
NASA-CR-195761

November 1993 UILU-ENG-93-225J
CRHC-93-24

Center for Reliable and High-Performance Computing

SPACE RECLAMATION
FOR UNCOORDINATED
CHECKPOINTING IN
MESSAGE-PASSING SYSTEMS

Vi-Min Wang

(NASA-CR-195761) SPACE RECLAMATION N94-29906
FOR UNCOORDINATED CHECKPOINTING IN
MESSAGE-PASSING SYSTEMS Ph.D.
Thesis (Illinois Univ.) 118 p Unclas

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

G3/61 0003766

UNCLASSIFIED
SECURity CLASSIFICAtION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGS

Unclassified None
2a. SECURITY CLASSIFICATION AUTHORITY 1 . DISTRIBUTION I AVAILABIUTY OF REPORT

Approved for public release;
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-93-22S1 CRHC-93,..24

6a. NAME OF PERFORMING ORGANlZA nON 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Coordinated Science Lab (If .pplk.bI.,
University of Illinois N/A NASA

6c. ADDRESS (ory, St.~. Mtd z,,, Code) 7b. ADDRESS (CIty, St.~, .nd ZI" Code)

- 1301 W. Main St. Moffett Field, CA 94035
Urbana, IL 61801

Sa. NAME OF FUNDING ISPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If .ppIJc.bI.)

7a NASA NAG 1-613

8c. ADDRESS (City, St.te,.nd ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJEer TASK WORK UNIT

7b ELEMENT NO. NO. NO. ACCESSION NO.

1 1. TITLE (Include S«urity OusifiCition)
Space Reclamation for Uncoordinated Checkpointing in Message-Passing Systems

12. PERSONAL AUTHOR(S)
WANG, Yi-Min

13a. TYPE OF REPORT l'lb. T1ME COVERED 1'4• DATE OF REPORT (y .. r, Month, o.y) ts. PAGE COUNT
Technical FROM TO Q1_"_1Q 116

16. SUPPLEMENTARY NOTATION

17. COSAT1 CODES 18. SUBJECT TERMS (Continw on rewIH if Masury .nd identify by block number)
FIELD GROUP SUB-GROUP rollback, fault tolerance, parallel and distributed systems,

message logging, garbage collection, independent checkpointj

~9. ABSTRACT Cbeckpointing and rollback recovery are techniques that can provide efficient recovery from transient process
failures. In a mesaage-pusing system, the rollback of a message sender may cause the rollback of the
corresponding receiver, and the system needs to roll back to a consistent set of checkpoints called recovery
line. If the processes are allowed to take uncoordinated checkpoints, the above rollback propagation may
result in the domino effect which prevents recovery line progression. Traditionally, only obsolete checkpoints
before the global recovery line can be discarded, and the necessary and sufficient condition for identifying
all garbage checkpoints has remained an open problem.

We derive a necessary and sufficient condition for achieving optimal garbage collection, and we prove that
the number of useful checkpoints is in fact bounded by N(N + 1)/2 where N is the number of processes. Our
approach is based on the maximum-sized antichain model of consistent global checkpoints and the technique
of recovery line transformation and decomposition. We also show that, for systems requiring message logging
to record in-transit messages, the same approach can be used to achieve optimal message log reclamation.
As a final topic, we describe a unifying framework by considering checkpoint coordination and exploiting
piecewise determinism aa mechanisms for bounding rollback propagation, and demonstrate the applicability
of the optimal garbage collection algorithm to domin~freee recovery protocols.

20. OISTRIBUTION/AVAlLABIUTY OF ABSTRACT 21. ~STRACT SECURITY CLASSIFICATION
~ UNCLASSIFIEOAJNLIMITED o SAME AS RPT. Done USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL

DO FORM 1473,84 MAR

21b. TELEPHONE (Ind,* Ar .. Code, 122t. OFFICE SYMBOL

. . B3 APR edition may ~ UMd until exhausted .
All other editions are obsoI ...

SECURITY ClASSIFICATION OF THIS PAGE

unCLASSIFIED

-

UNCLASSIFIED
IICUJtITV CLAUIIWICATION 0' THII flAO&

UNCLASSIFIED

SPACE RECLAMATION FOR UNCOORDINATED CHECKPOINTING
IN MESSAGE-PASSING SYSTEMS

BY

YI-MIN WANG

B.S., National Taiwan University, 1986
M.S., University of Illinois at Urbana-Champaign, 1990

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of lllinois at Urbana-Champaign, 1993

U rhana, illinois

111

SPACE RECLAMATION FOR UNCOORDINATED CHECKPOINTING
IN MESSAGE-PASSING SYSTEMS

Yi-Min Wang, Ph.D.
Department of Electrical and Computer Engineering

University of illinois at Urbana-Champaign, 1993
W. Kent Fuchs, Advisor

Checkpointing and rollback recovery are techniques that can provide efficient recovery

from transient process failures. In a message-passing system, the rollback of a message

sender may cause the rollback of the corresponding receiver, and the system needs to

roll back to a consistent set of checkpoints called the recovery line. If the processes are

allowed to take uncoordinated checkpoints, the above rollback propagation may result in

the domino effect which prevents recovery line progression. Traditionally, only obsolete

checkpoints before the global recovery line can be discarded, and the necessary and

sufficient condition for identifying all garbage checkpoints has remained an open problem.

In this thesis, we derive a necessary and sufficient condition for achieving optimal

garbage collection, and we prove that the number of useful checkpoints is in fact bounded

by N(N + 1)/2 where N is the number of processes. Our approach is based on the

maximum-sized anti chain model of consistent global checkpoints and the technique of

recovery line transformation and decomposition. We also show that, for systems requiring

message logging to record in-transit messages, the same approach can be used to achieve

optimal message log reclamation. As a final topic, we describe a unifying framework by

considering checkpoint coordination and exploiting piecewise determinism as mechanisms

IV

for bounding rollback propagation, and demonstrate the applicability of the optimal

garbage collection algorithm to domino-free recovery protocols.

v

DEDICATION

Dedicated to Pi- Yu, Jeffrey, and Andrew.

VI

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my thesis advisor, Professor W. Kent

Fuchs, for his support and guidance, and so many things I have learned from him through

out this thesis research.

I would also like to thank Professors Prith Banerjee, Geneva Belford, Ravi Iyer and

Michael Loui for serving on my committee, and all my colleagues in the Coordinated

Science Laboratory for their friendship and assistance. I wish to express my thanks to

Professor Michael Loui for coaching my presentations, to Andy Lowry (IBM), Yennun

Huang (AT&T), In-Jen Lin, Shyh-Kwei Chen and Weiping Shi for their stimulating

discussions, and to Jungsheng Long, Balkrishna Ramkumar and Kaushik De for their

help with the experimental results.

Last, but not least,·1 would like to thank my lovely wife, Pi-Yu, for being my best

research partner, my parents for their support, understanding and encouragement, and

my sons, Jeffrey and Andrew, for coming into the world in time to contribute so much

inspiration to this dissertation.

Vll

TABLE OF CONTENTS

1. INTRODUCTION
1.1 Checkpointing and Rollback Recovery
1.2 Checkpoint Consistency
1.3 Uncoordinated Checkpointing Protocol
1.4 A Model of Consistent Global Checkpoints

1.4.1 Partially ordered sets, antichains and lattices .
1.4.2 Consistent global checkpoints and recovery lines

2. OPTIMAL GARBAGE COLLECTION
2.1 Optimal Checkpoint Reclamation

2.1.1 Motivation and problem formulation
2.1. 2 Recovery line transformation.
2.1.3 Recovery line decomposition
2.1.4 Predictive checkpoint space reclamation algorithm
2.1.5 Experimental results

2.2 Upper Bound on the Number of Nongarbage Checkpoints
2.3 Optimal Message Log Reclamation

2.3.1 Recovery line transformation.
2.3.2 Recovery line decomposition

3. RECOVERY LINE PROGRESSION ..
3.1 Lazy Checkpoint Coordination

3.1.1 Communication-induced checkpoint coordination
3.1.2 Worst-case analysis
3.1.3 Experimental results

3.2 Exploiting Piecewise Determinism
3.3 Scheduling Message Processing

3.3.1 Message prioritization
3.3.2 Implementation...
3.3.3 Experimental results

4. RELATED WORK
4.1 Checkpoint Dependency and Interval Dependency
4.2 Checkpoint Graphs and Local System Graphs . .
4.3 Non-fail-stop Failures and Software Error Recovery

Page

1
1
5

11
13
13
15

19
19
19
22
34
38
41
44
47
48
51

56
57
57
61
67
68
75
75
77
79

82
82
85
87

Vlll

5. CONCLUSIONS , 92
5.1 Summary 92
5.2 Limitations and Future Research 93

APPENDIX A. MISSING DEPENDENCY IN DIRECT DEPENDENCY TRACK-
ING .. 95

REFERENCES . 100

VITA ... 106

IX

LIST OF TABLES

Table Page

2.1: Execution an~ checkpoint parameters of the programs. 41
3.1: Execution and checkpoint parameters of the parallel programs. . 67
3.2: Execution parameters of the parallel programs.. 79

x

LIST OF FIGURES

Figure Page

1.1: Checkpoint consistency. 7
1.2~ In-transit messages and checkpoint consistency. ... 8
1.3: Message logging for recording the in-transit messages. 10
1.4: Checkpoint graphs and recovery lines. 13
1.5: The rollback propagation algorithm.. 14
2.1: Operational sessions, recovery sessions and nongarbage checkpoints. 20
2.2: Example of nonobsolete garbage checkpoints. 21
2.3: Construction of the potential supergraph G. 24
2.4: Recovery line transformation within an operational session. . 26
2.5: Recovery line transformation across a recovery session. 29
2.6: Example recovery line transformation. 35
2.7: Example of the PCSR algorithm. 39
2.8: The Predictive Checkpoint Space Reclamation algorithm. . 40
2.9: Nonobsolete and nongarbage checkpoints for Cell Placement. 42
2.10: Nonobsolete and nongarbage checkpoints for Channel Router. 42
2.11: Nonobsolete and nongarbage checkpoints for Knight Tour. .. 43
2.12: Nonobsolete and nongarbage checkpoints for N-Queen. 43
2.13: Gr.,: The checkpoint graph with N(N + 1)/2 nongarbage checkpoints. 47
2.14: Nongarbage edge in the transformation within an operational session. 49
2.15: Nongarbage edge in the transformation across a recovery session. . 50
2.16: Example execution of the optimal garbage collection algorithm. 54
2.17: Example for identifying nongarbage checkpoints and edges. 55
3.1: Communication-induced checkpointing. 59
3.2: (a) Worst-case communication pattern (b) worst-case checkpoint and com-

munication pattern. ., 62
3.3: Checkpoint coordination overhead (induction ratio) as a function of laziness. 69
3.4: Average rollback distance as a function of laziness.. 70
3.5: Nondeterministic events and logical checkpoints. 71
3.6: Piecewise determinism and the availability of logical checkpoints. 73
3.7: Optimal garbage collection for partially exploited piecewise deterministic

model. 74
3.8: Dependency-redundant messages. 76
3.9: Operations for enqueueing. . 78
3.10: Operations for dequeueing. 79

Xl

3.11: Execution times and performance degradation of the message scheduling
algorithm. .. 80

3.12: Average rollback distances. .. 81
3.13: Sensitivity of average rollback distances to checkpoint asynchrony for the

N-Queen program. 81
4.1: Rollback dependency and local system graphs " 86
4.2: Progressive retry. .. 89
A.l: Three different checkpoint and communication patterns with the same

checkpoint graph. 96
A.2: (a) Zigzag path and (b) causal path. 98

1

1. INTRODUCTION

1.1 Checkpointing and Rollback Recovery

Checkpointing and rollback recovery provide for recovery from transient process fail

ures. During normal execution, the state of each process is periodically saved on stable

storage as a checkpoint. When a failure occurs, the process can roll back to a previ

ous checkpoint by reloading the checkpointed state to avoid costly reexecution from the

very beginning. In a message-passing system, rollback propagation can occur when the

rollback of a message sender results in the rollback of the corresponding receiver. The

system is then required to roll back to the latest available consistent set of checkpoints

called the recovery line to ensure correct recovery with a minimum amount of rollback.

In the worst case, cascading rollback propagation [1] may result in the domino effect [2,3]

which prevents recovery line progression.

Numerous checkpointing and recovery techniques for message-passing systems have

been proposed in the literature. They can be classified into three primary categories:

uncoordinated checkpointing, coordinated checkpointing and the log-based approach.

Uncoordinated checkpointing [4-6] allows each process to take its checkpoints inde

pendently, without coordinating with any other processes. It allows maximum process

autonomy and general nondeterministic executions, but suffers from potential domino

2

effects and the large space overhead for maintaining multiple checkpoints of each pro-

cess. Processes are allowed to take uncoordinated checkpoints, and the dependencies

among the checkpoints caused by message communication are recorded through depen-

dency tracking. The recovery line is unknown during normal execution and is computed

at the time of recovery based on the dependency information. Rollback propagation can

be eliminated by taking a checkpoint immediately after sending every message [7J, and

domino-free recovery can be achieved by inserting a checkpoint before processing any

message carrying a new dependency [S,9], or by inserting a checkpoint between every

pair of consecutive send and receive events (in that order) [1].

Coordinated checkpointing eliminates the domino effect by sacrificing a certain

degree of process autonomy and incurring run-time and message overhead. Usually, .
whenever a process takes a checkpoint, it broadcasts a coordination message to force all

of the other processes to take appropriate checkpoints to guarantee that the resulting set

of checkpoints is consistent [lo-lS]. The number of processes required to participate in

each checkpointing session can be reduced by monitoring the recent message exchanges

[19]. The extra message overhead can be avoided by piggybacking the coordination

messages on subsequent normal messages [20-22], or by taking advantage of the existing

clock synchronization mechanisms [23-25].

The log-based approach assumes the piecewise deterministic execution model [26J

which views process execution as consisting of a number of deterministic state intervals,

3

each started by a nondeterministic event such as processing a new message. Nonde

terministic event logging, in addition to checkpointing, is employed to reduce rollback

propagation through deterministic state reconstruction. Synchronous message logging

protocols [27-29] log each message upon receipt. Since the process state from which

any message is sent can always be reconstructed through message. replaying, rollback

propagation is completely eliminated. Asynchronous message logging protocols [26, 30-

41] reduce logging overhead by grouping several messages in a single write operation to

stable storage. Although rollback propagation may occur when not-yet-Iogged messages

are lost upon a failure, recovery line progression is guaranteed as long as every message

is eventually logged [26, 33].

The main focus of this thesis is on uncoordinated checkpointing and, in particular, the

garbage collection procedure for reclaiming the storage space of those checkpoints that

are no longer useful. Traditionally, garbage collection for uncoordinated checkpointing

has been based on the notion of obsolete checkpoints: the global recovery line which

suffices to recover from the failure of the entire system is computed; then all of the

obsolete checkpoints before that recovery line are no longer useful and can be discarded.

In contrast, all of the nonobsolete checkpoints have been assumed to be possibly useful

for some future recovery and should be retained. With the possibility of domino effects,

the number of nonobsolete checkpoints is potentially unbounded.

Motivated by the observation that being obsolete is simply a sufficient condition for

being garbage, we derive a necessary and sufficient condition for identifying all garbage

4

checkpoints, which leads to an optimal garbage collection algorithm and the lowest upper

bound on the number of nongarbage checkpoints. Our approach is to model consistent

global checkpoints as maximum-sized anti chains of the partially ordered set generated

by the happened before relation between the checkpoints. We define a recovery line

transformation and decomposition, and we demonstrate that any nongarbage checkpoint

belonging to a possible future recovery line must also be contained in one of the N "im

mediate future" recovery lines, where N is the number of processes. It is also shown that

these N recovery lines can contain at most N(N + 1)/2 distinct nongarbage checkpoints.

Usually, the in-transit messages, i.e., messages "sent but not yet received" with re

spect to a set of checkpoints, are assumed to be handled by a reliable transmission

protocol and do not result in checkpoint inconsistency. We point out that to support

the above assumption, the acknowledgement message for every normal message has to

be considered as an additional dependency-carrying message which would result in extra

rollback propagation. An alternative way of retrieving the in-transit messages is to use

message logging. The message logs then constitute another source of space overhead. We

demonstrate that the same approach based on recovery line transformation and decom

position can be used to develop an optimal message log reclamation algorithm. More

specifically, we show that any message that can possibly become an in-transit message in

the future must also be an in-transit message with respect to one of the N "immediate

future" recovery lines.

5

Our optimal garbage collection algorithm addresses the space overhead issue of unco

ordinated checkpointing, but the possibility of domino effects still remains. In Chapter 3,

we extend the applicability of the algorithm to a domino-free unifying framework. Tra

ditionally, uncoordinated checkpointing, coordinated checkpointing, and the log-based

approach have been considered three separate approaches, each with its own advantages

and disadvantages. The unifying framework provides a different point of view by consid

ering uncoordinated checkpointing as the basic and the most general scheme because it

does not require process execution to satisfy the piecewise deterministic model. Check

point coordination and message logging for exploiting piecewise determinism are then

considered two mechanisms for bounding rollback propagation. We propose a lazy check

point coordination technique [22] to allow sacrificing a varying degree of process autonomy

in exchange for a guarantee of recovery line progression. Message logging whenever piece

wise determinism is available is interpreted as placing additional logical checkpoints [42]

at the end of the state intervals, thereby reducing the rollback distances and hence the

possibility of rollback propagation. The unifying framework and the optimal garbage col

lection algorithm together then provide a flexible, effective, economic way of recovering

from transient process failures.

1.2 Checkpoint Consistency

The system considered in this thesis consists of a number of concurrent processes for

which all process communication is through message passing. Processes are assumed to

6

run on fail-stop processors [43], i.e., no corrupted messages can be sent. All processes

running on the same recovery unit [26] will be rolled back together in response to a failure.

