
NASA-CR-Z95758

Febuary 1994 UILU-ENG-94-2205

CRHC-94-04

Center for Reliable and High-Performance Computing

/ A/- (_ o -c t_

32_3

_P

A STUDY OF THE
RELATIONSHIP BETWEEN
THE PERFORMANCE AND
DEPENDABILITY OF A
FAULT-TOLERANT COMPUTER

Kumar K. Goswami

(NASA-CR-195758) A STUDY OF THE N94-29695
RELATIONSHIP BETWEEN THE

PERFORMANCE AND DEPENDABILITY OF A

FAULT-TOLFRANT COMPUTER (I1|inois Unc|as
Univ.) 42 p

G3/60 0003763

Coordinated Science Laboratory

College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Relea_. Dislributio. Unlimilcd.

UNCLASS IFIED
SECURII"YCLASSIFICATIONOF THIS PAGE

II I I

la. REPORTSECURITYCI_ASSIFICATION

Unclassif led

2a. SECURITYCLASSIFICATIONAUTHORITY

2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE

4. PERFORMINGORGANIZATION REPORTNUMBER(S)

UILU-ENG-94-2205 CRHC-94-04

6a. NAME OF PERFORMINGORGANIZATION
Coordinated Science Lab

University of Illinois

ADDRESS(Oty,State,andZ/PCoo_)

' 1308 W. Main St.

Urbana, IL 61801

Be. NAME OF FUNDING/SPONSORING
ORGANIZATION

7a

8c ADDRESS(City,State, and ZlPCode)

7b

REPORT DOCUMENTATION PAGE

1b. RESTRICTIVEMARKINGS

6b. OFFICESYMBOL
(If applicable)

N/A

8b. OFFICESYMBOL
(If applicable)

|

None
3 DISTRIBUTION/AVAIl-ABILITY OF REPORT

Approved for public release;

distribution unlimited

S. MONITORING ORGANIZATION REPORTNUMBER(S)

7I. NAME OF MONITORING ORGANIZATION
Office of Naval Research

NASA , Tandem, and CSC

7b'A__nC_2_ IPc°de) Falls Church VA

Moffet Field, CA 95043 22220

Cupertino, CA 95014

9. _ql__M_? !,.IIN__T_?_ENT IDE_IanaemTIFIC_ATIONNUMBER

NASA NAG-I-613 GSA CSC 468969

10. SOURCEOF FUNDING NUMBERS
i

PROGRAM PROJECT TASK WORK UNIT
ELEMENTNO. NO. NO. ACCESSIONNO.

11.TITLE(IncludeSecur_yGasification)

A Study of the Relationship Between the Performance

Cqm_uter
12. PERSONALAUTHOR(S)

TSAI. Timothv K.
13a. TYPE OF REPORT 13b. TIME COVERED

Technical , FROM TO| • m m

16. SUPPLEMENTARYNOTATION

and Dependability of a Fault-Tolerant

14. DATE OF REPORT_eaC Mon_,Da_
94-02-04 5. PAGE COUNT40

17. COSATICODES 1g. sugjECTTERMS(Continueon_verseff _e_ss_ and identi_byblock numbed

FIELD GROUP SUB-GROUP dependability, fault-tolerant, performance,fault injec-

tion, latency

_9. ABSTRACT(Continue on _verseifnecessa_ and iden_by_ocknumbed

This thesis studies the relationship by creating a tool (FTAPE) that integrates a high stress workload

generator with fault injection and by using the tool to evaluate system performance under error conditions.
The workloads are comprised of processes which are formed from atomic components that represent CPU,

memory, and I/O activity. The fault injector is software-implemented and is capable of injecting any memory-
addressable location, including special registers and caches.

This tool has been used to study a Tandem Integrity $2 Computer. Workloads with varying numbers

of processes and varying compoeitions of CPU, memory, and I/O activity are first characterized in terms

of performance. Then faults are injected into these workloads. The results show that as the number of

concurrent processes increases, the mean fault latency initially increases due to increased contention for the
CPU. However, for even higher numbers of processes(< 3 processes), the mean latency decreases because

long latency faults are paged out before they can be activated.

20. DISTRIBUTION/AVAILABILITYOF ABSTRACT
I_ UNCLASSIFIED/UNLIMITED !-! SAME AS RPT.

i .

22a. NAME OF RESPO_ISIBLEINDIVIDUAL

l--JOT1CUSERS

21. ABSTRACTSECIJRITYCLASSIFICATION

Uncles sif led

22b.TELEPHONE0nc/ude Area Co,Je) 22c. OFFICE SYMBOL

DO FORM 1473, 84MAR 83 APRedition may be useduntil exhausted.
Allother editionsare obsolete.

SE(;_RITY _LASSIFI(;'.ATIQNOF THIS PAGE

UNCLASSIFIED

A STUDY OF THE RELATIONSHIP BETWEEN THE PERFORMANCE

AND DEPENDABILITY OF A FAULT-TOLERANT COMPUTER

BY

TIMOTHY K. TSAI

B.S., Brigham Young University, 1990

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Electrical Engineering
in the Graduate College of the

University of Illinois at Urbana-Champaign, 1994

Urbana, Illinois

,.o

111

P_6CIIiIMN,_ PAGE BLA_K I'_OT F}LI'_iED

ABSTRACT

Many existing tools perform validation of high dependability computers. These tools

have focused mainly on creating an environment to support direct fault injection. Less effort

has been directed toward investigation of the relationship between performance and depend-

ability. This thesis studies this relationship by creating a tool (FTAPE) that integrates a

high stress workload generator with fault injection and by using the tool to evaluate system

performance under error conditions.

The workloads are comprised of processes which are formed from atomic components

that represent CPU, memory, and I/O activity. The fault injector is software-implemented

and is capable of injecting any memory-addressable location, including special registers and

caches.

This tool has been used to study a Tandem Integrity $2 computer. Workloads with

varying numbers of processes and varying compositions of CPU, memory, and I/O activity

are first characterized in terms of performance. Then faults are injected into these workloads.

