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SUMMARY

Over 35 different types of organic matrix composites were flown as part of 11 different

experiments onboard the NASA Long Duration Exposure Facility (LDEF) satellite. This materials

and systems experiment satellite flew in low-Earth orbit (LEO) for 69 months. For that period, the

experiments were subjected to the LEO environment including atomic oxygen (At), ultraviolet

(UV) radiation, thermal cycling, microvacuum, meteoroid and space debris (M&D), and particle
radiation. Since retrieval of the satellite in January of 1990, the principal experiment investigators

have been deintegrating, examining, and testing the materials specimens flown.

The most detrimental environmental effect on all organic matrix composites was material loss

due to At erosion. At erosion of uncoated organic matrix composites (OMC) facing the satellite

ram direction was responsible for significant mechanical property degradations. Also, thermal

cycling-induced microcracking was observed in some nonunidirectional reinforced OMC's. Thermal

cycling and outgassing caused significant but predictable dimensional changes as measured in situ

on one experiment.

Some metal and metal oxide-based coatings were found to be very effective at preventing At

erosion of OMC's. However, M&D impacts and coating fractures which compromised these coatings

allowed At erosion of the underlying OMC substrates.

This paper summarizes the findings for organic matrix composites flown on the LDEF and
identifies the LEO environmental factors, their effects, and the influence on space hardware design

factors for LEO applications.

BACKGROUND

The benefits of OMC's in spacecraft applications include: (1) significant weight savings,

which result in lower launch costs or increased payload; (2) the ability to tailor the coefficient of

* Testing of Boeing composites flown on LDEF was funded by Boeing IR&D. All other Boeing

activities were supported by NASA Langley Research Center contracts NAS1-18224 and NAS1-
19247.
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thermal expansion, thereby providing a structure with dimensional stability; and (3) high stiffness.

Because composite laminate properties can be varied by altering the fiber, resin, and laminate layup,

a wide range of mechanical and thermal properties can be achieved. Some of the more promising

space applications for OMC's include truss structures, frames, booms, solar arrays, and monocoque
shell structures.

OMC's have been used in many space applications, but only with extreme caution and a

conservative design approach as required with relatively new materials in a space environment.

Therefore, the full advantages of OMC's in spacecraft applications have not yet been realized.

Because of these advantages, many OMC's were included in both active and passive experiments
on LDEF.

LDEF was deployed on April 7, 1984, in LEO at an altitude of 482 km and retrieved January

12, 1990, at an altitude of 340 km. During the 5.8-year mission, the LDEF experienced the following
LEO environments:

Atomic Oxv2en--ram facing fluence of 9E+21 atoms/cm 2. The higher At concentrations at

lower altitudes resulted in roughly 50 percent of the At fluence occurring in the last 6 months of the
mission.

Solar UV-----Cumulative equivalent Sun hours ranged from 4,500 h at LDEF's Earth end to

11,000 h at leading and trailing edges to 14,500 h at the space end.

Thermal Cycling--32,422 ninety-minute cycles. Actual on-orbit measured LDEF structure

temperatures ranged from +35 °F to +134 °F. Composite specimen temperatures were a function of

both location on LDEF and optical properties. For example, bare composites on the leading edge had

a predicted temperature range of-70 °F to +235 °F, while nearby coated composite specimens had a
predicted range of -75 °F to +60 °F.

Meteoroid and Space Debris--LDEF had =35,000 impact craters with over 3,100 craters

>0.5 mm in diameter. The largest crater on LDEF had a diameter of 5.25 mm.

Particle Radiatign--The total exposure of LDEF was below the threshold for observable

radiation effects in composites. The predicted surface electron dose was =300,000 rads.

Figure 1 is a photo of one of The Aerospace Corporation's trays that contained numerous

composit e specimens provided by several principal investigators. Table 1 lists all the OMC

specimens flown, along with their position on the satellite, environment, experiment number, and

principal investigator.

POSTRETRIEVAL EXPERIMENT INVESTIGATION

Since the retrieval of LDEF, experiment investigators have been extracting useful design

data and observations from the material specimens. Figure 2 shows the general flow for the phases
of postretrieval materials experiment investigations. Currently, most OMC specimen testing has

been completed, and the results are being reported in relation to the environmental exposures
received.

