(k)+ A2(k)] I [t4(k ) -- AS(k)] J

(Al(k + 1) + A2(k + 1))+ (_,(k) - _-_; _5 YT)- _(_ + 1)),._exp

- [/,,(k) 1-A_(k)]])

-(ml(k + 1) + A_(k + 1))2-_
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t 1
[ [A3(k + 1) + A2(k + 1)]]V,a(k) + A:(k)] 1 + [Z4(k) - A2(k)]

+ (eft [rl(k + 2)]+ erf [r_(k+ z)j/V _'R,

( ( (Al(k+l)-A2(k+l))X -- (A4(](,)___ $ _3_"_ 7_') =_2(j_4-1))15exp -(AI(]_4-1) - Au(k4,1))2

[A3(k + 1) + A2(k + 1)]][A3(k) + As(k)] 1 + [A4(k) - A2(k)]

- [a4(k) la2(k)] ])

(Al(k + 1) + A2(k + 1)) ___+ (A4(k) - _----_(k) + Aa(-k T_) = _2(k + 1)) '.5 exp -(Al(k + 1) + Ae(k + 1)) 2

1 _ ]))[A3(k 4-1-1) -I- A2(k 4, l)] ] [A4(k) A2(k)]
[A3(k) 4, A2(k)] [1 + [/,4(k)- A_(k)] ]

(A-7)

v5(k) = ra(k) [A3(k)4,A,e(k)](exp[-r_(k 4-1)]4, exp [-r_(k 4, 1)])(Az(k+ l)(e,'f [r,(k 4- 1)]4-erf [r_(k4- 1)])

-- A4(k 4- 1)[(crf [rl(k 4-1)] - err [r2(k4, 1)])4, (eft [,q(k 4, 2)]+ err [r._,(k4. 2)])])+ A_(k + 1)

x [A3(k+ 1) 4, Az(k + 1)](Aa(k)(erf[rl(k)] 4,erf [r,(k)l)(exp [-r_(k 4, 1)]4,exp [-r_(k 4, 1)])

- A4(k)[(crf [rl(k + 2)]+ err [r2(k4, 2)])(exp [-r](k + 1)]- exp [-r.2(k + 1)])

4- (err [,q(k)] - erf [r2(k)])(exp[-r_(k + 1)]4-exp [-r2(k 4, 1)])])

+ r3(k)[A4(k) - A_(k)](A4(k+ 1)[(erf [,'_(k)]- err [r_(k)])

x (exp [-r_(k 4, 1)]- cxp [-r_(k + 1)])4, (erf [,'l(k 4, 2)]4,crf [r.,(k4, 2)])

x (exp [-r_(k + 1)]+ exp [-r2(k + 1)])]- Aa(k+ l)[(erf [r,(k + 2)]+ erf [r2(k + 2)])

x (exp [-r_(k 4, 1)] - exp [-r_(k 4, 1)1)4,(err [,h(k)] - err [r._,(k)])

× (exp[-r_(k4,i)14,exp[-r_(k4"I)1)])

4-ra(k 4-1)[A4(k4, 1) - A2(k 4. 1)](exp[-r_(k 4,2)]4,exp [-r_(k 4-2)])

x (A4(k)[(erf [r_(k)]- erf [r2(k)])4, (err [,q(k 4, 1)]4,err [r2(k+ 1)])]

--A3(k)(erf [rl(k)] 4-erf [r2(k)])) (A-8)
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D. B. Eldred

Guidance and Control Section

Conscan is commonly used by DSN antennas to allow adaptive tracking of a

target u'hose position is not precisely known. This article describes an algorithm

that is based on a Kahnan filter and is proposed to replace the existing fast Fourier
transform-based (FFT-based) algorithm for eonscan. Advantages of this algorithm

include better pointing accurac3; continuous update information, and accommoda-
tion of missing data. Additionally, a strategy for adaptive selection of the conscan

radius is proposed. The performance of the algorithm is illustrated through con]-

purer simulations and compared to the FFT algorithm. The results show that the

Kalman filter algorithm is consistently superior.

I. Introduction

The objective of conscan is to improve the estimate of

the target, location; the target, location is defined as the
direction of maximum carrier power as received on the

ground. During conscan, the antenna is rotated in a circle
about a point we call the conscan center at a constant rate

w. Figure 1 shows the variables used in the analysis.

Without loss of generality the origin is placed at the

conscan center. We define x - x(t) as the 2-vector which

specifies what we seek to estimate: the unknown actual

target at time t, and we define _ - _(t) as the estimate

of the target's location. We assume that discrete mea-
surements are taken at times t = ti. Let the subscript 'T'

denote a quantity taken at time ti; for example, xi - x(ti).
Lack of the "i" subscript implies that the affected quantity

is constant over a conscan period. \Ve refer to xi a.s the

state of the system, and thus Ri is the state estimate. The

known instantaneous location of the antenna boresight is

defined by x_i, which during conscan is given by

Xai = [ RCOS(Wti) 1

L/_sin (_t_)J
(1)

Here, R is referred to as the conscan radius, and _o is

the conscan frequency.

The output of the antenna receiver is the carrier power

Poi. Assuming a circularly symmetric antenna gain func-
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tion, the carrier power can be approximated as a quadratic

function of the offset angle: 1

P_i = Poi 1 - it + rti (2)

where Poi is the maximum carrier power which occurs

when the antenna is pointed directly at the target, h is

the antenna half-power beamwidth, p = 4 lu (2), fli is the

offset angle between the antenna boresight and the target,

and r/i is the signal noise, or error. We assume that the

signal noise is random with zero mean and is Gaussian dis-

tributed with a standard deviation of c%. From Fig. 1, we
have

= - _ ,,o,) (3)

and thus

If we assume that Poi = Po and xi = x are constant

throughout a conscan period, then from Eq. (1) it is easily
shown that the ensemble average of the carrier power over

the conscan period is approximately

(5)

Subtracting Eq. (5) from Eq. (4) yields

2P0# x T x,
Pc,(x,) - (Pc,} _ 7 a, + rl, (6)

Equation (6) constitutes tile measurement equation for

the purposes of the estimators. It is important to note
that the measurement equation is linear with respect to

the unknown state xi, as this makes it possible to apply

linear estimation theory to estimate xi.

We define zi as

- Pc (x,)- (7)

1 L. Alvarez, "Open Loop Conscan Pointing Error Estimation Accu-

racy at Ka-band," JPL Interoffice Memorandum 3328-93-044 (in-

ternal document), Jet Propulsion Laboratory, Pasadena, Califor-

nia, July 8, 1993.

and thus

2POPxT xi + rh (8)
zi -- h_ _i

In the subsequent analysis, we refer to zi as our mea-
surernenL

!1. FFT Estimator

A brief discussion of the existing fast Fourier transform

(FFT) estinaator is given below so that it can be compared
to the Kalman filter estimator. We assume that Poi = Po

and xi = x are constant over a conscan period. Multiply-

ing Eq. (8) by x_i and averaging both sides over a conscan

period yields, after some algebra,

PopR 2
(zixai) = h_--V--x + (r/ix,_,) (9)

Utilizing the fact that r/i is assumed to be zero mean,
we obtain an estimate for the state:

h 2 {zixai}
- (10)

Po p R 2

We define M to be the covariance of the state estimate:

M -= E ((x, - x)(_i - x) T) (11)

where E denotes expectation, or ensemble average. After

further manipulation it can be shown that

h4cr 2

"" -_ I (12)
M- 2p_p2R2n

where I is the 2 x 2 identity matrix and n is the number

of samples taken over a single eonscan period. This result
is consistent with results described elsewhere. 2

In practice, an FFT is used to estimate x [1]; this yields

the same result as Eq. (10) but also yields harmonics above

the fundamental frequency. Itence, we call this the FFT

algorithm. Use of an FFT imposes several constraints on
the algorithm: n must be an integer power of 2; .there

must be no missing measurements; and the measurements

must be evenly spaced in time. Theoretically, failure in

2 Ibid.
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the estimator can be detected by the presence of signif-
icant amplitudes in the harmonics above the fundamen-

tal frequency, but in practice, detection of the harmonics

above the fundamental frequency has been only partially

implemented, partly because it is readily apparent when
conscan has failed.

III. Kalman Filter Estimator

A detailed general description of a Kalman filter is

given in [2]. However, square root algorithms in which

the Cholesky factors of the covariance matrix are prop-

agated are widely recognized to have superior numerical

properties, and hence we implement the square root co-

variance filter described in [3]. We assume that between

time intervals ti and ti+l, xi drifts according to

xi+l = xi + nl (13)

where ni is a random 2-vector with covariance Q _=

E(nin/-r). We assume that at time ti the state estimate

is known with covarianee Mi = E ((xi- xl)(_i- xi)T).
Our measurements take the form

zl = Hixi + vi (14)

where vi is a random vector with zero mean and whose

covariance is given by R - E (viviT). From Eq. (8), we
can make the identifications

2P0PxT
Hi -- h-7 ai

Vi = r/i
(15)

With these preliminaries completed, we are ready to

construct the Kalman filter estimator, which requires ex-

ecution of the following updates at each time interval ti:

i

1 E
k=i-n+l

Pck

Poi

1 - -_--ff2(R2 + _T_i)

z,: L

LRsin (_ti) J

Hi = 2/60i/txT
h 2 ai

R 12 HiSi 0 ]T = 0 Si Q1/2

L G; Si+1

K_ = GiV_ -1/2

Mi = SiS T

zi = Hixi

Xi+l = xi+Ki(zi-zi)

(]6)

Here, n is the number of samples in a complete con-

scan period. Ui is an orthogonal transformation that tri-

angularizes T and may be obtained, for example, using
Householder transformations. Quantities such as R 1/_ are

"matrix square roots" or Cholesky factors. Tile Kalman

filter algorithm is straightforward except for the estimation

of the average carrier power, (/5) which is computed as
i'

a running average of the n most recent outputs from the
antenna receiver, and estimation of the maximum carrier

power, /Soi, which is computed using Eq. (5). Thus, the

Kalman filter requires that at least n measurements have
been accumulated before the filter can be started. This

results in a delay of a single conscan period before the

Kalman filter begins producing estimates. A similar delay
also occurs in the FFT algorithm.
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IV. Selection of the Conscan Radius

An algorithm for selecting the conscan radius was de-

veloped as part of this study. We again assume a constant

target offset xi = x. Recall from Eq. (5) that the average

carrier power over a conscan period is given by

(xrx R2))(Po) = P0 (1 - _ + (17)

Obviously, the average carrier power is maximized for

x = 0, which can be attained by repointing the antenna

until the conscan center coincides with the target loca-

tion. However, the best that can be done in practice is
to repoint the antenna to place the conscan center at the

estimated target location _. In the newly pointed antenna,

the average carrier power becomes

# R2)) (18)(Pc) =P0(1 --_-_((x--_)T(x-- _) +

and the average-carrier-power expectation, using the defi-

nition of M given in Eq. (11), becomes

E((Pc)) : Po (1- _-ff (trace(M)-F R2)) (19)

A necessary condition for the average power to be max-

imized is for the expectation of the carrier power given by

Eq. (19) to be stationary with respect to R; taking a dif-

ferential and setting it to zero requires

0_trace(M) = -2R (20)

An analytic expression for M(R) for the Kalman filter
would be difficult if not impossible to obtain. In princi-

ple it would be possible to propagate cOM/OR along with

the Kalman filter equations, but this more than doubles
the number of computations performed at each iteration

and excessively complicates the algorithm. Instead we use

Eq. (12), developed from FFT principles, as an approxima-
tion for M, with the reasoning that this result is an upper

bound on M because it is based on data from only a single

conscan period. In this case, solving Eq. (20) yields the

optimal conscan radius:

,f h4_
Ro., = V Po"_" (21)

Typically the conscan radius is set to result in 0.1 dB

gain loss in the carrier power. The set of parameters sum-

marized in Table 1 yields an optimal conscan radius of

Rom = 1.86 mdeg for a 34-m antenna. The conscan radius

for 0.1-dB gain loss is 5.9 mdeg. This suggests that the

conscan radius is currently larger than it needs to be, at
least for this set of parameters.

