(NASA-CR-189293) SOFTWARE
MANAGEMENT ENVIRONMENT (SME)
CONCEPTS AND ARCHITECTURE, REVISION
1 (NASA. Goddard Space Flight

Center) 84 p

NG4-239727

Unclas

0004479

[

SOFTWARE ENGINEERING LABORATORY SERIES SEL-89-103

¢

l!"'r! '
iy g

1

A i1 i N

SOFTWARE MANAGEMENT
ENVIRONMENT (SME)

CONCEPTS AND ARCHITECTURE

| wilie

ane |

0

REVISION 1

el AR

SEPTEMBER 1992

L (sl I 1434

NNS

= National Aeronautics and

= Space Administration

= Goddard Space Flight Center
= Greenbelt, Maryland 20771

gl

Ul

i e A

('

411

w4l &

f

S

M (4

L LN

€

L (i

v

 [ihiond

L (el

1z

e

!

Tl

Ll

e

o

e

PRECEDING Par,

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the
National Aeronautics and Space Administration/Goddard Space Flight Center
(NASA/GSFC) and created to investigate the effectiveness of software engineering
technologies when applied to the development of applications software. The SEL was
created in 1976 and has three primary organizational members:

NASA/GSFC, Software Engineering Branch
University of Maryland, Department of Computer Science
Computer Sciences Corporation, Software Engineering Operation

The goals of the SEL are (1) to understand the software development process in the
GSFC environment; (2) to measure the effect of various methodologies, tools, and
models on this process; and (3) to identify and then to apply successful development
practices. The activities, findings, and recommendations of the SEL are recorded in the
Software Engineering Laboratory Series, a continuing series of reports that includes
this document.

The original version of the Software Management Environment (SME) Concepts and Ar-
chitecture was published in August 1989. This new edition contains updated material
and constitutes a major revision to the 1989 version.

The major contributors to the original document are

William Decker (Computer Sciences Corporation)
Jon Valett (NASA/GSFC)

The major contributors to this version are

Robert Hendrick (Computer Sciences Corporation)
David Kistler (Computer Sciences Corporation)
Jon Valett (NASA/GSFC)

Single copies' of this document can be obtained by writing to

Software Engineering Branch
Code 552

Goddard Space Flight Center
Greenbelt, Maryland 20771

E BLANK NOT Fiipirn
iii

10001966

1 1l o T A o

“
o
N
)
o
e
"
H

- ABSTRACT

= This document presents the concepts and architecture of the Software Management

= Environment (SME), developed for the Software Engineering Branch (Code 552) of

the Flight Dynamics Division (FDD) of the Goddard Space Flight Center (GSFC). The

i SME provides an integrated set of experience-based management tools that can assist

- software development managers in managing and planning flight dynamics software
. development projects. This document provides a high-level description of the types of

f S information required to implement such an automated management tool, and it pres-

= ents an architectural framework in which a set of management services can be

L provided.

~ This document is a major revision of SEL-89-003.

Ed

o

§

=

=

' PRECEDING PAGE BLANK NOT FILMED

=~ A4

E 10001968 '

=1 pace) Y INTENTIONALLY BLANK

Bl MmN N jiwEe gms (EES iR MR (Ome (NP W (e DMRUR O MR (M PR U0 AR

?
%
*

o

.o

S

4

g i

Al

Ll]

i

e

mE s

Table of Contents
Section 1—Introduction oottt it 1-1
Section 2—CONCEPLSovvvvviviiiirreiiiieit i 2-1
2.1 Management Activities TR 2-1
22 The SEL Environmentandthe SME0t 2-2
221 The SEL Databasecooiiiiiieniiaanennn 2-2
222 SELResearchResultscooiveinenennne. 2-2
223 SEL Management Experiencec0euuee 2-3
2.3 SMEFUNCLONS ... ovvverenrnrerrnnnsnaessrenrenasassennss 2-4
231 Observationo vteiniivinnenerennenssannes 2-4
232 Comparisonovvvvrirenneeerenerecnenannns 24
233 Predictionccovviiiieinirnenennaananenenns 2-6
234 Analysisot 2-6
235 ASSESSIMENEvvveereirerinnrnreerrroaaaarnons 2-8
2.3.6 Planningccovvieiiinnnenennneoencnernnnn, 2-8
2.3.7 Controloiiiiiii i et e 2-8
24 Concept SUMMATY . ..ovvveiiinnrernnntsssersiannnntsernns 2-8
Section 3—Architecturecoiiiiiiiiiiiii it 3-1
3.1 Data Architectureccciiiiiniinrreriennnensrsoenes 31
311 Data From the SEL Database 3-2
312 DataFromResearchccoviiniiinens 3-15
313 Rules of Managing Software Development 3-26
314 Data From the Managerccceveiinnnnn, 3-31

PRECEDING PAGE BLANK N‘OT FILMED
10001968 3! L INTENTIONALLY B BLANK

Table of Contents (Cont’d)

32 Functional Architecturevvvuninnnnnennnnn. V... 335
321 The SMEExecutivecovvvviinneieiinnnnnnn. 3-35
322 MODItOTINGovivrtriviinnniinneennnneenenonns 3-37
323 Overall Assessmentooovvevvennennnnennsss 3-41
3.24 Planningccoviiiiiiiiiiiiiiiiii i, 3-42
3.25 Guidancec.viiiiiiiii i e e 3-44
33 Hardware Architectureovieiiiiiiiienieerennnneans 3-44
References

Standard Bibliography of SEL Literature

10001966

viii

o wmin w4

Al

Wi

i

Al

Jung

i

1l

LELL]
[

¢

NELLN
I

LA

ilp

1

i

|
o

it

0z

N

g

L[

4[]

A

]

il [

|

List of ITlustrations
Figure
2-1 Observation Displaycovvevviiiaiiineniiiiaen, 2-5
22 Comparison Display—Completed Project 2-5
2-3 Comparison Display—Model/Guidelines 2-6
24 Prediction Displayccovveiiiiiiiiniererensanns 2-7
2-5 Analysis Display—Trendscoiviiiiiiennenann. 2-7
2-6 Analysis Display—Profilesooiiiiin 2-9
2-7 Assessment Display—Overall0o0onett 2-9
2-8 Guidance Displayccoviiiiiiiiiiiiiiiiiiii 2-10
29 SME Information Flowcooiviiiiiiinnnnns, 2-11
2-10 Management Activities and SME Functional Groups e 2-12
3-1 DataElementsccoiiiiiiiiiniiiiaiinnnanaanssss 31
3-2 Project Listccvviinnminiiiiiiiiiiiiinnienanneanss 3-3
3-3 Measure Listoovvete P 3-4
3-4 Profile Listcccvuieiiiiiiiiiiiiiiiniirirananenes 3-5
3-5 Project/Measure Availability List 3-6
3-6 Project/Profile Availability List, 3-7
3-7 Measure Datacooievniiiiiiniineinnnnnnnnnaaanesss 3-9
3-8 Profile Dataccoviiiiiiiiiiiiieinnnnnannenonns 3-11
39 CurrentScheduleccoiiiiiiiiiiiiiiininnennn, 3-13
3-10 Current Estimatesccoeiiiiiiiiiinninnannanenns 313
3-11 Project Characteristicsccooiviiiiiniiiinneenss 3-14
3-12 Tabular Models—Measuresccoeeieeinean, 3-18
3-13 Tabular Models—Profilesl 3-20
ix
10001966

List of Illustrations (Cont’d)

3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25

10001968

Tabular Models—Schedules 0Lt 3-21
Analytical Models—Estimate Sets 3-22
Analytical Modelé—Estimating Relationships 3-23
Attribute Definitionscocoiiiiiiiiii i, 3-25
Knowledge Basec.oiiviiiiiiiiiieienrananenn. 3-30
RuleBaseccoviiiiiiiiiiiiiiiiiiiiiiiii i, 3-31
Alternative Schedulesccoiiiiiiiiin . 3-33
Alternative Estimatesccvevueneenrreenennnnnns 3-33
Phase Estimatesccoiiiiiiiiiiieiiiiiinnnnn.. 3-34
Subjective Data...........coiiiiiiiiiiiiiiiniiiiiine. 3-36
SME Functional Architecture 3-37
SME Hardware Architecturecvvenn.. 3-45
) ¢

N TR

am

[11—

W' e wal wed oemor o@mn wml

[

1

il

W G

ORI QW AR Gt wmn

CHUFTHI 1A YT]

SECTION 1—INTRODUCTION

The Software Management Environment (SME) is an automated management tool
being developed under the sponsorship of the Software Engineering Laboratory (SEL)
at the National Aeronautics and Space Administration/Goddard Space Flight Center
(NASA/GSFC) The tool is intended to assist managers of software development proj-
ects in the GSFC flight dynamics environment with their day-to-day management and
planning activities.

The SME is unique in that it incorporates the organizational experience gained from
past development projects—the data, the research results, and the knowledge of expe-
rienced software managers—and makes that experience available to managers of cur-
rent projects. The SME does this through an integrated set of graphically oriented
features that enable the software manager to compare an ongoing development effort
with previous efforts and with models of typical projects in the environment, to predict
future project status, to analyze a project’s strengths and weaknesses, to examine “what
if” scenarios by varying a project’s plan, and to assess the project’s quality relative to
previous efforts.

The experience encapsulated and packaged within the SME takes the form of software
process and product measures, relationships that characterize the local GSFC environ-
ment, models of how various measures can be expected to behave in the environment,
and management rules of thumb that capture the conventional wisdom of experienced
managers in the environment.

This concept of packaging experience underlies one of the major activities in which the
SEL engages. Established in 1976, the SEL performs software engineering research
within the context of the GSFC flight dynamics application environment (Reference 1).
Its organizational members include NASA/GSFC, Computer Sciences Corporation,
and the University of Maryland. The SELs goals are to support continual process im-
provement by characterizing and understanding the development process and, in a con-
trolled, iterative fashion, introducing improvements into that process and measuring
their impact.

To achieve these goals, the SEL measures the development process and products, ana-
lyzes the measurement data to characterize and understand the environment, and per-
forms experiments to determine the impact and feasibility of introducing new
technologies or methodologies into the process. Once a candidate improvement has
been deemed beneficial, it is tailored for the local environment and packaged for inser-
tion into the standard processes employed by software developers and managers. These
activities map directly to the stages of a theoretical framework for modeling software
process improvement known as the experience factory (Reference 2).

The idea of developing the SME to package the SELs experience base in an integrated
tool for managers originated in 1984. From 1984 through 1987, the basic concepts of the

1-1
10001966

tool and the architecture to support them were investigated and refined by a series of
prototypes. In late 1986, these initial efforts were thoroughly analyzed and require-
mentswere developed for a more complete software system (Reference 3).Basedonan
analysis of these prototypes, work began on the current version of the SME. Subse-
quently, this version became a testbed for explormg the feasibility of implementing the
additional management functions envisioned in the initial concept for the tool.

Now that the tool has matured to the level where most of the original concepts have
been implemented, hence proven feasible, the SME can serve as a model for the devel-
opment of similar tools in other environments. Although the SME as implemented by
the SEL reflects measures, models, and rules that apply specifically to the GSFC flight
dynamics environment, the underlying concepts can be exported to other software de-
velopment organizations that wish to build similar tools for their environment.

This document is intended to introduce the SME to individuals and organizations inter-
ested in understanding or in 1mplementmg a measurement-oriented, integrated man-
agement tool that is based on local experience. It describes the concepts behind the
major components of the SME and outlines the architecture of the system asit hasbeen
implemented in the SEL. The remainder of the document is organized as follows:

e Section 2 describes a model of management activities on which the SME is
based, introduces SEL data that can support those activities, and summarizes
the functions that the SME provides.

e Section 3 presents the architecture of the SME and describes the structure of
the data, functions, and hardware.

10001966 wETTiLaI

1 41 n 1] (

il

ik

[l

au

A |

i

~r

amn

ol

"
¥

gl

GIE|

@

110

L

o

e A GON A entr A

SECTION 2—CONCEPTS

This section presents the high-level concepts required for a basic understanding of the
SME. The concepts discussed below relate to three major areas: a set of key manage-
ment activities that the SME must address to be an effective management tool, the data
available in the SEL environment that a comprehensive SME can use as an experience
base to support these key activities, and an overview of the SME functions designed to
help managers perform those activities. A concept summary provided at the end of this
section illustrates (1) how information is used in the SME and (2) how the manager’s
activities are mapped into SME functions.

2.1 MANAGEMENT ACTIVITIES

The SME operates under the assumption of a certain pattern, or model, of the way
managers do things. The model reflects a software development project managed in a
well-defined management environment. The activities described below are carried out
to varying levels of detail, depending on factors such as the size of the project, its criti-
cality, or its current status.

Observation: The manager monitors the progress of the project by tracking several key -
dynamic parameters (such as weekly effort, lines of code, or software changes) and
combinations of those parameters (such as lines of code per hour or reported errors per
line of code). The parameters tracked by the manager typically reflect performance.
This is the foundation on which the other activities are based.

Comparison: The manager uses archived data from completed projects (or nominal
performance guidelines) as references to judge the progress and health of the current
project.

Prediction: The manager extrapolates from the current project status toward project
completion to estimate schedules, costs at completion, product size, and other parame-
ters of interest.

Analysis: The manager examines the observations and applies subjective information
about the project to identify the probable causes of any deviations from nominal perfor-

- mance guidelines.

Assessment: The manager weighs all the information about the project to form a judg-
ment of the project’s quality and productivity.

Planning: The manager reevaluates and modifies the project plan as needed. This in-
volves periodically updating or refining the current project schedule and estimates dur-
ing the development life cycle. =~

Control: The manager decides on a course of action and modifies the activities occur-
ring on the project. This involves initiating corrective actions in response to any recog-
nized problems and taking steps to improve or enhance the development process.

2-1
10001966

2.2 THE SEL ENVIRONMENT AND THE SME

The SME integrates the experience gained from past projects with current measure-
ment activities to provide the manager with a wide variety of information for monitor-
ing and controlling an ongoing software project. The information required to provide
this functionality can be divided into three major components: a repository of data col-
lected from software development projects, research results from studies of the soft-
ware development process, and management rules for software development. The
availability of these data in the SEL makes a comprehensive SME possible.

2.2.1 The SEL Database

One underlying assumption of the SME is the existence of an organized, consistent pro-
cess for collecting software development data and storing those data for subsequent
use. In this environment, the SEL database serves as a central repository of information
‘on ongoing, as well as completed, projects (References 4 and 5). The establishment of

such a repository forms the foundation for all measurement and improvement activi-
ties. The SEL database, which has evolved into its current form over the years of its exis-
tence, provides the SME with the raw data required to observe a project’s behavior.

The major items of data provided to the SME by the database are SEL measurements
of software parameters that are of interest to the software manager. These include such
parameters as the following:

e Effort data (technical, management)
. Compufe;; r;gurce usage [central proceésing unit (CPU), jobs]
® Software changes

® Software errors

® Product size [lines of code (LOC), modules]

Many of the other data items needed by the SME are also acquired from the SEL data-
base. These include objective data, such as the project’s application or the languages
and tools used; subjective data, which evaluate projects on a series of software method-
ology questions; and planning data (schedules and estimates), which are supplied to the
SEL by the manager.

These items, and others, are available for currently active projects and for the past proj-
ects that a manager may want to use as a basis for comparison.

2.2.2 SEL Research Results

A second major component of the SME is the research results from studies of the soft-

2-2
10001966

i 41 a ' ow

1}

0
“
|

w & ' 8 o« o0 g ([T i

{1

DY

i

(o

Ui

€

i

L]

(T

¢

QL

WimE wmy o S

ware development process in the SEL environment. Information derived from studies
developed through experimentation and through analysis of the SEL database is a key
part of the SME (Reference 6). The SME incorporates these research results via specif-
ic models and relationships. Based on a comprehensive understanding of the software
development environment, these models and relationships are used by the SME to en-
able the manager to better understand how a particular project compares to the typical
project within the environment and to aid in predicting and estimating future condi-
tions on the software project.