336



Deintegration and initial observations revealed the significant effects of AO erosion on

leading-edge-located OMC's. Trailing edge specimens appeared relatively unchanged with the

exception of occasional discolorations due to nearby contamination sources. As a whole, OMC's

appeared to have survived relatively intact.

More detailed observations and nondestructive testing revealed that non-AO-exposed

graphite-reinforced-OMC specimens were in excellent condition. Non-AO-exposed, glass-

reinforced organic matrix composite specimens displayed heavy discoloration due to UV exposure.
AO-exposed, graphite-reinforced specimens displayed significant loss of material due to AO erosion

up to 0.005 inch for ram facing specimens. AO-exposed, glass-reinforced specimens displayed

erosion only through the surface resin layer. The glass fibers then shielded the underlying material,

whereas the graphite fibers, due to their AO erosion, provided minimal shielding.

Analysis of dimensional stability data collected on-orbit revealed dimensional changes as a

result of both outgassing and thermal cycling (ref. 1). Results for on-orbit measurements of 90 °

direction strain versus temperature of unidirectional fiber-reinforced organic composited revealed a

40-day period of changing coefficient of thermal expansion (CTE) as the specimen outgassed. The

CTE asymptotically approached and reached the preflight value during these 40 days. Moisture

desorption was cited as the most likely cause of the shrinkage and changing CTE. On-orbit
measurement of 0 ° CTE did not reveal any significant changes. These results verified the

investigators' ground-based simulation predictions. These dimensional changes must be factored

into the design of low distortion OMC laminates.

Destructive mechanical testing of non-AO-exposed graphite reinforced materials revealed no

significant property changes. AO-exposed specimens displayed reductions in mechanical properties
commensurate with the loss of material due to AO erosion. No bulk chemical changes were found for

the matrix resins, implying that the environmental effects were only skin deep for the remaining
material.

Various coatings were found to be effective at preventing AO erosion of the OMC substrates.

Thermal control coatings may have also prevented microcracking by reducing temperature extremes

and thermal shocks during thermal cycling. All coatings were subjected to compromise by
micrometeoroid and debris impacts which, in addition to allowing AO attack of the OMC substrate,

also created delaminations and interply cracking.

ENVIRONMENTAL EFFECT--DESIGN FACTOR RELATIONSHIPS

The hardware designer for spacecraft applications must think in terms of key parameters to

design an efficient and reliable structure. Factors such as stiffness and strength can be subject to

change due to environmental effects in LEO. Figure 3 is a nonprioritized list of the more significant

space hardware design parameters, potential environmental effects, and the LEO environments
responsible for those effects. A great deal has been learned about the relationships between these

factors and the magnitude of the relationships.

LEO environments for OMC's depend a great deal on hardware location onboard the

spacecraft. These environments can be divided into five categories: (1) manned spacecraft interiors;

(2) AO- and UV-shielded spacecraft exteriors; (3) AO-shielded, UV-exposed spacecraft exteriors

(trailing edge environment); (4) UV-shielded, AO-exposed spacecraft exteriors (backside of solar

array panels, Sun tracking satellites); and (5) AO- and UV-exposed spacecraft exteriors (ram
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facing environments). The first category is not addressed here as no LDEF specimens were flown in

such an environment. Also, this is a relatively benign environment as required for human life support.

The last three categories also include effects from the micrometeoroid and debris environment. No

specimens were flown with AO exposure and UV shielding. Therefore, category 4 is not addressed

except for possible future work to look for synergistic AO and UV effects.

Both the thermal and microvacuum environments exist to some extent in each of the four

exterior categories. The synergistic effects of these two environments result in significant, but
predictable, dimensional stability concerns for LEO-exposed OMC's. Dimensional changes can

occur as a result of outgassing and thermal expansion. Figure 4 shows the dimensional changes as

measured on orbit as a function of temperature as part of experiment A0180 by Tennyson et al (ref.

