PARTICLE KINETIC SIMULATION OF HIGH ALTITUDE HYPERVELOCITY FLIGHT

Iain Boyd
and
Brian L. Haas

Eloret Institute
3788 Fabian Way
Palo Alto, CA 94303

Prepared for

Ames Research Center
under Cooperative Agreement NCC2-582
PARTICLE KINETIC SIMULATION OF HIGH ALTITUDE HYPERVELOCITY FLIGHT

Iain Boyd
and
Brian L. Haas

CONTRACT NAS2–
Rarefied flows about hypersonic vehicles entering the upper atmosphere or through nozzles expanding into a near vacuum may only be simulated accurately with a direct simulation Monte Carlo (DSMC) method. Under this grant, researchers enhanced the models employed in the DSMC method and performed simulations in support of existing NASA projects or missions. DSMC models were developed and validated for simulating rotational, vibrational, and chemical relaxation in high-temperature flows, including effects of quantized anharmonic oscillators and temperature-dependent relaxation rates. State-of-the-art advancements were made in simulating coupled vibration-dissociation-recombination for post-shock flows. Models were also developed to compute vehicle surface temperatures directly in the code rather than requiring isothermal estimates. These codes were instrumental in simulating aerobraking of NASA's Magellan spacecraft during orbital maneuvers to assess heat transfer and aerodynamic properties of the delicate satellite. NASA also depended upon simulations of entry of the Galileo probe into the atmosphere of Jupiter to provide drag and flow field information essential for accurate interpretation of an onboard experiment. Finally, the codes have been used extensively to simulate expanding nozzle flows in low-power thrusters in support of propulsion activities at NASA-Lewis. Detailed comparisons between continuum calculations and DSMC results helped to quantify the limitations of continuum CFD codes in rarefied applications.
PARTICLE KINETIC SIMULATION
OF HIGH ALTITUDE HYPERVELOCITY FLIGHT

Final Technical Report
for
Cooperative Agreement NCC2-582

for the period
January 1, 1989 - January 31, 1994

Submitted to

National Aeronautics and Space Administration
Ames Research Center
Moffett Field, California 94035

Aerothermodynamics Branch
Dr. George S. Deiwert, Technical Officer

Thermosciences Division
Dr. Jim Arnold, Chief

Prepared by

ELORET INSTITUTE
3788 Fabian Way
Palo Alto, CA 94303
Phone: 415 493-4710
Telefax: 415 424-9876

Dr. K. Heinemann, President and Grant Administrator
Dr. Iain Boyd, Principal Investigator (1/89 - 12/92)
Dr. Brian L. Haas, Principal Investigator (1/93 - 1/94)

19 April, 1994
Rarefield flows about hypersonic vehicles entering the upper atmosphere or through nozzles expanding into a near vacuum may only be simulated accurately with a direct simulation Monte Carlo (DSMC) method. Under this Cooperative Agreement, the models employed in the DSMC method were enhanced, and simulations in support of existing NASA projects and missions were performed.

DSMC models were developed and validated for simulating rotational, vibrational, and chemical relaxation in high-temperature flows, including effects of quantized anharmonic oscillators and temperature dependent relaxation rates. State-of-the-art advancements were made in simulating coupled vibration/dissociation/recombination for post-shock flows.

Models were also developed to compute vehicle surface temperatures directly in the code rather than requiring isothermal estimates. These codes were instrumental in simulating aerobraking of NASA's Magellan spacecraft during orbital maneuvers to assess heat transfer and aerodynamic properties of the delicate satellite.
NASA also depended on simulations of entry of the Galileo probe into the atmosphere of Jupiter to provide drag and flow field information essential for accurate interpretation of an on-board experiment.

Finally, the codes have been used extensively to simulate expanding nozzle flows in low-power thrusters in support of propulsion activities at NASA Lewis Research Center. Detailed comparisons between continuum calculations and DSMC results helped to quantify the limitations of continuum CFD codes in rarefied applications.

During the first four years of this research program, the work was performed under the direction of Dr. Iain Boyd. Dr. Brian Haas joined the team in January, 1991, and became sole investigator in January, 1993. The results obtained during the phase when Dr. Boyd was Principal Investigator were presented in periodic research reports dated 11/2/89, 5/15/90, 11/28/90, 4/5/91, 3/6/92, and 1/4/93 as summary report. The scientific papers published in the open literature resulting from this phase of the program are included in the listing below.
The first periodic report with Dr. Haas as Principal Investigator was submitted on 12 October, 1993. His research from 1/1/93 through 1/31/94 included a detailed study of the rates of rotational and vibrational relaxation in the DSMC method to resolve numerous inconsistencies and differing interpretations appearing in the literature. This study developed a consensus among many researchers in the field and was reported in Ref.(15).

