
NASA CR-188288

CSDL-T-1220

HIERARCHICAL MODELING FOR
RELIABILITY ANALYSIS USING MARKOV MODELS

by

Arturo Fag undo

May 1994

Bachelor of Science and Master of Science Thesis
Massachusetts Institute of Technology

(NASA-CR-188288) HIERARCHICAL
MODELING FOR RELIABILITY ANALYSIS
USING MARKOV MODELS B.S./M.S.
Thesis - MIT (Draper (Charles
Stjrk) Lab.) 116 p

N94-32862

Unclas

G3/38 0011931

LABORATORY

The Charles Stark Draper Laboratory, Inc.
555 Technology Square, Cambridge, Massachusetts 02139-3563



Hierarchical Modeling for Reliability Analysis
Using Markov Models

by

Arturo Fagundo

Submitted to the

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

in partial fulfillment of the requirements

for the degrees of

BACHELOR OF SCIENCE

and

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May, 1994

© Arturo Fagundo, 1994

Signature of Author,

Certified by_

Certified by_

Accepted by_

//t^LU^r

Department of Electrical Engineering and Computer Science
May 16, 1994

Professor Wallace E. Vander Velde
Thesis Supervisor, Professor of Aeronautics and Astronautics

' Dr. Philip S. Babcock, IV
Company Supervisor, C.S. Draper Laboratory

F.R. Morgenthaler
Chair, Department Committee on Graduate Students



Hierarchical Modeling for Reliability Analysis
Using Markov Models

by

Arturo Fagundo

Submitted to the department of Electrical Engineering and

Computer Science on May 16, 1994, in partial fulfillment of the

requirements for the degree of Master of Science

and Bachelor of Science in

Electrical Engineering

Abstract

Markov models represent an extremely attractive tool for the reliability analysis of

many systems. However, Markov model state space grows exponentially with the number

of components in a given system. Thus, for very large systems Markov modeling

techniques alone become intractable in both memory and CPU time.

Often a particular subsystem can be found within some larger system where the

dependence of the larger system on the subsystem is of a particularly simple form. This

simple dependence can be used to decompose such a system into one or more subsystems.

A hierarchical technique is presented which can be used to evaluate these subsystems in

such a way that their reliabilities can be combined to obtain the reliability for the full

system. This hierarchical approach is unique in that it allows the subsystem model to pass

multiple aggregate state information to the higher level model, allowing more general

systems to be evaluated.

Guidelines are developed to assist in the system decomposition. An appropriate

method for determining subsystem reliability is also developed. This method gives rise to

some interesting numerical issues. Numerical error due to roundoff and integration are

discussed at length. Once a decomposition is chosen, the remaining analysis is

straightforward but tedious. However, an approach is developed for simplifying the

recombination of subsystem reliabilities. Finally, a real world system is used to illustrate

the use of this technique in a more practical context.
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Chapter 1

Introduction

1.1 Background

High reliability/availability systems are often designed using redundant architectures

composed of moderately reliable components. While component reliabilities can be

determined by individual testing, overall reliability cannot reasonably be determined in this

way. Thus, for redundant systems, analytical methods must be used to determine overall

reliability [Babcockl].

For redundant systems which achieve high reliability, Markov models are often

used to determine overall system reliability [Babcockl]. The construction and validation of

these Markov models is a time consuming and error prone process. To mitigate these

problems, the construction and evaluation of such models has been automated by the

Computer Aided Markov Evaluator [Hutchins].

Markov model state space grows exponentially with the number of components in a

given system. A variety of techniques are already used to help control Markov model state

space explosion, including model truncation and state aggregation [Babcockl, ch. 6].

Unfortunately, state aggregation provides only limited state space reduction. Model

truncation provides more significant state space reduction at the expense of introducing an

error bound on system reliability. For highly reliable, short mission time systems,

truncation provides tight bounds with a manageable number of states. However, if the

system has a large number of components, and a "long" mission time (relative to the

component mean time to failure) then truncation provides either unacceptably wide

reliability bounds or an intractably large number of states.

Since Markov model state space grows exponentially, evaluating the system in

several segments would take dramatically less time than the evaluation of a full system

composed of these segments. Since these segments are relatively small, an accurate

reliability estimate could be obtained for each. This would produce an accurate estimate for

the reliability of many large systems which could not reasonably be evaluated by a more

traditional analysis. For these reasons, the reliability analyst would like to be able to

decompose a large system into subsystems which could be evaluated separately and then

recombined to obtain the reliability for the overall system.

liPAGE __L_L INTENTIONALLY BUNK
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Occasionally, redundant systems can be decomposed into completely independent

subsystems. In this case, the reliability for the overall system is simply the product of the

reliability for each one of the independent subsystems [Bazovsky]. Alternatively, the

reliability for the overall system can sometimes be expressed in a reasonably simple closed

form expression which involves the reliabilities and unreliabilities of redundant

subsystems. These closed form expressions for system decomposition can often be

derived through an application of the Law of Total Probability [Bazovsky, Ch. 13].

1.2 Decomposition Based on the Law of Total Probability

The law of total probability can be used to express the reliability for a system in

terms of the conditional reliabilities and unreliabilities of individual components and/or

subsystems. If A and B are defined as events in a probability space, then the law of total

probability states

Prob(A) = Prob(A I B)Prob(B) + Prob(A I Not B)Prob(Not B)

If A is defined as the event that the overall system is operational, and B is defined

as the event that a particular component, or subsystem, is operational, then the above law

can be used to determine system reliability. Also, we can denote the probability that a

system or component is operational by R, to indicate a reliability. Similarly, the probability

that a system or component is not operational will by denoted by Q, to indicate

unreliability. Thus, we can rewrite the law of total probability in a form which is more

indicative of its application within the context of reliability analysis.

