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Abstract 

This work investigates the effects of actuator saturation in multi-input, multi-output (MIMO) control sys

tems. The adverse system behavior introduced by the saturation nonlinearity is viewed here as resulting 

from two mechanisms: 1) Controller windup - a problem caused by the discrepancy between the limited 

actuator commands and the corresponding control signals, and 2) Directionality - the problem of how to 

use nonlimited actuators when a limited condition exists. The tracking mode and Hanus methods are two 

common strategies for dealing with the windup problem. It is seen that while these methods alleviate windup, 

performance problems remain due to plant directionality. Though high gain conventional antiwindup as well 

as more general linear methods have the potential to address both windup and directionality, no systematic 

design method for these schemes has emerged; most approaches used in practice are application driven. An 

alternative method of addressing the directionality problem is presented which involves the introduction of 

a control direction preserving nonlinearity to the Hanus antiwindup system. A nonlinearity is subsequently 

proposed which reduces the conservatism inherent in the former direction-preserving approach, improving 

performance. The concept of multivariable sensitivity is seen to playa key role in the success of the new 

method. 
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Part I 

Grant Report 

1 Introduction 

Nearly all practical control problems involve plants whose actuators are limited by inherent physical con

straints. Examples include constraints on valve openings in chemical process control; motor current in 

servomechanism control; flight control surface angle deflections, engine nozzle openings, and fuel flows in 

aerospace systems. These constraints are often modeled by a saturation nonlinearity operating on the con

troller output, as shown in Figure 1. In the multi-input, multi-output (MIMO) case, the saturation block 

represents decoupled saturation nonlinearities applied to each component of the controller output vector, 

Uc. producing the effective plant actuator signal, UIJ. More formally, this nonlinear operation is defined 

component-wise as follows: 
UIJ" = sate Ue,.), i = 1 ... m, 

where 
sat(Ue,i) = { Ue,' , lue,.1 $ Li , 

Lisgn(Ue,i) , IUe,.1 > Li 

m is the number of actuators, and L, is the limit value of the i'th actuator. The effect of this simple 

nonlinearity on system performance Can be quite significant, especially in the MIMO situation. To illustrate 

this problem, consider the following two-input, two-output linear control systems. 

System Sl: SISO 
P=~,K=~ 

8+0.5 s+0.8 

The nominal response of this system is shown in Figure 2, where the plant output, y, and the cor

responding actuator command signal, UIJ = Ue, are shown. The response of the limited system with 

L1 = 0.7 is shown in Figure 3, where it is seen that the plant output now overshoots its desired steady

state value of y = 1 (dashed line). Note that UIJ (solid line) and Ue (dashed line) are significantly 

different during limiting conditions. This discrepancy between UIJ and Ue is shown in Section 2 to be 

the cause of the adverse behavior of y. 

System Ml: MIMO [DSE87] 

P = 4(0.1 + s) [ 4 -5] K 1 [4 5] 
s -3 4 ' = 4(0.1 + s) 3 4 

This is an inverse-model based control system, designed for the decoupled closed loop response He,. = 

.":'1 I. The nominal response to a step reference command, rl = [0.615 0.788]T, is shown in Figure 4, 

where Y1 (solid line) and Y2 (dashed line) are depicted in the upper plot, and Ul (solid line) and U2 

(dashed line) are shown in the lower plot. The output responses for the limited actuator system are 

shown similarly in Figure 5, where Ll = L2 = 1. The controller output, Ue,1 (dotted line), is further 

shown to be very different from the true actuator command, UIJ,l. Comparing qualitatively Figure 5 

with Figure 3 illustrates that saturation in MIMO systems Can cause even more troublesome behavior 

than in the SISO case. 
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Figure 1: Limited closed loop system 

System M2: MIMO [CM90] 

p = 1 [4 -5] K = lOs + 1 [4 5] 
108 + 1 -3 4' 8 3 4 

This system yields a decoupled closed loop response identical to that of system Ml. The key difference 
is that the controller here is proper (i.e. has a direct feedthrough, or D term, in its realization), whereas 
that given in system M1 is strictly proper. This difference in controller structure will be shown in the 
sequel to be a significant factor in determining how the limit problem will be accommodated. The 
nominal and limited (L1 = L2 = 15) responses are shown in Figures 6 and 7, respectively, for the 
reference step r2 = [0.315 - 0.949]T. Note again the dramatic effect that limits have on this system, 
both during the time when the limits are in effect, and long after they cease. 

