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Abstract

The Observatoire Cantonal de Neuch_tel (ON) is developing for ESTEC a compact H-rouser

for space use based upon a miniature sapphire loaded microwave cavity, a technique pioneered at
VNIIFTRI.

Various contacts between West-European parties, headed by ESA, and the Russian parties,

headed by RSA, led to the proposal for flying two H-nmsers on Meteor 3M, a Russian meteorology
satellite in low polar orbit.

The experiment will include two masers, one provided by ON and the other by VNIIFTRI. T/F

transfer and precise positioning will be performed by both a microwave link, using PRARE equipment,

and an optical link, using LASSO-like equipment. The main objectives of the experiment are
precise orbit determination and point positioning for geodetic/geophysical research, ultra-accurate

time comparison and dissemination as well as in-orbit demonstration of operation and performance
of R-masers.

Within the scope of a preliminary space H-maser development phase performed for ESTEC at

ON in preparation to the joint experiment, a Russian miniature sapphire loaded microwave cavity,
on loan from VNIIFTRI, was evaluated in a full-size EFOS hydrogen maser built by ON. The

experimental evaluation confirmed the theoretical expectation that with a hydrogen storage volume

of only 0.65 liter an atomic quality factor of 1.5 x 109 can be obtained for a -lOS dBm output

power. This represents a theoretical Allan deviation of 1.7 x 10 -is averaged on a 1000 s time

interval. From a full--size design to a compact one, therefore, the sacrifice in performance due to
the reduction of the storage volume is very small.

Introduction

Following many contacts between West-European parties, headed by ESA, and Russian parties,

headed by RSA, a proposal for a H-maser experiment was conceived in the form of an
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opportunity flight on a Russian meteorology satellite in low polar orbitll, 2, al. Meteor 3M is a

Russian meteorology satellite built by NIEEM, Moscow. The satellite will be launched end of

1996 on a sun-synchronous orbit.

Altitude : 925 km

Inclination : 99.1 °

Eccentricity : 0.001
Orbital Period: 103 minutes

Total mass is 3,000 kg and 200 kg are available for the opportunity experiment. The meteor

spacecraft is designed for a three year lifetime.

Twenty-five spacecrafts of the Meteor 2 type have been launched so far, as well as five

spacecrafts of the new Meteor 3 type. The launch vehicle utilized for the Meteor satellites is

the Tsyclon launcher and the launch base is Plesetsk, north of Moscow[41. Meteor 3M is the
first of an enhanced version of Meteor 3, optimized to serve as a multipurpose space platform.

The H-maser joint experiment is meant as a scientific experiment. With two very stable

spaceborne clocks and the associated microwave and optical T/F transfer equipment it is

expected to push back the limits of precise positioning for geodynamic and solid-Earth studies

applications as well as for precise time transfer. Complementary scientific applications will

poss_ly be added/31. The joint experiment is also meant as a technological demonstration of the

spaceborne Hydrogen masers and related T/F transfer equipment. It is as well an opportunity

of cooperation between scientists, space agencies and industries of Russia and western Europe.

Development Status of the Spaceborne Hydrogen Masers

A compact hydrogen maser for space based on a miniature sapphire loaded microwave cavity

is now in the preliminary design phase at ON. Present activities are concentrating on the

breadboarding and testing of the critical maser elements. A proton irradiation test was

performed on a fully operating EFOS hydrogen maser at the proton irradiation test facility of

the Paul Scherrer Institute. The test, performed under ESTEC contract, has shown that on

the Meteor 3M orbit the shielding effect of the microwave cavity and of the magnetic shields

is sufficient for protecting the Teflon wall coating in the storage bulb from the damaging effect

of space radiations. The test of the miniature sapphire loaded microwave cavity on loan from

VNIIFTRI was performed under the same ESTEC contract.

VNIIFTRI, on the other hand, has already a long experience with ground based compact

hydrogen maserslS, 61 including the use of bulk getter pumping for hydrogen. Its task is now

to adapt the existing design for space use.

Embarked Equipment

The Meteor 3M spacecraft will carry two hydrogen masers, one provided by ESA and the other

by RSA. A local T&F comparison system will measure the relative frequency stability of the
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H-maserdocks and downlinkthe stability data to the ground.

The two way microwave link for T&F transfer between the satellite and ground will be based on

the PRARE system[7, 81. PRARE (Precise Range and Range Rate Experiment) uses pseudo-

noise coded microwave signals in a fully coherent design. The two-way link uses two carrier

frequencies in S and X bands and allows correction of the ionospheric delay by evaluation of

the total electron content through the dispersion effect. Figure 1 illustrates the basic PRARE

operating principles.