1). Dr. Tennyson and company have shown that these changes are predictable (ref. 2). These two
environments also result in outgassing which can be a concern for contamination reasons. OMC

specimens on a number of experiments were subjected to outgassing tests which revealed similar

values for pre- and postflight testing of epoxies, polysulfones, and polyimides. This suggests that

outgassing occurring in space is due to absorbed moisture and not solvents or low-molecular-weight
prepolymer species.

AO- and UV-Shielded Environments

Figure 5 lists the predominant environments, effects, and influenced design parameters along
with their relationships for AO- and UV-shielded locations. The LDEF specimens shielded from AO

and UV were either mounted on the interior of LDEF or as witness specimens on the backside of

trays holding exposed specimens. The two predominant environments for these shielded specimens

is thermal cycling and microvacuum. Due to LDEF's nonpolar LEO orbit, the particle radiation
environment seen by both shielded and exposed specimens was below the observable threshold for

composites. While not as extreme as if exposed directly to the LEO environment, the thermal cycling
seen by shielded OMC's combined with the microvacuum conditions can result in the following

design conditions: (1) microcracking resulting in changes in thermal and mechanical properties and

(2) outgasssing resulting in significant, but predictable, dimensional changes. Results from testing of

LDEF specimens exposed to this environment showed no mechanical property changes.

AO-Shielded, UV-Exposed Environments

The LDEF satellite flew in a gravity-gradient stabilized orientation, maintaining the same

position relative to the direction of motion. As the atmosphere at mission altitudes consists primarily

of AO with a mean free path on the order of meters, the satellite swept a clean path through the AO.

Therefore, the backside of the satellite received virtually no AO exposure. OMC specimens located

on the backside of LDEF were in an AO-shielded, UV-exposed environment.

Figure 6 lists the predominant environments, effects, and influenced design parameters along

with their relationships for AO-shielded and UV-exposed locations. These factors and relationships
include those discussed previously (identified as grey in Figure 6) and new ones (black) associated

with UV exposure and micrometeoroid and space debris. Dimensional stability and outgassing
concerns still exist for OMC materials used in this type of environment.
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The effects of meteoroid and debris impacts can be devastating for any material depending on

the size and velocity of the impactor. However, for OMC specimens flown on LDEF, no specific

mechanical property reductions were attributable to impacts. Although fiber breakage and minor

delaminations were reported by a number of investigators (refs. 2,3), Whittaker et al. reported no

tensile test breakage initiated or culminated on any impact site. It appears that no direct mechanical

property influence data from impacts will be available from LDEF OMC specimens. However,

documentation of impact damage patterns will allow ground-based testing to simulate these and

larger impacts.

No mechanical property changes were attributed to UV exposure effects. Figure 7 shows the

flexural strength and modulus results for both control and flight specimens (ref. 4). No significant

changes were found for these materials as well as other graphite-reinforced OMC's. Glass-

reinforced OMC's flown in At-shielded, UV-exposed positions did display visible signs of UV

degradation.

Optical property changes were observed for At-shielded, UV-exposed OMC specimens.

Table 2 shows pre- and postflight values for absorption and emittance properties for three different

OMC materials (ref. 4). Sets of these materials were flown at both the leading and trailing edge of

the satellite. The trailing edge specimens which received UV radiation only (no At) displayed

significant increases in emittance (e). Figure 8 is a thin section photomicrograph of one of the trailing

edge specimens. This section, which is illuminated by transmitted light, clearly shows some surface

discoloration in the matrix resin with the fibers shielding underlying material. These findings explain

the change in optical properties with no measured change in mechanical properties.

Based on LDEF results, exposure to the LEO UV environment without At exposure does

not significantly alter the functionality of graphite-reinforced OMC's. The only possible UV effects

are on optical properties. However, provisions must be made for the other environments present in

these locations, such as meteoroid and debris, thermal cycling, etc.

At- and UV-Exposed Environments

The most severe combination of environmental effects for LDEF specimens existed on the

leading edge or front side of the satellite. This area received all the environments discussed so far
plus highly reactive At. Figure 9 shows the predominant environments, effects, and influenced

design parameters along with their relationships for At- and UV-exposed locations. Previously

discussed factors and relationships are shown in grey, with the additional factors and relationships
shown in black. At erosion was found to be the most severe of all environmental effects for OMC's.

