
NASA-CR-191796

Doc. No. 18-210062 REV-

VME Rollback Hardware for Time Warp
Multiprocessor Systems.

Michael J. Robb and Calvin A. Buzzell
Integrated Parallel Technology, Inc.
6994 W. Las Positas Blvd. Ste 209
Pleasanton, CA 94588

25 September 1992

(NASA-CR-191796) VME ROLLBACK N94-32483
HARDWARE FOR TIME WARP
MULTIPROCESSOR SYSTEMS Final Report
(Integrated Parallel Technology) Unclas
51 p

G3/62 0010554

Prepared for

NASA
National Aeronautics and Space Administration
Washington, B.C. 20546

JPL
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109

Table of Contents

1.0 In t roduct ion 3

1.1 Time Warp and the RBC Module 3
1.2 Time Warp with and without RBC 4

2.0 Phase II Project Objectives 6

8.0 RBC Hardware Module Functional Overview 6

4.0 RBC Functional Requirements 8

4.1 Installed-vs- State Memory 8
4.2 Max. State Memory per Node 8
4.3 Max. Amount of State per Process 8
4.4 Max. Number of Processes and Memory Allocation ..8
4.5 Minimum State Size 9
4.6 Dynamic Process Creation 10
4.7 Memory Fragmentation 10
4.8 Dynamic Process Destruction 10
4.9 Dynamic State Size Growth/Shrinkage 10
4.10 Number of Previous States Retained 10
4.11 State Memory Expansion Increments 11

6.0 Phase II Research Conducted 11

5.1 Systems Configuration 11

5.1.1 Sun 3 Configuration 12
5.1.2 Sun 4 Configuration 13

5.2 Vendor Survey 14
5.3 Time Warp Modifications 16

5.3.1 Xrbc 16
5.3.2 Rbc_test 16
5.3.3 Application Bank 16
5.3.4 Application Spot 17
5.3.5 Application Pucks 17

5.4 Functional Description and RBC Block Diagram 18

5.4.1 RBC Block Diagram Description 18
5.4.2 RBC Functions 21

6.0 Results Obtained 24

6.1 Sun 3 Single Node Testing 24

6.1.1 Effect of CutofT on Elapsed Time 24
6.1.2 Effect of State Size on Elapsed Time 25
6.1.3 Copy Time vs Elapsed Time and RBC Savings 27

6.2 Sun 3 Muti-Node Testing With Bank 29

6.2.1 Effect of Cutoff on Elapsed Time 29
6.2.2 Effect of State Size on Elapsed Time 30
6.2.3 Copy Time vs Elapsed Time and RBC Savings 32
6.2.4 RBC vs Sun 3 Object Times 33
6.2.5 RBC vs Sun 3 Event Statistics 34

6.3 Sun 3 Muti-Node Testing With Pucks 35

6.4 Sun 4 Single Node Testing 38

6.4.1 Effect of State Size on Elapsed Time 38
6.4.2 Copy Time vs Elapsed Time and RBC Savings 41
6.4.3 Single Node Testing With Pucks .. .42

6.5 Bank Consolidated Performance 44

7.0 RBC Improvements 45

8.0 Conclusions and Estimate of Technical Feasibility 46

9.0 References 47

III

PROJECT SUMMARY

Purpose of the Research

The purpose of the NASA Phase II Project described in this report was to develop and demonstrate
innovative hardware, to implement specific rollback and timing functions required for efficient
queue management and precision timekeeping, in multiprocessor discrete event simulations.
Powerful, general purpose, multiple processor computers offer the promise of significant speed
ups for many large simulation problems. However, expensive clock synchronization algorithms
are required for asynchronous simulation. These algorithms introduce substantial overheads
that often completely negate the benefits of parallel execution. The research effort was to
specifically evaluate the technical feasibility of building hardware modules which eliminate the
state saving overhead of the Time Warp paradigm, used in distributed simulations on
multiprocessor systems.

Description of the Research

Integrated Parallel Technology designed, built and tested four (4) Rollback Chip (RBC) Modules
configured with up to sixteen megabytes (16 Mbytes) of state memory, and performed
modifications to NASA-JPL's Time Warp Operating System (TWOS), to allow performance
testing with existing simulations. The RBC modules were configured as standard VME modules
and integrated with both a Sun 3/260 VME backplane, and a SPARC IPX Sbus via a commercial
Sbus to VMEbus translator.

The RBC module was designed to allow over 256 processes, and up to 1 megabyte (Mbyte) of state
per multiprocessor node, providing Time Warp applications the opportunity to significantly
increase the amount of state able to be saved per process compared to current hardware limita-
tions.

A series of timing tests were conducted to document the performance of the custom hardware and
for use in the analysis of projected effects on Time Warp multiprocessor systems. Performance
testing was accomplished on single and multi-node Sun 3/260s, running the discrete event
simulations Bank, Spot, and Pucks.

Research Findings

The RBC hardware developed in this effort has demonstrated that modular hardware is able to
virtually eliminate the state saving overhead of Time Warp, with overall speed up dependant on
the state size and granularity of the simulation. Further, the hardware is able to provide users
with applications requiring large amounts of state to incrementally add memory to the hardware
to match their requirements.

Potential Applications of the Research

The RBC hardware provides significant speedup of large scale discrete event simulation prob-
lems and allow multiprocessors using Time Warp to dramatically increase performance.
Further, Time Warp applications with RBC will be practical even with large numbers of
processes and/or large amounts of state per process. For example, terrain objects in large
simulations which include the environment require megabytes of state.

BLANK WOT RLMED

1.0 INTRODUCTION

The purpose of the NASA Phase II Project! described in this report was to develop and demonstrate
innovative hardware, to implement specific rollback and timing functions required for efficient
queue management and precision timekeeping, in multiprocessor discrete event simulation. A
hardware mechanism to support state savings and rollback operations for Time Warp has been
proposed and studied by Dr. Richard Fujimoto at the University of Utah [Fuj87, Fuj88].

The research effort described in this report was conducted by Integrated Parallel Technology,
Inc. (IPT) in collaboration with Dr. R. Fujimoto, Georgia Institute of Technology, and Dr. S.
Bellenot, Florida State University. The approach of the effort was to develop and demonstrate
state saving and specific Time Warp operations on a custom hardware module, integrated in a
VME architecture. IPT designed and built four (4) Rollback Chip Modules configured with up to
sixteen megabytes (16 Mbytes) of state memory, and performed modifications to NASA-JPL's
Time Warp Operating System (TWOS) to allow performance testing with existing simulations.
Performance testing was accomplished on single and multi-node Sun 3/260's and a single node
Sun SPARC IPX, running the discrete event simulations Bank, Spot, and Pucks.

1.1 Time Warp and the Rollback Chip (RBC) Module

The Time Warp mechanism speeds up object-oriented discrete event simulation by providing a
synchronization protocol for multiprocessor computer systems [JefB2, JefB5]. Time Warp divides
a simulation into multiple objects running on separate nodes which schedule events for each
other. Events are scheduled for a particular virtual time and these events must be executed in the
correct order. Time Warp is optimistic, and always runs the event with the earliest virtual time
on each of its parallel nodes. If an event (message) arrives in the past, Time Warp will roll back
the target object to the appropriate time to correctly execute the new event. In order to allow an
object to roll back to a previous virtual time, old copies of the object's state, its collection of
variables, need to be saved. In TWOS, NASA-JPL's version of Time Warp, a copy of each object's
state is saved after every event. This state copying overhead is not required if the simulation was
executing sequentially, in virtual time order, on one node.

The Time Warp protocol allows for significant speedup in execution of applications involving
small states. However, the algorithms associated with state management introduce substantial
overheads that often completely negate the benefits of parallel execution [Fuj88, RMM88].
Jefferson acknowledges that this is a major stumbling block and estimates that approximately
one-third of the system overhead in JPL's implementation of Time Warp is state saving. This
fraction can be expected to rise as other overheads in the implementation (e.g., interprocessor
communication) are reduced. Also, the tested applications contain only a modest amount of state
(at most only four thousand bytes), and copy the entire state vector of each process after each event.
Attempts to minimize the effect of state saving overhead on performance have resulted in
applications specifically written with small state sizes and/or large granularity, and in proposed
modifications to the state saving algorithm, such as state skipping and periodic state saving, at
the cost of increased run times and complexity [Fuj89, Bel92|.

The RBC module was designed to offload the overhead associated with Time'Warp state saving
in a manner which was transparent to the applications programmer and with minimal
overhead cost to the simulation, while retaining the speed up benefits of Time Warp.

Work performed under NASA contract NAS7-1102, April 1990 to August 1992.

Conceptually, the Rollback Chip (RBC) module is a specialized memory board which is added to
systems running Time Warp, or other applications which require previous events and states to
be retained for later recovery in simulation time. The RBC looks like regular state memory to a
simulation object or process, with the exception that it keeps multiple copies (up to 64) of each
location (variable) in state memory. These previous copies of the state are not visible to the
simulation and the RBC controls which version of a location is provided to the node, based on
information provided by Time Warp. Each RBC module provides the necessary memory and
control hardware to offload the overhead associated with state saving, rollback and recovery, for
a single node of a multiprocessor. Because the node's state memory now resides on the RBC
rather than as part of the node memory space, this effectively frees all memory previously in the
processors local memory for tasks other than state saving. Further, the RBC memory is also
expandable which facilitates incremental growth for simulations with large states.

For a more detailed discussion of the Time Warp paradigm and its performance see Section 8,
References [Jef82, Jef85,and Jef87]. The concept of hardware support for Time Warp and develop-
ment of a "Rollback Chip" is discussed in references [Fuj87,Fuj881.

1.2 lime Warp With and Without RBC

Performance gains realized through the use of the RBC module over standard Time Warp
implementations can be summarized in three broad categories:

(1) State Saving Overhead

In standard Time Warp implementations state saving is time consuming due to the
requirement to copy the current state to a new state area on every "mark" or state save
operation. Consider a process which has just completed an event and must save its
state. Prior to starting the new event, memory is allocated for its state vector (the
previous memory area cannot be overwritten since it is now "saved" and cannot be
modified). However, data which is in the just saved state is needed by the new event
and it is possible that this new event will need a piece of data which was last updated
many states previously. Thus on each allocation of a new state block, the entire
previous state must be copied to the new state area prior to execution of the new event.

As an example, for a single MC68020 processor configured with 32 Kbytes of state and a
memory access time of 500 ns (for 4 bytes), 8 milliseconds are required to copy the state
block on each Mark operation. For a typical simulation, such as Bank, executing
20,000 events (equating to a cutoff of 5000 in section 6) a total of 160 seconds are
required for state saving alone. Depending on the granularity of the simulation (i.e.
amount of time spent in each event between saves), and the amount of non-state saving
overhead (e.g. communication overhead), state saving overhead can consume over
90% of the processor time.

Addition of the RBC module effectively removes all of the state saving overhead since
no copying is performed. Assuming a perfect implementation of the RBC module (i.e.
no overhead imposed by the RBC), the savings for a simulation would exactly equal
the state saving time of the node. Section 6, Performance Results, provides graphical
presentation of the efficiency of the RBC in capturing the state saving time.

(2) Memory Management Overhead

In NASA-JPL's version of Time Warp, run time memory is allocated from a single
heap consisting of several megabytes of memory. For the Sun 3 implementation the
standard heap size is 2 megabytes (heap size is user selectable). Allocation of memory
during run time is generally contiguous in memory at start up but becomes
increasingly fragmented as the simulation progresses, due to .the "sharing" of the
physical memory space with other processes, and local variables, etc. This results in
additional operating system overhead in allocation and de-allocation of memory
blocks to find areas where the saved state can reside, and can have a profound effect on
performance. In Section 6 we present performance curves showing a non-linear
behavior associated with the memory management routines with substantial impacts
on run time.

