
N94- 32429

COb_40N MODELING SYSTEM FOR DIGITAL SIMULATION

Capt Rick Painter, USAF

USAF Wright Laboratory/Avlonics Directorate

Wright Pattermon AFB OH 45433

F/s

ABSTRACT

The Joint Modeling and Simulation System is a tri-service

investigation into a common modeling framework for the development of

digital models. The basis for the success of this framework is a

X-window-based, open systems architecture, object-based/oriented

methodology, standard interface approach to digital model

construction, configuration, execution, and post processing.

For years Department of Defense (DoD) agencies have produced

various weapon systems/technologies, and typically digital

representations of those. These digital representations (models) have

also been developed for other reasons such as studies and analysis,
Cost Effectiveness Analysis (COEA) tradeoffs, etc.

Unfortunately, there have been no Modeling and Simulation (M&S)

standards, guidelines, or efforts towards commonality in DoD M&S. The

typical scenario is an organization hires a contractor to build

hardware, and in doing so a digital model may be constructed. Until

recently, this model was not even obtained by the organization. Even

if it was procured, it was on a unique platform, in a unique language,

with unique interfaces, and, with the result being UNIQUE maintenance

required. Additionally, the constructors of the model expended MORE

effort in writing the "infrastructure" of the model/simulation (e.g.
user interface, database/database management system, data

journalizing/archiving, graphical presentations, environment

characteristics, other components in the simulation, etc.) than in

producing the model of the desired system. Other side effects

include: duplication of efforts; varying assumptions; lack of

credibility/validation, decentralization both in policy AND execution,

and various others. J-MASS provides the infrastructure, standards,

toolset, and architecture to permit M&S developers and analysts to
concentrate on the their area of interest.

J-MASS ARCHITECTURE and STANDARDS LAYERS

J-MASS has several architectural and standardization layers. This

paper describes J-MASS in terms of the Tool Interconnect Backplane

(IBP) layer, referred to as the Simulation Support Environment (SSE

IBP) the Simulation Runtime Agent (SRA) IBP layer, and the Model
Component/Object Standards layer.

65

II_Cd_ BLANK NOT FILML_



MODEL COMPONENT/OBJECT STANDARDS

Each model component (or object) in J-MASS is structured compliant

with our Software Structural Model (SSM). The SSM evolved from the

Software Engineering Institute (SEI) work on the Object Connection

Update (OCU) model. Both the C-17 and B-2 weapon systems trainers use

a similar methodology for their object definition. The SSM, also

described in a document, enforces software structure and interface

standards for all levels of object decomposition. In this way, ANY

objects in the system can be syntactically "connected" with any other

objects in the system with guaranteed success. Semantically, the

connection may have no realistic "meaning", but syntactically they can

be connected ("Assembled", see discussion in Develop and Assemble

Modes under Tool Interconnect Backplane). J-MASS objects are

described in three layers: "Players", "Assemblies", and "Elements".

Players are the "top" level objects responsible for synchronization

with the simulation runtime engine and comply the software interface

is standard to all objects at that level. Additionally, the interface

between the "player", and its subcomponents, "assemblies" and

"elements", is also standard. This interface is similar to but NOT

exactly like the player to runtime engine interface. Figure 1

represents the J-MASS SSM implementation.

"Com_x.m Ty_

%

Defl_

<Compo._ I

lniddi_

<C'e_pom_t> I

<_ompon_t>_ln_mce ID ]

<ComponmD ]

Com_ Cli,._M..qler

.@
_t,,e_(1) >

f'- Services IBP

DN* MmN, c'n_m PI_NI¢

De"me Cm.po.m,

DeJ_y_lntmce

Nl__|npuq

M,,p Ouq_

Ch illr ilded s11c_ Maln B_I_

Get AM-_bule

Gel _Local

Sel_Locol

Oel Inpu_

S,__Ompuq

Define Chwldeyi_

C_e Value

Oct _In_l%,,1

\ \

FIGURE 1



OPEN ARCHITECTURE - TOOL INTERCONNECT BACKPLANE

At the Tool Interconnect Backplane (IBP) layer, known in J-MASS as the

Simulation Support Environment (SSE) IBP, several backplane

methodologies were considered, including the HP Softbench, IEEE P-1175

"Toaster Model", the Atherton Backplane, and, significantly upon the

Common Object Request Broker Architecture (CORBA) from the Object

Management Group (OMG). In J-MASS terminology, a cul-du-sac model is

employed, where each cul-du-sac represents a tool, or potentially a

collection of tools or capabilities, referred to as "agents" Each

"tool" or "agent" (a software capability), can register as a

client/server with the backplane, indicating the service/message

traffic of interest. The backplane maintains the knowledge of the

other tools that have registered that can either provide the service,

or will request the service. This concept is knows as message

brokering and is powerful for de-coupling the tools from knowledge of

other tools on the system. J-MASS has implemented a prototype of its

design for this backplane in C on Unix workstations, currently SUN

Sparc series, and Silicon graphics. Other platforms in progress

include the IBM RS6000, and HP 9000 series, with DEC Alpha, and

VAXstations in the plans. Reference Figure 2 for a graphical
depiction of this concept.