The results show that as the number of concurrent processes increases, the mean fault latency

initially increases due to increased contention for the CPU. However, for even higher numbers

of processes (> 3 processes), the mean latency decreases because long latency faults are paged

out before they can be activated.

iv

ACKNOWLEDGEMENTS

Many people deserve recognition for helping me to finish my M.S. thesis. My professor,

Ravi Iyer, has been patient in providing direction and encouragement and giving me enough

time to complete my work. Luke Young and Kumar Goswami paved the way for me with

their work on the fault injector and DAS. I would also like to thank Wei-lun Kao, Gwan

Choi, and Steve VanderLeest for letting me try out new ideas on them. And finally, I must

thank my mother for reminding me every time she called that I should work on this thesis.

V

TABLE OF CONTENTS

Page

.

2.

3.

.

.

INTRODUCTION

RELATED WORK

DESCRIPTION OF FTAPE

3.1 Fault Injector

3.2 Workload Generator

3.2.1 Process components

3.2.2 Workload composition methods

3.3 Interaction Between FI and WG

3.4 The Hybrid Monitor-Based Environment

3.5 The Tandem Integrity $2

WORKLOAD CHARACTERIZATION

4.1 OS Statistics

4.2 Load-Store Instruction Ratio

EXPERIMENTS . . ."

5.1 Propagation Paths
5.1.1 Fault 1

5.1.2 Fault 2

5.2 Multiple Fault Results

5.2.1 Experiment 1: varying composition

5.2.2 Experiment 2: concurrent processes

6. CONCLUSIONS

4

8

9

i0

11

ii

13

14

15

17

18

21

23

23

24

24

25

26

28

3O

REFERENCES 32

vi

LIST OF TABLES

Table Page

4.1: Performance Statistics for Selected Workloads

4.2: Performance Statistics for Selected Workloads

4.3: Meaning of Performance Statistics

4.4: Measured LSIRs for Some Workloads

5.1: Fault 1 Results

5.2: Fault 2 Results

5.3: Detection Ratios

5.4: Results for Concurrent Processes

19

19

20

22

24

25

26

29

vii

LIST OF FIGURES

Figure Page

3.1: Fault Injector and Workload Generator Environment

3.2: Workload Model

3.3: Physical Layout of the Hybrid Fault Injection Environment

3.4: Overview of Tandem Integrity $2 Architecture

5.1: Fault Latency Distributions

8

12

14

16

27

1. INTRODUCTION

The validation of fault-tolerant computer systemsis an important issue becausethe

dependability of these computers must be ascertainedbefore use in critical applications.

Presently, a common method of validating computer prototypes is through fault injec-

tion. Many fault injection studies have been reported in the literature. The studies in-

clude radiation-based,hardware-implemented,and software-implementedapproachesto in-

ject faults. Theseefforts concentratemainly on inventing a better method of performing

fault injection.

However,an issuethat hasnot receivedmuchattention is the relationship betweenper-

formance and dependability, which are determined not only by the system but also by the

workload. In order to effectivelyevaluatea fault-tolerant system, the system must be op-

erated with workloads that stressboth the functionality and modulesin the system under

high stress conditions. Faults must be injected under such workloads to evaluate the full

potential of the various fault-tolerant mechanisms.If the part of the system that is faulty

is not stressedadequately,then the propagation of the fault will appear to be less than it

would be under high stress. Contrastingly, if the workload utilizes all parts of the system,

then the full potential of the fault will be realized.

This thesispresentsatool that is ableto createworkloadsthat canstressthe test machine

in various ways. A synthetic workload generator is usedto obtain high controllability and

flexibility. This workload generator is integrated along with a fault injector to produce

the Fault-Tolerance and PerformanceEvaluator (FTAPE), a tool that can study jointly

both performanceand dependability. The workload is able to send to the fault injector

information, suchas where in memory the workload is current executing. This information

is used to select fault types and locations. The generatedworkloads consist of processes,

which are createdby combiningatomic componentsthat representCPU, memory, and I/O

activity. Eachworkload is specifiedby the numberand types of processes,and eachprocess

is characterizedby the compositionand sequenceof atomic components.

A software-implementedfault injector is usedin this study. Software-implemented fault

injection (SWIFI) uses software to corrupt memory and registers. SWIFI is cheaper and

easier to use than hardware-implemented methods since no additional hardware is needed.

Communication is also easier since the injection routines can be reprogrammed to take

advantage of dynamic data, such as that sent by the workload. SWIFI can also be used to

emulate the effect of hardware faults [1].

FTAPE has been implemented and used on a Tandem Integrity $2 computer. Exper-

iments were performed using workloads which (1) varied in CPU, memory, and I/O com-

position and (2) varied in the number of concurrent processes. The workloads were first

characterized through the use of performance measurements to demonstrate their CPU,

memory, and I/O nature. Then, the same fault w_s repeatedly injected into these workloads.

to showthat different propagationpaths result from different workloads. Theseexperiments

are repeated, with the exception that the faults are injected into the entire workload, in

order to study the dependability characteristics,suchas error detection coverageand fault

latency, in relation to the entire workload.

The remainderof this thesisis organizedasfollows: Chapter 2 hasa summary of related

work. A detailed description of FTAPE, including the test machine,can be found in Chap-

ter 3. Chapter 4 presents the characterization of the workloads used in the experiments, and

Chapter 5 describes the experiments. Conclusions and directions for future work are given

in Chapter 6.

2. RELATED WORK

Much work has already been done in the area of fault-tolerant system evaluation. The

methods utilized have included simulation, trace-based simulation, physical fault injection,

and SWIFI. This thesis uses the SWIFI approach.

Among the simulation-based studies is Iyer [2], in which error propagation from the gate

to the chip level was investigated. FOCUS [3], [4] is a tool that conducts fault sensitivity

analysis of chip-level designs through the use of circuit-level and logic-level simulation. DE-

PEND [5], [6] creates a simulation environment to study system-level effects of faults. An

instruction-level simulation is used to perform fault injection in [7]. These simulation-based

approaches are very flexible, but they do not reflect the effects of system components not

included in the simulation model.

Trace-based simulation differs from pure simulation by making use of data traces from

actual machines. In [8], the memory of large computer systems was periodically sampled by

a hardware monitor. A similar method was used to study a shared-memory multiprocessor

in [9]. A hybrid monitor approach was used in [10] to investigate a TI Explorer II Lisp

5

machine. Unfortunately, due to memory limitations, traces are limited in the amount of

information they can contain.