Addition of the RBC module completely off loads this function from the node. All
accesses to state memory occur in the same memory range and aggregate memory
usage on the node is substantially reduced, thus relieving the fragmentation effect.
State memory is contiguous in the RBC hardware for ease of bookkeeping but this is
not a requirement and is transparent to the processor. Additionally, since the
maintenance of previous states is now handled by hardware an additional
bookkeeping task is removed from the operating system.

(3) State Size

State blocks can consume large areas of memory for certain kinds of discrete event
simulations. Estimates at NASA JPL are for near term requirements of 16K bytes of
state per process and some applications could require as much as 1 Mbyte of state (e.g.,
environment modeling). If the local processor memory is fixed in size or if the
addition of memory imposes a performance limitation, saving large states can be-
come prohibitive.

As an example, assume an MC68020 processor configured with 4 Mbytes of state
memory per node (such as the BBN Butterfly multiprocessor) running an application
with 32 Kbytes of state. For 63 previous states saved, and 1 process per node, 2.09
MBytes of memory are required. Thus, approximately 50 % of available node memory
is consumed with the saving of current and previous states. As illustrated by this
example, even with modest state sizes local memory can become "state bound" as
large numbers of previous states or large numbers of processes are generated.

Addition of the RBC module provides up to 64 Mbytes of installed memory per node
when fully configured, corresponding to up to 1 Mbyte of state memory and 63 previous
states retained. The node provides a single state memory "window" corresponding to
the state size, thus freeing up the remainder of its local memory for other uses.
Additionally, the the RBC allows for state size growth in increments, up to the 1 Mbyte
maximum, depending on the application requirements.

2.0 PHASE H PROJECT OBJECTIVES

The objectives of the Phase II program were to:

(1) Build and test production Rollback Modules based on the Phase I prototype.

During the Phase II effort four (4) RBC modules were designed, built and tested. Three of
the modules were populated with 4 Mbytes of state memory and one module was populated
with 16 Mbytes of memory. All four modules were packaged as 9U X 400 mm VME wire
wrap boards, suitable for installation in a 9U VME chassis such as used in the Sun 3/260
series workstations.

(2) Develop and demonstrate an interface to multiple Rollback modules which is easily
adapted to multiple commercial multiprocessor computers.

As part of the Phase II effort, a vendor survey was conducted to identify a standard
interface applicable to the greatest number of commercial multiprocessors. The specific
results of the vendor survey are presented in section 5, Research Conducted, of this report.
The general conclusion reached was that the VME interface standard was the most widely
accepted standard suitable for a memory device such as the RBC.

The Phase II effort demonstrated two interface configurations for the RBC module, a
direct interface to the VME backplane of the Sun 3/260 workstation and an indirect
interface with a Sun SPARC IPX, S-Bus based, workstation through a commercially
available VME translator module.

(3) Build and demonstrate the performance of multiple rollback modules integrated with a
common interface to a commercial multiprocessor.

The Phase II effort developed a number of test and debug routines for the Sun workstations
which provided specific timing and performance data on the RBC module. Performance
testing was performed for both the Sun 3/260 and the SPARC IPX implementations.

(4) Demonstrate system "proof of concept" of the Rollback modules in a system by integrating
the Rollback modules in a commercial multiprocessor with Time Warp software running
real applications.

The standard Time Warp application Pucks, and two applications, Bank and Spot, which
were written for this effort were used for performance testing of Time Warp with and
without the RBC module. A discussion of these applications is provided in section 5, Phase
II Research Consucted. Performance results are provided in section 6, Results Obtained.

3.0 ROLLBACK CHIP (RBC) MODULE FUNCTIONAL OVERVIEW

In a system configured with RBC modules each processor communicates with its RBC via the
local node memory interface. The RBC module monitors all accesses to and from local memory
by the processor node, and any access which is destined to be a state access (either read or write) is
routed to the RBC hardware controller, which provides the needed data or performs the required
action. The mechanics of state saving are removed from the processor and allocated to the RBC
hardware controller. The hardware implementation of state saving does not involve data
copying as new state blocks are allocated since this would result in only marginal time savings

over the existing methodology used in Time Warp. Rather, the RBC hardware keeps track of the
location of the most recent data for all state addresses in the current or previous mark frames. A
write to a state variable results in a write to the Current Mark Frame (CMF) which is now located
in the state memory on the RBC module. A read from state results in the RBC hardware locating
the frame in memory which contains the most recent version of the address being accessed, and
returning it to the processor.

The RBC implementation provides for 65 total frames of state memory. The "newest" or current
frame (referred to as the Current Mark Frame) represents the frame currently being utilized by
the node processor. The "oldest" frame (referred to as the Oldest Mark Frame) represents the
frame which is the furthest in simulation time away from the CMF and is also ahead of the GVT
(Global Virtual Time). The maximum distance, in frames, between the CMF and OMF is 62
frames (CMF + OMF + 62 frames = 64 frames total being tracked). One additional frame,
referred to as the Archive frame, holds for each state address, the last valid piece of data written,
for all frames prior to GVT. If during a state read no valid data is located in any of the 64 tracked
frames then the "last" valid piece of data for that location is available in the Archive frame.

The tracking of the locations in state memory containing valid data is accomplished through the
use of a large memory array referred to as the Written Bit (WB) memory. The Written Bit
memory array can be conceptualized as 1 Meg addresses X 64 Bits in size with each of the 1 Meg
array "addresses" corresponding to a state byte address nnd each of the 64 "bits", or columns, of
the array corresponding to one of 64 frames which the array tracks. A logic "1" in a location at a
particular address and column indicates that valid data is stored in that location in state
memory.

The RBC module resides in two (2) separate blocks of node processor memory (i.e. within the
node processors address space). The two blocks are referred to as the RBC State Memory area
and RBC Command area. The RBC State Memory area consists of the 1 Mbyte of memory which
is utilized for state memory accesses. This block is represented as single continuous block
aligned on 1 Mbyte boundaries and can be thought of as a 1 Mbyte window into the memory space
of the RBC. Address translation of state fragments from the node processor into RBC state
memory is performed at allocation time and not on the fly by the RBC hardware. The RBC
Command area consists of approximately eight (8) Kbytes of memory and is used to
communicate commands and status information between the RBC module and node processor,
and to load the RBC configuration tables.

The RBC's physical configuration is that of standard VME module which is designed to interface
one-to-one with individual processors in a multiprocessor system. Based on the results of the
vendor survey performed during this effort, the VME specification is the most widely accepted
processor interface for add-on memory devices in current generation multiprocessors. The
intent of the "standard interface" and "one-to-one configuration" approach is to allow the user the
flexibility to configure multiple RBC's to meet specific simulation requirements while
maintaining the simplicity of a standard interface.

r r
4.0 RBC FUNCTIONAL REQUIREMENTS

The functional requirements established for the RBC module during the Phase II effort are
delineated in the RBC specification, IPT Document Number 22-210018. To illustrate the major
capabilities of the RBC module excerpts from the specification are provided in sections 4.1-4.11
below.

4.1 Installed Memory -vs-State Memory per Processor or Node

Installed memory represents the total amount of memory on the RBC module exclusive of
the archive frame. Because the RBC must track previous versions of each object's state,
the installed memory does not represent the size of a particular node's state. The RBC
always retains 64 frames of state memory representing up to 63 previous versions of each
state variable, all of identical size. This requires that the RBC's installed memory be 64
times the size of the total state memory for a given node. Thus the maximum amount of
state memory for a particular RBC is always equal to it's installed memory divided by 64.

4.2 Maximum State Memory per Process or Node

The RBC hardware accommodates up to 1 Mbyte of total current mark frame state per
processor or node. The current mark frame state can be either one process with 1 Mbyte of
state or N processes with 1 Mbyte/N amount of state. The 1 Mbyte of state, configured
either as a single process or multiple processes, represents the memory area which must
be managed by the RBC hardware and which previous versions of must be kept.

4.3 Maximum Amount of State Allowed per Process

As indicated in paragraph 4.2 the 1 Mbyte of state may be configured as one process with
one Mbyte of state or as N processes with 1 Mbyte /N state per process on a node by node
basis. Thus the maximum amount of state memory per process is 1 Mbyte and each node
may be configured independently.

4.4 Maximum Number of Processes and Memory Allocation

The allocation of memory within the RBC is defined in terms of memory "segments". A
segment is defined as a block or portion of RBC state memory which has been allocated to
a specific process. Segment definition is performed via the loading of segment
definition tables and multiple segments within the same RBC module need not be the
same size. The capability for up to 256 segments is provided and segments may be
defined at any time.

In the RBC module, the defined memory segments are not explicitly linked to the
processes they support. The RBC tracks the segments rather than the processes. A single
segment can consist of only one process, however processes may consist of multiple
segments and the segments need not be contiguous. All references to the RBC are made
in terms of the defined segments.

As an example refer to Figure 0.5, Example RBC Memory Segmentation:

a. This RBC module (and processor node) contains one (1) Mbyte of state memory
and five processes.

Segment 1

Segment 2

Segment 3

Segment 4

Segment 5

Segment 6
Segment 7
Segment 8

i

} N

1

i

Ibylc

r

Figure 0.5, Example RBC Memory Segmentation

b. The five processes were initially allocated in segments 1-5 as shown in
Figure 0.5, with segment 1 corresponding to process 1, segment 2 to process 2 etc..

c. Segments 6, 7, and 8 were added during run time and all are associated with
process number 2.

d. The blank area at the end of the 1 Mbyte range represents uncommitted
memory.

All references to the RBC are made in terms of the defined segments. During RBC
memory references (i.e. state reads and writes) explicit identification of the segment
being accessed is not required since the segment number (when required) can be
determined from the address and the segment definition tables. However, for RBC
commands the segment number cannot be inferred, and must be explicitly referenced.
Thus for the RBC commands (Mark, Rollback, Advance etc.) the command must
indicate which segment is to be operated on. As an example, from figure 1, if process
number two (2) is to be rolled back four separate commands are required, one for each
segment. The rbc_driver and modified TW code main ta ins the necessary linkage
between the segment definitions and their processes. However the 256 max segments is a
hard limit which may not be exceeded regardless of the number of processes.

4.5 Minimum State Memory Size per Segment

The minimum state size for any memory segment is 1 Kbyte. The LSB (increment
value) for segment definition is also 1 Kbyte. To fully utilize the 1 Mbyte of available
state memory at least one segment must be defined as greater than the 1 Kbyte increment
value (since only 256 total segments are allowed).

4.6 Dynamic Process Creation

The RBC module provides the capability to dynamically create a new process on a given
node during run time. Creation of processes (segments) is limited to those which will fit
within available memory segments. The RBC itself does not provide the capability to
directly shift or move segments to reclaim memory which has become fragmented as a
result of process destruction.

4.7 Memory Fragmentation

Creation of processes (segments) is limited to those which will fit within available
memory segments. The RBC itself does not provide the capability to directly shift or
move segments to reclaim memory which has become fragmented as a result of process
destruction.

The capability to consolidate memory fragments is implicitly provided in that the
capability to destroy and re-initialize a process is provided. Thus by successive
destruction and creation processes may be moved to allow more efficient memory
utilization.

4.8 Dynamic Process Destruction

As previously indicated, the RBC is concerned with memory segments and not
processes. Destruction of a process results when the segment definition or definitions
utilized for that process is written over for use by another process. Thus a process can be
considered to be "destroyed" only when its definition data has been overwritten.
However, in practice simply not issuing RBC commands to the segments associated with
a process effectively destroys it.