V. Implementation Details

The behavior of the Kalman filter depends heavily on
the selection of the process noise and measurement noise
covariances and also on the covariance of the state estimate

used to initiate the algorithm. The following criteria are
used to select these values.

The measurement noise variance R is assumed to

be provided by the RF receiver. (See [4,5] and other

material 3'4 for information.) For the simulations, a model

developed elsewhere 5 is used. Though R is not indepen-
dent of offset angle, it can be considered to be constant for

the small offset angles used during conscan.

The process noise covariance Q can be established by

considering the maximum anticipated drift in the offsets
within one sample period. We select

Q = (drift rate x sample time)2I (22)

where I is the 2 x 2 identity matrix. The drift rate used
in the simulations is

1 R

drift rate = g x (23)conscan period

An alternative, which we suggest for implementation,

would be to use the reciprocal of the antenna gimbal servo
bandwidth.

The initial covariance M0 of the state estimate is given

by the expected uncertainty of the initial target location.
This should be based on the known open loop (blind)

z M. Aung and S. Stephens, "Statistics of the Pc/No Estimator in

the Block V Receiver," JPL Interoffice Memorandum 3338-92-089

(internal document), Jet Propulsion Laboratory, Pasadena, Cali-

fonfia, April 29, 1992.

4 R. E. Scheid, "Statistical Analysis of the Antenna Carrier Power.,"

JPL Interoffice Memorandum 343-92-1291 (internal docmnent), Jet
Propulsion Laboratory, Pasadena, California, October 9, 1992.

5 Ibid.
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pointing performance of the antenna. For the simulations,
we assume that the target can be located anywhere within

the conscan circle; thus we choose

Mo = R2I (24)

VI. Computer Simulations

The parameters used in the computer simulations are

typical for a 34-m DSN antenna operating at Ka-band

(32 GHz) and are summarized in Table 1. A random-

number generator was used to simulate noise in the carrier

power. Each simulation used a different seed to start the

random-number generator, which ensures that a reason-
able cross section of cases is represented. The Kalman

filter estimator was then propagated through the data,

starting with a zero initial estimate. For comparison to

the existing algorithm, the FFT estimator was also prop-

agated. The FFT estimator is easily distinguished from
the Kalman filter because updates are produced only once

per conscan period. The simulations were written in Mat-

lab, which allows symbolic manipulation of matrices and

vectors within an interpretive programming environment.

The first simulation is shown in Figs. 2-4 and illustrates

the convergence of both Kalman filter and FFT estimators

to a constant target offset. The simulated carrier power is

shown in Fig. 2. The sinusoidal modulation of the carrier

power resulting from the nonzero offset is readily appar-

ent. Figure 3 shows the output of the Kalman filter and
the FFT estimator. The dashed line on the plot indicates

the true target location. The Kalman filter estimator be-

gins by collecting carrier power over a single conscan pe-
riod so that an estimate of the average carrier power (Pci)

can be obtained. Propagation of the Kalman filter begins

immediately thereafter. Convergence of the estimate is

virtually complete within a fraction of a conscan period.
The Kalman filter estimates are consistently better than

the FFT estimates. In fact, in steady state the standard
deviation of the Kalman filter estimates is about one-third

that of the FFT estimates.

A measure of the convergence of the Kalman filter is

given by the norm of the estimate covariance Mi- Fig-
ure 4 shows the time history of IMil and demonstrates
that the Kalman filter converges very rapidly at first and

then reaches steady state after about 100 sec, or about

3 consean periods. This is an important observation be-

cause it assures us that running the simulations longer will

not reveal any different behavior of the algorithm.

In the simulation shown in Fig. 5, the measurement
noise has been doubled to investigate the relative sensitiv-

ities of the two algorithms to measurement noise. Con-

vergence of the Kalman filter algorithm is changed very
little, though close examination reveals a larger amplitude

in the high-frequency component of the Kalman filter esti-
mates. Errors in the FFT estimates are pronounced, being

roughly doubled when the measurement noise is doubled.
As before, the Kalman filter estimates are about three

times more accurate than the FFT estimates, as measured

by the standard deviations in steady state.

The simulation shown in Fig. 6 shows the ability of

both algorithms to successfully estimate a relatively large

initial offset. Despite the fact that the initial offset was

set at more than three times the eonscan radius, both al-

gorithms quickly converge to the correct value. In general,
convergence is improved in both algorithms as R grows

larger.

In Fig. 7, a data dropout between 100 and 150 sec was
simulated. The measurement covariance update and state

update steps in the Kahnan filter algorithm are not applied

for each missing measurement. The most recent estimate

is used throughout the dropout period, and then when

data become available again, the Kalman filter gracefully

continues. Recall that this FFT algorithm is incapable of

accommodating missing data, so there is no corresponding

plot showing FFT estimates.

The ability of the algorithms to accommodate a drifting

parameter is illustrated in Fig. 8. For this simulation, the

offset is taken to be a constant drift at a rate of 2 mdeg

per 100 sec. Both algorithms successfully track the offset,

though they consistently underestimate the offset slightly.

The performance of the algorithms in the presence of

a gradually changing maximum carrier power P0 is shown

in Fig. 9. In this simulation, the nominal carrier power
is increased by 2 percent over each eonscan period. The

Kalman filter algorithm behaves roughly as before, though

some oscillation is apparent in the estimates. Numerical

experiments have shown that the amplitude of these oscil-

lations increases with the drift rate P0, but degradation of

the Kalman filter estimates is gradual and, in this case, is

comparable to the FFT algorithm estimates.

VII. Summary, Conclusions, and Future
Work

A sequential estimator for executing conscan on the

DSN antennas has been described. The algorithm, based
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ona Kahnanfilter, hasimportantadvantagesoverthe
existingFFT algorithm,includingbetteraccuracyof the
estimates,nearlycontinuousupdates,andtheabilitytoac-
commodatemissingdata.It alsohasmanyofthedesirable
propertiesof the FFT algorithm,particularlyrobustness
andtheability to tracklargeinitial offsets.In addition,
analgorithmthat is usedfor selectingtheoptimalcon-
scanradiusandis basedonmaximizingcarrierpoweris
proposed.Theperformanceandbehaviorof theKalman

filter algorithmascomparedto the FFT algorithmhave
beenanalyzedextensivelythroughcomputersimulations,
whichhaveshownthattheKalmanfilteralgorithmiscon-
sistentlysuperior.

FutureworkontheKalmanfilteralgorithmshouldcon-
centrateonafieldimplementationto demonstratethat it
canworkaswellwithrealdataasit worksinanidealized
computer sinmlation.
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Table 1. Selected parameters used in the simulations.

Quantity Value

n 32

t 1 sec

a v 5.3 X 10 -15 W

R 5.9 mdeg

M0 R2I

q (_)_

[:]
h 65 mdeg

Po 4.14 x 10 -la W

Description

Number of samples in a conscan period

Sample period

Standard deviation of P0

Measurement covariance

Conscan radius for 0.1-dB gain loss

Starting state covarlance

Process noise covarlance

Starting estimate

HMf-power beamwidtb

Maximum carrier power

Y

I /- ANTENNABORESIGHT
I /

-_/ -- ESTIMATED TARGET// LOCATION

f / I_'_, / /-- TARGET LOCATION

!/x:..
\ CONSCAN

Fig. 1. Definition of variables.
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Fig. 2. Simulated carrier power used for testing conscan

algorithms.

Fig. 4. Convergence of the estimate covariance for a constant
offset.
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This article presents an algorithm for estimating the signal-to-noise ratio (SNR)

of signals that contain data on a downconverted suppressed carrier or the first
harmonic of a square-_vave subcarrier. This algorithm can be used to determine the

performance of the full-spectrum combiner for the Galileo S-band (2.2- to 2.3-GHz)

mission by measuring the input and output symbol SNR. A performance analysis

of the algorithm shows that the estimator can estimate the complex symbol SNR

using 10,000 symbols at a true symbol SNR of-5 dB with a mean of-4.9985 dB
and a standard deviation of 0.2454 dB, and these analytical results are checked

_, simulations of I00 runs with a mean of -5.06 dB and a standard deviation of

0.2506 dB.

I. Introduction

Current plans are for the performance of the full-

spectrum recorder (FSR) and full-spectrum combiner

(FSC) for the Galileo S-band (2.2- to 2.3-GHz) mission to
be measured by running symbol-error-rate (SER) curves

on the demodulated data. To do so, one needs to generate

test, signals at various points of the system, and the test

signals must be consistent from one point to the other,

which may be difficult. The measurement can only be
done at the output of the demodulator, which means that
if the demodulator is malfimctioning, other modules (e.g.,

the FSR or FSC) cannot be tested. Also, since test signals

are needed, online testing is impossible.

To overcome the disadvantages of measuring the per-

formance from the SER curves, one would like to directly

measure the symbol signal-to-noise ratio (SNR) at various

points of the system. This means that the symbol SNR has

to be estimated through complex symbols. By complex

symbols, we mean the real symbols at an offset frequency
with in-phase (I) and quadrature (Q) components. This

article presents a complex symbol SNR estimator that es-

timates the symbol SNR of data with I and Q components

of a carrier and/or the first harmonic of a square-wave
subcarrier. This SNR estimator can be used to measure

the performance of the FSC as well as that of the complex

symbol combiner for the Galileo S-band mission.

The technique of the complex symbol SNR estimator is

similar to that of the split-symbol moments estimator [1,2],

except with complex symbols rather than real ones. The

idea behind splitting a real symbol into two halves and

correlating them (originally suggested by Larry Howard

[2]), is to get the signal power by correlating two halves

of a symbol, where the signal parts of the two halves of

232



the same symbol are correlated but the noises on the two

halves of the symbol are uncorrelated.

The same idea is applied here to the complex symbols,

with the assumption that the offset frequency is known.

The idea is to correlate the first half of a symbol with the

complex conjugate of the second half of the same symbol,

and then to take the real part to get the signal power multi-

plied by a factor that is a function of the offset frequency.

