NASA-CR-195762 ~

= Febuary 1994 UILU-ENG-94-2203
CRHC-94-02

Center for Reliable and High-Performance Computing N GR-cA

- 2767
| 70/

R i e
i el

L DEPENDABILITY ANALYSIS OF
{#== PARALLEL SYSTEMS USING A
+ == SIMULATION-BASED APPROACH

Sy ety

Sawyer

_ .. (NASA-CR-195762) DEPENDABILITY N94-29846
Zi Z=== - ANALYSIS OF PARALLEL SYSTEMS USING
A SIMULATION-BASED APPROACH M.S.
Thesis (Illinois Univ.) 70 p Unclas

G3/62 0003767

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINO[S AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

W

1

LI (43

A

m‘u Lm W“}w; u Iw‘h a ﬂhlh oy

mﬂm_ ‘ih;\

L

m‘..‘.‘ \3.; |

M‘*' “ i

u“”

-yl |

-

UNCLASOLE LED

GRITY CLASSIFICATION OF THIS PA

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS
None)

23, SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/ AVAILABILITY OF REPORT
Approved for public release;

—

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

S. MONITORING QRGANIZATION REPORT NUMBER(S)

UILU-ENG-94-2203 CRHC-94-02

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE ?YMBOL 7a. NAME OF MONITORING ORGANIZATION
Coordinated Science Lab (f applicable) Office of Naval Research, Natiomal Aeronauti
University of Illinois N/A Space Administration, _and Tandem

6¢c. ADDRESS (City, State, and ZIP Code)

* 1308 W. Main St.
Urbana, IL 61801

7b. ADDRESS (City, State, and ZIP Code)
800 N. Ouincy St.
Arlington, VA 22217
Moffet Field, CA 95043 Cupertipo, CA95(Q14

8b. OFFICE SYMBOL

8a. NAME OF FUNDING /SPONSORING
(If applicable)

ORGANIZATION Joint Services
Electronics Program

9. PROCUREMENT INSTRUMENT IDENTIFICATITN NUMBER
NASA NAG 1-613 e

N00O14-91-J-1116 randem

-

o

(-

8c. ADDRESS (City, State, and 2IP Code)

7a

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT
ELEMENT NO. NO.

WORK UNIT
ACCESSION NO.

TASK
NO.

11. TITLE (Include Security Classification)

Dependability Analysis of Parallel Systems using a Simulation-Based Approach

12. PERSONAL AUTHOR(S
) SAWYER, Darren Charles
13a. TYPE QF REPORT 13b. TIME COVERED 14. DATE OF REPQORT &Year Month, Day) ['S. PAGE COUNT
Technical FROM TO 94-02-02 68
16. SUPPLEMENTARY NOTATION
17. COSAT! CODES 18. SUBJECT TERMS (Continue on reverse if mecessary and identify by block number)
FIELD GROUP SUB-GROUP fault injection, simulation, models, parallel systems

19. ABSTRACT (Continue on revers

be analyzed through

dependability are de
presence of some kin

approaches.

The analysis of dependability in large, complex, parallel systems executing real applications or workloads
is examined in this thesis. To effectively demonstrate the wide range of dependability problems that can

zation of the simulation model
are explained, showing the use

The simulation models are constructed using DEPEND an .
rived from the experimental results. Another interesting facet of all three cases 18 the

provides a completely new dimension to this type of study,

e if necessary and identify by block number)

simulation, the analysis of three case studies is presented. For each case, the organi-
used is outlined, and the results from simulated fault injection experiments
fulness of this method in dependability modeling of large parallel systems.
d C++. Where possible, methods to increase .

in the simulation while faults are injected. This

d of workload of application executing
not possible to model accurately with analytical

20. DISTRIBUTION / AVAILABILITY
UNCLASSIFIED/UNLIMITED

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

Of ABSTRACT

[saME As ReT. [OTIC USERS

{ o |;rn

22a. NAME OF RESPONSIBLE INDIVIDUAL

22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL

DD FORM 1473, 34 MAR

83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete.
UNCLASSIFIED

L1

L

e

¢ I

¢

AR o

" 'l! meme y
NPT

L .

= ¢

b

AN &

i

DEPENDABILITY ANALYSIS OF PARALLEL SYSTEMS
USING A SIMULATION-BASED APPROACH

BY

DARREN CHARLES SAWYER

B.S., Rensselaer Polytechnic Institute, 1992

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1994

Urbana, Illinois

&l Wi

|

w4 Mmoo

G

M

w:wumn "
[

LR

L

L

I!

R

- =

i

am

LK

L it A 1

3 A S

i

£

PRBCENG PAGE BLAKNK NOT Fi MEL

iii

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my thesis advisor, Professor Ravi K.
Tyer, for all of his assistance and guidance throughout this thesis work. I would also like to
thank my peers at the Center for Reliable and High-Performance Computing for their help
with an assortment of questions that I posed to them. In particular would like to recognize
Kumar “K-Master” Goswami for his invaluable advice, and Greg Ries who did much of the
original development of the DASH model. Additionally, I would like to thank Joe Yarmus, Sue
Maxwell, Dave Douglas, Andy Nanopoulos, and fhe others at Thinking Machines and NCSA
who assisted in the RAID and CM-5 work. Finally, I would like to thank my family for all of

the support and encouragement they gave me throughout my college experience.

A
v
[
=0
Sy

=

¢y

(o

L.

iv
TABLE OF CONTENTS
INTRODUCTION o e e e e e e et e e e e e e e e e
1.1 Motivation . . . & v v v v e e e e e e e e e e e e e e
12 RelatedWork e e e e e e e e
1.3 Thesis OVEIVIEW . . « v v v v v v v v e et e e e e e e e e e e s
ANALYSIS OF A RAID-3I/OSUBSYSTEM
2.1 SimulationModel
2.1.1 Modelingthedisks.
2.1.2 Modeling the RAID-3 mechanisms
2.1.3 Modelingtheworkload
2.1.4 Hybrid acceleration techniques
2.2 Sensitivity Analysis of Model Parameters
2.2.1 Effect of disk hardware failures
2.2.2 Effect of disk writeerrorrate
2.2.3 Effect of parity groupsizeo .o
2.2.4 FEffectofdiskcapacityo
2.3 Scrubbing Experimentso
24 Comparison with AnalyticModels
2.5 Future Work and Conclusionso
ANALYSIS OF A DIRECTORY-BASED CACHE COHERENCE PROTOCOL
3.1 Stanford DASH o i e
32 SimulationModelo
32.1 Modelingthememory
3.2.2 Modeling processors andcaches
3.2.3 Modeling the directory controller
3.2.4 Modelingthenetwork
3.3 Fault Injection Simulation Experiments
33.1 Faultmodel e
3.3.2 Sample application - matrix multiply
333 Results. o v v o i e e e e
3.4 Adding Fault Tolerance tothe DASH

Page

F O S

10
12
13
14
14
16
17
18
19
22
23

25
26
27
28
29
30
30
31
31
32
32
34

- v
Y 3.4.1 Results of simulated fault tolerance 37
- 342 Explanationofresults 37
i 3.5 Conclusionsand Future Worko 38
he 4. IMPACT OF DEPENDABILITY ON PERFORMANCE IN MPP SYSTEMS . 40
DL 4.1 ConnectionMachineCM-5o 41
i B 42 CM-5SimulationModel oo 42
42.1 Model organization and fault models 44
4272 Executingarealworkload 47
423 Faultinjection process « « « + o v v oot i e 49
43 ExperimentalResults 50
= 43.1 Effect of link faults on Data Network performance 50
- 432 Deadlock due to link fault scenarios 53
.. 44 Conclusionsand FutureWork 56
= 5. CONCLUSIONS . . i i e e e e e e e e 58
.. 5.1 SUMMAIY . « - ¢ o v v o v e e e s 58
' B 52 FUtUTE WOTK . « o v v v v oo v e e e et e e 59

. =

REFERENCES . . . o i et v e e e e e it i e e e e 61

WWNHW
et 1

e

g ol

¢

cimoun

¢

RLE

L -

wprn
o

C:

ﬁ}m .y~
[ERTY

R

anm ﬂm}li

Bl

i

qum

L§ o

e

gmn e

i)

i

Table

2.1
2.2:
2.3:
2.4:
2.5:
3.1

vi

LIST OF TABLES

Synthetic workload characteristicso
Percentage of failures caused by double-biterrors
Comparison of error latencies for arrays with varied disk capacities . .

Experimental results from scrubbing experiments
Comparison of simple analytic and simulation model results
Distribution of possible fault outcomes for Matrix Multiply

Page

12
17
19
22
23
34

L Qi

| §:LN

L

)

Lbud)]

i

o

li

am

n
“

e

{ i

s v

¢

vii
LIST OF FIGURES

Figure Page
2.1: DEPEND model of RAID-3 diskarray 8
2.2: Effect of disk hardware failures on system MTIDL 15
2.3: Effect of disk write error rate on system MTTDL 16
2.4: Effect of parity group size on system MTIDL 18
2.5: Effect of scrubbing interval on system MTIDL. 21
3.1: Architectural organization of the Stanford DASH 26
3.2: Object configuration of a DASH cluster model, with DEPEND base classes

USEA . v v e e e e e e e e e e e e e e 28
4.1: Connection Machine CM-5 system diagram and Fat-Tree network 42
4.2: System-level diagram of CM-5 model created with DEPEND 45
4.3: Sample parallel program executed on the CM-5model 48
4.4: Effect of consecutive link faults on algorithm performance 52
4.5: Link fault scenario resultingindeadlock 56

€3
&3
[=4

LR

‘|'|"!
ih T

on

[==}
=
A

"
i

Hy

U

ﬂ‘ isdd

S

.

1. INTRODUCTION

1.1 Motivation

As parallel systems grow in size and number of components, the possibility of asingle failure
having a system-wide impact greatly increases. Designers can no longer rely on the inherent
component reliability to ensure acceptable system dependability. The systems themselves must
be designed to remain operational in the presence of faults, while maintaining an acceptable
level of performance. Given the “Grand Challenge” nature of applications running on these
machines, we can expect that applications may execute over the course of several days or even
weeks. Systems which fail often may never be able to complete these applications without the
ability to continue execution when a fault occurs.

Several methods have been used té evaluate the behavior of large parallel systems for
reliability and performance. Analysis of simple system reliability and performance can be
performed with available analytical and queue-based modeling tools [1, 2, 3]. Such tools

enable us to determine metrics including mean time between failures, system availability, and

reliability curves. One problem with these tools is that they suffer from state space explosion
when the number of components becomes large, as is typically the case with systems which
are massively parallel. Complicated advanced techniques and increased computing power can
limit the effect of this problem. More importantly, however, these tools lack the ability to
provide information about the behavior of the system while running real applications under
various fault scenarios. The inability to model the behavioral aspects of a faulty system leaves
many important design questions unanswered. Another approach to analyze a system under
faults involves injection of faults into a real machine, and then measuring the performance of
the wounded system. While this method is effective for smaller machines, massively parallel
systems, because of their size and typically limited access, do not lend themselves well to this
technique. Proposed here is the development of a functional simulation model as an alternative
to these two approaches. Unlike analytical and probabilistic simulation models, functional
simulation does not require that effect faults be specified by a predetermined set of probabilities
and distributions. Instead, the actual behavior of the system is modeled, providing us with
results which more accurately reflect what will really happen in a massively parallel system
which suffers from faults. This thesis demonstrates how functional simulation models can be

used to characterize system behavior under faults.