Physical fault injection involves physically perturbing a system through some hardware

means. In [11], heavy-ion radiation was used as a method of fault injection. Experiments

involving FTMP [12], [13], [14] use fault-injection implants between chips and sockets to

create pin-level faults. In [15], MESSALINE introduces faults by using active probes which

inject current onto a pin, as well as implants between chips and sockets. These physical

hardware approaches are either not easily controllable, or not very flexible.

An alternative to the physical fault injection approach is the SWIFI approach. Instead of

using hardware to inject faults, software is used. More control over injections is gained, but

a certain overhead is incurred. FIAT is an automated environment developed at Carnegie

Mellon University [7], [16]. Faults were injected into IBM RT workstations, and an analysis

of runs with and without injections was performed. Another automated fault-injection ap-

proach is FERRARI, which is described in [17]. FERRARI utilizes software traps to inject

transient faults, in addition to permanent faults.

The environment used in this study is a hybrid monitor-based environment [18]. A hybrid

environment combines the flexibility and utility of SWIFI with the low intrusiveness of a

hardware/software monitor. Past SWIFI implementations, such as FIAT and FERRARI,

have relied on instrumenting user applications. The fault injection facility on the Tandem

Integrity $2 requires no modification of the application. Moreover, previous studies have

limited the location of faults to user space because the test machines were not designed to

tolerate certain faults.

Researchon workloadgenerationhasfocusedon threemethods: trace data, benchmarks,

and synthetic programs. The method selectedin this thesisis the useof synthetic programs.

The main advantageof usingtrace data to generate workloads is an accurate represen-

tation of an actual workload. An example in which trace data of usage in a file system were

used to perform experiments on file system cache sizes is found in [19]. The disadvantages of

using trace data include large data files and difficulty in using the data on different machines

or in modifying the data to alter the workload. These problems are not characteristic of

benchmarks.

Benchmarks are relatively short programs or scripts that are designed to model real

workloads. They are easily portable to other machines and can be modified by simply

changing the input parameters. Some examples of benchmarks are found in [20], which

measured the performance of three UNIX systems, and in [21], which compared the Sun

NFS with the Andrew file system. The main criticism of benchmarks is that they do not

represent real workloads.

Synthetic programs attempt to combine the advantages of trace data and benchmarks by

adding parameters that can be adjusted to reflect real workloads. A discussion of synthetic

workload design methods can be found in [22]. A few studies using synthetic workloads are

found in [23], [24], and [25], which used synthetic workloads to model a file update process.

Much of the previous work concerning synthetic workload generation involves workload

characterization. In the literature, workload characterization usually refers to the extraction

of parameters describing a representative workload, which can then be used to form proba-

bilistic models. These models can then be solved to evaluate the performance of a computer

system under that specific workload. Ferrari [26] was the first to identify resource patterns,-

which were identified by visual inspection and clustering of two-dimensional scatter plots

representing resource usage. The clustering process was later improved by using statistical

pattern recognition techniques [27], [28].

In this thesis, workload characterization is used to measure the extent to which a workload

stresses the system (i.e., to what extent the system resources are utilized by the workload).

Although the result of the characterization is not used for modeling, a possible future use

is in the derivation of a single measure that could be used for a more direct quantitative

comparison of performance and dependability. A single measure incorporating both perfor-

mance and dependability could be used as a benchmark to compare different fault-tolerant

computers.

The major contribution of this work is relating performance to dependability. This is

accomplished through the creation and use of a synthetic workload generator in conjunction

with a fault injector. Previous studies have limited workloads to small programs which

have been chosen with little knowledge of the characteristics of those workloads. With

FTAPE, complex workloads, including multiple processes, can be created with a controllable

composition of various components. These workloads are characterized in order to obtain
u

performance information, and this information is then related to the results of fault injections

into those workloads.

8

3. DESCRIPTION OF FTAPE

FTAPE consistsof two main parts: the fault injector (FI) and the workload generator

(WG). An illustration of the interaction betweenthe FI and the WG is given in Figure 3.1.

The FI is started up first, and then the WG is initiated by the FI. The FI and WG obtain

input from parametersfiles, and the FI also producesa log file. To observethe propagation

of injected faults, a hybrid monitor fault injection environment wasused (seeSection 3.4).

A more detailed description of thesemain componentsis given below.

:' t. J
, , @ Initiate Process
I I

_ - - -_" File Input/Output

°°°..,°

I

File

Figure 3.1: Fault Injector and Workload Generator Environment

3.1 Fault Injector

The fault injector is the subprogramthat injects faults into the local memory spaceof the

$2. When first started up, it readsin a distribution of interarrival times for fault injections.

The distribution is composedof discretetimes with associatedprobabilities. This method

allows distributions that cannot be easily representedby a mathematical formula to be

specified. After reading in the interarrival times, the FI proceedsto make each injection,

which involvesXORing the contentsof the target local memory word with a user-defined

mask. The user can direct the FI to inject faults into the kernel or into a specific user

process. Additionally, injections can be targeted at the code,data, or stack segmentsof

specificprocesses.

The FI also has a single-fault mode. In this mode, a single fault is injected. The FI

then waits for a predeterminedtimeout period to elapse,during which time it checksif the

injected processorhascrashed.1 If the processorcrashesduring the timeout period, the FI

brings the processorback on-line. In any case(crashor no crash), the FI makessure that

the processoris fault-free.2 The processis then repeated.

The low-level fault injection mechanismis implementedas a devicedriver in the kernel.

The parameters for a call to the fault injection routine are the CPU to be injected, the

address,and the injection XOR mask. The actual injection consistsof XORing the contents

of that local memory location with the XOR mask. An injection into the cache can also

1Each fault-tolerant component is represented by a file in the file system. The file permissions are used

to reflect the current state of each component. Thus, a simple check of the appropriate file permissions will

determine if a component has crashed.

2if the processor previously crashed and was reintegrated, then it is fault-free. If not, then the processor

is intentionally downed and reintegrated.

10

be simulated by invalidating the appropriate cache line, if the location exists in the cache.

The next access involving that cache line will force the corrupted memory contents into the

cache. If necessary, the write protection for certain parts of memory, such as the kernel, can

be temporarily disabled.

3.2 Workload Generator

The workload generator is an important part of any fault injection study. It has been

shown that the probability of a system failure is increased by greater processor activity

[29]. Also, the relationship between the probability of a CPU-related error and increased

workload activity has been established [30]. Since one of the goals of this thesis is to study

the relationship between workload performance and fault propagation, the ability to create

workloads with specific characteristics is essential.