A model describes the expenditure, utilization, or production of a software develop-
ment parameter as a function of time and can represent a guideline for managers to
follow while planning or observing a project. For example, a model of the staffing pro-
file would capture the typical expenditure of effort over the entire software develop-
ment life cycle (Reference 7). Another example of a useful guideline would be a model
of the growth of source code during a project.

A relationship describes the correlation between two or more software development
parameters at a specific point in time. Typically used in estimation, these relationships
can help managers estimate project completion values based on the known or esti-
mated values of other measures. For example, an equation that expresses total staff
hours as a function of lines of code may be used to estimate the effort required for a
project of a given snze

Other SEL research results capture data on the known effects of spemﬁc software de-
velopment methodologies. For example, one result states that code reading is the most
effective method for finding errors in this environment (Reference 8). These results
help identify and verify key software development rules that can augment management
experience.

223 SEL Management Exi)eﬁehce |

A final major component of the SME is a set of software development rules. The SME
attempts to integrate the experience of software managers into an expert system con-
cept to provide the ability to analyze project measures and status. Previously, this expe-
rience was captured only in “lessons learned” or summary documents. The SME
formalizes this knowledge into a basic structure that will continually evolve as the expe-
rience and knowledge are validated. By automating the knowledge utilization into an
expert system, the SME gives the manager the ability to analyze current pro;ects by ap-
plying past experience. The incorporation of this concept into the SME is a difficult
area of research; however, the basic concept of utilizing expert systems for software
management was proved feasible by SEL research (References 9 and 10).

The experienced manager’s knowledge can be used in many areas within the SME. Spe-
cific rules for software development have been collected from interviews with numer-
ous managers and from extensive research into the causes and effects of observed
deviations in the software development process. One such rule states the following:

2-3
10001966

If the reported error count is lower than normal, possible causes are
e Insufficient 7testing '
® Experienced team
® Problem less difficult than expectéd |

When applied with a set of similar rules to the measures and status of the software proj-
ect, the SME can reach conclusions pertaining to deviating trends in project measures,
such as a higher (or lower) than normal count of errors. The analysis can also be ex-
tended to the overall project to diagnose project problems and suggest actions for cor-
recting those problems.

The functionality of the SME extends to each area of a manager’s activities. A brief de-
scription of the way the SME addresses each area of activity is given below. Detailed
descriptions of these processes and the data required to support them are presented in
Section3. - — : : :

231

The observation function displays project data for measures of interest such as effort,
LOC, or CPU utilization. The cumulative plot of a particular measure is maintained as
a backdrop against which other SME functions display their results. This function gives
the manager an overall view of how each measure is growing: it reveals trends and em-
phasizes the importance of estimates of completion values. Figure 2-1 shows the SME
display after the manager selects a project and measure of interest. The observation
function makes direct use of the regularly collected SEL data.

dﬁservation

The observation function can also display project data for the ratio of any two such mea-
sures. This allows managers to view an extended set of measures such as LOC per hour
(coding productivity) and reported errors per LOC (error density). Using a ratio of two
measures as the measure of interest facilitates the examination of multiple projects by
minimizing the effects of project size. '

23.2 Comparison

“The comparison functfoﬁd]gpiays either archived data from the SEL database for com-

pleted projects or guidelines derived from models of the selected measure for a normal
project. By overlaying comparison data on top of the observational plot, this function
gives the manager the information needed to judge a project’s behavior in the context of
a specific previous project or of a “typical” project. Figure 2-2 shows a comparison of
the number of errors on a current project with the number of errors on a past project.
Figure 2-3 shows a comparison of the number of errors on a current project with the
development environment’s guidelines for error count growth.

2-4
10001968

&N &0 wp @ w8

] T K

T

(

L

i

™t
|

R ¥

]i;l

G

|

NN G

"
I

Il

A aEG AW g

i

WE e

wiwm - eman

ERRORS FOR PROJECT_A
CODE AND UNIT | SYSTEM | ACCEPTANCE
DESIGN TEST TEST TEST
525 PROJECTED
ERROR COUNT
450 |-
CUMULATIVE
ERROR 300 |-
COUNT
150 |~
PROJECT TIME PROJECT
START END
Figure 2-1. Observation Display
ERRORS FOR PROJECT_A
CODE AND SYSTEM | ACCEPTANCE
DESIGN UNIT TEST TEST TEST
p======| 525 PROJECTED
ERROR COUNT
450
CUMULATIVE
ERROR 300
COUNT
150
PROJECT TIME PROJECT
START END

Figure 2-2. Comparlsbn Dlsplay—Completed Project

10001966

2-5

ERRORS FOR PROJECT_A

CODE AND SYSTEM | ACCEPTANCE

UNIT TEST TEST TEST

s wme==] 525 PROJECTED
ERROR CURVE

DESIGN

s e — — — —— — — — — v cv— ——

KEY
GUIDELINES
450 || === = MODEL

CUMULATIVE
ERROR 300
COUNT
150 1~

PROJECT TIME PROJECT
START END

Figure 2-3. Comparison Display—Model/Guldelines

2.3.3 Prediction

The prediction function produces a oompletlon estlmate for a measure of mterest

extends the observational plot of the measure’s growth to pro; ject completlon giving the
manager a view of the project’s probable future behavior. For example, knowing the
current phase and count of errors for a project enables the SME to use an error growth
model to predict the final error count for the system (Figure 2-4). These estimates of
completion values are invaluable to the manager in planning and controllmg asoftware

project.

2.3.4 Analysis

The analysis function helps managers analyze the current value for the measure of in-
terest using two distinct methods—trend analysis and profile analysis.

~ Trend analysis compares the current value of a selected measure to the model of the
measure and reaches conclusions that help explain any deviations from the norm. Al-
though the analysis is focused on the measure of i mterest, the function interprets a wide
range of current project data according to the reasoning captured in a set of manage-
“ment rules as a basis for reaching any conclusion. The reasons appear against the back-
drop of the cumulative plot for the deviating measure. Flgure 2-5 shows the display of a

list of probable causes for a lower-than-expected trend in the growth of errors.

2-6
10001966

g w1 €0 ¢

" | I« .
W em ® S A | |

alimy

AN

iy

e
]

{

"
L

{

,‘,,“
Vil

[}
[

Rl

Gl |

LI

i [T

L]

Rl AN MR WM GE Wl il Gm

L

][]

ERRORS FOR PROJECT_A
CODE AND UNIT | SYSTEM | ACCEPTANCE
KEY 525
«s0 |- |~ PREDICTED GROWTH
__——-1 420 SME’s PREDICTED
CUMULATIVE 3- ERROR COUNT
ERROR 300 |- ~
COUNT -
150 |-
PROJECT TIME PROJECT
START END
Figure 2-4. Prediction Display
ERRORS FOR PROJECT_A
CODE AND SYSTEM | ACCEPTANCE
DESIGN UNIT TEST TEST TEST
KEY aaimnome) 525 PROJECTED
GUIDELINES ERROR CURVE
450 [~ e == MODEL
CUMULATIVE
ERROR 300
COUNT ERRORS BELOW
NORMAL BECAUSE:
150 1. INADEQUATE TESTING
2. EXPERIENCED TEAM
PROJECT TIME PROJECT
START END
Figure 2-5. Analysls Display—Trends
2-7
10001966

Profile analysis displays a detailed breakdown of the current value of a selected mea-
sure into discrete categories that constitute a profile. Since more than one profile may
be associated with each measure, the manager may view the data in several different
ways. Figure 2-6 shows a profile dlsplay of reported errors based on the effort required
to isolate each error.

23.5 Assessment

The assessment function presents the results of an overall project assessment that eval-
uates high-level quality attributes such as maintainability, correctability, and reliabil-
ity. The function looks at current project data to compute a relative value for each
attribute based on algorithms that define the objective measures to be factored into the
calculation. Figure 2-7 shows the results of an assessment of overall project quality at-

tributes with respect to a typical project in the environment.

23.6 Planning

The planning function helps managers reevaluate and modify the plan for the project of
interest. The function allows managers to create and update alternative schedules and
completion estimates with values input via an editor or with values derived from models
of typical projects. Use of these alternative plans lets the manager see “what if” some
aspect of the plan is changed.

2.3.7 Control

The SME assists managers in controlling project activities by providing guidance on
how to correct possible weaknesses in a project. The guidance function examines the
problems detected through analysis and assessment, searches for common factors, and
suggests solutions based on changing the factors. Figure 2-8 shows the display of sug-
gested actions for correcting an anticipated problem with software reliability as indi-
cated by a higher-than-expected number of reported errors.

24 CONCEPTSUMMARY -

Two views of the SME concept summarize the mformatmn presented thus far: (1) how
information is used in the SME and (2) how the manager’s activities are mapped into
SME functions. These two views are presented in Figures 2-9 and 2-10, respectively.

Figure 2-9 summarizes the information flow in the SME and forms the basis for the
data architecture presented in Section 3.1. The key importance of SEL data, research
results, and management experience is clear.

Figure 2-10 summarizes the manager’s activities and indicates how they can be grouped
into four major SME functions: monitoring, assessment, planning, and guidance. This
grouping serves as foundation for the functional architecture discussed in Section 3.2.

2-8
10001966

o wi ¢

& W s 4@ eW mm W Ar

R

i

L | U 1F

(

pim
[

I

{

Gl i

dm

T

1
i

L]

LT

m

Qany

“EFFORT TO ISOLATE ERRORS" FOR PROJECT_A

1 HOUR OR LESS

1 DAY TO 1 HOUR

3 DAYS TO 1 DAY

MORE THAN 3 DAYS

UNKNOWN

0 20 40 60
% OF PROJECTED ERROR COUNT

Figure 2-6. Analysis Display—Profiles

OVERALL ASSESSMENT FOR PROJECT_A

HIGH

RELIABILITY MAINTAINABILITY CORRECTABILITY

Figure 2-7. Assessment Display—Overall

10001966

ERRORS FOR PROJECT A
CODEAND | SYSTEM | ACCEPTANCE
DESIGN UNIT TEST TEST TEST
KEY awiwsiwmmm=| 525 PROJECTED
GUIDELINES o ERROR CURVE

450 || == = MODEL

CUMULATIVE 300
ERROR ~—
COUNT TS ety
SHOULD:
150 1. MPROVE CODE READING
2 TIGHTEN CONRIGURATION
CONTROL
_ 1
PROJECT TIME PROJECT
START END
Figure 2-8. Guidance Display
2-10
10001966

il I [F A |

TN TR S I RN N) i 1 [

(7

H

I e
i

"
|
T

L |

i

O |

L {1l

AR

o

gl gmen vmE Cime (BEG MOE Q0§

Qi

0 i

"
]

Qb

PROJECT DATA

SEL
RESEARCH
RESULTS

SEL
MANAGEMENT

EXPERIENCE

CHANGES

PROJECT PLANS
SUBJECTIVE DATA

OBJECTIVE
MEASUREMENTS
PROJECT
CHARACTERISTICS
PROJECT PLANS
SUBJECTIVE DATA
MODELS AND SME
RELATIONSHIPS OBSERVE
MEASURE MODELS > COMPARE
SCHEDULE MODELS PREDICT
ESTIMATION MODELS ANALYZE
AND RELATIONSHIPS ASSESS
PLAN
CONTROL
KNOWLEDGE BASE
MANAGEMENT RULES
CORRECTIVE ACTIONS

10001966

Figure 2-9. SME Information Flow

2-11

SME FUNCTIONAL GROUPS
ST | v .
MONITOR- | AgSESS- | PLANNING | GUIDANCE
OBSERVATION OBSERVATION X
COMPARISON COMPARISON TO OLD
PROJECT X
COMPARISON TO MODEL X
PREDICTION PREDICTION X
ANALYSIS ANALYSIS OF TREND OF
MEASURE
ANALYSIS OF PROFILE OF
MEASURE
ASSESSMENT ASSESSMENT OF OVERALL
PROJECT X
PLANNING ESTIMATING X
SCHEDULING X
CONTROL “GUIDANCE X

10001966

2-12

Figure 2-10. Management Acth)lties and SME Functional Groups

[+

i

wEo CGE Qi eI e Cr

A

lnﬁlmﬂm:

@

o i

Qi

i

N IR

QUi

o

el

LY

SECTION 3—ARCHITECTURE

This section presents a description of the high-level structure of the SME. The SME
structure is influenced by three factors: the types and sources of data used by the system,
the organization and partitioning of the functions performed by the SME, and the dis-
tribution of the data and functionality among the hardware components available to the
SME. Each of these factors will be discussed below as the data architecture, functional
architecture, and hardware architecture, respectively.

3.1 DATA ARCHITECTURE

The data architecture is a description of the source, content, and usage of the data ele-
ments required by the SME. The majority of the data elements are drawn from the SEL
environment, as described in Section 2.2. Figure 3-1 shows the data elements used by
the SME, grouped by source.

SOURCE DATA ELEMENT

SEL DATABASE PROJECT UIST

MEASURE LIST

PROFILE UST

PROJECT/MEASURE AVAILABILITY LIST
PROJECT/PROFILE AVAILABILITY LIST
MEASURE DATA

PROFILE DATA

CURRENT SCHEDULE

CURRENT ESTIMATES

PROJECT CHARACTERISTICS

SEL RESEARCH TABULAR MODELS
ANALYTICAL MODELS
ATTRIBUTE DEFINITIONS

SEL EXPERIENCE KNOWLEDGE BASE
RULE BASE

MANAGERS USING SME ALTERNATIVE SCHEDULES
ALTERNATIVE ESTIMATES
PHASE ESTIMATES
SUBJECTIVE DATA

Figure 3-1. Data Elements

The individual data elements are discussed in detail below. They are presented in four
main groups corresponding to the sources shown in Figure 3-1. The discussions of the
data elements in each group are preceded by an introduction to the characteristics of
the source in the SEL environment from which they are drawn.

3-1
10001966

The discussion of each element includes a description of which SME functions use the
data, the source of the data, the data structure, and the number of occurrences of the
data element. For simplicity, the structure of the data is described in terms of tables
with rows and columns; the tables may be implemented as disk files, database tables, or
internal memory structures. Many of the tables are interrelated and contain implied

pointers to other tables.

3.1.1 Data From the SEL Database

One source for the SME is the data collected as part of the SEL database. In order to
analyze ongoing software development efforts, the SME requires up-to-date informa-
tion on the key dynamic parameters that characterize the software development pro-
cess. The SEL database contains measures of awide spectrum of process characteristics
such as software changes and errors, effort expenditure, computer usage, and software
product growth. Furthermore, the SEL database is the empirical basis for the other
data used by the SME. Without the database, the models and relationships (Sec-
tion 3.1.2) and the software management rules (Section 3.1.3) could not be derived or
validated. Thus, a repository of collected data like the SEL database is critical to the

development and structure of the SME.

Over the years, the SEL has collected data on nearly 100 software development projects
in this environment. The types of data collected range from a weekly accounting of ef-
fort and computer utilization to statistics characterizing a completed project. These
data are collected by means of forms, interviews, and automatic collection tools. Refer-
ence 5 contains a complete description of the data collection procedures. After the data
are collected they are quality assured and entered into the SEL database, which resides
under a database management system on a DEC VAX computer. By keeping archived
historical information on completed projects as well as project information on ongoing
development efforts, the database provides a rich source of software development data
for this environment. References 1, 4, 5, and 11 contain more information on the SEL

database.

The following subsections describe 10 types of data that the SME obtains from the SEL
database. The first five types discussed (project list, measure list, profile list, project/
measure availability list, and project/profile availability list) are used by the SME to
identify and locate the project data available to it; these five types are often referred to
in the discussions of the other types. The remaining five data types obtained from the
SEL database (measure and profile data, current schedules and estimates, and project
characteristics) contain project-specific data for each project.