J-MASS SSE Architecture
Model

Cul-de-Sac

_Skmddon Suppod E.vko.ment ($SE) Intemonned Bsdq_ane @BP)

• Infrastructure Agents
- Agent With Specific Responsibilities

- Always Installed And Available

• Application Agents

- Connect Directly To SSE Interconnect

- Register Own Services

- Request Services To Be Performed

- Are Loaded / Removed Dynamically

- Communicate Via SSE Interconnect Message Language Grammar

FIGURE 2

67



User Modes.

J-MASS has five conceptual "user modes" associated with it. These are

"functionally" oriented modes, namely: Develop; Assemble; Configure;

Execute; and Post-Process. Each represents a capability that a model

developer and/or simulation analyst requires to build, configure,

execute, and analyze simulations. Each of these modes can be viewed

as an instance of the cul-du-sac methodology. The next series of

charts (2 thru 6) depict an instance of the backplane at the tool

interconnect layer for each of the J-MASS modes.

Develop Mode/Assemble Mode.

Develop Mode and Assemble Mode provide the model developer with visual

mechanisms for constructing model objects/object hierarchies, with

data flows represented. Control flows (not currently implemented)

will also be depicted so that model developers can separate

control/activation of objects from data flow. The graphical

information is then translated to ascii "dot" notation, referred to as

.DSC (description) files. These .DSC files are then read by an

automatic code generator, which generates source code compliant with

the Software Structural Model (SSM) in various languages (currently

Ada, C++). The SSM is discussed further in the Model Component/Object

Standards section. At this point, the algorithms for the lowest level

objects in the decomposition must still be described (currently, in

the native language thru an editor). The code can then be compiled,

linked, loaded and executed. A semantic tool, or "template" editor,

is provided to build the semantic "template" information that

describes "normal" assembly of the model components, which is done in

"Assemble" Mode. Here in develop, the template semantics are

generated. See Figures 3 and 4 for a graphical depiction of Develop

Mode. Assemble mode permits the connection of the model objects built

in Develop Mode visually. The "templates" are populated with actual

object instance selections. All of the model components are stored in

the modeling library, an object oriented storage mechanism which makes

the information about the objects in J-MASS available to all other

agents on the backplane.

68



Application Agents Supporting
Develop

_A

-Dooume_mkqt

•Be_vlor (Code)

.Ccmtrd

• Code Glcm

.co_e
°L/nk

.F_xeoum

•View ReeVe

.Oev,_ _lvers

r z G'l.m.l¢ 3

69



Application Agents Supporting
Assemble

•Se4_ Pl=y,rs
-kJe.my

• Seled Altemellve

Compone_
•DefaultConlg

•CodeOen
.Compl,
.I._

.Conn,,

.F_xecule

.o,u_
• View Re_lls

•DevelopDrtver8

FIGURE 4

Configure Mode.

Configure Mode permits the M&S developer/analyst with the capability

to determine simulation characteristics. Model component objects

attribute values are populated with values thru a graphical configure

tool. Additionally, geographical laydowns, raster maps, etc. are made

available to set up the scenarios of the model objects stored in the

model library. J-MASS "teams" are formed, whereby player classes are

defined, and actual player instances are populated for the teams.

This "distribution strategy" is totally configurable by the user. If

"legacy" simulations exist, the configure mode will permit the

modeler/analyst with the capability to catalogue those

models/simulations, and have data passed back in forth sequentially.

Eventually, real time synchronized communication between J-MASS

compliant and legacy simulations will be achieved. Additionally, if a
Distributive Interactive Simulation (DIS) Protocol Data Unit (PDU)

generation is desired, the user is able to configure a J-MASS team

(collection of players into a single executable). The entire team

will then generate PDUs, and the J-MASS spatial system will create

"objects" for the incoming DIS entities. The software that provides

this capability is the DIS manager software, and is de-coupled from

the standard J-MASS objects, so as not to perturb that interface.