Because the characteristics of a real program are more difficult to control, a synthetic

workload generator is chosen. Our workload generator creates composite workloads out

of components representing concentrated CPU, memory, and I/O activity. An attempt is

made to model real workloads by allowing the user tb create several types of processes and
w

to execute one or more of those types of processes. In addition, parameters for the workload

components can be specified as distributions. Workload component parameters include total

execution time, location of memory accesses (cache, local, global), and type and number of

I/O accesses. Since the workload generator is intended for use in an integrated fault-injection

environment, it should be able to communicate to the fault injector such information as the

location, size, and composition of the current workload.

11

3.2.1 Processcomponents

Three types of process components (PCs) have been created:

description of each process component follows:

CPU, mem, and IO. A

CPU Additions, subtractions, multiplications, and divisions are repeatedly performed. In-

ternal CPU registers are used as much as possible, and few memory accesses are made.

The number of operations can be controlled.

mere A large array is constructed in memory, and sequential accesses are made with a

specified stride. By controlling the stride, some measure of control over the cache hit

rate is available. For example, with a stride of 0, the same array location is constantly

accessed, yielding a cache hit rate of practically 100%. A stride of 4 bytes (which is

the size of a single $2 cache line) will force a cache hit rate of almost 0%. The number

of memory accesses can be controlled.

I/O An I/O-based workload generator developed in [31] is used. Using a synthetically

generated file system, the I/0 generator initiates I/0 requests, which are handled by

the UNIX operatingsystem. The I/0 requests are made in a logical sequence (e.g.,

a file must be opened before it can be closed), and an attempt is made to model an

actual I/0 workload. The number of files which are opened, used for reads and writes,

and then closed can be controlled.

3.2.2 Workload composition methods

A workload is created by combining PCs in various ways. An example of the workload

model can be see in Figure 3.2. A sequence is a logical ordering of PCs. An instance of.

12

i__,_i_c,l_c_P_i Pc_l-'z_°o'_
Sequencel _'"'-'l PC11 pc_]PC3lPC2l ::_,t_,,o_3

_.o..,__I PC, _c,l_c,l'_._n-,

Sequnce2 _'H pc, I,_1 pc, 1::___o,3

"lff_.

Figure 3.2: Workload Model

a sequence is the executing image of that sequence. Thus, a sequence can be viewed as

a program stored on disk, while an instance is a single copy of that program executing in

memory. Many instances of a sequence can be started, and each instance can draw the

parameters for its PCs from a specified distribution. The interarrival time for the start of

the instances of each sequence can also be specified, as well as the start offset, which is

the time from the start of the WG to the earliest start of an instance for that sequence.

By using this sequence/instance, organization, the WG can model processes with a certain

composition of CPU, memory, and [/0 load, and many instances of these processes can be

executed.

Thus, there exist several methods to vary a workload:

1. Execution time for each PC

• Can be fixed before execution.

• Can be drawn from a specified distribution at run time.

2. Sequence of PCs

13

• Can be a fixed sequence of PC types (that is repeated) determir/ed before execu-

tion.

• Exact ordering of PCs in each instance can be determined at run time and drawn

from a specified distribution.

3. Intensity of each PC

• For example, relative amount of CPU activity done by the cpu PC.

• May be fixed or drawn from a specified distribution.

4. Number of instances

• One or more of each sequence may be executed.

• Must be specified before execution.

3.3 Interaction Between FI and WG

Figure 3.1 shows the interaction between the fault injector and workload generator. The

WG is started by the FI. In order for the FI to inject faults into currently active user process

space, it must obtain all necessary process IDs (PIDs) from the WG. Once the FI receives

the PIDs, it selects one process and determines the required information (virtual location of

active pages and virtual-to-physical address translation) for fault injection.

Both the FI and WG use input parameter files to specify necessary variables and distri-

butions. The FI creates an output file that includes time-stamped lines with information

such as injection location and mask, error detection, and CPU reintegration.

14

I oAsIFult °r)Assistant] State Monitoring I Workload

(monitor.c) _ Program J Supervisor

Ic°n° IHost DAS Machine

Ethernet

Figure 3.3: Physical Layout of the Hybrid Fault Injection Environment

3.4 The Hybrid Monitor-Based Environment

The hybrid environment uses a hardware monitor to obtain high time resolution and

minimize system perturbation due to event detection and logging, as well as a software

monitor to assist the fault injector. A detailed description can be found in [18].

The hardware configuration consists of a hardware monitor, a target system, and a control

host. The physical layout is given in Figure 3.3.

The target machine is the Tandem $2, which is described in Section 3.5. The hardware

monitor is a Tektronix DAS9200 Logic Analyzer (DAS), which has probes attached to the

local processor bus on one of the S2's processor boards. Acquired data recorded by the DAS

include addresses, data, read/write signals, interrupts, and DMA signals. The control host

is a Sun ELC workstation.

The fault injector and workload execute on the $2. In addition, a supervisor program

communicates with the fault injector and workload and uses that information to reprogram

the DAS. This reprogramming is accomplished by the assistant program on the Sun. The

assistant program receives commands from the supervisor program over the local Ethernet.

This configuration allows the DAS to dynamically reconfigure itself to adjust to changing

conditions on the target machine.

15

3.5 The Tandem Integrity $2

The Integrity $2 is a fault-tolerant computer designedby Tandem. An in-depth descrip-

tion canbe found in [32],and a basicoverviewof the architecture is givenin Figure 3.4. The

$2 is UNIX-based (SVR3) and usesthe MIPS R2000microprocessor.The coreof the $2 is

its triple-modular-redundant processors.Eachprocessorincludes a CPU, a cache,and an

8MB local memory. Although these three processorsperform the samework, they operate

independently of eachother until they needto accessthe doubly replicated global memory.

The local processormemory is not parity-protected. Fault detection is performed by the

duplexedTriple Modular RedundantControllers (TMRCs) voterswhich areactivated when-

ever the global memory is accessed.If an error is found, the faulty processoris shut down,

and immediately undergoesa Power-OnSelf-Test (POST). Upon passing the POST, the

processoris reintegrated into the systemby copying the states of the two good processors.