1.2 Related Work

Increasing work has been performed in the area of software and hardware fault injection of

prototype systems [4, 5, 6, 7, 8]. However, few studies evaluate a system without the benefit of

(|

&

I
I

L

]| { Q! an e ey

\n\
Iih \‘H
-

t"l L
.

e

ere

o i

k] Eu

Qe

d

"
sl

t

i

¢ an

e

(

i

(mn e

mir

some type of prototype, as is necessary in analyzing the system in the early design phase, where
improvements can be made much more easily. Czeck [9] and Goswami [10] provide examples
on how this typé of dependability analysis can be peﬁomed using a simulation approach.
The simulation environment used in developing the models of these systems is DEPEND, a
joint performability and dependability analysis tool that facilitates the modeling and analysis of
fault-tolerant architectures at the system level [11, 12]7 DEPEND provides a library of objects
which simulate the functional behavior of components commonly used in fault-tolerant systems.
These objects also inject faults, initiate repairs, compile fault statistics and genera‘te detailed
reports [13]. To model a system, the user writes a control program that declares instances of
these objects, initializes them and coordinates their actions in a way that mimics the system
be.ing sirﬁulated. The bulk of the simulation work is performed by the DEPEND objects.
DEPEND also allows the usc.er control over the simulation engine: the user can abort and
reschedule events. This feature is extremely useful for fault-based simulations where actions
have to be aborted and rescheduled to properly model the effects of faults and errors in the
system. The user writes a control program in C++ with the objects provided by DEPEND. Once
it is written, the program is compiled and linked with the DEPEND objects and the run-time
environment. Another important aspect of DEPEND is the ability to incorporate application
execution into the simulation [14]. DEPEND has been used to successfully model a wide array
of architectures. Models have been developed for the Tandem Integrity S2, Parasytic GC [15],

Stanford DASH, and Connection Machine CM-5, among others.

1.3 Thesis Overview

The anai)}sis of dependability in large, complex, parallel systems exe&:uting real applications
or workloads is examined in this thesis. To effectively demonstrate the wide range of depend-
ability problems that can be analyzed through simulation, the analysis of three case studies
is presented. For each case, the organization of the simulétioh model usecriris”outlined, and
the results from simulated fault injection experiments are expléincd, sﬁowing the usefulness
of this method in dependability modeling of large parallel systems. The simulation models
are constructed using DEPEND and C++. Where possible, methods to increase dependability
are derived from the experimental results. Another interesting facet of all three cases is the
presence of some kind of workload of application execufing in the simulation while faults are
injected. This provides a completely new dimension to this type of study, not possible to model
accurately with analytical approaches.

The first case study examines design trade-offs in a RAID-3 disk array system. Disk failures
and write errors are injected into the array under realistic workload conditions. Several array
configuration parameters are varied to determine their effect on the mean time to data loss in
the array. The effectiveness of a scrubbing algorithm is also explored. Hybrid techniques for
simulation acceleration are included in the model description.

A directory;based cache coherence protocol in a shared memor}.f multiprocessor system is
the focus of the next study. A simulation model of the Stanford DASH system is developed to

facilitate this. The effect of faults in directory memory on the results of an executing parallel

§ I

Qi

S

] |y t 1 Qi o&m el @ &M ew €5 & 4«0

mwu 1l I (LT
T [

LU

cor

mo
L

o

]
o

T

i
!

{

L A

o

L iS4

oot

e

il

it

Lobilh

it i

application is determined. The results are used to determine a method to increase fault tolerance
in the DASH system with respect to a wide class of faults.

The third and final case study centers on network failures in a massively parallel distributed
memory supercomputer based on the Connection Machine CM-5 architecture. A simulation
model is used to analyze several applications which exhibit different message passing charac-
teristics. Assuming a rerouting strategy in a faulted network, a series of faults is injected in
network components, and the associated performance degradation is quantified.

The thesis concludes with suggestions for possible future work in this area.

2. ANALYSIS OF A RAID-3 I/O SUBSYSTEM

In this chapter, we explor¢ how RAID-3 disk arrays [16] react to disk failures and errors
under realistic workload conditions. A simulation model is presented which models two fault
scenarios common in the type of disks used in these arrays. The model allows a number of
parameters to be varied, allowing the analysis of disk systems with various configurations.
Of particular interest is the effect of error latency on the disk array mean time to data loss
(MTTDL). MTTDL is the most important measure of the dependability of the disk array, since
such RAID systems are designed to be secure from data loss caused by disk failures or write
errors.

The chapter is divided into sections as follows. A brief description in Section 2.1 details
the DEPEND model used in the analysis, explaining the objects used, their interactions, and
the hybrid techniques used to accelerate the simulation process. Fault models and the possible
failure scenarios which were modeled, as well as a description of the synthetic workload
executed on the disk array are also included. Section 2.2 presents results for the sensitivity

analysis performed using the model. The effect of a variety of system parameters on the

@i

@i

I

‘qum K]
bt

MO S

o[

e

it

o

QT

ot

‘\

€m

o

ome

i

(

MTTDL of the array is quantified, including disk hardware fail rate, write error rate, disk
array size, and disk capacity. Section 2.3 exténds the analysis by determining the impact of
scrubbing algorithms on reducing the timé errors remain latent in the array. Section 2.4 provides
a comparison of the simulation results witt;tl;os; of Vsome simple analytic models. Section 2.5

concludes the chapter and directs future work.

2.1 Simulation Model

Developing a simulation model for an a&ay of disks requires careful determination of what
exactly is needed to obtain the desired results. Incorporating too many details of the system
can result in large simulation times, especially for analysis of larger arrays. An initial version
of this model, which contained detailed modeling of disk controllers and other facets of the real
system resulted in an unacceptable 3:1 simulated time to real time ratio. Since typical RAID-3
disk arrays are designed with MTTDL requirements of over 1000 years, an efficient simulation
model is essential. The model presented here achieved performance resulting in simulated to
real time ratios of over 10,000,000:1 for some disk configurations. The ratio varies based on
the system configuration, workload, and error injection rate.

It is also possible to model the disk system in too little detail, failing to capture important
mechanisms which contribute to the MTTDL Many RAID models, simulation or analytic, use
simple fault models, such as general disk failures, which do not take into account more common
and equally dangerous disk block write errors. The detection of these errors usually occurs

when the corrupted block is read from disk, and thus becomes a function of the workload on

Access Injector FT_server2

Parallel Read
— Parallel Write

\ Scrub

FT_memory

Disk and Hard Error Injectors

Figure 2.1: DEPEND model of RAID-3 disk array

the array. Modeling the patterns of reads and writes to the array should therefore be included
in the model.

In this section, we examine those factors which have an impact on MTTDL, and explain
how they are modeled in the simulations. This includes the disks, fault models and fault
injection facilities, failure modes, and the workload. A general diagram of the model structure
is provided in Figure 2.1. The incorporation of hybrid modeling, which makes use of analytic

techniques to accelerate simulation time whenever possible, is also explained.

2.1.1 Modeling the disks

Modeling the disks in the RAID-3 system was achieved by creating a C++ object which

represents the disk. The disk object is derived from the FT_server2 base class provided

@ en g (

€.l IR [ARNE |

(I

Q€ @ L]

I

!
i

i) i

oz

G il

eor

ey

e
bbby v

N

U

g
&

o
l

by DEPEND. The FT_server2 base class provides facilities to monitor the state of the disk
hardware, as well as automatic fault injection, repair, fault recording, and statistics reporting.
When an access is to be performed to the disk, the hardware state method is called. If the disk
is determined to be failed, the calling process is notified and recovery is invoked.

A disk in the disk array is given a command to read or write a block (or group of blocks),
and the data are transferred to or from their proper location on the physical media. For the
phrposes of this model, a disk can be viewed as an array of blocks. A block can hold data, but
since we are concerned only with whether or not the block of data is corrupted, only a single bit
is needed to indicate the state of an entire block of data. This is sufficient since a block is the
smallest unit of data addressable to the disk. Even with one bit per block, a 2.0 GB disk holds
almost four million blocks of data, meaning 1.0 MB of real memory would be necessary to
store the state of two disks in the array. Modeling arrays with hundreds of disks then becomes
a problem for most computing environments.

A more efficient means of storing this state information requires storing a list of corrupted
disk blocks for each disk. Each time a block on the disk is to be accessed, the list for that disk
is traversed, and the value is compared with each element in the list. This may require more
time than the bit field method, but the memory requirements are substantially less. Since the
number of corrupted blocks on a disk is usually small (e.g., under five blocks), any block under
consideration can be checked against the list in a relatively small amount of time. This method

was implemented for the disks in the model.

10

The injection of faults into the disks are managed by two separate fault injection facilities.
To model general hardware failures which make the disk unusable, the FT_server2 facilities
are used to automatically inject errors. An exponential distribution is used, and the injection
rate is accessible to the user of the model. Other distributions, provided in DEPEND, are also
possible. When an injection occurs on the disk object, the state information is updated and the
fault is recorded. It then becomes unusable to processes trying to read or write to the disk.

To model block write errors, a separate injector is used. Since the rate of write errors is
given in terms of error events per bits accessed, injection becomes a function of the number of
reads and writes occurring in the model. Given a normal distribution and standard deviation
governing the bits accessed before a write error, the write error injector selects a number
denoting the bit accessed when the error is to occur. Thus, when this number of bits is accessed,
a write error occurs on the next block written. The number of blocks affected by the error can

also be varied by altering a separate normal distribution, but typically only one block is affected

by the error.

2.1.2 Modeling the RAID-3 mechanisms

Any number of these disk objects can be assembled into a RAID-3 disk array system
model. A series of reads and writes are sent to each disk in the array using a workload injector
object. This object generates lists of blocks to be read or written, and then requests the blocks
sequentially from each disk. The same block number is sent to each disk in the array, as the

RAID-3 striping method requires. In zero simulation time, each disk determines whether the

@i

& o a W @« |] |l & i

|
I

1l

ev——
i

(M i
a1

'wm [
hisws b

I
!

"

(N |

rm Ll
T N

[!” o
b, ikl

|

lm [OLD
YRRFRNTS

IIWV

11

requested block is good or corrupted, or if the disk hardware has failed, and returns this status.
When all disk objects return the result of the access attempt, the information is complied and
examined to determine if recovery is necessary or ;iata are lost. If no errors are returned, the
simulation clock is advanced to represent the time necessary to perform the access in real time.

When one or more errors are present, it is necessary to check if data are lost. This occurs

when either:
1. Two disks fail.
2. Two write errors on the same block occur on two separate disks.
3. A disk fails when any write error exists on any other disk.