3-2

10001966

i - q

]

[

a1

ul

a4 e«

iy« o ww w

|

€I

3.1.1.1 PROJECT LIST

(10

The project list identifies the names of all projects available for access through the
SME. '

= In the SEL environment, the development effort for a single software productiscalleda
B project. The project serves as the basic entity about which the SEL collects data. All
= information stored in the SEL database is associated with a project.
= it

The project list contains the names of ongoing and completed projects for which data
E are available. The SME presents this list to the manager for selection of a project to
= investigate. The SME uses the selected project name to point to the data that describe
N the development effort. The selected project is considered the project of interest.
= Used by: SME executive o
o Source: SEL database 7
= Structure: Table with one column (project name)
Instances: There is one project list table.
=
B Example: Figure 3-2 shows a sample list of project names.
PROJECT
= PROJECT_A
= PROJECT_B

PROJECT_C

e Figure 3-2. Project List
g
=
%
=

10001966

G

3.1.1.2 MEASURE LIST
The measure list identifies the types of measure data defined for the SME. -
The measure list is a key piece of data for the SME. The list contains the subset of SEL

measurement data types that the SME is prepared to use. The presence of ameasure in
this list has 1mphcatlons beyond the fact that the data are collected in the SEL. The
presence of a measure in the measure list also means that (1) the SME has some way of
helping the manager estimate the value of the measure at the end of the project,

(2) there are research results that describe how the measure is expected to grow during
the project, and (3) there are software development management rules that help ex-

plain the causes of deviations in a measure from expected values.

The measure list also indicates that the SME has precisely defined how to extract the
data from the SEL database. For some measure types the SME must select from among
several similar types of data in the SEL database (for example, there are at least two
ways to extract the count of software modules from the database). The definition used
by the SME is contained in the software that interfaces the SME and the SEL database.
Each of the three types of research results mentioned above (models, relationships, and

management rules) is based on studies that used data extracted according to these
definitions.

Used by: All SME functions

Source: Part of the SME implementation

Structure: Table w1th two columns (me;sere code, measure name)
Instances: There is one measure list.

Example: Figure 3-3 shows the current SME measure list.

MEASURE CODE MEASURE NAME

CPU CPUHOURS

EFF TOTAL STAFF HOURS
LOC LINES OF CODE

MCH MODULES CHANGED
MOD MODULE COUNT

RCH REPORTED CHANGES
RER REPORTED ERRORS
RUN COMPUTER JOBS

Figure 3-3. Measure List

10001968

all

{m

LG

|
|

I

)

3.1.1.3 PROFILE LIST

L)

g

Wi

The profile list identifies the types of profile data defined for the SME.

Each measure defined in the measure list (Section 3.1.1.2) may optionally have one or
more associated profiles. Each profile provides additional detailed information on its
related measure by capturing the breakdown of project data for the measure into dis-
crete categories.

As with measures, the presence of a profile in the list implies that (1) the SEL collects
the needed data, (2) the SME can estimate the values for the profile at the end of the
project, and (3) a model exists that describes how the profile is expected to change
during the project. The definition used by the SME in extracting the data is contained in
the software that interfaces the SME and the SEL database.

(il

L

GRI

LALR

Qe

L

i

V| iv

Ll

T

U

qinm

Used by: Profile analysis, overall assessment

Source: Part of the SME implementation

Structure: Table with three columns (measure code, profile code, profile name)

Instances: There is one profile list.

Example: Figure 3-4 shows a sample SME profile list.

MEASURE CODE PRORILE CODE PROFILE NAME
EFF EFFt EFFORT BY ACTIVITY
MOD MOD1 MODULES BY TYPE
MOD MOD2 MODULES BY PURPOSE
RCH RCH1 EFFORT TO ISOLATE CHANGE
RCH RCH2 EFFORT TO IMPLEMENT CHANGE
RER RERt EFFORT TO ISOLATE ERROR
RER RER2 EFFORT TO CORRECT ERROR

10001968

Figure 3-4. Profile List

35

3.1.14 PROJECT/MEASURE AVAILABILITY LIST

The project/measure availability 11st associates each prOJcct with the types of measure
7 7data available for it,

The data collection process may not be the same for all pro;ects A partxcu]ar type of
measure may not be collected for a specific project. The knowledge that data are not
collected is important to the SME because some SME functions might interpret a
missing data value (such as no reported software changes halfway through system test-
_ing) as an indication that a problem exists with the development process.

Used by: All SME functions™

Source: SEL database:-+=—= "+ -

Structure: Table with two columns (project name, measure name)
Instances: There is one prdject/measure availability list.”

Example: Figure 3-5 shows a sample project/measure availability list. Note that in the
sample, Project_A has no effort data available.

PROJECT MEASURE

PROJECT _A CPU
PROJECT _A RUN
PROJECT _A LoC
PROJECT _A MOD
PROJECT _A RCH
PROJECT _A MCH
PROJECT _A RER

PROJECT _B EFF

PROJECT _B LOC
PROJECT _B MOD
PROJECT _B RCH
PROJECT _B MCH
PROJECT _B RER

PROJECT _C EFF

PROJECT _C CPU
PROJECT _C RUN
PROJECT _C LoC
PROJECT _C MOD
PROJECT _C RCH
PROJECT _C MCH
PROJECT _C RER

Figure 3-5. Project/Measure Avallability List

3-6

10001966

L1l

L

o

e g NN e wmE GEDE CWD MER oo@d wamE @ e @I ome el

LI

i

3.1.1.5 PROJECT/PROFILE AVAILABILITY LIST

The project/profile availability list associates each project with the types of profile data
available for it.

As with measures, the data collection process may not be the same for all projects.
Specific projects may not collect profile data for a given measure; however, profile data
inherently cannot be collected without also collecting data for their related measure.
As a result, whenever an entry exists in the project/profile availability list for a given
profile, a corresponding entry must exist for its related measure in the project/measure
availability list (Section 3.1.1.4).

Used by: Profile analysis, overall assessment

Source: SEL database

Structure: Table with two columns (project name, profile code)
Instances: There is one project/profile availability list.

Example: Figure 3-6 shows a sample project/profile availability list. Note that in the
sample, Project_A has no profile data related to logical changes (RCH) and Project_C
has no profile data related to reported errors (RER).

PROJECT PROFILE
PROJECT_A RER1
PROJECT_A RER2
PROJECT_B EFF1
PROJECT_B RCH1
PROJECT_B RCH2
PROJECT_B RER1
PROJECT_B ~ RER2
PROJECT_C RCH1
PROJECT_C RCH2

Figure 3-6. Project/Profile Availability List

10001966

3.1.1.6 MEASURE DATA

Measure data represent an historical record of measurements of a dynamic parameter
over the project life cycle. -

Measure data capture the growth of a measure as a function of time (the méasures are
discussed in Section 3.1.1.2). The data begin at zero at the start of a project and the cu-

mulative value to date is recorded at the sampling frequency. The datastop at theend of

a project for completed projects and at the most recent sampling date for ongoing proj-
ects. The measure data for ongoing and completed prOJects are stored in the same way.

The data are referred to as “weekly data” in the SEL because this is the samplmg fre-
quency used in SEL data collection activities; other frequencies might be used in anoth-
er environment.

Used by: All SME functions
Source: SEL database

Structure: Table with two columns (date of sample cumulatlve measure)

Instances There 1sﬁ We table with measure data for each prolect/measure pair in the
project/measure availability list.

Example: Figure 3-7 shows how the project/measure availability list points to each of

the measure data tables. Each data table contains the series of camulative measure val- -

ues for one measure type for one project.

10001966

[ur o q @ Qi Wl el @T W0 W

=

=
%
= L oEeTMEASURE ﬂ| DATE OF CUMULATIVE
= PROJECT/MEASURE
= = (FROM FIGURE 3-5) | SAMPLE MEASURE
| PROJECT MEASURE : 88-01-30 0.0
— ' 88-02-08 0.0
= : PROJECT _A cpuﬁ 88-02-13 0.12 HOURS
= | ' v 88-02-20 0.19 HOURS
= | . PROECTA . RER . || seoeer 0.32 HOURS
= | PROJECT _B EFF 88-03-05 0.50 HOURS
= | PROJECT _B Loc
l ® [2
= | hd o ' DATE OF CUMULATIVE
= | . . I SAMPLE MEASURE
- | PROJECT _C RER |
| | 87-05-02 ()}
e e e e e e e J 87-05-00 0
87-05-16 0
DATE OF CUMULATIVE .]
. SAMPLE MEASURE . .
= 85-03-23 0 N °
- 85.03.30 0 88-02-13 58237 LINES
_ 850406 0 88-02-20 58395 LINES
. . 88-02-27 58395 LINES
= o . 88-03-05 69037 LINES
o [J [J
% 87-09-05 105 ERRORS
= 87-00-12 108 ERRORS
87-09-19 108 ERRORS
= 87-09-26 109 ERRORS
=
= Figure 3-7. Measure Data
=
=]
%

3-9
10001966

=
-

3.1.1.7 PROFILE DATA

Profile data represent an historical record of measurements over the project life cycle
that detail the breakdown of a measure into discrete categories.

Profile data capture the growth of a measure over time as viewed in terms of the specific
components established for that profile (the profiles are discussed in Section 3.1.1.3).
For example, a profile of effort to isolate change (RCH1) categorizes the measure data
for reported changes (RCH) into five components based on the actual time expended in
isolating each change (1 hour or less, 1 hour tol day, 1dayto 3 days, more than 3 days,
or unknown).. - T , e

Aswith measure data, the data recorded for a profile begin at zero at the start of a proj-
ect and the cumulative values to date are recorded at the sampling frequency. Instead of
maintaining a single cumulative value for each samplmg date, however, several running
totals are kept with one value for each component in the profile. At every sample date,
the sum of the values of the profile components should equal the corresponding cumu-
lative value in its related measure data. The data stop at the end of a project for com-
pleted prOJects and at the most recent sampling date for ongoing projects. The profile

data for ongoing and completed projects are stored in the same way.
Used by: Profile analysis, overall assessment
Source: SEL database

Structure: Table with N+1 columns (date of sample, cumulative value for each compo-
nent), where N is the number of profile components

Instances: There is one table with profile data for each project/profile pair in the
project/profile availability list. ,

Example: Figure 3-8 shows how the prOJect/proﬁle availability list points to each of the
profile data tables. Each data table contains a series of cumulative values for each pro-
file component for one project.

3-10

10001966

U

Gin we wi -

o

e
FARET

ﬂ By
L (T

[

I

ol

fMI ﬂﬂIIM

g

gt

tian

i

|
PROJECT/PROFILE
|
l (FROM FIGURE 3-6)
I
: PROJECT PROFILE
| PROJECT_A RER1
| PROJECT A RER2
| | prouecT B EFF| ==
I | provecT B RCHA
: PROJECT_B RCH2
i PROJECT_B RER1
| PROJECT_B RER2
| PROJECT_C RCH1
| PROJECT_C
|

10001966

EFFORT BY REPORTED ACTWITY
DATE
OF SAMPLE
DESIGN CODE TEST OTHER
87-05-02 112 HOURS 0 0 31 HOURS
87-05-09 232 HOURS 15 HOURS 0 57 HOURS
87-05-16 348 HOURS 56 HOURS 0 88 HOURS
[] L 3 L] L] ®
® [] ® [] []
[] L] L] [] ®
88-02-13 3,445 HOURS | 4,688 HOURS | 2,458 HOURS | 648 HOURS
88-02-20 3,145 HOURS | 4,715HOURS | 2,532HOURS | 688 HOURS
88-02-27 3,145 HOURS | 4,746 HOURS | 2,583HOURS | 728 HOURS
88-03-05 3,145 HOURS | 4,746 HOURS | 2,583HOURS | 759 HOURS
EFFORT TO ISOLATE CHANGE
DATE
OF SAMPLE 1 HOUR OR 1 HOURTO 1 DAY TO MORE THAN 3
LESS 1 DAY 3 DAYS DAYS UNKNOWN
85-03-23 0 0 0 0 0
85-03-30 0 (] 0 () 0
85-04-06 0 (] 0 0]
. [] [. [3 .
. ® [] [] [) L]
. ® []] * .
87-09-05 81 CHANGES | 16 CHANGES | 7 CHANGES 1 CHANGE 0
87-08-12 83 CHANGES | 16 CHANGES | 8 CHANGES 1 CHANGE 0
§7-09-19 83 CHANGES | 17 CHANGES | 8 CHANGES 1 CHANGE 0
87-09-26 83 CHANGES | 17 CHANGES | 8CHANGES 1 CHANGE]
Figure 3-8. Profile Data
3-11

3.1.1.8 CURRENT SCHEDULE
The current schedule refers to a project’s schedule.

A schedule is a list of development phases and the start and end dates for each phase.
The “current” schedule is obtained from the manager through the SEL database and is
used by SME functions unless the manager selects an alternative schedule (Sec-
tion 3.1.4.1).

The format of a schedule follows the SEL database definition of a schedule. The sched-
ule assumes a waterfall life cycle where the development process is a sequential, nonit-
erative process. There are other, more complex, schema for schedules (and they may be
used by the SME in the future), but the SME measurement models are based specifical-
ly on contiguous, nonoverlapping phases. The SME currently works with a standard
four-phase schedule: design, code and unit testing, system testing, and acceptance
testing.

Schedule dates are used to normalize the horizontal (time) axis of displays of historical
data presented to the manager by the SME.

Used by: All SME functions

Source: SEL database

Structure: Table with three columns (phase name, phase start date, phase end date)
Instances: There is one current schedule table for each project.

Example: Figure 3-9 shows the project list pointing to sample current schedule tables.

3.1.19 CURRENT ESTIMATE SET
The current estimate set is a set of estimated completion values for a project.

The estimates are a set of expected measure data values at project completion. The set
contains one value for each type of measure data (Section 3.1.1. 2) Project completion
is defined as the end date of the last phase (acceptance testing) in the standard SME
schedule. The “current” estimates are obtained from the manager through the SEL da-
tabase and are used by SME functions until the manager selects an alternative estimate
(Section 3.1.4.2).

The estimates are used to normalize the vertical (measurement) axis of displays of his-
torical data presented to the manager by the SME.

Used by: All SME functions
Source: SEL database

Structure: ‘Table with two colurnns (measure name, estimated value at project
completion)

Instances: There is one current estimate set for each project.
Example: Figure 3-10 shows samples of current estimate set tables.

3-12

10001966

|

[l

&l

u

L s 6 gy =l o u |

I

e

(4 daiow

L

'
‘

LR

il
il |

e

LA

L

I

il

e

[

(il

L

L

til

EEL

LR

U

L1

timy

START
PHASE NAME DATE END DATE
DESIGN 88-01-30 88-07-16
I-_—_!’-R_OEETUS?__‘ CODE/UNIT TEST 88-07-16 88-12-24
1 (FROMFIGURE 32) | SYSTEM TEST 88-12-24 89-02-25
1 PROJECT ACCEPTANCE TEST 89-02-25 89-07-01
I
= PROJECT_A PHASE NAME ﬁfﬁg END DATE
1 PROJECT_B
I PROJECT C DESIGN 87-05-02 88-01-02
| - CODE/UNIT TEST 88-01-02 88-08-27
e e SYSTEM TEST 88-08-27 88-11-26
ACCEPTANCE TEST 88-11-26 89-06-03
PHASE NAME START END DATE
DESIGN 85-03-23 86-01-11
CODE/UNIT TEST 86-01-11 86-10-25
SYSTEM TEST 86-10-25 87-02-14
ACCEPTANCE TEST 87-02-14 87-09-26
Figure 3-9. Current Schedule
MEASURE ESTIMATE
| _PROJECTUST — | cPU 70 HOURS
| (FROM FIGURE 3-2) | RUN 38000 JOBS
| PROJECT | Loc 121000 LINES
| MOD 570 FILES
: PROJECT A RCH 1700 CHANGES
i PROJECT_B MCH 2400 CHANGED
' PROJECT_C I RER 450 ERRORS
|
O — —
MEASURE ESTIMATE
MEASURE ESTIMATE EFF 16000 HOURS
EFF 7838.4 HOURS LoC 47000 LINES
cPU 15.37 HOURS MOD 405 FILES .
RUN 4137 JOBS RCH 280 CHANGES
LoC 21450 LINES MCH 450 CHANGED
MOD 135 FILES RER 80 ERRORS
RCH 201 CHANGES
MCH . 515 CHANGED
RER 109 ERRORS

Figure 3-10. Current Estimates

3-13

3.1.1.10 PROJECT CHARACTERISTICS

Project characteristics are a collection of objective facts that characterize a project.

The characteristics data are used by the SME to ensure that the correct set of research
results (models or relationships) are used for analysis of the project. The characteristics
are combined to produce a “project type,” which is then used to select the appropriate

set of research data.