This factor can be divided out if the offset frequency is
known. The same step is repeated for N symbols, and the

results are averaged to get a better estimate of the signal

power.

The signal power plus the noise power can be obtained

by averaging the magnitudes squared of the sums of the

samples in a complex symbol over N symbols. The esti-

mate of the SNR ratio is then readily obtained. In the

next section, a brief description of the complex symbol
SNR estimator is given.

Some practical problems are not considered here. For

instance, the frequency offset may not be known and may
not be a constant. Also, if the symbol synchronization

is off, say by a sample, the performance of the estimator

will be affected, and in the future, the effect needs to be

quantified.

II. Brief Description of the Estimator

For given samples of I and Q components of baseband
data with an offset frequency Wo, we wish to estimate the

symbol SNR. The I and Q components of the/th sample
in the kth symbol are expressed as follows:

m d
Ylzk = _ k cos (woIT, -4-¢o) + nltk (1)

m

YQ,k -----_sdk sin (wolT, + ¢o) + nQ,k (2)

where

I = O,...,N,-I

k = 1,...,N

Here Ns is the number of samples per symbol and is as-

sumed to be an even integer, Ts is the sample period, and

dk = -4-1 is the kth symbol. The noise samples in the I
and Q channels are assumed to be independent with zero

mean and equal variance o'_/Ns. The true symbol SNR is

m 2
SNR= --

2_ (3)

Presented here is an algorithm to estimate this symbol

SNR. First, add all samples in the first half of a symbol
for I and Q separately,

Ns/2-1

= y,,k (4)
1=0

N8/2-1

Y.q. = F_, yq,k (5)
/=0

Repeat the first step for the second half of the symbol

Ns-1

Y_Ik = E Yltk (6) :

l=Ns/2

N,-I

vp k = yq,k (71
l=Ns/2

Multiply the I component of the first half of a symbol by

that of the second half; do the same for the Q components;

and add the results. This is.equivalent to taking the real

part of the product of the first half and the complex con-

jugate of the second half of a symbol. Repeat the same

procedure for N symbols, and average the results to obtain

the parameter rnp

N
1

k=l

N
1

-: {YokY;k} (s)
k=l

where

Yak = Yatk --kJYc, Qk (9)

YPk =Yztk +JYPQk (10)
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Take the magnitude squared of the complex sum of the

two symbol halves, repeat for N symbols, and average the

results to obtain m.

1 N

_. = _- __ I_%_+gz_l_ (11)
k=l

Mathematical expressions for the complex symbol halves

Y_k and YZ_ and the parameters mp and ms, are given in
Appendix A in terms of the underlying model parameters

of Eqs. (1) and (2). Finally, use mp and m. to obtain the

estimated symbol SNR

1

E {SNR*} __ g (Np,_.e) +

(_2 02g 02g 0.2 02g )x mp_-_+2cov (mp,m.)OmpOm. + re. OraL

(14)

2 and 0.2 are the variances of rnp and ross,where 0.rap rues

respectively, and cov (rap,re, e) is their covariance. The
variance of the estimate, SNR*, can be approximated by

[3, p. 212]

SNR* =

4rnp sine 2 (woTe/2)/[sine 2 (woT.y/4)cos (woT_u/2)]

m. - ,_p (2 + 2/cos (_oTe_/2))

(12)

where wo is the offset angular frequency, and T,y is the

symbol duration,

Tsy = NeTs

The estimate, SNR*, defined in Eq. (12) is shown in
the next section to have an expected value equal to the

true symbol SNR defined in Eq. (3), plus some bias that
decreases with the number of symbols averaged. The vari-

ance of SNR* is also derived in the next section as a func-

tion of the number of symbols averaged and the true sym-

bol SNR.

I!1.Mean and Variance of Symbol SNR
Estimates

In Eq. (12), the estimate of the complex symbol SNR,

SNR*, is a function of the random variables mp and m_,.

Let g denote that function

SNR* = g(mp, m.) (13)

Assume that g(mp, rn.) is "smooth" in the vicinity of the

point (_p,_e,), where _p and ms, are the means of mp
and m., respectively. The expectation of the estimatc,

SNR*, can then be approximated by [3, p. 212]

_., 0- 2 _ 0-2
-- r_p t'r_5 $

+ 20g Og
O-_p Orn,, coy (rap,m,,) (15)

In Eqs. (14) and (15), all the partial derivatives and the

covariance are evaluated at (_p, _.). Expressions for the
mean and variance of rnp, the mean and variance of m.,

the covariance of mp and rn., and the partial derivatives

are derived in Appendices B through E, respectively. Sub-

stituting all the terms from the appendices into Eqs. (14)

and (15), the mean and variance of SNR* are obtained,

E{SNR*} = SNR+
Ncos 2 (z/2)

[1 (51)× _+SNR -_cos(z)

]-1- SNR 2 (I - cos (z)) (16)

and

0._NR" -- N cos_(z/2) + SNR + SNR _

3 (z)) SNRa-_ (1 - cos (z))]

(17)
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where

and

C1 =

Z : _JoTsy

sine (woT, y/4)

sine (_ooTs/2)

IV. Analysis Verification

Two methods are used to verify the analytical results
of the mean and the variance in the complex symbol SNR
estimation:

(1) Compare the numerical results of the analysis to sim-
ulation results.

(2) Set the offset frequency to zero and compare the

performance of the complex symbol SNR estimator
and that of the real symbol SNR estimator.

A. Simulation Results

Simulation results for the mean and variance of SNR*

are shown in Figs. (1) and (2), and are compared to the

theoretical results of Eqs. (16) and (17). The analytical

and simulation results are also compared in Table 1. In all

cases, the offset frequency, fo = wo/(2rr), is set at 20 Hz.
The simulation results are based on 100 runs each, and the

simulated means and variances are obtained by averaging
over the 100 runs.

B. Special Case

A special case is when the offset frequency _oo = 0. Ill

this case, the performance of the complex symbol SNR

estimator should reduce to that of the real symbol SNR

estimator given in [1] and [5], with N samples of pure noise

and N samples of the signal plus noise.

For this special case, the mean and variance of the com-
plex symbol SNR estimates reduce to

1

E {SNR*} = SNR+ _(i + SNR) (18)

1
CrSNR,2 = _ (2 + 4SNR + SNR _) (19)

The analysis in [1], which assumed a constant signal level
for all the samples, is easily extended to cover the case of a

signal in only half the samples. The real symbol SNR and

the real estimate, E{SNR*}, in Eqs. (17a) and (17b) of [1]

are simply replaced by values SNR and SNR*, respectively,

representing averages over the 2N real samples. These av-

erage values are one-half the corresponding complex SNR

and complex estimate SNR* defined here. With these cor-

respondences, the mean of the real estimate in [1] reduces
to

1

E{SNR* } = SNR + _-_--i-(1 + SNR) (20)

and the variance of the real estimate is

N \2 1

N-2

x [(SNR2+2SNR+I)+_--_(2SNR+I)]

(21)

For aIarge N, Eq. (20) is equivalent to

E{SNR*} = SNR+ 1(1 + SNR) (22)

and Eq. (21) approximates to

O'SNR* = SNR 2 + 4SNR + 2) (23)

Comparing Eq. (18) with Eq. (22), and Eq. (19) with
Eq. (23), it is clear that the special case of the complex

symbol SNR estimator has the same performance as the

real symbol SNR with N signal-plus-noise samples and N

pure noise samples.

V. Conclusions

A complex symbol signal-to-noise ratio estimator is pre-

sented in this article. This estimator modifies the split-

symbol moments estimator for estimating the real symbol

SNR [2] in order to accommodate complex symbols, with

the assumption that the offset frequency is known. This

estimator can be used to measure the performance of the

full spectrum combiner as well as the complex symbol com-
biner for the Galileo S-band mission.
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Table 1. Simulation results of the complex symbol SNR estimation.

SNR, dB

Mean of SNR*, dB of SNR*, dB

Theory Simulation Theory Simulation

N Ns Runs

--2 -1.9968 -2.0039 0.2956 0.2834 2,500 I0 I00

--2 -1.9984 -2.0136 0.2112 0.1937 5,000 I0 I00

-5 -4.9985 -5.0589 0.2454 0.2506 IO,O00 10 IO0

--8 --7.9986 --8.0437 0.3056 0.2787 20,000 10 100
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Appendix A

Sums of the Halves of a Symbol and Definitions of mp and m,,

The sum of the first half of the kth symbol is

Ns/2- 1

Ya_=
1=0

-_sdkeJ(w°Tsl + ¢°) + nak

N,_ -- 1

l=Ns/2

where j = x/Z'] ".

(A-4)

m . 1 -- ejw°TSNs/2
= --dke "7¢° ---- -t- na k

Ns 1 -- ejwoTs

Let sak and szk denote the signal parts of Yak and Y;k

respectively. Then Yak and YZk can be expressed as

lmdkeJO/4_oT, y - 1/2woTs + ¢o) sinc (woT, u/4)
2 sine (woT,/2)

+ "a_ (A-l)

and

Ya_ = sa_ + na. (A-5)

Yp_ = spk + no_ (A-6)

and the sum of the second half of the kth symbol is

l=Ns/2

-_sdkcJ(woTfl + ¢o)+nflk

mdkeJ(woTsNs/2 + ¢o).1 _ej(woTsNs/2)
N_ 1 --e jw°T"

nt- nZk

_lrndkeJ(3/4_oTsy - I/2woTs + ¢o) sine (woTsy/4)
2 sinc (woT,/2)

The product of the sum of the first half of the kth sym-

bol and the conjugate of the sum of the second half of the
same symbol is

_k = S_kSflk nt- Sak Pk "]- nakSflk q- nak rt¢_

= lrn2eJ(-_oT,,/2)sinc2(woT, u/4)

4 sinc2(woT,/2)

* * * (A-7)+ sa k nflk -k- nc_k s_k -b na_ nflk

+ np_ (A-2)
Taking the real part of the product, one obtains

where the noise terms, na_ and np_, are complex Gaussian

noises, with each of the components (real and imaginary)
having a variance of a_/2. In terms of the in-phase and

quadrature noise samples in Eqs. (1) and (2), the complex

noise terms, n_ k and nzk, are

_{Ya_ Y;_ } = -_m cos sinc2(woT,/2 )

+ _{sa_nZ_+ ,_.sp_ + "a_'_*_} (A-S)

and

Ns/2- 1

nak = ___ (n,,k + jnQ,k) (A-3)
1--0

Define rr/p as

N

k=l

(A-9)
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The sum of the whole kth symbol is nk = ntk + jnQk (A-12)

Ns - t

m d
G = _ _ kd (_°T_t+ _°) + nk

1=0 "

m . j¢o 1 - ejw°TsNs
= -_dke 1 -- e jw°Ts -t-rlk

= rndkeJ(U2_oT_v - X/2_.oT, + ¢o) sine (woT, v/2) + nk
sine (_oT,/2)

= sk + nk (A-10)

where sk is the signal part of the whole symbol and nk is

a complex Gaussian noise with a variance of c_ ill each

component (real and imaginary), and

Sk _ 8c_k + Sl3k

nk _ rtcrk -}- ntis,

where sIk, sQk and nIk, nQ, denote the I and Q com-
ponents of the signal and the noise in the kth symbol.