Table 2 lists the optical properties for leading edge exposed graphite-reinforced OMC's. All

specimens showed a significant increase in emittance from preflight values, most likely due to
surface texturing caused by the At erosion. Some specimens displayed a thin layer of "ash" while

others did not. The C6000 graphite/PMR-15 polyimide specimens listed in Table 2 did not have this

"ash" and displayed significant increases in absorption. Further discussion on the origin of this ash
is available elsewhere (refs. 1,6).

Figure 10 shows a photomicrograph of the typical level of At erosion for leading edge

exposed OMC's. The actual erosion level for various OMC specimens distributed around the front

side of the satellite varied with angle of exposure to the direction of motion. Reactivity has been

calculated at 0.9 to 1.2×10 -24 cm3/atom based on recession measurements for graphite/epoxy
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specimensby a number of investigators. This resulted in a loss of up to 0.005 inches of material, the

equivalent of approximately one ply of laminate.

For unidirectionaUy reinforced specimens, the reduction in mechanical properties was found to

be proportional to the reduction in specimen cross-sectional area. Therefore, as shown in Figure 11

for the AO and UV exposed T300 graphite/934 epoxy specimens flown on M0003-8, there was little

change in modulus based on postflight specimen cross-sectional area. Strength values may have

been effected by AO erosion-created stress concentration sites. Although useful for determination of

lamina properties, unidirectional layups are rarely used in real applications due to the highly isotropic
nature of the material.

A better indication of OMC mechanical property performance in AO environments is given by

the test values from nonunidirectionally reinforced specimens. The results shown for C6000

graphite/PMR 15 epoxy in Figure 11 reveal a significant drop in both strength and modulus. These
reductions are based on a postflight specimen cross section indicating losses due to more than

thickness reduction. The loss of a surface 0 ° oriented ply greatly reduces stiffness and strength

properties as only a portion of the plies are in the 0 ° direction for typical layup. Also, for optimization

of bending stiffness, 0 ° plies are often placed at or near the surface of a laminate. For AO-eroded

specimens, this will result in greater reduction in bending stiffness and an imbalanced layup with

bending-stiffness coupling during loading. These specimens also displayed minor warpage due to the
erosion of the surface 0 ° direction ply.

In most exterior spacecraft applications which require the high stiffness and dimensional

stability of graphite-reinforced OMC's, the type of environmental effect experienced by AO-exposed

LDEF OMC's is clearly unacceptable. In addition, expected AO fluences for future long-term LEO

missions such as Space Station Freedom are many times that experienced by LDEF. OMC's used

in these applications will require protective coatings.

AO- and UV-Exposed OMC's with Protective Coatings

Figure 12 shows the predominant environments, effects, and influenced design parameters

along with their relationships for effectively coated OMC's in AO- and UV-exposed locations. If

fully effective against AO and UV attack, the influence of environmental factors on design concerns is

reduced to those discussed in the previous section on AO and UV shielded OMC's.

The full impact of the LEO AO environment on organic materials became evident during early
shuttle missions and LDEF integration occurred before this realization. Fortunately, a number of

OMC specimens were flown on LDEF with various coatings. These coatings were primarily

intended for thermal control but many of them offered excellent protection against AO erosion.

Experiment A0134 contained T300 graphite/934 epoxy specimens coated with a thin

sputtered coating of 600/_ of SiO2 over 1,000 ]_ of nickel (ref. 5). This coating was effective in

preventing AO caused erosion of the composite substrate. Figure 13 shows the large 11.75- by

16.75-inch T300 graphite/934 epoxy specimen flown as part of M0003-8. This panel was divided

into four quadrants with one quadrant uncoated and the other three quadrants coated with A-276

white polyurethane, Boeing Materials Standard (BMS) 10-60 white polyurethane, or Z-306 black

polyurethane. Although some coating thickness loss was observed for the white polyurethane

coatings, the TiO2 and talc pigments and fillers accumulated on the surface, providing an effective
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At barrier. The Z-306 coatingwith organiccarbonfiller underwentAt causeddegradationresulting
in lossof compositematerial.