With the discovery of the first error on a disk, an attempt to recover the unretrievable information
using the parity disk is made. Since the storage of data is not simulated, we are concerned
only with detecting a situation that would make this recovery fail. For block write errors, the
corrupted block must be good on every other disk. Thus, only that block is checked for each
disk, and no other corrupted blocks are discovered. Normal operation is then resumed. The
time required for this type of recovery is assumed to be equal to the time of one access.

If an entire disk fails, the information on the entire disk must be recovered. This requires
that all other disks in the array are defect free. If any error exists on any of these disks, or any
are failed, data are lost and the simulation ends. In the case of a successful recovery, simulation
time is advanced by a adjustable amount of time based on real system measurements. For the

simulations used in this study, this time was 20 min. .

12

Table 2.1: Synthetic workload characteristics

H Characteristic Distributioni Value “

Interarrival Rate | exponential A = 0.05/sec
Location uniform over entire disk
Size normal mean=75 MB std_dev=25 MB
Type uniform 75% reads / 25% writes

2.1.3 Modeling the workload

From the perspective of a disk, a workload consists of a series of reads and writes of various
sizes accessing various areas of the disk. Reads and writes are generated in the model using
the aforementioned workload injector, which is a specialized FT_injector object provided by
DEPEND. Instead of injecting faults at specified intervals, the workload injector “injects” read
and write requests to the simulated disk array, based on an interarrival rate. Random number
generators are used to select the type of access (read or write), size of the access, and access
location (start block on disk).

Since no studies have been performed to characterize a typical workload for a real RAID-3
system, we have used estimated numbers and distributions provided by engineers at Thinking
Machines Inc., 8 manufacturer of RAID:3 disk arays. In our simulations, disk accesses ocour
based on an exponential distribution with a mean of one access every 20.0 sec. Parallel reads
comprise 75% of these accesses, with parallel writes making up the remaining 25%. The size of
accesses are normally distributed with mean of 75 MB and standard deviation of 25 MB. Finally,

access locations are uniformally distributed across the entire disk. Table 2.1 summarizes these

parameters.

L

|

.HH |‘I
|
i

Wi

L]

s

) & ® & Wi &

llemlw .
Vi

E
T

m— 1
i

-

o

" MHI

e

1!

€T !

e

Ll
lummﬂ.m.u

m pm!

o

"

“ruu 1

wy

Figh 1 3
2.1.4 Hybrid acceleration techniques

Even at the level of detail described above, computation time required to simulate long
periods of operation is prohibitive. This is due primarily to the heavy influence of extremely
rare events (disk errors) on total simulated time required. The brute force method of simulating
every access until system failure occurs must be replaced by an intelligent method that uses
information iniside the simulation engine to decrease the amount of real time actually simulated.
This section describes how analytical methods are used to solve this problem.

Disk errors, either hardware or. write related, occur with specified distributions. We can
predetermine the time at which a disk hardware error is going to occur by sampling from an
exponential distribution. Write errors are workload related, but only in that errors occur based
on the nurﬁber of bits accessed on the disk. Since we are using distributions to determine the
rate and size of accesses, we can estimate the time at which a disk write error will occur. Thus,
the occurreﬁce of errors can be determined analytically. Error detection, which has a significant
impact on MTTDL, however, is a function of the actual workload that is exercised after the
error occurs. Detailed simulation is therefore not necessary when no errors are present, since it
is useful only in determining error detection time. We use this information to develop a method
which accelerates simulation time until the time of an error occurrence. The error is injected
and detailed simulation is activated until either the error is discovered and recovered from, or
data are lost. In the case of error recovery, detailed simulation ends, and the analytic methods

are used to advance the simulation clock to the time of the next error.

14

2.2 Sensitivity Analysis of Model Parameters

Designers of RAID-3 disk arrays face the problem of balancin'g: a number of design trade-
offs to provide maximum data integrity for the user. Determining which parameters the system
is most sensitive to is an important part of this process. With this knowledge, designers
can concentrate their resources on the aspeéfs of theisrystem which have the highest impact
on increasing dependability. Since hardware specifications for disks are often inaccurate
estimations, designers can know which numbers should be scrutinized most carefully. In
addition, decisions concerning whether a part of the system (e.g., type of disk drive) should be
upgraded can be evaluated for proper cost benefit analysis.

In this section, we analyze how several parameters in our RAID-3 model affect the overall
system MTTDL. These parameters include the rate of disk hardware failures and write errors,
as Well as the number of disks in the affay and the capacity of the individual disks. All results
presented have a 95% confidence interval that is less than 10% of the mean. This typically

involved approximately 500 simulation runs.

2.2.1 Effect of disk hardware failures

Disk hardware mean time to failure (MTTF) is typically specified in terms of thousands of
hours. Most modern drives provide rates of one failure per 500,000 h, up from 400,000 h one

or two years ago. In this experiment, we analyze how this increase in MTTF, as well as further

increases to 600,000 h, impacts disk array MTTDL.

I

® |

41

W al L TR RIS [FI A N VIR |1/ S i

€

Fep

LA

LI

Qme

@

{rm

1

i)

=

il

RN

il

d

il Lk |

'

e

15

2.00

500000 (GB)

Disk MTTF (h) 400000

Figure 2.2: Effect of disk hardware failures on system MTTDL

Figure 2.2 presents MTTDL results for simulation of a 216 gigabyte total capacity config-
uration of disks having a 10'* bits accessed per write error event rate. The 216 GB are spread
across either 108 2.0 GB disks or 180 1.2 GB disks, displayed as two sets of bars in the graph.

We can conclude that the MTTDL of the disk array is not very sengitive to the MTTF of
the disks. While increased MTTF does i;icrcase MTTDL, the gains lie in the range of 10-15%
which, depending on the costs involved, may or may not be worth an upgrade. However, the
percentage increases are steady as MTTF increases, suggestipg that MTTF has a direct impact
on MTTDL. Examination of the common failure modes shows that the most common errors
involved a failed disk when a latent error existed in another disk. Increasing MTTF decreases

the probability of this occurrence, resulting in the increased MTTDL seen here.

L

16

i

MTTDL =
(yr)
5
%
1.00E+14 (GB) -
Bits Accessed L.OOE+13 _
per Error Event =
Figure 2.3: Effect of disk write error rate on system MTTDL 7

=

2.2.2 Effect of disk write error rate
Disk write error rates are specified in terms of bits accessed per error event. An error event g
involves the corruption of one or more blocks of data on the disk when the data are written. ,:;

|
I

i

T
il

Typical drives provide rates of 10'* bits per error event. This is up from 10" in the previous

generation, and 10" drives are expected in the near future. This experiment analyzes the effect -
of these increases on MTTDL of the sysferﬁ. -
Figure 2.3 shows MTTDL results for simulation of a216 GB total capacity configuration for ;
disks with a 500,000 h MTTF. Note the results are plotted on a logarithmic scale. It is evident _
that a generational change in write error rate has a substantial impact on the data integrity of <
the disk array. This is not surprising, since every failure event simulatéd involved a write error %
(no two disk hardware failure scenarios were experienced). =
: -

(U

nt

cooorr ol

o 1

w' o

e

ooy

onn

o

{me

SN

v

17 il

Table 2.2: Percentage of failures caused by double-bit errors

[Write Error Rate Double-bit Error Failures
(bits per error event) (% total failures)
105 11.2
10™ - 84
10%° 0.9

the same block stripe. While the error rate of i013 bits per error is very dangerous, an error
rate of 10!3 greatly diminishes this failure sqgna;io. Since :; generational change will increase
MTTDL by a factor of 1000%, a desigr;er v;'ould be best advised to use these disks as soon as
possible.

The results also caution a designer to ensure thé integrity of write error rates. Specifications
are usually determined based on a small test lot of disks with accelerated failure techniques
applied. If this leads to even slight inaccuracies in write error rate numbers, the observed

impact on MTTDL of the disk array could be substantial.

2.2.3 Effect of parity group size

As supercomputers tackle problems of larger sizes, the need for disk space increases. One
way to handle this problem is to produce disk arrays containing more disks. The experiments
presented here show how disk array MTTDL is influenced by the number of disks in a parity
group.

Figure 2.4 reports MTTDL for a variety of parity group sizes. Steady drops in MTTDL

accompany increased disk size. Doubling the parity group size results in a 75% decrease in

18

MTTDL
(yr)

Disk

Size

Parity Group Size 576 (GB)
(Total GB)

Figure 2.4: Effect of parity group size on system MTTDL

MTTDL. The primary reason for this lies in the fact that the same size disk access will not access
as many blocks on a single disk, since there are more disks across a single block stripe. This
suggests the need for multiple parity disks for larger arrays, where MTTDL has fallen below
acceptable levels. This information is important for the designer to determine an appropriate

breakpoint at which the costs of an extra parity disk are justified by tolerable MTTDL figures.

2.2.4 Effect of disk capacity

An alternative to increasing the number of disks is to increase the capacity of the individual
disks. The results from the previous section showed the importance of keeping the number
of disks small to achieve high MTTDL. In each of the figures corresponding to the previous

experiments, the results for disks of 1.2 GB and 2.0 GB are displayed. Surprisingly, the full

ik}

al

i

i

Wi w0l GG W Wl WE o G

il

o
e

qumw 3
e

el

e

{ G

Likiiey

m

HY AN

bl

s

i

I
Q!

i

ane

i

¢

L

e |

e

19

Table 2.3: Comparison of error latencies for arrays with varied disk capacities

Array Capacity | Mean Error Latency (min)
(Total GB) 1.2 GB disks [2.0 GB disks

128 1283 84933
256 2511 167345
512 269248 293442

increase expected based on the results from the smaller number of 2.0 GB disks is not achieved,
but a somewhat smaller increase in MTTDL is observed. The answer lies in examination of
the error latency times recorded in each case.

Table 2.3 contains mean error latencyr times for disk arrays with 1.2 and 2.0 GB disks. In
all cases, the arrays with 2.0 GB disks show higher latency times. With more space on the disk
to access, the chances of hitting an error are lower. The result is a decrease in the potential

gains in MTTDL from the smaller array size.

2.3 Scrubbing Experiments

Periodic disk scrubbing is a method }Q reduce error latency by increasing the frequency
with which data are read. A low-priority scrubbing process is activated when the disk has not
been accessed for some period of time T',i;. When activated, the scrubber reads blocks of data
from the disk solely for the purpose of detecting corrupted blocks. This provides earlier error
detection than would otherwise occur, based on the normal workload executed. This section
will examine whether scrubbing is worth the extra effort required to implement it in a real

system.

20

In our model, a scrubbing process was added to determine the effect of periodic disk
scrubbing on the disk array MTTDL. The type of scrubber implemented is a sequential scrubber,
i.e., one which starts at block zero and reads blocks in order when the scrubber is activated,
until the last block is checked. The process then starts over, checking at block zero. More
elaborate scrubbers which track the workload to determine an optimal position to scrub are
possible, but most real implementations will elect the sequential scrubber, since it requires the
least overhead in program development time and on-line corhputational resources.