Since most control design methods allow or require specifications on actuator effort, one way to prevent an 
actuator saturation from occurring would be to explicitly design the controller so that its actuator commands 
never violate the limits for any expected reference commands. While this approach avoids the problems that 
limits introduce into the system, performance is usually compromised when operating well within the limits. 

A commonly used alternative approach to this problem employs a two-step design procedure. First, a 
control design is performed on the system to yield a system with desired closed-loop properties in the absence 
of actuator limits. Many physical considerations are likely to be used in this design, including actuator limits 
to establish relative sizes ofthe actuator commands. However, the limits are not considered when evaluating 
the resulting system performance. This procedure defines what will be referred to as the nominal system. 
All nominal systems considered here are linear. 

The second step in this procedure is to modify the nominal control scheme if and only if limits are in 
effect. In other words, the modified controller should exactly reduce to the nominal controller when limited 
conditions do not exist. The goal ofthe modified controller is to provide for graceful performance degradation 

when limits occur. This refers to the fact that when limits take effect, some performance degradation must 
be accepted. However, Figures 5 and 7 illustrate that in the absence of controller modification under limited 
conditions, the degraded performance may not even closely resemble that of the nominal system. The goal 
of graceful performance degradation is one of maintaining the qualitative system behavior under limited 
conditions, with the degradation appearing in some well-defined, predictable manner (e.g. slower responses). 

This document consists of both the grant report (Part I) and proposal (Part II). The remainder of Part 
I intends to: 1) Motivate and present several schemes which have been successful in combating particular 
instances of performance degradation commonly associated with limited feedback systems, and 2) present 
preliminary results which suggest improvements upon existing methods. Specifically, in Section 2, the notion 
of controller windup is presented, along with three common methods of alleviating it. Section 3 presents an 
additional aspect of the problem, introduced in [DSE87], which is unique to MIMO systems: Performance 
degradation due to plant directionality. It is this characteristic of limited MIMO systems which presents the 
most difficulty in achieving graceful performance degradation. In Section 3.1, a solution to this problem, 
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Figure 8: Nominal system with plant input disturbance 

developed in [CM90), is presented. Sections 3.2 and 3.3 contain the particular contributions of this research, 
where improvements to the method of Section 3.1 are proposed, providing new insight into the directionality 
problem. Finally, Part II discusses future goals of this research. 

2 Controller Windup 

When an actuator is limited, it is effectively removed from the feedback loop. In this situation, the controller 
output is inconsistent with the plant input, and the plant output does not have its usual meaning as a feedback 
signal. When the controller contains integrators or slow dynamics (i.e. has long "memory"), this incorrect 
feedback can negatively impact performance both during, and long after the limited condition ceases. This 
phenomenon is commonly known as windup or integrator windup. 

More specifically, refer to the limited system of Figure 1, and model the saturation nonlinearity as a plant 
input disturbance to the nominal closed loop system, as shown in Figure 8. Thus U Q = U c - d, y = Puc - Pd, 

and the error signal produced is e = r - Pu + Pd. The resulting controller output is therefore 

U e = K(r - PUc) + KPd 

Note that the first term above is in fact the control signal that would occur in the absence of limits. The 
second term is due to the limiting process, and identifies d, the discrepancy between Uc: and U Q ' along with the 
open loop dynamics K P as determining the nature of the windup effects. As discussed in the introduction, 
the approach taken here to combat windup effects is to appropriately modify the controller under limiting 
conditions. The remainder of this section presents three common methods of doing this. 

2.1 Conventional Antiwindup (CAW) 

A solution to the above problem which has been effective in many situations is the so-called "high gain 
conventional antiwindup" approach, shown in Figure 9. In this method, the difference between the controller 
output and the plant input is fed back through a large static gain in addition to the plant output. This 
new loop prevents windup by overriding the erroneous feedback of the plant output in favor of making the 
controller output approach the plant input. This can be seen by breaking the system of Figure 9 at the 
saturation block, and solving for U c : 

Uc = (1 + KX)-l Kr+ (I + KX)-l KXuQ - (1 + KX)-l KPuQ 

By choosing X such that the gain and bandwidth of K X are large with respect to K and K P (e.g. 
!!..(KX) ~ u(K) and !!.(KX) ~ u(KP», the above expression approximates Uc: = U Q • In the lit
erature, this has been called a tracking mode of controller operation. Windup is alleviated here by providing 
for consistency between controller output and plant input under limited conditions. 
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Figure 9: Conventional antiwindup scheme 

Note that the static gain causes this action to be taken if and only if limited conditions exist (i.e. U a 

differs from ue). When Ue = Ua the antiwindup gain has no effect on the nominal controller. This is a 
fundamental characteristic of an effective antiwindup mechanism as stated in Section 1, guaranteeing that 
nominal performance will be recovered when limited conditions cease. 