Currently the data describe the folloﬁving project characteristics: development

language, computer environment, and application area.

Used by: All SME functions
Source: SEL database

Structure: Table with two columns (fact name, coded value)

Instances: There is one project characteristics table for each project.

Example: Figure 3-11 shows sample project characteristics data.

FACT NAME CODED VALUE
F T emosEcTUST | | DEVELOPMENT LANGUAGE [ADA
| _(FROMAGURE32) | | DEVELOPMENTCOMPUTER | VAXWMS
| oscr | || APPLICATION AReA DYNAMIC SIMULATOR
|
{ FACT NAME CODED VALUE
} DEVELOPMENT LANGUAGE | FORTRAN
' DEVELOPMENT COMPUTER | VAXVMS
APPLICATION AREA DYNAMIC SIMULATOR
FACT NAME CODED VALUE
DEVELOPMENT LANGUAGE | FORTRAN
DEVELOPMENT COMPUTER | IBM 4300/MVS
APPLICATION AREA ATTITUDE GROUND SUPPORT

Figure 3-11. Project Characteristics

10001966

3-14

g w4 m e all qi

m
il

ClE

CEl

LT

IR

L

dum)

GIE!

(LRI Yo 1141 [1Y

!

e

LI

I

3.1.2 Data From Research

The data used by the SME mclude mformatlon obtamed from numerous studlcs and
experiments performed within the SEL. The utilization of these research results is an
essential component of the SME.

The SEL has awell-established method for studying and experimenting on the software
development process and product (Reference 12). Over the years, the SEL has
evaluated numerous software development methodologies, characterized the software
development process, and developed models of the software development environ-
ment through an extensive measurement program. This measurement program utilizes
the SEL database (Section 3.1.1) to determine various models and measures of the
software process and product. The results of these studies and experiments have been
fed back into the software development and management process within the environ-
ment. One goal of the SME is to automate the utilization of these results.

The results used by the SME include data on estimation, models, and scheduling. By
using the SEL database to analyze the software development process within this
environment, numerous estimating relationships have been developed. One example
of such a relationship is in the area of cost estimation. The SEL uses data on previous
projects to fit a model for estimating the cost of a software project in this environment:

E =8.45%f *f,*.. f* (L%

where E = development effort in staff-months
£, = project-specific adjustment factors
L = size of the project in thousands of lines of developed code

The SME uses this relationship to allow managers to estimate the cost of projects. Ref-
erence 13 contains more information on SEL cost estimation methods.

Another example of an estimation relationship useful to the SME is the relationship
between project duration and developed lines of source code:

D = 4.84 * (LO%¥)

where D = project duration in months
L = size of the project in thousands of lines of developed code

This relationship is extremely useful in predicting the duration of a project. Other esti-
mating relationships of this type have been developed by the SEL and are being inte-
grated into the SME (Reference 14).

3-15
10001968

The second area of research results involves the use of models of software development
measures. For example, using SEL data it is possible to develop a model of the typical
effort expenditure over the life of a project. This model can be represented as a table of
values:

CUMULATIVE FRACTION OF EFFORT

PHASE AT END OF PHASE
DESIGN 0.30
CODE AND UNIT TEST 0.70
SYSTEM TEST 0.80
ACCEPTANCE TEST 1.00

Similar models have been developed for many other software development measures.
This type of model is quite useful in comparing an ongoing project to the typical project
within the environment.

Another example of amodel of software déveldifmiéntfﬁ:ieasuxi'és is a model of reliabil-
ity over the life of a project. The following table shows a model of the number of errors
uncovered per thousands of lines of code during a particular life-cycle phase within the

SEL environment:

ERRORS REMOVED PER THOUSANDS

PHASE _ OF LINES OF CODE
CODE AND UNIT TEST 8
SYSTEM TEST s
ACCEPTANCE TEST 2

Such amodel is extreniely useful in assessing the reliability of a project or in predicting
and comparing the number of errors that might be found in a system. Many other such
models have been developed and are being integrated into the SME.

Another area of research involves utilizing templates of schedules. These schedule
templates were again developed by using data for past projects to determine the per-
centage of project duration typically spent in each development phase. As an example,
for FORTRAN projects within this environment, the following schedule template usu-
ally holds:

CUMULATIVE FRACTION OF DURATION

PHASE ATENDOFPHASE
DESIGN 0.35
CODE AND UNIT TEST 0.65
SYSTEM TEST 0.85
ACCEPTANCE TEST 1.00
3-16

10001966

L [] i Wl e | i A [N] Qi

(i

L1

H

i

U

1

11RO 1 {

il

LNR]:

I

i

L]
i

ﬂ‘

ORI (R (i

i

T

N0

(e

This type of schedule template is used by managers in planning and in comparing an
ongoing project to the template.

The examples of research results presented in this section are a small sample of the
types of results being used in the SME. By utilizing the SEL database and an exper-
imentation process, numerous results and equations have been developed. One of the
goals of the SME is to integrate these results into an overall management environment.

The following subsections describe the ways in which the results of SEL research are
made available to the SME: tabular models, analytical models, and attribute defini-
tions. Tabular models are used by the SME to describe the growth of measurement data
and to define schedules. Analytical models are used to estimate the value of measures
at project completion. Attribute definitions are used to assess overall project quality
factors.

3.12.1 TABULAR MODELS—MEASURES

Tabular models of measure data describe the expected growth of the cumulative value
of those data.

Measure models are tabulations of a measure as a function of development phase. The
measure is expressed as a fraction starting at 0 at the start of the first phase and reaching
1 at the end of the last phase. Values are tabulated at the end of each phase and at some
intermediate fractions of a phase. Each model has an associated value that represents
the normal allowable deviation of a measure from the tabulated values.

Source: Research

Structure: Table with three columns (phase name, fraction of phase, fraction of mea-
sure), scalar value (magnitude of normal deviation)

Instances: There is one table for each measure type and project type.

Example: Figure 3-12 illustrates the dependence of measure models on the project type
derived from the project characteristics data.

3-17
10001966

=== e ——— q
I PROJECT CHARACTERISTICS '
: (FROM FIGURE 3-11) I
| PROJECT TYPE =
|
DEC VAX/VMS, ADA, DYNAMIC SIMULATOR |
|
| IBM 4300/MVS, FORTRAN, ATTITUDE GROUND SUPPORT =
[J
|
®
| . !
| |
L e e e e e e e e o e e e e e e e e e e e S e e -d
T e eray
MEASURE LIST (FROM FRACTION FRACTION
: FIGURESN(;: : PHASE NAME OF PHASE | OF MEASURE
I | DESIGN 0.25 0.0000
I MEASURE I DESIGN 0.50 0.0000
= CcPU I DESIGN 0.75 0.0000
I EFF I DESIGN 1.00 0.0000
' LOC | CODE/UNIT TEST 0.25 0.0124
I MCH | CODE/UNIT TEST 0.50 0.1111
| MOD i CODE/UNIT TEST 0.75 0.2336
| RCH | CODE/UNIT TEST 1.00 0.3773
1 RER I SYSTEM TEST 0.50 0.5868
| RUN | SYSTEM TEST 1.00 0.7281
| I ACCEPTANCE TEST 0.25 0.8184
!] ACCEPTANCE TEST 0.50 0.9001
- - ACCEPTANCE TEST 0.75 0.9763
ACCEPTANCE TEST 1.00 1.0000
NORMAL DEVIATION = 0.0922
Figure 3-12. Tabular Models—Measures
3-18
10001966

|

L 1 i wil . a G

UL

i

LLiNE

R T}

il el

ClilE

i Ll

Ll

HE

i

3.12.2 TABULAR MODELS—PROFILES

Tabular models of profile data describe the expected growth of the cuamulative values of
each component specified for the profile.

Profile models are tabulations of the profile associated with a given measure as a func-
tion of development phase. As with measure models, profile values are expressed as a
fraction starting at 0 at the start of the first phase. At the end of the last phase, the sum of
the values of the profile components reaches 1. Values are tabulated for each compo-
nent at the end of each phase and at some intermediate fractions of a phase.

Used by: Profile analysis, overall assessment
Source: Research

Structure: Table with N+ 2 columns (phase name, fraction of phase, fraction of measure
for each component), where N is the number of profile components

Instances: There is one table for each profile type and project type.

Example: Figure 3-13 illustrates the dependence of profile models on the project type
derived from the project characteristics table.

3-19
10001966

r ———————— ‘ r ——— A GEES S SN GEND TEID GEED S S D G SIAD EEND SR SIS SN S GEI G SN SU WSS — S— ﬁl
| proFILE LST = | PROJECT CHARACTERISTICS |
| (FROM FIGURE 34) 1 (FROM FIGURE 3-11)
I I I I
I PROFILE : | PROJECT TYPE {
i -
| ;’;;1 | | | DECVAXVMS, ADA, DYNAMIC SIMULATOR I
I MOD2 I | | 1BM4300MVS, FORTRAN, ATTITUDE GROUND SUPPORT I
|| row | : |
| RCH2 | I . I
[RERT | I |
l RER2 I L —_——————ee e J
R 4
OHASE NAVE FRACTION FRACTION OF MEASURE
OF PHASE ["{HROR [1HRTO | 1HRTO | MORE THAN | | ,\nknowN
LESS | 1DAY | 3DAYS 3DAYS
DESIGN 0.25 0.0000 | 00000 | 0.0000 0.0000 0.0000
DESIGN 0.50 0.0000 | 00000 | 0.0000 0.0000 0.0000
DESIGN 0.75 0.0000 | 00000 | 0.0000 0.0000 0.0000
DESIGN 1.00 0.0000 | 00000 | 0.0000 0.0000 0.0000
CODE/UNIY TEST 0.25 0.0097 | 00020 | 0.0004 0.0002 0.0000
CODE/UNIT TEST 0.50 0.0805 | 00247 | 0.0033 0.0024 0.0000
CODE/UNIT TEST 0.75 0.1633 | 00578 | 0.0084 0.0042 0.0000
CODE/UNIT TEST 1.00 02500 | 00063 | o.0152 0.0068 0.0000
SYSTEM TEST 0.50 0.3809 | 01650 | 0.0223 0.0087 0.0000
SYSTEM TEST 1.00 04791 | 02049 | 0.0315 0.0125 0.0000
ACCEPTANCE TEST | 0.5 05259 | 02388 | 00372 0.0154 0.0000
ACCEPTANCE TEST | 0.50 05637 | 02647 | 00512 0.0204 0.0000
ACCEPTANCETEST | 075 05072 | 02032 | o0.0820 0.0238 0.0000
ACCEPTANCE TEST | 1.00 06072 | 03034 | 00842 0.0252 0.0000
Figure 3-13. Tabular Models—Profiles
3-20
10001968)

[

Il

i il W W ®

LI

ro

L

€l

(i @7

]

LI

(i

[

I

L

Qe

1l

il

fiaii |

LT

|
I

!
|

gl

Qe

i

3.1.23 TABULAR MODELS—SCHEDULES

Tabular models of schedules descnbe the amount of time that should be spent in each
development phase.

The schedule template is a tabulation of the fraction of the project duration that should
be allocated to each development phase when creating a project schedule. The sched-
ule template is also used as a model of the schedule when performing prediction, guide-
line comparison, trend analysis, and overall assessment.

Used by: All SME functions

Source: Research

Structure: Table with two columns (phase name, fraction of duration)
Instances: There is one table for each project type.

Example: Figure 3-14 illustrates the dependence of the schedule model on the project
type derived from the project characteristics data.

PROJECT CHARACTERISTICS
(FROM FIGURE 3-11)

PROJECT TYPE

|

I

I

|

1 DEC VAX/VMS, ADA, DYNAMIC SIMULATOR
I IBM 4300/MVS, FORTRAN, ATTITUDE GROUND SUPPORT
|

|

|

|

FRACTION OF _
PHASE NAME DURATION
DESIGN 0.3040
CODE/UNIT TEST 0.6482
SYSTEM TEST 0.8040
ACCEPTANCE TEST 1.0000

Figure 3-14. Tabular Models—Schedules

3-21
10001966

3.1.2.4 ANALYTICAL MODELS—ESTIMATE SETS -

Analytical models of estimate sets describe the relationships that exist among comple-
tion values of measures.

The estimate set models are a tabulation of normalized completion values for each
measure defined in the measure list. Developed by analyzing data for past pro;ects the
completion values in the set are normalized to 1000 lines of code.

These models implicitly capture the set of linear relationships that exist between each
pair of measures. As a result, software routines that are functional in nature can be de-
veloped to access the models and return a wide range of useful information. A set of
these routines is used by the SME to (1) produce a full set of completion estimates for
all measures given the expected completion value for any one measure and (2) return

the ratio of estimated completion values for any two specified measures.
Used by: Planning

Source: Research

Structure: Table with two columns (measure, completion value)
Instances: There is one table for each project type.

Example: Figure 3-15 illustrates the concept of an estimate set model and its depen-
dence on the measures defined in the measure list.

L " MEASURE UST
|
| (FROMFIGURE33) |
I
} MEASURE I MEASURE COMPLETION VALUE
' CODE I
| CPU } = CPU 0.83 HOURS
| EFF I EFF 255.30 HOURS
| LOC LoC 1,000.00 LINES
| MCH : P MCH 17.62 CHANGED
I MOD I MOD 5.25 FILES
: RCH | RCH 8.50 CHANGES
| RER 1 RER 4.38 ERRORS
| RUN } ’I‘ RUN 304.78 JOBS
| J

Figure 3-15. Analytical Models—Estimate Sets

3-22

10001966

(1)

I
i

B

g el

It

i

ail

ezl

(T

T

EE

!

gl

EIE

wmn

oE

3.1.2.5 ANALYTICAL MODELS—ESTIMATING RELATIONSHIPS

Analytical models of estimating relationships consist of a software library containing
the functional relationships among completion values of measures.

The analytical models are used by the SME to produce a full set of completion esti-
mates for measures given a minimum of information about the size of the project. An
analytical model for total project duration is also included in this group.

Although simﬂar to analyﬁc;a] models of éétimate S;té (Sccﬁ;ih 3.1.2.4), these models
use a software library that can support complex relationships that are not linear.

While these models are functional in nature, they are discussed here along with the data
architecture because they are the results of research into a particular environment.
Other relationships may apply to other environments or to other project types in the
same environment. The relationships may also change with time as new methodologies
and languages are introduced or as experience is gained with the application area. This
suggests that the relationships may change often and their functional definitions should
be kept separated from the SME functional architecture.

Used by: Planning

Source: Research

Structure: Software library

Instances: There is one software library of analytical models for each project type.

Example: Figure 3-16 illustrates the concept of a software library of analytical models.

e ——— 1
l I
| MEASURE | | ANALYTIC MODEL LIBRARY
l l
I CPU mn FUNCTION CPU_EST (...)
EFF ~ |
| LOC FUNCTION EFF_EST (...)
I MCH | N
: MOD | .
| RCH | .
| RER }
I RUN et FUNCTION RUN_EST (. ...)
l |
| MEASUREUST | FUNCTION DURATION _EST (...}
| (FROMFG.39) |
e e e e e e =]

Figure 3-16. Analytical Models—Estimating Relationships

323
10001966

3.1.2.6 ATTRIBUTE DEFINITIONS

The list of attribute definitions describes how objective data are used to perform overall
quality assessment for a project.

The SME defines overall quality in terms of product attributes such as correctability,
maintainability, and reliability. Relative ratings can be calculated and assigned to these
attributes by applying functions to various types of objective data. For example, a rating
for the maintainability attribute might be derived by calculating the percentage of the
total number of changes that were isolated and implemented in less than 1 day.

The attribute definitions list decomposés each attribute into one or more Wéighted fac-
tors and further defines each weighted factor as a function. These functions then evalu-
ate a project’s objective measurement data to produce a relative rating for each quality
attribute.

Used by: Overall assessment
Source: Research

Structure: Table containing attribute names, factors associated with each attribute, fac-
tor weights, factor definition functions, and acceptable ranges

Instances: There is one list of attribute definitions.

Example: Figure 3-17 shows how the attribute definitions relate attributes to factors
and in turn relate factors to the historical measure and profile data.