The optical link will use LASSO-like equipmentIg, 101, i.e. a corner reflector and a detector on

the spacecraft. The laser pulses from the ground are reflected by the corner reflector and the

two-way delay is measured at the ground station. Simultaneously the arrival of the laser pulses

on the detector is time-tagged with respect to the spaceborne hydrogen maser clock using an

embarked counter. Figure 2 shows schematically the optical link. Figure 3 shows the main

equipment necessary for the joint experiment.

Complementary equipment such as a DORIS system, a GLONASS/GPS Receiver and an ultra

sensitive accelerometer may be added depending on the complementary scientific applications

now under study at ESA and RSA. Figure 4 shows the embarked equipment as it could possibly

be expanded.

Evaluation of The VNIIFTRI Miniature Microwave Cavity

During a previous feasibility study ON determined that the best compromise between size and

performance for a spaceborne hydrogen maser is by the use of a miniature sapphire loaded

microwave cavity such as the one used in.the VNIIFTRI "Saphir" H-masertlll. A collaboration

between ON and VNIIFTRI was started in the perspective of using the VNIIFTRI cavity in the

ON design. Dr. Gaygerov of VNIIFTRI visited ON in August 1993 with one of the sapphire

loaded cavities used in the "Saphir" maser. The VNIIFTRI cavity was installed into an EFOS

hydrogen maser and evaluated.

A view of the VNIIFTRI miniature cavity, as mounted in the EFOS-13 full size maser, is

shown on Figure 5. For the purposes of the experiment, the molybdenum plate that normally

holds the quartz storage bulb in the EFOS maser was replaced by an aluminium interface plate

on which the VNIIFTRI cavity was mounted. The interface plate was placed on top of the

standard EFOS aluminium cavity baseplate. A special interface tube with o-rings was used

to connect the neck of the sapphire storage bulb to the internal vacuum vessel of the EFOS

maser.

Table 1 shows the main geometrical parameters of the VNIIFTRI sapphire loaded cavity. Note

that from the microwave point of view this cavity does not have a fully cylindrical symmetry

because of the sapphire covers that close the sapphire storage bottle. A photograph of the

sapphire storage bottle standing on the Titanium cavity bottom plate is shown on Figure 6.
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Table 1

Geometrical Parameters of VNIFFTRI Sapphire Cavity

sapphire I.D.

sapphire O.D.

sapphire length

inner length of sapphire bulb

thickness of sapphire covers

80 mm (rl = 40 mm)

93 mm (r2 = 46.5 mm)
172 mm

130 mm

6 mm

Table 2

VNIIFTR.I Cavity Modes in Air at Room Temperature
as Measured at ON

Theoretical Modes Computed by ON

v0 [kHz] approx. Q Mode theor, v0 theor. Q

1,118,394 4,500

1,421,214 55,000 TE011 1.4212 GHz 48,000

1,517,714 17,000

1,650,470 46,000 TE012 1.6442 GHz 66,000

1,883,549 5,600

1,883,882 5,600

1,940,788 43,000 TE013 1.9398 GHz 87,000

Table 2 shows the resonant modes of the cavity as measured by ON in air and at room

temperature. The theoretical resonant frequencies were computed by ON by assuming a fully

symmetrical symmetry, i.e. a sapphire cylinder without covers, and by adjusting the external

diameter of the sapphire cylinder in order to obtain the right frequency for the TE011 mode.

Figure 7 shows the experimental determination of the TE011 mode thermal coefficient. Table 3

shows the experimental temperature coefficient of the TE011 mode as determined by a best fit

of the slope on the plot of figure 7. The theoretical thermal expansion coefficient of Titanium,

and sapphire as well as the temperature dependence of the dielectric constant of sapphire are

also shown. It appears that the dominant factor in the temperature dependence of the TE011

mode is due to the variation of the dielectric constant of sapphire.

Table 3

Parameters of Theoretical Model for Thermal Coefficients

Normalized thermal coefficient of TE011 mode [l/C]

Thermal Expansion Titanium [1/C °]

Thermal Expansion Sapphire [1/C °]

Dielectric Constant Sapphire [1/C °]

3.3 x 10-s

9.4 x 10-_

5.4x 10-8

6 x 10-5

The atomic quality factor was measured for different hydrogen pressures in the dissociator.

The slope

Afatomic [Hz]

Afcavity [Hz]
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produced by the cavity pulling effect is proportional to the 72 relaxation rate. Both the relaxation

rate and the slope s are proportional to the atomic linewidth and increases proportionally to

the hydrogen flux because of the spin-exchange line broadening effect. The slope without

the spin-exchange contribution is obtained by extrapolating to zero the slope versus hydrogen

pressure curve. An extrapolation by linear regression yields

s(p = O) = 1.76 × 10-5

and therefore the atomic quality factor without spin-exchange broadening is

Qatomic(p = O) -
Qcavity _ 47, 000

s(p = 0) 1.7584 x 10 -5
= 2.67 x 109

The VNIIFTRI storage bulb collimator is

4.2 mm diameter

60 mm length

The time constant of the storage bulb is

4V
Tb -- -- 1.01 s

KvvAh

where

V = 0.65 × 10-3 m 3 is the volume of the storage bulb,

K = 0.0797

the Clausing factor in molecular flow for a 60/2 length to radius ratio,

vv = 2564 m/s

the average velocity of atomic hydrogen at 45 C ° and

Ah = 12.57 × 10 -8 m 2

the cross--section of the collimator.