Voting alsooccurson all I/O and interrupts.

The processorsare looselysynchronized-- they operate independently until TMRC vot-

ing occurs. In order to synchronizethe processors,at every2047instructions eachprocessor

is stalled until all other processorsarrive at the samesynchronizationpoint or a timeout is

reached. If the timeout is reached,the appropriate processoris declaredfaulty and reinte-

grated.

In addition to these fault detection mechanisms,the local memory is scrubbedperiodi-

cally. If a fault is discovered,a soft DMA error correction is performed without a POST or

16

CPU CPU CPU

Local

Memory

Lo_l

Memory

Local

Memory

Controller

I

[Controller I

Figure 3.4: Overview of Tandem Integrity $2 Architecture

reintegration. This fault-tolerant architecture ensures that a fault that occurs on one pro-

cessor will not propagate to other system components without being caught by the TMRC

voting process.

17

4. WORKLOAD CHARACTERIZATION

The workloads used in the experiments in Chapter 5 are characterized in this section.

In this thesis, workload characterization refers to using real measurements to obtain the

performance characteristics of a workIoad. In this way, the effect of faults on the performance

of a specific workload can be measured.

The specification of the workload is done in terms of how much of the composite workload

is constituted by a particular type of process component. For example, a workload that

consists of 20% cpu, 40% mem, and 40% io PC would be notated as having a 20/40/40

composition. The number of such processes in the workload also has to be specified. The

following two types of analyses are used for workload characterization:

1. Gather process statistics that are kept by the operating system. On the $2, which runs

SVR3, the timex command is used. (See Section 4.1.) Only the target workload and

the OS should be running.

18

2. Do an instruction-level profile of the workload and determine the ra;tio of load-store

instructions to nonload-store instructions. The cpu PC should be mostly nonload-store

instructions, while the mem PC should be mostly load-store instructions.

These two types of analyses are described in Sections 4.1 and 4.2.

4.l OS Statistics

Most operating systems keep track of some performance statistics. The version of SVR3

implemented on the $2 includes the t imex command, which monitors performance statistics

for one process (including its children). The workloads used in the experiments described

later were executed using the timex command. The results of the timex command for some

of these workloads are given in Tables 4.1 and 4.2. The definition of each statistic can be

found in Table 4.3. It was found that the results for workload execution times of 20, 60, and

120 minutes were the same. Therefore, the measurements in this section were performed on

workloads that ran for 20 minutes each. The overhead due to the timex command is minimal

since it merely extracts statistics that the operating system normally updates. Also, this

data extraction is only performed once the workload has finished.

Each succeeding workload for workloads A through E is less I/O-intensive and more

memory-intensive than the previous workload. Table 4.1 shows that this is indeed the case.

The CPU composition is kept the same in order to relate any observed change in results

to the relative mem and io composition. The amount of wait time due to blocked I/O

(% wio), the disk busy time (% busy), and the number of system calls per second (syscall/s)

all decrease because the number of disk requests decreases. The average disk request queue

19

Table 4.1: PerformanceStatistics for SelectedWorkloads

Workloads

A I B I C l D [E

#processes I I I i i

% cpu PC 20 20 20 20 20

% mem PC 0 20 40 60 80

% io PC 80 60 40 20 0

% usr 47 65 78 90 99

% sys 34 22 14 6 1

% wio 19 13 8 4 0

% busy 20 13 9 4 0

avque 1.3 1.3 1.6 2.1 7.0

avwait 9.5 12.7 20.3 38.2 133.7

syscall/s 177 158 105 44 10

pswch/s 20 17 15 13 ll

runq-sz 1.0 1.0 1.0 1.0 1.0

% runocc 79 84 91 95 100

Table 4.2: Performance Statistics for Selected Workloads

Workloads

F G H I J

#processes 1 2 3 5 10

% cpu PC 20 20 20 20 20

% _em PC 40 40 40 40 40

% io PC 40 40 40 40 40

% usr 77 80 81 80 82

% sys 15 17 18 18 17

% wio 8 3 1 1 1

% busy 8 8 9 8 7

avque 1.4 1.6 2.6 2.6 2.9
avwait 13.5 21.6 52.5 54.0 63.1

syscall/s 107 103 104 101 93

pswch/s 16 20 20 22 23

runq-sz 1.0 2.0 2.9 4.9 9.7

% runocc 91 97 99 99 99

20

Table 4.3: Meaning of PerformanceStatistics

#processes
% cpu PC
% mem PC
% io PC
% usr

% sys

% wio

% busy

avque
avwait

syscall/s

pswch/s

runq-sz

% runocc

How many concurrent processes in the workload

% of the total workload represented by the cpu PC

% of the total workload represented by the rnern PC

% of the total workload represented by the io PC

% of CPU time running in user mode

% of CPU time running in system mode

% of CPU time waiting for blocked I/O

% of time disk was busy servicing a request

outstanding number of disk requests while disk is busy

average time in milliseconds requests wait in queue

system calls per second

process switches per second

average run queue length while occupied

% of time run queue was occupied

length and wait time (avque and avwait) are only updated when the disk is busy. Both avque

and avwait increase because these numbers are influenced more and more by the intense disk

activity needed at the beginning to load the process image.

Each succeeding workload for workloads F through J has more processes than the previous

workload. Table 4.2 shows the effects of increased process concurrency. The average wait

time due to blocked I/O (% wio) decreases since other processes can use the CPU while a

process is blocked for I/O.'rhe average disk request queue length and wait time (avque and

avwait) increase because while one process is blocked for I/O, another process will execute

until it is blocked for I/O. This process is repeated for additional processes. Thus, a higher

level of process concurrency results in more processes being blocked for I/O at the same

time. The number of process switches (pswch/s), the average run queue length (runq_sz),

and the percentage of time the run queue is occupied (% runocc) all increase as expected.

2i

4.2 Load-Store Instruction Ratio

t

The three available types of PCs (epu, mem, and io) can be viewed in terms of the

amount of the resultant data flow. Since instruction fetches occur independently of the

workload composition, the focus should be on noninstruction data flow. The $2 is based on

the MIPS R2000, which is a load-store architecture processor. Data only enter or leave the

R2000 when a load-store instruction is executed. Thus, the ratio of load-store instructions

to total instructions is a measure of the amount of data flow in and out of the CPU.