Furthermore, Yk can be expressed as

}'k = Slk + jsQk + nlk + jnQk (A-13)

The sum squared of the kth symbol is

!_,%1-_ 2 sinc____2 (woT, v/2)

= ,,-c_ + I,_.12+ 2_{n_,.} (A-14)

where

c_ sine" (O.'oT, v/2 )

sinc"(.,'oT./2)

Note that the signal and noise parts of a whole complex

symbol, sk and n_, can also be expressed in terms of their

in-phase and quadrature components, that is,

Sk = Slk -'1" jsQk (A- 11)

Define ??ls_, as

717 q,_

_r

k=l

(A-15)
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Appendix B

Evaluation of the Mean and Variance of mp

All the expectations in the following are conditional on

knowing the symbol synchronization.

N
1

k:]

4 sinc 2 (woT,/2) cos

N
1

k=l

1 2sinc2(w°Tsu/4)(@_)=-m _=--_2 cos (B-l)
4 sinc (woT_/2)

where

= _{(_k+-.k)(%+ %)}

and s_ k and s_k denote the signal part of Y_ and Y_k,
respectively, as in Eqs. (A-5) and (A-6). The last step

in Eq. (B-l) follows from the independence of the noises
with zero mean in the two halves of each symbol. Note

that Tsu : NsT_.

Because the {Uk} are independent, the variance of mp

can be computed as [4, p. 352]

N
1

_2m,: _ E _gk (B-2)
k:l

Now let subscripts [ and Q denote the in-phase and

quadrature components of the signals. The second mo-

ment of Uk can be expressed as

2

_-E .,k + 4_ + ook}

4
O"n

2 4

m 2 sine2(woT_y/4) o, + cr.._.__.
2 sinc2(woTs/2) 2 2

+ E{(s.,ksp, k + s_qks_Qk) 2} (B-3)

Combining Eqs. (B-l), (B-3), and (B-2) yields

a2 1 flm_sinc2(_oT, yl4) 2 a_@__)m, =_ <_ __ o"n+ (B-4)
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Appendix C

Evaluation of the Mean and Variance of m,,

The mean of m,e is

E{m.} = E

1 N 1 N

= m2C_+ _ _ E t._t 2+ _ _ E{_{-_4}}
k=l k=l

: m2c_ + 2_._ (c-0

To find the variance of m,., let

vk = IYkl2

: Y?k+Y&

= (s.+ ..)_+ (_o_+ .q_)2 (o2)

where YIk, YQk, sX_, Sok, n,_, and nQ_ are defined in Ap-
pendix A. Because the {14] are independent, the variance
of me, can be expressed in terms of the variance of Vk [4,

p. 352],

N

o.2 1

k:l

4k = E{t__}- (E{}_})_ (c-4)

where

E_{v} : E'{m.}

2= (m"C2 + 2_) 2 (o5)

Expanding Vk2, take the expectation of Vff; apply

2 E{n_] E{n_} O, andE{-i } = E{,4_} = _, : =
E{n_] = E{n_} : 3o.4 [3, p. 147]; and use the indepen-
dence of nlk and nq_, and one will obtain

QO -2 (8 2E{W_} : s_ + _ o, ,_ + s_k) + (4_ + s_) _

9/_.] .]× 8_._ + Sm _,{_;,+ ,._c_ (o6)

The variance of _'9_becomes

4_ = 4,,,2crux + 4< (c-r)

Finally, the variance of mee can be written as

on = __1 [4m2C._o._ + 4o.4 ]
tn$$ N

(c-8)
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Appendix D

Evaluation of the Covariance of mp and m,,

The covarianee of mp and m,, is defined as

cov (_, m.,) : Z{(m_ - _)(m.. - _,.)}

= Z{mprn,,} - rnprn,, (D-l)

As in Appendices B and C, let

= Y_IkYpIk + Y_qkYzqk

= (_,_ + ._,_)(_,_ + ,,_,_)

+ (_ + -_)(_z_, + -z_,) (D-2)

and

I_1 _

(D-3)

The expectation of the product of UkVk can be expressed

as

E{Uk Vk } =

2 2

+ E{(d_ + 4,_)(_,_ sz,k + _ _k)}

4 2c_/"1 2._2 2)Cr n -t- COS

+ a.(m C2) + (D-4)

where

and

Note that

sinc (_ooT_v/4)
C1 =

sine (woT,/2)

sine (woT, vl2)
C2 =

sine (O:o7",/2)

Z _ _doTsy

C_=_C 1 l+cos

Then

_,{mprn.} =

)E -_ Uk v_
k=l I=1

"_" k=l k=l _ E{Y,}]
l=l,l#k

1

N----_ [NE{UkVk} + N_p(N - 1)m.t

Finally, the covariance of mp and m. is

coy (m_,,n.,) = I[E{U_Vk} - mpm.]

1 2 22
= _ [mC_. +_.'1

(D-5)

(D-6)
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Appendix E

Evaluation of the Partial Derivatives

Denote the following parameters in a convenient form,

4sine = (woT,/2)

h'_ = sine 2 (_oT_v/4) cos (woT, v/2 )

2

K_= cost _,/z)'_o'y'"" +2

02g _ -_,_ 2KIK22-_p 2KxK_o,-,,_ . = (ms, - I,_%)_ + (m. - _%%)_

2 c°s_(_/4)[ (1 cos z 4,] (E-3)

and

sine (woT, v/4 )
C1 =

sine (woT_/2)

Z _ O.)oTsy

In terms of K1 and K2, the estimate SNR* defined in

Eq. (12) is given by

SNR* = g(rn v, m_,)

Ore. (m,, - I;2_p) 2

1
- - SNR

029 "mp,'mss _-- 2Nj_pO_L (_. - I_2_p) 3

(E-4)

(E-5)

/(1/_p

ross -- K2rn p

(E-l)

Then g(_-_p,_,_) = SNR, and the partial derivatives of
this estimator function are

Og -_p,_s s Kl K2Tffp I(1Omv = (_. t_,) 2 +

z 2 ]1 SNR \(1 + cos _')/ +_ cos (zt2)

(E-2)

017_p 01n s.,

2[Q K.,_p IQ

(_,, - h'2%,)3 (,_,, - K_%,)_

' [ / ,] (E6,cos(.-/2)_ SNR. 1+ cos_ +

where the second lines of Eqs. (E-2) through (E-6) arc

obtained by substituting the expressions for Nv = E{mv}

and _,_ = E{m,_} from Appendices B and C.
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Noise temperature measurements of an 8440-MHz ultratow noise maser amplifier

(ULNA) have been performed at subatmospheric, liquid-helium temperatures. The
traveling-wave maser was operated while immersed in a liquid helium bath. The

lowest input noise temperature measured was 1.43 :t: 0.16 K at a physical temper-
ature of 1.60 K. At this physical temperature, the observed gain per centimeter of

ruby was 4.9 dB/em. The amplifier had a 3-dB bandwidth of 76 MHz.

I. Introduction

NASA's Deep Space Network uses low-noise ruby maser

amplifiers for deep space telecommunications and to sup-

port radio and radar astronomy. Many deep-space mission
communication links would not be possible without the low

noise temperature performance that masers provide.

Currently, typical specifications of a DSN X-band

(8420 MHz) maser system under normal operating condi-
tions are 45 dB of net gain (1.4 dB/cm), over 100 MHz of
instantaneous bandwidth, and a noise temperature at the

input of 3.5 K, referenced to the room temperature flange.
The required 4.5 K physical temperature of the maser is

provided by a three-stage closed-cycle refrigerator (CCR).
These maser-CCR packages are normally mounted near

the vertices of large, tippable, parabolic antennas. The

work presented in this article uses these specifications as

a baseline for comparison.

Further cooling of a maser amplifier results in signif-

icant improvements in noise temperature and gain. At
X-band, the input noise temperature is proportional to

the physical temperature, while the electronic gain in deci-
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bels (excluding circuit losses) is inversely proportional to
the physical temperature (both to a first-order approxi-

mation). Thus, immersing a maser amplifier in a bath of

superfluid helium (below 2.17 K) will result in a three-
fold increase in the gain in decibels and a threefold de-

crease in the noise temperature (e.g., from 3.5 to 1.2 K at

8400 MHz).

Several 34-m beam waveguide (BWG) antennas are be-

ing impIemented in the DSN that will provide, in contrast
to present DSN antennas, a relatively large nontipping lo-
cation for the maser and feed components. For these an-

tennas, the use of a superftuid helium cryostat becomes

very practical as a means to cool the maser (and its feed

components). This is necessary in order to achieve a very
low system noise temperature, while simultaneously in-

creasing maser gain.

In order to provide the lowest front-end system noise

temperature for its deep space telecommunications down-

link, the Jet Propulsion Laboratory has developed and
demonstrated superfluid helium-cooled maser amplifiers
for the DSN. This article describes laboratory noise tern-



peratureandgainmeasurementsmadeon an ULNA maser

centered at 8440 MHz in subatmospheric liquid helium. A

brief discussion on the limits of X-band ULNA technology
is also presented.

population ratio terms each approach unity, while the con-

ductor loss term goes to zero. Thus, Eq. (1) takes the lim-

iting form of the equivalent quantum-nolse temperature as

discussed by Oliver in [3]

II. Theory

The noise power of a maser amplifier at a given physical

temperature is discussed by Siegman in [1]. An extension

of this discussion by Shell, et al. in [2] yields the following

equation for the theoretical noise temperature of a maser

amplifier:

Tam p

(mr_tio _ 1) hiunet
dB) L_ riB) 1

Uelec t r

_(dB) - +Gratio k
net

(1)

where

G_ i° - net electronic gain ratio, unitless

h = Planck constant = 6.6262 x 10 -34 J - s

f = operating frequency, Hz

k = Boltzmann constant = 1.3806 x 10 -23 J/K

G(dB) electronic gain, dBelect

v = inverted spin population ratio, unitless

L(0an) = forward insertion loss, dB

To = maser physical temperature, K

Using Eq. (1), the expected noise temperature of a
maser at the input to the cryogenic system can be cal-

culated. Assuming an electronic gain of 39 dB, a net gain

of 34 dB, a forward insertion loss of 5.0 dB, an inverted

spin population ratio of 2.32, and a maser amplifier phys-

ical temperature of 1.6 K, the expected noise temperature
is 1.02 K.

The maser noise temperature in Eq. (1) consists pri-

marily of two noise-generating mechanisms. The first term

is related to the spontaneous emission of photons by the

ruby spin system, while the second is due to dissipative

losses in the microwave circuitry. It is interesting to note
that as the maser physical temperature (and the ruby spin

temperature) approaches zero, the gain and inverted spin

h

TMqL = (2)

At 8400 MIh, the quantum-noise temperature limit is

0.40 K. Thus, quantum noise accounts for almost half of

the total noise associated with this maser amplifier.