For the purpose of presentation, we consider each process to be an individual recovery

unit. To allow general nondeterministic execution, we do not assume the piecewise de-

terministic model. This implies that whenever the sender of a message m rolls back to

a point before m was sent to unsend m, the corresponding receiver must also roll back

to a point before m was processed in order to unprocess m. l Let Ci,z denote the xth

checkpoint (x ~ 0) of process Pi. Figure 1.1(a) gives such an example. Suppose process

Pi rolls back to Ci,t/. Due to the the potential nondeterminism preceding the sending of

m, Pi can not guarantee the regeneration of an exact copy of m during its reexecution

(even under the fail-stop assumption). Thus, Pi'S execution based on the processing of

m is no longer valid and Pi should also roll back to nullify the effect of m. The message

m which is unsent by Pi is called an orphan message and results in the inconsistency

between Ci,t/ and Ci,z+1. The two checkpoints thus cannot be used together for recovery.

In contrast, Fig. 1.I(b) shows another situation in which message m' is recorded as

"sent but not yet received" and hence is called an in-transit message with respect to the

two checkpoints Ci,z and Ci,J/. Suppose that process Pi rolls back to Ci,z and unreceives

m'. A straightforward way of handling such a situation is to also roll back Pi to unsend

m', a mechanism we call in-transit message invalidation. However, such invalidation can

1 We say a message is received by the destination procesaor and then later processed by the destination
process. A message results in dependency only after it is processed.

7

-l Checkpoint interval (i,x) I-

4/,.%+1

c j,y+l

C·

Pi
±"x

J?
, ,

m ~' ,
, , ± p.

J
C j,y

Cj,.%
Pi ±

Z Pj ±
C j,y

±

(a) (b)

Figure 1.1: Checkpoint consistency (solid line for message processing; dashed line for
message receipt). (a) Orphan message m and inconsistent checkpoints Ci,z+l

and Cj,lI; (b) in-transit message m' and consistent checkpoints Ci,z and Ci,y' ...,

result in excessive rollback propagation and a higher probability of domino effects. An-

other commonly used mechanism can be called in-transit message retrieval. If during

Pi'S reexecution from Ci,z, message m' can be retrieved from a message log or through

an end-to-end transmission protocol, then Pi need not request Pi to unsend m'. Sev-

eral approaches employing the above two mechanisms to handle in-transit messages are

summarized in the following. The first and the fourth approaches use a combination of

invalidation and retrieval; the other two approaches are based completely on the retrieval

mechanism.

Approach 1: reliable end-to-end transmission protocol

Koo and Toueg [19] argued that the situation of message m' with respect to the

checkpoints Ci,z and ci,1I in Fig. 1.2(a) is indistinguishable from the situation in which

m' is lost in the communication channel during normal execution. Therefore, a reliable

end-to-end transmission protocol, which can guarantee the retransmission of any lost

8

message until it is received by the destination processor, will also be able to retransmit

m' after the two processes roll back to Ci,:: and ci,,,·

Pi

+

C·
±I.X

'" , m I

, ,

, ,

c·
±u

'" '
m " ,

I
I

,

I
I

I
±

Pj ~±~~'----------~±~-------±~
C j.,

I ,

(b)

".

(a)

±

..... ack

+
.........

.... +

Pj

±

m"','

I
I

I

I ,

I

±
I·

I '.
I •

.... ack

:; ± ±

(c)

Figure 1.2: In-transit message and checkpoint consistency. (a) In-transit message m'; (b)
consistent checkpoints Ci,z and ci,,; (c) inconsistent checkpoints Ci,r and Ci,,,
due to message ack.

However, this is true only for the situation shown in Fig. 1.2(b) where Ci,y is taken

before Pi receives message ack (the acknowledge message for m'), and thus will record

a copy of message m' as well as the responsibility of retransmitting m' until ack comes

back. If checkpoint ci" is taken after Pi receives ack, as shown in Fig. 1.2(c), Ci,y will

simply lose the capability of resending m'. It becomes clear that, to distinguish the two

different scenarios, message ack has to be treated as an additional dependency-carrying

message which can result in extra rollback propagation. More precisely, in Fig. 1.2(b),

the rollback of Pi to Ci,z requires (through ack) that Pi be rolled back to Ci,y so that

the in-transit message m' can be resent. In Fig. 1.2(c), the rollback of Pi to Ci,r causes

9

(through ack) the rollback of pj to a checkpoint earlier than Cj,1I in order to invalidate m'.

We note that the inconsistency between Ci,z and Cj,1I in Fig 1.2(c) is due to the orphan

messa.ge ack, not the in-transit message m'.

Approach 2: synchronous message logging

Treating every acknowledge message as a dependency-carrying message potentially

doubles the amount of rollback propagation and makes recovery line progression more

difficult. Another way to handle in-transit messages is to use message logging. A syn

chronous message logging protocol logs every incoming message m' upon its arrival and

delays the sending of ack message until m' is logged. In this way, if the receiver Pi rolls

back and unreceives m' before it logs m', then the sender will resend m' because the

corresponding ack is never generated; if Pi initiates the rollback after it logs m', then Pi

can retrieve m' from the log during its reexecution.

Approach 3: asynchronous message logging with sender logging

A synchronous logging protocol logs each incoming message separately and can result

in large performance degradation. Asynchronous logging protocols [26] reduce run-time

overhead by grouping several messages and logging them later in a single write operation.

Additional sender logging can be used to maintain a copy of each message which is not yet

logged by the receiver and can potentially be lost in the presence of a receiver's failure.

Every process keeps the messages it has sent in a volatile log [26] and writes them to

stable storage at the next checkpoint. The sender retains the log for each message until

it is notified (by a log_ack message) that the message has been logged by the receiver. In

10

this way, every in-transit message can always be retrieved from either the sender's log or

the receiver's log. Figure 1.3(a) and (b) illustrate the difference between Approaches 2

and 3 by showing the availability of the message log for m' at different times, as indicated

by the shaded bars.

Pi
c·
±~

m/ " , , ,
Pj + "

J , ,

Pi

~ack

'9

(a)

+

+

¥

41
I

I

m ~,'
I

+

+

+

m 2,'

I

I
I

I

41
I

I
I

Pi
c·
±~

J:
±

, ,
m/ ,

ack , , ,
C j.y ,

+
,

'lI ±

(b)

m J: logged

m 2 • m 3 : not logged

.,
I

I ···············r············· .. ····.
I :

+ ±:

excluded

(c)

log_ad

., ±

Figure 1.3: Message logging for recording the in-transit messages. (a) Synchronous mes
sage logging; (b) asynchronous message logging with sender logging; (c) asyn
chronous message logging without sender logging. (Shaded bars indicate the
availability of the message log for m'.)

Approach 4: asynchronous message logging without sender logging

Without additional sender logging, messages can be lost upon a receiver's failure in

an asynchronous logging protocol. One way to remedy such a situation is to compare

the set of messages sent with the set of messages logged and consider unavailable those

11

checkpoints before which there is any "sent but not yet logged" message [6], as illustrated

in Fig. 1.3(c). This procedure effectively invalidates all lost messages and ensures that

in-transit messages with respect to the computed recovery line can all be retrieved from

the receiver's log.

All of the above four approaches can guarantee that messages like m' in Fig. 1.1(b)

do not cause the inconsistency between Ci,z and Cj,1I' Therefore, the situation shown in

Fig. 1.1 (a) is the only source of checkpoint inconsistency.

1.3 Uncoordinated Checkpointing Protocol

Having addressed the checkpoint consistency issues, we now describe an uncoordi

nated checkpointing protocol. Suppose there are N processes in the system. During

normal execution, each process takes its local checkpoints periodically without coordi

nating with any other processes. Let (i, z) denote the zth checkpoint interval of process

Pi between consecutive checkpoints Ci,z and Ci,z+b as shown in Fig. 1.1(a). Each mes

sage is tagged with the current checkpoint interval number and the process number of

the sender. Each receiver Pi performs direct dependency tracking [4,44] as follows: if a

message sent from (j,y) is processed by Pi in (i,z), then the direct dependency of Ci,z+l

on Cj,1I is recorded.

A centralized garbage collection algorithm can be invoked by any process Pi period

ically to reclaim the storage space of garbage checkpoints and possibly message logs (if

the in-transit messages are recorded through message logging) that are no longer useful

12

for any future recovery. First, Pi broadcasts a request message to collect the direct de-

pendency information from all other processes. A checkpoint graph [4] is constructed, in

which each vertex represents a checkpoint and each edge represents a direct dependency

(including the implicit dependency of any C;tll+1 on C;tll)' Figure 1.4(b) shows the check-

point graph corresponding to the checkpoint and communication pattern in (a). The

rollback propagation algorithm listed in Fig. 1.5 is executed on the checkpoint graph to

determine the global recovery line,2 which is then broadcast in a recovery Jine message.

All checkpoints and message logs before the global recovery line are obsolete, and their

space can therefore be reclaimed. Note that processes other than the initiator do not

have to block their executions between replying to the request message and receiving the

recovery Jine message.

When a process Pi initiates a rollback, it starts a similar two-phase procedure for

recovery, except for the following differences. The volatile states of surviving processes

remain valid and can be viewed as additional virtual checkpoints [5] for constructing

an extended checkpoint graph of which the recovery line is called a local recovery line.

Figure. 1.4(c) shows an example in which P4 initiates a rollback. Every other process is

blocked, after supplying P4 with the dependency information, until it rolls back to the

checkpoint as indicated by the local recovery line. Figure. 1.4(d) shows the checkpoint

graph immediately after the recovery.

2 A global recovery line is to be used when the entire system fails, while a local recovery line is
computed when only a. subset of processes becomes fa.ulty.

13

PO~-r~-r~~----~--~----~-r--

PI~~~~--~---r~~~~~--~~

P2~~~-h~~~~--~~~~~----

P3~~~~~--~~~~~--~~--~

P4~~~~------~~--~~--~~---

Obsolete checkpoints

Po

PI

P 2 ~ Idt---<. ~7"T---<

P 3 O+-lHIIf-.jII(J(---....{ l----'t---<.

P4 .'
+ Checkpoint " Message

i····
Global recovery line

(b) (a)

.' ,...:~.:
......

P3

)
Local recovery line (c) Cd)

Figure 1.4: Checkpoint graphs and recovery lines. (a) Checkpoint and communication
pattern; (b) checkpoint graph; (c) extended checkpoint graph; (d) checkpoint
·graph after recovery.

1.4 A Model of Consistent Global Checkpoints

1.4.1 Partially ordered sets, antichains and lattices

A partial order [45] on a set S is a relation "<" such that

(a) 'Vs E S, s !. s. (Irrefiexivity)

(b) If s < t, then t !. s. (Antisymmetry)

14

/'" CP represents a checkpoint'" /
/'" Initially, all of the CPs are unmarked'" /

include the latest CP of each process in the root set;
mark all CPs strictly reachable from any CP in the root set;
wbile (at least one CP in the root set is marked) {

}

replace each marked CP in the root set by the latest unmarked CP on the
same process;
mark all CPs strictly reachable from any CP in the root set;

the root set is the recovery line.

Figure 1.5: The rollback propagation algorithm.

(c) If s < t and t < u, then s < u. (Transitivity)

The pair (S, <) is called a partially ordered set, or poset. An element s is minimal if there

does not exist any element w such that w < s. An element t of S is a minimum element

if t ~ w for all w in S. Mazimal and mazimum elements are similarly defined.

A subset H of S is a chain of (S, <) if the elements of H can be enumerated as

hI, h2, .. . hn such that hI < h2 < ... < hn • A subset A of S is an antichain of (S, <) if

a f. b for all a, bE A. An antichain M of (S, <) with the largest size of any antichain is

called a mazimum-sized antichain.

Given two elements s and t of a poset (S, <), we write s ~ t if s < t or s = t. Any

element I such that I ~ s and I ~ t is called a lower bound of s and t. If there exists

a lower bound 1* such that I ~ 1* for all lower bounds I of s and t, then 1* is called the

greatest lower bound of sand t. Upper bound and least upper bound are similarly defined.

A lattice is a poset (S, <) which possesses both a greatest lower bound (called the meet

15

and denoted by sAt) and a least upper bound (called the join and denoted by s V t) for

all s, t E S.

Let P = (S, <), and let M(P) denote the set of maximum-sized anti chains of P. A

partial order ~ on the maximum-sized antichains can be defined as follows [46]: for any

MbM2 E M(P),

Ml ~ M2 iff for every al E MI , there exists a2 E M2 such that at ::; a2' (1.1)

It has been shown that [46, §13.1-13.2], for any poset P, (M(P),~) forms a lattice

and therefore possesses a unique maximum element called the maximal maximum-sized

antichain and denoted by M*(P).

1.4.2 Consistent global checkpoints and recovery lines

The execution of each process in a message-passing system can be viewed as a sequence

of events, corresponding to the state changes that take place in the process. The collection

of event sequences for the participating processes forms the execution history of the

system. The proper granularity at which to view "events" varies from application to

application. For our purposes, the events of interest are the sending and receivitlg of

messages, and the recording of local checkpoints by individual processes. An execution

history restricted to these events will be called a checkpoint and communication pattern.

We assume that the first event in each process is an initial local checkpoint event.

The global set of events appearing in a checkpoint and communication pattern cannot

be placed naturally in a total order, as can the events of a single process. Instead, a partial

16

order on the events can be defined as follows. We say that event el directly happened

before event e2 [19,47], denoted by el <d e2, if

1. el and e2 are events in the same process and el occurs immediately before e2; or

2. el is the sending of a message m and e2 is the receiVing of m.

The transitive closure of the <d relation is the happened before relation· < [47].

Let 'P be a checkpoint and communication pattern. A global checkpoint of 'P is a

set of N local checkpoints, one from each process. Based on the previous description of

checkpoint consistency, two checkpoints are inconsistent if and only if they are ordered by

the happened before relation. For example, Cj,1I and Ci,z+l in Fig. 1.1(a) are inconsistent

because Cj,1I < Ci,z+l. A consistent global checkpoint of 'P is therefore a global checkpoint

of which no two constituent checkpoints are ordered by the happened before relation.

We will denote by E1' the set of events that appear in 'P, and by Q1' the poset generated

by the happened before relation on those events: Q1' = (E1" <). Let R1' = (C1', <) be

the induced subposet [45] of Q1' obtained by restricting the < relation to C1', the set of

all checkpoints. In the remainder of this section we derive an important characterization

of consistent global checkpoints related to the poset R1'.

LEMMA 1 The largest size of any antichain in R1' is N, and every antichain of size

N includes a checkpoint from each process in 'P.

Proof. The initial checkpoints form an antichain of size N and hence the largest size

of any anti chain in R1' is at least N. Because any two checkpoints from the same process

17

must be ordered by the bappened before relation, the largest size of any anti chain is

exactly N, and every antichain of size N must include a checkpoint from each process.

Cl

THEOREM 1 M is a consistent global checkpoint in'P if and only if it is a maximum

sized antichain in R.".

Proof. By definition, a consistent global checkpoint of 'P is clearly an antichain of

size N in Q." and therefore in R." as well (since R." is an induced subposet of Q1'). By

Lemma 1, it is a maximum-sized antichain in R.".

Conversely, if M is a maximum-sized antichain in R1', then by Lemma 1 it includes

a local checkpoint from each process in 'P and these local checkpoints are pairwise un-

ordered by <. Thus M is a consistent global checkpoint of 'P. o

For a given antichain A of R.", we let A[i] denote the element of A which is a checkpoint

of process Pi. The following lemma. shows tha.t for the p08et R1', Anderson's global ~

relation as defined in Eq. (1.1) reduces to local ordering of checkpoints within each

process.

LEMMA 2 For any MIl M~ E M(R1')'

(1.2)

Proof. Suppose Ml ~ M2 • For any given i let j be such that Ml [i] < M2 (j] in

R.". Since Ml[i] and M 2 [il are events in the same process, either M2 [il < Mdi] or

18

Ml[i] :5 M 2[i]. In the first case, we would have M2 [i] < Ml[i] :5 M2[j], contradicting

the fact that M2 is an antichain in R1'. Hence Ml[i] :5 M2[i], and this is true for all

o :5 i < N - 1. Conversely, the assumption that Ml[i] :5 M2[i] for any i yields Ml ~ M2

by definition of -<. o

From Lemma 2 we see that for any M E M(R1'), M[i] :5 M*(R.")(i] for all 0 :5 i :5

N - 1, and it follows that M*(R.,,) corresponds to the consistent global checkpoint of

P in which each constituent local checkpoint is as advanced as possible. The antichain

M* (R1') is therefore what we have referred to as the "recovery line" of P wi th the

minimum total rollback distance [48].

Our development of the optimal garbage collection algorithm will be based on check

point graphs rather than the more abstract posets. Given a checkpoint graph G, we

let M (G) denote the set of maximum-sized anti chains of the poset .Rp corresponding to

the transitive closure of G. The maximal maximum-sized anti chain M*(G) is similarly

defined. We prove in Appendix A that although the two posets .Rp and R1' are not

the same due to some missing dependencies in .Rp resulted from the direct dependency

tracking mechanism, .Rp possesses exactly the same set of maximum-sized anti chains as

does R." and therefore suffices for our purpose.

19

2. OPTIMAL GARBAGE COLLECTION

In this chapter, we describe the approach of recovery line transformation and de

composition to achieving optimal garbage collection. The term "optimal" means we can

identify all of the checkpoints and messages logs that are no longer useful for any fu

ture recovery, and all of the retained checkpoints and message logs must be useful for

some possible future recovery. Section 2.1 derives the necessary and sufficient condition

for identifying all garbage checkpoints, which then leads to an optimal checkpoint recla

mation algorithm [49]. Section 2.2 derives the lowest upper bound on the number of

nongarbage checkpoints. For protocols requiring message logging to record the in-transit

messages, Section 2.3 derives the necessary and sufficient condition for identifying all

garbage message logs and develops an optimal message log reclamation algorithm which

can be combined with the optimal checkpoint reclamation algorithm to minimize the

space overhead for uncoordinated checkpointing.

2.1 Optimal Checkpoint Reclamation

2.1.1 Motivation and problem formulation

Since a future program execution may contain arbitrary checkpoint dependencies and

rollbacks, we first describe an execution model to make the problem tractable. An oper

ational session [5] is the interval between the start of normal execution and the instance

20

of rollback initiation, as shown in Fig. 2.1. A recovery session immediately follows the

previous operational session and ends at the resumption of normal execution. A program

execution can be viewed as consisting of a number of alternating operational sessions and

recovery sessions. In terms of the effect on the checkpoint graphs, new vertices are added

as new checkpoints are taken during an operational session, and existing vertices can be

deleted as some checkpoints are invalidated by the rollback during a recovery session.