Further insight into the selection of X is gained by examining the system of Figure 9 using the state 
space controller description. Assume the nominal controller has the following realization: 

z = Ax+Be 

U e = ex 
Substituting e = r - y + X(ua - ue) and simplifying yields: 

z = (A - BXC)x + B(r - y) + BXua 

Note that when Ua = U e = Cx, the above equation reduces to the nominal case. When U a ::j:. Ue , windup 
effects can be alleviated by implementing a tracking mode of U e to U a • This can be done heuristically by 
choosing X such that the last term dominates the second term. For any choice of X to work, it must further 
be verified that stability will be maintained under limited conditions. It is shown in [CMN89] that a sufficient 
condition for nonlinear stability is that (A - BXC) be stable. 

Figure 10 depicts the response of system SI using the CAW approach with X = 10. The overshoot in 
y due to windup has been eliminated. how the control signal has been affected to achieve The improved 
response is due to tracking behavior of the control signal, U e (dotted line), to the limited actuator command, 
Ua (solid line). It is this consistency between the plant input and controller output which eliminates the 
windup effects. 

2.2 Generalized MIMO Antiwindup 

The MIMO antiwindup problem is cast in a more general framework in [CMN89]. A version of this approach 
which is sufficient for the current discussion is shown in Figure 11. Assume the nominal controller has the 
following state space realization: 

i; = Ax + Be 

U e = Cx+De. 

The "augmented" controller shown in Figure 11 has the realization 

i; = Ax + Be + A{ua - Ue) 

U c = Cx+De 
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Note that this differs from the CAW approach (Figure 9) in that here, the actuator error, (uo - uc), directly 
alters the states of the controller (via A), whereas in CAW, the actuator error affects the controller indirectly 
through modification of the error feedback signal (via X). This antiwindup approach introduces an observer 
structure into the controller, as seen by substituting (2) for U c in (1): 

z = (A - AC)z + (B - AD)e + Auo (3) 

With this view, the antiwindup design problem reduces to determining a suitable choice for A. Specifically, 
one possible goal of anti windup design is to choose A to make the above dynamics relatively fast and well 
damped in order to regulate to zero any differences between the limited actuator signals, U o , and the actuator 
signals commanded by the controller, U c • This is a more general statement of the tracking mode. 

Currently, optimal methods of determining A with respect to system stability and the tracking mode do 
not exist. However, two particular selections for A which have been used successfully in practice are now 

discussed. 
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Figure 12: System M1 step response using decoupled antiwindup method 

2.2.1 Decoupled MIMO Tracking Mode 

An antiwindup method which is commonly used [DSE87], [Mat93], is a generalization of the tracking mode 
concept of Section 2.1 to the MIMO case. Consider the augmented controller description (1) -(2), with 
D = O. In order to implement a tracking mode, the actuator error term in (1), A(uo - uc), must correspond 
to the state error which, when driven to zero, will yield a controller output corresponding to the limited 
control vector, uo • To achieve this, first define the "desired" state, Zd, as a controller state satisfying 

i.e., Zd is the state that the controller would need to be in so that Uc = uo . Using the above expression with 
(2), the actuator error can now be expressed as 

Uo - U c = C(Zd - z). 

Therefore, the state error, (Zd - z), will drive the antiwindup system (1) if A is chosen such that: 

AC=kI, (4) 

so that A(uo - uc) = kI(zd - z), where k is a scalar constant, and a (left) inverse of C exists. This choice 
for A effectively back calculates the appropriate state error given the actuator error, and multiplies it by a 
scalar gain in order to dominate the plant feedback error term, Be. 

Application of the above scheme to system M1, with k = 10, is shown in Figure 12. Note that, in 
comparison to the responses shown in Figure 5, some, but not all, of the adverse effects of the limits have 
been eliminated in the plant output response. Note also the decoupled nature of this windup scheme, where 
tracking is imposed on Ult and the nonlimited actuator, U2, is not affected. 
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Figure 13: System M2 step response using Hanus' antiwindup method 

2.2.2 Hanus' Method 

As seen in Sections 2.1 and 2.2.1, windup can be alleviated by introducing a tracking mode if and only if 
limited conditions exist. This is accomplished in the CAW approach with the static matrix gain, X, chosen 
such that the actuator error (inner loop) dominates the plant feedback error (outer loop) in the system of 
Figure 9, and in the decoupled method of Section 2.2.1 by choosing A such that AC(Xd - x) = kI(xd - x) 
dominates Be. 