4.9 Dynamic State Size Growth/Shrinkage

Dynamic growth or shrinkage of state memory is supported in the RBC module through
the use of the memory segments as outlined in sections 4.4 - 4.6. When utilizing
dynamic memory with the RBC the following cautions apply:

a. The "expanded" state vector is treated as a new process or segment by the RBC
hardware. New CMF and OMF counters are used, a new archive frame is
established, and a new portion of the WB memory is utilized. The expanded
process must be initialized just as a new process would be to avoid returning
spurious or old data.

b. When issuing RBC commands to the expanded process all segments which make
up the process must be explicitly commanded so that they stay in synchronization.

4.10 Number of Previous States Retained

64 versions or "Frames" of the state are tracked and stored at all times in the RBC
hardware. The 64 frames consist of 1 frame of CMF state and 63 frames of state history.

10

4.11 State Memory Expansion Increments

State memory (exclusive of the archive frame) is expandable in increments of power of
two from 1 Mbytes to the fully configured 64 Mbytes. Since state memory accommodates
both the current mark frame and the 63 state history frames the available CMF state
memory per processor is actually state memory/64. Table 1 summarizes the available
configurations for state memory and the corresponding CMF state sizes. Also, the WB
memory is not expandable and thus will always be configured as a 1 Meg X 64 array.

Table 1. State Memory vs CMF state size

State
Memorv Installed

1 Mbyte

2 Mbytes

4 Mbytes

8 Mbytes

16 Mbytes

32 Mbytes

64 Mbytes

CMF
frame size

16 Kbytes

32 Kbytes

64 Kbytes

128 Kbytes

256 Kbytes

512 Kbytes

1.024 Mbytes

5.0 PHASE II RESEARCH CONDUCTED

This section describes the work carried out during the Phase II effort to create the RBC modules,
perform modifications to the Time Warp code and conduct performance testing on the Sun
workstations.

5.1 Systems Configuration

Referring to Figure 1, Sun 3 Systems Configuration, and Figure 2, Sun 4 Systems Configuration,
a depiction of the two configurations used for test and analysis of the RBC modules is provided.

For maximum performance as an add-on memory board, each RBC module must reside on its
individual node's memory bus and ideally would outperform the nodes memory both in State
saving and in state memory accesses. Since the RBC is essentially competing with the node's
memory interface during performance testing, any induced delays in the path from the node to
the RBC will directly impact results.

In Figures 1 and 2, the PC-AT Debug Terminal is used as a test and debug device which provides
a path to the RBC via its RISC processor (DSP56001). This feature allows for interrogation of all
internal DSP registers, interrogation of memory, load and modification of code, program
execution in single step or run mode, and interrogation of RBC board parameters. The link from
the PC to the RBC consists of a direct connection to the DSP via a memory mapped, 8 bit parallel

11

port, which is implemented with a flat ribbon cable connector mounted on the front RBC module.
The debug port, with modified cabling, can support up to 8 RBC's simultaneously. Use of the debug
port requires firmware resident in the DSP as well as software and hardware resident on the PC,
and is therefore not accessible by the user.

Also in both figures 1 and 2, the RS-232 link provides the ability to down load code and files from
the Sun network to the PC for further down loading to the RBC module (DSP code development is
performed on the Sun 3).

5.1.1 Sun 3 Configuration

As shown in Figure 1, the configuration for single and multi-node Sun 3 testing consists of a
network of Sun 3/260's which are connected via an ethernet link. Each RBC module resides on
the Sun's VME backplane along with other devices (memory board, display board etc.). Message
communication for Time Warp is provided by the ethernet link. In this configuration the RBC
outperforms the node in state saving but is slightly slower than the node for a standard memory
reference. Thus the overhead cost of using the RBC appears partly as a slower memory reference
time. The major reason for the slower response are:

a) On-Board Cache - The Sun 3/2xx series of workstations are provided with a 25 mhz, 64
Kbyte on-board cache. When the Sun 3 uses the cache no time penalty for acquiring
and accessing the VME bus is incurred in the transaction. Since the RBC resides only
on the bus, any access to it must always incur the VME access penalty.

b) RBC Response Time - The access time of the prototype RBCs built for this effort are
somewhat slower than a standard memory reference due to the complexity of the
module and its initial implementation in wire wrap rather than printed circuit board.

Ethernet Link

Sun 3/260 #2
Camelia

Sun 3
CPU

Debug I/F

RS-232
Link

Sun 3/260 #1
IPT

Sun 3
CPU

Debug I/F

PC-AT
Debug
Terminal

Host I/F

Figure 1, Sun 3 Systems Configuration

12

Subsequent versions of the board will provide improved access times, as discussed in
Section 6, Performance Results.

c) Sun 3 Device Interleaving - The Sun 3 VME controller provides two separate protocol
implementations for VME devices. Devices which respond within a preset timing
window are considered "fast" while those outside the window are "slow". Because the
RBC response time is outside the "fast" window, additional timing delays are
introduced by the Sun 3 in implementing the "slow" protocol.

While faster versions of the RBC will reduce the difference between the memory reference times
it is clear that an add-on memory device cannot perform at speed with a CPU's main memory,
especially when caching is involved. If the RBC were incorporated in the design of a CPU's
memory controller we would not expect this difference to occur. Additionally, the results in
section 6 show that of the two effects (state saving time and memory reference time), state saving
is generally the more dominant.

6.1.2 Sun 4 Configuration

As shown in Figure 2, the configuration for single node testing of the Sun 4 consists of a single
Sun SPARC IPX which is connected via an ethernet link to the Sun 3 network. The ethernet link
is provided for file and disk support in testing rather than for multi-node Sun 4 performance
testing. This is because of incompatibilities between the MC68020 chip used in the Sun 3s and the
SPARC chip used in the IPX, resulting in an inability to run Time Warp in a mixed Sun 3/Sun 4
network. In this configuration the RBC module resides in a stand alone VME chassis with an S-
Bus to VME translator module^ providing the connect path to the SPARC's Sbus.

Accesses to the RBC prototype from the the Sun 4 are slower than for standard Sun 4 memory
because:

a) Translation Latency - Use of the S-Bus to VME Bus translation module results in the
imposition of approximately 1 microsecond (lus) of translation latency on each state
read or write to the RBC module.

b) On-Board Cache - Like the Sun 3 series of workstations, the Sun 4 IPX is provided with
64 Kbyte of on-board cache but at 40 mhz instead of 25, as on the Sun 3. The Sun 4 is
rated at 3-5 times the speed of the Sun 3, depending on the application.

c) RBC Response Time - The RBC response time to access attempts by the Sun 4 is
identical to its Sun 3 response time.

The intent of the Sun 4 testing is primarily to verify that the RBC can be interfaced to a standard
VME device with little or no modification, and to identify any functional errors in the module's
performance. The large latency inherent in the use of the general purpose translation module
precludes its likely use in a deliverable configuration. As discussed in Section 6, Results
Obtained, some anomalies were found in the RBC's behavior when subjected to the higher
throughput rates of the Sun 4 as compared to that of the Sun 3. Also, as discussed for the Sun 3
implementation, it is clear that an add-on memory device cannot perform at speed with a CPU's
main memory, especially when caching is involved. As with the Sun 3 the results in section 6

2 PT-SBS915 Sbus-to-VMEbus Adapter, Performance Technologies Incorporated, 315 Science
Parkway, Rochester New York, 14620

13

show that of the two effects (state saving time and memory reference time), state saving is
generally the more dominant.

Ethernet Link

PC - AT
Debug
Terminal

Figure 2, Sun 4 Systems Configuration

5.2 Vendor Survey

During the initial months of the Phase II effort, a survey of major multiprocessor manufacturers
was conducted to determine the hardware interface which is most widely supported for add-on
boards and modules, at the node level (for interface purposes the RBC module can be
conceptualized as a standard memory board which is added to each node of the machine). The
intent of the survey was to ensure that the design of the RBC module allowed it to be interfaced with
as many machines as is practicable.

Twelve manufacturers were surveyed and the data collected is summarized in Table 2,
Multiprocessor Vendor Survey Results. From the data presented in Table 2 and the technical
analysis of the various interfaces, the following conclusions can be drawn:

a. The majority of the multiprocessors do not support a recognized standard bus interface
at the individual node level. However, a number of machines do provide the ability to
interface with the node over a custom or semi-custom interface.

b. Based on vendor discussions, the lack of inclusion of a standard interface at the node
level appears in most cases to be an oversight in first generation machines. Vendors
have indicated that machines which are in the design stage or those which have just
recently been released will address the node level interface.

14

c. Where a recognized standard interface is currently implemented or planned in the
future, the VME bus standard is the accepted interface.

d. In general, the non-transputer based multiprocessor implementations offer the
highest potential for easy RBC implementation. This is due to the speed limitations
inherent in the serial transmission capability, which is built directly into the
transputer processors (chip) and is used for both interprocessor communication and
node I/O. While the capability is excellent for interprocessor communication, it is
generally unacceptable for a memory interface.

Table 2, Multiprocessor Vendor Survey Results

Vendor

BBN Advance Computers

Cogent Research

Concurrent Computer

Encore Computer

Intel Scientific Computers

Kendall Square Research

Meiko Scientific

Myrias Computer

NCUBE

Paracom

Sun Microsystems

Topologix

Processor

68020 (GP1000)
88100 (TC2000)

IMS T800 Transputer

Proprietary

NS32332

80386 (IPSC/2)
i860 (IPSC/860)

(no response to query)

IMS T800 Transputer

68020

Proprietary

IMS T800
IMS T414

68020 (Sim 3)
SPARC (Sun 4)

(no response to query)

Interface to RBC Potential
Direct

VMEI/F

V

V
V

V
V

VME I/F
via Adapter

V

V

V

V

I/F *
Difficult

V

V

V

V

V

V

* Interfacing the RBC with the current generation of these machines would either be difficult to
accomplish because of lack of a node interface capability, or because the node interface would
impose performance limitations on the RBC.

Based on the conclusions noted above and Table 2, the multiprocessor interface designed for the
RBC module was the VME standard, as originally proposed. For processors which do not support
the VME standard an adapter will be designed in the future to translate the node processor's
interface to the VME standard.

15

r r
5.3 Time Warp Modifications and Added Modules

To use the RBC hardware with Time Warp several software changes were required to be made
and a number of modules added. Since the RBC is a device to the Unix operating system, an RBC
device driver was needed. In Versions 4.1.x of the SunOS Unix, the Unix kernel needed to be
modified to include the RBC device driver. To accommodate both the additions required to
directly support Time Warp and the requirement for the ability to interrogate the RBC directly
during test, the driver functions were divided between the two modules rbc_driver and rbc_debug,r.

The Time Warp code for TWOS version 2.5.1 was modified to use the RBC. The goal was to make
the use of the RBC transparent to the Time Warp user in all ways other than speed of execution.
The modified code uses RBC memory for all state variables. The modified TWOS supports
dynamic creation of objects, and dynamic allocation of state variables but not dynamic load
management of objects. (This last feature isn't available even on the non-RBC Sun version of
TWOS 2.5.1.). To use the modified TWOS, the applications programer merely links his/her
program with a Time Warp library. The library shares most of its files with TWOS 2.5.1, but is
compiled in a separate directory.

The modified code has been tested on Sun 3's and Sun 4's and includes some bug fixes found in
later versions of TWOS. One can actually run this code without having a rollback chip board
installed. The code will automatically run the rbc_emulator code if there is no RBC board.

To aid in test and debug of the RBC modules, a number of user routines were written including a
simulated Time Warp event sequence, and a stand alone debug package. Additionally, two Time
Warp applications were written for performance studies and a standard Time Warp application
was modified (made smaller) for use with the RBC. These routines are discussed in sections
5.3.1 -5.3.5.

5.3.1 Xrbc

Xrbc is a test and debug program which was used to test the ability of the RBC hardware module to
perform all its required functions. Xrbc allows for all commands available on the RBC memory
map to be executed, one at a time, while varying the segment ID, frame number, and starting and
ending memory location. This code was the primary vehicle for RBC module test prior to
integration.

