
N94-29905
Unclas

G3/90 0004480
SUMMARY

a. Meteorite studies

This grant enabled us to develop measurements of 14C in meteorites as a useful tool for estimates of terrestrial age. Prior to the inception of this grant, only a few measurements of 14C terrestrial ages had been made. Sample sizes were larger, and there had been no systematic study of the various parameters affecting production of 14C, such as depth dependence, and the production cross sections for 14C from spallation amounted to a few data points. 14C ages are now an accepted terrestrial age estimate in the meteorite community, whereas before this work the few data available were difficult to interpret.

We have obtained terrestrial ages not only on groups of meteorites from different geographic areas (e.g. Jull et al., 1993) but also information on unique meteorites from particularly interesting groups, such as meteorites originating from the Moon, or SNC meteorites, which many researchers believe are derived from Mars.

Our research has allowed us to develop systematic studies of the 14C ages of Antarctic meteorites, to determine the terrestrial-age distribution of meteorites from sites where most meteorites collected in the last 40,000 years; the terrestrial-age distribution of meteorite falls from arid and semi-arid regions, such as Roosevelt County (New Mexico), northwest Texas, Western Australia and North Africa. In one case, the terrestrial age of a meteorite (ALH 82102) found emerging from the Antarctic ice was dated at about 11,000 yr and gives us an estimate of the age of the ice ablating from this part of the Far Western Icefield.
Another important series of measurements has been stable-isotopic and 14C studies of weathering products in meteorites. Weathering has become an important topic in recent years to meteoritics, because weathering affects the composition of meteorites stored for long times in deserts or in Antarctica. A measurement of the 14C composition of the large deposits of weathering products on an Antarctic meteorite, LEW 85320, confirmed that these materials can develop rapidly (Jull et al. 1988). Our understanding of these effects is important when comparing these meteorites to relatively-pristine recent falls. Also, there is the possibility of potential extraterrestrial weathering of SNC meteorites (e.g. Jull et al., 1992).

b. Lunar Sample Studies

We have studied the 14C depth-dependence in Apollo 15 lunar soil cores, and in the lunar rock 68815 (Jull et al., 1991, 1992). These results have given us a better understanding of the production of 14C by solar (SCR) and galactic (GCR) cosmic rays. The profiles in 68815 show solar-cosmic-ray production of 14C at levels of about 17 dpm/kg, and typical galactic-cosmic-ray production. The SCR flux calculated is similar to that found for other radionuclides, and 14C in cores. These measurements also drove us to obtain new and better cross sections (e.g. Sisterson et al., 1992, 1993) to understand our results. These results have been compared to the SCR and GCR flux estimates of other radionuclides, and there is now quite good agreement. Thus, we can now state more clearly that there is little evidence for major changes in SCR flux over time scales of thousands to millions of years.

PUBLICATIONS FOR NASA GRANT NAG 9-233

1987-1993

1

A. J. T. Jull and D. J. Donahue (1991) Carbon-14 content of the Antarctic meteorite,

A. J. T. Jull, D. J. Donahue, E. Cielaszyk and F. Wlotzka (1993) 14C terrestrial ages and weathering of 27 meteorites from the southern high plains and adjacent areas (USA), Meteoritics, 28, 188-195.

Abstracts