In the case when K has a D matrix which is (left) invertible, it can be seen from (3) that while actuators 
are limited, the effect of the erroneous outer loop feedback, e, can be eliminated by choosing A such that: 

AD=B. 

The above choice for A renders the states of the controller uncontrollable from the e input, and therefore no 
windup will occur. This antiwindup strategy was first developed in [HKH87], however, the above view of 
the method is given in [CM90]. 

Figure 13 illustrates the application of the Hanus antiwindup technique to system M2. The plant output 
response depicts the elimination of some of the adverse behavior when compared to that of Figure 7. Specif
ically, the long-term overcorrection has been eliminated. However, the more significant initial overshoot is 
still present. This is due, as in the decoupled method, to the manner in which the nonlimited actuator, U2, 

is being treated. This issue will be addressed in Section 3. It is interesting to note that this method does not 
force the control signals to approach their limited values any faster, as in the tracking mode approaches. It 
instead uses the difference (UjI - uc) to prevent the discrepancy between the control signals and plant input 
from affecting the controller states. 

A few comparisons should be made here regarding the antiwindup methods presented. Recall that the 
Hanus technique requires the controller realization to contain a D matrix which is (left) invertible. However, 
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in the decoupled and CAW techniques, difficulties may arise when D "# O. In particular, for the decoupled 
method, where A is chosen as in (4), it is desired that the limit feedback, tiel, dominate the tracking error 
feedback, e, in (3). This cannot be guaranteed if D "# 0, because the feedback error term, (B - AD)e, will 

depend on A. For the CAW approach, D "# 0 will produce an algebraic loop in the implementation shown 
in Figure 9. Although alternative implementations can be obtained to alleviate this problem, it is shown 

in [CMN89] that the resulting system is very sensitive to measurement noise in tiel, and exhibits stability 

problems for non-minimum phase controllers. These issues illustrate that the existence of a controller direct

feedthrough term is an important consideration in determining which anti windup method is best suited for 

a given application. 

3 Directionality 

As defined in the previous section, the windup problem is due to inconsistency between the controller output, 
uc, and the effective plant input, uel • The MIMO examples illustrate that the goal of graceful performance 

degradation is in general not achieved solely by eliminating windup effects. To further illustrate this point, 

consider again system Ml, where the responses obtained by implementing the MIMO tracking mode approach 

of Section 2.2.1 are shown in Figure 12. An alternative approach to the windup problem is to implement the 
CAW method, where the parameter X is now a "large" matrix-valued constant. Choosing X such that its 

first column is [100 100V (the second column does not affect the system, since U2 never exceeds its limit) 
yields the responses shown in Figure 14. Note that all adverse effects in the output signals due to saturation 

have been significantly reduced. Comparison of Figures 14 and 12 shows that while both antiwindup methods 
achieve a tracking mode for the limited actuator, Ue,l, they differ in how they treat the nonlimited actuator, 
Uc,2' Viewing this situation geometrically, it can be said here that the CAW method maintains the control 
direction. In other words, the CAW approach restricts the nonlimited actuator in a similar manner as it 

does the limited actuator, wheras the decoupled method changes the control direction by only affecting the 

limited actuator. The reason that this has a large effect in performance is because in MIMO systems, the 
plant gain is a function of its input direction. Since the saturation nonlinearity operates independently on 

each actuator, it can change both properties of the control signal. This is especially problematic when the 

plant has a high condition number, since its gain varies widely with respect to its input direction. Therefore, 

in the MIMO limit problem, care must be taken to ensure that the effective actuator signal, U eI , does not 

produce adverse side-effects due to its direction. 
Note that for the above example, no specific method is employed to generate the appropriate CAW matrix 

gain, X. In general, a linear antiwindup design approach which takes into account directionality issues is 

not available and is a current research issue. The optimality issues involved in such a problem are described 

in [CMN89]. However, this problem has been addressed in the context of the Hanus antiwindup method by 
the introduction of an additional nonlinearity into the system, which modifies tic such that U 4 and Uc have 

the same direction [CM90]. This technique is now described and illustrated via system M2, in the context 

of the Hanus antiwindup scheme. This system will be referred to in the sequel as system M2H. 