5.3.2 Rbcjest

Rbc_test is a test and debug program which is used to test the ability of the emulator version of
Time Warp and also the RBC hardware to perform multiple marks rollbacks and advances.
Rbc_test can be conceptualized as an emulation of a standard Time Warp run with the exception
that the sequencing of events is fixed and the operations (Mark, Rollback, Advance) occur in
groups rather than interleaved. This routine also tests the ability of the hardware and software to
detect and recover from Mark Frame Counter (MFC) overflow and underflow.

Rbc_test is provided as a deliverable routine with the RBC modules and is run as a confidence test
after installation.

5.3.3 Application Bank

Bank is small simulation which was written for this effort and was used to obtain performance
numbers for the rollback chip board (RBC). Bank is loosely modeled on a computer subsystem
with multiple memory banks that have multiple memory accesses. The analogy is tenuous, but it

16

does explain the name. There is only one object type in bank. This object type is also called
"bank". In a bank initialization section (its init code) sends an intialization message to be sent to
itself at time zero.This initialization message causes the bank object to send MSG_NUM
messages to a random bank object with a random arrival time (exponential with mean 10.0).
Each message is either a read or write message. Write messages contain a value and a location to
write the value in the objects memory bank. Read messages ask the bank object to read a given
location. Either message generates another message for a random bank with an arrival time of
now plus a random time (exponential with mean 10.0), messages which would arrive after
CUTOFF (1000.0) are not sent.

Bank contains many compile time constants which provides a convenient method for
performance testing of the RBC under various loads. These are:

NUM BANKS - Number of banks is the number of bank objects in the simulation. Since
there are ^really' only 16 different random streams in the random code in rand.c, more that
16 bank objects will no longer have the same degree of randomness.

BANK SIZE -Bank size is the number of integers in the bank objects "memory bank'. The
actual size in bytes of bank object state is 4 times BANKJ3IZE plus 17.

NUM_MSGS - Number of messages relates to the amount of parallalism available in the
simulation. At each simulation time, there are NUM_MSCS times NUM_BANKS messages
in the system.

Another way to look at bank is an n-server system (n=number of bank objects) with nm clients
(m= number of messages). The strange behavior is that each server can service a client in 0
service time (hence no waiting), but its arrival at its next random server (topologically, the
servers are fully connected) is a random time in the future.

5.3.4 Application Spot

Spot is an application which was also written for this effort and is related to bank. Spot uses the
TWOS feature of dynamically allocating state memory. Spot was used to test the rollback chips
implementation of this feature. Each spot object is a modified bank object. Spot_0 generates 10
dynamically allocated pieces of state. At random times, a spot object will "pass* a dynamically
allocated chunk (if it has any) to the spot with the next higher number. Thus, if the simulation
lasts long enough all of the pieces will migrate to the highest numbered spot object, spot_7.

5.3.5 Application Pucks

Pucks is an application which simulates the interaction of colliding pucks and has the capability
to run on a single node processor. The version of Pucks in use for the RBC consisted of a standard
configuration which was modified to allow it to run on the small number of nodes in use for this
effort. Standard Pucks uses 128 sectors, 48 cushions and 128 pucks. Each sector requires 7 Kbytes
of state memory, each cushion 5 Kbytes and each puck 5 Kbytes for a total of 1776 Kbytes. In a
typical Time Warp run with large numbers of nodes, the memory utilization per node for Pucks
is small since the allocation is distributed over all the nodes. However, in this effort Pucks
memory allocation must be distributed across the four nodes available, theoretically resulting in
over 400 Kbytes per board. Therefore Pucks was modified to reduce the number of Sectors,
Cushions and Pucks to allow testing on as little as a single node. The single node version uses 1
sector, 4 cushions and 1 puck resulting in a total state memory requirement of 32 Kbytes (which
consumes one half the memory available on a single node with 4 mb of memory). For 2-node
Sun3 and single node Sun 4 performance testing, additional versions of Pucks were built to
provide as close a match as possible between the application and the RBC's installed memory.

17

5.4 Functional Description and RBC Block Diagram

This section describes each of the major functional blocks of the RBC module and each of the six
basic RBC functions as they relate to Time Warp operations. Refer to Figure 3, RBC Block
Diagram, a simplified block diagram for the following discussions. A complete RBC block
diagram is provided, as deliverable documentation, as IPT drawing Number 20-210019.

5.4.1 RBC Block Diagram Description

Segment IP (SID) Latch and Buffer, and Segment Encoder (Seg Enc) Table

All RBC operations are based on the ID of the segment (or process) being acted on. As shown in
Figure 3, the output of the SID latch and Seg_Enc Table both directly drive the SID bus (labeled
Segment_no.) which in turn drives a number of the memory elements on the RBC. These
memory elements contain the current run time configuration for all processes which are active
on the node. There are two methods for communicating the segment number to the RBC:

(1) Node Commands - For commands from the node (Mark, Rollback, Advance), where
the Segment ID must be explicitly referenced by the node, the SID latch is used to set the
correct address on the RBC memory elements and to communicate the SID to the, DSP
processor (connection not shown in figure 3).

(2) State Read/Write - For state reads and writes, the SID must be inferred from the
memory address requested by the node to correctly set the segment address on the RBC
memory elements. This is accomplished through the Segment Encoder table, and is
performed on the fly for each read or write.

CMF and OMF Counter Memories

In order to properly maintain the written bit memory, and thus the state memory, the RBC must
maintain pointers to the CMF (Current Mark Frame) which represents the frame that the node is
currently working in, and the OMF (Oldest Mark Frame) which represents the last frame
tracked prior to GVT, for each segment in the simulation. Maintenance of the CMF and OMF
pointers is crucial to correct RBC operation because they represent the "span" of the simulation.
Because of background processing on the RBC it is possible for written bits outside the current
span of the simulation to be set. Additionally, because 64 frames are maintained and typical
scenarios have in excess of 30,000 events, the memories are circular in nature (i.e. modulo) and
will "roll over" many times during a run. Because of this, the simulation span occurs for values
of CMF both greater and less than the OMF.

Written, Bit Array

The written bit array is a large memory area which is used to track the location of valid pieces of
data in state memory. The array can be conceptualized as 1 Meg addresses X 64 Bits in size with
each of the 1 Meg array "addresses" corresponding to a state byte address and each of the 64
"bits", or columns, of the array corresponding to one of 64 frames which the array tracks. A logic
"1" in a location at a particular address and column indicates that valid data is stored in that
location in state memory. Although visualized as 1 meg X 64, the WB memory is actually much
smaller in size to conserve board space and reduce cost. The physical implementation of the WB
memory is 128K addresses X 64 bits, with each of the 128K addresses corresponding to a Double
Long Word (64 data bits wide), and is comprised of eight (8) 128 K X 8 high speed static RAMS.

18

Figure 3, RHC Block Diagram
19

r

As show in figure 3, the address input to the array consists of 17 bits of the node address bus, which
is also fed forward to the state memory array. The output of the written bit array is fed into the
MRV extraction and mask logic block which acts on the array and is tasked with maintaining it.

MRV Extraction and Mask Logic

The MRV extraction and mask logic essentially performs two functions; first it maintains the
written bit array by selectively 'ORing' or 'ANDing1 the written bits with a specified mask
pattern, and second, it performs MRV extractions to locate the Inst valid piece of data for a
particular address. Patterns for the varied mask operations are stored in the mask EPROM and
inputs to the EPROM, consisting of the OMF, CMF and rollback frame destination, are used to
vary the mask output. Additionally, the inputs to the mask EPROM may be directly set by the DSP
during background tasks.

Pjefix Multiplexor

The prefix multiplexor is controlled by the DSP 56001 and RBC control logic and is used to select
the frame which is to be accessed for a particular read or write. For State writes the CMF is used.
For Sate Reads the MRV is used. During advances the prefix input for the MRV is loaded with the
OMF frame number closest to the New_OMF, containing valid data.

Note that during the advance, data is read from the OMF and latched into the latch labelled
LATC. The DSP then initiates a Write to Archive. The effect is that old versions of valid skate
data are written into the archive frame as the GVT progresses.

Tag Memory, Current Rollback Count, and Rollback History

The tag memory, current rollback count memory and rollback history memory, form a
subsystem within the RBC module. Conceptually, when a rollback is commanded by the node
processor for a particular segment, the RBC should cycle through the written bit memory clearing
all written bits from the Old_CMF (where we were) to the New_CMF (where we have rolled back
to). However the time to clear the written bits can be long for large states since each address must
be accessed to perform the clearing. For a scenario with a large number of rollbacks the potential
for significant performance degradation exists. To remove the potential problem, at the cost of a
little complexity, the 'lazy rollback1 approach was implemented.

In lazy rollbacks a rollback history is kept of all rollbacks for each segment. Each time a
rollback is commanded, the destination frame for this rollback is added to the history and the
rollback count is incremented. Additionally, previous destinations in the rollback history are
compared to the current destination and if the current destination is "deeper" (further back in
time) than the entry in the history, it is updated to the "new" destination. An entry in the history
can be thought of as containing a record of the furthest rollback destination that has been
commanded since the time that this rollback entry was commanded. The wrinkle here is that the
entries in the history are indexed by the rollback count rather than by time. The tag memory is a
shadow of the written bit memory and contains n rollback count entry for each written bit address.
The tag memory entry signifies the "time", in rollback counts, at which this written bit memory
location was last updated. The rollback history, indexed by the tag memory's output, will provide
the destination frame, for each address in the written bit memory, of the deepest rollback that has
ocurred since the last time this location was accessed. With this subsystem, rollback updates can
now be performed on state read and writes, a single address at a time rather than for all addresses
as before.

20

r

DRAM Configuration, State Memory, and EDAC

The DRAM configuration and address translation function is used to match the prefix and state
address requests from the RBC with the installed memory configuration for the board. This
module would not be required if only a single installed memory configuration were available
(i.e. address and prefix lines would be hard coded). The address translation essentially slides
the prefix across the upper address lines depending on the installed memory.

State memory consists of up to 64 Mbytes of Dynamic RAM configured as 8M X 64 bits and using
of 256K X 4 bit chips. The design of the RBC can handle either 256KX4's or 1 M X4's depending on
the required memory. However, because the prototype boards are wire wrap modules they only
support the 256KX4's. Archive memory is fixed at 128KX 64 bits which equates to the full 64 Mbyte
implementation. Archive memory is not expandable and is implemented with 256K X 4's.

Dynamic RAMs are susceptible to two types of errors generally referred to as 'hard' and 'soft'
errors. Hard errors are indicative of device failure in either single or multiple bits and when
detected require replacement of the 1C. Soft errors are radiation induced errors which are a
problem for Dynamic RAMs because of the capacitive technique used to store the logic level of
each cell in the memory array. Soft errors result in apparent random errors in data stored in the
memory. Soft error rates increase with DRAM density per chip and are additive across the
memory array. Because of the very large size of the state memory array and the chip densities
utilized, a prediction of the Mean Time Between Failure for soft, single bit errors in the array
was computed at between 105 and 325 days. While this is not anticipated to be a problem for the
prototype modules it would be unacceptable for production units. Therefore an EDAC (Error
Detection and Correction) circuit which provides detection and correction of single bit errors, and
detection but not correction of multiple bit errors was implemented. Based on the addition of the
EDAC circuitry the MTBF for soft, single bit errors was recomputed to be 109 years. However this
does not account for hard failures. With the addition of the hard error probability the estimated
MTBF is 30 years. Note that in the prototype modules the EDAC correction circuitry is disabled
due to a design problem which was not able to be corrected prior to the completion of the Phase II
effort.