Figure 2.5 shows the results of simulations run with various scrubbing processes active
compared to the same simulations without scrubbing. Results are presented for three different
scrubbing rates, each with a different T,,,;; setting, as well as the no scrubbing case. The impact
on arrays of three different sizes is also presented. It is apparent that the rate of scrubbing is
an important parameter. High rates of scrubbing (T,,:: = 60 sec) yield MTTDL increases of
as much as 50 times the no scrubbing case. Increasing T.i; to 240 sec gives a rather low
rate of scrubbing which does not have a significant impact on MTTDL. A moderate rate of
scrubbing (Tyai: = 120 sec) results in much higher MTTDL, possibly without as much overhead
incurred by more frequent scrubbing. The designer of such a system can use this information
to determine the optimal scrubbing rate based on the results from such simulations, balancing
the predicterd' MTTDL gains with the overhead cost of highef ffequéncy scrubbing.

Table 2.4 provides detailed data from this experiment. Mean error latency for write errors,
the time between a write error occurrence and its detection, is presented for each configuration

of array sizes and T,i:. Also included are the percentage of errors detected while scrubbing

!
i

i & @

il ®i ¢

aiLii

‘1{

L[|

Gl

b
w
&
(yr)
| 128
! > R Array Size
= Sen w0 P o (12GB
i :é_; sec - DlSkS)
4/h sec - No
_. Scrub Wait Time Ih Scub
= - Scrubs/h :
=
_. Figure 2.5: Effect of scrubbing interval on system MTTDL
and the percentage of simulations which ended with a data loss caused by the corruption of two
Ej
e blocks on the same block stripe. Error latency time, which has an inverse relationship with
% MTTDL, is dramatically reduced when scrubbing occurs frequently. The highest gains appear
o in the larger arrays, which are more vulnerable to failures. Scrubbing on these arrays brings
= mean error latency times down to lower levels of the smaller arrays. This is due to the fact that
o most errors are caught by the scrubber, not the workload, when the scrubbing rate is high.
Frequent scrubbing also appears to be most effective in reducing the frequency of the data
loss scenario in which a disk drive fails with a write error on any other disk. A larger percentage
:... of trials with the two-write error failure mode occurs at high scrub rates because of this.
-

o

22

Table 2.4: Experimental results from scrubbing experiments

Mean Error | Detected by | Double-bit
Array Size Twait MTTDL Latency Scrubbing Failures
(1.2 GB disks) (sec) (h) | (min) (% total err) | (% total sims)

60 428.69 68.15 94.83 19.10

128 120 102.37 315.75 75.70 5.37
240 26.31 1245.74 3.20 1.40

noscrub | 26.20 1283.08 0.00 1.00
60 185.89 67.67 97.40 13.07

256 120 52.13 344.27 86.52 3.64
240 9.44 234391 | 648 0.04

no scrub 7.88 2511.10 0.00 0.01
60 90.84 65.62 98.73 12.93

512 120 25.67 356.58 93.04 2.83
240 2.12 3951.13 13.17 0.02

- [noscrub| 1.80 4487.48 0.00 0.01

2.4 Comparison with Analytic Models

Comparison of the simulation results with results from simple analytic models demonstrates
the impact of accounting for workload based factors through simulation. Table 2.5 contains
MTTDL figures for three different modeling approaches. The simplest of these models is
a three-state Markov model presented in [17]. For an array of NV disks, the model assumes
independent disk failures, which are its only failure mode, occurring with a mean time to failure

of MTT Fy,.. Repairs are performed at a rate of MTT Ry;,,. The equation for MTTDL is

given by
MTTDL%,,
N(N + I)MTTRd,',k

MTTDL;ndep = 2.1

The results from this model overestimate MTTDL since it does not consider write errors.

&

Lt

QU

|

L

I

i

gt |l

al !

l“ [p
I w' i}

(.m ny
st 1l

L

AN i

¢

g

gy el ey

onm

'!W L
il

(e

RO SO LA

lp’ W

w

'

Az

i

23

Table 2.5: Comparison of simple analytic and simulation model results

Disk Array Configuration MTTDL (yr)
MTTF | Error Rate | Disks || Markov || Poisson || Simulated
500000 | 1.0E+14 60 3225.0 287.2 120.7
500000 | 1.0E+14 | 120 800.1 76.2 30.1
500000 | 1.0E+14 | 240 199.2 20.2 9.1
500000 | 1.0E+14 | 480 49.6 5.31 2.1
500000 | 1.0E+15 180 510.2 329.6 150.1
500000 | 1.0E+14 180 354.3 35.2 14.6
500000 | 1.0E+13 180 226.8 3.8 1.4
600000 | 1.0E+14 180 354.3 42.3 18.7
500000 | 1.0E+14 180 354.3 35.2 14.6
400000 | 1.0E+14 180 354.3 28.1 11.5

To provide a more even comparison, another analytic model was developed. This model
contained probabilistic representations of workload and write error detection. These proba-
bilities are computed using a Poisson distribution for each type of event that can occur in the
system. These are used to determine the probability of a data loss at any instant, and thus,
the mean time to data loss. We can see from the results that these numbers are closer to the
simulated results, but there is still a significant difference caused by assuming probabilities that
are difficult to accurately determine. As an aside, this model took only slightly less time to

develop than the simulation model.

2.5 Future Work and Conclusions

Work must continue in the area of RAID analysis through simulation. Probably the greatest
immediate need is the characterization of real workloads on real disk arrays. The workload used

in this work is an estimation based on observations by engineers working on the development

24

of these arrays. Formal analysis 6f real workloads will provide information for setting up the
workload injector in the simulation.

The effect of various scru?bi_ng block §e1ection policies on M'ITDL should also be exam-
ined. For example, a leastfrequently rcadblock policy might be efféctxve in reducing error
latency in blocks which are not read in the normal workload. Most recehtly written blocks (or
blocks in their vicinity) rmght Pg chgg:lﬁcfzértro catch write errors guicklx.r A rgndom scrubbing

method might provide an eddaily effective low overhead solution, and should also be exam-
ined. Finally, preventi;e‘rr“xair;t;nrél;;:re éycles, such as a total disk scrub every week, can also
be included for realism.

Through this work, we have shown how simulation can be used to develop models which
closely rrepresent the realistic mechanisms of a system, such as workload, error detection, and
scrubbers. The outcomé of performing these simulations is more accurate results, in some
cases, drastically different than those obtained analytically. The price for these results is
time for model development and simulation execution. However, we have also shown that

realistic models can be developed quickly, and techniques such as hybrid simulation for time

acceleration can greatly reduce the overhead for execution.

L

€0 0 i o e e ;o

!
|

et an

RN AR [N o

el

" ﬂ‘lvlw LT

v -

i

err

e

r

o e g

gl

190

i

 iuld)

Ly

!

]
mm L

o

(

25

3. ANALYSIS OF A DIRECTORY-BASED CACHE COHERENCE PROTOCOL

Often in the design of a complex system, determining the effect of faults on the operation of
a system is a difficult task. Complex interactions of many components may make enumeration
of all possible outcomes impossible to achieve. In this case, simulation provides an option to
discover these outcomes, and possibly provide feedback on how problems can be recovered
from or at least detected.

In this chapter, we will examine the behavior of a complicated directory-based cache
coherence protocol under fault conditions. The goal here is to use simulation to determine how
a real application is affected by faults. The Stanford DASH multiprocessor system [18, 19] is
the architecture modeled and analyzed. -

Section 3.1 provides a brief description of the key elements of the DASH architecture
modeled. In Section 3.2, the structure qf the DEPEND model used in the analysis is outlined.
Section 3.3 presents the results from fault injection experiments involving faults in the directory
controller. Section 3.4 uses these results to develop methods which improve the fault tolerance

of the system. Section 3.5 concludes the chapter and suggests future extensions.

Reaquest Mesh
1 [}
42T 527
Repiy Mesh / /
o and a and
Dirsctory Directory
Caches Controller Caches Controller
i |] I
Local Memory Local Msmory
r) —
o] / T
i and Pr and
Directory Directory
Caches Controller Caches m Controller
it I il I]
Local Memory Locsl Memory

Figure 3.1: Architectural organization of the Stanford DASH

3.1 Stanford DASH

The DASH is a scalable shared-memory multiprocessor developed at Stanford’s Computer
Systems Laboratory. The architecture consists a number of processing clusters, each with a
portion of the shared memory, connected by a scalable interconnection network, as shown in
Figure 3.1. In the prototype, clusters consist of a commercial bus-based multiprocessor system.
The system consists of four high-performance processors with two levels of direct mapped
caches. Cé,che coherence is maintained within the cluster using snooping bus protocols.

Sharing of the memory locations located in a cluster with remote clusters is managed by a
directory controller (DC). The DC responds to requests from external clusters for memory local

to its cluster. It also manages requests from local processors for memory locations external to its

ill

Wi

Wil @

&)

il

e

G

|

'

1]

il

i

i

|

1
i
i
i

ot

L3N]
e
E
S

il
J -

EI]WM

L

g

L1
i

o

g

27

cluster. Coherence throughout the system is maintained by a message-based protocol existing
between the cluster directory controllers. Messages containing coherence information, memory
requests, and memory replies are passed using separate wormhole-routed mesh networks.

Of interest to this work is the structuré of the directory memory. This memory is organized
as an array of directory entries, one for each block 6f local cluster memory. Each entry consists
of a bit vector, including one state bit used to indicate whether the block is shared with any of
the remote clusters, or if the block is dirty in a remote cluster. A cluster bit for each cluster in
the system denotes whether the cluster has a copy of the block in the given state. The DC then
uses this information to determine where a valid copy of the data exists, and sends appropriate
messages to fulfill the request. We will sho@ :ﬁow altering the information in this directory

memory affects the results of a real algorithm executing on the system.

3.2 Simulation Model

Modeling the DASH to determine the effect of directory memory faults requires imple-
mentation of many of the details found in the real machine. This includes creating objects to
model each of the basic components in the system, their functional behavior, and the protocols
used among them. This section describes the level of detail modeled for each of these objects,
as well as how a real application program is executed within the model. Figure 3.2 shows
the object layout for the cluster model, including the DEPEND objects from which they were

derived.

28

Processing Units

”'f"“J L"J {"J ["}

(Fromae) (Fromte) (Froans) (Fromne)

M I rh
MPBUS | FT_link]

- L]

* (IIZ l«—— Reply
FT_memory | .. (Coherance -~~~ I =3 Network
Logic
Main Memory “:U] e Request
‘[C lee—— Network

J

Directory Controller

Figure 3.2: Object configuration of a DASH cluster model, with DEPEND base classes used
3.2.1 Modeling the memory

The memory actually stores each simulated word of data, either symbolically, or with an
actual value. In addition, information about faults and corruption is stored with each word.
The symbolic version is useful for simulating memory access patterns without implementing
a real program, while the data storing version allows us to actually simulate a run of a simple
parallel program, such as Gaussian elimination or QR factorization. Furthermore, information

about a word of memory is saved only if that word is actually stored. This reduces memory

required by the simulation.

m‘[“
nih

1
'1

;I

wi ¢« 6 & ew e g W

]

wiil

Lighi

L

o
i

S

'
i

(I

E-3

|

29
3.2.2 Modeling processors and caches

The processor object is simply a process within the pseudoparallel simulation environment.
The code withjn this process represents the code running on the real processor. The processor
can therefore execute real parallel C code, and this feature was used to execute a sample
application which executes during fault injections. Memory accesses within the program must
be explicitly stated, and therefore, a type of memory management algorithm has been created
to mimic that part of the operating system.