Maser gain expressions are also given in [1]. Consid-

ering only first-order temperature-dependent terms, the
decibel gain is

SN

= 27 (3)

where S is the slowing factor (the ratio of the velocity of

light to the group velocity), N is the length of the circuit

in free-space wavelengths, and Qm is the magnetic Q. The

Qm term is directly proportional to temperature. Thus,

the gain of a maser amplifier is inversely porportional to

temperature. Assuming that the gain of a maser anapli-
tier at a physical temperature of 4.2 K is 10 dB, then the

expected gain of this amplifier at 1.0 K is 26 dB.

III. System Description

A diagram of the noise and gain measurement setup

with the maser amplifier in place is shown in Fig. i. The
system is housed within a liquid-helium-filled dewar with

the maser immersed in superfluid liquid helium. The in-

put and output waveguides are cooled by the discharging

helium vapors. The upper halves of the maser input and

output waveguides are made of thin-walled stainless steel
to minimize heat leak into the helium bath. These stainless

steel waveguide sections are copper plated to a minimum
thickness of three skin depths to ensure a low radio fre-

quency loss. The lower halves of these waveguide sections
are made of copper.

The most economical and expedient means of provid-

ing a maser amplifier for this system demonstration was

to use an available Block IIA maser structure, described

in [4]. This structure was modified for stable operation

at 1.5 K. The principal modification was to increase the

reverse loss provided by the resonant yttrium iron garnet
(YIG) isolator from 37.5 to 74 dB. Further details about
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the existing X-band ULNA structure and its modifications

can be found in [5].

The bath temperature is reduced below 4.2 K by de-

creasing the vapor pressure above the helium bath in

the dewar. Vapor pressure control is provided by two

pumping ports at the top of the dewar connected to two

helium-tight, single-stage Leybold-Hereaus $65B TRIVAC
vacuum pumps. A combined pumping speed of 2600 lpm

(92 cfm) evacuates tile dewar to a pressure of 800 Pa. Once
a stable operating temperature (vacuum pressure) is main-

tained, as monitored on high-precision carbon-glass resis-

tors, noise and gain measurements can be performed.

Maser gain-bandpass measurements were made as the
helium bath was slowly cooled from 2.20 to 1.60 K. Noise

temperature measurements were made over a range of fre-

quencies at a variety of temperatures by cooling the cryo-
stat to its lowest temperature and then allowing the cryo-

stat temperature to gradually increase.

The maser noise temperature and gain were measured

using the Y-factor technique [6,7]. A cooled attenuator

(20 dB) in front of the maser was used as the cold load

(T_ozd), while the hot load (Thor), referenced at the maser

input, was a noise diode with an excess noise ratio (ENR)

value of 13 dB [8]. The attenuator is supercooled within
the helium bath while the noise diode resides outside the

dewar. This technique has the advantage of reducing the

value of Thor and Tco_d, while maintaining a large Y-factor.

An added benefit is that the pad presents a good input
match to the noise source and the maser. The maser un-

der test did not have sufficient gain for the receiver. So,

a follow-up amplifier was connected at the output of the

system to increase the gain. The follow-up amplifier was
chosen such that the power meter could read the low noise

powers of T_otd and yet have enough dynamic range to
accommodate a measurement of Thor.

The equation that defines the noise temperature of the

entire system, referenced to the input flange of the cryo-

stat, is given by

Tell=¢+L(Lp - 1)Tp+LLvT_+ (¢+T"L)G_ (4)

The last term in Eq. (4) is negligible compared to the

preceding terms, so to a first-order approximation it may
be excluded. The noise temperature of the maser at the

input flange, T_, was solved for in Eq. (4), yielding,

Te = [T_I! - ¢ - L (Lp - 1) Tp]
LLp

(5)

where T_if is a measurable quantity; ¢ is the thermal noise

contribution due to the input line; L is the line loss; Lp is

the cryogenic 20-dB attenuator loss; and Tp is the physical
temperature of the pad. All must be accurately measured.

These quantities are obtained by performing three separate

measurements of the noise and loss (or gain) contributions
at the same physical operating temperatures.

Two assumptions were made in the derivation of

Eq. (4). The first is that the components are all linear,
and the second is that hv << kT, where v is the fre-

quency of interest. The maser amplifier and all other com-

ponents in the three measurements were linear. However,

hv/kT = 0.32 is not neglig!ble with respect to unity; there-
fore, a correction term, T¢ _ 0.024v (GHz), as explained

in [9], may be added to T_ to determine the corrected

amplifier noise temperature, To. For this measurement,

T_ = 0.20 K and T_ = T_ + T_ = 0.20 K.

IV. Measurements and Results

The first measurement determined the RF loss (2L)

and noise temperature contribution (2¢) of the input and

output waveguide lines. The setup of the first measure-

ment consisted of a through coaxial line between the in-

put and output waveguide lines. At a constant physical

temperature of 1.60 K, noise and loss measurements were

performed. At 8400 MHz, the noise temperature contribu-

tion of the input line (¢) and the input line loss (L) were
measured to be 29.26 4- 1.22 K and -0.89 -I- 0.02 dB,

respectively.

A 20-dB attenuator was installed between the input

and output waveguide lines for the second measurement.

A precision carbon-glass thermometer was attached to the

attenuator to accurately monitor its temperature. This

measurement determined the pad loss (Lp) at a known

temperature (Tp). At 1.60 q- 0.05 K and 8400 MHz, the
attenuator loss measured -20.09 -4- 0.03 dB.

The maser was installed behind the 20-dB attenuator

for the third measurement. Measured values of T_/! and

the associated gain, G_, were 382 K and 41.8 dB, re-

spectively. Substituting data from the previous measure-

ments and the value of T_I! from this third procedure into

Eq. (4), the maser input noise temperature, Te, equals 1.23
-4-0.16 K. Adding the correction term T: gives a corrected

maser input noise temperature of 1.43 4- 0.16 K.

The theoretical estimate of the error in T_ is obtained

by taking the differential of Eq. (5), which yields
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o% o%
dT_

- OTo_ d7_ + -_d¢ + -6-£dL

0% OT_
+ -g-gdL + - Gdr (6)

The most significant error contribution in these measure-

ments is in Tp, the attenuator physical temperature. Thus,
the better the bath temperature is known, the more accu-
rate the noise temperature measurement.

For each of these measurements, the temperature of the

liquid helium bath was lowered below the normal boiling
point (4.2 K) by pumping on the bath to reduce the vapor

pressure of the liquid helium. In each case, the minimum

bath temperature achieved was 1.60 K. The physical tem-

perature was measured with a carbon-glass thermometer

and verified with a vacuum pressure gauge. The lowest

temperature achieved was limited by the helium boil-off

rate and the pumping speed of the high-vacuum equip-
ment.

Tables 1 and 2 present noise temperature and gain per

unit length results, respectively, for a range of frequencies

between 8350 and 8500 Mgz and for a range of superfluid
temperatures. Maser noise temperature measurements at

8400 MHz are plotted as a function of physical tempera-

ture in Fig. 2. In this plot, it is satisfying to note that

a least-squares line through the data passes close to the

maser noise temperature quantum limit at a physical tem-

perature of 0 K.

Maser gain was measured at several different, temper-
atures as the bath temperature was cooled to 1.6 K. The

8400-MIlz results are shown graphically in Fig. 3. A 7-dB

increase (from 28 to 35 dB at 8400 MHz) in maser gain

was measured upon cooling from 2.2 to 2.17 K. This result,

shown graphically in Fig. 4, is due to the onset of superflu-

idity at 2.17 K. Superfluid helium has a very high effective

thermal conductivity, ensuring that the maser ruby tem-
perature is equal to the bath temperature. This effect is

due to an increase by three orders of magnitude ill the
thermal conductivity at temperatures below the lambda

point. The test results suggest that above 2.17 K the ruby

operates at a temperature about 0.5 K higher than that of
the bath.

At the lowest temperature of 1.6 K, the maser exhibited

a net gain of 41.8 dB, with a bandwidth of 76 M Itz centered

at 8400 MHz, as shown in Fig. 5. The maser's ruby bar

was 8.5 cm long, giving a maser net gain per centimeter

of 4.9 dB/cm. Figure 6 shows a close comparison between

measured data and the theoretical gain as a function of

physical temperature.

V. Conclusion

The noise performance of an 8400-MIlz maser amplifier
has been measured in superfluid helium. The measured

results agree closely with theory. A value of 1.43 + 0.16 K

was measured, while the theoretical value is 1.02 K. The

associated m_er gain measurement at the same frequency

anti physical temperature was 4.9 dB/cm, agreeing closely

with theoretical predictions.

The telemetry needs of the DSN for outer planet

missions, as well as for Mars surface exploration, can only

be met with the lowest noise anaplifiers. This maser tech-

nology, used in conjunction with beam waveguide anten-
nas, will assist the DSN in meeting its needs into the next

century.
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Table 1. Maser noise temperature results.

Physical

temperature, K

1.600

1.700

1.800

1.900

2.000

2.101

Frequency, MHz

8350 8375 8400 8425 8450

Noise temperature, K

1.47 1.47 1.42 1.70

1.50 1.62 1.53 1.76

1.62 1.81 1.61 2.01

1.74 1.92 1.66 2.26

2.01 2.16 1.80 2.55

2.28 2.38 1.96 2.83

8475 8500

m

2.13 2.55 3.82

2.26 3.00 11.42

2.50 3.30 13,81

2.74 3.59 17.03

3.04 4.12 19.37

3.24 4.29 18.99

Physical

temperature, K

Table 2. Maser gain per unit length results.

Frequency, MHz

8350 8375 8400 8425 8450

m

8475 8500

Maser gain per unit length, dB/cm

m

1.600 4.67 4.86 4.92 5,18 4.43 4.48 2.45

1.700 4.24 4.32 4.28 4.16 3.58 2.44 1.06

1.800 3.97 4.05 3.99 3.90 3.36 2.29 0.96

1.900 3.72 3.79 3.72 3.65 3.14 2.12 0,83

2.000 3.45 3.53 3.49 3.44 2.95 1.94 0.73

2.101 3.22 3.31 3.29 3.22 2.77 1.81 0.64
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Simulation of Interference Between Earth Stations

and Earth-Orbiting Satellites

D. F. Bishop

TelecommunicationsSystems Section

Tt is often desirable to d(,termine the potential for radio frequency interference

between Earth stations and orbiting spacecraft. This information can be used to

select frequencies for radio sxstems to avoid interference or it can be used to deter-
mine if coordination between radio systems is necessary. A model is developed that

will determine the statistics of interference between Earth stations and elliptical

orbiting spacecraft. The model uses orbital dynamics, detailed antenna patterns,
and spectral characteristics to obtain accurate level.s of interference at the victim

receiver. The model is programmed into a computer simulation to obtain long-
term statistics of interference. Two specific examples are shown to demonstrate the

model. The first example is a simulation of interference from a fixed-satellite Earth

station to an orbiting scatterometer receiver. The second example is a simulation
of interference from Earth-exploration satellites to a deep-space Earth station.