A second research area of Dr. Haas concerned modeling of gas-surface interactions. Rather than require prescribed temperature estimates for spacecraft surfaces, as is typically done in DSMC methods, a new technique was developed which couples the dynamic surface heat transfer characteristics into the DSMC flow simulation code to compute surface temperatures directly. This model, as applied to thin planar bodies such as solar panels, was described in Ref.(13).

Application of the DSMC method to problems of practical interest requires a trade-off between solution accuracy and computational expense and limitations. A parametric study was performed to assess the accuracy penalties associated with simulations of varying grid resolution and flow domain size, and was reported in Ref.(16).
The DSMC code was applied to two different spacecraft entry studies. First, the pitch, yaw, and roll aerodynamics of the Magellan spacecraft during entry into the Venus atmosphere at off-design attitudes was studied and reported in Ref. (14). Secondly, a study of entry of the Galileo probe into the atmosphere of Jupiter was conducted to assess vehicle drag in support of the on-board Atmosphere Structure Experiment during the most rarefied portion of the trajectory. This material was submitted in the form of an abstract for the AIAA Thermophysics Conference slated for June, 1994 (Ref. (17) -- see Appendix).

The following papers and publications resulted from the research activities conducted under Cooperative Agreement NCC2-582:

(3) B.L. Haas and I.D. Boyd, "Vibrationally-Favored Dissociation Applicable to a Particle Simulation," AIAA-paper 91-0774.

(4) B.L. Haas and J.D. McDonald, "Validation of Chemistry Models Employed in a Particle Simulation Method,"
AIAA-paper 91-1367.

(14) B.L. Haas and D.A. Schmitt, "Simulated Rerefield Aerodynamics of the Magellan Spacecraft During Aerobraking," AIAA Paper 93-3676; presented at the Atmospheric Flight
Mechanics Conference in August, 1993, and submitted to J. of Spacecraft and Rockets.

Simulated Rarefied Entry of the Galileo Probe into the Atmosphere of Jupiter

Brian L. Haas*
Eloret Institute, Palo Alto, California 94303

Frank S. Milos†
NASA Ames Research Center, Moffett Field, California 94035-1000

Flow properties and aerodynamics are computed with a direct simulation Monte Carlo (DSMC) method for rarefied entry of the Galileo Probe into the atmosphere of Jupiter. Accurate predictions of vehicle drag coefficients are needed in order to assess atmospheric properties from the onboard Atmosphere Structure Experiment where highly-sensitive accelerometers will measure the drag force to within 10-6 bar during the initial entry phase at high altitudes. The corresponding flow rarefaction extends from the free molecule limit to the near continuum transition regime (Re<1000). Simulation results indicate that C_D varies from 2.1 at the free molecule limit down to 1.6 at Re_oo = 1,000. Temperatures, densities, and internal energies throughout the flow field were also computed at each altitude ranging from 735 km to 353 km above the 1 bar level in the Jovian atmosphere. Surface heating and temperatures of the probe were computed directly in the DSMC code by assuming radiative equilibrium. Material response was re-assessed accurately during entry by accounting for conductivity, heat capacity, and pyrolysis which led to surface material mass efflux several times that of the freestream mass influx. The simulation also accounted for the quantum nature of the rotational energy mode of the dominant atmospheric species H_2 through partial internal excitation in the freestream gas.

NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>thermal accommodation coefficient</td>
</tr>
<tr>
<td>C_D</td>
<td>drag coefficient</td>
</tr>
<tr>
<td>D</td>
<td>diameter</td>
</tr>
<tr>
<td>g_j</td>
<td>degeneracy of rotational quantum level j</td>
</tr>
<tr>
<td>j</td>
<td>rotational quantum level</td>
</tr>
<tr>
<td>k</td>
<td>Boltzmann constant, 1.3805 x 10^-23 J/K</td>
</tr>
<tr>
<td>Kn</td>
<td>Knudsen Number</td>
</tr>
<tr>
<td>M</td>
<td>Mach number</td>
</tr>
<tr>
<td>q</td>
<td>net convective heat flux</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number based on diameter</td>
</tr>
<tr>
<td>r_j</td>
<td>normalized rotational energy of level j</td>
</tr>
<tr>
<td>T</td>
<td>temperature</td>
</tr>
<tr>
<td>t</td>
<td>time during entry, starting at 735 km</td>
</tr>
<tr>
<td>Z</td>
<td>collision number for internal relaxation</td>
</tr>
<tr>
<td>α</td>
<td>VHS exponent of intermolecular potential</td>
</tr>
<tr>
<td>ε</td>
<td>material radiative emissivity</td>
</tr>
<tr>
<td>ζ_r</td>
<td>rotational degrees of freedom</td>
</tr>
<tr>
<td>θ</td>
<td>characteristic mode temperature</td>
</tr>
<tr>
<td>μ</td>
<td>viscosity (kg/m^2-s)</td>
</tr>
<tr>
<td>ρ</td>
<td>mass-density (kg/m^3)</td>
</tr>
<tr>
<td>σ</td>
<td>Stefan-Boltzmann const., 5.67 x 10^-8 W/(m^2K^4)</td>
</tr>
</tbody>
</table>

Subscripts:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>deep-space value</td>
</tr>
<tr>
<td>ref</td>
<td>reference value</td>
</tr>
<tr>
<td>r</td>
<td>pertains to the rotational mode</td>
</tr>
<tr>
<td>v</td>
<td>pertains to the vibrational mode</td>
</tr>
<tr>
<td>w</td>
<td>value at wall or surface</td>
</tr>
<tr>
<td>oo</td>
<td>freestream value</td>
</tr>
</tbody>
</table>

INTRODUCTION

Just prior to encountering and orbiting Jupiter, the Galileo spacecraft will release a probe which will enter the Jovian atmosphere. During the initial aerobraking phase, the 45-degree blunted-cone probe will be protected from heating by a carbon phenolic shield. Once the probe velocity has been reduced from 47.5 km/s to 0.74 km/s, and entry heating has diminished, the probe will eject its heat shield and deploy a parachute. During descent, the probe will make several in situ measurements of atmospheric properties and transmit that data to the orbiting spacecraft. However, an Atmospheric Structure Experiment,¹ similar to that employed in the Pioneer Venus mission, will also be on the Galileo probe to measure deceleration during the initial high-altitude entry phase. This experiment deduces atmospheric density, pressure, and temperature from deceleration measurements so long as the vehicle drag co-

* Research Scientist, Aerothermodynamics Branch. Member, AIAA.
Mailing Address: NASA Ames Research Center, M/S 230-2, Moffett Field, CA 94035-1000.
† Research Scientist, Thermal Protection Materials Branch. Moffett Field, CA 94035-1000.

This paper is declared a work of the U.S. Government and is not subject to copyright protection in the United States.
efficient is known a priori. The instrument is sufficiently sensitive to detect any deceleration exceeding \(10^{-5}\) m/s\(^2\). Consequently, meaningful properties can be assessed for the Jovian upper atmosphere where the probe encounters highly rarefied flow during entry just prior to peak heating and ablation of the heat shield. This flow regime is bounded by the effective free molecule limit at 750 km altitude \((Re_\infty = 0.1)\) and the near-continuum limit at 350 km \((Re_\infty = 1,000)\). Note that since Jupiter has no identifiable surface, altitude is measured relative to the 1.0 bar pressure level in the Jovian atmosphere.

Accuracy of the experiment, however, depends upon the accuracy with which the probe drag coefficient is estimated. Intrieri\(^2\) conducted a series of experiments in the ballistic range facilities at NASA Ames Research Center to measure the drag of several blunt-body configurations including the probes from Pioneer Venus and Galileo. Results for each were very similar, leading to values near \(C_D = 1.1\) for \(Re_\infty > 1,000\). However, \(C_D\) rises significantly (approaching values near 2.0) for decreasing \(Re_\infty\) below 1,000, although Intrieri’s experiments were not reliable in the rarefied regime. Furthermore, the experimental surface materials, gas species, and flow conditions (Mach number, density, etc.) differed significantly from those anticipated for the probe entry at a given Reynolds number.