The cache object is derived from the memory object. In the simulations, only one cache
level is modeled, and this is sufficient since the first-level cache is a subset of the second-level
cache. Caches in the simulation are direct mapped as in the prototype machine. Each memory
word of the cache contains a cache line and a tag, with address and state information stored
in the tag. When a processor object requests a memory location, the cache will check the
appropriate memory location, and if it is in the cache, return it after the appropriate amount
of simulation type has elapsed, modeling cache latency. If it is not in memory, a request is
made to the bus object which relays the request to other caches in the cluster and the directory
controller. Inherited from the memory object is the same information on faults and corruption.
The caches also implement a snoopy bus protocol to maintain consistency. Implementing this
protocol required additional code which interacted with the other objects in the cluster via the
bus object. Thus, the caches have a realistic effect, both in reducing latency and creating or

propagating corruptions due to faults.

30
3.2.3 Modeling the directory controller

Each directory controller object also contairfsﬂa'memory object, this time to store the actual
directory. State information and bit vectors associated with a particular memory location can
be saved and, under a fault, altered. Here note the importance of the fact that only memory
words used by the application are actually stored. Tﬁis feature rh#&e feasible the allocation of
space for 2M words for each main memory block, 256K words for each cache, and 512K words
for each directory controller.

Implemented within this object are the internal algorithms used in the directory controller
hardware. A single directory controller object spawns six active processes within the pseudo-
parallel run-time environment. These processes are used to handle requests from the local
bus and the network objects. Internal queues track outstanding requests and satisfy them
when a response arrives from a connected source. The same coherence protocol used by the
directory controllers in the real machine is established between directory controller objects in

the simulation, and protocol messages are passed via the simulated network described below.

3.24 Modeling the network

The network is modeled as a completely separate object from each processing cluster. Thus,
it is possible to use a completely different network, for instance, a hypercube instead of a mesh,
in different simulations to examine the effect of the network type on the architecture. Links
between clusters are modeled using the FT_link2 object provided by DEPEND, and custom

router objects route messages through the network. Messages are passed as single packets

| |[A/OR [

T

&l

i

i

Qi

€ il

g

iy

L

L l e e .

.
Qi

TP T

{'!W" :
b

LTI

v

(o

t

i

o

o

Qi

s

ae!

il I ol 1

L

fmne

e

31

between clusters, and in the experiment performed, it was assumed that no corruptions would

occur in these messages.

3.3 Fault Injection Simulation Experiments

Fault injection experiments were perfoqped using the fault injection facilities provided in
the simulation model. Since we are concerned with how faults affect the directory-based cache
coherence protocol, injections were limited to faults occurring Within a cluster directory while a
typical application was executing. This section describes the fault model used, the application

chosen to run on the simulated machine, and the results obtained.

3.3.1 Fault model

During execution of the sample application, a fault is injected randomly into a random
cluster. The effect of the fault is to corrupt a particular word in the directory memory by
altering one bit. The bit can be either that storing the state information for the associated main
memory word, or one holding information about the caching of the word by a processor in a
particular cluster. In either event, loss or alteration of the true information held about that main
memory word will occur. The impact on fhe execution of the sample program is dependent on
both the time and location of fault injection. To ensure that the fault did not remain dormant in
an unused location, the fault was purposgly injected in the next word to be accessed from the
directory memory after the time of injection. An extension of this study could examine latency

of errors injected in any word, but this issue is not addressed here.

32
3.3.2 Sample application - matrix multiply

For these experiments, one application was chosen to examine the impact of the directory
faults. A parallel matrix multiplication algorithm which multiglics matriqcs inthe formA-B=C
is executed on the simulated processors. The matrices used were 2562256 elements, although
lafgéi' matrices could easily be used with a penalty of increased simulation time. The specific
algorithm used was chosen to generate cbhgrency messages ampng the clusters, and therefore is
not the most efficient method available. The A matrix was distributed among the 64 processors,
each writing 4 columns of the matrix. The B matrlx which is used by all processors, is
distributed in a similar manner. Each processor must compute one row of the C matrix using
its column of the A matrix and every entry of the B matrix. The pattern of memory access

causes great demand for writing elements of the C matrix, fully exercising the intercluster cache

coherence protocol.

3.3.3 Results

The fault injection experiments were performed for 500 fault scenarios. Three distinct
symptdms appeeiréidmcvitﬁ'iﬁg the execution of the program. Iﬁ one case, the fault had no
observable impact on the results of the matrix computation. It is possible that the fault was
injected on the final access of the main memory word whose entry- was corrupted. Another
scenario resulting in this case could have been a word in the shared state was corrupted by the

addition of another cluster bit marked as having a copy of the main memory word. In this case,

iy ¢
il 1

i

1
h

fiity

&l

I

i)

(3
i

8w e

[

&0l

€ aii o e

i

[,

By g0
b s

el

[

(!

m
o

i

i

T el

e

o

Lt
il

ol

!

1

("

Wy
I

(!

LN

"

33

an extra invalidation would be sent to the added cluster, and it would invalidate that word, even
though it did not have it. Thus, no impact on the matrix computation would be observed.

Other faults caused a nﬁmber of entries in the 'product matrix to be corrupted. These types
of faults usually occurred because of a missed invalidation due to a corrupted cluster bit. The
processor which had the word cached would therefore use the cached version, even though the
word had been altered. These types of faul;s are potentially the most dangerous, since they
produce altered directory entries which ai:)péar to be normal to the directory controller. Without
some type of checksum information, these faults are not detectable.

Finally, certain bit combinations in the directory word cannot be interpreted by the directory
controller. An example of this case is when the directory entry has the state bit as difty, yet no
clustef bit is set to indicate the owner. This coulrd have been caused by either the state bit flipping
from zero to one (shared to dirty), or by the cluster bit indicating the owner flipping from one
to zero. In either case, the directory controller would not be able to make a decision about what
should be done. It is difficult to predict how the real machine would react, but it is assumed
that some type of checking to avoid continuance given this situation has been implemented in
hardware. The next section details some mechanisms which could be implemented to recover
from these types of errors, with as little degradation in performance as possible.

Table 3.1 summarizes the percentage of faults which fell into each of these three categories.
The most common type of outcome was that in which no corruption occurred in the results
of the computation. This is expected to be lower in most applications, especially when the

data are shared by many processors and are frequently written. This is not the case for the

34

Table 3.1: Distribution of possible fault outcomes for Matrix Multiply

| Fault outcome | Occurrence ||
No impact on computations 65%
Corrupted results 10%
DC detected fault 25%

algorithm chosen for this exafﬂpie. The second most frequentrbt'xtcbme was failure to complete
due to directory controller detection of the error. The corrupted result matrix scenario was least

frequent. This is encouraging since these faults can not be easily detected.

3.4 Adding Fault Tolerance to the DASH

The preceding analysis suggests that a certain degree of fault tolerance with respect to
certain faults may be incorporated into the architecture. In this section, a method is presented
which will make the DASH tolerant to a subset of the examined directory entry corruptions, with
only a small degradation in performance over a very short period of time. This is accomplished
by algorithmic means in the interqluster coherence protocol, rather than the usual methods of
adding CRC checks or other hardware features. This mefhod was chosen for two reasons; the
algorithm change woxilci bé inexbehsive in terms of bérformance and it woﬁld bdver a majority
of the faults.

" The change to the algorithm can be described in two iaarts: changes to the home directory’s
actions and changes to renioté actions. Focusing on the remote actions, whenever a directory
receives a remote read request for a location it does not own, it puts that request on the bus. In

the fault-free case, one of the processors will answer the request. However, in the faulty case,

]

uf
il

.

1K

&

T

qill

il il

P

g

L L
-
e
k3
A
¥

35

I

; it may be that none of the processors actually have the data. In this situation, the directory
s will then NAK the remote request. In addition, if the request was a read-exclusive, all the
= processors will also invalidate any copies they have of the line. Thus, there are two possible
Eé results to this action: one of the processors had the data and the data are being returned, or none
% of them had the data and a NAK is returned. In either case, if the request was exclusive, all
-
- processors invalidated their copy so the given cluster will not have any copies of that location.
“ The remote actions used a feature already in the algorithm to handle network latency, the
Eﬁi NAK command, but the home actions are added. As long as a directory entry is valid, no
= unusual action is taken. Valid directory entries are those that are shared or those that are dirty
&

with one owning cluster. A request is sent out only to the owning cluster, and when the data

are returned, normal operation ensues. If the entry is invalid, however, or if a NAK is received,

é the home directory knows there has been an error. In that case it broadcasts the request to all
- clusters (except the requesting one). It then waits until it receives all replies. The replies fall
it into two different classes: all NAK replies, or one with data and the rest being NAK. In the

first case, the directory knows there were no copies of the data remote, and it accesses memory,

fetches the data, replies, and resets the directory state accordingly. If it receives a reply, it stores

il

that reply in main memory, and sets the directory entry accordingly.

% In examining the cost of this scheme, it is evident that as long as the machine is operating
; correctly, there is no additional cost to performance. There would also be only a slight increase
= ,

- in the directory control logic. The only cost that is incurred is that of the broadcast when an
= error is detected. Although a broadcast is significantly expensive, it occﬁrs very infrequently.
é

36
The directory always corrects the error once it is detected, and therefore a broadcast happens
only once per fault.

This same scheme could also handle permanent faults. The directory would just test the
faulty location, once found. If it performed properly, a temporary fault would be assumed,
and the algorithm would perform as before. However, if the location were shown to have a
permanent fault, it could be mapped to a new memory location.

What kind of errors would this modification cover? Any error in a dirty entry, resulting
in either changing the owner of the dirty location or making a dirty location shared. It would
also cover some errors in a shared entry. There are two basic errors it could not cover. Any
error that removes a cluster from the list of sharing clusters could cause incorrect data to be
transferred because any shared entry is valid (nothing can be determined about a shared entry).
Also, an error that changes a dirty entry to shared could cause data to be lost. Both cases occur
because the home directory cannot tell if a request to a shared location should be broadcast.
Any number of clusters are allowed to share a location, and thus there is no way to detect an
error. In the first case, if a cluster is removed from the list, that cluster is never invalidated.
If the data are changed and that cluster uses its own (incorrect) version again, incorrect data
are read. In the second case, errors result when another cluster tries to acquire read-exclusive
access. The home directory (thinking the data shared) invalidates everyoné and passes the
memory copy. HowéVer, the dirty copy is the correct one, so incorrect data are read. Finally,
note that these are only possible errors. An error is never guaranteed, because incorrect copies

may be invalidated or otherwise destroyed without being used.

M

i

qw

Wi

LT

L Y

Cr

¢t ¢

w
i
rbin s

e

i

—
=

Ida i

‘Ml .