Some expectations can be formed about the load-store instruction ratio (LSIR) for each

type of PC. The cpu PC is supposed to contain mostly CPU-intensive activity. Thus, the

cpu PC should have a very low LSIR, i.e., most instructions should be register-to-register

instructions. The mem PC should produce a great deal of memory activity and, therefore,

should have a high LSIR. It is not obvious what LSIR the io PC should have because most

of the data flow is performed via DMA. Table 4.4 shows the measured LSIRs for several

workloads.

The LSIR is a dynamic count of load-store instructions which are executed. It was

obtained by profiling each" workload for one hour. Since the profiling uses sampling, the

resultant LSIR measure is approximate. The profiling is also only performed for addresses

within the workload memory image and does not include kernel routines.

The data in Table 4.4 are split into two groups of workloads. The first group (cpu_wkld,

mem_wkld, io_wkld) consists entirely of one PC type. The second group (A,... ,E) uses a

combination of several PC types. The very low LSIR (0.20%) for the cpu_wkld workload

confirms the expectation that the cpu PC consists mostly of register-to-register instructions.

22

Table 4.4: MeasuredLSIRs for SomeWorkloads

Name

cpu_wkld

Composition

% cpu, l,,,_ mem]% io
100 0 0

0

Load-Store

%
0.20_,

mem_wkld 0 100 49.627c

io_wkld 0 0 100 9.23_,

E

A 20 0 80 5.85_

B 20 20 60 19.09_

C 20 40 40 28.44_

D 20 60 20 34.35_

41.08_20 80 0

The relatively high LSIR (49.62%) for the mem_wkld workload shows that the mem PC has

a much higher mix of instructions which access memory. The LSIR for the io_wkld workload

(9.23%) is not very high. The low LSIR can be explained by examining the programming

structures used to construct the three basic types of PCs. The cpu PC consists of many

arithmetic operations within a tight loop. Similarly, the mere PC performs memory accesses

within a tight loop. In contrast, the io PC performs system calls within a large switch()

statement and thus contains many nonload-store instructions to manage the control flow

within the switch() statement.

23

5. EXPERIMENTS

The following experiments were performed to show the relationship between performance

(represented by the workload) and dependability (represented by the error coverages and

fault latencies). In Section 5.1, the same fault (same fault type and location) is injected

many times into different workloads to show that the propagation path of a fault can be

altered just by changing the workload. Section 5.2 repeats the same experiments, but with

faults randomly injected into the entire workload.

All fault injections in this section are single-bit flip faults in the local processor memory.

Since the local memory is not parity-protected, single-bit flip faults will not be detected until

the faulted location is accessed.

5.1 Propagation Paths

In this section, a single fault is injected into different workloads to demonstrate that the

generated workloads affect the propagation paths of the faults. Two different fault scenarios

are presented.

24

5.1.1 Fault 1

In this example, five different workloads with varying amounts of the mem and io PC

are used. Each workload has one process.

Workloads:

Fault:

Results:

Workloads A-E. (See Section 4.1.).

Inject into mem PC text space. A reserved instruction exception is

generated, which results in an error detection when the interrupt is

presented to the voter.

Table 5.1 shows that as the mem PC is accessed more often, the mean

fault latencies decrease. This is as expected. Since the mem PC is

not used in workload A, the faults injected into it are not accessed

and therefore do not cause any error detections.

Table 5.1: Fault 1 Results

Workload Errors

Name Detected

A 2O 0 8O 0

B 20 20 60 100

C 20 40 4O 100

D 2O 6O 2O 100

E 20 8O 0 100

Composition

cpu] % mem I _ io
Faults

Injected

100

100

100

100

100

%
Detected

o %
100 %
100 %
100 %
lOO %

Latency

(sac)

2.40±0.73 l

0.97±0.21

0.49±0.13

0.20±0.05

5.1.2 Fault 2

A fault may be paged out if memory is being fully utilized. In this case, the page will

simply be invalidated if it is in text space. If it is in data space, then a dirty page will

be written to global memory, causing an error detection. In this experiment, the effect of

increasing process concurrency is investigated.

Workloads: Workloads F-J. (See Section 4.1.).

l All intervals in this thesis are 95% confidence intervals.

25

Fault:

Results:

Inject into cpu PC text space. A reserved instruction exception is

generated, which results in an error detection when the interrupt is

presented to the voter.

Table 5.2 shows the effects of a workload with multiple

concurrent processes. As the level of concurrency increases, the

number of faults that are paged out increases, thus decreasing the

overall error detection percentage. Also, the mean latency of the

faults increases initially because the injected location is accessed

less frequently due to contention for the CPU. However, as more

processes are added, longer latency faults are corrected by being paged

out.

Table 5.2: Fault 2 Results

Workload # Errors Faults Latency

secName Processes Detected Injected ()

F

G

H

I

J

1

2

3

5

10

150

150

140

106

61

150

150

150

150

150

% #
Detected Paged Out

100 % 0

100 % 0

93.3 % 10

70.7 % 44

40.7 % 89

3.46-+-0.79

6.75+ 1.28

8.00±1.84

6.374-1.59

2.23±0.93

5.2 Multiple Fault Results

The workloads from the'previous section are used again. However, instead of injecting the

same fault type and location, a random fault type and location are chosen for each injection.

The fault types are all single-bit flip faults, and the locations are selected from the active

regions of the workload text region. The active regions are the portions of memory that the

workload uses most often. Injections are confined to the active regions in order to increase

the probability of accessing an injected fault. If the fault location is chosen from the entire

26

workload text space,then error detection coverageswill be decreasedproportionately, and

fault latencieswould remainthe same.

5.2.1 Experiment 1: varying composition

In the first case,five workloads consistingof a gradually increasing amount of mem

and a decreasingamount of io are compared. A constant amount of cpu is used for all

workloads.2 The detection ratios and fault latency distributions are given in Table 5.3 and

Figures 5.1(a)-5.1(e), respectively.