Operational
session

Recovery
Hllion

~ 4JY ---:>~ Time

••• ~--~------~------;-------~~------;----------~ • • •

Current
checkpoint

graph G

Nongarbage Future
Checkp~int recovery

line

~F=J)
Figure 2.1: Operational sessions, recovery sessions and nongarbage checkpoints.

Since the purpose of maintaining checkpoints is for possible future recovery, a check-

point is garbage if and only if it can not belong to any future recovery line. Being obsolete,

i.e., before the global recovery line, is simply a sufficient condition for being garbage, but

not a necessary condition. We first give an example of nonobsolete garbage checkpoints.

Figure 2.2 is a typical example illustrating the domino effect. The global recovery line

stays at the set of initial checkpoints and is unable to move forward. The edge from

21

Co,2 to CI,2 and the one from CI,1 to Co,2 imply that Co,2 is inconsistent with any check-

point of process Pl. Since a recovery line must contain one checkpoint from each process,

Co,2 can not belong to any future recovery linel and is therefore a garbage checkpoint.

Checkpoints CI,l and Co,l are garbage by similar arguments.

;:~
c 1,1 c 1,2

Figure 2.2: Example of nonobsolete garbage checkpoints.

Figure 2.2 in fact provides another sufficient condition for identifying garbage check-

points; our optimal garbage collection aims at deriving the necessary and sufficient con-

dition. The difficulty of the problem lies in the fact that future process execution may

contain any number of operational sessions (with arbitrary checkpoint dependencies)

and recovery sessions (with arbitrary subsets of processes being faulty). We outline our

approach as follows. Instead of trying to find garbage checkpoints, we start with identify-

ing nongarbage checkpoints. Given any possible future recovery line which contains some

nongarbage checkpoints, for example, the recovery line shown in Fig 2.1, we perform re-

CO'fJery line transformation to transform it into another recovery line which also contains

those nongarbage checkpoints. Although there are an infinite number of future recovery

lines containing any nongarbage checkpoint, we prove that they can all be transformed

into a set of 2N "immediate future" recovery lines. (Recall that N is the number of

1 It is not hard to see that CO,2 being a garbage checkpoint will not be affected by the occurrence of
any recovery session because every rollback either preserves the "triangular" condition in Fig. 2.2 for
CO,2 or simply invalidates CO,2'

22

processes.) Our next step is recovery line decomposition. We identify a set of N recovery

lines which forms the "basis" for those 2N recovery lines and therefore contains all of the

nongarbage checkpoints.

2.1.2 Recovery line transformation

Our approach to transforming an arbitrary future recovery line backwards in time

is to first define two elementary transformations: transformation within an operational

session and transformation across a recovery session. Any transformation can then be

achieved through a combination of these two elementary transformations.

Transformation within an operational session

Durin.g normal process execution, the size of the checkpoint graph increases as new

checkpoints are taken. Because checkpoint graphs represent program dependencies and

are not arbitrary directed acyclic graphs, the following rules must be satisfied when

adding new vertices. For every new vertex Ci,z with x ~ 1,

Rule La: Ci,z must have an incoming edge from Ci,z-l;

Rule 1.b: Ci,z can not have any outgoing edge to any existing vertices because it can not

happen before a checkpoint that was taken earlier.

We note that because of the unpredictable message transmission delay during the

dependency information collection process, the information associated with a checkpoint

Cj,1I that happened before Ci,z is not necessarily collected by the garbage collection initiator

earlier than the information associated with Ci,z is collected. However, such a situation

23

can be detected based on the dependency information. If a vertex Ci,x is supposed to

have an incoming edge from a nonexisting vertex Cittl' then Ci,x and all of its incoming

edges will be temporarily excluded from the current checkpoint graph. By adding each

new vertex under this constraint, none of the new vertices can have any edge pointing to

any existing vertices and Rule 1.b is therefore enforced. We use Qs(G) to denote the set

of all potential supergraphs obtainable by adjoining new vertices to a given checkpoint

graph G without violating Rule 1.a and Rule 1.b.

Our transformation procedure generally involves changing part of the recovery line

of a graph Gt to obtain the recovery line of another graph G2 • The following lemma

will be used throughout this chapter to ensure that the unchanged part, which forms an

anti chain in Gt , remains an anti chain in G2 after the transformation.

LEMMA 3 Given a checkpoint graph G = (V, E) and its potential supergraph G' -

(V', E') E Q,(G), for any A ~ V, A is an antichain in G if and only if A is an antichain

in G'.

Proof. If A is an antichain in G, then u !. v for any u, v E A. Rule 1.b guarantees

that u !. v remains true in G' because there can not exist any w E V' \ V such that

u < w < v. Hence, A is an antichain in G'. Conversely, if A is not an anti chain in G,

there must exist u, v E A such that u < v which clearly remains true in G', and so A is

not an antichain in G'. o

One special potential supergraph of G, denoted by G, will playa major role through

out this chapter. The graph G is constructed by adjoining a new vertex ni at the end of

24

G for each Pi, with a single incoming edge from the last vertex Ii as shown in Fig 2.3. Let

L denote the set of all last-nodes Ii and B denote the set of all new-nodes ni. We will

refer to the 2N graphs G - W, W ~ B, as the immediate supergraphs of G. The proof of

the following property defines the recovery transformation within an operational session:

given the recovery line of a potential supergraph G' of G, by replacing its constituent

checkpoints which are not contained in G with their corresponding new-nodes of G, we

obtain the recovery line of an immediate supergraph of G.

---------------------•
I

()-i-o--<:J--~ ~

•
•

•••••• 1 ••••

ls :
G'

____________________ J

·'·n B ,.' 0

"In " J

", n ,.' 2

., n
• .l 4

A.

G

Figure 2.3: Construction of the potential supergraph G.

PROPERTY 1 For any checkpoint v in a checkpoint graph G, if v belongs to the re-

covery line of a potential supergraph G', then v must also belong to the recovery line of

an immediate supergraph of G. That is, given G = (V, E), v E V and G' E 9s(G), if

v E M*(G'), then v E M*(G - W) for some W ~ B.

Proof. We partition M*(G') into Ml U M'J. where

Ml - M*(G') n V

M'J. - M*(G') \ V

25

as shown in Fig. 2.4. A corresponding partition of the new-nodes of G is given as

B = Bl U B2 such that

Our goal is to show that

Bl - {n,: M-(G')[i] E Md

B2 - {n;: M-(G')[i] E M2}.

M-(G - B1) = Ml U B2 •

Then, for any v E V and v E M-(G'), we must have v E Ml S; M-(G - W) where

W=Bl~B.

First, we show that Ml U B2 E M (G - B1). Define the subset L2 of last-nodes

corresponding to M2 as L2 = {Ii : M-(G')[j] E M2}. Because Ml U M2 forms an

anti chain in G', we must have M-(G')[il1: ii for any M-(G')[i] E Ml and lj E L2. Now

consider G - B1 • We have M-(G')[i] 1: ni for any nj E B2 because each nj has only a

single incoming edge from Ii' Clearly, any new-node ni 1: M-(G')[i]. Lemma 3 further

guarantees that Ml (~ V) remains an antichain in G and also in G - B1 • Hence, we have

Ml U B2 E M (G - B1).

We next prove that Ml U B2 = M-(G - B1) by contradiction. Suppose Ml U B2 =1=

M-(G - Bt). There must exist M{ = M-(G - B1) \ B2 such that M{ S; V, Ml ~ M{

and Ml =1= Mi as shown in Fig. 2.4. Now consider G'. Recall that Ml and M2 form

an antichain in G' and thus for any u E Mi and M-(G')fj] E M2, we must have u 1:

M-(G')fj]. We also have M-(G')fj] 1: u by Rule 1.b. Therefore, M{ U M2 forms an

\

Po

Po

26

---------------------------~

Current graph G
, ,

-
,.j --; ...=.

MJ L2~ M2

~--~::~----~f·:::~·i----------'~------------------------~

- " ~--~~-----~j::·~i----------~------------------------~

- ' ... ~.----------~------------------------~ ...=. ' .. ::.' ,
---------------------- ______ 1

-~---------------------------~ -, , ,
-

,.j --: --=-
MJ L2~ 82 '=' ~-.-...........

!---~-t-t+------:-<i ::.1-+1)--------;., '(.. : i
- .. '

l-----+.e-I_f----~; .. ~l ;----------.. (.: ~

. .

Potential supergraph if

" Immediate supergraph G· 8 J

P4 -, -..=.. : .. ;~~I)-----------O ~::~~:)
• ____________________________ 1

Figure 2.4: Recovery line transformation within an operational session.

antichain in G', contradicting the fact that Ml U M-z is the maximal maximum-sized

antichain of G'. o

The tra.nsformation within an operational session can be viewed as "projecting" any

potential supergraph along the direction opposite to the time axis. It shows that although

the number of potential supergraphs of G is infinite, the recovery lines of these graphs

can intersect G in only a finite number of ways, and each of the possible intersections

must be part of the recovery line of an immediate supergraph of G.

27

Transformation across a recovery session

Existing vertices on a checkpoint graph, for example, C3,3 in Fig. lA(c), can be deleted

due to rollback recovery. Let GE denote the extended checkpoint graph as defined in

Section 1.3, G = (V, E) denote the subgraph of GE without the virtual checkpoints, and

G- = (V-, E-) denote the checkpoint graph immediately after recovery. Figures 2.5(a)

(c) illustrate these checkpoint graphs. Let F denote the part of G deleted by the rollback;

then we have G- = G - F. By definition, M*(GE) is the local recovery line. Let

M*(GE) = M" U Mv as shown in Fig. 2.5(b) where M" = M*(GE) n V consists of real

checkpoints and Mv = M*(GE) \ M" consists of virtual checkpoints. According to the

rollback propagation algorithm, the following two rules must be satisfied when existing

vertices are deleted during recovery.

Rule 2.a: There cannot exist any u E M" and w E V- such that u < w, i.e., none of the

checkpoints in M" can have any outgoing edge in G-.

Rule 2.b: For any u in F, all of the checkpoints reachable by u must also be in F.

Consequently, none of the checkpoints in F can have any outgoing edge to any

checkpoints in G- .

. We also define

In other words, Tl consists of the new-node ni for each process Pi which contributes a real

checkpoint to the local recovery line. Parallel to the definitions of Ii, ni, B, G, Tl and T2

28

for G, we define Ii, ni, 6-, B-, T1- and T; for G-. That is, Ii denotes the last-node

of Pi in G-, ni denotes the new-node of Pi in G-, 6- is obtained by adding ni to G

for every Pi, B- denotes the set of all new-nodes in 6-, T1- = {ni : M* (G E)[i] E Mr }

and T2- = {nj : M*(GE)[i] E Mv}. It is not hard to see that T2- = T2•

We first prove the following lemma which states the relationship between the maximum

sized antichains of G and those of its potential supergraphs.

LEMMA 4 Given a checkpoint graph G = (V, E) and its potential supergraph G' -

(V', E') E g,(G), for any M S;; V,

(a) ME M(G) if and only if ME M(G');

(b) M*(G) ~ M*(G');

(c) if M = M*(G') then M = M*(G).

Proof Rule l.a guarantees that the largest size of any anti chain remains the same in

all potential supergraphs. Hence, (a) follows immediately from Lemma 3. In particular,

M*(G) E M(G') which leads to (b). If M ~ V and M = M*(G'), then M*(G) -< M

from (b) leads to M = M*(G). o

The proof of the following property defines the transformation across a recovery ses

sion: given the recovery line M of an immediate supergraph of G-, for any i such that

M[i] is a new-node and M*(GE)[i] from the local recovery line is not a virtual checkpoint,

we replace M[i] with M*(GE)[i] to obtain the recovery line of an immediate supergraph

ofG.

Po

P2

Po

PI

P2

Pj

P4

Po

PI

P2

Pj

P4

.... ...,

.... ...,

.... ...,

""

"" ...,

<a) Before recovery (G)

Mr

(b) During recovery (GE)

.-
""

......
................... :

F

: ,
.-..,

(c) After recovery (G-)

29

,'
P 0 ..-~-.+-_;:: , :------
PI ..--+--t---I'--------<:J--+ •

P 2 I---t--+---;-----Hltt-----t

· . F
P j 1--+-.-+--' ---~----t .'- :

· . · .
P 4 1--+-.-+--' .. : ------0

:" :

Po

PI
M r:

P2
F

Pj

P4

:
Po

PI

..-~~-i:: ,~--------~
P2

· . · . Pj "-~~-' :---+ : -.:

.. r:'-~ TI

P4 ..-~~-~. :: ~-------<:J-t .. ~::~> W-.....

<0 &- w-

Figure 2.5: Recovery line transforma.tion across a. recovery session.

30

PROPERTY 2 For any checkpoint v in G- I if v belongs to the recovery line of an

immediate super graph of G- I then v must also belong to the recovery line of an immediate

supergraph of G. That is, given G- = (V-, E-) and v E V- I if v E M* (a- - W-) for

some w- ~ B- , then v E M*(G - W) for some W ~ B.

Proof. Let Gw = a--W-. We partition the recovery line M*(Gw) into Ml UM2UM3

where

Ml = M·(Gw) n V-

M2 = {ni E M·(Gw) : M·(GE)[i] E Mv}

M3 = {ni E M·(Gw): M·(GE)[i] E MI'} (2.2)

as shown in Fig. 2.5(f). The two sets of new-nodes B and B- are partitioned2 as follows.

B = Bl U B2 where Bl = {ni: M·(Gw)[i] E Md

B2 = {ni : M·(Gw)[i] fI. Md

B- = B; U B; where B; = {ni : M·(Gw)[i] E Md

B; = {ni : M·(Gw)[i] fI. Md·

Our goal is to show that

where

2Tl uT2 (Eq. (2.1» is another partition of B corresponding to M*(GE) = MI' U Mv.

(2.3)

(2.4)

(2.5)

31

Then, for any v E V- and v E M*(Gw), we have v E Ml C lVl*(G - W) where

W = Tl U Bl s;; B.

First, it is not hard to see that W- ~ Bi and so M*(G- - Bi) = M*(Gw) from

Lemma 4(c) and the definitions of Bl and MI. We now prove Eq. (2.5) by the following

steps: (a) M1UM1uM. E M(G--(Ti"UB1)); (b) M1UM1UM4 E M(G-(TIUBd);

(c) Ml U Ml U M. = M*(G - (Tl U Bd).

(a) That Ml U Ml U M3 forms an antichain in G- - Bl implies, for any u E M4 and

w E Ml U M'}" that w I- u. This clearly remains true in G- - (T1- uBI)' Since Rule 2.a

guarantees u I- w, we have Ml U Ml U M4 E M(G- - (T1- UBI)'

(b) By adding all of the vertices in F to G--(T1-UB1), we obtain the graph G-(T1UBd

as shown in Fig. 2.5(d). Rule 2.b guarantees that the above process will not make any

unordered pair in G- - (T1- UBI) become ordered. Therefore, Ml U M'}, U IVl4 remains

a maximum-sized antichain in G - (Tl UBI)'

(c) Suppose that MI U M'}, U M4 =/: M*(G - (Tl U Bd). Then, we must have

(2.6)

By applying the transformation as defined in the proof of Property 1 to graphs G and

GE (Fig. 2.5(b)), we have

(2.7)

as shown in Fig. 2.5(e). Since G - Tl is a potential supergraph of G - (Tl U Bd, we have,

by Lemma 4(b),

(2.8)

32

Equations (2.6), (2.7) and (2.8) and the fact that M2 ~ T2 and M4 £; Mr imply M2UN14 £;

M*(G - (Tl UBI)), and there exists M~ such that M~ = M*(G - (Tl UBI)) \ (M2 u M4),

Ml -< M~ and Ml 1: M~ (as shown in Fig. 2.5(d)). Equations (2.7) and (2.8) further

guarantee that M~ does not intersect F and so must exist in G- - (Tt UBI) and hence

a- -B1. Following the same argument as in the last part of the proof of Property 1, we

can show that the existence of M~ leads to a contradiction to the fact that Ml u M2 U M3 =

o

Complete transformation

We now apply Properties 1 and 2 to transforming an arbitrary future recovery line

containing some nongarbage checkpoints. By repeatedly applying Property 1 within

every operational session and Property 2 across every recovery session, we demonstrate

that every such future recovery line of G can be transformed into the recovery line of an

immediate supergraph of G which preserves all of those nongarbage checkpoints.

PROPERTY 3 If a checkpoint in G belongs to a future recovery line, then it must also

belong to the recovery line of an immediate supergraph of G. That is, given G = (V, E)

and v E V, if v E M* (G') for a future checkpoint graph G', then v E M* (G - W) for

some W ~ B.

Proof. Without loss of generality, we may assume G is in the qth operational session

and G' belongs to the rth session where r ~ q. Let Gi denote the checkpoint graph at

the end of the ith operational session, Gi denote the checkpoint graph at the beginning

33

of the same session, and Wi denote a subset of new-nodes of Gi. Clearly, v must belong

to every such intermediate graph. By applying Property 1 to the graph pairs (G', G';:),

(Gj - Wj, Gj) where q + 1 ~ j ~ r - 1 and (Gq - Wq , G), and applying Property 2

to the graph pairs (Gj, Gj - 1) where q + 1 ~ j ~ r, we can show that v must always

remain on the recovery line of an immediate supergraph of one of the intermediate graphs

throughout the transformation procedure. Eventually, we have v E M*(G - W) for some

W~B. o

Figure 2.6 gives an example demonstrating the recovery line transformation. Fig

ure 2.6(a) is the current checkpoint graph G considered for garbage collection. Suppose

that Fig. 2.6(b) is the extended checkpoint graph when 1'3 initiates a rollback, then Fig

ure 2.6(c) is the checkpoint graph immediately after the recovery. Fig. 2.6(d) shows

another possible extended checkpoint graph when Po initiates a second rollback. Since

checkpoints A and B are needed for recovery in this case, they should be considered

nongarbage checkpoints of G. We first apply Property 1 to the graph pairs (Gd , Ge) and

transform the recovery line of Gd into the recovery line of Gg (an immediate supergraph

of Ge) by replacing X, Y and Z with their corresponding new-nodes of Ge , namely, P,

Q and R, respectively. Then we apply Property 2 to the pair (Ge , Gb). Since P3 and P4

contribute real checkpoints C and D, respectively, to the local recovery line in Fig. 2.6(b),

the recovery line of Gg is transformed into the recovery line of G, (an immediate super

graph of Gb) by replacing Q and R with C and D. Finally, by applying Property 1 to the

34

pair (GI , G), we obtain the recovery line of Ge (an immediate supergraph of G) which

still contains the nongarbage checkpoints A and B.