Due to the lack of sufficient experimental data, the probe aerodynamics must be estimated computationally. Unfortunately, the flow regime is ill-suited to simulations which are based upon the continuum Navier-Stokes equations due to limitations in the constitutive relations for heat flux and shear stress. Instead, highly rarefied flows, for which the ratio of molecular mean free path to a body dimension is large (Knudsen number, \(Kn > 0.1\)), are best simulated computationally with direct simulation Monte Carlo (DSMC) particle methods\(^3,4\). Here, gas dynamics is modeled directly by the motion and interaction of thousands or millions of discrete particles. Particles which strike the vehicle may reflect back into the flow with velocities and internal energies corresponding to full or partial accommodation to the surface. The simulation permits accurate assessment of vehicle aerodynamics and heating along with properties of the flow field.

The objective of the present study was to assess the drag coefficient for the Galileo probe during entry from 750 km down to 350 km altitude in the Jovian atmosphere. Due to uncertainties in the applicable surface thermal accommodation coefficient \(A\), simulations were repeated using different values to quantify its effects upon the vehicle entry. Surface heating was evaluated to determine the extent of pyrolysis of the heat shield through the use of the Charring Material Thermal Response and Ablation (CMA) program. This code models transient convective heating, radiation, in-depth conduction, heat capacity, and the flow of pyrolysis gases through the porous material. Together, these codes simulate the entry environment and response of the Galileo probe to estimate the appropriate vehicle aerodynamics required for this and other aerobraking missions.

SIMULATION MODELS

The DSMC code employed in the present study was developed by Baganoff and McDonald\(^4,5\) and enhanced for better application to rarefied aeropass maneuvers.\(^6\) The flow field is divided into cubic cartesian cells to facilitate selection of colliding particles and sampling of macroscopic flow properties. The body geometry is modeled by a composite of planar facets in those cells through which the body surfaces pass. Each surface facet collects statistics regarding momentum and energy flux and may assume a surface temperature independent of neighboring facets. To simulate entry with the DSMC method, one must first specify properties of both gas-gas and gas-surface interactions.

Gas-Gas Interaction Models

Molecular interaction is simulated by the Variable Hard-Sphere (VHS) model of Bird\(^7\) in which the collision outcome corresponds to isotropic scattering, akin to the mechanics of hard sphere interactions. The collision rate, however, corresponds to an inverse power-law intermolecular potential of exponent \(\alpha\). This parameter must be specified between the limits of the Maxwell molecule \((\alpha = 4)\) and the Hard sphere \((\alpha = \infty)\), and may be estimated from the known temperature dependence of gas viscosity \(\mu\) as follows,

\[
\frac{\mu}{\mu_{\text{ref}}} = \left(\frac{T}{T_{\text{ref}}}\right)^{\frac{1}{2} + \frac{2}{\alpha}}.
\]

Transport properties of the Jovian atmosphere, thought to be composed by a mixture of 89% \(H_2\) and 11% \(He\), were calculated from kinetic theory by Biolsi.\(^8\) That work employed sophisticated semiempirical interaction potentials to solve the detailed collision integrals for viscosity, thermal conductivity, and binary diffusion for the gas mixture. Biolsi’s results for viscosity are plotted in Fig. 1 and compared to curves corresponding to the VHS model. The VHS parameters which yield best agreement in the figure and were employed in the current work are given by \(\mu_{\text{ref}} = 2.24 \times 10^{-3}\) kg/m·s, \(T_{\text{ref}} = 1000\) K, and \(\alpha = 10.5\).

Of additional concern in gas-gas interactions is the inelastic exchange of molecular energies due to relaxation of the internal energy modes for rotation and vibration. The mechanics of these exchange processes are modeled in the DSMC code by the methods of Borgnakke and Larsen\(^9\) and Haas, et al.\(^10\). These involve partitioning post-collision thermal energies in a manner which corresponds to equilibrium.
Gas-Surface Interaction Models

Details regarding the interaction of gas molecules with surfaces are not well understood in general, and are dependent upon several factors including surface roughness, impact dynamics, molecular potentials, and thermal energies. However, simple engineering models often suffice to simulate interaction phenomena. In the present work, a single thermal accommodation coefficient A describes the fraction of particles which accommodate fully to the surface versus those which reflect specularly. Full accommodation implies diffuse reflection of the particle from the surface with thermal energy corresponding to the surface wall temperature, T_w. Rather than assign some temperature to the surface, the code couples a simple surface heat transfer model into the flow solution to compute T_w directly.\(^{17,18}\) This model assumes that each surface facet is in radiative equilibrium with space at temperature $T_\infty = 150$ K, leading to the energy balance given by

$$q = -\varepsilon \sigma \left(T_w^4 - T_\infty^4 \right) = 0. \quad (5)$$

Here, q is the net convected heat flux to each facet accounting for both incident and reflected energy. As will be described later, this model can be enhanced to account for material heat capacity, thermal conductivity through the heat shield, and pyrolysis of the surface material.