5.4.2 RBC Functions

In general all RBC manipulations during run time are centered around the Written Bit memory
and MRV (Most Recent Version) extraction hardware. There are six basic commands or
functions (disregarding housekeeping and initialization commands) which are issued by the
node processor during run time. These are discussed in the following sections.

5.4.2.1 Transparent Read/Write

A transparent read/write is defined as an access to local node memory which does not fall within
the state or command memory ranges as defined for the RBC module. RBC state and command
area memory definitions are selectable by dip switch settings on the RBC, which feed the address
decode logic to provides the necessary comparison. The RBC hardware ignores an attempted
access by the node processor to an area which is not either contained in a state memory block or
the RBC command area.

21

5.4.2.2 State Read/Write

An attempt to access state memory causes the RBC hardware to respond with the requested action
(i.e. read or write).

Conceptually, for a state read the RBC merely performs an MRV extraction to locate the frame
number where the last valid data exists for this address (defined as the frame number closest to
the CMF containing a logic 1), sets the prefix on the state memory, and performs the requested
read. However, because of the addition of the rollback history subsystem the read's complexity
increases. Thus, before the RBC can perform the MRV extraction nnd read, it must first perform a
rollback update on the written bits, to insure that bits which have been rolled back since the last
access of this location are cleared to prevent accessing "future" data. After the rollback update,
the RBC must also update the tag memory for this state address to reflect the fact that the written
bits have been correctly set.

Similarly, for a state write, the RBC conceptually must write the data provide by the node into
memory in the Current Mark Frame (CMF), and store a logic T in the written bit memory
location corresponding to that address in the CMF. However, because of the addition of the
rollback history subsystem and the requirement to support byte, word and longword transfers the
write's complexity increases. Thus for a write to state, the RBC must first perform a rollback
update on the written bits, to insure that bits which have been rolled back since the last access of
this location are cleared to prevent accessing "future" data. After the rollback update, the RBC
must also update the tag memory for this state address to reflect the fact that the written bits have
been correctly set. Additionally, since the data being written could potentially be byte wide data
and the RBC is organized as double long words, care must be exercised to insure that data which is
stored in the remaining byte fields of the double long word are also correctly updated. The
approach to maintaining this data integrity is to copy forward the data stored in the remaining
byte fields along with the new data, and then write the new double longword into the CMF frame.
However, to perform a copy forward requires an MRV extraction be performed to locate the last
valid whole double long word.

5.4.2.3 Mark Command

A mark command from the node processor indicates to the RBC hardware that the node wishes to
save the current state and allocate a new state memory block for use in the next frame. Since the
RBC does not use state memory copying the mark command is implemented by simply
incrementing the CMF frame counter by 1.

5.4.2.4 Rollback Command

A rollback command is issued by the Node processor when the optimistic strategy employed by
Time Warp results in the Node receiving a message or event which is supposed to occur at a time
that has already passed. When issuing the Rollback the processor will also indicate how many
frames are to be "rolled back" (i.e., removed from the state history). For the RBC, conceptually, a
Rollback is quite simple. The frames which are in the affected range as specified by the rollback
distance need simply be "popped" or decremented from the CMF counter. No change in the State
memory itself is needed since valid data is tracked in the written bit memory. However the WB
memory must be purged of bits in "rolled back" frames which are no longer valid. This is
because upon the first Mark following a rollback the CMF counter will advance to a frame which
was previously "Rolled Back". It is unacceptable to have set bits in this frame erroneously
indicating valid data where none exists. As previously discussed, implementation of the
rollback history mechanism has removed the requirement to perform the written bit update
during the rollback command and has moved it to the state read/write. During the rollback
command the rollback history update is performed.

22

5.4.2.5 Advance Command

An advance command is issued by the node processor when the simulation has advanced far
enough to guaranty that states prior to some time are no longer needed (the data in the state
memory may be needed but the state itself as a point in time is not). The node processor calculates
the number of frames which can be advanced and writes this information to the RBC hardware.

Execution of the advance function is performed as a background task by the DSP and does not
materially impact the simulation, unless the advance is large enough to cause the RBC to
temporarily run out of frames while waiting for it to complete (see section 6, for further
discussion). The Advance task is the lowest priority task and is pre-empted by all other tasks.

In an advance the RBC interrogates the WB array for valid bits between the "old" OMF and
"new" OMF, based on the advance distance, for the process specified. Data represented by the
most recent valid bit for each WB address is physically copied from the indicated frame to the
archive frame. The OMF counter is advanced to a new OMF only after completion of the advance
operation.

23

RESULTS OBTAINED

Results of the performance tests for Sun 3 single and multi-node testing and Sun 4 single node
testing are provided graphically in the following sections.

6.1 Sun 3 Single Node Testing

Single node Sun 3 test results for Bank are provided in Figures 4 through 8.

6.1.1 Effect of Cutoff on Elapsed Time

Referring to Figure 4, Effect of Cutoff on Elapsed Time, the elapsed run time, in seconds, is
plotted as a function of State size per object, for various cutoffs. This is a plot of Sun 3 elapsed
times only, using a 3 megabyte heap. For this application (Bank) on one node and with 8 objects,
the total state memory for 128 Kbytes/object (the last plotted point) is 1 Megabyte. The intent of the.
plot is to show the effect of the simulation's cutofTtime on the elapsed time and to determine the
appropriate cutoff (if one exists) for use in subsequent test runs. For each cutoff above 1000 two
plots are provided. One is the elapsed time as measured, and the second is the calculated elapsed
time based on the cutoff of 1000.

1800

1600-

1400-

No. Objects - 8
Simulation = Bank
Platform = Sun3/260 IPT
No. Nodes = 1
Heap Size >= 3 Meg Calculated Cutoff @ 5000

PtOT-m M 5-1MK-001

Calculated Cutoff @ 2000

120 14040 60 80 100

State Size per Object (Kbytes)

Figure 4, Effect of Cutoff on Run Time

From the information provided a number of observations can be drawn.

• All three curves appear non-linear in shape. For a simple simulation such as bank
we would expect that as state size is increased and the number of events (cutoff) holds
constant that we would see a linear increase in elapsed time. Clearly, an additional

24

effect is present. As we shall see in later plots this effect is present to some degree in
all the Time Warp without RBC runs.

• While non-linear all three curves track, as evidenced by the correlation between the
calculated and measured traces. The slight increase in elapsed time between the
calculated and measured runs appears to be a function of timing resolution in the
lower cutoff values.

• Based on figure 4, the effect of cutoff on run time appears negligible and therefore a
cutoff of 5000 will be used for subsequent Sun 3 single node testing.

6.1.2 Effect of State Size on Elapsed Time

In Figure 5, Effect of State Size on Elapsed Time Through 32 Kbytes/object, and Figure 6, Effect of
State Size on Elapsed Time Through 128 Kbytes/object, the elapsed run time, in seconds, is plotted
as a function of State size per object, for the Sun 3 with and without the RBC. Two variants of the
Sun 3 runs are provided based on the heap size specified for Time Warp.

For the prototype modules built in the Phase II effort, two configurations were implemented. Three
of the RBC modules contained 4 megabytes of installed memory and one contained 16 megabytes.
For the 16 Mbyte variant the maximum state size per object, for Bank with 8 objects, is 32 Kbytes.
Thus, Figure 5 represents the measured times for the maximum RBC configuration built under
this effort. Figure 6 provides additional test results for the Sun 3 and an extrapolation of the RBC
times up to the maximum of 1 megabyte of state.

PIOT If*R&AStOOl

450-

400-

No. Objects = 8
Simulation = Bank
Platform = Sun3/260 IPT
No. Nodes = 1
RBC = S/N 001, 16Mb
Cutoff = 5000

10 15 20 25
State Size per Object (Kbytes)

Figure 5, Effect of State Size on Elapsed Time Through 32 Kbytes/object

25

Of interest with respect to the two graphs are the following observations:

• From Figure 5, RBC speed up for state sizes through 32 Kbytes/object is:

For Heap Size of 2 Meg => ranges from .993 to 5.52

For Heap Size of 3 Meg => ranges from 1.02 to 3.20

• From Figure 6, estimated speed up through 128 Kbytes/object, for heap size of 3 meg
ranges from 1.02 to 15.3

• From Figure 6, estimated speed up through 96 Kbytes/object for heap size of 2 meg ranges
from .993 to 22.15

• The effect of Sun 3 heap size on elapsed time is clearly demonstrated in both graphs with
the 2 meg heap size failing to run above a state size of 96 Kbytes/object (the simulation
appears to run but does not progress).

• As expected, the curve for RBC elapsed time vs state size is essentially flat in Figure 5.
As seen in Figure 6, there is some slope associated with the extrapolated curve, which
appears to be due to increases in the background advance time as the state sizes become
large.

2500-
No. Objects = 8
Simulation = Bank
Platform = Sun3/260 IPT
No. Nodes

S/N001.16Mb
Cutoff» 5000

No RBC, Heap size = 2 meg

No RBC, Heap_size .= 3 meg

Extrapolated RBC

40 60 80 100

Stale Size per Object (Kbytes)
120 140

Figure 6, Effect of State Size on Elapsed Time Through 128 Kbytes/object

26

6.1.3 Copy Time vs Elapsed Time and RBC Savings

In Figure 7, Effect of State Size on Copy Time Through 128 Kbytes/object, the elapsed run time and
time spent copying state, in seconds, are plotted as a function of State size per object, for the Sun 3
without the RBC. Two variants of the Sun 3 runs are provided based on the heap size specified for
Time Warp.

State copy times for the Sun 3 were obtained by instrumenting the Time Warp state copy routine.
Copy time reflects only the time actually spent copying the state vector and does not include
memory management processing.

2500- PLOT iana~3-ii«ooi

2000-

w

1500-

No. Objects = 8
Simulation «= Bank
Platform » Sun3/260 IPT
No. Nodes = 1
Cutoff - 5000

No RBC, Heap_size = 2 meg

/ No RBC, Heap_size = 3 meg o>

60 80

State Size per Object (Kbytes)

100 120 140

Figure 7, Effect of State Size on Copy Time Through 128 Kbytes/object

The purpose of Figure 7 is to relate state copy time to elapsed time, and to highlight the non-linear
behavior associated with the Sun 3 runs, as state size is increased. Clearly both Sun 3
implementations start out linear for small state sizes. Also, the 2 meg heap run deviates from
linear much earlier than the 3 meg heap run. We believe that the deviation from linear as state
size increases is an artifact of the fragmentation of heap memory, that occurs during the Time
Warp runs, and that the increased elapsed time is caused by Time Warp's memory manager
allocating and de-allocating memory chunks, to free blocks large enough for the state to reside
in. Thus while the increased time is related to state size it is not strictly state copy time. Based on
Figure 7, one can envision that for nodes with larger amounts of internal memory the linear
region would persist, and that conversely for nodes with smaller amounts of memory the non-
linear effect would be accentuated.

27

In Figure 8, RBC Savings vs Copy Times, the calculated savings for the RBC module, and time
spent copying state for Time Warp, in seconds, are plotted as a function of State size per object.
Two variants of the Sun 3 runs are provided based on the heap size specified for Time Warp.

The intent of this graph is provide a measure of the effectiveness of the RBC in extracting all of the
potential savings which are available in a Time Warp run. The theory behind the RBC module is
that it off-loads state copy time and therefore the achievable speed up is limited to extraction of that
state copy time alone. Based on the state copy times vs elapsed time presented in Figure 7, we
would expect that in addition to the state copy time originally postulated, that the RBC would also
save the excess memory management time, due to fragmentation, since with the state saving off-
loaded from the node, memory fragmentation should not occur.