2.1.3 Recovery line decomposition

Property 3 states that. the recovery lines of the 2N immediate supergraphs of G

contain all nongarbage checkpoints. We next show that there exists a set of N recovery

lines which forms a "basis" for the 2N recovery lines: each of the 2N recovery lines is the

set of minimal elements of the union of a subset of the N basis recovery lines. Therefore,

it suffices to find these N recovery lines to identify all nongarbage checkpoints.

Let X /\ Y denote the meet (greatest lower bound) of X and Y in a lattice and min(S)

denote the set of minimal elements in S. We first show that the greatest lower bound of

any k maximum-sized antichains can be obtained as the set of minimal elements in their

unIon.

LEMMA:) Given a poset P, Me M(P) and M ~ M, e M(P) for 0 ~ i ~ k -1 for

any finite k, define "O!:.i~Jc-l Mi = (... ((Mo" M1) " M2) ...) " M1c- lt then

(a) M ~ A M, e M(P) and (b) A M, = min(U M,).
O!:.i!:.1c-l O!:.i!:.1c-l O!:.i!:.1c-l

Proof. Both parts will be proved by induction on k and based on the following theorem

from Anderson's book [46]: for any poset Q and Mll M2 e M(Q), the meet (greatest

lower bound) of Ml and M2 can be expressed. as

(2.9)

Po

P2

Pj

P4

Po

P4

Po

~----------------~ <a> G

~----------~--~----~

().I....ojI(~-O()--~D..: y

o--~:J---O·····:ie Z

35

I
I 1 ____________________ ,

Figure 2.6: Example recovery line transformation.

p

p

Q

R

36

(a) M(P) is a lattice and therefore Mo 1\ MI E M(P). Also, M ~ Mo 1\ Ml because

M ~ Mo, M ~ Ml and Mo 1\ Ml is the greatest lower bound of Mo and MI. We have

shown the case k = 2 is true. Assume that it is true for k = n - 1, i.e.,

M -< 1\ M, E M(P). (2.10)
OSiS,,-l

Again, the lattice property of M (P) ensures that

1\ Mi = (1\ Mi) 1\ M,,-l E M(P).

Equation (2.10) and M -< M,,-l imply that

M~ 1\ Mi.
OSiS,,-1

Therefore, it is also true for k = n and hence we have (a).

(b) The case k = 2 follows directly from Eq. (2.9). Assume that it is true for k = n - 1,

I.e.,

1\ Mi = min(U M,). (2.11)
OSiS,,-l OSiS,,-2

Applying part (a), Eqs. (2.9) and (2.11) , we have

1\ M, = (1\ M,) 1\ M,,-l = min(min(U Mi) U M,,-I)'

Lemma 6 (to be proved next) further gives that

min(min(U Mi) U M"_l) = min(U M, U Mn-d = min(U Mi).

Therefore, by induction, part (b) is true. o

37

LEMMA 6 Given a poset P = (S, <) and X, Y ~ S, min(X U Y) = min(min(X) U V).

Proof First, we prove min(X U Y) ~ min(min(X) U V). For every z fI. min(min(X) U

V), there exists a z' in min(X) U Y such that z' < z. Since both z and z' are in Xu Y,

it follows that z fI. min(X U V).

Conversely, we prove min(min(X) U Y) ~ min(X U V). For every z fI. min(X U V),

there exists a z' in XuY such that z' < z. IT z' E min(X)UY, then we immediately obtain

z fI. min(min(X) U V). Otherwise, if z' E X \ min(X), then there exists a z" E min(X)

such that z" < z', hence z" < z, and again we have z fI. min(min(X) U V). o

PROPERTY 4 For every W ~ Band W i: 0,

M-(G - W) = min(U M-(G - n,)). (2.12)
"iEW

Proof: Without loss of generality, let W = {no, nil ... , nlc-d where 1 ~ k ~ N. Since

G - nj E giG - W), M-(G - W) -< M-(G - nj) for all 0 ~ j ~ k - 1 by Lemma 4(b).

Now consider the graph G. From Lemma 4(a), we have M-(G - W) E M(G) and

M-(G - nj) E M(G) for all 0 ~ j ~ k -1. Let M~ = min(UO$j9:-1 M*(G - nj)). From

Lemma 5, we have

M-(G - W) ~ /\ M-(G - nj) = M~ E M(G). (2.13)
0$i91- 1

Since M*(G - nj)[j] < nj and thus nj fI. M~ for all 0 ~ j ~ k - 1, every x E M~ must

be contained in G - W. From Lemma 4(a), we have M: E M(G - W) and hence

(2.14)

38

Combining Eqs. (2.13) and (2.14), we have proved that

M-(G - W) = M: = min(U M-(G - ni)).
n,eW

o

In particular, the global recovery line M-(G) can be obtained by letting W = B, that

IS,

M-(G) = min(U M-(G - ni)).
O~iSN-l

As an example, we demonstrate the decomposition of M-(Ge } in Fig. 2.6(e) where Ge =

G - {no, n17 n3, n4}' From Property 4 and referring to Fig. 2.7, we have

which is exactly the recovery line shown in Fig. 2.6(e).

2.1.4 Predictive checkpoint space reclamation algorithm

We are now prepared to derive a necessary and sufficient condition for identifying all

nongarbage checkpoints.

THEOREM 2 A checkpoint v in a checkpoint graph G is nongarbage if and only if

Proof. If v E M- (G - ni) for some 0 ~ i ~ N - 1, then v is nongarbage because G - ni

is a possible future checkpoint graph. Conversely, if v is nongarbage, we have by definition

Po

PI

P2

P3

P4

Po

PI

Po

PI

"2

"3

""
/'to.

(a) G -,. 0

.. -+--+ --+~n--Ii(} :.-.:.

1
.J.. •••• ~ ••

1 •

I

I •••..... ~ I ____________________ J •

"0

"1

"2

/'to.
(e) G _,.

"

39

Po

PI

P2

P3

P4

(b)
/'to.

G- "1

Po

PI I

P2

P 3 I

P4

/'to.
(d) G- "3

Po ,--------------------,

PI

P2

P3

P4 1- ___________________

(t) G

Figure 2.7: Example of the PCSR algorithm. Shaded checkpoints in (a)-(e) belong to
the recovery lines and the nonshaded checkpoints in (f) are garbage.

40

v E M-(G') for some future checkpoint graph G'. From Property 3, v E M"'(G - W) for

some W ~ Hj from Property 4,

v E min(U M-(G - ni)) ~ U M-(G - nil ~ U M-(G - n;).
",eW ",eW 0SiSN-l

Therefore, v E M-(G - nil for some 0 ~ i ~ N - 1. o

Based on Theorem 2 we now present the Predictive Checkpoint Space Reclamation

(PCSR) algorithm for finding the N recovery lines in Fig. 2.8. Since the rollback propa-

gation algorithm in Fig. 1.5 is of time complexity O(IEI) where lEI is the total number of

edges in the checkpoint graph (as every edge visited can be deleted), the PCSR algorithm

is of time complexity O(NIEI).

/* Ng (G) denotes the set of nongarbage checkpoints of G * /
/* N is the number of processes * /
/* G and ni are as defined in Fig. 2.3 * /
for each 0 ~ i ~ N - 1 {

}

apply the rollback propagation algorithm in Fig. 1.5 to the checkpoint
graph G - ni to find the recovery line;
all checkpoints in the recovery line except for the new-nodes are included
in the set Ng(G);

all of the checkpoints not in Ng (G) can be garbage-collected.

Figure 2.8: The Predictive Checkpoint Space Reclamation algorithm.

An example illustrating the execution of the PCSR algorithm on the checkpoint graph

G in Fig. 2.3 is shown in Fig. 2.7. All of the checkpoints in G are nonobsolete and

must be retained according to the traditional algorithm. Our PCSR algorithm, however,

determines that all of the nonshaded checkpoints in Fig. 2.7(f) can be discarded.

41

2.1.5 Experimental results

Four parallel programs are used to illustrate the checkpoint space reclamation capa-

bilities and benefits of the PCSR algorithm. Two of them are CAD programs written for

Intel iPSC /2 hypercube: Cell Placement and Channel Router; the other two are Knight

Tour and N-Queen written in the Chare Kernel language, which has been developed as a

medium-grained machine-independent parallel language [50]. We use the Encore Multi-

max 510 multiprocessor version of the Chare Kernel. Communication traces are collected

for these four programs, and trace-driven simulation is performed to obtain the results.

The checkpoint interval for each program is arbitrarily chosen to be approximately ten

percent of the total execution time, as shown in Table 2.1.

Table 2.1: Execution and checkpoint parameters of the programs.

Benchmark Cell Channel Knight N-Queen
programs Placement Router Tour

Number of
processors 8 8 6 6
Machine Intel iPSC /2 Intel iPSC/2 Encore Encore

hypercube hypercube Multimax Multimax
Execution
time (sec) 322.7 469.3 273.2 1625.1
Checkpoint
interval (sec) 35 40 30 150

Figures 2.9-2.12 compare our PCSR algorithm with the traditional algorithm for

typical executions of the four programs. Each curve shows the number of checkpoints

which would be retained if the algorithm is invoked after a certain number of checkpoints

Number of

retained 40
checkpoints

32

24

16

8

42

Nonobsolete -+
Nongarbage ~-.

o~~~~~~~--~--~--~--~--~--~--~
o 8 16 24 32 40 48 S6 64 72

Number of checkpoints taken

Figure 2.9: Nonobsolete and non garbage checkpoints for Cell Placement.

Numberof 48
retained

checkpoints 40

32

24

16

8

Nonobsolete -+
Nongarbage ~-.

80

o~--~--~--~--~--~--~----~--~--~--~--~
o 8 16 24 32 40 48 S6 64 72 80 88

Number of checkpoints taken

Figure 2.10: Nonobsolete and nongarbage checkpoints for Channel Router.

43

Num~of 30~----~--~~--~----~----~----~----~----~----~

retained
checkpoints 24

18

12

6

Nonobsolete -+
Nongarbage -+--.

o.-----~----------~--~~--~~--~----~----~----~ o 6 12 18 24 30 36 42 48 54

Num~ of checkpoints taken

Figure 2.11: Nonobsolete and nongarbage checkpoints for Knight Tour.

Num~rru 48 ~--~----~--~~---r----~--~~---r----~----~--~
retained 42

checkpoints
36

30

24

18

12

6

Nonobsolete -+
Nongarbage -+--.

,.. +-
o~--~----~--~----~--~~--~--~----~--~--~

o 6 12 18 24 30 36 42 48 54 60

Num~ of checkpoints taken

Figure 2.12: Nonobsolete and nongarbage checkpoints for N-Queen.

44

have been taken. The domino effect is illustrated by the linear increase in the number

of nonobsolete checkpoints as the total number of checkpoints increases. The largest

difference between the number of nonobsolete checkpoints and the number of nongarbage

checkpoints for each program is 39 versus 7 for Cell Placement, 48 versus 12 for Channel

Router, 24 versus 10 for Knight Tour and 41 versus 5 for N-Queen ..

2.2 Upper Bound on the Number of Nongarbage Checkpoints

As mentioned in Chapter 1, the traditional approach to garbage collection by dis

carding only obsolete checkpoints has lead to the common perception that the space

overhead for uncoordinated checkpointing is potentially unbounded. Theorem 2 not only

identifies the minimum set of nongarbage checkpoints but also places an upper bound

N2 on the number of nongarbage checkpoints because each M*(G - nil, 0 ~ i ~ N - 1,

consists of N checkpoints. The following property identifies the inherent relations among

M*(G - ni)'s, and is the key to further improving the N2 upper bound to the lowest

upper bound N(N + 1)/2.

PROPERTY 5 For any 0 ~ i,j ~ N - 1 and i =f: j, if M*(G - n;)[j] =f: nj and

M*(G - nj)[i] =f: ni, then M*(G - ni) = M*(G - nj).

Proof. From Lemma 4(a), M*(G - ni)[j] =f: nj implies M*(G - nd E M(G - n; - nj).

Again from Lemma 4(a), M*(G - ni) E M(G - nj). We then have M*(G - n;) ~

M*(G-nj). Similarly, M*(G-nj)[i] =f: ni leads to M*(G-nj) ~ M*(G-ni). Therefore,

M*(G - nil = M*(G - nj). 0

45

We note that the efficiency of the PCSR algorithm can be further improved by ap

plying Property 5. Suppose that, inside the loop in Fig. 2.8, we have found the recovery

line M*(G - ni) for all 0 ~ i ~ K. Define the index set rfi] for any j > K as

ffi] = {i: M*(G - ni)fi] ¥= nj,O ~ i ~ K}.

Then, for each later loop index j, the rollback propagation algorithm can be aborted

when any checkpoint of process Pi, i E ffi], is marked. Because that would mean

M* (G - nj) [i] ¥= n, and M* (G - nj) is exactly the same as M* (G - n,) by Property 5.

We are now prepared to prove the second major result.

THEOREM 3 Let Ng (G) denote the set of nongarbage checkpoints of G and N be the

number of processes. Then,

INg(G)1 ~ N(~ + 1).

Proof. By Theorem 2, we have to consider only the N2 vertices M* (G - ni)[j],

o ~ i,j ~ N - 1. First, M*(G - niHil for all 0 ~ i ::::; N - 1 must be in G and

must contribute N vertices to Ng (G). For the remaining N2 - N vertices with i ¥= j, we

consider the pair M*(G -ni)fi] and M*(G-nj)[i] one at a time and there are (N2 - N)/2

such pairs. We distinguish three cases:

Case 1: M*(G - ni)fi1 = nj and M*(G - nj)[i1 = ni. Both new-nodes do not belong to

Ng(G).

Case 2: M*(G-ni)fi1 = nj and M·(G-nj)[i1::j: n~, or M·(G-nj)U1 =f:. nj and M*(G

nj)[i1 = nj. This pair will possibly add one new checkpoint to Ng(G).

46

Case 3: M*(G-n;)[j] =I: nj and M*(G-nj)[i]:f: ni. It follows that M*(G-n;) = M*(G

nj) from Property 5, and thus M*(G - ni)[j] = M*(G - nj)[j] and M*(G - nj)[i] =

M*(G - ni)[i]. Since M*(G - nj)[j] and M*(G - ni)[i] are already in Ng(G), this

case does not increase the size of Ng(G).

Therefore, each of the (N2 - N)/2 pairs can contribute at most one new checkpoint

to Ng (G) and hence

o

We next show that N(N + 1)/2 is in fact the lowest upper bound because for any

N we can construct a checkpoint graph GN as shown in Fig. 2.13 to achieve this upper

bound. Figure 2.13 shows the nongarbage checkpoints contributed by each of the N

recovery lines in the PCSR algorithm. All of the N(N + 1)/2 checkpoints are identified

as nongarbage checkpoints.

As a final note, the greatest lower bound of N is achieved when none of the (N2 - N) /2

pairs contributes any nongarbage checkpoint. Coordinated checkpointing protocols [19]

guarantee that, immediately after a checkpointing session, the last-node of every process

must be a maximal element; as a result, Case 1 holds for all pairs, thereby achieving the

greatest lower bound.

47

Figure 2.13: GN: The checkpoint graph with N(N + 1)/2 nongarbage checkpoints.

2.3 Optimal Message Log Reclamation

As described in Section 1.2, some protocols require message logging to record the

in-transit messages. Message logs thus constitute another source of space overhead in

addition to checkpoints. It should be noted that message logging can have two purposes.

If the message logs are used for state reconstruction in the piecewise deterministic model

as described in the next section, then both the message contents and the ordinal positions

[30] (or state interval indices [33]), i.e., order of processing, are required. If the message

logs are used for recording in-transit messages as is considered in this section, then

only message contents are important because such messages are allowed to arbitrarily

interleave with messages from other incoming channels. For our purpose, a message

log is nongarbage if and only if it can become an in-transit message with respect to a

possible future recovery line. Since our development of the algorithm will be based upon

the checkpoint graphs, we first define a nongarbage edge as follows. Let (Cj,!I' C;,r) denote

48

the edge representing the relation Cj,lI < Ci,z. Given any consistent global checkpoint

M, we say "(Cj,II'Ci,z) intersects M," if Cj,lI < MU] and M[i] < Ci,z. By the definition

of in-transit messages, we sayan edge is nongarbage if and only if it can intersect a

future recovery line. We will demonstrate that the recovery line transformation and

decomposition defined in the previous section can also be used to derive the necessary

and sufficient condition for identifying all nongarbage edges. More precisely, we prove

that an edge is nongarbage if and only if it intersects M*(G - ni) for some 0 :5 i :5 N - 1.

All the message logs corresponding to the garbage edges can then be garbage-collected.

2.3.1 Recovery line transformation

Given any nongarbage edge (c, d) in G which intersects a future recovery line, we

will show that (c, d) must also intersect M*(G - W) for some W ~ B, after repeatedly

and alternately applying the transformations within an operational session and across a

recovery seSSIon.

PROPERTY 6 For any edge (Cj,II'Ci,z) in a checkpoint graph G, if (Cj,II'Ci,z) intersects

the recovery line of a potential supergraph G', then (Cj,lI' Ci,z) must also intersect the

recovery line of an immediate supergraph of G.

Proof. Suppose (Cj,lI' Ci,z) intersects M*(G') = Ml UM2 where G = (V, E), G' E g,(G),

Ml = M*(G') n V and M2 = M*(G') \ V, as shown in Fig. 2.14. We want to show

that (Cj,II'Ci,z) intersects M*(G - B1) = Ml U B2, where Bl = {ni : M*(G')[i] E Md

49

and B2 = {ni : M*(G')[i] E M2}, which is the recovery line obtained by applying the

transformation within an operational session to M*(G') .

........
Po --------------------------- -,:,

"""';
Current graph G 1

1 -'

MJ C'i\
-;

LZ'-:'
"=' 1 -

~
1
1
1 - 1 - C"':' 1

J.,I 1
1

-. 1

...=.. 1

---------------------- ______ 1

~
Po -------------------------- .~

1
1 -'

MJ C'i\
'"';

LZ'--!'
"=' 1 -

~ -. - c"':'
J.,I

-
-

····T··::
.