C

M i

"
!

gt

"y
HAT

A it

1
I
i

37
3.4.1 Results of simulated fault tolerance

The new coherence algorithm was simulated on the same 16 cluster DASH model already
discussed. This time, the same 500 simulations of the matrix multiplication were executed, but
with the fault tolerant algorithms embedded into the directory controller object. The faults are
still injected at the same time and location as in the nonfault tolerant experiments.

As expected, any simulation that ran correctly with no fault tolerance also ran correctly
with the changed algorithm. In addition, there were no performance penalties to these routines.
Also, all of the simulations that had failed to complete before (due to directory problems) also
ran correctly this time. Howcyer, these suffered an average performance penalty of 18 cycles
due to the broadcasting. Many broadcasts do not add to the latency, because the correct cluster
was the one that would have taken the longest anyway. These two cases accounted for 90% of
the simulation runs.

The cases that ran to completion but calculated incorrect results, however, continued to yield
these incorrect results. The addition of fault tolerance made no difference to these routines.

This case included 10% of the simulations.

3.4.2 Explanation of results

The two cases that ran correctly executed as expected. The cost of 18 cycles is probably
not realistic, though, because on a heavily used machine, the real cost would be the network
contention. For those cases in which an error still occurred, it was found that all of these

cases involved errors to shared directory entries. Thus, they cannot be handled by the fault

38

tolerant protocol additions. Only some kind of CRC or other hardware would be effective. The
resulting fault coverage of the algorithm was therefore 90%, an impressing reduction in the

number of failures experienced by the algorithm.

3.5 Conclusions and Future Work

In these experiments, only one important fault susceptible area in the system was carefully
analyzed. Such a complex system presents many other areas which may have adverse affects
on the system when faults occur. One area is the local processor caches. Faults in the cache
tags can potentially propagate invalid data throughout the system, much in the way faults in
the directory céche can. Analysis of this type of fault is of particular interest. Fault effects
can also be examined in the communication mechanisms between and within the clusters, such
as corruption of messages or bus lines. Finally, additional corruptions within the directory
controller, such as in the remote access cache, can be performed if implementation details are
known. In all of these cases, it can be expected that a wealth of information regarding the
effects of the faults can be obtained. This can then be used by designers to identify potential
sources of fault tolerance, as has been shown with the example presented here.

In conclusion, a successful model was developed to determine the effect of single bit
faults on a directory-based cache coherence protocol through simulating a 16-cluster DASH
multiprocessor in the DEPEND simulation environment. Fault injection experiments in the
directory controller memory resulted in three types of outcomes with respect to the computations

being performed. The distribution of these outcomes was presented for a matrix multiply

1y

& @i & Q1 @

i

Qg

i

i

LXK
o

oz

() DO i

o

r—
i

f
1

o

39

application. A method for improving the fault tolerance of the DASH with respect to these
faults was also presented, and shown to be successful in eliminating the effects of a high

percentage of the fault scenarios.

40

4. IMPACT OF DEPENDABILITY ON PERFORMANCE IN MPP SYSTEMS

In this chapter, the relationship between performance and dependability in a massively
parallel supercomputer is studied. A simulation model representing a Connection Machine
CM-5-like system is developed. The model has the ability to execute real parallel C programs.
Sample applications are used to show how a series of netwérk link failures affects performance.
This information could be used for determining the number of failures a system can tolerate
before performance has degraded to a point where it is worthwhile to shut down the system and
fix faulty components. Also presented is an example of how a simulation approach may reveal
unexpected fault scenarios which result in improper operation. For example, the experiments
revealed a deadlock condition due to an obscure fault pattern.

The chapter begins with a brief description of the Connection Machine CM-5, which serves
as the base architecture for the simulation model used in the experiments. Section 4.2 outlines
the structure of the model, including its ability to execute real parallel code and the fault
injection process used in model components. Section 4.3 presents the performance results

obtained for the network fault injection experiments, a$ well as a description of the deadlock

wil N i o | L {

i tii e

al

C

e

ﬂwmu 1
e B o

JEER}

Li{

i

w

"
L

[

r

il

!

ar

|
i

i

il

oo

il

m
‘l,
bt

i

&I

iy

[
(s il

41

condition mentioned above. Section 4.4 summarizes the example and suggests possibilities for

further study.

4.1 Connection Machine CM-5

The Connection Machine CM-5, developed by Thinking Machines Corporation of Cam-
bridge, Massachusetts, is a Multiple Instruction Multiple Data (MIMD) supercomputer which
utilizes a unique network architecture for interprocessor communication [20] . Each processing
node in the CM-5 contains a 32 MHz SPARC processor, 32 MB of memory, and a 128 Mflop
vector processing unit capable of processing 64-bit floating point and integer numbers [21] .
These processing nodes are typically divided into partitions of various sizes, each with its own
control processor to manage the partition’s activity and I/O. Processing nodes are connected
using two networks; the control and data networks. A third network, the Diagnostic Network,
is used to detect, diagnose, and recover from hardware failures.

The data network is responsible for providing point-to-point communications between
processing nodes. This is achieved using the "fat-tree" architecture introduced in [22] . The
tree is organized with the processing nodes at the leaves of the tree, and special data routing
chips at the internal nodes. The benefit of a fat-tree is that bandwidth is larger between nodes
higher in the tree than that between lower nodes. This increases the bisection width and results
in a significantly lower number of collisions between messages. A 16 processor fat-tree is

shown in Figure 4.1.

42

Lot

BB
/ '/Q‘V’\ \
M\ g

p..m..; ParttonB deary Fat Tree network with 16 nodes

Figure 4.1: Connection Machine CM-5 system diagram and Fat-Tree network

The control network’s primary function is to provide global broadcasts, scans, and reduc-
tions, as well as synchronization among processors. This network is a simple binary tree with
the processors in the partition at the leaves. A processor broadcasts a message by sending it
up the tree to the root. The message is then sent dOWi’l each branch, eventually arriving at each
processor. Reductions and scans are accomplished by having each processor send its value up
the tree. At each tree node, some function (e.g., addition, comparison) is performed on the two
values received from each child node. The sum of all these functions arrives at the root where

it is then distributed to all nodes.

4.2 CM-5 Simulation Model

A model which accurately models the behavior of a real CM-5 system has been developed
to analyze the impact of faults and reconfiguration strategies on system performance for several

simple parallel algorithms. The model was developed in C++ using objects from the DEPEND

YJI

i s

Ll

s

t” LR
TR

LS A A AR JRITIA § TRE A A (R L | R |

(!

43

object library. In many cases, objects provided by DEPEND are customized to more accurately
model the real CM-5 components. Each object in the model represents a subsystem component.
For instance, there are individual objects for processing nodes, network interfaces, router
chips in the networks, and the communication links connecting them. These objects are then
connected together to form a complete CM-5 system.

Each component in the model may be injected with a fault which, depending on the
type of component, causes the component to discontinue proper service either temporarily or
permanently. For example, a processor fails to respond, or a link in the data network corrupts
or loses messages. The fault models used for each component in our simulations are described
in a following subsection. The model is also totally scalable. The user may select any size
CM-5 system by specifying the number of processing nodes and its organization into partitions.
The actual model is then constructed to these specifications. This allows a user to analyze
the impact of certain faults on machines of various sizes. The model also allows the user to
experiment with design changes in an effort to increase dependability. This includes methods
to provide component redundancy and evaluate the effect of different sparing policies. Finally,
real parallel C or C++ code which use the CMMD message-passing libraries [23] can be
executed on the simulated CM-5. Thus we can observe how real applications will behave on
the system when faults are introduced.

The following subsections describe in detail the organization of the model and the as-
sumptions used in its development. In addition, a discussion of the fault models used and the

execution of real code is included.

42.1 Model organization and fault models

In the development of our CM-5 model, we attémpted to provide a direct mapping of each
CM-5 component to an object in our model. These component objects were then encapsulated
into objects which represent subsystems of the CM—S architecture. These include the processing
nodes, net\rworrkrinterfaces, Data Network; and Confrbl Net&ork. Figure 74.2 Shdws fhé basic
structure of the model and the objects it contains. Note that the Diagnostic Network was not
included since it does not contribute to the operation of the machine from the user’s perspective,
which is of most interest in this study. We now describe how each of these four subsystems is
modeled using rﬁodiﬁéd DEPEND objects.

A Processing Node (PN) of the CM-5 is simulated with an FT_server object provided by
DEPEND. Each PN object has Fhe ability to actually execute real parallel code provided by the
ﬁser. The user may alrso 6pt to simply modél the cofnputation time without actual execution. All
* PNs in a partition of the CM-5 are injected with faults by a single FTinjector object. This allows
correlated faults between processors witﬁlilrin a partition to be modeled and provides centralized
control ovér all pfocessing nodes in the éanition. When a fauit occurs, the processing node
ejecté any jobs in progresé and ceases to respond to any requests from outside components.

Message passing is achieved by assigning a Network Interface (NI) object to each PN. An
NI object is mpdeled using FT.server as a basis. A number of FIFO queues reside within
tfiler NI objerct,r to queue incoming and ou;gbing messages. A PN object which wishes to send
a message can communicate it to the NI, which may queue them and then send them to the

appropriate network. Messages received from either network are queued until the PN decides

QR

Wi W sl W eE =N W W

1t

Wil WE el w4«

i

1

!

m
|

!

LN

L I E A T LA S AR Wi

LR

-

[CONTROL]

TWOR

N ?(mﬂ pres— /@)
LR

..._..r[[on] (on] Con] (o] [ow | [ow] o] (o] *—@]
s cjest / PT_tink object Q #¥_injector object

Figure 4.2: System-level diagram of CM-5 model created with DEPEND

to receive it. Like the real machine, each NI has two communication paths to the Data Network,
and one to the Control Network. The NI tries to maintain a balance in the Data Network by
randomly choosing which of the two paths a message is sent through. If a link or router failure
in the Data Network causes one path to be blocked, the NI will send the message through the
other path. As with the processing nodes, the network interfaces in a partition are injected with
faults using a single FT_injector object. The fault model used in an NI is such that a fault will
cause the object to cease responding to requests for the sending or receiving of messages from
the PN. The NI also fails to accept messages coming from the network.

The Data Network of the CM-5 is modeled using a number of router chip objects which
communicate messages via communication link objects modeled with the FT_link object from
the DEPEND library. A Fat-Tree network of router chips (nodes in the tree) is constructed
dynamically based on the number of processing nodes specified by the user, with network

interfaces connected at each leaf. Each router chip is modeled using the general-purpose

46

functions of the FT_server along with logic to perform routing of messages travelling through
the network. A decision of which path to send a message is made dynamically at each chip
based on the message address. If the path of choice is not available due to a failure, a rerouting
algorithm is invoked in an atteml;t to r;;ﬁ:h the dé;iiﬁétion via aﬁother route. Each router chip
object is connected to four router chlpslower in the tree, and two or four chips higher in the tree.
The passing of messages betwgggvthese chips is performed by sending the message through
FT_link objeéts, which represent the wires in the actual network. Mesgages which collide in
a router chip are buffered until the path is free for transmission. When a fault is injected in
a router chip, the router no longer communicates with its links, and all messages buffered in
the router are lost. Faults occurring in the link objects may have the effect of corrupting or
losing message data for transient faults, or failing to accept messages if a permanent fault has
occurred.