10001966

[R

|

B3 -
| &1
[
- — . e —— — —— ——— — —
I ATTRIBUTE DEFINITIONS
MINIMUM AND
o I M
- — WEIGHTS OF
| FacTors
B ATTRIBUTE
3 | PETRTIONS
I CORRECTABIUTY
MAINTAINABILITY
l] o \
| L .
I - \
£] e e

I DATE OF
l SAMPLE
DATE OF l

I SAMPLE EFFORT TO ISOLATE CHANGE
o l 'Y . . 'Y) ° I
- l ° ° . ° °) I
_ . . . ° . ®

|

- - Figure 3-17. Attribute Definitions
- 3.25
o 10001966

3.1.3 Rules of Managing Software Development

The SME uses software management rules that have been gathered by the SEL in vari-
ous ways. Some research efforts have worked directly with experienced managers to
discover the rules experts use in practical management of software development. Other
rules result from studies that have investigated trends and relationships within the SEL

database.

Since 1984, the SEL has been performing research in the area of capturing the knowl-
edge and experience of managers. By obtaining managers’ “rules-of-thumb” and expe-
rience at evaluating projects, the SME should be able to provide expert assistance at
diagnosing project problems and suggesting actions to correct those problems.

The SME uses a set of rules that captures the experience of the software development
manager. These rules have been developed through the examination of past research
results and through ongoing research in this area.

One past research effort involved collecting knowledge from software development
managers by two different methods and combining the results (Reference 10). The first
method for collecting the manager’s rules was a top-down approach. In this approach,
the managers examined a set of potential problems, such as “productivity is lower than
expected,” and they provided lists of possible reasons for each deviation. The second
method was a bottom-up approach. Here the managers were given a set of problem
causes and asked to list the deviations that would be observed if these things were hap-
pening on a project. From these two data collection approaches, a set of consistent soft-
ware management rules was developed.

As an example, one rule that came out of this research was the following:

PROBLEM OR DEVIATION REASON OR EXPLANATION
ABOVE NORMAL SOFTWARE CHANGES GOOD QUALITY TESTING
PER LINE OF CODE NEAR THE END OR
OF THE CODING PHASE GOOD QUALITY TEST PLAN

Such rules are valuable in determining the causes for deviations from a typical project
within an environment.

A second research study within the SEL (Reference 9) took a different approach to
capturing software managers’ knowledge. In this study, the researchers attempted to
capture the knowledge managers use in evaluating the quality of a development effort.
The strategy was to query managers on what factors directly influenced specific quality

3-26
10001966

Hil \ i L [K ar " w1

()

Qo

g

(A

{

n

Ir

il

‘1. T
L T

Al
b

1

UL
bl b

t

1R

e

1

1Rl

i

i

B

1 1i

indicators and to what degree. The answers were combined into a set of factor-based
rules for evaluating the quality of a development effort, as in the following example:

FACTORS THAT AFFECT

__PROJECT STABILITY WEIGHT
SPECIFICATIONS STABILITY 0.50
TEAM STABILITY 0.30
DESIGN STABIUTY 0.20

This rule shows three factors that affect the overall stability of a software project. The
weight represents the relative importance of the factor in determining the overall sta-
bility. Of course, other rules might need to be evaluated to determine the rating of each
of these three factors. Thus, a network of software management rules can be used to
determine the ratings of a set of important software project quality factors.

The current research in the SME has built on these research efforts. Rules of the types
described above have been combined with the empirical results of examining the data
in the SEL database to develop a stable set of rules for the SME. This set of rules consti-
tutes a knowledge base that captures the reasoning needed by the SME to analyze a
project.

As an example, one of the manager’s rules of the first type used by SME is as follows:

PROBLEM OR DEVIATION REASON OR EXPLANATION
ABOVE NORMAL SOFTWARE CHANGES THE DEVELOPMENT TEAM IS
INEXPERIENCED

(Note that this is only one of several explanations tested by the SME as a result of this
deviation.) To determine the accuracy of the conclusion, the SME uses a rule of the
second type, as follows:

FACTORS THAT AFFECT TEAM

EXPERIENCE WEIGHT
EXPERIENCE WITH APPLICATION . 0.25
EXPERIENCE WITH LANGUAGE 0.25
EXPERIENCE WITH ENVIRONMENT ' 0.25
EXPERIENCE WITH TOOLS 0.25

The ratings of the underlymg factors can be determined by using subjective data sup-
plied by the manager (Section 3.1.4.4) or by examining objective measurement data
from the SEL database.

Additional ongoing research in the SME has focused on invéstigating an alternative
data structure for capturing the management rules collected as part of past research

3-27
10001966

planations that constitute a rule base. By evaluating each rule in the rule base and accu-
mulating a list of valid explanations, the SME can use the rule base to analyze a project.

studies. This approach views the set of rules as a series of conditions and associated ex-

For example, one of the manager’s rules interpreted for use with the rule base by the
SME is as follows:

CONDITION REASON OR EXPLANATION WEIGHT

IF LATE IN CODING PHASE AND SOFT- GOOD QUALITY TEST PLAN 0.25
WARE CHANGES PER LINE OF CODE OR

ARE ABOVE NORMAL UNSTABLE SPECIFICATIONS 0.256
OR

ERROR-PRONE CODE 050

The SME incorporates the knowledge base and the rule base as two independent ap-
proaches for providing expert assistance to software development managers. At the
present time, the two methods for capturing management rules within the SME appear
to be equally useful and valid.

The following subsections describe the structure of the knowledge base and the rule
base.

3.1.3.1 KNOWLEDGE BASE

The knowledge base is a description of the relationships that link objective and subjec-
tive data about a project to a set of possible assessments of the project status.

The knowledge base consists of a set of tables used to evaluate and dlsplay software de-
velopment rules. The primary table (the reason table) links the observed deviation of
some measure to a possible cause for the deviation. The factor table is used to locate the
information needed to evaluate the truth of the reason (e.g., is this project actually
working on a complex problem?). The explanation table contains the message that is
displayed when a reason is true.

The ratings of factors are evaluated according to several methods; the factor table is
used to link the factor to its evaluation method. Some factors obtain ratings directly

from the manager s subjective data (Section 3.1.4.4); other factor ratings are the result
of calculations using measure data (Section 3.1.1.6). A third type of factor obtains its

rating from combining the weighted ratings of other, influencing factors.

Used by: Trend analysis, guidance

Source: Research

3-28
10001966

C NTO (AN (T AU INIIRY NIRE | 1l i [I (IR ([L v

T
|

ﬁ"f 1

g

| RER

onT

g

i

o

i

31

WED

L L

1RIE ¢!

1mye

nuw

QL

Structure: Set of three tables: afactor table with two columns (factor name, location of
data), a reason table with two columns (deviation, reason), and an explanation table
with two columns (reason, text of explanation)

Instances: There is one set of knowledge base tables.

Example: Figure 3-18 shows the knowledge base tables with two typical links between
tables. The link from the reason table to the factor table shows how the SME locates the
method for evaluating the “team experience” factor. In this case the factor table indi-
cates that other factors must be evaluated and combined to evaluate the team experi-
ence factor. (To evaluate “problem complexity,” the SME would look in the subjective
data for the manager’s rating; to evaluate “coding productivity,” the SME would use
measure data.) The link from the reason table to the explanation table shows how the
SME locates the message to display if a factor evaluation indicates that a reason is true.

3.13.2 RULE BASE

The rule base identifies a set of rules that link the conditional evaluation of objective
data about a project to a set of possible assessments of the project status.

The rule base consists of two related tables used to evaluate and dISplay software devel-
opment rules. The primary table (the rule table) contains a series of conditions with
each condition associated to one or more possible reasons. The explanation table con-
tains the message that is to be displayed when a reason is considered valid.

Each condition in the rule base is evaluated based on the present life cycle phase and

current measure data for the project. If a condition is deemed true, the associated

weighted reasons are considered valid and added to an assertion list. Attempts to dupli-

cate areason in the assertion list result in one entry weighted to reflect both conditions. .
Upon completion, the reasons in the list can be translated for display using the explana-

tion table.

Used by: Trend analysis
Source: Research

Structure: Setof two tables: a rule table with two columns (condition, weighted reasons)
and an explanation table with two columns (reason, text of explanation)

Instances: There is one rule base.
Example: Figure 3-19 shows how the rule base links the conditional evaluation of rea-

sons with an English translation. Note that for clarity in the example, only one rule ap-
pears in the rule table.

3-29
10001966

PROBLEM COMPLEXITY

CODING PRODUCTMTY LOC/EFF

FACTOR TABLE
FACTOR SOURCE OF RATING
TEAM EXPERIENCE (POINTER TO INFLUENCING FACTORS)

SUBJECTIVE DATA

REASON TABLE

DEVIATION

REASON

ERRORS ABOVE NORMAL PROBLEM
.
.
.

ERRORS ABOVE NORMAL TEAM EXPERIENCE LOW -~

COMPLEXITY HIGH ===

EXPLANATION TABLE

REASON

ENGLISH

PROBLEM COMPLEXITY HIGH
.
°
.

THE APPLICATION PROBLEM IS COMPLEX.

Figure 3-18.

10001966

Knowledge Base

3-30

41

1l

i

AR [A

o
ey

tr

o

B

it

W oqmt soE o eme oo o

Wy

R E

e

!

e

M l“

n

LHP

RULE TABLE
CONDITION REASONS
IF EARLY IN CODING PHASE AND STAFF GOOD CODE 50%
HOURS PER REPORTED CHANGE ARE HARD CHANGE ISOLATION 26%)
ABOVE NORMAL HARD CHANGE IMPLEMENTATION 25%)
EXPLANATION TABLE
REASON ENGLSH
GOOD CODE GOOD, SOUD, RELIABLE CODE
HARD CHANGE ISOLATION CHANGES ARE DIFFICULT TO ISOLATE.
HARD CHANGE IMPLEMENTATION CHANGES ARE DIFFICULT TO IMPLEMENT.

Figure 3-19. Rule Base

3.1.4 Data From the Manager

The SME is an interactive management tool that uses the SEL database for much of its
input data. The information in the database is used by several applications; to ensure
the integrity of the data, none of the applications, including the SME, may change data
in the database. This results in a conflict when the SME requires true interactive func- -
tions in which the manager enters new or modified data for the SME to analyze.

The solution is to use some external data structures that parallel data available from the
database. A look back at the data elements discussed so far reveals two elements (cur-
rent schedule and estimates) that the manager might wish to modify based on new in-
formation about the project.

The manager supplies the original schedule and estimate information to the SEL data-
base on forms. The alternative schedule and estimates discussed here provide a way for
the manager to quickly modify a copy of this information and to use the SME to analyze
“what if” the manager changed these project parameters.

To modify the current schedule and estimate data in the SEL database, the manager
would be required to submit revised information on SEL forms. This ensures that all
information in the SEL database is entered under the database quality assurance and
validation procedures.

The two other types of data presented here, phase estimates and subjective data, have
no counterparts in the SEL database. These two types of data have no default values; all
data are entered by the manager.

3-31
10001966

3.14.1 ALTERNATIVE SCHEDULES
Alternative schedules refer to a projeef’s schedule.

An alternative schedule has the same format and usage as the current schedule. Alter-

native schedules are created and modified by the manager (using the SME planning
function) to investigate the effects of changing schedules. This type of schedule “be-
longs” to the manager, and, to eliminate the chance of confusion, each manager’s alter-
native schedules are kept in separate areas.

Used by: All SME functions
Source: Manager
Structure: Table with three eolumns (phase name, start date, end date)

Instances: There can be several tables, each associated with a specific project and man-
ager. A manager may have more than one table for a specific project.

Example: Figure 3-20 shows that managers may have more than one alternative .

schedule.
3.1.4.2 ALTERNATIVE ESTIMATES

Alternative estimates refer to a set of estimated completion values for a project.

An alternative set of estimates has the same format and usage as the current estimate

set. Alternative estimate sets are created and modified by the manager (using the SME
planning function) to investigate the effects of changing estimates. This type of estimate
set “belongs” to the manager, and, to eliminate the chance of confusion, each manag-
er’s alternative estimate sets are kept in separate areas. -

Used by: All SME functions
Source: Manager

Structure: Table with two columns (measure name, estimated value at project
completion)

Instances: There can be several tables, each associated with a specific project and man-
ager. A manager may have more than one table for a specific project.

Example: Figure 3-21 shows that managers may have more than one alternatrve esti-
mate set. :

) 3143 , PHASEESTIMATES

Phase estrmates represent an hrstoncal record of all estrmates of the completed frac-
tion of a project’s current development phase.

332

10001966

e o N om0 wm AW mx) o omnh wr o oeEm o W 400

n
L

LAY

Uil

L

e

il

I

LN

{11

o

TN

wmim e wne

n

SME USER

USER_1 A

PROJECT

SCHEDULE
IDENTIRIER

PROJECT_A | TEST 1
PROJECT A | TRY 4

USER_2
PROJECT_C REVISION B
PHASE NAME SJ:PET END DATE
DESIGN 88-01-30 88-07-16
CODE/UNIT TEST 88-07-16 89-01-14
SYSTEM TEST 89-01-14 89-03-18
ACCEPTANCE TEST 89-03-18 89-07-01

Figure 3-20. Alternative Schedules

ESTIMATE SET
PROJECT IDENTIFIER
SME USER PROJECT A TEST 1
PROJECT B REVISION_2
USER_1 PROJECT_B MORE_CPU
USER_2
MEASURE ESTIMATE
CPU 70 HOURS
, RUN 38000 JOBS
LOC 150000 LINES
MOD 880 ALES
RCH 1900 CHANGES
MCH 2600 CHANGED
RER 490 ERRORS
Figure 3-21. Alternative Estimates

10001966

3-33

A phase estimate indicates where a project is in the development life cycle on a given
date. Each estimate contains the current date, the current phase, and the completed
fraction of that phase. The SME obtains phase estimates as a basis for making predic-
tions either from the manager or from an internal calculation called phase analysis. The
estimates are saved by the SME to be used in later sessions to display any trend in the
history of predicted values. The estimates “belong” to the manager, and, to eliminate
the chance of confusion, each manager’s phase estimates are kept in separate areas.

Used by: Prediction
Source: Manager
Structure: Table with three columns (date, phase name, fraction)

Instances: There can be several tables, each associated with a specific project and man-
ager. There is only one table per project per manager.

Example: Figure 3-22 shows a sample list of phase estimates.

SME USER PROJECT

e O

USER_1 PROJECT_A

USER_2 PROJECT_C!

FRACTION OF
DATE PHASE NAME PHASE

88-10-08 CODE/UNIT TEST 0.50
88-12-03 CODE/UNIT TEST 0.85

Figure 3-22. Phase Estimates

3-34
10001966

Nl Em NN O« w W5 w oW w4 W w

RN

(|
L 1, i

{a

Wi

b “IEMHW‘I

e aEl

WiMl wmen @ o WAt e R Qi el

LLTTR

3.144 SUBJECTIVE DATA

Subjective data represent the manager’s ratings of software development factors for a
project. ‘

Subjective data are collected from the manager during sessions with the trend analysis
function. The data consist of the ratings (high, normal, low, unknown) of factors that
affect the development process. Examples of these development factors are develop-
ment team experience, problem complexity, tool usage, and computer responsiveness.
The ratings are used by the expert system software in the SME according to the relation-
ships contained in the knowledge base.

Used by: Trend analysis, guidance

Source: Manager

Structure: Table with two columns (factor name, rating)
Instances: There is one subjective data table per project.
Example: Figure 3-23 shows samples of subjective data tables.

3.2 FUNCTIONAL ARCHITECTURE

The functional architecture is a description of the software structure. The discussion
includes, for each major function, a brief description ofits purpose and a brief presenta- .
tion of the processing involved. The functions are summarized with a list of services
provided and a list of the information required by each.

Figure 3-24 shows the structure of the SME software. This structure results from the
functional grouping presented in Figure 2-10. Each function is discussed separately be-
low. The discussions refer to the data described in the presentation of the data architec-
ture in Section 3.1.