····T:::!
P 4 1 ~ 1 ••••• ::::::.:

._--------------------- ______ 1

~ -
--=-
MZ

Potential supergraph G"

Immediate supergraph a -B I

Figure 2.14: Nongarbage edge in the transformation within an operational session.

By definition, ci.1I < M*(G')[j] and M*(G')[i] < Ci,z' Since Ci,z E V, we must have

M*(G')[i] E MI and hence M*(G - BI)[i] = M*(G')[i] < Ci,z' Similarly, if M*(G')[j] E

Mt, then Ci,1I < M*(G - B1)[j]; otherwise, M*(G')[j] E M2 and we must have Ci.y :::;

Ii < ni = M*(G - Bt}(j]. Therefore, we have shown (Ci,1I' Ci,z) intersects M*(G - Bd as

required. o

50

PROPERTY 7 Let G and G- denote the checkpoint graphs immediately before and

after a recovery session, respectively. For any edge (Cj,1I! C;,z) in G-, if (Cj,lI! c;,z) intersects

the recovery line of an immediate supergraph of G-, then (Cj,,,! C;,z) must also intersect

the recovery line of an immediate supergraph of G.

Proof. Suppose (Ci,"'C;,z) intersects M-(O- - B1) = Ml U M2 U M3 as shown in

Fig. 2.15, where M;'s were defined in Eq. (2.2) and Bl was defined in Eq. (2.4). We

want to show that (ci,,,, C;,z) intersects M-(0 - (Tl U Bd) = Ml U M2 U M", where Tl was

defined in Eq. (2.1) and Bl was defined in Eq. (2.3), which is the recovery line obtained

by applying the transformation across a recovery session to M-(0- - B1).

P 0 ~-+4"""-------O P 0 ~-+4"""-------D

2 PJ ~~~~------o--+. 2

... -............. . ..
P 2 I---+--+--~r---+e+----+ .. ~:::::: T 1

:: B

p J .---H.r----Jcc~..-~ .. -.. -... -.~-... -.. -t .. 'r~ ..):J·U J

P4 I---H~-------CH P 4 I---H -------CH·::<> .:

(a) a- - Bi

Figure 2.15: Nongarbage edge in the transformation across a recovery session.

Let Mo = M-(O - (Tl U Bd) and Mi = M-(O- - B1). By definition, Cj,y < MiU]

and Mi[i] < C;,z. Following the same arguments as in the proof of Property 6, we have

M;[i] = Mi[i] < C;,z and, if MiU] E Ml U M2, Cj,1I < M;U]. If MiU] E M3 , we still have

Cj,1I < M; Uj unless Ci,1I EM". Since Rule 2.a guarantees that none of the vertices in M4

51

can have any outgoing edge in G-, Cj,lI ¢ M4 and therefore we have shown that (Cj,lI' c,-,r)

intersects Mo as required. o

Combining Properties 6 and 7 and following the proof of Property 3 immediately lead

to the following result.

PROPERTY 8 If an edge (C;,II' Ci,z) in a checkpoint graph G intersects a future recovery

line of G, then (C;,II' Ci,z) must also intersect the recovery line of an immediate supergraph

ofG.

2.3.2 Recovery line decomposition

We will first show that Eq. (2.12) in Property 4 can be expressed in terms of a

component-wise minimum operation, and then prove that any edge intersecting the

recovery line of an immediate supergraph must intersect one of the N recovery lines

LEMMA 7 Given a checkpoint graph G, W S; Band W =F 0,

M*(G - W)fi] = min(U M*(G - nk)fiD for all 0 ~ j ~ N - l.
nJrEW

Proof. For any 0 ~ j ~ N - 1, we consider the set of checkpoints {M*(G - nk)fil :

nk E W} which contains all of the checkpoints of Pi in UnJrEW M*(G - nk). Only

min(UnJrEW M*(G - nk)fiD can be a minimal element. From Property 4, M*(G - W) =

min(UnJrEw M*(G - nk)). Since M*(G - W) must contain one checkpoint from each

process, we have M*(G - W)fil = min(Un"Ew M*(G - nk)[j]) as required. o

52

PROPERTY 9 If an edge (ci.,I, C;,z) in a checkpoint graph G intersects the recovery

line of an immediate supergraph of G, then (ci.,I' C;,z) must also intersect one of the N

recovery lines M*(G - nll:), 0 < k ~ N - 1.

Proof. Suppose that (ci.,I'C;,z) does not intersect any M*(G - nk). Then, for any

o < k ~ N - 1, either (1) C;,z ~ M*(G - nk)[i] or (2) M*(G - nll:)[j] ~ Ci.1I' For any

immediate supergraph G - W of G, if case (1) is true for all nil: E W, then

C;,z ~ min(U M*(G - nll:)[i)) = M*(G - W)[i]
n.ew

by Lemma 7; if case (2) is true for some n, E W, then

M*(G - W)[j] = min(U M*(G - nll:)[j)) ~ M*(G - n,)U] ~ Cj.lI·
".eW

In either case, (ci.II' c;,z) does not intersect M*(G - W). Therefore, if (ci.II' c;,z) intersects

M*(G - W), then (ci.,I'C;,z) must intersect M*(G - nk) for some 0 ~ k ~ N - 1. 0

Combining Properties 8 and 9, we now present the necessary and sufficient condition

for identifying all nongarbage edges.

THEOREM 4 An edge (ci.,I' C;,z) in a checkpoint graph G is nongarbage if and only if

(ci.,I'C;,z) intersects M*(G - nil:) for some 0 ~ k ~ N-1.

Proof. If (ci.,I' c;.z) is nongarbage, (ci.,I' C;,z) must intersect a future recovery line of G

by definition. From Property 8, (ci.,I' c;.z) must intersect the recovery line of an immediate

supergraph of G. From Property 9, (ci.,I'C;,z) must intersect one of the N recovery lines

53

M*(G - nk),O ::5 k ::5 N - 1. Conversely, if (Ci,lI' Ci,z) intersects any M-(G - nk), then

(ci,lI' C;,z) is non garbage because M*(G - nk) is a possible future recovery line of G. 0

Theorem 4 also leads to an optimal message log reclamation algorithm for finding

all nongarbage message logs: first compute the N recovery lines M*(G - nk), 0 ::5 k ::5

N - 1; only those message logs with their corresponding edges intersecting any of the

N recovery lines are nongarbage. In Fig. 2.16, the edge (E, F) intersects M*(G - no),

(G, H) intersects M*(G - n,,) and none of the edges intersects M*(G - nl), M-(G - n2)

or M*(G - n3)' Therefore, while all of the edges in Fig. 2.16(f) are nonobsolete, only

those message logs corresponding to (E, F) and (G, H) need to be retained.

Figure 2.17 shows an example for analyzing the algorithm complexity. The rollback

propagation algorithm is applied to the checkpoint graph shown in Fig. 2.17(a), and

(b)-(d) illustrate the steps for finding the recovery line. Since all of the visited edges

can be removed as shown in the figure, the algorithm is of time complexity O(IE\).

The nongarbage edges can be identified as the remaining incoming edges of the marked

checkpoints. Since the additional complexity of scanning through the marked checkpoints

is no greater than O(IEI), our optimal garbage collection algorithm for identifying all

nongarbage edges as well as nongarbage checkpoints is of complexity O(NIE\).

Po

Po

A-

(a) G -" 0

(c)
A

G·" 2

54

Po

Po

Po

A-
(b) G."

1

A-
(d) G. n

3

,--------------------1

(t) G

Figure 2.16: Example execution of the optimal garbage collection algorithm.

Po

...... ~.()

··--···DIt_.~

(a)

Marked
>---.(J----tlP6: ~ checkpoints

NO. I ~

(c)

® :~,
.............. :.:-0 \

....... ..a .
.......... ~ :

......

55

Po

: ~~t set
>-------M

(b)

(d)

': ~~} · . · . · .

Non-garbage
edge

............. ": .. lo{)
· .

..... ~.l>() ~
· . · . · +lo{) i

Figure 2.17: Example for identifying nongarbage checkpoints and edges. (For the check
point graph in (a), (b)-(d) illustrate the step-by-step execution of the roll
back propagation algorithm.)

56

3. RECOVERY LINE PROGRESSION

Having developed a garbage collection algorithm to minimize the space overhead

for uncoordinated checkpointing, we next address the recovery line progression problem.

Traditionally, uncoordinated checkpointing, coordinated checkpointing, and the log-based

approach have been considered three different approaches, each with its own advantages

and disadvantages as described in Chapter 1. In this chapter, we adopt a different view

point and present a unifying framework for all three approaches. Our framework is based

on uncoordinated checkpointing, because it is the most general approach in terms of

process autonomy and the assumptions about program behavior. The price paid for such

generality is the potential domino effect. We then consider checkpoint coordination and

exploiting piecewise determinism as two mechanisms for eliminating the domino effect

by inserting additional checkpoints. The concept of lazy checkpoint coordination is in

troduced to allow sacrificing a varying degree of process autonomy in exchange for the

guarantee of recovery line progression. The notion of logical checkpoints is introduced

to interpret message logging in the piecewise deterministic model as providing additional

checkpoints available for the processes to roll back to, thereby reducing rollback propa

gation. In such a unifying framework, all three approaches can be integrated together

and benefit from the optimal garbage collection algorithm of Chapter 2. At the end of

57

this chapter, we also describe a message reordering approach to reducing rollback prop-

agation without inserting any extra checkpoints. For systems in which messages can be

reordered without affecting program correctness, such a technique can be incorporated

as an additional mechanism to further advance the recovery lines.

3.1 Lazy Checkpoint Coordination

3.1.1 Communication-induced checkpoint coordination

The basic concept of lazy checkpoint coordination is to insert extra induced check-

points based on the communication history, in addition to the basic checkpoints initiated

independently by each process, to ensure that a new consistent set of checkpoints will be

formed periodically to advance the recovery line. Figure 3.1(a) illustrates a checkpoint

and communication pattern with the domino effect. A straightforward way of avoiding

such possibly unbounded rollback propagation is to perform traditional eager checkpoint

coordination as shown in Fig. 3.1(b), where bi,z denotes the xth basic checkpoint of

Pi. Whenever a process takes a basic checkpoint, a coordination message (dotted line)

is broadcast to request the cooperation in making a consistent set of checkpoints [11].

Let B be the total number of basic checkpoints and I be the total number of induced

checkpoints. We define the induction ratio as

I
'R.=

B

58

which is a measure of the overhead for performing communication-induced checkpoint

coordination. Clearly, eager checkpoint coordination always has 'R = N - 1, and the

N - 1 coordination messages per checkpoint session constitute additional overhead.

The large overhead of eager checkpoint coordination results from its pessimistic na-

ture. More specifically, when PI in Fig. 3.1(b) initiates its first basic checkpoint bt,b it

"pessimistically" assumes that messages like ml will exist in the future and cause bt,l

to be inconsistent with its corresponding checkpoint bo,l on Po. To guarantee that bl,l

belongs to a useful recovery line, PI "eagerly" requests Po's cooperation at the time bl,l

is initiated. In contrast, lazy checkpoint coordination adopts an optimistic approach by

assuming that bo,l will be consistent with bl,l' If the assumption turns out to be true, no

explicit coordination is necessary. An extra checkpoint will be induced on Po only when

message mt indicates that the assumption has failed [21] (Fig. 3.1{c)).1 From another

point of view, such a scheme "lazily" delays the broadcast of the coordination messages

and implicitly piggybacks them on future normal messages [20]. Both checkpoint and

message overhead can therefore be reduced.

However, given a basic checkpoint pattern, the number of induced checkpoints in

the above scheme is determined by the communication pattern and is not otherwise

controllable. In the worst case, the induction ratio 'R can still be N - 1 as illustrated in

Fig. 3.1{ c). To further reduce the overhead, we can perform even "lazier" coordination

lThe motivation for lazy checkpoint coordination is similar to the concepts behind the lazy release
con.9utency in distributed shared memory [51] and the lazy me.9.9age cancellation in optimistic distributed
simulation systems [52].

59

Po

(a)

Po

Po

Po

Pl
b 1,2 b1,3 b b I,D bl.l (d) c 1,4 1,4

C I,D C 1,1 C 1,2 C1,3 C 1,5

+ Basic checkpoint ED Induced checkpoint

Figure 3.1: Communication-induced checkpointing. (a) checkpoint and communication
pattern; (b) eager checkpoint coordination; lazy checkpoint coordination with
(c) laziness = 1 and (d) laziness = 2.

60

by enforcing the consistency only between checkpoints Co,nZ and Cl,nZ where Z is called

the laziness and n is an integer. Figure 3.1 (d) shows the case of Z = 2. No checkpoint is

induced until message m2 indicates the inconsistency between bt,2 and 1>0,2' The number

of induced checkpoints is reduced from 8 to 2 at the cost of potentially larger rollback

distance. We will show in the next section that, while the worst-case induction ratio for

Z = 1 is of order» (the number of processes), the upper bound on the induction ratio

for Z ~ 2 is related to the maximum ratio of the lengths of any two basic checkpoint

intervals and is independent of N.

Lazy checkpoint coordination can be implemented as follows. The laziness Z is a

predetermined system parameter known to a.ll processes. During normal execution, each

process Pi maintains a variable V which is initialized to be Z and incremented by Z each

time Ci,nZ is taken. When Pi at its xth checkpoint interval is about to process a message

m tagged with the sender p;'s checkpoint interval number y ~ V, Pi is forced to take the

checkpoint Ci.lZ where l = Ly / Z J. In other words, if m was sent after Cj,lZ had been taken,

then it must be processed by Pi after Ci.lZ is induced. Notice that the induced checkpoint

Ci.lZ can be referred to as any checkpoint Ci,VI with x < w ~ lZ. Since our approach is to

incorporate lazy checkpoint coordination into an uncoordinated checkpointing protocol

(which corresponds to Z = 00) as a mechanism for bounding rollback propagation, the

optimal garbage collection algorithm remains useful in reducing the space overhead for

such a domino-free recovery protocol.

61

3.1.2 Worst-case analysis

Our approach to worst-case analysis consists of two steps. First, gIven any basic

checkpoint pattern, we construct the worst-case communication pattern. Second, given

any system with N processes and laziness Z, we derive the worst-case induction ratio as

a function of N and Z by considering these worst-case communication patterns.

For the purpose of presentation, we assume that every checkpoint cf,z in a checkpoint

and communication pattern P is associated with a global time stamp t(cf,z). For any n,

define c~nZ = cf,nz if t(cf,nZ) :5 t(cf.nZ) for all 0 :5 i :5 N -1, i.e., c~nZ denotes the earliest

checkpoint #nZ among all processes. Given any basic checkpoint pattern and laziness Z,

we construct the communication pattern2 Po as follows. If c:.~z = cr.~z' then Pi sends a

message to every other process Pi and induces cf.~z with t(cf.~z) ::::: t(cr.~z)' Figure 3.2(a)

shows an example of Po with Z = 2. We will call the interval between t(C:ln-I)Z) and

t(c:'~z) the induction session #n which includes all of the induced checkpoints cf~z'

Since the induction of any checkpoint cf"z (and hence any possible dummy check

points cf" (n -1)Z < y < nZ) cannot happen until the first checkpoint #nZ, e.g., cf,nz,

is taken, Pi has to take Z consecutive basic checkpoints by itself to reach cf,nz, as stated

in Property 10.

PROPERTY 10 If c~"z = cf,nz, then the Z checkpoints cf,z, (n - 1)Z < x :5 Z, must

be basic checkpoints.

2When it is clear from the context that the basic checkpoint pattern is fixed, the same notation for
the checkpoint and communication pattern will also be used to refer to the communication pattern.

Po

pz

Po

I _ Inducdon + lDduction I
r- sesaion 'I session 12"

--~------

62

(a)

(b)

Po
CP·,12

Figure 3.2: (a) Worst-case communication pattern (b) worst-case checkpoint and com
munica.tion pattern.

We show in the next property that, given a. basic checkpoint pattern, Po has the

earliest c~nZ for any positive integer n.

PROPERTY 11 Given a basic checkpoint pattern, we have t(c:'~z) ~ t(c~nZ) for ar-

bitrary communication pattern l' and any positive integer n.

Proof The proof is given by induction on n. Since there can not be any induced

checkpoint before t(c~z) for any 1', t(c~z) depends only on the progress of taking basic

checkpoints. Therefore, t(c:'z) = t(c~z) and the case n = 1 is true. For the case n = k,

suppose c~IcZ = Cr.IcZ· All of the Z checkpoints Cr.l with (k - l)Z < I ~ kZ must be

63

basic checkpoints by Property 10. Also, t(C~(k-l)Z) ::; t(Cr.UC-l)Z) ::; t(Cr.I) ::; t(Cr.kZ) by

definition. Suppose that the case n = k - 1 is true, i.e., t(C~(k_l)Z) ::; t(C~(k_l)Z)' We

then have cr,JcZ = cr.~ where q ~ kZ because t(Cr.Ck-l)Z) ::::: t(C~(k_l)Z) by construction

and there are at least Z basic checkpoints of Pi, i.e., the cr./s, between t(Cr.(k-l)Z) and

t(Cr,1cZ)" Finally,

and we have proved t(c~~z) ::; t(c~nZ) for all positive integer n. o

It follows from Property 11 that 'Po must possess the largest number of c~nZ's. Since

each c~nZ in 'Po also induces the largest possible number (N - 1) of induced checkpoints,

the total number of induced checkpoints in 'Po must be the largest and hence we have

the following property.

PROPERTY 12 Given a basic checkpoint pattern, 'Po is the worst-case communication

pattern resulting in the largest induction ratio.

Property 12 states that, for the worst-case analysis of induction ratio, we have to

consider only the communication pattern 'Po for each basic checkpoint pattern. Since

every 'Po has well-defined induction sessions as shown in Fig. 3.2, the derivations can be

greatly simplified.

From Property 10, at least Z basic checkpoints are needed to induce at most N - 1

checkpoints and thus we have an upper bound on the induction ratio

. N-l
'R.::; Z (3.1)

64

It is also the worst-case induction ratio achievable by some Po for which an example with

Z = 2 and N = 3 is shown in Fig. 3.2{b). (The stacked checkpoints indicate that each

dummy checkpoint Cr.~n-l is exactly the induced checkpoint cr.~n.)