Table 5.3: Detection Ratios

Workload Composition Errors Faults %
Name % cpu] % mem 1% io Detected Injected Detected

A 20 r0 80 137 352 38.9
B 20 20 60 160 346 46.2
C 20 40 40 185 347 53.3
D 20 60 20 174 353 49.2
E 20 80 0 162 350 46.3

Table 5.3 showsthat the highestdetectionratio occurswhenthe workload is most evenly

balanced among the three types of PCs. Since all components are evenly accessedin a

balancedworkload, the detection ratio is high. When the workload is unbalanced,certain

parts are less frequently accessed,which decreasesthe detection ratio. The range of the

detection ratios is not large, since fault injection is confined to the active regions. This

meansthat whenthe mere or io PC is not used,no faults will be injected into those areas.

If the samefault injection regionhad been usedfor all five workloads, then the detection

2Ifall threetypesofPCshadbeenvaried,thenit wouldhavebeenunclearwhichPCvariationhadcaused
thechangein results.

27

wm--

|_oo --

moo--

moo--

_loo --

..aoo --

.mm--

m

'um--

wm--

e_m--

xGmpu

I

+--

J

I
" t

I I

(a) Workload A

A_ I
• i
• i
• i
• i
• ium
m-i
mml
mml

-itl/
mmm_
mmmm _,, i
IIII lll_Im --a

a_

oR

"-I I

,. • • • _ _,_
oN--

am mm _l imm _m _m _w

(b) Workload B

xo .,,_

' n ' ni n i

I In
I I

I I I

• __i l l
• I l l l I

"® Ll _.d_ I I I
"®- mml3____ _J____

_m-- L

o® mm I_ imw i_ m_ _

(c) Workload C
XG_ xGr._

mo_--

y_m --

*3m --

'.s_ --

'mm--

moo--

s_m --

_m

• • T

I
m

m® I_ Zmlm lal lmw _

_lnw--]
_w-- "

uwm -- -- 1
I

nmu® -- -- [

I

mm-- 1

wuo-- [

low--)

_om-- [-- ---
_w-- ---

_®- mm _ I
0m--

ooi mm ,gum 1_® ueo .moo _oo

(e) Workload E(d) Workload D

Figure 5.1: Fault Latency Distributions

ratios for the unbalanced workloads (workloads A and E) would have been dramatically

smaller.

In Figures 5.1(a)-5.1(e), the fault latency distributions are given for the five workloads.

Examination of the distributions shows that the presence of the io PC produces a long tail.

The distribution for workload E contains no such tail. Furthermore, as the contribution of

the mere PC increases, the distributions shift to the left.

This phenomenon can be explained in two ways. First, since disk accesses are always

slower than memory accesses, the latencies for I/O-bound processes should be longer. An-

other reason for this effect is the control flow structure of each PC. The cpu and mem PCs

are both tight loops, in which the instructions in. the loops are executed many times. The

28

io PC is different. It consistsof a large switch statement that is executed inside a loop.

Most instructions in the io PC are located within the switch statement, which means that

those instructions are not executed each time through the loop. Thus, the time from when

the fault is injected to when it is accessed is longer if the io PC is used. The first access

time is the time between the time of fault injection and the first time the faulted location is

accessed by a read, write, or page out. The average first access time for all workloads is less

than 2 seconds.

5.2.2 Experiment 2: concurrent processes

In this experiment with multiple faults, the number of processes was varied from 1 to

10. Each process was composed of 20% cpu PC, 40% mem PC, and 40% io PC. Table 5.4

shows the error detection ratios, mean fault latencies and page-out rates for each workload.

There are some differences with single faults between the effects seen here and in Section 5.1.

In this experiment, the detection ratios are all lower since faults are injected into the entire

workload, which includes some locations that are seldom accessed. The mean latencies are

similar to those observed in Section 5.1.

The similarity to results observed with a single fault (Section 5.1) is that as the level

of process concurrency increases, the error detection ratio decreases, and the mean fault

latency increases. This is an expected result, since the time given to each process by the

CPU decreases as the number of processes increases. This results in a longer time to first

access and hence larger fault latency. Also, more faults are paged out as the number of

processes increases, thus decreasing the error detection ratio.

29

Table 5.4: Resultsfor Concurrent Processes

Workload
Name

#
Processes

Errors

Detected

Faults

Injected

%
Detected

Paged Out

%
o 0.0%

Mean Fault

Latency (sec)

F 1 108 229 47.2 3.79+2.99

G 2 114 234 48.7 0 0.0°_ 6.02+3.85

H 3 103 230 44.8 59 25.7(_ 7.85+1.86

82

9O

85

10

193

231

197

191

194

192

2O5

53

42.5 101 52.3°_ 9.60-t-3.95

39.0 128 55.4_ 7.99+5.43

43.2

27.8

106 53.8°_

132 69.1°_

5O

62

5.72+1.72

4.93+1.73

25.8 138 71.1_ 3.23+1.23

32.9 122 63.5_ 5.04+1.93

46 22.4 151 73.7°_ 4.74-t-1.83

3O

6. CONCLUSIONS

This thesispresentedastudy of the relationshipbetweenthe performanceand dependabil-

ity of fault-tolerant computers.To perform this study, a synthetic workload generator/fault

injector tool (FTAPE) was developed. FTAPE allowed the user under controlled condi-

tions to stressthe test machinein terms of both workloadsand fault injections. The hybrid

monitor-basedenvironment wasusedon the TandemIntegrity $2 computer to perform the

actual experiments.

Workload characterizationwasfirst performedto extract the performancecharacteristics

of a particular workload. Then faults were injected into those workloads to obtain the

dependability measures(error detection coverageand fault latency) for thoseworkloads.

Comparing the effectsof different workloads on the propagation path of a single fault

showedthat the workload could be generatedin a controllablemanner to affect the injected

fault. Injections into the entire workload showedthat balanced workloads have slightly

higher error detection ratios. It wasalsoshownthat the effect of increasingthe number of

concurrent processeshas two effects: (1) the mean fault latency initially increaseddue to

competition for the CPU and later decreaseddue to the paging out of long latency faults,

31

and (2) the error detectioncoveragedecreasedbecausesomefaults werepagedout, and thus

were correctedbeforepropagating.

There are many directions for future work. Perhapsa single compositemeasureof the

workload performancecan be used. The workload characterization can also be performed

after eachfault injection in order to better understand the effect of the fault on the perfor-

mance of the workload. The workload generator and the PCs it uses may be improved. The

fault injector can also be extended to inject into global memory, multiple processors, and the

I/O system. A long-term goal is to perform this study on another fault-tolerant architecture,

not only to measure the performance of the machines, but also to make a comparative study.