3.2.1 The SME Executive

Project management typically involveé ft;cusing the manager’s attention on a single
project, although it may also involve comparison with previous projects and other ongo-
ing projects. For this reason, the SME performs all of its functions within the context of
a single project. '
Services provided:
® Opens and closes the SME session 7
® Provides a list of projects from which the manager selects a project of interest

® Passes control to the monitoring, overall assessment, planning, or guidance
function as requested by the manager

Information required:
e List of projects available to the SME

3-35
10001966

e | v
[J
[]
[J
f————————— —, | CODEREADING QUALITY | NORMAL
| _ (FROMFIGURE3-2) | | WITHTOOLS
| PROJECT .
] .
| .
| PROJECT A PROBLEM COMPLEXITY HIGH
' PROJECT.B SPECIFICATION STABILITY | NORMAL
I PROJECT_C
| UNIT TESTING QUALITY UNKNOWN
FAGTOR NAME RATING FACTOR NAME RATING
[] [J
® o
® [J
CODE READING QUALITY UNKNOWN CODE READING QUALITY | HIGH
TEAM EXPERIENCE NORMAL TEAM EXPERIENCE NORMAL
WITH TOOLS WITH TOOLS
[L
[] [
[] []
PROBLEM COMPLEXITY NORMAL PROBLEM COMPLEXITY NORMAL
SPECIFICATION STABILTY | LOW SPECIFICATION STABILITY | HIGH
UNIT TESTING QUALITY LOW UNIT TESTING QUALITY NORMAL

Figure 3-23. Subjective Data

3-36

an W oW WM o mn g weoooart o dll vl

1“

o[

ne

Ll

WIElI

L1 T i 1

g

L1 F T ¥ 11T 11 (A1

L

{7

SME
EXECUTIVE
MONITORING | | ASSESGNENT PLANNING GUIDANCE
TREND PROFILE
coMPARISON | | PREDICTION | | Jtaivas | | anatvsis | | ScHEDULNG ESTIMATING

Figure 3-24. SME Functional Architecture

3.2.2 Monitoring

The SME monitoring function provides a graphic display area in which the manager
views a project’s measurement data. The manager selects a measure of interest and is
presented with a plot of the cumulative growth of that measure. The measure of interest
may be either a single measure or the ratio of two measures. The width of the plotting
area is scaled to show the project schedule from start to end of the planned duration,
and the height is scaled by the expected completion value of the measure of interest.

The monitoring function requires only limited keyboard input from the manager. All
monitoring activities are selected from Lotus-like function menus, and the manager in-
dicates choices such as measurement type or comparison project by selecting an item
from prepared lists.

The monitor function displays only one type of measurement data at a time (such as
total staff effort or lines of code per hour) in the display area. The manager can super-
impose guidelines, data from comparable projects, predictions of the future behavior of
the measure, and probable causes for the deviations of the measure onto the display
area.

Services provided:

® Provides a list of measures that are available for the project of interest from
which the manager selects a measure of interest

e Displays the cumulative values of the measure of interest for the project as a
function of planned schedule

e Passes control to the comparison, prediction, trend analysis, or profile analy-
sis function as requested by the manager

3-37
10001966

Information required:
e List of measures available for the project of interest
® Schedule for the project of interest
e Expected completion value for the measure of interest

® Measure data for the measure qf interest

3.22.1 COMPARISON

The comparison function adds several types of plots to the monitor’s graphic display
area. The manager can request a display of the gmdelmes for the measure of interest or
a display of data from other pro;ects :

" Data that are added to the display area are always scar dto match the measurement

data for the project of interest. This is done by linearly scaling each new plot to force it
to start at the project of interest’s start and to end at the expected completion value for
the project of interest.

The guideline curve represents the expected or normal growth path for the historical
measure. The model for the measure of interest is used to generate this curve.

The scaling performed on data from another pro;ect uses the expected completion val-
ue for the comparison project.

_ Services provided:

e Displays gmdehnes for the measure of interest

® Provides a list of prOJects from which the manager selects a comparison
project

e Scales and displays data from other projects
Information required:
o Model for the measure of mterest ,
e Listof pl‘O]eCtS w1th data avallable for the measure of interest
® Schedule for the comparison project

e Expected completion value for the measure of mterest for the comparlson
project

e Measurement data for the measure of interest for the comparison project
3222 PREDICTION

The prediction function adds a plot of the probable future behavior of the measure of
interest to the display area.

3-38

10001966

a1

alny w0 s

[

L

uEl
dild

Rl

T

¢

i

i

n
[]

"
4

L1

AL

Ll

L

'
1

@l

G

The prediction plot is produced by displaying the model of the measure of interest. Un-
like the comparison function, where plots are scaled to the manager’s completion esti-
mate, the model is forced to pass through the current value of the measure of interest.
The scaling factor is calculated from an estimate of the current life-cycle phase of the

“project. For example, if the phase estimate is “halfway through the coding phase” and

the model shows that one-third of the measure is normally observed at that time, the
displayed plot of the model is scaled to reach three times the current value of the mea-
sure of interest at project completion.

The estimate of the project’s current life-cycle phase is obtained from the manager or
from a subfunction called phase analysis. Phase analysis calculates the phase at which a
measure usually attains its current value. The average phase determined by applying
phase analysis to all available measures is an alternative to a manager’s estimate.

Services provided:
¢ Obtains an estimate of the current life-cycle phase of the project of interest

e Displays the predicted path for the growth curve from the current observed
value to the predicted completion value; rescales the display area if the pre-
dicted value falls outside the current display area limits

Information required:
® Model for the measure of interest
¢ Current value of the measure of interest
® Estimate of the life-cycle phase (from the manager or from phase analysis)
® Model of each measure (for phase analysis only)
® Current value of each measure (for phase analysis only)

¢ Expected completion value for each measure (for phase analysis only)

3.22.3 TREND ANALYSIS

The trend analysis function analyzes the trend of the measure of interest. If the current
value is not on the expected growth path toward the expected completion value, a list of
the probable causes of the deviation is presented. The manager can request a more de-
tailed analysis of how the list was determined.

Trend analysis uses all subjective, characteristic, and measured information available
for the project. Although the function lists only the causes for the deviation in the mea-
sure of interest, the trends of all measures are considered in the analysis.

The analysis compares the current value of a measure to the model of the measure and
determines if the value is within an acceptable range of its expected value. A deviation

3-39
10001966

(outside of the acceptable range) that is detected in the measure of interest causes the
trend analysis function to use the knowledge base (Section 3.1.3.1) or the rule base
(Section 3.1.3.2) to generate a list of possible reasons for the deviation.

The trend a1 analy31s function also helps the manager understand how the displayed list of

possible reasons was determined. The ratings of the factors that were considered by the
function can be displayed. If the knowledge base was used and the displayed factor gets
its rating from the manager’s subjective data (Section 3.1.4.4), the manager has an op-
portunity to supply or modify its rating.

Services provided:

® Determines whether | the measure of mterest is dewatmg from the expected

behavior for the méasure]

e Presents a list of probable causes for an observed deviation

e Collects and processes subjective information from the manager about the
project (for knowledge base only) B

@ Helps the manager explore the reasoning structure to explain why the se-
lected causes are probable

Information required:
® Model for the measure of interest
e Expected completion value for the measure of interest
e Schedule for the project of interest
e Current value of the measure of interest
e Knowledge base
® Rule base |
e Subjective data (for knowledge base only)
e Model of other measure types
e Current value of other measures -
® Expected completion value of other measures
3224 PROFILE ANALYSIS
The profile analysis function displays a detailed breakdown of the data for the measure

of interest into discrete categories. The manager indicates the profile to use for viewing
the measure by selecting an available profile defined for the measure from a list.

3-40

10001968

ﬂ im

LY
Gl

]
I i

T
n M

T

{

Wi

Gillki

Ll

I I

—
i I")
i

L]

L

&

NEEH

qUiE vEED GAmnE

LI

The profile display is depicted as a bar graph of the current value, expected value, and
projected completion value in each category defined by the profile for the measure. The
expected values and projected completion values for the profile categories are derived
by applying the model of the profile to the expected completion value of the measure.

Analyzing the distribution of measure values via profiles can help the manager detect
problems and identify improvement areas.

Services provided:

® Provides alist of profiles available for the measure of interest from which the
manager selects a profile

e Displays a bar graph of the current value, expected value, and projected
completion value in each category defined for the selected profile

Information required:
o Listof profiles available for the measure of interest for the project
e Current data value for each category in the selected profile
® Model of the selected profile

® Expected completion value for the measure of interest

3.23 Ovérall Assessment

The SME overall assessment function provides an evaluation of the quality of the proj-
ect. This function differs from trend analysis in that it does not concentrate on a devi-
ation in a single measure of interest. Instead, a fixed list of overall project quality
attributes is evaluated.

The evaluation includes ratings of quality attributes such as maintainability, correct-
ability, and reliability. The evaluation uses objective measurement data collected for
the project to produce a rating for each quality attribute. The ratings inform the manag-
er of significant overall trends in the development process

The manager requestlng a more detailed analy51s can lnvestlgate the reasons that the
SME computed a particular attribute rating. The SME displays the underlying factors
used to compute the quality rating and provides the manager with a look at the data that
contributed to the rating. The reasons given for computing the rating can help the man-
ager determine potential courses of action to improve project quality.

Services provided:
e Evaluates overall project quality attributes

¢ Helps the manager explore the reasoning structure to showwhy the attributes
were rated as they were

341
10001966

Information required:
e Model of each measure type
. Currcnt value of each measure
e Expected completion value of each measure
® Model of each profile type
® Current values for each profile

e Schedule for the project of interest

3.24 Planning

The SME planning function provides the manager with the facilities to select, create,
and modify alternative plans. Each alternative plan “belongs” to the manager and may
be stored for use in later SME sessions.

An alternative plan consists of a set of completion estimates and a schedule. The man-

ager uses these plans in “what if” scenarios to explore the effects of altering the esti-

mates of final project size or cost or of changing the schedule.

The selected alternative plan is used by the monitoring, overall assessment, and guid-
ance functions. The manager sees the results of using the alternatives by reexecuting
these functions. I

The manager creates or modifies estimates and schedules by selecting the appropriate
editor from this function.

Services provided:

e Provides lists of alternative plans from which the manager selects alterna-
tives

® Passes control to the estimate editor or the schedule editor as requested by
the manager T - o

e Stores new or modified plans for subsequent use as requested by the manager
Morﬁation required; |

e List of alternative plans available for the project
3.24.1 ESTIMATE EDITOR

The estimate editor provides assistance with creating or modifying a set of completion
estimates for the project of interest.

3-42
10001968

mi a e Wi oW . a0 e s e« 1 o (1)

(it

daim

A

L

ik

GE i

LR

wmar AR A

VI Em

ORI

|

by

G

il |

On entering the estimate editor, the manager is provided with default estimate values
for each measure from the set of current estimates (Section 3.1.1.9).

To update the default values, the manager can simply edit as few or as many of the
completion estimates as desired. The editor displays the original estimate values next to
any modified values.

The manager can also select an editor option to create a new set of completion esti-
mates based on models. With this method, the manager supplies a basic project param-
eter such as the expected number of subsystems, lines of code, or staff hours. The editor
uses analytical models of relationships such as errors per line of code or staff hours per
module to generate a set of new estimate values. If desired, the manager may adjust the
new completion estimates by editing the individual values as described above.

Services provided:
® Creates an estimate set from the analytical models
e Modifies a copy of the cﬁrrent estimate set'
Information required:
e Analytical models for the development environment

e Current estimate set

3.242 SCHEDULE EDITOR

The schedule editor provides assistance with creating or modifying the schedule for the
project of interest.

On entering the schedule editor, the manager is provided with a default schedule con-
taining phase dates initialized from the current schedule (Section 3.1.1.8).

To update the default schedule, the manager simply edits the phase dates as desired.
The editor examines the edited schedule to ensure that only contiguous, nonoverlap-
ping phases are specified.

The manager can also select an editor option to create a new schedule based on a mod-
el. With this method, the manager supplies the start and end dates for the project. The
editor uses a schedule model as a template to determine phase transition dates for a
new schedule that matches the manager’s specified duration. If desired, the manager
may adjust the schedule by editing the phase dates as described above.

Services provided: -
® Creates a schedule using the standard schedule model

® Modifies the current schedule

3-43
10001968

Information required:
e Schedule model for deVeldpment environment
e Current schedule

| 3.2.5 Guidance

The SME guidance function provides the manager with assistance in selecting the
appropriate response to problems detected by the trend analysis and overall
assessment functions. The guidance is based on past experience with development proj-
ects in the environment, = mess o T T A i

The guidance function starts with the results of trend analysis and overall assessment:
the complete list of probable causes of deviations in the measures and the list of
low-rated quality attributes, respectively. These observations are input to an expert sys-
tem that attempts to find a common source for them.

The system “connects” diverse observations by finding common themes. For example,
observations such as “low reliability,” “not enough system testing,” and “lines of code
below normal” all have an inexperienced team as a common theme. The guidance func-
tion points out that the manager would benefit most from adding an experienced pro-
grammer to the team.

Services provided:

® Presentsa list of factors common to a majority of the trend analysis and over-
all assessment observations and suggestions for changing the factors

Information required:
e Schedule for the project of interest

Knowledge base

Subjective data

Mbdel of each measure f&pe

Current value of each measure

Expected completion value of each measure
‘Model of each profile type

Current values for each profile

3.3 - 7W - ARCii B ——

The SME hardware architecture is a description of how the processing and data are dis-
tributed among the hardware elements available to the SME. There are few restrictions
imposed on this distribution by the SME requirements. As a result, the configuration
described here is one of several that could have been adopted.

3-44
10001968

an W SN e Wn e | o & Wi W an e o« &N €l

113

0!

The Systems Technology Laboratory (STL) environment consists of VAX minicomput-
ers accessed by VT220 terminals or PC workstations emulating VT220 terminals. Fig-
ure 3-25 shows the hardware configuration adopted for the SME. The majority of the
SME software and all of the SME data reside on an STL VAX. A communications and
graphics program is employed as a user interface on the PC workstations.

@l

==

10

This configuration provides all managers with common access to the data in the corpo-
rate memory (SEL database). It ensures that managers at all levels are using the same
up-to-date data when examining a project. Placing some data on local storage at the PC
workstations was considered but rejected for reasons of simplicity. For the same reason,

Ll

% the SME program also executes all SME functions on the VAX.
= _
= STL VAX
%

SEL
= DATABASE
g
=
=
— MANAGER'S
= DATA
=
= :
B Figure 3-25. SME Hardware Architecture

345
10001968

fIERN

Probably the key benefit of the PC workstation for the SME is accessibility: it sits right
on the manager’s desk. SME functions are substitutes for many of the manager’s cur-
rent office activities, so making the SME available to the manager in the office simply
makes sense. _.

The hardware components used by the SME are not likely to change as the SME
evolves; a common source of data and a remote access device with graphics capabilities
are central to the concept of the SME.

346

10001966

gl n g W am S0 9w & &l mW os g

(e

t I

(dith]

(hig

il

ik

Ly

L

oo

LHi

L

3l |

T

ml m

wan

e

REFERENCES

10.

11.

12.

13.

14.