400-

350-

300-

No. Objects - 8
Simulation = Bank
Platform = Sun3/260 IPT
No. Nodes «1
RBC-S/N 001,16Mb
Cutoff - 5000

J*LQT-1BRn-33»PI

15 20 25

State Size per Object (Kbytes)

Figure 8, RBC Savings vs Copy Times

The graph presented Figure 8 shows that the RBC does in fact extract essentially all of the state
copy time and in addition appears to save the memory management time as well.

28

6.2 Sun 3 Multi-Node Testing With Bank

Multi-node Sun 3 test results for Bank are provided in Figures 9 through 15. Multi-node testing
for Bank was accomplished on a 2-node network rather than 4-node, as originally planned, due to
delays in integration in the final months of the effort.

6.2.1 2-Node Sun 3, Effect of Cutoff on Elapsed Time

Referring to Figure 9, 2-Node Effect of Cutoff on Elapsed Time, the elapsed run time, in seconds,
is plotted as a function of State size per object, for various cutoffs. This is essentially the same plot
as was used for the single node case to show that cutoffhas negligible effect on run time, and thus
allow a single cutoff value to be used for subsequent runs. This is a plot of Sun 3 elapsed times
only, using a 3 megabyte heap. For this application (Bank) on two nodes and with 8 objects (4
objects per node), the total state memory for 128 Kbytes/object (the last plotted point) is 1/2 Megabyte
per node. For each cutoff above 1000 two plots are provided. One is the elapsed time as measured,
and the second is the calculated elapsed time based on the cutoff of 1000.

No. Objects = 8
Simulation = Bank
Platform = Sun3/260

IPT & Camelia
No. Nodes = 2
Heap Size = 3 Meg

Cutoff = 5000

20 120 14060 80 100

State Size per Object (Kbytes)

Figure 9, 2-Node Effect of Cutoff on Elapsed Time

Once again all three curves are non-linear in shape, and a high correlation appears between the
measured and calculated curves above the cutoff of 1000. Comparison of the correlation with the 1-
node measurements shows higher deviation for the 2-node case. This appears to be a result of the
higher run-to-run variance in the 2-node measurements which is likely due to the asynchronous
nature of the ethernet communications.

29

6.2.2 2-Node Sun 3, Effect of State Size on Elapsed Time

In Figure 10, 2-Node Effect, of State Size on Elapsed Time, Through 32 Kbytes/object, and Figure
11, 2-Node, Effect of State Size on Elapsed Time, Through 128 Kbytes/object, the elapsed run time,
in seconds, is plotted as a function of State size per object, for the Sun 3 2-Node, with and without the
RBC.

»
The RBC modules used in 2-node testing are implemented with 4 megabytes of installed memory.
For the 4 Mbyte RBC variant the maximum state size per object, for Bank with 8 objects (4 objects
per node), is 16 Kbytes (16 Kbytes * 4 Objects * 64 states = 4 Mbytes). Figure 10 provides the
measured times for the 2-node RBC configuration. Figure 11 provides additional test results for
the Sun 3 and an extrapolation of the RBC times up to 1/2 megabyte of state.

200-

150-

No. Objects = 8
Simulation = Bank
Platforms = Sun3/260,

IPT & Camelia
No. Nodes = 2
RBC = S/N 001,002 4 Mb
Cutoff •= 5000

No RBC
Heap=2M

No RBC
Heap = 3M

RBC

CD

.2
$
E

100-

50-

6 8 10 12

State Size per Object (Kbytes)

14 16

Figure 10 2-Node, Effect of State Size on Elapsed Time Through 32 Kbytes/object

Of interest with respect to the two graphs are the following observations:

• From Figure 10, RBC speed up for state sizes through 16 K/object is:

For Heap Size of 2 Meg => ranges from 1.01 to 1.54

For Heap Size of 3 Meg => ranges from 1.02 to 1.50

• From Figure 11, estimated speed up through 128 Kbytes/object, for heap size of 3 meg
ranges from 1.02 to 6.6

• From Figure 11, estimated speed up through 96 Kbytes/object for heap size of 2 meg
ranges from 1.01 to 8.18

30

Absolute speed up for the 2-node case when compared to the 1-node results appear to show
that the RBC performs less than half as well with the 2-node case. As will be shown in
Figures 12 and 13, in the following section, this is a direct result of the percentage of
state saving time going down as a result of the increase in communication time. In the
best case the RBC can only reduce the elapsed run time by an amount equal to the state
copying time and potentially the memory management time due to fragmentation.

Thus if a simulation consumes 90% of its time in state saving the RBC has a profound
effect on speedup. If however that simulation spends 10% of its time in state saving the
RBC will have negligible effect on speedup.

The effect of Sun 3 heap size on elapsed time is clearly demonstrated in Figure 11 but is
not apparent in Figure 10. This is because the aggregate state size on each node is
reduced by half from that of the single node test when the objects are split between the 2
nodes.

As expected, the curve for RBC elapsed time vs state size is essentially flat in Figure 10,
although as was shown with Figure 9 the deviation of the curves is more marked. Also,
as was the case in the single node test, there is some slope associated with the
extrapolated curve in Figure 11, which again appears to be due to increases in the
background advance time as the state sizes become large.

re
m

eno>

F
c
(T

1 <1VV/—

1000-

nnn

•

400-

200-

0-

No. Objects = 8
Simulation = Bank
Platforms = Sun3/260,

IPT & Camelia
No. Nodes = 2
RBC = S/N 001
Cutoff = 5000

,pB£

BftrSdfrggg A nfiti--

With RBC

,0024Mb

^•\
' . . .

x^
^

n
Run Time /
Heap = 2M /

/

/

^^

Exl

'

^

•apolated RBC

"̂

Run Time
Heap = 3M

/

S.

y

20 40 60 80 100

State Size per Object (Kbytes)
120 140

Figure 11, 2-Node, Effect of State Size on Elapsed Time, Through 128 Kbytes/object

31

6.2.3 2-Node Sun 3, Copy Time vs Elapsed Time and RBC Savings

In Figure 12, 2-Node, Effect of State Size on Copy Time Through 128 Kbytes/object, the elapsed run
time and time spent copying state, in seconds, are plotted as a function of State size per object, for
the Sun 3 without the RBC. Two variants of the Sun 3 runs are provided based on the heap size
specified for Time Warp.

As with Figure 7 for the single node case, the purpose of Figure 12 is to relate state copy time to
elapsed time and to highlight the non-linear behavior associated with the Sun 3 runs as state size
is increased. Also as with all of the 2-node runs a higher random deviation is shown than for the
single node runs. Clearly both Sun 3 implementations start out linear for small state sizes.
Additionally, the 2 meg heap run deviates from linear much earlier than the 3 meg heap run, and
because of the reduction in objects (and thus state memory) on each node, the deviation from
linear occurs after the 16 K/object cutoff point for the RBC modules.

1200
No. Objects = 8
Simulation «= Bank
Platforms = Sun3/260,

IPT&Camelia
No. Nodes «= 2
Cutoff = 5000
NO RBC

Av. Copy Time
Heap = 2 M Av. Copy Time

Heap = 3 M

40 60 80 100

State Size per Object (Kbytes)
120 140

Figure 12, 2-Node, Effect of State Size on Copy Time Through 128 Kbytes/object

In Figure 13, 2-Node, RBC Savings vs Copy Times, the calculated savings for the RBC module
and time spent copying state for Time Warp, in seconds, are plotted as a function of State size per
object.

Of interest with respect to the graph are the following observations:

• As with the single node case, the RBC appears to extract the majority of the copy time in
savings. However there is a larger difference then for the single node case. There are
two reasons for this:

32

r

- When running Time Warp on a single node, advances and marks occur but
rollbacks do not. Thus the overhead associated with rollbacks both in the RBC and the
rbc_driver are not included in the elapsed time.

- Because the 2-node implementation splits the 8 objects between the nodes, resulting
in 1/2 the state memory per node, the Sun 3 run times are essentially linear in the
region shown in the graph. Thus off-loading the state memory to the RBC does not
result in a reduction in memory management overhead, as was shown in the one node
case.

As is readily seen in Figure 13, the copy time accounts for less than 1/3 of the overall
elapsed time thus limiting the absolute speed up that the RBC can achieve.

250-

200-

No. Objects •= 8
Simulation = Bank
Platforms = Sun3/260,

IPT&Camelia
No. Nodes •= 2
Cutoff = 5000

Actual Savings 3M

6 8 10 12

State Size per Object (Kbytes)

Figure 13, 2-Node, RBC Savings vs Copy Times

6.2.4 2-Node Sun 3, RBC vs Sun 3 Object Times

Referring to Figure 14, 2-Node RBC vs Sun 3 Object Times, a graphical depiction of the increased
state read and write times for the RBC over the Sun 3 is provided. In Figure 14, RBC object times
are shown with black symbols. Both the committed and uncommitted object times are generally
greater for the RBC. The only difference computationally between an event's elapsed time with
the RBC versus the Sun 3 is the state memory access time and the overhead associated with RBC
command communication.

33

Commited Object CPU Times

LJJ

25

20-

15-

10-

No. Objects = 8
Simulation «= Bank
Platforms «= Sun3/260,

IPT & Camelia
No. Nodes = 2
Cutoff = 5000

I
2 6 8 1 0

State Size per Object (Kbytes)

Figure 14, 2-Node RBC vs Sun 3 Object Times

6.2.5 2-Node Sun 3, RBC vs Sun 3 Event Statistics

Referring to Figure 15, 2-Node RBC vs Sun 3 Event Statistics, a graphical depiction of the number
of events started, completed, rolled back, and committed for the RBC and Sun 3 are provided.
Once again the RBC statistics are shown with black symbols. Of interest with respect to Figure 15
is that the RBC has generally increased event activity over that of the Sun 3 for all state sizes
above 2 K/object. Additionally, the trend appears to show a widening gap between the RBC and
Sun 3 as the state size increases. This phenomenon is not clearly understood but appears to be
explained by the fact that since less time is spent in state saving for a fixed communication
topology, the objects spend more time processing and therefore tend to run further ahead in
simulation time. Since the objects are generally moving further ahead more events are started,
completed and of course rolled back.

34

35000-

3000(

25000-

w

UJ

B

20000-

15000-

5000-

Events Started

>—^-—=
' Events Completed

Events Commited

10000-j-Evenls Ro||ed Back

I I
No. Objects = 8
Simulation = Bank
Platforms = Sun3/260,

IPT&Camelia
No. Nodes ° 2
Cutoff - 5000

Ev_start Su3

Ev_start rbc

Ev_comp Su3

Ev comp rbc

Ev_commi'.ed

Ev_RB Su3

Ev RBrbc

4 6 8 10 12

State Size per Object (Kbytes)

Figure 15, 2-Node RBC vs Sun 3 Event Statistics

14 16 18

6.3 Sun 3 Multi-Node Testing With Pucks

Multi-node Sun 3 test results for Pucks are provided in Figures 16 and 17. Multi-node testing for
Pucks was accomplished on a 2-node network rather than 4-node, as originally planned, .due to
delays in integration in the final months of the effort.

In Figure 16, 2-Node Pucks, RBC vs Sun 3 Elapsed Time, the elapsed run time, in seconds, is
plotted as a function of the test run number, for the Sun 3 with and without the RBC. Additionally
the average elapsed time is also plotted for each set of runs. Plots of elapsed time versus state size
are not provided because Pucks does not have the capability to vary its state size per object as Bank
does.

In Figure 17, 2-Node Pucks, Savings vs Copy Time, the average state copy time, RBC savings,
and object times, in seconds, are plotted as a function of test run number, for the Sun 3 with and
without the RBC.

35

140

130

120

110
o>

P

|100
Qj

Simulation = Pucks
Platforms = Sun 3/260,

IPT SCamelia
No. Nodes = 2
RBC = S/N001.0024Mb

70

Run Number

Figure 16, 2-Node Pucks, RBC vs Sun 3 Elapsed Time,

Of interest with respect to the two graphs are the following observations:

• In Figure 16, the average speedup ratio for the RBC implementation over the RBC is
only 1.09.