Finally, the Control Network of the CM-5 is modeled in a manner similar to that of the
Data Network. A collection of router chip and link objects is connected in this network as a
binary tree, With a network interface object at each leaf. In the Control Network, however,
the logic in each router chip is altered to perform the special message functions to provide
broadcasting, reduction, and combining operations, just as in the real machine. Single source
messages (broadcasts) are sent up the tree from the NI which received the message from a
brocessing node. At the root of the treei, the message is spread down all branches to each NI in
the partition. Multiple source messages (reduction/combining) are queued at each router chip

object as they come up the tree. A second message is waited for from the other child router,

-

gl ® gl

;i

1T

Wi

L

Wi R ®EI 0 %@ s G

S

i

N

ar

{

it

¢

=

]

47

and when it arrives, the proper reduction function is performed (e.g., addition, multiplication,
logical operations). The fault models for the router chips and links in this network are similar

to those of the Data Network.

4.2.2 Executing a real workload

An important feature of the CM-5 model is its ability to execute real parallel programs.
This allows us to determine the effect of faults on specific applications, in terms of loss of
performance or correctness of the results produced. For example, the failure of a router in the
data network may invoke a specific routing algorithm which routes messages around the faulty
area, causing the messages to take longer to reach their destination. The model provides a means
to measure the overhead incurred by this strategy for various applications. Another case may
be that a communication link in the network has become faulty and is occasionally corrupting
message data. Here the model is useful in first checking the effectiveness of error detection
(checksum) mechanisms in the communication hardware. We can then quantify the amount of
damage undetected message corruption causes by examining results of the application.

The model executes application code by having DEPEND compile it as a method of each
processing node object. The code can then be executed as a separate process by simply calling
this method. The only additions to existing code are a simple “create” command, used by the
simulation engine, and “use” commands needed by simulation engine to advance the simulation

time clock after a block of code has been executed. By advancing the simulation clock, we

48
void CM_proc::execute()
{
create ("test"); // start process
int token, n_procs, my_1id;
my_id = CMMD_self_address(); // get this node’s address
n_procs = CMMD_partition_size(); // find out how many nodes
use(5.0); // use CPU for one second
if (my_id==0) { // Proc 0 passes lst token
token = 0;
use(2.0);

CMMD_send (my_id+1, 0, &token, sizeof (int)) ;
// send token to neighbor
CMMD_receive (n_procs-1,0,&token,sizeof (int));
// wait for token to return
}
else {
CMMD_receive (my_id-1,0, &token, sizeof (int));
// wait for token
token += my_id; // add my id to token
use(3.0);
CMMD_send ((my_id+1) %n_procs, 0, &token, sizeof (int));
// send to next one

Figure 4.3: Sample parallel program executed on the CM-5 model

model the time a number of statements would actually take to execute. A simple parallel

program is included in Figure 4.3 as an example.

This program sends a message around a logical ring of processors. It could be run on a real

CM-5 as is. The only modifications we have made are the create command at the beginning

and use commands interspersed throughout the program. This program uses CMMD message

passing library functions to send messages through the data network of the CM-5. In the

€l f

€

W

(AR
il

|4

[l

[t

| Bt

I

1

-

Wi
‘i

i

a

]

ki

e

Qe

@ e

L uladl

il

amey onn

Ll e

49

real machine, these functions create messages which are sent through the network interface
hardware to the data network. In the simulated CM-5, these functions have been altered to
send the messages through the simulated network interface to the simulated network. There is
no external difference between the actual function calls in either syntax or semantics.

The model can also handle several applications running at the same time. A separate
process is created for each, and the processing node object maintains context switching between
processes based on a selectable scheduling policy. This provides a means for a user to model
a sample workload consisting of a mix of applications arriving at various times throughout the

simulation run.

4.2.3 Fault injection process

Fault injection experiments may be constructed in many ways. The basic steps that are

necessary in a typical experiment are outlined below.

1. The size of the system, number of partitions, and a workload (if desired) must first be

specified. The model can then be constructed.

2. The distribution and rate of fault injection for each object is set. Injection may be either
‘automatic by the fault injector objects or may be manual. A single method allows any

object in the system to be manually injected at any time.

3. Rates of repair or special repair functions have to be set. Once again, repairs are done

either automatically by the fault injectors or manually.

50

4, Specify any additional measurements to be made (DEPEND objects keep most of the
needed statistics). Also, criteria for ending the experiment must be established (time,

number of faults, system crash).

5. Execute the model with a selected random number seed.

Execution of the workload begins with computation and message passing just as in the
real CM-5. Unfortunately, since one workstation is doing the work of n processing nodes, the
actual execution time of the workload is much greater. However, experiments running simple
workloads have provided insight into the behavior of a CM-5-like system under faults. We

present some of the more interesting results in the following section.

4.3 Experimental Results

A number of expetiments were performed using the CM-5 simulation model. This section
focuses on the results from one particular class, failures in the data network links. The results
presented demonstrate the irﬁéact of faults on performance of massively parallel systems, as
well as the need to simulate a system in the design phase to uncover overlooked problems that

result from a combination of faults.

43.1 Effect of link faults on Data Network performance

The discovery of a faulty link in the Data Network requires the rerouting of messages
through a properly functioning link. The obvious effect of rerouting is some loss of bandwidth

and higher network congestion around the fault. It is exi)ected that an application which sends

iy |

. R

-

]|

Qi

g

[]

L

@iE i

g
(o7

{n L Tar
VRN

i
L

cier

L
L

me

s

amy

aizn

i

|
i

a

|t
|

il

Qm

(mE qom

L i

51

messages which normally traverse the faulty link will suffer some loss in performance due to
the rerouting procedure. If this link failure cannot be repaired within the interval before another
link fails (either because the machine cannot be brought down for repair or because the next
fault occurs a short time later), the performance of the application may degrade further. Since
typical maintenance periods are about one week for large machines, it is likely- that several
failed links may coexist for a period of time. The question for the operator is whether the system
performance is so degraded that the system should be brought down for immediate maintenance,
or whether the unplanned outage is too costly in terms of the amount of computation time lost.
This problem is addressed by a series of experiments performed on the Data Network of our
CM-5 model. While running a particular abplicaﬁon, link faults were introduced into the
system one at a time. After each injection, the times for the communication portions of the
applications were measured to observe ;he effect of the faults on the performance. To determine
which levels of links in the network have the greatest impact when they fail, injections were
performed at each level of a 64-processor system.

Figure 4.4 shows the resulting percentage increase in communication time for each applica-
tion for a number of faults injected in certain levels of the network. For gach experiment, faults
were injected at the target level until the network was no longer able to deliver the message to
its destination.

Figure 4.4(a) contains the results for link fault Vinjectionnsrwhile running the Total Exchange
algorithm. In this algorithm, each processing node collects a value from every other processor

one at a time. The largest number of collisions occurs at the routers right above the destination

Performance Degradation - Total Exchange - 64 Pr: s Performance Degradation - Gaussian Elimination - 64 Pr -]
% Communication Increase % Communication Increase
T T T T Teveat 0 T T T T Tevel 0
a1 13.00 rosu
Lol ¥ h i
12.00
11.00
10.00
9.00
5.00
7.00
600
5.00
4.00
3.00
2.00
1.00
0.00
Link Falts Link Faults
(a) (b)

Figure 4.4: Effect of consecutive link faults on algorithm performance

node. Therefore, we expect communication time to be affected most by the loss of a link at
the lowest level of the network, where it is needed most. We see that our simulations showed
a nearly 20% increase in“communication time for each fault at this level. Since congestion is
less and the bandwidth is higher at the higher levels in the network, it is expected that fewer
messages would be affected by link faults there. Our results verify this assumption, and provide
quantitative information about the communication time increase.

Figure 4.4(b) shows the communication time increase for loss of links while running a
Gaussian elimination program. Since this version of the program uses a scattered method of
data distribution, we can expect to see sets of processors exchanging rows and columns of the
matrix [24]. ﬁe broadcast of the pivot vahi; can be hahdled by the Control Network so that that
section of the algorithm is not affected by the link faults injected. The typical communication

pattern for each iteration will involve disjoint sets of 8 processors. One processor from each

i

wil

| [iiH

1

il

1
i

1
i

T

& W

tim

1
)

i

iy

'
i

¢ B3
L

il

aues

o

AR SN SR (RCU G

¢

53

group communicates its row or column values to each member in its set. Since this method
balances the load on the processors and on the Data Network, it is expected that 2 message could
be rerouted around a link fault anywhere in the network without causing excessive collisions.
Figure 4.4(b) shows this to be the case. With even seven or eight faults, little performance loss
occurs (0-3%). Since the higher levels of the network are ut'ilized frequently with algorithms,
a high number of faults eventually begin to have an impact, as shown by the sudden rises in the
level 2 and level 3 curves.

An ideal follow-up experiment would be to generate a realistic sample workload consisting
of typically used programs, and repeat these experiments to gain an overall view of how this
type of network performs under these faults. The experiments presented here stress the fact
that some applications may not be affected at all by network faults, while others suffer greatly.
In addition, the location of the fault is also shown to be of importance when considering these

effects.

432 Deadlock due to link fault scenarios

When routing in a network is performed locally at each router, rerouting of messages may be
performed by the router when it discovers or is informed of the failure of a connected link. The
router chooses an alternative link through which the message may reach its destination. The
routing algorithm used to achieve this is dependent on the netwprk topology and the existing
faults surrounding the router. Usually it is not difficult to devise such an algorithm which will

successfully bypass the faulty link. However, when a number of links in the network have

54

suffered failures, a local routing scheme may result in deadlock if knowledge of failed links
not connected to the router is not made available. During our link fault experiments, it was
discovered that certain combinations of faulty links resulted in a deadlock situation, where
messages would bounce between routers without ever reéching their destinations. The routing
algorithm and fault scenario which tr;iggered- the deadlock are explained here. It should be
clearly noted that this type of rerouting strategy is not the same one implemented in the real
CM-5 machine. Implementation of the messages in the real machine does not allow this type
of rerouting to exist, and therefore the deadlock problems described will not occur in reality.
However, for general network problems, this strategy is not unreasonable, and the deadlock
problems described below could exist in this type of system.

When a router determines thét the message should be sent through a link which has failed,
it must choose an alternative. In the Data Network, a message that should go up the tree can be
sent to any other link and reach its destination in the same amount of time. Messages which are
travelling down the network can be sent down only one path to the destination without taking
a longer detour. If this path is blocked, a logical choice would b?erto accept this penalty by
sending the message down another link.