Figure 14 is a three-dimensionalplot of the datacollectedduringa laserprofilometry raster
scanof a portion of thepanelshownin Figure 13.Thedataareplottedasa 0.0005-inchgrid for the
x-y planeand 0.001-inchline segmentsof variousthicknessesfor the z-direction (depth).The
approximately 1-in2 areacontainsa circular regionshieldedfrom At attackby a mountingwasheron
the surface.An A276 white polyurethanecoatingcoversthe rear left half of thepanel segment.The
A276 coatingwasclearly effective at preventingAt erosionof theunderlyingOMC substrate.
However, At erosionwas observedby different investigatorsin areaswhere the protective
coatingshad beenbreachedby impactsor cracks.

Figure 15 showsthe effectivenessof coatingspossessingoptimum optical propertiesfor the
minimization of thermally inducedmicrocrackingof thecompositesubstrate.This is accomplishedby
passivelycontrolling the thermalcycling extremesandthermalshockseenby the underlying
compositesubstrate.This figure showsthe postflight measuredmicrocrackdensity versusthermal
cycling conditionsfor thecoatedcompositepanelshownin Figure 13 (ref. 3). Crackdensity is
measuredfrom polishedcrosssectionsat × 200 magnification.Thermalcycling conditionswere
estimatedusing LDEF environmentaldata(ref. 6), physical and opticalproperties,andrecorded
flight datafor anunderlyingstructure.The increasedcrackdensityfor the moreseverelycycled
material is mostlikely due to the thermalshockastheenergyinput wasinto one side of the
specimensin the form of solarexposure.No inflight measurementof dimensionalstability versus
microcrackingdatais yet available.However,the impactof microcrackingon dimensionallycritical
spacecrafthardwarehasbeena designissuein pastexperiencessuchas the Hubble space
telescopeoptical truss assembly.

The significanceof thesefindings is thatmicrocrackingwaspreventedby reducingthe thermal
cycling extremesandshock,in this casethroughthe useof reflective opticalcoatings.

At- and UV-ExposedOMC's with BreachedProtectiveCoatings

While a numberof coatingswerefound to beeffectiveat preventingAt attack,
micrometeoroidand debris impactsalongwith thermal-stress-inducedcracksdid exposeOMC
substratesallowing At erosion.Figure 16showsthe factorsand relationshipsfor At- andUV-
exposedcoatedOMC's with a coatingbreach.Compromisingthe coatingbrings back theconcerns
with unprotectedOMC materialsin this typeof environment.The level of concernis tied to the
severityof expectedcoatingremovaldueto impactsand/orcracking.

Figure 17shows a cross-sectionphotomicrographof an LDEF A-276 coatedgraphite/epoxy
specimentaken from a largepanelwith ameteoroidor debris impact.Near the sidesof the
photomicrographthe coatinghaseffectively preventedAt erosionof thesubstrate.However, at the
impact site, in addition to the impactdamage,thejaggedpatternof At erosionis plainly visible on
exposedOMC surfaces.

The areaof the paneleffectedby theseimpactswasless than 0.01 percent, and the total

volume of the OMC material effected by the impacts and erosion was less than 0.000001 percent.

This suggests that OMC's can be adequately protected with coatings for many LEO applications.

Straightforward design calculations, based on anticipated meteoroid and debris environments and
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AO fluences combined with AO reactivity data, can be performed by the space hardware designer to
determine if coated OMC's can he used.

CONCLUSIONS

The data and observations generated from LDEF organic matrix composite experiments will

greatly increase the spacecraft hardware designers confidence for using these materials in LEO

applications. OMC's used in high atomic-oxygen exposure environments will require protective

coatings. However, LDEF results show that adequate coatings are available. OMC's used in low or

zero AO-exposure environments may not require coatings or shielding based on AO erosion rates,

meteoroid and debris protection, and thermal control requirements.