Figure 5 depicts the architecture backplane instance for Configure

Mode. 70



Application Agents Supporting
Configure

,_:_, ________o.._;. _._o _~._ _ __

i .Player I:qocement <t ol Runs

:: *Player Movement -Param_dc

i Variations

.Al_bute Vslues

•Joum..' Mota Dais • Distribution tnlo .Link Vsdatlons

F IGUI_¢ 5

71



Execute Mode.

Execute Mode simply executes the selected simulation. Currently,
visualization is accomplished in the Post Process Mode. If the DIS

manager software was invoked due to configuration selection, then

using "magic carpet" software, the PDUs can be displayed in real time.

In work is a real time display of the simulation as it occurs. Figure
6 depicts the architecture instance for the Execute Mode.

Application Agents Supporting
Execute

kffrutruclure

/_n*s

-Contr_

.MonNor

.Conlml

FIGURE 6

72



Poet Process Mode

Post Process Mode is a visualization, both static and dynamic, of the

information of interest to the user. This mode includes graphical

plotting tools, and animated playback capability. The extraction tool

converts the binary journalized data into ascii information. The

filter mechanism then prepares it in the appropriate format for the

display tool requested. Figure 7 describes the backplane instance for

the post process mode of J-MASS.

Application Agents Supporting
Post-Process

•Sel_'_ D=t= -P,,rform Stah_¢=l/
•Joun'.d Gr sphl¢ al Oper done
•ExtemaJ Oats -Sodp((Batch)

•Cre=te FIItwo -Intwec'Svo
•Glemwato PP File

•Select Ope, at'or,.=
.Sta_s_¢=l

•_fy or= O.la
•Run Script

•Prepe, e Repo_
•Auto_tal¢ Toxl

h-,co,porate

FIGURE 7

73



SIMULATION RUNTIME AGENT (SRA) ARCHITECTURE

The J-MASS Simulation Runtime Agent (SRA) architecture is depicted in

Figure 6. The SRA is "expanded" in this view to show its own

architecture. In fact, any agent on the SSE backplane may in fact be

another recursive instance of the SSE level. Notice the SRA has its

own backplane. The SSE level and SRA level backplanes could in fact

be the same. In our current implementation, they are not, but both

are distributed in nature using standard Unix (TCP/IP) socket message

passing mechanisms. What is important to note in the SRA is the

encapsulation of the spatial object, synchronization object, data

management object, journalization object, and others away from the

model objects. Thus, a true "plug and play" architecture is achieved

because any given object may be replaced in the architecture without

perturbing the other objects. In the SRA, each team is a single

executable using a shared memory implementation, providing

significantly faster communication than "inter-team" communication,

which uses Unix sockets. Just as the SSE level architecture is

distributable, so too are the "teams" within any given SRA. A J-MASS

system may in fact have more than one SRA, each communicating over the

SSE level backplane. In fact, we plan to demonstrate an Ada SRA with

Ada model objects communicating with C++ SRA and C++ model objects

over the SSE IBP mechanism. "Players" communicate with each other by

placing information on each others "ports" facilities. Players do NOT

require apriori knowledge of what team the other player is on, the

team synchronizers work with the SRA synchronizer to "locate" the

appropriate port. Again, the model objects remain "un-perturbed" with

this approach. Journalization of output is accomplished by the

journalization object, using state information maintained in the Data

Management Package (DMP). In this way, non-intrusive journalizaing

occurs. Figure 8 represents the expanded view of the SRA.

74



J-MASS Architecture

Simulation Runtime Agent
(SRA) Detail

Simulation RunTImeInterconnectBackplane0BpI

Teem 1

__ _ ...

FIGURE 8

COMMERCIAL POTENTIAL

The J-MASS concepts and philosophies are not entirely original. The

backplane methodology, message brokering mechanisms have been espoused

by OMG and others. However, J-MASS has applied these concepts to a
generalized Modeling and Simulation System.

J-MASS brings the idea of standards for digital simulations, both in

structure and interface. This guarantees "plug and play"

philosophies, both from model components and architecture components

point of view. J-MASS espouses the idea of "plug and play" throughout
the architecture to include tools, objects (model components), etc.

The J-MASS notion of graphical tool environment coincides with

standard commercial technology as well. Expanding that concept which
permits (automated) standard compliance with specified standard

structures is another potential benefit to the commercial world.

J-MASS itself does NOT prescribe what objects or systems are modelled

with its architecture. For example, the object repositories could

represent traffic objects, manufacturing objects, weather objects,

organizational objects, utility objects, etc. The system is designed
so that the M&S communities build object hierarchies and behavior
appropriate for the particular domain.

75



76



77



W

0