The upper bound in Eq. (3.1) was derived under no constraints on the checkpoint and

communication pattern. Since it is O{N), the induction ratio may be unacceptably high

for systems with a large number of processes. However, a closer look at the two patterns

in Fig. 3.2 reveals that the situation in (b) which results in the worst-case induction ratio

is less likely to happen for applications in which the basic checkpoint intervals typically

do not vary too much. For example in (b), it is very likely for Po to take at least one basic

checkpoint between t{c~~) and t{c~~). We will show that under the following constraints,

which are usually satisfied in many applications, the upper bound on the induction ratio

is independent of N for Z ~ 2. (For the case of Z = 1, Fig. 3.1{c) demonstrates that

the worst-case induction ratio of (N - 1)/Z = N - 1 is always achievable and cannot be

reduced.)

Constraint-I: Let Q denote the maximum ratio of lengths of any two basic checkpoint

intervals. Although each process is allowed to take its basic checkpoints at its own

pace, Q is typically bounded by a small constant Q. (For example, Q is 2 or 3 for

our experiments described in the next section.) Therefore, Q = O(1).

Constraint-2: Let L be the number of complete induction sessions in Po. The applica

tions employing checkpointing and rollback recovery are usually long-running pro

grams, which implies Z· L is quite large. In particular, we assume that z· L ~ rQl.

65

From Property 10, each induction session must contain Z consecutive basic check

points and hence at least Z - 1 basic checkpoint intervals at some process. Let S denote

the following set of integers:

S = {m : m . (Z - 1) ~ Q and m ~ rQl}.

For Z ~ 2, S contains at least one element, namely, rQl. Let M be the minimum

element of S. We define an M -session as consisting of M consecutive induction sessions,

session #((n -1)M + 1) through session #nM. Our approach is based on the observation

that within an M-session, every process either takes at least one set of Z consecutive

basic checkpoints which defines one of the induction sessions, or takes at least one basic

checkpoint due to Constraint-I. Since, within an M-session, the number of induced

checkpoints is M· (N - 1) where M ~ rQl = 0(1) and the number of basic checkpoints

is at least N, the upper bound on the induction ratio is independent of N.

THEOREM 5 Under the above two constraints, the induction ratio n < rQl for lazi

ness Z ~ 2 where Q is the maximum ratio of lengths of any two basic checkpoint intervals.

Proof. Again we have to consider only Po for each basic checkpoint pattern. There

are LM = LL/MJ complete M-sessions, each containing M· (N -1) induced checkpoints.

We distinguish the following two cases:

(a) N < M: From Eq. (3.1), n ~ Nil < N < M ~ rQl.

(b) N ~ M: First we consider the number of induced checkpoints I. If Z ~ Q + 1, then

M = 1 and I = L· (N - 1). If Z < Q + 1, then Z . L » rQl in Constraint-2 implies

66

L ~ rQl. Since M ~ rQl, we have LIM ~ 1; thus LM ~ 1 and I ~ LM' M· (N -1).

In either case, I ~ LM . M· (N - 1).

Now consider the number of basic checkpoints B. For each induction session In,

the process Pi with cr,:z = c:'~z must contribute Z basic checkpoints. Therefore, the

length of each induction session is at least Z -1 basic checkpoint intervals. Within each

M-session, at least N - M processes do not contain c~~z for any n. By the definition

of Q, these N - M processes must each contribute at least L M'(~-l) J basic checkpoints.

Therefore,

(3.2)

Since Z > 1 and M'(~-l) ~ 1 by definition, we have

M· (N -1)
'R. < M + (N _ M) < M ~ rQl (3.3)

as required. o

Combining Eq. (3.1) (for Z = 1 and Case(a)) and Eq. (3.2), we define the refined

upper bound on the induction ratio R, called the Q-bound, as follows:

M· (N -1)
Q-bound = -------------'~--:-:-":":"""~

M· Z + [N ~ M] . ((N - M) . L M.(~-l) J)

where [N ~ M] = 1 if N ~ M is true and 0 otherwise.

67

3.1.3 Experimental results

Table 3.1 gives the parameters of the four Chare Kernel programs used in the trace-

driven simulation with lazy checkpoint coordination. The predetermined minimum basic

checkpoint interval is chosen to be 120 sec. A variable NezLCP_Time is initialized to 120

sec. Each process checks its local clock after processing every 100 messages. If the clock

time exceeds Nezt_CP_Time, then a basic checkpoint is inserted, and Nezt_CP_Time is

incremented by 120 sec. The resulting average basic checkpoint interval (CPI) for each

program is listed in Table 3.1. Before processing a new message, each process also checks

if it has to take an induced checkpoint, as described in Section 3.1. All reported numbers

are averaged over five runs.

Table 3.1: Execution and checkpoint parameters of the parallel programs.

Programs Test Logic Knight N-Queen
Generation Synthesis Tour

N umber of processors 8 6 8 6
Execution time (sec) 2,076 1,736 2,436 1,567
N umber of messages 28,219 411,733 104,170 25,880
A verage number of basic
checkpoints per processor 12.6 11.8 18.0 10.5
Average basic CPI (sec) 158 140 132 139
Q 2.17 2.48 1.42 1.55
Under-2 percentage 99.6% 97.0% 100% 100%

We expect the variation of the basic checkpoint interval to be small because of the

way it is maintained. In particular, we choose Q = 2 to estimate the induction ratio. The

exact value of Q for each program is listed in Table 3.1. Although Q is slightly greater

68

than 2 for the first two programs, the numbers listed in the row of "Under-2 percentage"

show that a very high percentage of the basic checkpoint intervals are covered by Q = 2,

which thus serves as a good approximation. Figure 3.3 plots the Q-bounds against the

worst-case ratios computed from Eq. (3.1) and the actual induction ratios (the "Result"

curve) obtained from the trace-driven simulation for the four programs. It demonstrates

that the Q-bound provides a good estimate of the induction ratio. The large difference

in the ratio between Z = 1 and Z ~ 2 confirms that our generalization of the idea

of communication-induced checkpoint coordination as described in [21] can significantly

reduce the extra checkpoint overhead.

Figure 3.4 plots the average rollback distances in terms of the number of average

basic CPls for the four programs. We use 0.5 for Z = 1 and (Z - 1)/2 for Z ~ 2 in

the "Estimated" curve. Figures 3.3 and 3.4 illustrate that lazy checkpoint coordination

provides a flexible trade-off between coordination overhead and recovery efficiency.

3.2 Exploiting Piecewise Determinism

As described in Section 1.2, when Pj in Fig. 3.5 rolls back to Cj,fI' Pi is. also required to

roll back to undo the effect of message m because the potential nondeterministic events

preceding the sending of m, for example, the event el, may invalidate m after the roll

back. However, if the event el can be detected and recorded, it can then be replayed after

the rollback to reconstruct the state from which message m was originally sent (under

the fail-stop assumption). Since the exact copy of m is guaranteed to be resent during

69

Induction 7
ratio (R) 6 Worst case -+--

S Q-bound -+---
4
3 '. Result ·G-·-

2 '.
1 ------------- ::;-:::':':-:-.~,:-==-:a • 0

...........

1 2 3 4 S

(a) Test Generation
Laziness (Z)

Induction 7
ratio (R) 6 Worst case -+--

S Q-bound -+--
4
3 Result -G---

2
1 ------------- :':: .. -;-:~:-;-~----
0

...................

1 2 3 4 5

(b) Logic Synthesis
Laziness (Z)

Induction 7
ratio (R) 6 Worst case -+--

S Q-bound -+---
4
3 Result -G---

2
1 ------------- :::~ . .-:~:':"~ .. -:::':':" ..
0

.... _ .. _-

1 2 3 4 5

(c) Knight Tour
Laziness (Z)

Induction 7
ratio (R) 6 Worst case -+--

S Q-bound -+---4
3 Result ·G---

2
1 ------------- ~-:':':-;-.~-:':':":-.. --~':' 0

................. -... -.........

1 2 3 4 5

(d) N-Queen
Laziness (Z)

Figure 3.3: Checkpoint coordination overhead (induction ratio) as a function of laziness.

70

Average 2.5 ,------r------r------,-------,
Rollback
Distance 2

(# basic CPIs)

1.5

Estimated -+
Test Generation -+0-.

Logic Synthesis ·8···
Knight Tour ··M

N-Queen -

o ~------~~------~--------~--------~
1 2 3 4 5

Laziness

Figure 3.4: Average rollback distance as a function of laziness.

reexecution, the state of Ph which depends on the processing of m, remains valid and does

not have to be rolled back. Motivated by the above observation, the log-based approach

[26] assumes the piecewise deterministic (PWD) model in which the process execution is

viewed as consisting of a number of state intervals with completely deterministic execu-

tion, each started by a detectable and recordable nondeterministic event, for example,

processing a new message. It has been shown that under the PWD assumption, addi-

tional event logging allows deterministic state reconstruction to effectively eliminate the

domino effect [26,33]. Because the concept of state consistency in the PWD model is

fundamentally different from the one described in Section 1.2, the log-based approach

has traditionally been presented using a different dependency model (as described in the

next chapter).

We first present a unified dependency model for both PWD and non-PWD scenarios.

Our approa.ch is to introduce the notion of logical checkpoints which allows the bappened

71

Pi
~i,.x+l

p.
J

+

Logical checkpoints

Figure 3.5: Nondeterministic events and logical checkpoints.

before dependency model to be applied to systems with piecewise determinism as well.

Suppose el and e2 are the only nondeterministic events of Pi in Fig. 3.5. We call Cj,y a

physical checkpoint which allows the process state to be restored by simply loading the

saved state on stable storage back to memory. With the PWD assumption, restarting

the execution from ci,lI also guarantees that the state up to the point immediately before

the next nondeterministic event el can be reconstructed, effectively placing a logical

checkpoint Ll before el. In addition, if event el is logged and can be replayed, then

Pi's capability of state reconstruction equivalently places another logical checkpoint L2

immedia.tely before e2' Therefore, while Pi physically rolls back to Cj,lI' it logically rolls

back to L2 and does not UllSend m. In other words, while Ci,1I and <=1,=+1 are inconsistent,

L2 and <=1.=+1 are not ordered by the b.appened before relation and thus form a consistent

set of checkpoints.

It becomes clear that the PWD assumption allows the use of event logging to increase

the number of a.vailable (logical) checkpoints, thereby reducing rollback propagation and

avoiding domino effects. However, the assumption that every nondeterministic event in

the entire execution is detectable, recordable and replayable may not be valid for many

72

applications [53,54]. For example, replaying real-time clock values, sensor readings or

external resource status may not be meaningful. Therefore, instead of viewing the PWD

assumption as a restriction imposed upon the program behavior, we consider exploiting

the PWD model as a mechanism for reducing rollback propagation. More specifically,

we use uncoordinated checkpointing as the basic scheme and exploit the PWD model

whenever it is valid in order to effectively advance the recovery line.

Figure 3.6 gives an example. In Fig. 3.6(a), no piecewise determinism is exploited

and the domino effect forces the global recovery line to stay at the very beginning of pro

cess execution. If piecewise determinism can be fully exploited, as shown in Fig. 3.6(b),

then we have an additional logical checkpoint before every nondeterministic event. Fig

ure 3.6(c) shows a situation in which the PWD assumption is not valid for the parts of

the execution indicated by the shaded bars, and hence the logical checkpoints in those

regions are unavailable. Note that once a process turns off the PWD mode, it cannot re

sume PWD execution until the next physical checkpoint because the state reconstruction

process for current checkpoint interval has been interrupted.

Figure 3.7(a) gives the corresponding (logical) checkpoint graph and (b)-(f) show

the N recovery lines produced by the PCSR algorithm of Section 2.1.4. We note that

since the logical checkpoint Lo in (b) is nongarbage, the physical checkpoint CQ and the

message log of mo (Fig. 3.6(c)) are nongarbage, and rno must be the first new message to

be processed after Po restarts from CQ. In contrast, the two dark edges in (f) are identified

as nongarbage edges by algorithm of Section 2.3, which means that the contents of the

73

Global recovery line

....
(a) No PWD exploited

(b) Fully exploited PWD

(c) Partially exploited PWD

Figure 3.6: Piecewise determinism and the availability of logical checkpoints. (The
shaded bars indicate those parts of process execution which do not satisfy
the PWD assumption.)

Poa-~~----~r-~--~~

Pl~~~~4C~1-~~.c~~~D

P2~~----~--~CX

P3~~~~~--~Dr~~--~~

P4~--------~~~~.c~~

(a)

(c)

(e)

74

(b)

(d)

(t)

Figure 3.7: Optimal garbage collection for partially exploited piecewise deterministic
model. (For the checkpoint graph in (a), (b)-(f) are the N immediate su
pergraphs used in the PCSR algorithm.)

75

message logs of ml and m2 are nongarbage but the original order of processing can be

discarded.

3.3 Scheduling Message Processing

3.3.1 Message prioritization

Most checkpointing and recovery techniques have assumed that the communication

pattern is determined by program behavior and is not otherwise controllable; hence,

the only way of reducing rollback propagation is to change the checkpoint pattern by

inserting additional checkpoints. However, in a message-driven system such as the Chare

Kernel [55], the communication pattern can often be determined by the run-time support

system in a user-transparent way as well as by program behavior. Since the order in which

the messages arrive at the receiver can not be assumed, changing the order of message

processing will typically not affect program correctness. We next describe how messages

can be prioritized according to the checkpointing and communication history in order

to control the communication pattern to reduce rollback propagation [56]. Essentially,

our message scheduling algorithm is based on the following two concepts: dependency

redundant messages and message aging.

A message m is a dependency-redundant message if its immediate processing will

result in a dependency that has already been implied in the transitive closure of the

current checkpoint graph. Since the recovery line is determined by the transitive closure,

76

processing a dependency-redundant message will not cause any additional rollback prop-

agation. For example, suppose messages mo and ml in Fig. 3.8(a) have been processed.

Then message m2 becomes a dependency-redundant message because its corresponding

dependency A < E is implied through A < B < C < D < E, as shown in (b). Similarly,

. m3 is a dependency-redundant message because B < F is implied through B < C < F.

A B
Po

P2 P2
D E

(a) (b)

Figure 3.8: Dependency-redundant messages. (a) Checkpoint and communication pat
tern; (b) checkpoint graph.

The concept of message aging is motivated by the communication-induced check-

pointing schemes [7,57,58], in which a checkpoint is inserted immediately after every

message is sent. Since such schemes guarantee that the rollback of any process will not

unsend any messages, rollback propagation and hence the domino effect are completely

eliminated. However, experimental results have shown that the major disadvantages of

such schemes are the uncontrollability of the checkpoint frequency [59] and the possibly

excessive number of induced checkpoints [60]. Instead of forcing the message senders to

take additional checkpoints to ensure that every message sent is processed after its sender

takes the next checkpoint, message aging encourages the receivers to delay the processing

of each message m until its sender passes the next checkpoint. (Such a message m will

77

be called an aged message.) The advantage is that the number of checkpoints and the

checkpoint frequency can be independent of the communication patterns; the potential

disadvantage is that either the delayed processing might result in run-time overhead, or

some processes may be forced to process nonaged messages and hence the system would

no longer be free of rollback propagation.

3.3.2 Implementation

For the receiver to detect aged messages, an additional piece of information has to be

piggybacked on each message: the time to the next checkpoint of the sender when the

message is sent. The receiver can then properly manage its message queue based on this

information.

Instead of keeping messages from different processes in the same queue, each process

maintains an array of subqueues, one for each process, and a highest-priority safe queue

for holding dependency-redundant messages and aged messages. Three additional data

structures are needed for proper queue management:

1. LasLUpdate_Time records the time at which the most recent update of the time

to-next-checkpoint information was completed. It is needed for the aging operation

descri bed later.

2. LastJ<nown_CP flum[N] is an array, with one entry for each process, recording the

most recent checkpoint interval number of every process that is known to the local

process based on the communication history.

78

3. LasLProcessed_CP flum[N] is an array recording the highest checkpoint interval

number of the processed messages from each process. It is used for identifying

dependency-redundant messages.

The updates of the time-to-next-checkpoint information and priorities take place only

when a new message arrives (enqueueing) or when the process is about to process the next

message (dequeueing). The operations performed on the message queue for enqueueing

and dequeueing are outlined in Figs. 3.9 and 3.10, respectively. The aging operation

updates the time-to-next-checkpoint information of the last message in each nonempty

subqueue by the amount of the difference between current time and LasLUpdate_Time.

If the time to the next checkpoint of a message becomes negative, all of the messages in

the same subqueue are moved to the safe queue.

1* message m from the ith checkpoint interval of P8 arrives at the message
queue Q on p" *j

perform aging operation on Qj
if (i < LasLKnotDn_CP.-Num[p,])

add m to safe queue;
else {

}

if (i > Last-KnotDn_CPflum[p,])
Last-KnotDn_CP .-Num[p,] = ij

if (i ~ LasLProcessetLCP flum[p8])
add m to the safe queue;

else
add m to subqueue[p,);

Figure 3.9: Operations for enqueueing.

79

/* p.,. is about to choose a message from queue Q * /
perform aging operation on Qj
if (safe queue is nonempty)

choose a message from the safe queue;
else {

choose the message m with the smallest time-to-next-checkpointj
move the remaining messages in the same subqueue to the safe queue;

/* if m is from the ith checkpoint interval of P. * /
Last..i'rocessecLCP ..Num[p,l = i.

}

Figure 3.10: Operations for dequeueing.

3.3.3 Experimental results

Table 3.2 gives the execution parameters of the four Chare Kernel programs used to

obtain the experimental results for the message scheduling algorithm. The checkpoint

interval is chosen to be 25 sec. An offset of 1 sec between the corresponding checkpoints

of processes Pi and Pi+! (0 ~ i < N - 1) is introduced to study the effect of checkpoint

asynchrony on the rollback distances.

Table 3.2: Execution parameters of the parallel programs.

