N94- 32429

akﬁ/)"’“
COMMON MODELING SYSTEM FOR DIGITAL SIMULATION

Capt Rick Painter, USAr /Q“ /:?/
USAF Wright Laboratory/Avionics Directorate
Wright Patterson AFB OHR 45433

ABSTRACT

The Joint Modeling and Simulation System is a tri-service
investigation into a common modeling framework for the development of
digital models. The basis for the success of this framework is a
X-window-based, open systems architecture, object-based/oriented
methodology, standard interface approach to digital model
construction, configuration, execution, and post processing.

For years Department of Defense (DoD) agencies have produced
various weapon systems/technologies, and typically digital
representations of those. These digital representations (models) have
also been developed for other reasons such as studies and analysis,
Cost Effectiveness Analysis (COEA) tradeoffs, etc.

Unfortunately, there have been no Modeling and Simulation (M&S)
standards, guidelines, or efforts towards commonality in DoD M&S. The
typical scenario is an organization hires a contractor to build
hardware, and in doing so a digital model may be constructed. Until
recently, this model was not even obtained by the organization. Even
if it was procured, it was on a unique platform, in a unique language,
with unique interfaces, and, with the result being UNIQUE maintenance
required. Additionally, the constructors of the model expended MORE
effort in writing the "infrastructure" of the model/simulation (e.g.
user interface, database/database management system, data
journalizing/archiving, graphical presentations, environment
characteristics, other components in the simulation, etc.) than in
producing the model of the desired system. Other side effects
include: duplication of efforts; varying assumptions; lack of
credibility/validation, decentralization both in policy AND execution,
and various others. J-MASS provides the infrastructure, standards,
toolset, and architecture to permit M&S developers and analysts to
concentrate on the their area of interest.

J-MASS ARCHITECTURE and STANDARDS LAYERS

J-MASS has several architectural and standardization layers. This
paper describes J-MASS in terms of the Tool Interconnect Backplane
(IBP) layer, referred to as the Simulation Support Environment (SSE
IBP) the Simulation Runtime Agent (SRA) IBP layer, and the Model
Component /Object Standards layer.

65
PRECEDING PAGE BLANK NOT FILMPG (ﬁJ}

MODEL COMPONENT/OBJECT STANDARDS

Each model component (or object) in J-MASS is structured compliant
with our Software Structural Model (SSM). The SSM evolved from the
Software Engineering Institute (SEI) work on the Object Connection
Update (OCU) model. Both the C-17 and B-2 weapon systems trainers use
a similar methodology for their object definition. The SSM, also
described in a document, enforces software structure and interface
standards for all levels of object decomposition. In this way, ANY
objects in the system can be syntactically "connected"” with any other
objects in the system with guaranteed success. Semantically, the
connection may have no realistic "meaning”, but syntactically they can
be connected ("Assembled", see discussion in Develop and Assemble
Modes under Tool Interconnect Backplane). J-MASS objects are
described in three layers: "Players”, "Assemblies”, and "Elements".
Players are the "top" level objects responsible for synchronization
with the simulation runtime engine and comply the software interface
is standard to all objects at that level. Additionally, the interface
between the "player", and its subcomponents, "assemblies” and
"elements", is also standard. This interface is similar to but NOT
exactly like the player to runtime engine interface. Figure 1
represents the J-MASS SSM implementation.

Define

\ Data Management Package
Name I Define_Component

@ Componeot_Class_Manager Ksewi ces 'BP \

- Make_Instance
Description I Objec Destroy_Inmance
v
Mep_Input
Synchronizer @ :‘::."" ‘ & Map_Outpat
— Titialize
«<Component>
Chasacteristic_Manager
Destroy Get_Attribute
<C omponen > Get_Locat
Set_Local
Cee |
Update Update Procedure «— Sq_—(;:‘;n
<Component> Body Define_Charscteriatic
Creste_Vale
<«Componeot>_Instance_[D Get_In_Port
Set_Out_Port
<C ompanent>
Insance_ID_Type '
Spatial System
<Component>_Error)
Compoueat_Manager_1 Componenl_Manager_1 Compescat_Maanger N