3.1 Scalar Projection (SP) 

A typical characteristic of controllers with significant direct feedthrough (D) terms is that limits tend to be 
reached immediately in response to sufficiently large step commands. This behavior is seen in the limited 

M2 response of Figure 7. Also note that the control commands taper off as the plant outputs approach the 
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Figure 14: System Ml CAW step response 

reference command. This can be illustrated more generally by considering a nominal system with n reference 

commands having a proper controller and a strictly proper plant. The control signal, u = U e = U a , resulting 

from a step reference input tk, where k = [kl k2 ... knf is 

U(s) = K(I + PK)-l!:.k. 
s 

Application of the initial-value theorem yields: 

U(O) = lim su(s) 
.-00 

= lim K(I + PK)-lk 
3-00 

= lim Kk 

= lim [C(sI - A)-l B + DJk, 
a-oo 

where (A, B, C, D) is the state space realization of the controller. Thus the initial control command, u(O), 

is determined by: 

u(O) = Dk. (5) 

The point here is that the initial control command depends only on the controller structure and reference 

input, and is not affected by either the plant or the saturation nonlinearity. Thus, with the knowledge of 

the desired nominal control command, it seems advantageous to modify this signal in such a way that the 

resulting command maintains the original control direction but does not violate any limits. This is desirable 

because preserving the original direction of U c will preserve the plant gain, thus in a sense maintaining the 

nominal closed-loop characteristics. This can be achieved by introducing a nonlinear map, N : U c 1-+ il, into 

the antiwindup system, as shown in Figure 15. A simple nonlinearity, suggested in [CMN89], which possesses 
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Figure 15: Nonlinear modification of controller output 

the desired modification properties is now described. First define the following matrix of limit values: 

L = diag(L t , L2, ... , Lm ), (6) 

where Li is the saturation limit value for the i'th actuator, and m is the number of actuators. A limit
normalized control signal, u, is now defined as: 

so that a limit condition exists if and only if Ui > 1, i = 1 ... m. The appropriate direction-preserving 
nonlinearity is simply a scalar multiple of the nominal control signal, which yields the modified control 
command, u, as follows: 

u(t) = N(uc) = a[u(t)]uc(t), (7) 

where 

a[u(t)] = m3Xi(:, Ui(t»· 

As noted in [CM90), this operation on U c effectively replaces the saturation element with the scalar multiplier 
a. This is because a is chosen above such that no component of u will exceed its limit. The saturation 
will therefore be operating as an identity operator, and U(J = u. The performance of system M2H with this 
modification is shown in Figure 16. Note the large initial overshoot has been eliminated, and all signals are 
well-behaved. 

An interesting point that this procedure illustrates is that, in the absence of a single anti windup de
sign procedure encorporating both anti windup and directionality specifications, it is plausible to treat the 
antiwindup and directionality issues independently. This is due to the fact that the anti windup methods 
considered here only depend on the difference (u(J - uc:), not on the specific nature of the nonlinearity. Thus 
windup effects are eliminated regardless of the nonlinearity, justifying the "replacement" of the saturation 
operator with the operator N, which is more favorable with respect to directionality. It is this concept which 
motivates an alternative choice of N to further improve performance. This is the topic of the next two 
sections. 

3.2 Optimal Projection (OP) 

To motivate an improvement to the scalar projection method, it is helpful to consider a geometric view of 
the directionality problem. Specifically, consider the following scenario for the two-actuator system M2H. 
Figure 17 depicts the actuator space, where the directional nature of the plant gain is shown explicitly via 
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Figure 16: System M2H step response using SP directionality compensation 

the plant input principal directions, u and 1!, corresponding to the maximum and minimum singular values, 
respectively. The limits are shown by the dotted lines. An initial control command, Ue, is shown which 
violates the limits. In the absence of directionality compensation, the command Ua = sat( ue) will be given 
to the plant. Since this signal has a direction different from that of Ue, the resulting plant output may be 
quite different from the nominal case. The Hanus antiwindup scheme will prevent the resulting erroneous 
feedback, e, from affecting the controller states. However, Figure 13 illustrates that the signal itself may 
be entirely unacceptable, with respect to reference-tracking requirements, as evidenced by the amount of 
overshoot. 