Definitive values for A and ε for the interaction of Jovian atmospheric gases upon carbon phenolic material at flight conditions are not readily available. As used in this study, a surface emissivity of $\varepsilon = 0.85$ was suggested by Bueche\(^{19}\) from ground-based experiments, flight data, and theoretical predictions, and is at least consistent with estimates cited elsewhere.\(^{20-23}\) Appropriate values for A may be found with even less certainty than ε from limited related experimental data\(^{24}\) and theoretical\(^{25}\) results. It therefore proved necessary to repeat simulations using different values of A to assess sensitivity of the results to this parameter.

SIMULATION RESULTS

The DSMC code was used to simulate entry of the Galileo probe at several points along its trajectory from 735 km altitude to 353 km. Table 1 lists the simulation conditions for each case with atmospheric data taken from Orton. Note that time is measured relative to the 735 km trajectory point. For all cases the velocity was assumed to be $47,450$ m/s and the Knudsen number and Reynolds number were based on the probe diameter (1.265 m). The grid resolution employed in the present work is defined in Table 1 by the size of the probe diameter measured in cell-lengths, and was sufficiently fine to yield less than 1% error in drag and heating.\(^{26}\) The geometry of the probe is compared to the simulation models in Fig. 3. Note that only one quadrant of
the probe was simulated, taking advantage of two planes of symmetry of the body.

In general, flows with greater Re_{∞} require greater resolution in order to resolve flow gradients and avoid over-predicting drag and heat transfer. However, the required size of the flow domain increases with lower Re_{∞} because molecules which reflected from the probe surface are capable of diffusing far into the flow when collisions are scarce. The extent of the upstream diffusion of particles is depicted in the plot of flow temperature along the stagnation streamline in Fig. 4. The upstream domain boundary for each simulation case was sufficiently far upstream that the translational temperature was near its freestream value to prevent overprediction of heat transfer and drag. Density profiles along the stagnation streamline are plotted in Fig. 5 and also exhibit the effects of rarefaction. Note that no clear shock structure is observed since the shock is fully merged with the body layer. Density rose considerably near the body surface due to particle reflection from the relatively cold surface.

For each case, the simulation employed at least 16 particles per cell in the freestream and roughly 3 to 7 million particles total. The code was optimized for vector-processing on Cray supercomputers, requiring roughly 0.6 μsec/particle/timestep on the Cray C-90 or a total run time of 5,000-8,000 CPU seconds depending upon the case. Memory requirements ranged from 50 to 200 megawords.

Results of each case, identified by Re_{∞}, are presented in Table 2. The cases were run with $A = 0.75$ and several were repeated with $A = \{0.5, 0.9\}$. Heating of the nose region was highly sensitive to accommodation coefficient A while drag was fairly insensitive, particularly for the highest and lowest Re_{∞} cases. Simulated drag coefficients for the Galileo probe are plotted in Fig. 6 and compared to the experimental ballistic range results of Intrieri for spheres and the Pioneer Venus probe. Unfortunately, Intrieri’s results for the Galileo probe were all at high angles of attack and were of questionable quality at low Re_{∞}.

In general, drag dropped with increasing Re_{∞} above 10, but did not appear to blend well with the high-Re_{∞} experimental data. However, the experiments were performed at lower Mach numbers (roughly $M_{\infty} = 14.5$) in CO$_2$ compared with the high Mach numbers expected for Galileo entry in the H$_2$-He Jovian atmosphere. Indeed, for comparing highly rarefied flows, a suitable parameter for correlating the data would be the Knudsen number Kn_{∞}. Re-plotting the data in Fig. 7 suggests a smoother transition between the simulation results and the experimental work.

Nonetheless, it was instructive to simulate a few of Intrieri’s experiments for more direct comparison. Spheres flying at roughly $M_{\infty} = 14.5$ in pure CO$_2$ for $Re_{\infty} = \{192, 4564\}$ were simulated with the DSMC code employing the same surface description as above. The results are included in the drag plots and appear to follow the experimental trends quite well. Additional simulations will be performed to reproduce the Pioneer Venus probe experiments and results will be reported in the final paper.