I CID N S C,

¥d i . L - - B S L

FIGURE 1

OPEN ARCHITECTURE - TOOL INTERCONNECT BACKPLANE

At the Tool Interconnect Backplane (IBP) layer, known in J-MASS as the
Simulation Support Environment (SSE) IBP, several backplane
methodologies were considered, including the HP Softbench, IEEE P-1175
"Toaster Model", the Atherton Backplane, and, significantly upon the
Common Object Request Broker Architecture (CORBA) from the Object
Management Group (OMG). 1In J-MASS terminology, a cul-du-sac model is
employed, where each cul-du-sac represents a tool, or potentially a
collection of tools or capabilities, referred to as "agents". Each
"tool” or "agent" (a software capability), can register as a
client/server with the backplane, indicating the service/message
traffic of interest. The backplane maintains the knowledge of the
other tools that have registered that can either provide the service,
or will request the service. This concept is knows as message
brokering and is powerful for de-coupling the tools from knowledge of
other tools on the system. J-MASS has implemented a prototype of its
design for this backplane in C on Unix workstations, currently SUN
Sparc series, and Silicon graphics. Other platforms in progress
include the IBM RS6000, and HP 9000 series, with DEC Alpha, and
VAXstations in the plans. Reference Figure 2 for a graphical
depiction of this concept.

J-MASS SSE Architecture
Model

Cul-de-Sac
User
Infrastructure Interface Utitities .o
Agents Mgr Mgr

Simulation Support Emvironment (SSE) Interconnect Backplane (1BP) q
Ag:,::m Browser é Sim RT y e
Agent Edor j } \ Agemt

+ Infrastructure Agents
- Agent With Specific Responsibilities
~ Always Installed And Avallable

« Application Agents
- Connect Directly To SSE Interconnect
Register Own Services
Request Services To Be Performed
Are Loaded / Removed Dynamically
Communicate Via SSE Interconnect Message Language Grammar

FIGURE 2

67

User Modes.

J-MASS has five conceptual "user modes" associated with it. These are
"functionally” oriented modes, namely: Develop; Assemble; Configure;
Execute; and Post-Process. Each represents a capability that a model
developer and/or simulation analyst requires to build, configure,
execute, and analyze simulations. Each of these modes can be viewed
as an instance of the cul-du-sac methodology. The next series of
charts (2 thru 6) depict an instance of the backplane at the tool
interconnect layer for each of the J-MASS modes.

Develop Mode/Assemble Mode.

Develop Mode and Assemble Mode provide the model developer with visual
mechanisms for constructing model objects/object hierarchies, with
data flows represented. Control flows (not currently implemented)
will also be depicted so that model developers can separate
control/activation of objects from data flow. The graphical
information is then translated to ascii "dot" notation, referred to as
.DSC (description) files. These .DSC files are then read by an
automatic code generator, which generates source code compliant with
the Software Structural Model (SSM) in various languages (currently
Ada, C++). The SSM is discussed further in the Model Component/Object
Standards section. At this point, the algorithms for the lowest level
objects in the decomposition must still be described (currently, in
the native language thru an editor). The code can then be compiled,
linked, loaded and executed. A semantic tool, or "template" editor,
is provided to build the semantic "template" information that
describes "normal” assembly of the model components, which is done in
"Assemble" Mode. Here in develop, the template semantics are
generated. See Figures 3 and 4 for a graphical depiction of Develop
Mode. Assemble mode permits the connection of the model objects built
in Develop Mode visually. The "templates" are populated with actual
object instance selections. All of the model components are stored in
the modeling library, an object oriented storage mechanism which makes
the information about the objects in J-MASS available to all other
agents on the backplane.

68

Application Agents Supporting

Develop

User
Infrastructure Act Modefing Ukiine
Mm‘ @ @ @ w ')
SSE Interconnect Bardtplmor
Appications Browser Model Torplate
Agents Agent Editor Editor Bufider
& N N\

Tost .
Agent
“Wpn Sys : ~Configure
+Assembly : “Execute
: “ODebug

View Resuits
*Develop Drivers

«O0ODA

*Documentaton *Code Qen
*Behavior (Code) *Complle
Controt

FIGURE 3

69

Application Agents Supporting

Assemble
User ‘Modeli
Infrastructure Activity " Utlitties
mm. “;r“ gwrp @ w)
SSE Interconnect Backplane 2
Applcalono Browser sembly Sys Test ae
Agerts Agert Editor Editor Bulider Agent
. ks
*Solect :Pllyon |
“idonty : Execite
Relationshipe { Debug
: : View Resuls
+Select Alemative : Develop Drivers
Component *Code Gen
*‘Default C«\M -m“.
*Unk
FIGURE 4

Configure Mode.