• As is readily seen in Figure 17, the average copy time for pucks accounts for only 15
seconds out of the 123 second run time. Thus state copy time accounts for less than 10 %
of the overall elapsed time thus limiting the absolute speed up that the RBC can achieve

• Also in Figure 17, the RBC appears to be "saving" only 11 seconds of the 15 available as
a result of the state copying. This difference is not in line with what we expect based on
the results for Bank previously examined. The apparent discrepancy is resolved by
comparing Bank and Pucks state read/write behavior. Pucks performs many more
state reads and writes than Bank does during a simulation run. Our estimate is that
Pucks essentially reads the entire state on each event. As discussed in section 5.1.1 the
RBC prototypes have a slower access time when performing state reads and writes then
standard Sun 3 memory. This slower access time coupled with the large number of
state accesses results in the reduced copy time savings.

36

The increased aggregate state access times for the RBC is also reflected in Figure 17
in the 4 -5 second differential between object times.

HU —

35-

30-

-

90-

1 (1-

0-

Simulation = Pucks
Plattforms •= Sun 3/260,

IPT. Camelia
No. Nodes = 2
RBC -S/N 001, 002 4 Mb
Cutoff m 5000

Ave. Obj '

1̂
Ave; Obj

Ave. 5

1

Time RBC

HH
Time Su3

Savings

j

^^___^4

\

\ J

— 1

r

,

— « -4

1

1

— • '

h- '

Ave State Cop

•

y Su3

>

Ave. State Copy RBC

3 4 5 6 7
Run Number

Figure 17, 2-Node Pucks, Savings vs Copy Time

10

37

6.4 Sun 4 Single Node Testing

Single node, Sun 4 test results for Bank are provided in Figures 18 through 23. Note that the intent
of the Sun 4 testing is primarily to verify that the RBC can be interfaced to a standard VME device
with little or no modification, and to identify any functional errors in the module's performance.
The testing performed in the Phase II effort has shown that the RBC can be interfaced to different
VME interfaces with minimal modifications. The one area of potential concern is the variation
in VME bus time-out times, which is discussed in more detail in Section 7, Conclusions and
Estimate of Technical Feasibility. Additionally, some anomalies in RBC timing have been
noted as a result of the Sun 4 testing, as noted in the following discussions, particularly in the
advance background task.

6.4.1 Sun 4, Effect of State Size on Elapsed Time

In Figure 18, Sun 4, Effect of State Size on Elapsed Time Through 32 Kbytes/object, and Figure 19,
Sun 4, Effect of State Size on Elapsed Time Through 128 Kbytes/object, the elapsed run time for
Bank, in seconds, is plotted as a function of State size per object, for the Sun 4 with and without the
RBC.

No. Objects = 8
Simulation = Bank
Platforms = Sun 4
No. Nodes = 1

S/N001,16Mb

10 15 20 25
State Size per Object (Kbytes)

Figure 18, Sun 4, Effect of State Size on Elapsed Time Through 32 Kbytes/object,

38

In Figure 18 and 19, two separate RBC elnpsed time curves are presented, designated as
RBC_slo_adv and RBC_fast_adv. These two curves represent the elapsed time for the RBC when
running with two different versions of the DSP firmware. RBC_slo_adv is the DSP code as coded
in C. RBC_fast_adv is the DSP code with the update portion of the advance background loop coded
in DSP assembly. Additionally, Figure 18 provides two normalized curves designated as
Mov_slo_adv and Mov_fast_adv. These two curves provide the number of "mark rollovers"
(movers) for each of the DSP code versions shown. Mark rollovers are an absolute number and
not an elapsed time value, and therefore have been normalized to a maximum of approximately
20 for display purposes only.

Mark rollovers occur when the node requests that the RBC save or "mark" a frame but the RBC
fails to comply because no frames are available. The term "mark overflow" is derived from the
error message "frame overflow on mark" which is returned by the DSP. Mark overflows occur
when the DSP, in attempting to perform a background advance, fails to keep up with node's
requests for new frames. As an example:

- At an arbitrary time in the simulation, the CMF is 56, the OMF is 5, and no rollbacks or
advances are in progress.

- At GVT update the Node issues a request to advance 10 frames. The RBC accepts the
advance command and initiates a background advance. The New_OMF for the segment
will be 15 at the completion of the advance.

- While the DSP performs the background advance, the simulation progresses and the node
issues mark commands, of distance 1, to the RBC. The first 12 marks are processed with
no problem and the resultant CMF is now 4 (CMF has rolled over the mark frame stack).
On the next mark attempt, if the background advance has still not completed, the RBC
cannot complete the mark command because the CMF will over run the OMF. If this were
allowed the node would then write over state memory data in the OMF frame.

- RBC to node protocol provides that on a mark overflow, the node will retry the command at
a later time and is essentially waiting for the RBC to complete its background advance.

Of interest with respect to the two graphs are the following observations:

• From Figure 18, RBC speed up for state sizes through 32 Kbytes/object ranges from .95 to
1.71 for the RBC_slo_adv trace and from .975 to 2.33 for the RBC_fast_adv trace.

• From Figure 19, estimated speed up through 128 Kbytes/object ranges from .95 to 2.31 for
the RBC_slo_adv trace and from .975 to 7.17 for the RBC_fast_adv trace.

• From Figure 18, Sun 4 elapsed times are essentially linear for increasing state size
through 32 Kbytes/object. From Figure 19, non-linear behavior of the elapsed time trace
does not become apparent until approximately 80 Kbytes/object.

• From Figure 18, The curve for RBC_slo_adv deviates considerably from the flat
characteristic exhibited in the Sun 3 plots discussed previously. The RBC_slo_adv
appears to show a very high correlation with the curve for mark rollovers, indicating
that the node is waiting for the RBC to free frames so that the simulation can continue.

• From Figure 18, The curve for RBC_fast_adv also deviates from the expected flat
characteristic, however it is clear that the deviation occurs only for state sizes above 25
Kbytes/object, well above the 12 K/object deviation point for the RBC_slo_adv code. As

39

350

300-

w. 200

1
k-
•o
CD

(0
.0.
Ill

100

50

r~

with the RBC_slo_adv curve, high correlation exists between the deviation from the
flat characteristic and the occurrence of mark rollovers.

Thus, we conclude that insufficient frames, due to the slow execution of the advance
background loop, is the likely cause of the deviation in overall speed up, and that the
incidence of mark rollovers increases with increasing state size. It also appears that
the potential for this condition is present in both the Sun 3 and Sun 4 implementations.
A partial solution has been implemented and results shown in Figure 18. Based on
the modifications to the advance background loop we believe further improvements in
performance are possible with more extensive changes from C to Assembly.

From Figure 18, extrapolated results for both the RBC_sIo and RBC_fast are provided.
The RBC_slo extrapolation assumes a straight line fit through all points plotted. The
extrapolation for RBC_fast assumes a straight line without inclusion of the last 3 plotted
points (i.e., assumes that straight line behavior holds).

PLOT-1rtf.8u«-h *̂4_1»>

No. Objects =
Simulation •> E
Platforms = S
No. Nodes = 1
RBC = S/N 00

S',/**~JK fn^amn-as.
^^^^^^^^ H « i i

8
tank
jn 4

1,16Mb

^5^
*r 1 *̂

x

"p

R

X
BC slo adv

BCJast_adv

X

, • • * *

/
S

t 1 •

/

•••""

/ No RBC

. • • • " "

20 40 60 80 100

Slate Size per Object (Kbytes)
120 140

Figure 19, Sun 4, Effect of State Size on Elapsed Time Through 128 Kbytes/object

40

6.4.2 Sun 4, Copy Time vs Elapsed Time and RBC Savings

In Figure 20, Sun 4, RBC Savings vs Copy Times, the calculated savings provided by the RBC
module, the times spent copying state and elapsed run time for the Sun 4, in seconds, are plotted as
a function of State size per object.

As with the single node Sun 3 graph of Figure 7, the intent of this graph is provide a measure of the
effectiveness of the RBC in extracting all of the potential savings which are available in a Time
Warp run. In Figure 20, the curve labeled RBC run Time is from the RBC_fast_adv of Figure 18,
and the curve labeled Su4 Run Time is the Sun 4 without RBC of Figure 18. As indicated in the
discussion of Figure 18, the Sun 4 run time is essentially linear and tracks with the Sun 4 copy
time. Also, Sun 4 copy time consumes approximately 2/3 of the elapsed time and the RBC savings
plot shows good correlation with the copy time for state sizes under 25 Kbytes/object. After the 25
Kbyte/object point the RBC savings deviates significantly from the Sun 4 copy time, as expected.

No. Objects«»8
Simulation = Bank
Platforms «= Sun 4
No. Nodes = 1
RBC-S/N 001.16 Mb

10 15 20 25

State Size per Object (Kbytes)

Figure 20, Sun 4, RBC Savings vs Copy Times

41

6.4.3 Sun 4, Single Node Testing With Pucks

Single node Sun 4 test results for Pucks are provided in Figure 21.

In Figure 21, RBC vs Sun 4 Elapsed Time for Pucks, the elapsed run time, object time and state
copying time, in seconds, are plotted as a function of test run number, for the Sun 4, with and
without the RBC. Plots of elapsed time versus state size are not provided because Pucks does not
have the capability to vary its state size per object as Bank does.

Of interest in Figure 21 is that the elapsed time for the RBC actually exceeds that for the the Sun 4
by approximately 11 seconds. The reasons for this apparent discrepancy in RBC performance
are:

• As is readily seen in Figure 21, the average state copy time (St_cp Su4) for pucks with
the Sun 4 accounts for 15 seconds out of the 23 second run time. Thus state copy time
limits the potential RBC savings to 15 seconds or less.

50-

40-

20-

1 0-

0-

Simulation = Pucks
Platforms = Sun 4
No. Nodes = 1
RBC -S/N 001. 16 Mb

•_•-•-*-<

T T » T '

1 1 1 1

^ 0 0 ^ |

T T T -¥• J

0 0 ft <

i i i i

^ » ^ ^ i•™ •"̂ "̂•~^̂ ~™^̂ ~~^F™i——

T T T T '

0 0 0 ^

i i i i

! » • • • '

' T T T T '

0 0 ^ 0

i i i i

! • • • - •

' T T T -^ C

i i i i

Run Time RBC

Run Time Su4

Object Time RBC

St cpSu4
Dbject Time Su4

1 1 1 1

"w*o
<D

p
TJ
0)
V)ra£.
UJ

10 15
Run Number

20 25 30

Figure 21, RBC vs Sun 4 Elapsed Time for Pucks

• Also in Figure 21, the RBC object time is approximately 21 seconds while the Sun 4
object time is only 6 seconds. The discrepancy in both object times and elapsed run

42

times is resolved by recalling the state read/write behavior of Pucks and the
configuration of the Sun 4 test system.

As mentioned in the 2-node Sun 3 results, Pucks essentially reads the entire state
vector on each event. However for the Sun 4 test configuration each state read or write
must travel over the Sbus to VMEbus translator to reach the RBC. The translation
latency in the Sbus to VME bus link is approximately 1 usec. Additionally, the RBC
itself has a slower response time than standard Sun 4 memory and the IPX is further
enhanced with a 40 mhz, 64 Kbyte on-board cache. Clearly under the limited test
conditions used, the RBC cannot compete with the Sun 4 's memory speed. The high
number of state accesses in Pucks merely enhances the effect.

Thus in Figure 21, we see that the difference between the run times is -11 sees and the
primary contributors to that difference are the -15 seconds of object time difference and
some fraction of the +6 seconds of state copy time.