I. Theory and Models

Figure 1 contains an illustration of the interference ge-
ometry for Earth orbiters and an Earth station. Space-

craft 1 naay be transmitting or receiving. Its antenna is

pointed toward an arbitrary location on Earth. The Earth
station may be transmitting or receiving. Its antenna is

pointed toward spacecraft. 2 or toward an arbitrary point
described by the Earth station antenna azimuth and ele-

vation.

Two interference scenarios are considered. In the first

scenario, the Earth station is transmitting a signal toward

spacecraft 2. This signal is unintentionally received by

spacecraft 1. In the second scenario, spacecraft. 1 is trans-

mitting a signal that is unintentionally received by the
Earth station.

The interference geometry shown in Fig. 1 is common

to many interference scenarios that occur between two dif-

ferent radio systems. The level of interference that occurs

at a victim receiver depends on angles 2'g and %g and the

distance Dsl that are shown in Fig. 1. The primary em-
phasis of the first part of this article is to show how to

compute these parameters as a fimction of time. The an-

tenna gain of spacecraft. 1 in the direction of the Earth

station is a fimction of angle 7.q- The path loss between
spacecraft 1 and the Earth station is a function of the dis-

tance D_ I. Lastly, the antenna gain of the Earth station
in the direction of spacecraft. 1 is a flmction of angle 7"g.

The antenna gains and path loss are used to determine
interference levels at the victim receiver a,s a function of

time.

The interference angles and path distance in Fig. 1 may

be computed with standard orbit determination methods

[1]. 'Fhe appendix contains detailed derivations of the an-

gles and path distance.
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The International Telecommunication Union (ITU) an-

tenna pattern is used to calculate the Earth station an-

tenna gain [2].

2

G(%g)=Gp-2.5xl0-3(_-_ 2£) (dgi),

0deg<%g<¢m

=G1, Cm__<Tra<¢,"

= 32 - 25 x log (7,.a), Cr _< 7,-a < 48 deg

= -10, 48deg_<Trg < 180deg (i)

where

Gp = peak antenna gain, dBi

D = antenna diameter, m

A = wavelength = c/f, m

G1 = 2 4- 15 x log (D/)`), dBi

¢m -=-- 20_(Gp - G1)I/2/D, deg

¢_ = 15.85(D/A) -°6, deg

c = speed of light = 3 x l0 s , m/see

f = frequency, I|z

This equation is valid for D/A >_ 100. For D/)` < 100, a

different pattern is used.

G('?>a) = Gp - 2.5 x 10 -a (dBi),

0 deg _< %'a < ¢ ....

100),

=(;1, era_<%'.0< D

=52-10 log (D)-25xlog(%.v),

100)`
-- < 7,-.q < ,'18 deg

D -

(2)

= 10-10 log (D),

48 deg _< %g < 180 (leg

The path loss from spacecraft 1 to tile Earth station is

computed.

[ c ]) (dB)PL = 20 x log 4rD<ff
(3)

The angle 7g in Fig. 1 is used to compute the antenna

gain of spacecraft. 1 in the direction of the Earth station.

The spacecraft gain pattern is mission dependent.

II. Application 1: Simulation of Interference
From a Fixed-Satellite Earth Station to a
Scatterometer Receiver and Calculation
of Scatterometer Power Flux Density

A. Introduction

The World Adnainistrative Radio Conference of 1992

(WARC-92) allocated the 13.75- to 14-GIIz frequency

band to fixed-satellite (Earth-to-space) service on a pri-

mary be.sis. NASA scatterometers are permitted to use
this band under the category of space research (spacecraft

radiolocation) service on a secondary basis. The Interna-
tional Radio Consultative Committee (CCIR) formulated

Task Group 7/3 (TG 7/3) to study 1.11(.'use of the 13.4-

to 14-GHz frequency band by science services. One of the

goals of TG 7/3 was to determine the effect, that the new
allocation (to fixed-satellite service) would have on NASA
scatterometers near 14 GHz. The models developed in

Section I and the appendix were used to generate a sinm-
lation of interference from a fixed-satellite Earth station to

a scatterometer ill Earth orbit. The scatterometer is rep-

resented by spacecraft 1 and the fixed-satellite spacecraft.

is represented by spacecraft 2 in Fig. 1. The fixed-satellite

Earth sial.ion is represented by tile Earlh station ill Fig. t.

B. Analysis

The computation of the scatterometer antenna gain in
the direction of the fixed-satellite Earl.h station depends

on components of the angle 7a in Fig. 1. The scatterometer

antenna coordinate and spacecraft coordinate systems are

illustrated in Fig. 2. There are six antenna beams, whose

positions are defined by angles o, fi', and 7- A vector in
t.he antenna coordinate syst.em can be t.ransformed into a

vector in the spacecraft coordinate syst.em.

x_ = Ax, (4)

where

h
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i

B=

C=

D=

E=

F=

G=

H=

I=

A vector in the

transformed into a

system.

cos(7) cos(4)

cos (7) cos (90 - 4)

cos (90 - 7)

- cos (90-4) cos (/3)+ cos (90-t3) cos (90-7) cos (4)

cos ((_) cos (f) + cos (90 - f) cos (90 - 7) cos (90 - c_)

- cos (90 - fl) cos (7)

-[cos (90-4) cos (90-f)+cos (90-7) cos (/3) cos (cO]

cos (4) cos (90 - f) - cos (90 - 7) cos (f) cos (90 - 4)

cos(f) cos (7)

spacecraft coordinate system can be

vector in the orbit-plane coordinate

Xw. = Bxs (5)

where

n

0

z__ 0 -a'_-a

0 -1 O

a = semimajor axis (Earth radii)

A vector in the orbit-plane coordinate system can be

transformed into the right ascension-declination coordi-

nate system.

Xan = Pxwa (6)

where P is defined in Eq. (A-3) in the appendix.

The vector (from the scatterometer spacecraft to the
fixed-satellite Earth station) is transformed from the right
ascension-declination coordinate system into the antenna-

coordinate system. This is done by converting from the

right ascension-declination system to the orbit-plane sys-

tem, to the spacecraft system, and to the antenna system.

xsfa ---- -ATBTpTxfs = (XsSa, Y, la, Zsla) T (7)

These components are used to determine the off-axis an-

gles in the narrow-beam plane and wide-beam plane of the

fan beam antenna (Fig. 3). The antenna boresight points
in the k direction.

cos (fg) = ZsJa

(x_.t,_ 2 + z.f3) 11_

cos (%) = z,:o
(Ysla _ + Z, la2)l/2 (8)

These angles are used to compute the narrow-beam and

wide-beam components of the fan beam antenna gain.

Gl(fg)= -3 _ , 0deg_<fig <0.5deg

(narrow-beam component, dBi)

= -23.9- 2.16/3g, 0.5 deg _< fg < 5.6 deg

= -48, 5.6deg_<fig< 180deg

G2(ag)= 34-3{ ag ]_ 0deg<c_g <20deg
\13.9/ '

(wide-beam component, dBi)

= 35.83- O.4O2ag, 20 deg _< ctg < 114 deg

= -14.5, 114 deg_< o_g < 180 deg (9)

The fan beam antenna gain in the direction of the fixed-
satellite Earth station is the summation of the narrow-

beam and wide-beam components.

G;_ = al(fg) + G2(ag) (10)

where the minimum value of Glb is -14 dBi. At this

point, there is enough information to compute the level of
interference from the fixed-satellite Earth station to the
scatterometer.

I = PT+G(%g)+ SL+ PL+Gfb (11)

where

I = interference power spectral density (dBW/Hz)

PT = fixed-satellite Earth station transmitter power

= 85- 53.4 dBW
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G(%g) =

Gp =

D:

f:

SL :

BW :

PL=

G]b =

fixed-satellite Earth station antenna gain in di-

rection of scatterometer [Eq. (1)]

53.4 dBi

4.5 m

13.995 GHz

10 x log (1/BW) (dBW/Hz)

bandwidth = 2 MHz

path loss from fixed-satellite Earth station to

scatterometer [Eq. (3)], dB

fan beam antenna gain in direction of fixed-

satellite Earth station [Eq. (10)], dBi

The threshold level where interference is considered

harmful to the scatterometer is -207 dBW/Hz) The

ground track of the scatterometer is computed to provide
a visual indication of where the scatterometer is interfered

with. The latitude of the ground track is computed first.

Lagt=90-cos-l(z) (12)

Then, the longitude is computed by

360t

Logt : Lol 1436.1' Y >-0

360t

= -Lol 1436.1' y < 0 (13)

where

[ x ]Lol = cos-' a(sin [9(_- Lag,])

The longitude is transformed to obtain vMues between

-180 and 180 deg.

C. Statistics and Probability of Interference

When the scatterometer is visible to the fixed-satellite

Earth station, it is possible for interference to occur. The
duration of these interference episodes varies with each
orbit of the scatterometer. The scatterometer-simulation

1 M. Spencer, "Interference Criterion for Ku-Band Scatterometer,"

JPL Interoffice Memorandum (internal document), Jet Propulsion
Laboratory, Pasadena, California, December 8, 1992.

program computes the maximum and average times of an
interference episode for the complete simulation period.

Then histograms of these interference episodes are gener-

ated and the distribution of interference episodes may be
estimated.

The scatterometer measures wind speed over the ocean.

Taking this measurement requires that three antenna

beams (beams 1-3 or beams 4-6) have no interference.
The effect of interference from a fixed-satellite Earth sta-

tion to the scatterometer is to create certain areas on the

ocean where measurements of the wind speed cannot be

taken by the scatterometer. It is possible that the scat-

terometer will have interference on the ascending portion

of the orbit over a particular area of the Earth. When the

scatterometer passes over this area on a descending por-
tion of the orbit, it is possible that there will be no inter-

ference. Therefore, it is desirable to compute the statistics
of interference for areas of the Earth.

For a simple example, the Earth is divided into areas of

100 km x 100 km near the equator. To facilitate program-

ming, this is done by dividing the Earth into areas that

are 0.89833-deg longitude in width and 0.89833-deg lati-
tude in height. The width of these areas is 100 km at the

equator, tapering off to a width of 0 km at the north and

south poles. The antenna beams are very narrow in one

direction and wide in the orthogonal direction. Therefore,

the beams are approximated with 31 vectors in the wide-

beam plane of the antenna. These vectors are spaced 1 deg

apart, yielding a total coverage of 30 deg in the wide-beam

plane. The point of intersection of an antenna vector with
the Earth is determined.

Figure 4 shows the geometry. The unit vector v/Iv]
is converted from antenna coordinates to the right ascen-

sion declination coordinate system. Then angle av can be

calculated. The magnitude of v and the vector R can be
determined by

v

-x. = a(cos [.o])

IRt2 = a 2 + Ivl2 -- 2alvl cos

R: x+v (14)

where

v

[v--[ -_-(vx' ?)y' vz)T
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This vector location is converted to latitude and longitude

[Eqs. (12) and (13)]. Then, the area to which this point

belongs is determined.