Surface Temperatures and Pyrolysis

The DSMC calculations above employed a radiative-equilibrium energy balance to compute the surface temperature. This boundary condition neglects any effects of heat capacitance and heat conduction in the spacecraft heat shield and, therefore, provides an upper bound for the surface temperature. The calculations also neglected pyrolysis from the heat shield which can be significant for a high-energy incident flow at very low densities.

To check the validity and accuracy of these assumptions, the CMA code27,28 was used to calculate the one-dimensional heat transfer into the carbon phenolic heat shield at the stagnation point. Temperature-dependent material properties, surface re-radiation, and in-depth pyrolysis were included in the calculation, but surface ablation was neglected. The initial temperature was estimated to be 150 K just prior to entry from deep space. The aerothermal heat flux was taken from the DSMC results associated with $A = 0.75$ appearing in Table 2.

Figure 8 presents the transient surface temperature at the stagnation point during Galileo entry. As expected, the CMA-calculated surface temperature is always below the radiative-equilibrium temperature. The temperature difference between the two results increases from about 200 K at the initial time ($Re_{\infty} = 0.098$) to 1130 K at 55 seconds ($Re_{\infty} = 926$).

Figure 9 compares the stagnation point pyrolysis-gas mass flux with the free stream mass flux. The pyrolysis gas flux becomes significant between 43 and 48 seconds as the material temperature rises from 600 K to 1000 K. At 46.4 seconds ($Re=103.4$) the pyrolysis gas flux is more than 20 times the free stream mass flux.

Perhaps the drag coefficient does not depend strongly on the surface temperature which can itself be significantly below the radiative equilibrium value during entry. However, the surface mass flux due to pyrolysis of the material is significant once the probe drops below roughly 420 km. This could lead to a noticeable increase in drag and a decrease in heating. Thorough simulation requires that this mass flux be coupled directly into the DSMC code. Such modifications are underway and the results will be reported in the final paper.

Concluding Remarks

Drag on the Galileo probe during initial entry into the Jovian atmosphere was computed with a DSMC method, and the results were consistent with the experimental re-
results. However, drag varies considerably with Reynold's numbers in the range $10 < Re \approx 10,000$ at the high Ma flight conditions anticipated for the probe. Results correlate better with experiment when plotted against Knudsen number rather than Reynolds number under highly rarefied conditions. Simple models for gas-gas and gas-surface interaction permit efficient yet meaningful simulation of the flow, although the effects of significant surface pyrolysis warrant further investigation. Uncertainties in the thermal accommodation coefficient A have minimal impact on final results due to insensitivity of drag to A despite great dependence of heating upon A. Further comparisons to available experimental data will be made and the pyrolysis models will be coupled directly into the DSMC code before the final paper is presented.

Acknowledgements

The authors acknowledge and appreciate the support of NASA-Ames Research Center and the Numerical Aerodynamic Simulation for use of their facilities. This work was sponsored in part (for BLH) by NASA grant NCC2-582.

References

<table>
<thead>
<tr>
<th>t (sec)</th>
<th>Alt. (km)</th>
<th>Re</th>
<th>M</th>
<th>Kn</th>
<th>T (K)</th>
<th>p (kg/m³)</th>
<th>D (cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>735.00</td>
<td>0.10</td>
<td>31.47</td>
<td>415.59</td>
<td>425.0</td>
<td>2.024E-11</td>
<td>16</td>
</tr>
<tr>
<td>19.00</td>
<td>604.00</td>
<td>1.03</td>
<td>34.15</td>
<td>43.01</td>
<td>360.5</td>
<td>1.896E-10</td>
<td>16</td>
</tr>
<tr>
<td>33.50</td>
<td>506.00</td>
<td>8.69</td>
<td>37.20</td>
<td>5.55</td>
<td>303.2</td>
<td>1.422E-09</td>
<td>16</td>
</tr>
<tr>
<td>41.00</td>
<td>453.00</td>
<td>34.01</td>
<td>39.61</td>
<td>1.51</td>
<td>267.0</td>
<td>5.100E-09</td>
<td>16</td>
</tr>
<tr>
<td>46.40</td>
<td>416.00</td>
<td>103.41</td>
<td>41.86</td>
<td>0.53</td>
<td>238.7</td>
<td>1.435E-08</td>
<td>32</td>
</tr>
<tr>
<td>51.25</td>
<td>382.00</td>
<td>222.47</td>
<td>44.58</td>
<td>0.18</td>
<td>210.0</td>
<td>4.097E-08</td>
<td>32</td>
</tr>
<tr>
<td>55.50</td>
<td>353.00</td>
<td>926.15</td>
<td>46.35</td>
<td>0.07</td>
<td>194.0</td>
<td>1.114E-07</td>
<td>48</td>
</tr>
</tbody>
</table>