Configure Mode permits the M&S developer/analyst with the capability
to determine simulation characteristics. Model component objects
attribute values are populated with values thru a graphical configure
tool. Additionally, geographical laydowns, raster maps, etc. are made
available to set up the scenarios of the model objects stored in the
model library. J-MASS "teams" are formed, whereby player classes are
defined, and actual player instances are populated for the teams.
This "distribution strategy" is totally configurable by the user. If
"legacy" simulations exist, the configure mode will permit the
modeler/analyst with the capability to catalogue those
models/simulations, and have data passed back in forth sequentially.
Eventually, real time synchronized communication between J-MASS
compliant and legacy simulations will be achieved. Additionally, if a
Distributive Interactive Simulation (DIS) Protocol Data Unit (PDU)
generation is desired, the user is able to configure a J-MASS team
(collection of players into a single executable). The entire team
will then generate PDUs, and the J-MASS spatial system will create
"objects" for the incoming DIS entities. The software that provides
this capability is the DIS_manager software, and is de-coupled from
the standard J-MASS objects, so as not to perturb that interface.
Figure 5 depicts the architecture backplane instance for Configure
Mode. 70

Application Agents Supporting

Configure

User Modeli
Infrastructure Activity ng Utities
- @ @ @ @)
SSE Inerconnect Backplane .
Applications /p. vear Scenario) /Simudstion} (Ex Buid
oo (i (w;;) é‘bw (%f) vy i

*Player Placement # of Runs
*Player Movement Parametric
Varistions

«Altribute Values
*Journal Meta Deta .Distribution info «Uink Variations

FIGURE 5

71

Execute Mode.

Execute Mode simply executes the selected simulation. Currently,
visualization is accomplished in the Post Process Mode. If the DIS
manager software was invoked due to configuration selection, then
using "magic carpet"” software, the PDUs can be displayed in real time.
In work is a real time display of the simulation as it occurs. Figure
6 depicts the architecture instance for the Execute Mode.

Application Agents Supporting

Execute

User
Infrastructure Activity Modefing Unilities
ra et Interface } Q Q es

SSE interconnect B

2ipiene :
Stm Sim
ﬁgﬁ?‘ Browser } £+ ecution Run Tind . (Run Time}, ...
Agent Agent Agent ~1." Agent

«Control

FIGURE 6

72

Post Process Mode

Post Process Mode is a visualization, both static and dynamic, of the
information of interest to the user. This mode includes graphical
plotting tools, and animated playback capability. The extraction tool
converts the binary journalized data into ascii information. The
filter mechanism then prepares it in the appropriate format for the
display tool requested. Figure 7 describes the backplane instance for
the post process mode of J-MASS.

Application Agents Supporting

Post-Process

Infrastructure |n|l::;0 AclMty '"9 Ulllltlos
Agerts Mgr_#

SSE lmorconnod Baokplano

Prepare
Resuits
ont,
*Select Data *Perform Statietic s/
~oumal Graphical Operafons
*External Dats Script (Batch)
*Croate Fiters “interactive
*Generate PP Fle
*Select Operations *Prepare Reports
“Statheticel ~Automate Text
*Graphical *iderttify Results
sIderttify Ope Deta Incorporate
<Run Script
FIGURE 7