Wind-speed measurements on the right side of the scat-
terometer are taken by combining signals from beams 1-3

and, on the left side, by combining signals from beams 4-
6. An area on the right side is considered to be covered if

a vector from beams 1-3 intersects the area on the same

orbit and the interference is below the receiver interfer-

ence threshold for beams 1-3. Likewise, an area on the
left side is considered to be covered if a vector from beams

4-6 intersects the area on the same orbit and the interfer-

ence is below the receiver interference threshold for beams

4-6. The probability of interference is estimated as

n

p= _ (15)

where

p = estimate of probability of area interference

n = the number of times that an area is covered and

interfered with

d = the number of times that an area is covered

where the definitions of "covered" and "interfered with"

are provided in the paragraph above,

D. Power Flux Density of the Scatterometer

Compatibility between terrestrial and spacecraft radio

systems is often determined from the power flux density

of the spacecraft on the surface of the Earth. Therefore,

the power flux density of the scatterometer is computed.

Figure 5 contains an illustration of the geometry.

PIa = Pt + G_(%) + FSS (]6)

The direction of the antenna gain vector is computed

in the antenna coordinate system (Fig. 3).

x,,a = (0, cos [90 - _g],cos [_9]) T (17)

This vector is transformed into the right ascension-

declination coordinate system with Eqs. (4-6).

Xvr = PBAxva = (x,_, y,,, z,_) T (18)

Then, the angle (_s_) is computed by

x • Xw = -a[cos (4,°)] (19)

The distance between the scatterometer and the point

of intersection with the Earth can be computed by

= a[cos(..)] - [(.[cos - - 1)] (20)

The vector to the point of intersection of the antenna gain
vector and the Earth is computed by

x_ = x +D,,xw (21)

The latitude and longitude of this point, L_e, and Lo¢, are

computed with Eqs. (12) and (13).

It is desirable to know the power flux density as a func-

tion of elevation angle on the Earth. Therefore, the eleva-
tion of the vector -x_r is computed.

Et = sin-'(-x_r cos iLeal cos [Loll- y,,- cos [L,e]

x cos [90 - Lo¢] - z_,. cos [90 - L,¢]) (22)

where

Pfa =

FSS =

power flux density of scatterometer at surface
of the Earth, dBW/m 2

scatterometer transmit power, dBW

scatterometer transmit antenna gain as a

function of angle (c_g) in the wide-beam plane

(Fig. 3), dBi

free space spreading loss, dB/m 2

10 x log (1/[4r(6378 x 103D,_)21)

E. Simulation

Table 1 shows the results of a sample simulation. In-
terference is considered harmful if it exceeds the threshold

shown on the table. The fixed-satellite Earth station and

geostationary satellite are arbitrarily located. Interference
is computed at 1-see intervals. The estimated probabil-

ity of interference is the number of interference minutes
divided by simulation minutes. The scatterometer orbital

period is approximately 100 min. Because the position
of the orbit changes relative to the fixed-satellite Earth
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station, some orbits have no interference and other orbits

have episodes of interference for varying amounts of time.
The maximum and mean of these interference episodes are

provided.

III. Application 2: Simulation of Interference
from an Earth-Exploration Satellite to a

Deep-Space Earth Station

A. Introduction

The Deep Space Network (DSN) uses the 8400- to 8450-

MHz band for space-to-Earth transmissions. Earth-station

receivers are protected by interference criteria that have

been negotiated in international forums. Other radio ser-
vices that use this band are aware of the interference cri-

teria and limit their transmissions accordingly. However,

radio services that transmit in adjacent bands may not be

fully aware of their emissions in the DSN band. If these
out-of-band emissions are strong enough, they can disrupt
DSN communications.

B. Power Spectral Density of Adjacent Band

Interferers

The power spectral density from an Earth-orbiting

spacecraft is computed with the following equation:

PSD = PT + SD(f) + GT + PL1 + GR (23)

where

PSD = power spectral density of interfering space-
craft at a deep-space Earth station receiver,

dBW/Hz

PT = spacecraft transmitter power, dBW

SD(f) = spectral density of spacecraft transmitter
(Table 2), dB/Hz

G T = peak transmit antenna gain, dBi

PL1 = path loss, dB

= 20 x log [c/(4rA,_f)]

c = speed of light = 3 x l0 s km/s

Am = minimum orbit altitude, km

f = frequency, Hz

GR = DSN receive antenna gain = 74 dBi

The spectral density is computed from the equations
shown in Table 2 [3]. 2

In particular, the Earth Observing System (EOS) pro-

gram is planning the launch of several spacecraft [4] that
will have spectral emissions in the 8400- to 8450-MHz

band. Using Eq. (23), the emission of an EOS spacecraft
is determined to exceed the DSN interference criterion of

-220.9 dBW/Hz by about 45 dB in the 84013- to 8450-MHz
band. Equation (23) produces a worst-case power spectral

density at the deep-space Earth station because it uses

peak antenna gains and the minimum orbit altitude to

compute the path loss. Statistics of the interference power

spectral density are provided next.

C. Simulation of Interference to a Deep-Space Earth

Station from Low Earth-Orbiting Spacecraft in an

Adjacent Band

It is useful to know the amount of time that tile power

spectral density from an adjacent-band spacecraft exceeds
the interference criteria of the deep-space Earth station.

Figure 6 shows a plot of satellite visibility to an Earth sta-
tion versus orbit altitude. It is assumed that the satellite

passes directly over the Earth station with a circular or-

bit. The geometry is illustrated in Fig. 7. Visibility time

is computed as

T_,_ - 3600T°O (see) (24)
7r

where

To = orbital period, hr [5]

= 27r(A + R)312/ttl/2

A = orbit altitude, km

R = Earth radius = 6378 km

# = Earth gravitation, mass product

= 5.17 × 1012 km3/hr 2

0 = central angle, rad

= cos-'(R/[R + A])

If the satellite has sufficient power, it can produce line-

of-sight interference to the Earth station during its orbit

visibility time. This can be a significant anaount of time
even for a low-altitude spacecraft. Interference times for

2 B. Tunstall, "Transmit Filtering for EOS Direct Access System

Downlink," Memorandum to J. Scott (internal document), God-

dard Space Flight Center, Greenbelt, Maryland, July 10, 1992.
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actual spacecraft systems depend on transmitter power,

orbits, antenna gains, etc. Figure 1 can be used to il-

lustrate the interference geometry. The EOS spacecraft

is represented with spacecraft 1. The deep-space Earth

station points at a specified azimuth and elevation. The

EOS spacecraft is in a circular orbit around the Earth with

its antenna pointing toward the center of the Earth. The

angle 7rg between the boresight of the deep-space Earth
station and the vector to the EOS spacecraft is computed

with Eqs. (A-15) and (A-17) in the appendix. The deep-

space Earth station (70-m) antenna gain in the direction

of the EOS spacecraft is computed with Eq. (1).

G(7,-g) = 74 - 0.0025 (19607,.g)_(dBi),

0 deg < 7,-g < 0.0485 deg

= 51.4, 0.0485 deg < 7rg < 0.168 deg

= 32-25 log(%g), 0.168 deg _< %g <48deg

= - 10, 48deg<7_g _ 180deg (25)

The angle 7g between the antenna boresight of the EOS
spacecraft and the vector to the deep-space Earth station

is computed with Eqs. (A-19) and (A-20) in the appendix.

The EOS spacecraft antenna gain in the direction of the

deep-space Earth station is computed. The model is a

set of straight line segments that approximates the actual

pattern. 3

Ge(7g) = -3.5 +2"_-_Tg(dBi), 0 deg < 7g < 3 deg

= 0.091 47g 3 deg < 7g < 14 deg
11'

147a 14 deg < 7g < 70 deg
= _8.5+ 5_ '

21.57g 70 deg < 7g < 90 deg
= 84.25 20 ' -

= -14.5, 90 deg < 7g 5 180 deg (26)

The interference power spectral density level at the deep-

space Earth station receiver is computed by

Io = SD(f) + Pe + G_(Tg) + PL + G(%g) (27)

3 j. Hart, "Interference Analysis for EOS AM Direct Access System,"

Interoffice Memorandum (internal document), Stanford Telecom,

Seabrook, Maryland, July 7, 1992.

where P_ = EOS transmitter power = 11.8 dBW.

The first simulation on Table 3 is for one EOS space-

craft transmitting in the direct playback mode (QPSK,
150 MSPS per channel). Statistics of the interference are

provided. The second simulation in Table 3 is for five dif-

ferent spacecraft. The antenna pattern for the last four

spacecraft is the same as for the EOS antenna [Eq. (26)]

except for additive constants to provide the correct peak

antenna gain for each spacecraft. Each interference event

is composed of a number of interference samples that oc-

cur at 0.5-see intervals. Samples are plotted on Fig. 8 for

the second simulation in Table 3. At each sample interval,

the amount of interference exceeding the -220.9 dBW/Hz
criterion [6] is plotted. Some events have only one sample

(0.5 sec of interference) and some have up to 20 samples

(10 sec of interference). The simulation ran on a Sun work-
station.

The antenna pattern of the deep-space Earth station

provided in Eq. (25) was developed a number of years

ago for generalized Earth stations. More accurate gain
data have been made available for the 70-m antennas of
the DSN. 4 These data have been fitted with a number of

equations.

Gm(%g) = 74.15 - 0.0025(2400%g)2(dBi),

0 deg < %g < 0.0376 deg (dBi)

= 53.7,

0.0376 deg < 7"g < 0.04 deg

= 57.4 - 0.025(135017,.g - 0.049]) _,

0.04 deg < 7"g < 0.0626 deg

= 49,

0.0626 deg < 7_g < 0.0905 deg

= 25 - 23 log (%g),

0.0905 deg _< 7,-g < 33.2 deg

= - 10,

33.2 deg _< 7,-g < 180 deg (28)

4 D. Bathker, personal communication, DSN International Fre-

quency Management Program, TDA Planning Section, Jet Propul-
sion Laboratory, Pasadena, California, October 1993.
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Figure 9 contains plots of antenna data, curve fits from

Eq. (28), and the ITU pattern [2]. Equation (28) fits the

data quite well for this application. The ITU model overes-
timates the gain data in every region except that from 0.04

to 0.06 deg. It is expected that the interference from low-

Earth-orbit spacecraft would be reduced when the DSN

Earth station antenna is modeled with Eq. (28).

The computer simulation was conducted with Gm(7ra)

replacing G(7ra) in Eq. (27). In the first simulation, one
EOS spacecraft transmitted in the direct playback mode.
In the second simulation, five different spacecraft were

transmitting. The interference percentage is one-fourth of
that in Table 3 with the new antenna model for one EOS

spacecraft. For five spacecraft, the interference percent-

age is approximately one-fourth of that in Table 3 with
the new antenna model.

All of the simulations use an elevation of 5 deg and

an azimuth of 100 deg for the deep-space Earth station

antenna. When larger elevation angles are used, the in-

terference percentages are decreased. This is because the

spacecraft spends less time within the same Earth station
antenna beamwidth at higher elevations. The interference

levels are computed at 0.5-see intervals in all simulations.