A useful alternative view of the above situation is obtained by modeling the saturation nonlinearity as 
a plant input disturbance, as done in the beginning of Section 2. The effective plant actuator command is 
thus represented as: 

U a = U e - d, 

and the resulting plant output is: 
y= Pue - Pd. (8) 

A key observation here is that the effect of the disturbance will be large if d has a significant component in the 
u-direction. This is in fact the case when no directionality compensation is used (i.e. when Ua = sat(ue», 
where it is easily verified that d = Ua - Ue can have such a component. The scalar projection method 
improves the plant output response by modifying the control command so that Ua = u in Figure 17, where 
U = QUe, with Q is defined as in (7). This yields a plant output of: 

(9) 

which is simply a scalar multiple of the nominal output. Thus directionality effects are eliminated. An 

alternative approach, suggested in [CM90], is to actually use the directional characteristics of the plant to 
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thus represented as: 

U a = U e - d, 

and the resulting plant output is: 
y= Pue - Pd. (8) 

A key observation here is that the effect of the disturbance will be large if d has a significant component in the 
u-direction. This is in fact the case when no directionality compensation is used (i.e. when Ua = sat(ue», 
where it is easily verified that d = Ua - Ue can have such a component. The scalar projection method 
improves the plant output response by modifying the control command so that Ua = u in Figure 17, where 
U = QUe, with Q is defined as in (7). This yields a plant output of: 

(9) 

which is simply a scalar multiple of the nominal output. Thus directionality effects are eliminated. An 

alternative approach, suggested in [CM90], is to actually use the directional characteristics of the plant to 
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Figure 17: Geometric view of saturation and SP compensation effects on the controller output 

modify Uc such that d is optimal with respect to its effect on the plant output, Pd_ To a first approximation, 
this will be accomplished if d is in the !!-direction, Le., d = I'!!, with I' a scalar. This yields the following 
plant output contribution of the disturbance: 

t::. 
Yd = Pd = I'P!!= 1'!!Jb (10) 

where 1L is the output principal direction corresponding to input principal direction g, and!!. is the minimum 
singular value. Geometrically, this corresponds to the situation shown in Figure 18, where the modified 
control command, il, is obtained from the original command, uc , by a projection in the !!-direction onto the 
closest point in the actuator space which does not violate any limits_ Note that for the scalar projection 

method, (8) and (9) imply: 
Yd = Puc - Y = (1- o:)Puc, 

which depends on the original control direction, and thus in general performance will still be affected by 
plant directionality. An attractive feature of (10) is that the gain of d through P will always be as small as 
possible, regardless of the control direction. Therefore, one would expect the resulting system performance 
using this approach to possess even less adverse effects due to plant directionality than scalar projection. 

The projection concept is now made more precise by viewing the choice of d as an optimization problem. 
Specifically, consider the problem of determining the optimal value, d*, such that its contribution to the plant 
output, Yd. , is as small as possible. A resulting optimally modified control command, u* , is then determined 
from: 

u* = U c - d*. (11) 

The following optimization problem will accomplish this goal: 

(12) 
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Figure 18: Projection of the controller output in the !!,-direction 

Subject to: 
(13) 

where L is defined as in (6), and 1 is an m-dimensional vector with all of its components equal to one. 
This concept is now illustrated for the case of a two-actuator plant. Let d be a disturbance, having the 

following representation with respect to the plant input principal directions: 

d = "y !f. + /3'fi, (14) 

where "y and /3 are scalars. Since!f. and 'fi form an orthonormal basis, this is simply a coordinate change from 
the standard basis, {el e2} to {!f. 'fi}, where "y and /3 are the coordinates in the new system. Using (14), Yd 

can be expressed as 

Yd = Pd = Ph'!f. + /3'fi) = "y £.1l + /37ifi· (15) 

To obtain the constraint equation, consider the case where one limit is in effect at a time. This reduces (13) 

to: 

Ul - "Y l!l - /3'fil = L" (16) 

where the "I" subscript represents the index of the limited component of uc • The "e" subscript has been 
dropped to simplify notation. Substituting (15) and (16) into (12) and (13) yields the following optimization 
problem, for the case when m = 2: 

(17) 

Subject to: 

Ul - "Y l!l - /3'fil = L. (18) 
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From (18), the optimal value of the limited actuator, UI, is immediately obtained as: 

(19) 

The optimization is now solved by eliminating {3 using the constraint equation (18), substituting into (17), 
and minimizing the resulting function with respect to the single scalar variable, -yo This process yields the 
optimal value of -y to be: 

where K = (i /!L, the condition number of the plant, and 

A 
ul-L 

= 
UI 

B = 1!l 
iiI 

The desired optimal value, cr,., - the subscript "nl" represents the index of the nonlimited actuator com
ponent - is obtained by substituting -y* and f3* into the nl'th component of (14). Finally, substituting the 
result into (11) yields an expression for the optimally modified nonlimited control command: 

A* A(BK2l!n1 - Unl) 
Unl = Unl- (B2K2 _ 1) (20) 

Figure 19 compares the step response and control signals for system M2H using the above directionality 
compensation scheme (solid line) with that obtained using the scalar projection approach (dashed line). The 
optimal projection (OP) method is seen to yield faster step response when limits are in effect. In fact the 
Yl response is actually faster than that of the nominal design (Figure 6). This is due to the fact that (20) 
uses only open loop plant information, and thus performance is limited only by the physical plant capability. 
In other words, the closed loop design does not affect limited performance. The actuator signals illustrate 
specifically how conservatism is reduced when using (20) to calculate the optimal value of the nonlimited 
actuator. 