73

SIMULATION RUNTIME AGENT (SRA) ARCHITECTURE

The J-MASS Simulation Runtime Agent (SRA) architecture is depicted in
Figure 6. The SRA is "expanded" in this view to show its own
architecture. 1In fact, any agent on the SSE backplane may in fact be
another recursive instance of the SSE level. Notice the SRA has its
own backplane. The SSE level and SRA level backplanes could in fact
be the same. 1In our current implementation, they are not, but both
are distributed in nature using standard Unix (TCP/IP) socket message
passing mechanisms. What is important to note in the SRA is the
encapsulation of the spatial object, synchronization object, data
management object, journalization object, and others away from the
model objects. Thus, a true "plug and play" architecture is achieved
because any given object may be replaced in the architecture without
perturbing the other objects. 1In the SRA, each team is a single
executable using a shared memory implementation, providing
significantly faster communication than "inter-team" communication,
which uses Unix sockets. Just as the SSE level architecture is
distributable, so too are the "teams" within any given SRA. A J-MASS
system may in fact have more than one SRA, each communicating over the
SSE level backplane. 1In fact, we plan to demonstrate an Ada SRA with
Ada model objects communicating with C++ SRA and C++ model objects
over the SSE IBP mechanism. "Players" communicate with each other by
placing information on each others "ports” facilities. Players do NOT
require apriori knowledge of what team the other player is on, the
team synchronizers work with the SRA synchronizer to "locate" the
appropriate port. Again, the model objects remain "un-perturbed" with
this approach. Journalization of output is accomplished by the
journalization object, using state information maintained in the Data
Management Package (DMP). In this way, non-intrusive journalizaing
occurs. Figure 8 represents the expanded view of the SRA.

74

J-MASS Architecture
Simulation Runtime Agent

(SRA) Detalil
User
Simulation Support Environment (SSE) Interconnedt Backplane q

Agent /

Simulation RunTime Interconnect Backplane 1BP)

Team 1 act)
Team eristc
patial ~ L oMP e
Services
Team B8P
mal-
Ved T e
Arcratt | | Aeratt Misade
kam Player Player H?. J /
FIGURE 8

COMMERCIAL POTENTIAL

The J-MASS concepts and philosophies are not entirely original. The
backplane methodology, message brokering mechanisms have been espoused
by OMG and others. However, J-MASS has applied these concepts to a
generalized Modeling and Simulation System.

J-MASS brings the idea of standards for digital simulations, both in
structure and interface. Thisg guarantees "plug and play"”
pPhilosophies, both from model components and architecture components
point of view. J-MASS eéspouses the idea of "plug and play"” throughout
the architecture to include tools, objects (model components), etc.

The J-MASS notion of graphical tool environment coincides with
standard commercial technology as well. Expanding that concept which
permits (automated) standard compliance with specified standard
structures is another potential benefit to the commercial world.

J-MASS itself does NOT prescribe what objects or systems are modelled
with its architecture. For example, the object repositories could
represent traffic objects, manufacturing objects, weather objects,
organizational objects, utility objects, etc. The system is designed
so that the Ms&S communities build object hierarchies and behavior
appropriate for the particular domain.

75

JusawiNoo PIOM

jusuodwo) |8poN SSYIN-I

1ewod a|i4 PIOM

‘189X ‘SMOPUIAA 10} PIOA

"019 UI0419MOd

piepuels 102uu0d9u| [9po

18 'yyS enbiun
‘5100 | Buissao0.id 1S0d pazijenads

'018 ‘leulua] ‘ysniqiuied ‘allup

(VHS) ueby awnuny
uone|nwig ‘Jusby 1se] ‘usby esmoug

'0}o
‘B g 16| a4 4B weiboid

1B semnn 46\ Aseiqr bulispon
BN AuAnoy ‘4B soepsiul Jesn

piepuels 99ejaju] SMOPUIM

pJepuelS 10auu0d1diu] |00 L

waysAs buneiadp) SMOPUIM

a1emyos SSVN-I

T

*d109 1J0S0LoIN

76

wea|] juswdojdaraqg SSYN-r

SMOPUIM

SSVNW-I

uosrniedwo) SMOpUIN / SSYIN-T

onsue
oesey

jeyeds

oueUBIg

VHS

uonnoexy

waby
LN
sia

seninn

Buiuies o) 9|qipus)x3
94N10311Ydiy SSYIN-r

eoeueU|
lesn

77

7 asempieH Aupnoed
uoljenjeA3 R ISo L

JozZiu e Juaby

#iebeuep

7 Jueby

g LQ__Q.:CO m
_m_ﬁmﬁw Otmcoow $S800.1d 00;_50C>w Co_ﬁ:uvmxm OOM“@&C_
1

3AINDaX3 VHS

selnN

uolnisinboy
swa)sAg uodeap 01 3|qipualx3y
ain}oalydly SSYN-

“ cJoesey

onsue

.....................

§1ebeuepy
{ oueueog

VHS

N S

llesojoud
uoljelnwig
[oA97] ajebasbby

7 waby
{ aoepayu
dsSv

selmn

Buiwebiep o) sjqipusix3
94N}d/UYIIY SSYN-I

79