32

REFERENCES

[1] J. H. Barton et al., "Fault injection experiments using fiat," IEEE Transactions on

Computers, vol. 39, pp. 575-582, April 1990.

[2] D. Lomelino and R. Iyer, "Error propagation in a digital avionic processor: A simulation-

based study," Tech. Rep. NASA CR-176501, University of Illinois, Urbana, Illinois, 1986.

[3] G. S. Choi, R. K. Iyer, and V. A. Carreno, "Simulated fault injection: A methodology to

evaluate fault tolerant microprocessor architectures," IEEE Transactions on Reliability-

Special Issue on Experimental Evaluation, vol. 39, pp. 486-491, October 1990.

[4] G. S. Choi, R. K. Iyer, and V. Carreno, "Focus: An experimental environment for

fault sensitivity analysis," IEEE Transactions on Computers, vol. 41, pp. 1515-1526,

December t992.

[5] K. Goswami and R. Iyer, "Depend: A design environment for prediction and evaluation

of system dependability," in 9th Digital Avionics System Conference, October 1990.

[6] K. Goswami and R. Iyer, "A simulation-based study of a triple modular redundant

system using depend," in 5th International FTRS Conference, (Nuremberg, Germany),

September 1991.

[7] E. W. Czeck, On the Prediction of Fault Behavior Based on Workload, Ph.D., disser-

tation, Carnegie Mellon University, April 1991.

[8] R. Chillarege and R. K. Iyer, "Measurement-based analysis of error latency," IEEE

Transactions on Computers, vol. 36, pp. 529-537, May 1987.

[9] S. G. Mitra and R. K. Iyer, "Measurement-based analysis of multiple latent errors and

near-coincident fault discovery in a shared memory multiprocessor," in Proceedings 1988

International Conference on Parallel Processing, (St. Charles, Illinois), pp. 404-409,

August 1988.

[10] L. Young and R. Iyer, "Error latency measurements in symbolic architectures," in AIAA

Computing in Aerospace 8, (Baltimore, Maryland), pp. 786-794, October 1992.

[11] U. Gunneflo, J. Karlsson, and J. Rorrin, "Evaluation of error detection schemes using

fault injection by heavy-ion radiation," in Proceedings 19th International Symposium

on Fault-Tolerant Computing, (Chicago, Illinois), pp. 340-347, June 1989.

33

[12] J. Lala, "Fault detection, isolation, and reconfiguration in ftmp: Methods and ex-
perimental results," in Proceedings of the 5th AIAA/IEEE Digital Avionics Systems

Conference (DASC), pp. 21.3.1-21.3.9, 1983.

[13] K. G. Shin and Y. H. Lee, "Measurement and application of fault latency," IEEE

Transactions on Computers, vol. 35, pp. 370-375, April 1986.

[14] G. B. Finelli, "Characterization of fault recovery through fault injection on ftmp," IEEE

Transactions on Reliability, vol. 36, pp. 164-170, June 1987.

[15] J. Arlat et al., "Fault injection for dependability validation-a methodology and some ap-

plications," IEEE Transactions on Software Engineering, vol. 16, pp. 166-182, February

1990.

[16] Z. Segall et al., "Fiat-fault injection-based automated testing environment," in 18th

International Symposium on Fault-Tolerant Computing, pp. 102-107, 1988.

[17] G. Kanawati, N. Kanawati, and J. Abraham, "Ferrari: A fault and error automatic real-

time injector," in Proceedings of the $2nd International Symposium on Fault-Tolerant

Computing, (Boston, Massachusetts), 1992.

[18] L. Young et al., "Hybrid monitor assisted fault injection environment," in Proceedings of

the Third IFIP Working Conference on Dependable Computing for Critical Applications,

(Mondello, Sicily, Italy), pp. 163-174, September 1992.

[19] J. Ousterhout et al., "A trace-driven analysis of the unix 4.2 bsd file system," in Pro-

ceedings of the lOth ACM Symposium on Operating System Principles, pp. 15-24, 1985.

[20] G. Serazzi, Workload Characterization of Computer Systems and Computer Cetworks.

Amsterdam, Netherlands: Elsevier Science Publishing, 1986.

[21] J. H. Howard et al., "Scale and performance in a distributed file system," ACM Trans-

actions on Computer Systems, vol. 6, pp. 51-81, February 1988.

[22] D. Ferrari, "On the fot]ndations of artificial workload design," in Proceedings of the I984

A CM SIGMETRICS Conference on Measurement and Modeling of Computer Systems,

(Cambridge, Massachusetts), pp. 8-14, August 1984.

[23] W. Buchholz, "A synthetic job for measuring system performance," IBM Systems Jour-

nal, vol. 8, no. 4, pp. 309-318, 1969.

[24] D. C. Wood and E. H. Forman, "Throughput measurement using a synthetic job

stream," in AFIPS Conference Proceedings FJCC, vol. 39, pp. 51-56, 1971.

[25] K. Sreenivasan and A. J. Kleinman, "On the construction of a representative synthetic

workload," CACM, vol. 17, pp. 127-133, March 1974.

[26] D. Ferrari, "Workload characterization and selection in computer performance measure-

ment," Computer, vol. 5, July/August 1972."

34

[27] H. P. Artis, "Workload characterizationusing sasproc fastclus," in The International

Workshop on Workload Characterization of Computer Systems and Computer Networks,

(Pavia, Italy), pp. 21-32, October 1985.

[28] A. K. Agrawala, J. M. Mohr, and R. M. Bryant, "An approach to the workload charac-

terization problem," Computer, vol. 9, pp. 18-32, June 1976.

[29] E. W. Czeck, "Observations on the effects of fault manifestation as a function of work-

load," IEEE Transactions on Computers, vol. 41, pp. 559-566, May 1992.

[30] R. Iyer and D. Rossetti, "A measurement-based model for workload dependence of cpu

errors," [EEE Transactions on Computers, vol. 35, pp. 511-519, June 1986.

[31] W.-L. Kao, "An user-oriented synthetic workload generator," in I2th International Con-

ference on Distributed Computing Systems, May 1992.

[32] D. Jewett, "Integrity s2: A fault-tolerant unix platform," in 21st International Sympo-

sium on Fault-Tolerant Computing, (Montreal, Canada), pp. 512-519, June 1991.