The escape rate is therefore

1

%= Tbb

and the storage bulb contribution to the quality factor

Qb -- 7rvo _ 4.51 × 109
7o
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Neglectingthe contributionof magnetic relaxation, the atomic quality factor with spin-exchange

broadening removed is the sum of the escape rate and wall relaxation contributions.

1 1 1
-- -If_ --

Q(p = O) Qb Q_,

Therefore the Teflon contribution to the quality factor is obtained by removing the contribution

of the storage bulb escape rate.

1
Qw : 1 1 = 6.51 x 109

2.6rx-7i-_10

This figure can be converted into an equivalent EFOS Teflon quality factor by taking into
account the surface to volume ratio which is

Ab 4.22 x 10 -2 m 2
-- = + 65.38 m -1

6.54 x 10 -a m a

in the case of the VNIIFTRI storage bulb and

A__bb= 33.14 m -1
Vb

in the case of the EFOS storage bulb.

The VNIIFTRI Teflon used in an EFOS storage bulb would yield

65.38 i01oQw = 6.53 x 109 × -- 1.29x
33.14

This value is very high and is comparable to the quality factor obtained in the most recent EFOS

storage bulbs. This indicates that the VNIIFTRI Teflon coating has a relaxation probability

per collision similar to the Teflon coating used at ON in recent EFOS masers.

The operating quality factor of the VNIIFTRI cavity is 1.5 x 109 for a -105 dBm output power

as measured 10.8.93. Figure 8 shows the atomic quality factor versus the maser output power.

The circles indicate the experimental values while the solid line represents the theoretical model.

The model is the same as in [Ul and the theoretical parameters are set to the values of Table
4.
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Table 4

Parameters used in

the Theoretical Model

Vb = 0.65 liter

/5' = 0.1

Q_ = 47,000

77' = 0.45

% = 0.988 s-1

7w = 0.683 s-1 I

The correspondence between experimental values and the model is very good.

filling factor of a dielectric loaded cavity is larger than the assumed r/' = 0.45.

fitting of the model is not improved if the value of rf is increased.

note that the

However, the

The frequency stability of the hydrogen maser is determined by the atomic quality factor and

by the signal output power.

Assuming that there is an isolator between the cavity and the receiver, the theoretical Allan

deviation of the maser is given by

where fc is the bandwidth of the measurement, P0 the maser output power, b the coupling

factor of the cavity, F the noise figure of the receiver and Q the quality factor of the atomic

line. Assuming the parameters of Table 5 that correspond to the conditions of the frequency

measurement of 10.8.93,

Q

P0

Table 5

Operating Parameters of
Measurement 10.8.93

= 1.5 x 109

= 3.16 x 10-14 W (-105 dBm)
F =2

L =lHz

3 = 0.1

the fundamental limit to frequency stability is shown in Table 6 and Figure 9. Note that the
theoretical limit does not include the flicker noise floor and other environmental effects.
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Table 6

Theoretical Frequency Stability Limits

for Operating Parameters of Table 5

tau [s] Allan dev.
1 1.5 x I0-Iz

I0 2.2 × 10 -14

100 5.5 x 10-15

1000 1.7 x 10-15

10,000 5.4 x 10-16

Conclusion

The experimental evaluation confirms the theoretical expectationtnl that with a hydrogen storage

volume of only 0.65 liter an atomic quality factor of 1.5 x 109 can be obtained for a -105 dBm

output power. This represents a theoretical Allan deviation not very far form what is normally

obtained in a full-size hydrogen maser. From a full-size design to a compact one, therefore,

the sacrifice in performance due to the reduction of the storage volume is very small.
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Basic Optical Link Operation
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The VNIIFTRI miniature sapphire loaded cavity

mounted inside the BFOS maser

Figure 5

VNIIFTRI Miniature Sapphire Loaded Cavity

Mounted Inside the ON EFOS Hydrogen Maser
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Figure 6

VNIIFTRI Sapphire Storage Bulb on the Titanium Cavity Base
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Figure 7
Determination of TEo11 Mode Thermal Coefficient
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Atomic Quality Factor versus Output Power

Theoretical Model and Experimental Values
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Figure 9

Theoretical White Phase Noise and White Frequency Noise Limits

Associated with Parameters of Table 5
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