Figure 4.5 shows a potential link fault scenario in which a rerouting algorithm, which is
successful for most faults, fails. A message located in the router labeled START is trying to
reach the processing node (or network interface) labeled DEST (node 11). Three links, labeled
1,2, and 3, in the level separating;the' i;)iiteté from the nodes have failed, as indicated by the X

marks. Since the links are close in proximity, it is likely that they all could have been damaged

|l

el e er o«

LR

i

amy

i

It

\I‘
|

anm o o«

Qi

LT

(9

c:

L

ki

C

e
i

(o

o

am e o

oo

o

(A (A L S A

(I

¢

55

by a clumsy operator who scratched the network board the lines resided on, causing an open
circuit for those connections. The first choice of the router would be to send the message along
link 1 directly to the destination. When the roﬁter discovers (possibly after several retries) that
it cannot send the message through link 1, it will select an alternate. The algorithm used simply
chooses the first available link to the right of the failed link (wrapping around to the leftmost
link if the rightmost link fails, as is the ca;e here). In this example, the message would be
sent to node 8. This node would realize that the message was not intended for it, and would
try to send it up the network via an upwé\rd link other than the one it originated from. This is
where the first problem occurs. The other upward link is link 3, which is failed. Node 8 has no
alternative other than sending the message back up the link it came from, in hopes that another
path can be found. When router START receives the message for the second time, it may try to
send the message down link 1 again, since it does not know that this is not a message originating
from node 8 unless some sort of costly state information is kept about each message which
passes through the router. Since the message cannot be sent down link 1, the naive algorithm
would send it back down to node 8. If we restrict messages from being sent back down their
paths of origin, this easily solves this problem. If we skip that path and choose the next one,
the message will be sent to node 9. Node 9 cannot send the message up its other upward link
(link 2) because it has failed. It too sends it back to router START. Unfortunately, the router
cannot send the message down link 1 as it wishes again, so it chooses to send it down to node
8. It does not know that some time ago it already tried this path, and to store this information is

unreasonable. Thus, the whole cycle will start again and the message will never be delivered.

56

2o s
Figure 4.5: Link fault scenario resulting in deadlock

The unfortunate reality here is that a path does exist, through node 10. The method of selection

chosen, however, results in doadlock when these faults exist.

The discovery of deadlock under multiple link faults demonstrates the need for simulation
in the design phase of massively parallel systems. As systems become more complex, the
difficulty in enumerating all possible fault scenarios increases. If the algorithms implemented
in the hardware are susceptible to a particular set of faults which are not considered, the resulting

effects may be disastrous. Proper simulation will reveal such cases before the hardware is put

into production.

4.4 Conclusions and Future Work

In this section, it has been shown how dependability of a system affects its performance.
The link failure example demonstrates the effect of rerouting strategies in the data network, and

provides insight as to when an operator should decide to bring down a crippled machine for

-

el aur o« e | t

|l

'

il

QL

L Y

L

i

[T 1]

QI

(e

Co

E
|

tw‘. PR

i

trm
i,

{: i E e

T i i R (i

R A i ‘l\”

‘ HIVIIVI]
|

!

t ' ﬂ\’ L ﬂm e

Cr

57

repairs. Furthermore, the expéfiments showed an obscure shortcoming in the rerouting strategy
used when a certain pattern of link faults exists. An experiment like this performed in the early
design phase could prevent costly problems later.

Obviously, this class of link faults represents only a small part of the total possible faults in
the system. The effects of router and processor failures may also produce interesting results.
The question of efficient software execution is also important, since only small algorithms
running for a small period of time are possible. Simulating systems larger than 64 processors
tends to be troublesome as well, due to the large computing resources required. Parallel
simulation methods, which map the model of the system across the nodes of a parallel machine,
could help alleviate this. Initial tests indicate that models of this type are highly parallel,

especially when executing code that does not involve a high degree of message passing.

38

5. CONCLUSIONS

5.1 Summary

The three significantly different case studies presented in this thesis provide strong evidence
of the useful results that can be obtained using the simulation facilities provided by DEPEND.
By modeling the actual algorithms and protocols governing these systems, as well as realistic
workloads executing on them, we can obtain insight into the system behavior under fault
conditions. This is especially important when the system is too large and complex to allow for
enumeration of all possible faulty outcomes. Typically this information can be used to develop
design modifications to improve fault tolerance, as is evident in the DASH example.

Also "demonstrated in this work are methods of creating proper simulation models for the
problem at hand. Modeling a system at the right level of detail and with a clear objective at
 the start of the modeling process proved to be the most effective method. While the simulation

approach may take a fair amount of development and execution time, the benefits in terms of

Q.

il

Wi

ki

G

®a

[

Q|

Qi

T

o

T

d

]

t

C‘F‘H‘ m\‘m'
R

¢

gin

it |

one

o

L

(G S A GAE (A SR S

39

increased possibilities for analysis and accuracy of results should be clear from the case studies

presented in this work.

5.2 Future Work

Future work in the analysis of the systems modeled has been described at the end of each
chapter. In this section, a number of suggestions are made for further study in the area of
dependability analysis through a simulation model approach.

A major area in need of exploration is software fault analysis. With increasing component
reliabilities, a greater percentage of critical failures occur in the system software. This work
did not examine faults in the software. Large amounts of real software can not be included in
the actual simulation due to simulation time constraints. Therefore, some type of abstraction
capturing the behavior of the software under faults, without executing it, is ﬁecessary to do this
analysis. Performing this abstraction is not a simple task, however, and must be the subject of
further study.

Another interesting problem that occurred in the model development stage involved spec-
ifying the relationships among the various components in the system. One example of this
results from the physical connections between components. In real machines, architectural
components exist on the same circuit board, and this board is the minimal unit of repair. Such
a field replaceable unit or FRU, as they are commonly called, has the characteristic that if
one chip or subunit fails, all components on the FRU are replaced, not just the failed unit.

This relationship must be specified and managed within the dependability simulation package.

60

Other dependency relationships include those centering on power or connectivity. A group of
components will not function properly unless their power source is available. When the power
source fails, all dependent components must be inactivated. DEPEND does not address this
class of intercomponent dependencies, and a way to remove the burden of incorporating this
into the simulation must be removed from the user, once specified.

A final class of problems focuses on reducing simulation execution time. Large systems,
such as those analyzed in this work, are requiring more and more computing resources to
generate accurate models. It was shown in the RAID example how simple acceleration tech-
niques can drastically improve performance of the simulation. Traditionally, however, these
techniques are incorporated on a case by case basis. Formal techniques which will allow au-
tomation of this process must be researched. One possibility may lie in hierarchical modeling.
If a dependability model can be specified in various levels of detail, slow executing detailed
component models can be used only at critical times in the simulation, while higher-level
models can be used the majority of the time. Also, if information from lower level models
can be extracted to higher-level models, precious execution time can be saved. Without further
work in this area, it is unlikely that this type of modeling will be feasible for larger machines

developed in the future.

@& e e

Wi

L[

i

Qi

L

Qi

Qi w

i

(FEE

alli

gr

T

i
]

LAt

g

i i

i

LB

it

i
i

s an

L}
i

i

Lo

iighe

L b

LI

61

REFERENCES

[1] SES, Inc., Austin, TX, SES/Sim Simulation Language Reference Manual, Mar. 1989.

[2] M. H. MacDougall and J. McAlpine, “Computer simulation with ASPOL,” in Symposium
on the Simulation of Computer Systems, ACM/SIGSIM, pp. 93-103, 1973.

[3] C. Sauer, E. MacNair, and J. Kurose, “RESQ: CMS user’s guide,” Tech. Rep. RA-139,
IBM T.J. Watson Research Center, Yorktown Heights, N.Y., Apr. 1982.

[4] J.Lala, “Fault detection isolation and reconfiguration in FTMP: Methods and experimental
results,” in 5th ATAA/IEEE Digital Avionics Systems Conference, pp. 21.3.1-21.3.9, 1983.

[5] K. G. Shinand T. Lin, “Modeling and measurement of error propagation in a multimodule
computing system,” IEEE Transactions on Computers, vol. 37, pp. 1053-1066, Sept.
1988.

[6] L. Young, R. K. Iyer, K. K. Goswami, and C. Alonso, “A hybrid monitor assisted fault
injection environment,” in Third IFIP Conference on Dependable Computing for Critical
Applications, Sept. 1992.

[7] Z. Segall et al., “FIAT - fault injection based automated testing environment,” in The
Eighteenth Annual International Symposium on Fault-Tolerant Computing, pp. 102-107,
June 1988.

[8] G. Kanawati, N. Kanawati, and J. Abraham, “FERRARI; A fault and error automatic real-
time injector,” in The Twenty-Second Annual International Symposium on Fault-Tolerant
Computing, July 1992, ' | '

[9] E. W. Czeck, “On the prediction of fault behavior based on workload,” Ph.D. dissertation,
Carnegie Mellon University, Department of Electrical Engineering, Apr. 1991.

[10] K. K. Goswami and R. K. Iyer, “A simulation-based study of a triple modular redundant

system using depend,” in 5th International Tests, Diagnosis, Fault Treatment Conference,
Sept. 1991.

il T RREY R

62

[11] K. K. Goswami and R. K. Iyer, “DEPEND: A simulation-based environment for system
level dependability analysis,” Tech. Rep. CRHC Report #92-11, CRHC, University of
Illinois, June 1992.

(12] K. K. Goswami and R. K. Iyer, “DEPEND: A design environment for prediction and
evaluation of system dependability,” in 9th Digital Avionics Systems Conference, pp. 87—
92, Oct. 1990.

[13] K. K. Goswami and R. K. Iyer, The DEPEND Reference Manual. University of Illinois,
Center for Reliable and High Performance Computing, Urbana, Illinois 61801, Oct. 1990.

[14] K. K. Goswami and R. K. Iyer, “Simulation of software behavior under hardware faults,”
in The Twenty-Thrid Annual International Symposium on Fault-Tolerant Computing,
~ pp. 218-227, June 1993.

[15] Parsytec Computer GmbH, Parsy}ec GC 7Technicai Summary, Jan. 1991.

[16] R. H. Katz, G. A. Gibson, and D. A. Patterson, “Disk system architectures for high
performance computing,” Proceedings of the IEEE, vol. 77, no. 12, pp. 1842-1858, Dec.

1989.

[17] G.A.Gibson andD. A. Patterson, “Designing disk arrayé for high data reliability,” Journal
of Parallel and Distributed Computing, vol. 17, pp. 4-27, Jan. 1993.

[18] D. Lenoski et al., “The directory-based cache coherenée protécol for the DASH multipro-
cessor,” in Proceedings of the 17th International Symposium on Computer Architecture,

1990.

[19] D. Lenoski et al., “The DASH prototype: Logic overhead and performance,” IEEE
Transactions on Parallel and Distributed Systems, vol. 4, pp. 41-61, Jan. 1993,

[20] Thinking Machines Corporation, The Connection Machine CM-5 Technical Summary,
Jan, 1992. L

[21] C.E.Leisersonetal., “The network architecture of the Connection Machine CM-5,” ACM
Symposium on Parallel Algorithms and Architectures, 1992.

[22] C. E. Leiéefsdn, “Fat-ti'ees: Universal networks for hardware-efficient supercomputing,”
IEEE Transactions on Computers, vol. C-34, pp. 892-901, Oct. 1985.

[23] Thinking Machines Corporation, CMMD 3.0 Reference Manual, May 1993.

[24] R. P. Brent, “Parallel algorithms in linear algebra,” Tech. Rep. TR-CS-91-06, Computer
Sciences Laboratory, Australian National University, Aug. 1991.

I8 @ Tt | | LK € ¢

L

el

L]