Table 2: Galileo Probe Entry Simulation Results

<table>
<thead>
<tr>
<th>Re</th>
<th>A</th>
<th>CD</th>
<th>q-nose</th>
<th>T-nose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(W/m²)</td>
<td>(K)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>0.75</td>
<td>2.060</td>
<td>766</td>
<td>358.0</td>
</tr>
<tr>
<td>1.03</td>
<td>0.75</td>
<td>2.048</td>
<td>6,495</td>
<td>602.4</td>
</tr>
<tr>
<td>8.69</td>
<td>0.75</td>
<td>2.024</td>
<td>48,728</td>
<td>998.1</td>
</tr>
<tr>
<td>34.01</td>
<td>0.75</td>
<td>1.970</td>
<td>168,523</td>
<td>1,365.1</td>
</tr>
<tr>
<td>103.41</td>
<td>0.75</td>
<td>1.896</td>
<td>448,881</td>
<td>1,737.4</td>
</tr>
<tr>
<td>322.47</td>
<td>0.75</td>
<td>1.777</td>
<td>1,201,262</td>
<td>2,236.4</td>
</tr>
<tr>
<td>926.15</td>
<td>0.75</td>
<td>1.629</td>
<td>2,980,082</td>
<td>2,798.3</td>
</tr>
<tr>
<td>0.10</td>
<td>0.50</td>
<td>2.061</td>
<td>474</td>
<td>318.8</td>
</tr>
<tr>
<td>8.69</td>
<td>0.50</td>
<td>2.046</td>
<td>32,564</td>
<td>909.9</td>
</tr>
<tr>
<td>103.41</td>
<td>0.50</td>
<td>1.934</td>
<td>309,602</td>
<td>1,580.3</td>
</tr>
<tr>
<td>926.15</td>
<td>0.50</td>
<td>1.628</td>
<td>2,085,700</td>
<td>2,545.3</td>
</tr>
<tr>
<td>0.10</td>
<td>0.90</td>
<td>2.043</td>
<td>848</td>
<td>366.8</td>
</tr>
<tr>
<td>8.69</td>
<td>0.90</td>
<td>2.008</td>
<td>57,941</td>
<td>1,050.3</td>
</tr>
<tr>
<td>103.41</td>
<td>0.90</td>
<td>1.864</td>
<td>528,677</td>
<td>1,826.8</td>
</tr>
<tr>
<td>926.15</td>
<td>0.90</td>
<td>1.648</td>
<td>3,559,079</td>
<td>2,931.1</td>
</tr>
</tbody>
</table>
Fig. 1 Temperature variation of viscosity of the Jovian atmospheric gas mixture computed by Biolsi and fit with the VHS model.

Fig. 2 Temperature dependence of the rotational degrees of freedom for H₂.

Fig. 3 Comparisons of probe geometry to simulation configurations employing differing resolutions.

Fig. 4 Translational temperature along the stagnation streamline ahead of the probe for entry at several values of Reₘₚ.

Fig. 5 Mass density along the stagnation streamline ahead of the probe for entry at several values of Reₘₚ.

Fig. 6 Drag coefficients from DSMC simulation of Galileo entry compared to results of related experiments of Intrieri; includes results from simulations of sphere experiments. Results plotted against Reₘₚ.
Fig. 8 Radiative-equilibrium and CMA-calculated stagnation point material temperature for initial entry period of the Galileo probe.

Fig. 7 Drag coefficients from DSMC simulation of Galileo entry compared to results of related experiments of Intrieri; includes results from simulations of sphere experiments. Results plotted against $K_{n_{\infty}}$.

Fig. 9 Comparison of freestream mass flux and CMA-calculated pyrolysis gas mass efflux from the probe surface during initial entry phase.