The intent of this test with the Sun 4 is primarily to verify that the RBC can be interfaced to a
standard VME device with little or no modification, and to verify that Pucks will run and give
correct output results. The large latency inherent in the use of the general purpose translation
module precludes its likely use in a deliverable configuration.

43

6.5 Bank Consolidated Performance

Finally,.in Figure 22, Consolidated Elapsed Times, the elapsed run times for Bank on one node,
in seconds, is plotted as a function of State size per object, for the Sun 4 and Sun 3, with and without
the RBC. In Figure 22, RBC run times are once again shown with black symbols and Sun 3 and
Sun 4 with clear symbols. Of particular interest in Figure 22 is the crossover point which occurs at
a state size of approximately 26 Kbytes/object, and which shows that the Sun 3 with RBC can out
perform a Sun 4 without RBC.

450-

400-

350-

No. Objects = 8
Simulation - Bank
Platforms = Sun 4, Sun3
No. Nodes = 1
RBC»S/N001,16Mb

10 15 20 25

State Size per Object (Kbytes)
30 35 40

Figure 22, Consolidated Elapsed Times

44

f"
I

7.0 RBC IMPROVEMENTS

As discussed in various sections of this report the prototype RBC modules built under this effort
exhibited a number of performance anomalies during testing. Some of these have direct
influence on the test results while others relate to RBC produceability. The major areas for
improvement are:

(1) Module Cross-Talk

Due to the initial implementation of the RBC module as a wire wrapped rather than
printed circuit board and the high speed circuits used, the modules have exhibited
random cross-talk problems during some simulation runs. Additionally, during
initial integration testing of RBC S/N 001 the majority of "bug fixes"were related to
cross-talk rather than design errors (e.g., rerouting wires, moving I.C.'s, etc.).
Build of S/N's 002-004 allowed for a re-layout of 1C placement resulting in much
improved performance. The cross-talk effects have generally been manifested either
as an incorrect number of events completed in the simulation, due to a missread of a
state variable, or as a VME bus time out, caused by an aborted or spurious transfer
attempt.

VME bus time outs are reported to the user on the terminal and therefore are easily
detected. To determine if the correct number of events were run the user can either
rerun the simulation a few times to verify its stability, or run the simulation without
the RBC to obtain a benchmark.

The noise problems encountered with the first four modules coupled with the likely
requirement to increase the module's speed will require subsequent versions of the
RBC to be implemented as a printed circuit card rather than a wire wrap module.

(3) State Read/Write Access Times

As noted in section 5, the RBC access time for state reads and writes is slower than
that for both the Sun 3 and Sun 4. Because state saving is typically the dominant
overhead effect, especially for large states, the slower access time is not of concern for
most applications on the Sun 3. However Sun 4 access "times are substantially faster
than both the RBC and the Sun 3. The major component of the slower RBC access time
is the MRV extraction process for reads and the MRV extraction and copy forward in
writes. We believe that subsequent versions of the RBC could allow for inclusion of
the MRV extraction algorithm in a single integrated chip, which operates at
substantially higher throughput rates than the current five chip implementation.
Additionally, RBC architecture improvements should allow for the copy forward
algorithm to complete after temporarily latching incoming node data, and thus not
hold up the node.

While faster versions of the RBC will reduce the difference between the memory
reference times it is clear that an add-on memory device cannot perform at speed
with a CPU's main memory, especially when caching is involved. This will always
result in the RBC spending more time in its object and have to"make it up" with state
copying savings. The intent of speeding up the RBC is to reduce the difference and
thus be as efficient as possible in capturing the state copying time.

45

(3) VME Bus Time out Variance

The protocol established between the node and the RBC for implementation of
background and foreground tasks generally attempted to perform as many tasks as
possible in foreground to simplify the background to foreground transitions. The
protocol relies on a fixed value for the VME bus Time out from system to system and
the board relies on that time for its foreground processing. When moving from the
Sun 3 to the Sun 4 we found that there is considerable variance in this time out value,
resulting in the potential for a time out to occur while processing node commands.

Subsequent versions of the RBC should provide the capability to either change the time
out value on the module from system to system or restructure the firmware to only
handle tasks in foreground which can be handled in less than the minimum time out
value. The restructuring could be considered a sub component of the modifications
required to speed up the firmware in item (4) below.

(4) DSP Code Implementation

The DSP firmware coded under this effort was implemented in the C programming
language due to C's relative ease of programming and maintenance, when compared
to assembly language. Use of C allowed for rapid prototyping, at the expense of
routines which are slower than originally forecasted and which do not always lake
advantage of the DSP 56000's unique features. As shown in the performance results
of Section 6, the slower execution does not become readily apparent until running on
the Sun 4, with the appearance of the mark rollovers and corresponding impact on
elapsed time. However, the potential for degraded performance is partially
dependant on state size and is therefore present in both configurations, at larger state
sizes. Additionally, the slower firmware also is a component in the read/write
response times discussed in item (2) above, and in the VME bus time outs discussed in
item (3) above.

Future versions of the DSP firmware could be rewritten in assembly for faster
execution.

8.0 CONCLUSIONS AND ESTIMATE OF TECHNICAL FEASIBILITY

Based on the work performed in Phase II effort and the results and observations described in
previous sections of this report, each of the objectives established for the program have been met.

From the performance results presented in Section 6, the following conclusions can be
drawn:

• The RBC has been shown to capture essentially all of the potential savings, based on
state copy times, available in the applications used for this effort. Further, in
applications where state copy times do not account for a large percentage of the overall
elapsed time, RBC speed up is limited to modest gains as predicted.

• An additional component of Time Warp overhead which is related to state block
manipulations, but is not part of state copying, has been identified and shown to exist
in the simulations used in this effort. This overhead associated with state memory

46

management time has also been shown to be eliminated for systems utilizing the
RBC.

• Speed up values measured and estimated for the Sun 3 range from 1 to 22 depending on
the application, the state size and the granularity of the simulation. Sun 4 values
range from less than 1 to 7 again depending on simulation parameters.

• The RBC modules built under this effort have demonstrated the RBC's ability to be
easily configured with varying memory configurations and to free memory in the
node's local memory space.

• The RBC has been shown to interface with more than one processor type with
essentially no modifications required.

The production, integration and test of the four RBC modules used in this effort has demonstrated
the feasibility of the proposed concept in deliverable form. The modifications proposed for
subsequent versions of the RBC will provide enhanced performance and increased reliability
over that of the prototype units. Potential platforms and applications for production versions of the
RBC is dependant on the future use of Time Warp in commercial and government applications.

9.0 REFERENCES

[B*88] B.Beckman et al. Distributed Simulation and Time Warp: Part 1: Design of Colliding
Pucks. Proceedings of the SCS Multiconference on Distributed Simulation, 19(3):56-60,July 1988.

[Bel92] Dr. S. Bellenot, State Skipping Performance with the Time Warp Operating System
(performed at NASA-JPL), Math Dept., Florida State University, Tallahassee, FL 32306,
bellenot@math.fsu.edu

[CM,79]K.M. Chandy and J. Misra, Distributed Simulation, IEEE Transactions on Software
Engineering, SE-5(5):440-452, September 1979.

[Fuj87]R.M.Fujimoto, et al, The Roll Back Chip: Hardware Support for Distributed Simulation
using Time Warp, Technical Report AD-AJ 87823, University of Utah, Computer Science
Department, October 1987.

[Fuj88]R.M.Fujimoto, et al, Design and Performance of Special Purpose Hardware for Time
Warp, 15th Annual International Symposium of Computer Architecture, June 1988.

[Fuj89] Dr. R. Fujimoto, TWOS Measurements for Rollback Hardware, Technical Report
(performed NASA- JPL), August 9, 1989, School of Information and Computer Science, Georgia
Institute of Technology, Atlanta, GA 30332

[JefB2]D.Jefferson, et al, Fast Concurrent Simulation Using the Time Warp Mechanism, Part I:
Local Control, A RAND Note, Report No. AD-A129431, December 1982.

[Jef85]D.R. Jefferson. Virtual Time. ACM Transactions on Programming Languages and
Systems, 7(3):404-425, July 1985.

[Jef87] D. Jefferson et al, Distributed Simulation and the Time Warp Operating System.
Technical Report, Computer Science Dept., UCLA, August 1987.

47

[LCUW88]G.Lomow, J.Cleary, B.Unger, and D. West. A Performance Study of Time Warp.
Proceedings of the SCS Multiconference on Distributed Simulation, 19(3):50-55, July 1988.

[Mar88] J.Marti. RISE: The RAND Integrated Simulation Environment. Proceedings of the SCS
Multiconference on Distributed Simulation, 19(3), July 1988.

[PWM79] J.K. Peacock, J.W.Wong, and E.G. Manning, Distributed Simulation Using A Net-
work of Processors. Computer Networks, 3(l):44-56, February 1979.

[RBF88] M. Robb, C. Buzzell, R. Fujimoto, Modular VME Rollback Hardware for Time Warp,
1990 Society for Computer Simulation Western Multi-Conference, Distributed Simulation, 1988

[RB89] M. Robb, C. Buzzell, IPT Report - Phase I SBIR Final, VME Rollback Hardware for Time
Warp, Doc No. 18-210006, Aug 1989.

[RM87] D.A.Reed and R.M. Fujimoto. Multicomputer Networks: Message-Based Parallel
Processing Computer Science, MIT Press, 1987.

[RMM88] D.A.Reed, A.D. Malony, and B.D.McCredie. Parallel Discrete Event Simulation
Using Shared Memory. IEEE Transactions on Software Engineering, 14(4):541-553, April 1988.

48

NASA Report Documentation Page
1. Report No. 2. Government Accession No.

4. Title and Subtitle

VME Rollback Hardware for Time Warp Multiprocessor
Systems - Phase II Final Report

7. Authot(s)

Michael J. Robb and Calvin A. Buzzell

9. Performing Organization Name and Address

Integrated Parallel Technology Inc.
6994 W. Las Positas Blvd. Ste 209
Pleasanton CA. 94588

12. Sponsoring Agency Name and Address

NASA NASA Resident Office -JPL
Washington DC 4800 Oak Grove Dr.

20546-0001 Pasadena CA. 91109

3. Recipient's Catalog No.

5. Report Date

Octl 1,1992

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

11. Contract or Grant No.

NAS7-1102

13. Type of Report and Period Covered

Final

14. Sponsoring Agency Code

15. Supplementary Notes

none

16. Abstract

The purpose of the research effort is to develop and demonstrate innovative hardware to
implement specific rollback and timing functions required for efficient queue manage-
ment and precision timekeeping in multiprocessor discrete event simulations. The
previously completed Phase I effort demonstrated the technical feasibility of building
hardware modules (referred to as RBC or Rollback Modules) which eliminate the state
saving overhead of the Time Warp paradigm used in distributed simulations on
multiprocessor systems. The current Phase II effort will build multiple pre-production
Rollback hardware modules integrated with a network of Sun workstations, and the
integrated system will be tested by executing a Time Warp simulation. The rollback
hardware will be designed to interface with the greatest number of multiprocessor systems
possible. The authors believe that the Rollback hardware will provide for significant
speedup of large scale discrete event simulation problems and allow multiprocessors using
Time Warp to dramatically increase performance.

This is the Final report for the Phase II effrot.

17. Key Words (Suggested by Author(s))

Time Warp Discrete Event Simulation
Multiprocessors Combat Simulation
Asynchronous Simulation

19. Security Classif. (of this report)

Unclassified

18. Distribution. Statement

Approved for Public Release;
Unclassified - Unlimited

Mathematical and Computer
Sciences

20. Security Classif. (of this page)

Unclassified

21. No. o(pages 22. Price

NASA FORM 1626 OCT 86