Chare kernel programs Matrix Circuit Knight N
Multiplication Extraction Tour Queen

N umber of processors 4 4 6 6
N umber of messages 1216 1315 13118 1622

Figure 3.11 compares the performance of three different message scheduling algo-

rithms: Last-In-First-Out (LIFO), First-In-First-Out (FIFO) and our PRIoritized Mes-

sage Process Scheduling (PRIMPS) algorithm. The percentage numbers indicate the

80

performance degradation of PRIMPS with respect to FIFO. Figure 3.12 compares the

average rollback distances in terms of the number of checkpoint intervals for the three

algorithms. Figures 3.11 and 3.12 show that our message scheduling algorithm can effec-

tively reduce average rollback distances with little performance degradation. Figure 3.13

illustrates the sensitivity of the three algorithms to the degree of checkpoint asynchrony

by varying the offset between corresponding checkpoints for the N-Queen program. It

shows that our scheduling algorithm has the additional advantage of being much less

sensitive to checkpoint asynchrony than are LIFO and FIFO.

Execution
time (sec)

280

270

260

250

240

230

0 _

Mattix

Multiplication

[] LIFO

• FIFO

• PRIMPS

Circuit

Extraction
Knight

Tour

N
Queen

Figure 3.11: Execution times and performance degradation of the message scheduling
algorithm.

Number of
Checkpoint InterVals

[J LIFO

81

s~·························,··························
• FIFO
• PRIMPS

4~···,·················~;;····················,···················IL, ..

3~·········~~·,1··········'·····'·····,·····,········· ..•.•.....••... p

2~.··· •••• ·K,?I· ••• ·•••• •• •· .. ··-·-····-· ·-· ·~i~ ..

l~ .. •••• .. ·F

0'---.....

Matrix
Multiplication

Circuit

Extraction

Knight

Tour

Figure 3.12: Average rollback distances.

Number of
Checkpoint Intervals

s

4

3

2

o LIFO
• FIFO

• PRIMPS

N -Queen

o··· .. ··;:;:~ / ~ ... ",
: ,
: ,
: ,
: ,
: ,
: ,
: ,
: ,
: , . ,

: ,
: ,

:' I : ,
: ,

... cf.'
.' ·:tII'

.' ... 1 C. • • •

N
Queen

o~--~--~~--~~--~------o 1 2 3

Offset Per Processor (sec)

Figure 3.13: Sensitivity of averag~ rollback distances to checkpoint asynchrony for the
N-Queen program.

82

4. RELATED WORK

4.1 Checkpoint Dependency and Interval Dependency

Johnson and Zwaenepoel [33] derived a lattice model for reasoning about recovery

in message-passing systems under the assumption of piecewise determinism (PWD). Let

(i, x) denote the xth state interval of process Pi j they define a dependency relation on

the state intervals as follows: (i,x) directly depends on (j,y) if

• i = j and x = y + 1; or

• (i,x) is started by a message sent from (j,y).

The transitive closure of the above relation gives the complete state interval dependency.

A system state consists of N state intervals, l one from each process. A consistent system

state is a system state, of which no two constituent state intervals (i, x) and (j, y) can have

(i,x) depending on (j,y + 1) or (j,y) depending on (i,x + 1). A state interval becomes

stable, i.e., recreatable, when all of the messages processed since its immediate previous

physical checkpoint, called its effective checkpoint, have been logged. A consistent system

state in which all constituent state intervals are stable is called a recoverable system state.

The recoverable system state with each of its constituent state intervals as advanced as

lJohoson and ZW8enepoel originally defined a system state to be an N x N matrix of which the rows
are the transitive dependency vectors. Here we adopt the simplification suggested by Sistla and Welch
[31].

83

possible is called the maximum recoverable system state. Johnson and Zwaenepoel have

derived the lattice model and proved the uniqueness of the maximum recoverable system

state by using the following approach:

Step 1: the set of system states forms a lattice S;

Step 2: the set of consistent system states forms a sublattice C of S;

Step 3: the set of recoverable system states forms a sublattice 'R. of Cj

Step 4: the maximum recoverable system state is the unique maximum in the lattice n.

As described in the previous chapter, by representing every state interval as a logi

cal checkpoint at the end of that interval, the same dependency definition based on the

happened before relations among checkpoints as used in a non-PWD scenario can still

be applied to the logical checkpoints. By referring to the logical checkpoints correspond

ing to the stable state intervals as stable logical checkpoints and the global checkpoints

containing only stable logical checkpoints as stable global checkpoints, the approach of

Johnson and Zwaenepoel can be translated. into:

Step 1: the set of global checkpoints forms a lattice Sj

Step 2: the set of consistent global checkpoints forms a sublattice C of S j

Step 3: the set of stable consistent global checkpoints forms a sublattice 'R. of Cj

Step 4: the recovery line is the unique maximum in the lattice 'R..

--------~-

84

As a comparison, our derivation of an alternative lattice model as described in Sec

tion 1.4 has followed different steps.

Step 1: the set of logical checkpoint8 forms a poset Pj

Step 2: the set of stable logical checkpoint8 forms an induced subposet R of P;

Step 3: the set of stable consistent global checkpoint8 is equivalent to the set M (R) of

maximum-sized antichains of R and thus forms a latticej

Step 4: the recovery line is the unique maximal maximum-sized anti chain in the lattice

M(R).

We believe our maximum-sized antichain model has several advantages. First, there is

a strong intuitive connection between the anti chains of the Rl' poset based on checkpoint

dependencies, and the concept of concurrency and therefore consistency. A consistent

global checkpoint must consist of local checkpoints that could have happened simulta

neously, and this is precisely captured by the requirement that these local checkpoints

be unordered by bappened before. Johnson and Zwaenepoel's lattice of system states,

while perfectly adequate from a formal standpoint, lacks this intuitive force. Further

more, modelling consistent global checkpoints as mapmum.-sized antichains enables the

use of well-known properties of posets to derive many important results. For example,

these properties have played a very important role in our development of the optimal

garbage collection algorithm. As another example, our demonstration of the existence

of a lattice structure among consistent global checkpoints, and hence the uniqueness of

85

the recovery line, follows from general theorems about an~ichains in posets, as contrasted

with Johnson and Zwaenepoel's more "low-level" development.

4.2 Checkpoint Graphs and Local System Graphs

Bhargava and Lian [5] co~sider the same uncoordinated checkpointing protocol as

described in Section 1.3 but use a different kind of dependency graph to determine the

recovery lines. In their local system graph, when a message sent from checkpoint in

terval (j, y) is processed in (i, x), an edge is drawn from Cj,1I+1 to Ci,z+l as shown in

Fig. 4.1(b), in contrast to the corresponding edge (Cj,1I' Ci,z+d in our checkpoint graph.

Such a dependency definition can be viewed as extending Johnson and Zwaenepoel's

interval dependency for state intervals to checkpoint intervals in a non-PWD scenario,

i.e., (i, x) depends on (j, y). A significant difference, though, is that such an extension

results in possibly cyclic directed graphs. An alternative interpretation can be called the

rollback dependency, i.e., the rollback of Ci,1I+1 will cause the rollback of Ci,z+l.

The local system graph corresponding to the checkpoint graph in Fig. 1.4(b) is shown

in Fig. 4.1(c). A virtual checkpoint is added at the end of the graph for every process

to represent the current state. To determine the global recovery line, all of the virtual

checkpoints are initially marked to simulate the situation in which all of the processes are

rolled back. All of the checkpoints reachable by these initially marked virtual checkpoints

are then searched and marked, and the latest unmarked checkpoint of each process forms

86

Po

I- (i,x) -I PI
c i.x C i.x+1

Pi + z++ P2

PJ

Pj + P4
C j,y C j,y+1 i'"

:

(a) Global recovery line (c)

Po

C i.x+1 PI

or (i,x)
P2 Pi 0 "1 PJ

p. 0 P4 J
C j,y+1 '. ... ~ :

or (j,y) Local recotery line Initially

(b) (d)
marked

Figure 4.1: Rollback dependency and local system graphs. For the message in (a), (b)
illustrates the rollback dependency edge. Local system graphs (c) and (d)
are for determining the global and local recovery lines, respectively.

the global recovery line. The local system graph corresponding to the extended check-

point graph in Fig. 1.4(c) is shown in Fig. 4.1(d). Only the virtual checkpoint belonging

to the failed process P4 is initially marked. The local recovery line again consists of the

latest unmarked checkpoint of each process.

87

4.3 Non-fail-stop Failures and Software Error Recovery

Much of the literature on checkpointing and rollback recovery is based on the as

sumption of fail-stop hardware failures. As described in Section 1.1, the only cause

for rollback propagation under such an assumption is the potential nondeterminism. In

practice, hardware failures can be non-fail-stop due to nontrivial error detection latencies;

hence, the possibly corrupted messages constitute another source of rollback propagation.

One way to build a on-fail-stop recovery protocol on top of a fail-stop recovery protocol

is to exclude the potentially corrupted checkpoints of the failed processes from the check

point graphs. The rollback propagation algorithm (Fig. 1.5) can then guarantee that

all of the possibly corrupted messages and the potentially contaminated checkpoints of

the receiving processes do not affect the computation of the correct recovery line. If the

maximum error detection latency, possibly different for various types of errors, is known

in advance, we can simply exclude the checkpoints belonging to the maximum latency

range [61]; otherwise, multiple retries can be performed by discarding more checkpoints

when a previous retry fails. For applications in which the output commit is an impor

tant issue, only the checkpoints and message logs beyond the last output commit can be

excluded [26].

Recently, checkpointing and recovery techniques have also been applied to the in

creasingly important area of software error recovery [42,62-70]. Unlike the recovery

block approach [2] and N-version programming [71] which both use different programs

to execute on the same set of data, the on-line retry approach based on checkpointing

88

and rollback [65, 66] uses the same program to operate on a different but consistent set

of data [72,73] obtained through the inherent nondeterminism, and has been shown to

be effective in bypassing software errors to improve system availability [67].

We have proposed a progressive retry technique [42] based on the log-based approach

for software error recovery. It is based on the observation that, in many long-life software

systems, software errors can be recovered by "localized" retries without affecting the

other parts of the systems. Therefore, the scope of rollback should be controlled by

progressively discarding more and more message log information as a previous retry fails.

We will refer to Fig. 4.2 for the following discussion. First, the failed process P2 is

restarted from a previous checkpoint and replays the logged messages in their original

order to reconstruct the process state before the failure. This Step-l retry will succeed if

the error was caused by some transient problems such as concurrency conflicts that may

simply disappear after the rollback. When Step-l retry still leads to an error, the failed

process starts a second attempt by reordering the messagesj for example, P2 in Fig. 4.2(b)

can reorder Ma. and M". (We note that Me becomes an orphan message with respect

to the recovery line and hence cannot be used in the reordering.) This Step-2 retry can

be useful when the error was due to some untested boundary conditions [63] and the

reordering can bypass that condition. In some cases, the software errors are triggered by

messages suffering from unexpected transmission delay in the communication channels

(message. Md in Fig. 4.2(c))j Step-3 retry thus forces the sender to resend the messages

to obtain a "normal" interleaving of messages. If Step-3 still fails, it implies that the

Po

Pz

Po

Pz

89

B

E
(a)

.. . -.
M d ••••• - •

.........

-+~~~ __ ~ __ ~ __ ~ ______ a-__________ ~ ____ ~:=~_
, , _.

, Md --
,,'Ma .- ••

(b)

... . -
_ .

Figure 4.2: Progressive retry. (a) Step 1: message replay (b) Step 2: message reordering
(c) Step 3: message resending (d) Step 4: message revocation. (Shaded logical
checkpoints indicate the recovery lines; circled physical checkpoints indicate
the restarting checkpoints for rolled-back processes; in-transit messages are
drawn in dashed lines; orphan messages are drawn in dotted lines.)

----,---_._,

90

Po

(c)

Po + •
A

IS ~"'" , '.

M v,' ····· ... Mb:M ···M

EB
. , '. c

-+~~r---~i----~'-'~·~----·-···_···a·~--------~'L---~X-~Y-c : .. ,/
M ' "M Md

PJ{;\D ~i / II •........••.......•.....

~ ",,7 /'

,,' "
p. ED ... /M, /M, FR

(d)

Figure 4.2: (continued)

91

above messages may have been corrupted in the first place; Step-4 retry then further

rolls back the senders in order to revoke the possibly corrupted messages (Ala. and NIb

in Fig. 4.2(d)). When all previous retries have failed, Step-5 retry rolls back the entire

system to a previous consistent global checkpoint as a final attempt. The progressive retry

technique has been used in an AT&T telecommunication billing system and a. replicated

file system at Bell Laboratories as an economical way of recovering from certain softwa.re

errors [42,74].

- .--_.-------------------------------------

92

5. CONCLUSIONS

5.1 Summary

This thesis has derived a necessary and sufficient condition for identifying all garbage

checkpoints and message logs in an uncoordinated checkpointing protocol. We proved

that there exists a se~ of N recovery lines such that any checkpoint useful for a possible

future recovery must be contained in one of the N recovery lines, and any useful message

must be an in-transit message with respect to one of the same N rec<wery lines. An

optimal garbage collection algorithm of time complexity O(NIEI), where N is the number

of processes and lEI is the number of edges in the checkpoint graph, has been presented to

identify all nongarbage checkpoints and message logs; the storage space of the remaining

checkpoints and message logs can then be reclaimed. In addition, we have demonstrated

that the lowest upper bound on the number of nongarbage checkpoints is N(N + 1)/2,

as opposed to the common perception that an uncoordinated checkpointing protocol has

to maintain a. potentially unbounded number of useful checkpoints.

A unifying framework has also been proposed to integrate the three traditionally sep

arated approaches into one flexible checkpointing and recovery scheme. The framework is

based on uncoordinated checkpointing to allow maximum process autonomy and general

nondeterministic executions, employs lazy checkpoint coordination to control the coordi

nation frequency and to eliminate the domino effect, and exploits piecewise determinism

93

whenever possible to further advance the recovery line. It was then demonstrated that

the optimal garbage collection algorithm can be applied to such a domino-free recovery

protocol to minimize the space overhead.

5.2 Limitations and Future Research

The optimal garbage collection algorithm developed in this thesis is a centralized

algorithm based on global dependency information obta.ined through direct dependency

tracking. As demonstrated in Appendix A, in spite of the possible missing bappened

before relations, direct dependency tracking ma.inta.ins sufficient information for deter

mining consistent global checkpoints. A potential research topic is to study the trade-off

between the cost of dependency tracking and the degree of algorithm decentralization.

On the one hand, a new dependency tracking mechanism may be devised to record the

minimum information sufficient for recovery line computation. Such a scheme would

require the collection of global information. On the other hand, transitive dependency

tracking [26,33] or antecedence graph tracking [40] may allow decentralized garbage col

lection based on partial dependency information at the cost of more complicated tracking

mechanisms.

A more aggressive approach to reducing space overhead would be to avoid garbage

checkpoints in the first place. It is not possible to avoid taking a garbage checkpoint

because any new checkpoint must be a maximal element in the poset at the time it is

taken and hence must be a nongarbage checkpoint according to the algorithm. Such a

94

checkpoint can become a garbage checkpoint through dependency relations with future

checkpoints. Hence, it is possible to insert additional checkpoints based on dependency

tracking to avoid generating garbage checkpoints. Xu and Netzer [75] have proposed

an adaptive checkpointing scheme based on the notion of zigzag paths (as described in

Appendix A). An extra checkpoint is inserted whenever a backward zigzag path is about

to be formed. Since the zigzag paths are, in general, not on-line trackable, causal path

tracking is used as an approximation to allow the decision to be made based on local

information. For systems allowing message reordering, the message scheduling algorithm

as described in Section 3.3 can be combined with the above scheme to reduce the number

of extra checkpoints. Alternatively, a checkpoint coordinator which possesses global

information may give advice to other processes as to when to take appropriate checkpoints

in order not to generate garbage checkpoints. Such an approach can also contribute to

advancing the recovery line.

95

APPENDIX A. MISSING DEPENDENCY IN DIRECT DEPENDENCY TRACKING

Recall that the checkpoint graphs based on direct dependency tracking as described

in Section 1.3 record" the dependency information, denoted by <d, in the following form:

Cj,lI <~ Ci,z+l if and only if

1. i = j and x = Yj or

2. i 1: j and there is a message m sent from (j, y) and received in (i, x).

We will denote by <C the transitive closure of <d.

Figure A.l(d) shows the checkpoint graph corresponding to the checkpoint and com

munication pattern 'P in Fig. A.l(a). A close look at Figs. A.l(a) and (d) reveals that

the checkpoint graph does not capture the complete bappened before relation among

all checkpoints. For example, while Ck,z < Ci,z+l is clearly visible in Fig. A.l(a), the

corresponding relationship Ck,z <C Ci,z+l is absent from Fig. A.l(d). In other words, the

poset m = (C-p, <C) constructed through direct dependency tracking is not equal to

the poset R-p from which we built our model of consistent global checkpoints. This sort

of dependency information is lost precisely because of the lack of transitive dependency

information propagation in the direct dependency tracking mechanism.

We will demonstrate that, despite the missing dependencies, m has exactly the same

set of maximum-sized anti chains as does R-p, and therefore that the checkpoint graph

96

C i.x+l C i.x+l

Pi Pi

Pj

Pic Pic

(a) (b)

Cl,z C l,z+l cl,z C i,x+l

Pi Pi

C j~+l C j,y+l

Pj Pj

C Ic,z+l

Pic Pic

(c) (d)

Figure A.l: Three different checkpoint and communication patterns with the same check
point graph. The ordering C1c,z < Ci,z+l implied by (a) and (b) is missing from
(d).

suffices to enable the determination of consistent global checkpoints, and of recovery

lines in particular. Intuitively, while the inconsistency between C1c,z and Ci,z+l caused

by the happened before relation C1c,z < Ci,z+l is missing from Fig. A.l(d), the global

inconsistency in the sense that CTr,z and Ci,z+1 cannot co-exist in any consistent global

checkpoint is implied through the "zigzag" from CTr,z to Ci,,+l to Ci" to Ci,z+l'

Xu and Netzer [75,76] introduce the notion of zigzag paths as follows: a zigzag path

exists from ci" to Ci,z if and only if there exist messages mb m2, ... , m,,(n ~ 1) such that

1. ml is sent by Pi after Ci,,;

97

2. ifm,(l ~ 1 < n) is processed by Pic in (k,z), then m'+1 is sent from (k,z) or a later

checkpoint interval (note that m'+1 may be sent before or after m, is processed);

and

3. m" is processed by Pi before C;,z.