The main design considerations for AO exposed coated OMC's relative to the LEO

environment include (1) outgassing/microcracking-induced dimensional changes, (2) coating optical

properties and AO/UV resistance, (3) impact damage and subsequent AO erosion effects on

mechanical properties, and (4) contamination from outgassing. No detectable mechanical or chemical

property changes have been reported for AO-shielded composites. Glass-reinforced OMC's may

not require protective coatings as the surface layer of glass fibers protects underlying material.

However, UV degradation is more significant with glass reinforced OMC's.

The main design considerations relative to low or zero AO-exposed uncoated OMC's
relative to the LEO environment include (1) AO erosion rate (0.9 to 1.2x10 -24 cm3/atom for

graphite/epoxy at 60-percent fiber volume, similar for other graphite OMC's); (2) impact damage;

(3) outgassing/microcracking-induced dimensional changes; (4) AO- and UV-induced optical

property changes, and (5) contamination from outgassing. Graphite-reinforced OMC's were found to
have some inherent UV resistance. No bulk chemical changes have been reported for both AO- and

UV-exposed, graphite-reinforced OMC's.

FUTURE WORK

The largest potential payoff for LDEF data relative to all materials may not be in directly

applied design information but in verification of simulation and modeling techniques. This will allow

ground-based evaluation of new materials developed since the integration of LDEF.

Future OMC materials development efforts based on LDEF results should focus on
microcrack resistance, low outgassing, and AO resistance along with dimensional stability modeling.

Also, increased matrix polymer AO resistance would reduce post-impact substrate erosion of coated

OMC's in high AO-fluence, long-term missions.
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Table 2. Typical optical property changes for UV-exposed LDEF graphite-reinforced OMC's.

Material

934 Epoxy/

T300 Graphite

P1700 Polysulfone/

T300 Graphite

PMR- 15 Polyimide/

C6000 Graphite

Property Preflight

values

0.90

0.73

0.90

0.73

0.90

0.73

Postflight values

Exposed side

Trailing I Leading

0.87

0.82

0.88

0.82

0.90

0.79

0.93

0.93

0.93

0.93

0.98

0.93
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1

Figure 1. Postflightphotographof experimentM0003 takenby NASA photographersat Kennedy
SpaceCenter.
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Figure 2. Flow of LDEF materials experiment investigation process.
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Figure 3. Environments, effects, and design factors for organic matrix composite materials in LEO
applications.
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Effects of outgassing and thermal cycling on dimensional stability for an LDEF graphite-
reinforced OMC.

ll_IGN FAI_IQR__

STABILITY

MIC_CKING

OUT_SSING

MICROVA CUUM

OUTGASSING

Figure 5. Environmental design factors and relationships for AO- and UV-shielded OMC's in LEO.
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Figure 6. Environmental design factors and relationships for AO-shielded and UV-exposed OMC's
in LEO.
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Typical flexural mechanical property changes for AO-shielded, UV-exposed LDEF
graphite-reinforced OMC's.

349



Figure 8. Cross-sectional photomicrograph of UV-exposed LDEF graphite-reinforced OMC
showing limited UV degradation.
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Figure 9. Environmental design factors and relationships for At- and UV-exposed OMC's in LEO.

350



Figure 10. Cross-sectional photomicrograph of UV-exposed LDEF graphite-reinforced OMC

showing AO erosion.
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Figure 11. Typical flexural mechanical property changes for AO- and UV-exposed LDEF graphite-
reinforced OMC's.
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Figure 12. Environmental design factors and relationships for AO- and UV-exposed OMC's with

protective coatings in LEO.
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Figure 13. Coated T300 graphite/934 epoxy composite panel.
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Figure 14. Three-dimensional plot of profilometry measurements taken from a partially coated

graphite-reinforced OMC.
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Figure 15. Microcrack density and distribution in an LDEF OMC for various thermal environments.
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Figure 16. Environmental design factors and relationships for AO- and UV-exposed coated OMC's

in LEO with protective coating breach.

Figure 17. Cross-sectional photomicrograph of coated graphite-reinforced OMC showing impact
damage and post-impact AO erosion.
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