SEL-81-104, The Software Engineering Laboratory, D. N. Card, F. E. McGarry,
G. Page, et al., February 1982

V. Basili et al., “The Software Engineering Laboratory—An Operational Soft-

‘ware Experience Factory,” Proceedings of the 14th International Conference on

Software Engineering. New York: IEEE Computer Society Press, May 1992

J. Valett, “The Dynamic Management Information Tool (DYNAMITE):
Analysis of Prototype, Requirements, and Operational Scenarios,” Master’s
Thesis, University of Maryland, May 1987

SEL-81-101, Guide to Data Collection, V.E.Church, D.N.Card, and
F. E. McGarry, August 1982

SEL-92-002, Data Collection Procedures for the Software Engineering Laboratory
(SEL) Database, G. Heller, J. Valett, and M. Wild, March 1992

SEL-91-001, Software Engineering Laboratory (SEL) Relationships, Models, and
Management Rules, W. J. Decker, R. Hendrick, and J. Valett, February 1991

V. Basili and M. Zelkowitz, “Measuring Software Development Characteristics in
the Local Environment,” Computers and Structures, vol. 10, August 1978

R. Selby and V. Basili, “Comparing the Effectiveness of Software Testing Strate-
gies,” IEEE Transactions on Software Engineering, December 1987

J. Valett and A. Raskin, “DEASEL: An Expert System for Software Engineer-
ing,” Proceedings of the Tenth Annual Software Engineering Workshop, SEL-85-006,
December 1985

University of Maryland, Technical Report TR-1708, “An Evaluation of Expert Sys-
tems for Software Engineering Management,” C. Ramsey and V. Basili, Septem-
ber 1986

SEL-89-101, Software Engineering Laboratory (SEL) Database Organization and
User’s Guide (Revision 1), M. So, G. Heller, S. Steinberg, K. Pumphrey, and
D. Spiegel, February 1990

V.Basili and M. V. Zelkowitz, “Designing a Software Measurement Experi-
ment,” Proceedings of the Software Life Cycle Management Workshop, September
1977

SEL-83-001, An Approach to Cost Estimation, F.E.McGarry, G. Page
D. N. Card, et al., February 1984

SEL-79-002, The Software Engineering Laboratory: Relationship Equations,
K. Freburger and V. R. Basili, May 1979

10001968 R-1

]

T

fon

(e

qinir

[
=]
=

MEME WD QED W mom oW

10IRY

finan

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in this bibliography are or-
ganized into two groups. The first group is composed of documents issued by the Soft-
ware Engineering Laboratory (SEL) during its research and development activities.
The second group includes materials that were published elsewhere but pertain to SEL
activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer SoﬁWare Engineering Workshop,
August 1976

SEL-77-002, Proceedings From the Second Summer Software Engineering Workshop,
September 1977

SEL-77-004, A Demonstration of AXES for NAVPAK, M.Hamilton and
S. Zeldin, September 1977

SEL-77-005, GSFC NAVPAK Design Specifications Languages Study, P. A. Scheffer and
C. E. Velez, October 1977

SEL-78-005, Proceedings From the Third Summer Software Engineering Workshop,
September 1978

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study,
P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp,
December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User’s Guide
(Revision 3), W. J. Decker, W. A. Taylor, et al., July 1986

SEL-79-002, The Software Engineering Laboratory: Relationship Equations,
K. Freburger and V. R. Basili, May 1979

SEL~79-003, Common Software Module Repository (CSMR) System Description and
User’s Guide, C. E. Goorevich, A. L. Green, and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language
(PDL) in the Goddard Space Flight Center (GSFC) Code 580 Software Design Environ-
ment, C. E. Goorevich, A. L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Soﬁware Engineering Workshop,
November 1979

BI-1

10000229
0808/0130

SEL-80-002, Multi-Level Expression Design Language-Requirement Level (MEDL-R)
System Evaluation, W. J. Decker and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support Software System (MMS/

GSSS) State-of-the-Art Computer Systems/Compattbzltty Study, T. Welden,
M. McClellan, and P. Liebertz, May 1980

SEL-80-005, A Study of the Musa Reliability Model, A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engineering Workshop,
November 1980

SEL-80-007, An Appratsal of Selected Cost/Resource Estimation Models for Soﬁware
Systems, J. F. Cook and F. E. McGarry, December 1980

SEL-80-008, Tutorial on Models and Metrics for Software Management and Engmeermg,
V. R. Basili, 1980

SEL-81-008, Cost and Reliability Estimation Models (CAREM) User’s Guide, J. F. Cook
and E. Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer Workbench Phase 1 Evalua-
tion, W. J. Decker and E E. McGarry, March 1981

SEL-81-011, Evaluating Software Development by Analysis of Change Data,
D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve as a Model for Effort Distribution Over the Life of
Medium Scale Software Systems, G. O. Picasso, December 1981

SEL-81-013, Proceedings of the Sixth Annual Software Engineering Workshop, December
1981

SEL-81-014, Automated Collection of Software Engineering Data in the Software Engi-
neering Laboratory (SEL), A. L. Green, W. J. Decker, and F. E. McGarry, September
1981

SEL-81-101, Guide to Data Collection, V. E. 'Church, D. N. Card, F. E. McGarry, et al.,
August 1982

SEL-81-104, The Software Engineering Laboratory, D.N.Card, EE. McGarry
G. Page et al February 1982

SEL-81- 107 SoﬁwareEngmeenngLaboratory (SEL) CompendzumofTooIs (Revision 1),
W. J. Decker, W. A. Taylor, E. J. Smith, et al.,, February 1982

SEL-81-110, Evaluation of an Independent Verification and Validation (IV&V) Methodol-
ogy for Flight Dynamics, G. Page, F. E. McGarry, and D. N. Card, June 1985

BI-2

10000229
0608/0180

al M e e 4 " ¢ a | |

\

ol o w at ai
i I i Il

i en (W o

erinn)

wnn @ GIED wEel e gow g

L

anm vl

A

L)

fizmin

SEL-81-305, Recommended Approach to Sofiware Development, L. Landis,
F. E. McGarry, S. Waligora, et al., June 1992

SEL-82-001, Evaluation of Management Measures of Sofiware Development, G. Page,
D. N. Card, and F. E. McGarry, September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982 |

SEL-82-007, Proceedings of the Seventh Annual Software Engineering Workshop,
December 1982

SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From
the Software Engineering Laboratory, V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program (SAP) System Description
(Revision 1), W. A. Taylor and W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst,
M. G. Rohleder, and F. E. McGarry, October 1983

SEL-82-1006, Annotated Bibliography of Software Engineering Laboratory Literature,
L. Morusiewicz and J. Valett, November 1991

SEL-83-001, An Approach to Software Cost Estimation, F E. McGarry, G. Page,
D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development, D.N. Card,
F E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Volume II, November 1983

SEL-83-006, Monitoring Software Development Through Dynamic Variables,
C. W. Doerflinger, November 1983

SEL-83-007, Proceedings of the Eighth Annual Software Engineering Workshop,
November 1983

SEL-83-106, Monitoring Software Development Through Dynamic Variables (Revi-
sion1),C. W. Doerﬂmger, November 1989

SEL-84-003, Investigation of Specification Measures for the SaftwareEngmeenngLabora-
tory (SEL), W. W, Agrestx V.E. Church and F. E. McGarry, December 1984

SEL-84-004, Proceedings of the Nmth Annual Software Engineering Workshop,
November 1984

SEL-84-101, Manager's Handbook for Sofiware Development (Revision 1), L. Landis,
F E. McGarry, S. Waligora, et al., November 1990

SEL-85-001, A Comparison of Software Verification ‘Tbchniques, D. N. Card,
R. W. Selby, Jr., E. E. McGarry, et al., April 1985

BI-3

10000229
0008/0130

SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray
Observatory Ada Development Team, R. Murphy and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Volume III, November 1985

SEL-85-004, Evaluations of Software Technologies: Testing CLEANROOM, and
Metrics, R. W. Selby, Jr., and V. R. Basili, May 1985

SEL-85-005, Software Veﬁﬁcaﬁbﬁ and Testing, D. N. Card, E. Edwards, F. McGarry,
and C. Antle, December 1985

SEL-85-006, Proceedings of the Tenth Annual Software Engineering Workshop,
December 1985

SEL-86-001, Programmer’s Handbook for Flight Dynamics Software Development,
R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development, E.Seidewitz and
M. Stark, August 1986

SEL-86-003, Flight Dynamics System Software Development Environment (FDS/SDE)
Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers: Volume IV, November 1986
SEL-86-005, Measuring Software Design, D. N. Card et al., November 1986

SEL-86-006, Proceedings of the Eleventh Annual Sofiware Engineering Workshop,
December 1986

SEL-87-001, Product Assurance Policies and Procedures for Flight Dynamics Soﬁware
Development, S. Perry et al., March 1987

SEL-87-002, Ada® Style Guide (Version 1.1), E. Seidewitz et al., May 1987

SEL-87-003, Guidelines for Applying the Composite Specification Model (CSM),
W. W. Agresti, June 1987

SEL-87-004, Assessing the Ada® Design Process and Its Implzcatlons A Case Study
S. Godfrey, C. Brophy, et al, July 1987

SEL-87-009, Collected Soﬁ‘ware Engineering Papers: Volume ¥, November 1987

SEL-87-010, Proceedings of the Twelfth Annual Software Engineering Workshop,
December 1987

SEL-88-001, System Testing of a Production Ada Project: The GRODY Study, J. Seigle,
L. Esker, and Y. Shi, November 1988

SEL-88-002, Collected Software Engineering Papers: Volume VI, November 1988

BI-4

10000229
0908/0130

« 0 & {

a = am W e

LT

[b i il
el dl M

auer - Cme

L

Ll

gl o omm o g

LT}

o

Al

Ll

]

i

flm

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase
Analysis, K. Quimby and L. Esker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual Software Engineering Workshop,
November 1988

SEL-88-005, Proceedings of the First NASA Ada User’s Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project: The GRODY Study,
S. Godfrey and C. Brophy, September 1989

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area: Implementation/

| Testing Phase Analysis, K. Quimby, L. Esker, L. Smith, M. Stark, and F. McGarry,

November 1989 7

SEL-89-005, Lessons Leamed in the Transition to Ada From FORTRAN at NASA/
Goddard, C. Brophy, November 1989

SEL-89-006, Collected Software Engineering Papers: Volume VII, November 1989

SEL-89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop,
November 1989

SEL-89-008, Pmceedmgs of the Second NASA Ada Users Symposzum, November 1989

SEL-89-101, Software Engineering Laboratory (SEL) Database Organization and Users
Guide (Revision 1), M. So, G. Heller, S. Steinberg, K. Pumphrey, and D. Spiegel,
February 1990

SEL-89-103, Software Managementﬂ Environment (SME) Concepts and Architecture
(Revision 1), R. Hendnck, D. sztler and J. Valett, September 1992

SEL-90-001, Database Access Manager for the Software Engineering Laboratory
(DAMSEL) User’s Guide, M. Buhler, K. Pumphrey, and D. Spiegel, March 1990

SEL-90-002, The Cleanroom Case Study in the Software Engineering Laboratory: Project
Description and Early Analysis, S. Green et al., March 1990

SEL-90-003, A4 Study of the Portability of an Ada System in the Software Engineering Labo-
ratory (SEL), L. O. Jun and S. R. Valett, June 1990

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODY) Experi-
ment Summary, T. McDermott and M. Stark, September 1990

SEL-90-005, Collected Software Engineering Papers: Volume VIII, November 1990

SEL-90-006, Proceedings of the Fifteenth Annual Software Engineering Workshop,
November 1990

SEL-91-001, Software Engineering Laboratory (SEL) Relationships, Models, and Man-
agement Rules, W. Decker, R. Hendrick, and J. Valett, February 1991

BI-5

10000229
0808/0130

SEL-91-003, Software Engineering Laboratory (SEL) Ada Performance Study Report,
E. W. Booth and M. E. Stark, July 1991

SEL-91-004, Software Engineering Laboratory (SEL) Cleanroom Process Model,
S. Green, November 1991

SEL-91-005, Collected Software Engineering Papers: Volume IX, November 1991

SEL-91-006, Proceedings of the Sixteenth Annual Software Engineering Workshop,
December 1991

SEL-91-102, Software Engineering Laboratory (SEL) Data and Information Policy (Revi-
sion 1), F. McGarry, August 1991

SEL-92-001, Software Management Envzronment (SME) Installation Guide, D. Kistler,
January 1992

SEL-92-002, Data Collection Procedures for the Software Engineering Laboratory (SEL)
Database, G. Heller, March 1992

SEL-RELATED LITERATURE

4Agresti, W. W, V. E. Church, D. N. Card, and P. L. Lo, “Designing With Ada for Sat-
ellite Simulation: A Case Study,” Proceedzngs of the Fm't Intematzonal Symposium on
Ada for the NASA Space Station, June 1986 —

2Agresti, W. W, E. E. McGarry, D. N. Card, et al., “Measuring Software Technology,”
Program Transformation and ngrammngnwronments New York: Springer-Verlag,
1984

1Bailey, J. W, and V. R. Basxlg “A Meta-Model for Software Development Resource
Expendltures, ” Proceedings of the Fifth International Conference on Software Engineer-
ing. New York: IEEE Computer Society Press, 1981

8Balley, J.W,and V. R. Bas1ll “Software Reclamation: ‘Improving Post-Development
Reusability,” Proceedings of the Etghth Annual National Conference on Ada Technology,
March 1990

1Basili, V. R., “Models and Metrics for Software Management and Engineering,”
ASME Advances in Computer Technology, January 1980, vol. 1 -

Basili, V. R., Tutorial on Models and Metrics for Software Management and Engineering.
New York: TEEE Computer Society Press, 1980 (also designated SEL-80-008)

3Basili, V. R., “Quantitative Evaluation of Software Methodology,” Proceedings of the
First Pan-Paczﬁc Computer Conference, September 1985

TBasili, V. R., Maintenance = Reuse-Oriented Software Development University of
Maryland, Techmcal Report TR-2244, May 1989

BI-6

10000229
0808/0130

(¢

T w0 W W & s e o« a4l al el

v

Tl

i

¢m - o el

L4

i

Qo e

Ll

i

mi

aiE v

ol i

|
t

Ul

|

e

TBasili, V. R., Software Development: A Paradigm for the Future, University of Maryland,
Technical Report TR-2263, June 1989

8Basili, V. R., “Viewing Maintenance of Reuse-Oriented Software Development,”
IEEE Software, January 1990

1Basili, V. R., and J. Beane, “Can the Parr Curve Help With Manpower Dlstnbutlon
and Resource Estimation Problems?,” Journal of Systems and Software, February 1981,
vol. 2, no. 1

%Basili, V. R., and G. Caldiera, A Reference Architecture for the Component Factory,
University of Maryland, Technical Report TR-2607, March 1991

1Basili, V. R., and K. Freburger, “Programming Measurement and Estimation in the
Software Engineering Laboratory,” Journal of Systems and Software, February 1981,
vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, “Finding Relationships Between Effort and
Other Variables in the SEL,” Proceedings of the International Computer Software and
Applications Conference, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction and Reliability Assessment in
the SEL Environment, University of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, “Software Errors and Complexity: An Empirical
Investigation,” Communications of the ACM, January 1984, vol. 27, no. 1

1Basili, V. R., and T. Phillips, “Evaluating and Comparing Software Metrics in the Soft-
ware Engineering Laboratory,” Proceedings of the ACM SIGMETRICS Symposium/
Workshop: Quality Metrics, March 1981

3Basili, V. R., and C. L. Ramsey, “ARROWSMITH-P—A Prototype Expert System for
Software Engineering Management,” Proceedings of the IEEE/MITRE Expert Systems
in Government Symposium, October 1985

Basili, V. R., and J. Ramsey, Structural Coverage of Functional Testing, University of
Maryland, Technical Report TR-1442, September 1984

Basili, V. R., and R. Reiter, “Evaluating Automatable Measures for Software Develop-
ment,” Proceedings of the Workshop on Quantitative Software Models for Reliability,
Complexity and Cost. New York: IEEE Computer Society Press, 1979

and Enwronments ” Pmceedmgs' o}"the 9th Intermational Conference on Software Engi-
neering, March 1987

5Basili, V.R,, and H. D. Rombach “T A M E: 'Ihllonng an Ada Measurement Envi-
ronment,” Proceedmgv of the Joint Ada Conference, March 1987

BI-7

10000229
0B808/0130

3Basili, V. R., and H. D. Rombach, “T A ME: Integrating Measurement Into Software
Environments,” University of Maryland, Technical Report TR-1764, June 1987

6Basili, V. R., and H. D. Rombach, “The TAME Project: Towards Improvement-
Oriented Software Environments,” IEEE Transactions on Software Engineering, June
1988

TBasili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse: A
Reuse-Enabling Software Evolution Environment, University of Maryland, Technical
Report TR-2158, December 1988

8Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse:
Model-Based Reuse Characterization Schemes, University of Maryland, Technical
Report TR-2446, April 1990

9Basili, V. R., and H. D. Rombach, Support for Comprehensive Reuse, University of
Maryland, Technical Report TR-2606, February 1991

