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ABSTRACT

In this paper we use a photothermal imaging technique to characterize the damage caused to an

imperfectly coated gold-coated Kapton sample exposed to successively increased fluences of atomic

oxygen in a laboratory atomic source.

INTRODUCTION

One major problem associated with the flight of low Earth orbit (LEO) spacecraft is the damage

caused to various materials by bombardment with atomic oxygen (AO). AO will readily oxidize mater-

als with high erosion yield coefficients, such as polyimide Kapton, epoxy graphite, and Mylar. Materials

with low erosion yield coefficients such as aluminum, gold, and SiO2 may be used as barrier coatings to

prevent damage to the more vulnerable underlying materials mentioned above (ref. 1). However, manu-

facturing defects in the barrier coatings such as scratches and pin holes act as sites where the AO can
attack the substrate, and may cause undercutting of the protective layer (ref. 2).

Photothermal imaging of solids is a powerful technique which has been applied to numerous

problems involving the characterization of surface and subsurface, cracks inclusions, and delamination
in materials (ref. 3, 4). We have used this method to produce photothermal images of a gold-coated

Kapton sample at various stages of its exposure to AO in a laboratory AO source. The gold layer was

deliberately scratched prior to exposure of the sample, and the resultant damage around this site imaged

photothermally.

PHOTOTHERMAL IMAGING APPARATUS

A diagram of the apparatus is given in Figure 1.

In order to produce a photothermal image, a modulated and localized heat source is required
which is used to create thermal waves in the sample. In our system, we have used an argon ion laser as a

heat source whose beam is focused by means of a microscope objective onto the sample to be scanned.

The laser was operated on a wavelength of 488 nm in order to optimize the absorption in the gold (_63

percent at this wavelength) and thus generates "thermal waves" within the sample being illuminated.

The depth to which the thermal waves penetrate the sample/_s is given by:
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where as is the thermal diffusivity of the material to be investigated, andfis the modulation frequency

of the laser light.

The value of/.ts and, hence, the penetration depth may be changed by altering the modulation fre-

quency.

Associated with the thermal waves are acoustic waves which are stresses generated in the sample

due to the thermal waves and which penetrate the whole sample and are detected by a piezoelectric

transducer coupled to the rear side of the sample. The voltage produced by the transducer, which

depends on the magnitude of these waves, is then amplified and detected by a lock-in amplifier

(Stanford SR530). The lock-in amplifier gives a reading of the magnitude of the photothermal signal

detected, together with its phase shift with respect to the light modulation. The sample together with its
piezodetector was mounted upon two orthogonal translation stages and raster scanned beneath the

focused laser beam of diameter =2.5 kun in steps of 3 _tm. The power density of the focused laser beam

was kept below the damage threshold of the sample.

The thermal waves traveling into the bulk of the sample are reflected and scattered by regions of

differing thermal properties within the sample. The photothermal signal, therefore, depends upon these
imperfections, and hence gives the imaging capability of this technique.

In order to produce a subsurface image, the X-Y scans consisting of 75 by 75 data points for
both the signal and its phase lag were recorded across a small area of the sample. The photothermal sig-

nal is sensitive to surface optical features which have differing optical absorption. However, the phase

lag is much less sensitive to surface features and is a better measure of subsurface features especially

delaminations (ref. 5). We have, therefore, concentrated upon the phase measurements in the results

given in this paper.

SAMPLE EXPOSURE

A 1- by 3-cm, 130-_trn thick Kapton sample was vacuum coated with 40 nm of gold and an area
of 1 by 1 cm selected. A strip of the gold about 35-l.tm wide and extending from one side of the sample

to the other was removed with a thin metal probe to expose the Kapton substrate beneath it. The sample

was then mounted in a laboratory AO apparatus similar to the design described by Neely (ref. 6) and
exposed to an AO flux of =1.5×1017 atoms/cm2/s at a temperature of 200 °C.

The sample was exposed to AO for four successive exposure times, with cumulative fluences of:

(i)

(ii)

(iiJ)

(iv)

8.3x 1020 atoms/cm 2

17x 102o atoms/cm 2

25x 102o atoms/cm 2

50× 102o atoms/cm 2.

The sample was scanned photothermally before and after each exposure.
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RESULTS

Five photothermal scans of the area containing the exposed Kapton, each comprising 75 by 75

data points were obtained giving a photothermal image 220 by 220 _m in area. The photothermal signal

was detected by a piezotransducer on the Kapton surface remote from the gold. An imperfection in the

gold/Kapton interface, such as delamination, which would introduce an air layer between the gold and

Kapton substrate will scatter the thermal waves before they are detected, modifying the photothermal

phase, since this is in effect the delay in generation of the photothermal signal with respect to the modu-

lation frequency, hence making the scan sensitive to subsurface imperfections. The data were repre-
sented in false colors in the images of the scans, using Unimap 2000, Uniras A/S (ref. 7).

A modulation frequency of 3 kHz was chosen for all the scans which correspond to a thermal

wave probe depth of =3.2 l.tm into the Kapton. Photothermal images of the phase lag of the signal are

shown in Figure 2. These images show undercutting and delamination around the bare Kapton section of

the sample. A greater phase lag is seen in the scans for the areas in which the gold is no longer in contact

with the Kapton. As the sample becomes progressively more damaged, the area around the scratch area

is seen to widen and the associated phase lag becomes greater.

Further photothermal analysis, performed in Swansea, will concentrate on coated samples that
are scanned while inside the At apparatus so that the progressive damage may be characterized in situ
and in real time.
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Figure 1. Diagram of photothermal imaging apparatus.
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Figure 2. Photothermal phase images for cumulative AO exposures of gold-coated Kapton.
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Figure 2. Photothermal phase images for cumulative AO exposures of gold-coated Kapton (continued).
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Figure 2. Photothermal phase images for cumulative AO exposures of gold-coated Kapton (continued).
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