Figure A.2(a) gives an example of a zigzag path from ci,II to C;,z. Figure A.2(b) shows a

causal path from ci,II to C;,z, which is a special case of the zigzag path and results in the

happened before relation between the two checkpoints. It becomes clear that the notion

of zigzag paths is a generalization of Lamport's happened before relation to address the

"global consistency" issue. In particular, it has been shown that the existence of any

zigzag path between two checkpoints excludes the possibility of their belonging to the

same consistent global checkpoint, as stated in the following property [75].

PROPERTY 13 If there exists a zigzag path from Cj,II to C;,Z1 then Cj,II and C;,r cannot

belong to the same consistent global checkpoint.

It is not hard to see that, if all of the send events precede all of the recai va events in

the same checkpoint interval as shown in Fig. A.l(c), then the poset Rj, corresponding

to the transitive closure of the checkpoint graph is exactly the poset R1' corresponding to

the checkpoint and communication pattern. Given any checkpoint and communication

pattern 'P, our approach is to transform 'P into another pattern 'Po. with the above

property, without affecting the set of consistent global checkpoints. Denote by rj,y the

first receive event in (j, y) if there is one, or the checkpoint event Cj,II+1 otherwise.

98

C i,z-2 C i,z-l C i,z-2

Pi Pi

Pj
C j,J+I C j,J+Z C j,y+l

(a) (b)

Figure A.2: (a) Zigzag path and (b) causal path.

C i,z-l c· t..X

C j,}+2

Let m be a message in l' sent after rj,lI from (j, y) and processed in (i, x), as shown in

Fig. A.l(a). We will denote the send and receive events for this message by S';y and

rf.'z, respectively. The transformation on l' is defined as follows: for each such message

m, we first add a message m' with s';; < rj,lI and rC = rC (as shown in fig. A.l(b)), and

then remove the message m. We are now prepared to show that the missing dependencies

do not affect the determination of consistent global checkpoints.

PROPERTY 14 For any checkpoint and communication pattern 1', M (R.,,) = M (m).

Hence, the poset corresponding to the transitive closure of the checkpoint graph for l' suf-

fices for the determination of consistent global checkpoints of 1'.

Proof· It suffices to prove that M(R.,,) = M(R.,,-) because R.,,- = m,,- = m". We

consider any global checkpoint M in R.". If M E M(R.,,), then Cl -/.. C2 in Q." for any

99

CI, C2 E M. Since adding any message m' in the transformation can introduce only the

relation si.~ < r~ that is already implied in 'P through sT~ < sTlI < rrr, and removing

any message m cannot make any originally unordered pair become ordered, we must have

Cl f. C2 in Q1'. as well and thus M E M(R1'.)'

If M ~ M(R1'), there must exist Cll C2 E M such that Cl < C2 in Q1" Since every

message m' in the transformation is sent in the same checkpoint interval as is its corre

sponding message m, every zigzag path in 'P remains a zigzag path in 'P.. That Cl < C2

in Q1' implies there exists a causal path, and hence a zigzag path, from Cl to C2' Since

that zigzag path must still exist in 'P., we have M ~ M (R1'e) by Property 13. Therefore,

we have shown that M(R1') = M(R1'e) and thus M(R1') = M(Rp) as required. 0

100

REFERENCES

[1] D. L. Russel, "State restoration in systems of communicating processes," IEEE
TraM. Software Eng., vol. SE-6, pp. 183-194, Mar. 1980.

[2] B. Randell, "System structure for software fault tolerance," IEEE Trans. Software
Eng., vol. SE-1, pp. 220-232, June 1975.

[3] P. A. Lee and T. Anderson, Fault Tolerance Principles and Practice. Wien: Springer
Verlag, 1990.

[4] K. Tsuruoka, A. Kaneko, and Y. Nishihara, "Dynamic recovery schemes for dis
tributed processes," in Proc. IEEE 2nd Symp. on Reliability in Distributed Software
and Database Systems, pp. 124-130, 1981.

[5] B. Bhargava and S. R. Lian, "Independent checkpointing and concurrent rollback
for recovery - An optimistic approach," in Proc. IEEE Symp. Reliable Distributed
Syst., pp. 3-12, 1988.

[6] Y. M. Wang and W. K. Fuchs, "Optimistic message logging for independent check
pointing in message-passing systems," in Proc. IEEE Symp. Reliable Distributed
Syst., pp. 147-154, Oct. 1992.

[7] K. L. Wu and W. K. Fuchs, "Recoverable distributed shared virtual memory," IEEE
TraM. Comput., vol. 39, pp. 460-469, Apr. 1990.

[8] K. H. Kim, J. H. You, and A. Abouelnaga, "A scheme for coordinated execution
of independently designed recoverable distributed processes," in Proc. IEEE Fa'lLlt
Tolerant Computing Symp., pp. 130-135, 1986.

[9] K. Venkatesh, T. Radhakrishnan, and H. F. Li, "Optimal checkpointing and local
recording for domino-free rollback recovery," Inform. Process. Lett., vol. 25, pp. 295-
303, July 1987.

[10] Y. Tamir and C. H. Sequin, "Error recovery in multicomputers using global check
points," in Proc. Int. Con! Parallel Processing, pp. 32-41, 1984.

[11] K. G. Shin and Y.-H. Lee, "Evaluation of error recovery blocks used for cooperating
processes," IEEE Trans. Software Eng., vol. 10, no. 6, pp. 692-700, 1984.

[12] K. M. Chandy and L. Lamport, "Distributed snapshots: Determining global states
of distributed systems," ACM TraM. Comput. Syst., vol. 3, pp. 63-75, Feb. 1985.

101

[13] K. Li, J. F. Naughton, and J. S. Plank, "Checkpointing multicomputer applications,"
in Proc. IEEE Symp. Reliable Distributed Syst., pp. 2-11, 1991.

[14] K. Li, J. F. Naughton, and J. S. Plank, "An efficient checkpointing method for multi
computers with wormhole routing," Int. J. of Parallel Program., vol. 20, pp. 159-180,
June 1992.

[15] J. S. Plank, "Efficient checkpointing on MIMD architectures." Ph.D. dissertation,
Department of Computer Science, Princeton University, June 1993.

[16] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, "The performance of consistent
checkpointing," in Proc. IEEE Symp. Reliable Distributed Syst., pp. 39-47, Oct.
1992.

[17] M. F. Kaashoek, R. Michiels, H. E. Bal, and A. S. Tanenbaum, "Transparent fault
tolerance in parallel Orca programs," Tech. Rep. IR-258, Vrije Universiteit, Amster
dam, Oct. 1991.

[18] A. Acharya and B. R. Badrinath, "Recording distributed snapshots based on causal
order of message delivery," to appear in Inform. Process. Lett., 1992.

[19] R. Koo and S. Toueg, "Checkpointing and rollback-recovery for distributed systems,"
IEEE Trans. Software Eng., vol. SE-13, pp. 23-31, Jan. 1987.

[20] T. H. Lai and T. H. Yang, "On distributed snapshots," Inform. Process. Lett., vol. 25,
pp. 153-158, May 1987.

[21] D. Briatico, A. Ciuifoletti, and L. Simoncini, "A distributed domino-effect free re
covery algorithm," in Proc. IEEE 4th Symp. on Reliability in Distributed Software
and Database Systems, pp. 207-215, 1984.

[22] Y. M. Wang and W. K. Fuchs, "Lazy checkpoint coordination for bounding rollback
propagation," to appear in Proc. 12th Symp. on Reliable Distributed Syst., Oct. 1993.

[23] P. Ramanathan and K. G. Shin, "Checkpointing and rollback recovery in a dis
tributed system using common time base," in Proc. IEEE Symp. Reliable Distributed
Syst., pp. 13-21, 1988.

[24] F. Cristian and F. Jahanian, "A timestamp-based checkpointing protocol for long
lived distributed computations," in Proc. IEEE Symp. Reliable Distributed Syst.,
pp. 12-20, 1991.

[25] Z. Tong, R. Y. Kain, and W. T. Tsai, "Rollback recovery in distributed systems using
loosely synchronized clocks," IEEE Trans. Parallel and Distributed Syst., vol. 3,
. pp. 246-251, Mar. 1992.

102

[26] R. E. Strom and S. Yemini, "Optimistic recovery in distributed systems," ACM
Trans. Comput. Syst., vol. 3, pp. 204-226, Aug. 1985.

[27] A. Borg, J. Baumbach, and S. Glazer, "A message system supporting fault
tolerance," in Proc. 9th ACM Symp. on Operating Systems Principles, pp. 90-99,
1983.

[28] M. L. Powell and D. L. Presotto, "Publishing: A reliable broadcast communication
mechanism," in Proc. 9th ACM Symp. Oper. Syst. Principles, pp. 100-109, 1983.

[29] A. Borg, W. Blau, W. Gra.etsch, F. Herrmann, and W. Oberle, "Fault tolerance
under UNIX," ACM Trans. Comput. Syst., vol. 7, pp. 1-24, Feb. 1989.

[30] R. E. Strom, D. F. Bacon, and S. A. Yemini, "Volatile logging in n-fault-tolerant
distributed systems," in Proc. IEEE Fault- Tolerant Computing Symp., pp. 44-49,
1988.

[31] A. P. Sistla and J. L. Welch, "Efficient distributed recovery using message logging,"
in Proc. 8th ACM Symposium on Principles of Distributed Computing, pp. 223-238,
1989.

[32] D. B. Johnson and W. Zwa.enepoel, "Sender-based message logging," in Proc. IEEE
Fault-Tolerant Computing Symp., pp. 14-19, 1987.

[33] D. B. Johnson and W. Zwa.enepoel, "Recovery in distributed systems using opti
mistic message logging and checkpointing," J. Algorithms, vol. 11, pp. 462-491,
1990.

[34] T. T.-Y. Juang and S. Venkatesan, "Crash recovery with little overhead," in Proc.
IEEE Int. Conf. Distributed Comput. Syst., pp. 454-461, 1991.

[35] S. Venkatesan and T. T.-Y. Juang, "Efficient optimistic crash recovery in distributed
systems," submitted, 1992.

[36] D. F. Bacon, "Transparent recovery in distributed systems," ACM Opere Syst. Re
view, pp. 91-94, Apr. 1991.

[37] A. Lowry, J. R. Russell, and A. P. Goldberg, "Optimistic failure recovery for very
large networks," in Proc. IEEE Symp. Reliable Distributed Syst., pp. 66-75, 1991.

[38] D. F. Bacon, "File system measurements and their application to the design of
efficient operation logging algorithms," Proc. IEEE Symp. Reliable Distributed Syst.,
pp. 21-30, 1991.

[39] A. P. Goldberg, A. Gopal, K. Li, R. E. Strom, and D. F. Bacon, "Transparent
recovery of Mach appli<;ations," in First USENIX Mach Workshop, Oct. 1990.

103

[40] E. N. Elnozahy and W. Zwaenepoel, "Manetho: Transparent rollback-recovery with
low overhead, limited rollback and fast output commit," IEEE Trans. Comput.,
vol. 41, pp. 526-531, May 1992.

[41] B. H. L. Alvisi and K. Marzullo, "Nonblocking and orphan-free message logging
protocols," in Proc. IEEE Fault-Tolerant Computing Symp., pp. 145-154, 1993.

[42] Y. M. Wang, Y. Huang, and W. K. Fuchs, "Progressive retry for software error
recovery in distributed systems," in Proc. IEEE Fault-Tolerant Computing Symp.,
pp. 138-144, June 1993.

[43] R. D. Schlichting and F. B. Schneider, "Fail-stop processors: An approach to design
ing fault-tolerant computing systems," ACM Trans. Comput. Syst., vol. 1, pp. 222-
238, Aug. 1983.

[44] Y. M. Wang, A. Lowry, and W. K. Fuchs, "Consistent global checkpoints based on
direct dependency tracking," Research Report RC 18465, IBM T.J. Watson Research
Center, Yorktown Heights, New York, Oct. 1992. Submitted to Inform. Process. Lett.

[45] K. P. Bogart, Introductory Combinatorics. Marshfield, MA: Pitman Publishing Inc.,
1983.

[46] I. Anderson, Combinatorics of Finite Sets. Oxford: Clarendon Press, 1987.

[47] L. Lamport, "Time, clocks and the ordering of events in a distributed system,"
Commun. ACM, vol. 21, pp. 558-565, July 1978.

[48] V. Hadzilacos, "An algorithm for minimizing roll back cost," in Proc. AC!v1 Symp.
on Principles of Database Systems, pp. 93-97, 1982.

[49] Y. M. Wang, P. Y. Chung, 1. J. Lin, and W. K. Fuchs, "Checkpoint space reclamation
for independent checkpointing in message-passing systems," Tech. Rep. CRHC-92-
06, Coordinated Science Laboratory, University of Illinois at Urbana-Champaign,
1992.

[50] W. Shu and L. V. Kale, "Chare kernel - A runtime support system for parallel
computations," J. Parallel Distributed Comput., vol. 11, pp. 198-211, 1991.

[51] P. Keleher, A. L. Cox, and W. Zwaenepoel, "Lazy release consistency for software
distributed shared memory," in Proc. Int. Symp. Comput. Architecture, pp. 13-21,
1992.

[52] A. Gafni, "Rollback mechanisms for optimistic distributed simulation systems," in
Proc. SCS Multiconference on Distributed Simulation, pp. 61-67, July 1988.

[53] D. B. Johnson and W. Zwaenepoel, "Transparent optimistic rollback recovery," ACM
Oper. Syst. Review, pp. 99-102, Apr. 1991.

104

[54] M. Ahamad and L. Lin, "Using checkpoints to localize the effects of faults in dis
tributed systems," in Proc. IEEE Symp. Reliable Distributed Syst., pp. 2-11, 1989.

[55] L. V. Kale, "The Chare Kernel parallel programming language and system," in Proc.
Int. Coni. Parallel Processing, pp. II-17-II-25, 1990.

[56] Y. M. Wang and W. K. Fuchs, "Scheduling message processing for reducing rollback
propagation," in Proc. IEEE Fault-Tolerant Computing Symp., pp. 204-211, July
1992.

[57] K. L. Wu, W. K. Fuchs, and J. H. Patel, "Error recovery in shared memory multi
processors using private caches," IEEE Trans. Parallel and Distributed Syst., vol. 1,
pp. 231-240, Apr. 1990.

[58] R. E. Ahmed, R. C. Frazier, and P. N. Marinos, "Cache-aided rollback error recovery
(carer) algorithms for shared-memory multiprocessor systems," in Proc. IEEE Pault
Tolerant Computing Symp., pp. 82-88, 1990.

[59] B. Janssens and W. K. Fuchs, "Experimental evaluation of multiprocessor cache
based error recovery," in Proc. Int. Con/. Parallel Processing, pp. 1-505-1-508, 1991.

[60] J. Long and W. K. Fuchs, "An evolutionary approach to coordinated checkpointing."
submitted to IEEE Trans. Parallel and Distributed Syst., 1992.

[61] L. M. Silva and J. G. Silva, "Global checkpointing for distributed programs," in
Proc. IEEE Symp. Reliable Distributed Syst., pp. 155-162, 1992.

[62] J. Gray, "A census of tandem system availability between 1985 and 1990," IEEE
Trans. Reliab., vol. 39, pp. 409-418, Oct. 1990.

[63] M. Sullivan and R. Chillarege, "Software defects and their impact on system avail
ability - A study of field failures in operating systems," in Proc. IEEE Pault- Tolerant
Computing Symp., pp. 2-9, 1991.

[64] I. Lee and R. K. 1yer, "Faults, symptoms, and software fault tolerance in the tan
dem guardian90 operating system," in Proc. IEEE Fault- Tolerant Computing Symp.,
1993.

[65] J. Gray and D. P. Siewiorek, "High-availability computer systems," IEEE Comput.
Mag., pp. 39-48, Sept. 1991.

[66] J. Gray, "Dependable systems." Keynote Speech, 11th Symp. on Reliable Distr. Syst.,
Oct. 1992.

[67] J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques. San
Mateo, CA: Morgan Kaufmann Publishers, 1993.

105

[68] M. Baker and M. Sullivan, "The recovery box: Using fast recovery to provide high
availability in the UNIX environment," in Proc. Summer '92 USENIX, pp. 31-43,
June 1992.

[69] D. Jewett, "Integrity S2: A fault-tolerant UNIX platform," in Proc. IEEE Fault
Tolerant Computing Symp., pp. 512-519, 1991.

[70] M. N. Meyers, "The AT&T telephone network outage of January 15, 1990." invited
talk at IEEE Fault-Tolerant Computing Symp., 1990.

[71] A. Avizienis, "The N-version approach to fault-tolerant software," IEEE Trans.
Software Eng., vol. SE-11, pp. 1491-1501, Dec. 1985.

[72] P. E. Ammann and J. C. Knight, "Data diversity: An approach to software fault
tolerance," in Proc. IEEE Fault-Tolerant Computing Symp., pp. 122-126, 1987.

[73] P. E. Ammann and J. C. Knight, "Data diversity: An approach to software fault
tolerance," IEEE Trans. Comput., vol. 37, pp. 418-425, Apr. 1988.

[74] Y. Huang and C. Kintala, "Software implemented fault tolerance: Technologies and
experience," in Proc. IEEE Fault-Tolerant Computing Symp., pp. 2-9, June 1993.

[75] J. Xu and R. H. B. Netzer, "Adaptive independent checkpointing for reducing roll
back propagation," submitted to IEEE Symp. Parallel and Distributed Process.,
1993.

[76] R. H~ B. Netzer and J. Xu, "Necessary and sufficient conditions for consistent global
snapshots," submitted to IEEE Trans. Parallel and Distributed Syst., 1993.

106

VITA

Vi-Min Wang was bom in on He received the B.S.

degree in Electrical Engineering from the National Taiwan University, Taipei, Taiwan, in

1986 and was the top-ranked student in his graduating class. From 1988 to 1993, he held

a research assistantship at the Coordinated Science Laboratory, University of Illinois

at Urbana-Champaign where he received the M.S. degree in Electrical and Computer

Engineering in 1990, the Best Presentation Award in the Center for Reliable and High

Performance Computing in 1992, and the Robert T. Chien Memorial Award for his Ph.D.

research in 1993.

Vi-Min Wang is a member of Phi Tau Phi and Phi Kappa Phi Honor Societies. After

com pleting his doctoral dissertation, he will be joining AT&T Bell Laboratories at Murray

Hill, New Jersey as a Member of Technical Staff. His research interests include fault

tolerant computing, distributed systems, parallel processing and digital signal processing.