3.3 Combined Scalar Projection and Optimal Projection 

The OP directionality compensation scheme is seen in the previous section to yield superior performance 
compared with SP. Unfortunately, it does not always exhibit such behavior. This is illustrated in Figure 
20, where a reference input of ra = [0.122 - 0.992]T has been used. This reference command differs only 
in direction to the previously applied r2. Note that for convenience, all reference inputs have been chosen 
such that Ilrill = 1, i = 1,2,3. The OP method is seen to produce significant overshoot in Yl, while the 
SP method performs exactly as it did using the previous reference input. This indicates that each method 
has desirable properties. A directionality compensation scheme containing elements of each method is now 
proposed. 

To address this problem, it must first be determined what is causing the adverse behavior of 0 P. Consider 
the alternative view of the nominal system shown in Figure 21, where the saturation nonlinearity is modeled 
by the plant input uncertainty A. = diag(bl, 152"", 15m ), where Ibil < 1. It is well known that in MIMO 
systems, performance can suffer greatly in the presence of such uncertainties. This issue is now investigated 
via the classical notion of logarithmic sensitivity, generalized to the MIMO case by considering the first order 
change of a desired transfer function with respect to the system perturbation [BB91]. For the present case, 
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Figure 19: System M2H step response comparison of OP and SP for r = r2 
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Figure 21: Nominal system with plant input uncertainty 

the transfer function of interest is that from the reference input to the tracking error, Her. The system 

perturbation, A, yields the perturbed plant P = P(I - A). The perturbed transfer function, Her, is: 

Her = [I + P(I - ~)Krl = [1 + PK - p~Krl 

Applying the matrix inversion lemma yields: 

Note that the first term above is simply the nominal transfer function Her. The MIMO sensitivity function, 
oHer , is determined by computing the first order representation of the second term with respect to A. This 
can be obtained via one further application of the matrix inversion lemma to the bracketed term above: 

(I - K(I + PK)-lp~)-l = 1+ K(I +PK - P~K)PA. 

Substituting the above identity into (21), and retaining only first order terms in A yields the desired first 
order change in Her: 

(22) 

where Her and Hed are the closed loop transfer functions for the nominal system shown in Figure 8, from 
the reference and disturbance inputs, respectively, to the tracking error. 

A comparison between the SP and OP directionality compensation schemes from a sensitivity point of 
view for a two-actuator system will now be made by determining an equivalent A perturbation yielded by 
each scheme, Asp and Aop. This is obtained from the relationship 

(23) 

using either (7), or (19) and (20), to determine U = U a • For the SP algorithm, U a = auc is therefore 
substituted into (23), yielding: 

( L/) t:.. ~sp = (1 - alI = 1 - - 1=61, 
Uc,1 

(24) 

where the "l" subscript represents the index of the limited actuator, as in Section 3.2. To repeat this process 
for the OP method, individual components must be considered. From (19); 

Ua,/ = ui = L/ = (1- OI)Uc,1 (25) 

where 0, = 1 - L, / Uc,1 is identical to that of the SP method. Considering the nl'th component of (11) yields: 

Ua,nl = U~, = Uc,nl - d~, = (1 - Onl)Uc,nl (26) 
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where enl = d~,/Ue,nl' and (the negative of) d~, is given by the second term in (20). 

The above establishes that for SP, a = asp = 61, while in OP, a = aop = diag(c1,c2). Since 
Vlsp} C Vlop}, (22) implies that a wider range of closed loop behavior is expected from the OP scheme. 
This is analogous to comparing robust stability and performance measures obtained using singular values, 
where a E Rmzm , with those obtained using structured singular values, where a E diag( C1, C2, ... , cm). 
These concepts illustrate that performance and stability properties suffer as a becomes more general. This 
property can be seen in (22) because for SP, the effect of a is simply to multiply the product of two nominal 
closed loop quantities by a scalar, since for a = asp, (22) reduces to eH~r = kH~dH~r. For OP, however, 
system directionality will have an effect on the closed loop performance, due to the distinct diagonal elements 
of aop. It is this characteristic that leads to both the superior and inferior performance of OP compared 
with SP, observed in Figures 19 and 20. 