3Basili, V. R., and R. W. Selby, Jr., “Calculation and Use of an Environment’s Charac-
teristic Software Metric Set,” Proceedings of the Eighth International Conference on Soft-
ware Engineering. New York: IEEE Computer Society Press, 1985

Basili, V. R., and R. W. Selby, Jr., Comparing the Effectiveness of Software Testing Strate-
gies, University of Maryland, Technical Report TR-1501, May 1985

3Basili, V. R., and R. W. Selby, Jr., “Four Applications of a Software Data Collection
and Analysis Methodology,” Proceedings of the NATO Advanced Study Institute, August
1985

5Basili, V. R., and R. Selby, “Comparing the Effectiveness of Software Testing Strate-
gies,” IEEE Transactions on Software Engineering, December 1987

9Basili, V. R., and R. W, Selby, “Paradigms for Experimentation and Empirical Studies
in Software Engineering,” Reliability Engineering and System Safety, January 1991

4Basili, V.R., R. W, Selby, Jr., and D. H. Hutéhcns, “Experimentation in Software
Engineering,” IEEE Transactions on Software Engineering, July 1986

2Basili, V.R.,R. W. Selby, and T. Phillips, “Metric Analysis and Data Validation Across
FORTRAN Projects,” IEEE Transactions on Software Engineering, November 1983
2Basili, V. R., and D. M. Weiss, A Methodology for Collecting Valid Software Engineering
Data, University of Maryland, Technical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, “A Methodology for Collecting Valid Software Engi-
neering Data,” IEEE Transactions on Software Engineering, November 1984

'Basili, V. R., and M. V. Zelkowitz, “The Software Engineering Laboratory: Objec-
tives,” Proceedings of the Fifteenth Annual Conference on Computer Personnel Research,
August 1977

BI-8

10000229
0008/0130

[

o =W W g

"
i

UM OV

i

L

LR

wmE mE e

L

!
f

i

{1l

Ll

L

Ll

I

i

aime

min

T

i

il

Basili, V. R., and M. V. Zelkowitz, “Designing a Software Measurement Experiment,”
Proceedings of the Software Life Cycle Management Workshop, September 1977

1Basili, V. R., and M. V. Zelkowitz, “Operation of the Software Engineering Labora-
tory,” Proceedings of the Second Software Life Cycle Management Workshop, August
1978

1Basili, V. R., and M. V. Zelkowitz, “Measuring Software Development Characteristics
in the Local Environment,” Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, “Analyzing Medium Scale Software Development,”
Proceedings of the Third International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1978

~ 9Booth, E. W, and M.E. Stark, “Deslgmng Conﬁgurable Software COMPASS Imple-

mentation Concepts,” Proceedings of Tri-Ada 1991, October 1991

9Briand, L. C., V. R. Basili, and W, M. Thomas, A Pattern Recognition Approach for Soft-
ware Engineering Data Analysis, University of Maryland, Technical Report TR-2672,
May 1991

SBrophy, C. E., W. W. Agresti, and V. R. Basili, “Lessons Learned in Use of Ada-
Oriented Desrgn Methods ” Proceedmgs of the Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R Basnh “Lessons Leamed in the
Implementatlon Phase of a Large Ada Project,” Proceedings of the Washington Ada
Technical Conference, March 1988

2Card, D. N., “Early Estimation of Resource Expendrtures and Program Size,”
Computer Scrences Corporation, Technical Memorandum, June 1982

2Card, D. N., “Comparison of Regression Modeling Techniques for Resource Estima-
tion,” Computer Sciences Corporation, Technical Memorandum, November 1982

3Card, D.N., “A Software Technology Evaluation Program,” Annais do XVIII
Congresso Nacwnal de Informatzca, October 1985

5Card,D. N.,and W. W Agrestl “Resolvmg the Software Science Anomaly,” The Jour-
nal of .S)'stems and Software, 1987

6Card, D.N.,and W. W, Agrestl, “Measurmg Software Desrgn Complexity,” The Jour-
nal of Systems and Software, June 1988

~ 4Card, D.N., V. E. Church, and W. W. Agresti, “An Empirical Study of Software Design

Practices,” IEEE Transactions on Software Engineering, February 1986

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan, “A Software Engineering
View of Flight Dynamics Analysis System,” Parts I and IT, Computer Sciences Corpora-
tion, Technical Memorandum, February 1984

BI-9

10000229
0808/0130

Card, D.N,,Q. L. Jordan, and V. E. Church, “Characteristics of FORTRAN Modules,”
Computer Sciences Corporation, Technical Memorandum, June 1984 --- -

Card, D.N,, F.E.McGarry, and G.T Page, “Evaluating Software Engineering
'Ib«:hno]c:glesj’ﬁIEEEr Transactions on Software Engineering, July 1987

3Card, D. N., G. T. Page, and F. E. McGarry, “Criteria for Software Modularization,”
Proceedings of the Eighth International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1985

1Chen, E., and M. V, Zelkowitz, “Use of Cluster Analysis To Evaluate Software Engi-
neering Methodologies,” Proceedings of the Fifth Intemnational Conference on Software
Engineering. New York: IEEE Computer Society Press, 1981

4Church, V.E., D.N. Card, W. W. Agresti, and Q. L. Jordan, “An Approach for
Assessing Software Prototypes,” ACM Software Engineering Notes, July 1986

2Doerflinger, C. W,, and V. R. Basili, “Monitoring Software Development Through
Dynamic Variables,” Proceedings of the Seventh International Computer Software and
Applications Conference. New York: IEEE Computer Society Press, 1983

Doubleday, D., ASAP: An Ada Static Source Code Analyzer Program, University of

Maryland, Technical Report TR-1895, August 1987 (NOTE: 100 pages long)

6Godfrey, S., and C. Brophy, “Experiences in the Implementation of a Large Ada
Project,” Proceedings of the 1988 Washington Ada Symposium, June 1988

Hamilton, M., and S. Zeldin, A Demonstration of AXES for NAVPAK, Higher Order
Software, Inc TR-9, September 1977 (also designated SEL-77-005)

SJeffery, D. R., and V. Basili, Charactenzmg Resource Data: A Model for Logzcal
Association of Soﬁ‘ware Data, Umversxty of Maxyland Technical Report TR-1848, May
1987

6Jeffery, D. R., and V. R. Basili, “Validating the TAME Resource Data Model,” Pro-
ceedings of the Tenth International Conference on Software Engineering, April 1988

SMark, L., and H. D. Rombach, A Meta Information Base for Software Engmeenng,
Umversnty of Maryland, Technical Report TR-1765, July 1987 . o

6Mark, L., and H. D. Rombach, “Generating Customized Software Engmeermg
Informatlon Bases From Software Process and Product Specifications,” Proceedings of

the 22nd Annual Hawaii International Conference on System Sciences, January 1989

5M9Garrg, E E. and W. W. Agresti, “Measuring Ada for Software Development in the
Software Engineering Laboratory (SEL),” Proceedings of the 21st Annual Hawaii
International Conference on System Sciences, January 1988

"McGarry, F, L. Esker, and K. Quimby, “Evolution of Ada Technology in 2 Production

Software Enwronment » Proceedings of the Sixth Washington Ada Symposium
(WADAS), June 1989

BI-10

10000228
0008/0130

f

il

&l] l I||

i

(I

UEr

o

|

1l

mey

ainn

(il

w

CIE

1!

ool emE o el

L il

)

i il

- 3McGarry, F. E., J. Valett, and D. Hall, “Measuring the Impact of Computer Resource

Quality on the Software Development Process and Product,” Proceedings of the
Hawaiian International Conference on System Sciences, January 1985

National Aeronautics and Space Administration (NASA), NASA Software Research
Technology Workshop (Proceedings), March 1980

3Page, G., F. E. McGarry, and D. N. Card, “A Practical Experience With Independent
Venﬁcatlon and Validation,” Proceedings of the Eighth International Computer Software
and Applzcatwns Conference November 1984

5Ramsey, C.L, “and V. R. Basﬂl, An Evaluatzon of Expert Systems for Soﬁ‘ware Engi-
neering Management University of Maryland, Technical Report TR-1708, September
1986

3Ramsey, J., and V. R. Basili, “Analyzing the Test Process Using Structural Coverage,”
Proceedings of the Eighth Intemational Conference on Sofiware Engineering. New York:
IEEE Computer Society Press, 1985

SRombach, H. D., “A Controlled Experiment on the Impact of Software Structure on
Maintainability,” IEEE Transactions on Software Engineering, March 1987

8Rombach, H. D., “Design Measurement: Some Lessons Learned,” IEEE Software,
March 1990

9Rombach_, H. D., “Software Reuse: A Key to the Maintenance Problem,” Butterworth
Journal of Information and Software Technology, January/February 1991

6Rombach, H. D., and V. R. Basili, “Quantitative Assessment of Maintenance: An
Industrial Case Study,” Proceedings From the Conference on Software Maintenance,
September 1987

6Rombach, H. D., and L. Mark, “Software Process and Product Specifications: A Basis
for Generating Customized SE Information Bases,” Proceedings of the 22nd Annual
Hawaii Intematzonal Conference on System Sczences, J anuary 1989

TRombach, H. D., and B. T. Ulery, Establzshmg a Measurement Based Maintenance
Improvement ngram Lessons Leamed in the SEL, University of Maryland, Technical
Report TR-2252, May 1989

6Seidewitz, E., “Object-Oriented Programming in Smalltalk and Ada,” Proceedings
of the 1987 Conference on Object-Oriented Programming Systems, Languages, and
Applications, October 1987

SSeidewitz, E., “General Object-Oriented Software Development: Background and
Experience,” Proceedings of the 21st Hawaii International Conference on System
Sciences, January 1988

BI-11

10000229
0808/0130

6Seidewitz, E., “General Object-Onented Software Development with Ada: A Life
Cycle Approach » Proceedings of the CASE Technology Conference, April 1988

9Seidewitz, E., “Object-Oriented Programming Through Type Extension in Ada 9X,”
Ada Letters, March/Aprll 1991

4Seidewitz, E., and M. Stark, “Towards a General Ob]ect-Onented Software Develop-
ment Methodology,” Proceedings of the First International .Symposzum on Ada for the
NASA Space Station, June 1986

Seidewitz, E., and M. Stark, “An Object-Oriented Approach to Parameterized Soft-
ware in Ada,” Proceedings of the Eighth Washington Ada Symposium, June 1991

8Stark, M., “On Designing Parametrized Systems Using Ada,” Proceedings of the
Seventh Washington Ada Symposium, June 1990

TStark, M. E. and E. W. Booth, “Using Ada to Maximize Verbatim Software Reuse,”
Proceedings of TRI-Ada 1989, October 1989

5Stark, M., and E. Seidewitz, “Towards a General Object-Oriented Ada Lifecycle,”
Proceedings of the Joint Ada Conference, March 1987

8Straub, P. A., and M. V. Zelkowitz, “PUC: A Functional Specification Language for
Ada,” Proceedmgs' of the Tenth Interational Conference of the Chilean Computer Science
Society, July 1990

TSunazuka, T., and V. R. Basili, Integrating Automated Support for a Sofiware Manage-
ment Cycle Into the TAME System, University of Maryland, Technical Report TR-2289,
July 1989

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL Software Develop-
ment Data, Data and Analysis Center for Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compendtum, Data and
Analysis Center for Software, Special Publication, April 1981 -

5Valett, J. D., and F. E. McGarry, “A Summary of Software Measurement Experiences
in the Software Engineering Laboratory,” Proceedings of the 21st Annual Hawaii
International Conference on System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, “Evaluating Software Development by Analysis of
Changes: Some Data From the Software Engineering Laboratory,” IEEE Transactions
on Software Engineering, February 1985

SWu, L., V. R. Basili, and K. Reed, “A Structure Coverage Tool for Ada Software Sys-
tems,” Proceedings of the Joint Ada Conference, March 1987

1Zelkowitz, M. V., “Resource Estimation for Medium-Scale Software Projects,” Pro-
ceedings of the Twelfth Conference on the Interface of Statistics and Computer Science.
New York: IEEE Computer Society Press, 1979

BI-12

10000228
0808/0130

L B it u | 2l Wi ||

I

| @ wl

t

l,ﬂ...,,w | I,
o e | L

ﬂ il

s

{17!

I3

il

LI

L

an

cm

i)
i "

Lol

il 14

i

CI

2Zelkowitz, M. V,, “Data Collection and Evaluation for Experimental Computer
Science Research,” Empirical Foundations for Computer and Information Science (Pro-
ceedings), November 1982 - ’

6Zelkowitz, M. V., “The Effectiveness of Software Prototyping: A Case Study,” Pro-
ceedings of the 26th Annual Technical Symposium of the Washington, D. C., Chapter of the
ACM, June 1987

6Zelkowitz, M. V,, “Resource Utilization During Software Development,” Journal of
Systems and Software, 1988

8Zelkowitz, M. V,, “Evolution Towards Specifications Environment: Experiences With
Syntax Editors,” Information and Software Technology, April 1990

Zelkowitz, M. V,, and V. R. Basili, “Operational Aspects of a Software Measurement
Facility,” Proceedings of the Software Life Cycle Management Workshop, September 1977

BI-13

10000229
0908/0130

NOTES:

IThis article also appears in SEL-82-004,
Volume I, July 1982.

2This article also appears in SEL-83-003,
Volume II, November 1983.

3This article also appears in SEL-85-003,
Volume III, November 1985.

4This article also appears in SEL-86-004,
Volume IV, November 1986.

S5This article also appears in SEL-87-009,
Volume V, November 1987.

%This article also appears in SEL-88-002,
Volume VI, November 1988.

TThis article also appears in SEL-89-006,
Volume VII, November 1989.

8This article also appears in SEL-90-005,
Volume VIII, November 1990.

9This article also appears in SEL-91-005,
Volume IX, November 1991.

BI-14

10000229
0906/0130

Collected Soﬁ‘ware Engineefing Papers:
Collected Software Engineering Papers:
Collected Software Engineering Papers:
Collected Software Engineering Papers:
Collected Software Engineering Papers:
Collected Software Engineering Papers:
Collected Software Engineering Papers:
Collected Software Engineering Papers:

Collected Software Engineering Papers:

rm Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information Is estimated 1o average 1 hour per responsa, including the time for reviewing Instructions, searching existing data sources,
gathering and malnlalnin? the data needed, and completing and reviewing the coilection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503,

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
SEPTEMBER 1992
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
SOFTWARE MANAGEMENT ENVIRONMENT (SME) CONCEPTS
AND ARCHITECTURE REVISION
6. AUTHOR(S) ’ SEL 89 103
NASA-Jon Valett; Univ. of MD-David Kistler; CSC-Robert !
Hendrick
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES) 8. PEFORMING ORGANIZATION
REPORT NUMBER
Same as #6
CR189293
9. SPONSORING / MONITORING ADGENCY NAME(S) AND ADDRESS (ES) 10. SPONSORING / MONITORING
ADGENCY REPORT NUMBER
National Aeronautics and Space Administration
Goddard Space Flight Center, Greenbelt, MD 20771 CR189293

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATMENT 12b. DISTRIBUTION CODE

Single copies can be obtained from: Software Engineering Branch, Code 552,
GSFC, Greenbelt, MD 20771.

13. ABSTRACT (Maximum 200 words)
This document presents the concepts and architecture of the Software Management Environment (SME), devel-
oped for the Software Enginerring Branch (Code 552).. of the Flight Dynamic Division (FDD) of the Goddard
Space Flight Center (GSFC). The SME provides an integrated set of experience-based management tools that can
assist software development managers in managing and planning flight dynamics software development projects.
This document provides a high-level description of the types of information required to implement such an auto-
mated management tool, and it presents an architectural framework in which a set of management services can be
provided.

This document is a major revision of SEL-89-003.

14. SUBJECT TERMS 15. NUMBER OF PAGES
SEL Management, Environnment/SME,, SME Functions; Architecture-/Data, Func- PP
16. PRICE CODE

tional Architecture, Hardware Architecture

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. IMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT UL
Unclassified Unclassified Unclassified
NSN 7540-01-280.5500 Standard Form 208 (Rev. 2-69)

Prescribed by ANSI Std. Z39.18
298-102