IV. Summary and Conclusions

A model is developed that will determine the statistics
of interference between Earth stations and elliptical orbit-

ing spacecraft. Detailed models of the geometry of Earth
orbiters and Earth stations are shown. It. is possible to

determine antenna gains and path distances quite accu-

rately with these models. Interference levels at the victim
receiver are determined by antenna gains, path distances,

and radio system characteristics. Tile models may be used

to predict interference in a wide variety of scenarios that
involves Earth stations and Earth orbiters. Two examples

that make use of these models are shown.

The first example is a simulation of interference from
a fixed-satellite Earth station to an orbiting scatterome-

ter receiver. Table 1 contains a summary of a simulation

that was performed. Models were developed to estimate

the probability that certain areas of the Earth would not
have accurate measurements due to interference. Also,

the power flux density on Earth of the scatterometer sig-
nal as a function of elevation angle is determined. Results

from the simulation showed that the scatterometer should

use a different frequency to avoid interference from several
fixed-satellite Earth stations. Simulation results compared

favorably with other sinmlation programs. _

The second example is a simulation of interference from

an Earth-exploration satellite to a deep-space Earth sta-
tion. Worst-case levels of power spectral density from low

Earth orbiters at the station are computed. These lev-
els exceed the interference criteria of the deep-space Earth

station in the 8400- to 8450-MHz band. A sinmlation of
interference from low Earth orbiters to a deep-space Earth

station is conducted. This simulation computes the path

loss and off-axis antenna gains as a function of orbital po-
sition of the low Earth orbiter. It can be used to predict

the statistics of interference to the deep-space Earth sta-

tion. Table 3 contains a summary of two different sim-

ulations that were performed. Results from the sinmla-

lion showed that excessive coordination could be avoided

if Earth-exploration satellites reduced their emissions by

20 dB in the 8400- to 8450-MHz band. The interference

statistics are in close agreement with other sinmlations. 6

The simulations are programmed in Fortran and run

on a Sun workstation. The author may be contacted for

instructions on the operation of the simulation programs.

5j. ttart, personal communication, Stanford Telecom, Seabrook,

Maryla_ld, April 1993.

6 j. ttza't, "Compliance of EOS Direct Access System with DSN Pro-
tection Criteria," Interoffice Memorandum (internal document),

Stanford Telecorn, Seabrook, Ma_-yland, May 17, 1993.
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Table1.Exampleofan interference simulation from a fixed-satellite Earth station

to an orbiting scatterometer receiver.

Parameter Value

Scatterometer interference threshold, dBW/Hz

Scatterometer altitude, km

Fixed-satellite Earth station

(]eost ationary satellite

Simulation minutes

Number of interference computations per minute

Antenna beam element

Number of interference minutes

Estimated probability of interference

Maximum period of an interference episode, rain

Mean period of an interference episode, rain

- 207

797

85-dBW EIRP, 2-MHz bandwidth

4.5-m antenna

34 deg N, 128 deg W

196 deg W

10,000

6O

1

2.067

2.067 x 10 -4

0.567

0.129

Table 2. Spectral density equations.

Modulation Spectral density (baseband) a

Quadriphase-shift keying

Unbalanced quadriphase-shift keying

Phase-shift keying

Minlmum-shlft keying

(2/SR) x [sin (2rf/SR)]2/(2rf/SR)2

(rI/SRI) x [sin (rf /Snl)12 /(Trf /S}:ii)2
"{-(rQ/SRQ) × [sin (Trf/SRQ)]2 /(Trf/SRQ) 2

(1/SR) x [sin (rf/SR)]2/(rf/SR) 2

[16/(_2sn)] x [cos(2rf /sn)]U(1 - 1612/sn_)2

SR = total output symbol rate

f = frequency a

r! = ratio of power in I channel to total power

SR! = symbol rate of I channel

rq = ratio of power in Q channel to total power

SRQ = symbol rate of Q channel

a Replace f with ] - fc (where fc is the center frequency) to obtain the spectral
density at the center frequency.
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Table3.SimulationresultscomparingoneEOSspacecrafttofiveother
spacecraft--EOS(DP),SPOT-4,IRS-1B,POEM1,andRADARSAT-1.

Parameter EOS spacecraft Five spacecraft

Duration of simulation, m.ln 525,600 (1 year) 525,600 (1 year)

Interference events 37 128

Interference percentage 8.89 x 10 -4 2.39 X 10 -3

Interference duration, sec

Shortest 3.5 0.5

Longest 10 10

Average 7.58 5.90

Time between interference events, days

Shortest ] .99 0.08

Longest 13.44 12.83

Average 10.11 2.87

ARB.TRARY.O,.T/_.OR SPACECRAFT 2 \\

SPAOEO.A_

ATION

\
\

\

Fig. 1. Interference geometry for Earth orbiters and an Earth

station.
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Fig. 2. Antenna and spacecraft coordinate systems.
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Fig. 7. Geometry for spacecraft visibil-

ity time calculation.
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Appendix

Interference Geometry and Orbital Dynamics Models

The spacecraft orbit plane is illustrated in Fig. A-1.

The position of spacecraft 1 in its orbit plane is computed
first.

Xw = (a[cos (E)] - ae, a[1 - e2ll/2[sin (E)], 0) T (A-l)

where

a = semimajor axis, Earth radii

E = eccentric anomaly, rad

M -- E - e(sin [El) = mean anomaly, tad

---- nt

e = orbit eccentricity

n = 0.07437/a 3/_, rad/min

t = time, min

Newton's iteration [7] may be used to solve for the ec-
centric anomaly, as follows:

where

E0= M+
_(sin[M])

1 - sin [M + e] + sin [M]

M_ = Ek - e(sin [Ek])

M - Mk

Ek+ 1= Ek+ l-e[cos(Ek)] (A-2)

k = 0, 1,2,...

The position of spacecraft 1 in the orbit plane is converted

to its position in the right ascension-declination coordi-

nate system.

x = Pxw = (x, y, z) T (A-3)

where

p __--

P_ Qx w_]
P_Q_ %
P_ Q_ W_

P_ = cos (w) cos (f2) - sin (w) sin (a) cos (i)

Pv = cos (w) sin (a) + sin (w) cos (f2) cos (i)

P, = sin (¢0)sin (i)

Q. = -sin (w)cos (a) - cos (w)sin (g_)cos (i)

Qv = - sin (w) sin (n) + cos (w) cos (n) cos (i)

Q, = cos (w)sin (i)

W_ = sin (f_)sin (i)

W u = - cos (f_) sin (i)

W_ = cos (i)

w = argument of perigee

= longitude of the ascending node

i = orbital inclination

The location of the Earth station is determined in the

right ascension-declination coordinate system.

xg = (sin [O] cos [0], sin [O]sin [0],cos [O])T

= (_, vg,zS (A-4)

where

O = 90 - I_

0 = lo + k + 360t/1436.1

k = an arbitrary constant used to rotate the Earth

station relative to the orbit plane

l_ = Earth station latitude

lo = Earth station longitude

The Earth station may be pointed at another satellite

(spacecraft 2) or its boresight direction may be described

with azimuth and elevation notation. If it is pointed at

spacecraft 2, that satellite's position may be described

with Eqs. (A-l) to (A-3).
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x2 = (.2, u2,_2)T (A-5)

A special case exists when spacecraft 2 is in a geosta-
tionary orbit. It may be assumed that it is located in the

equatorial plane. The location is determined in the right
ascension-declination coordinate system.

x2 = xsg = 6.6257(sin [@g] cos [Og], sin [®g] sin [0g], 0) T

(A-6)

where

Og = 90

0g = geostationary longitude +k + 360//1436.1

If the Earth station is pointed at a specific elevation and

azimuth, its boresight direction may be converted from
azimuth-elevation coordinates to Earth-centered coordi-

nates as

x_ = Cx,e = (xec, y_¢, z_¢) T (A-7)

where

C1 C2 C3]
C= C4 Cs C6

C7 Cs C9

c, = cos (to)cos (90 - to)

C2 = -cos (90 - to)

c3 : cos (&)cos (to)

C4 = cos (90 - lo) cos (90 - I_)

C5 = cos (lo)

c6 = cos (1.) cos (90 - lo)

C_ = - cos (&)

Cs=0

C9 = cos (90 - l_)

xae = (-cos [el] cos [az],cos [el]sin [az],sin [el]) T

el = elevation of Earth station antenna

az = azimuth of Earth station antenna

These coordinates are converted to spherical coordi-
nates, as follows:

\reel

Oh= cos-a (x_C_ + k + -
k r_u /

360t

1436.1,y_ _> 0 (deg)

360- cos -a (X,c
360t

+ k + 1436.----_'ye_ < 0

(A-S)

where

_c = (x_c+ _,o+ zL)a/_

,_ : (x_ + yb'/_

Finally, these coordinates are converted to the right

ascension-declination coordinate system by

Xbo, = r_(sin [Oh] cos [oh], sin [Oh] sin [Oh],cos [Oh]) T

(A-9)

The line-of-sight visibility of the Earth station to space-
craft 1 is determined. Figure A-2 illustrates the central

angle between the two. The central angle between space-
craft 1 and the Earth station is computed as

x. x s = I*1cos (7) (A-10)

where 7 = central angle between spacecraft 1 and the
Earth station.

Figure A-2 also illustrates the limit of visibility. The

constraint is that the line between spacecraft 1 and the

Earth station is tangent to the Earth. Central angles that

are less than or equal to this angle indicate that spacecraft
1 is visible to the Earth station.

7_ = cos -1 (A-11)

The visibility condition is stated as

7 < 7_ (A-12).
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Interference between spacecraft 1 and the Earth station

can occur only if they are visible. If spacecraft 1 is visible,

additional computations are necessary. The angle %g on

Fig. 1 is used to compute the antenna gain of the Earth
station in the direction of spacecraft 1. The vector from

the Earth station to spacecraft 2 is computed as

xf s = x2- x s (A-13)

A special case occurs when spacecraft 2 is a geostation-

ary satellite, as follows:

x2 -- xgg (A- 14)

If the pointing of the Earth station antenna is described

in terms of azimuth and elevation, then

xf s = Xbor (A-15)

The vector from the Earth station to spacecraft 1 is

computed as

xfs = x - Xg (A-16)

The angle between these two vectors [Eqs. (A-13) and

(A-16)] can be used to determine the antenna gain of the
Earth station in the direction of spacecraft 1.

xrg • xr_ = Ixfgllxr_lcos (_g) (A-17)

The distance between the Earth station and spacecraft

1 is computed as

Ds] = 63781xg - x](km) (A-18)

The angle between the antenna boresight of spacecraft
1 and the direction to the Earth station is computed as

xb_ • (-xrs)--Ixt, lttxf_l cos (_) (A-19)

where Xbl ----antenna boresight vector of spacecraft 1.

A special case occurs when the antenna of spacecraft 1

points toward the center of the Earth.

Xbl _-- --X (h-20)
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