To apply the above ideas in a quantitative manner, it is necessary to determine appropriate bounds 
on asp and aop. Recall from the discussion at the beginning of Section 3.1 that maxt IUe(t)1 = ue(O), 
where ue(O) is given by (5). Therefore, the desired asp and aop can be obtained from (24)-(26) with 
U e = ue(O). Since ue(O) is a function of the reference input, so must be a. Furthermore, the limit L, 
appears as a parameter. Thus a = a(r; L,), and the sensitivity function (22) can now be evaluated for 
any reference input. It is of particular interest to examine the singular value decomposition of (22), because 
this will provide the sensitivity magnitude variation, as well as explicit reference input directions yielding 
such magnitudes. This is illustrated in Figure 22 for r = rs, where the singular values of (22) are shown for 
both directionality schemes. Specifically, the solid line represents both the maximum and minimum singular 
values when a = asp(rs; 15), while the dashed lines represent those for the case when a = aop(rs; 15). 
This is significant because Figure 22 implies that from the sensitivity point of view, there exists reference 
directions for which OP is superior to SP (as expected from Figure 19), and other directions for which OP 
performs worse (as in Figure 20). Specific reference directions which produce such behavior are given by 
y(eHer ) and u(eH~r), the singular vectors corresponding to the minimum and maximum singular values of 
(22). This suggests the parameterization of the map N : U e 1-+ U shown in Figure (15) by the reference input, 
r. In other words, it would be desirable if u = N(ue ; r), so that sensitivity considerations can determine 
which nonlinearity is applied. 

Note that in the above discussion, the analysis provides reference directions which yield the maximum and 
minimum possible sensitivities for the OP scheme when a = a(rs; L,). This is not entirely meaningful, since 
application of these reference directions to the system produces a = a(y(cHer); L,), or a = a(u(cSH~r); L,). 
It is of greater interest to obtain such directions which are consistent with the a used to generate them. To 
this end, an iterative scheme is formulated: 

Step 0: Choose a reference input magnitude, M, and initial direction, TO. 

Step 1: Calculate aOp(MTji L,) from (25)-(26). 

Step 2: Perform the singular value decomposition of (22) with a = ll.oP. 

Step 3: Set Ti+1 = u(cSHer ). 

Step 4: If IIri+l - rill < e, for some e> 0, stop. Otherwise, return to Step 1. 

By repetitively using Mfi to generate a, one would expect the resulting ri+l = u(cSHer) to approach Ti, 
providing the desired consistency between a and u(cSHer ). While convergence is observed, it takes place in 
a somewhat unexpected manner. Instead of converging as described in Step 4 above, the iteration converges 
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Figure 22: Singular values of 6Her for SP and OP directionality compensation schemes 

such that IIri+l-ri-lll < t. In other words, convergence was observed among every other r in the iteration. 
This yields two pairs of singular vectors: 'Ui(6Her ), J1i(6Her ), i = 1,2. These directions are shown in Figure 
23 to partition the reference input space into regions RI, RIl, and RIll. With respect to these regions the 
following nonlinear map N : U e t-+ U is proposed: 

{

QUe ,r E RI 
u=N(uejr)= u· ,rERIl 

..\QUe + (1- ..\)u· ,r E RIII 

where Q is from (7), u· is from (19)-(20), and 0 ~ ..\ ~ 1. The well-behaved response of M2H shown in 
Figure 19 results from using OP with r2 E RIl, while the poor response shown in Figure 20 results from 
using OP with rs E RIll. To improve performance for the input rs, the convex combination of the SP and 
OP methods suggested above is implemented, using ..\ = 0.8. The performance of M2H using this approach 
is compared with that of the SP scheme (..\ = 1) in Figure 24, where the overshoot seen in Figure 20 due to 

OP has been eliminated, while improving upon the conservatism of SP. 

4 Conclusion 

This work has investigated the problem of saturating actuators in MIMO systems. It is seen that the 
directional nature of such systems introduces significant degradation in closed-loop performance, in addition 
to controller windup. A directionality compensation technique is developed here which uses knowledge of 
the plant input principal directions and condition number to provide potentially less conservative controls 

than the conventional strategy of maintaining the control direction. However, the reduced conservatism does 
not always result in improved performance. The concept of MIMO sensitivity is employed as an indicator 
of which scheme should be used - or how the two schemes can be combined - to result in the best overall 
closed loop performance. 
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