R(A) = R(A I B)R(B) + R(A I B)Q(B)

Repeated application of the law of total probability to the above expression may

eventually lead to a sum of terms which can be evaluated numerically. Occasionally, an

entire system may be decomposed into an expression containing solely component

reliabilities. However, a more useful application of this approach would allow the

reliability analyst to break the system down into an expression composed of the reliability

of various independent subsystems. In this case, the law of total probability need only be

applied a small number of times to yield an expression which can be evaluated fairly easily.

Here the overall reliability is simply the product of the reliability of each of the independent

subsystems. This approach has successfully been used in the evaluation of an integrated

aircraft flight control system [Motyka].
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Application of the law of total probability sometimes produces terms which are

difficult to evaluate. For example, Prob(A IB) may not be easily evaluated if the events A

and B have non-trivial dependencies. The derivation of these dependencies may be as

intractable as the original model. Consequently, for systems which cannot easily be broken

down into independent subsystems, this method becomes anywhere from tedious to

intractable. For such systems a different approach to system decomposition must be taken.

1.3 An Alternative Approach to Hierarchical Modeling

An alternative approach to the type of decomposition presented above is to

decompose the system into a set of subsystems with fewer restrictions on the dependencies

that can exist between subsystems. To introduce this concept consider a system for which

a single subsystem is extracted for separate evaluation. Results of the evaluation of the

subsystem will then be merged back into the remainder of the system to obtain results for

the entire system.

The system we start with will be called the exact system. The subsystem that is

extracted will be referred to as the exact subsystem. The exact subsystem is replaced with

an approximate subsystem composed of a small number of components. This set of

components is selected so as to capture all of the direct interactions between the exact

subsystem and the remainder of the exact system. This set of components will be

substituted back into the remainder of the exact system. The result is an approximate

system that mimics the behavior of the exact system but has fewer components. Hence, the

Markov model used to estimate the reliability for the approximate system, and consequently

the corresponding exact system, has a smaller, more tractable state space.

In order to capture this interaction, the components used in the approximate

subsystem should behave like the exact subsystem. In particular, the reliability of the

approximate subsystem should be the same as the reliability of the exact subsystem. This

simple set of requirements forms the basis for a hierarchical modeling technique that is

more broad in application than an approach based entirely on the law of total probability.

1.4 Objectives and Overview

The purpose of this thesis is to develop a method for hierarchical system modeling

which can be used in conjunction with current Markov modeling techniques. General

guidelines for decomposing the exact system into subsystems which can be evaluated

separately will be presented. One method for evaluating the resulting subsystems will be

17



described. Also, the feasibility of this technique will be demonstrated by the evaluation of

some small examples. Finally, the usefulness of this technique will be demonstrated on a

real world system.

The next chapter begins with a description of the application of Markov models to

reliability analysis. Chapter 2 also contains an overview of the hierarchical modeling

process. Decomposition of the exact system is presented. One method of analysis for the

resulting subsystems is described. Finally, the recombination and evaluation of the

resulting approximate system is discussed. An example is presented to illustrate this

process.

System decomposition and recombination are explored in more detail in chapter 3.

Several examples are used to highlight the benefits and problems associated with this

technique. In particular, rules are presented to help the analyst determine whether or not a

given decomposition is valid for this sort of modeling. Guidelines are also given to help

the analyst choose an appropriate and beneficial decomposition.

The example presented in chapter 2 is used again in chapter 4 to discuss the

numerical evaluation of the exact subsystem and the development of parameters for the

approximate subsystem in much greater detail. This chapter explains what information is

needed from the evaluation of the exact subsystem. This clarifies the distinction between

this sort of hierarchical modeling and the decomposition of systems with completely

independent subsystems.

Chapter 5 analyzes some of the numerical issues which arise from this hierarchical

modeling process. The choice of certain analysis parameters can produce large errors and

the potential for numerical instability. These problems are demonstrated with a sample

system, and general guidelines are presented to help the analyst choose appropriate

parameter values.

The entire process is demonstrated in chapter 6 on an actual system: the Space

Station Freedom. In chapter 7, the major results of this thesis are summarized and the

limitations of this research are discussed.
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Chapter 2

General Description

2.1 Markov Processes

Some random processes can be modeled by a series of dependent trials or events.

Such systems are said to contain memory. Some processes contain memory of a very

simple form. In a Markov process, successive trials depend only on the previous trial. A

more precise statement of the Markov condition is that conditioned on the present state of

the system, the future is independent of the past [Drake]. Notice however that the

Markov condition is highly dependent on the definition of the system states. In fact, such

a process is completely characterized by the definition of its states and the transition

probabilities between states.

Consider the case of a broken traffic light which changes to a random color at

deterministic points in time. Define the state of the traffic light as its color. Let the

random variables Sn denote the state, or color of the traffic light at time n. Assume that

this process satisfies the Markov condition, that Pr(Sn+}\Sn,Sn.i,...,So) = Pr(Sn+]\Sn).

Also assume that the probability of a correct transition (e.g., red to green) is 0.8, and that

the probability of an incorrect transition (e.g., red to yellow) is 0.1. A graphical

representation of this Markov process can be found in the state transition diagram, or

Markov model of figure 2.1. The state transition probabilities are represented by the

numerical values discussed above.

The probability distribution as a function of time for the Markov model of figure

2.1 is defined by the system of equations 2.1, and the initial probability distribution. Here

Pi[n] is the probability of being in state /, (i = 0, 1,2) at time n. Equation 2. la defines the

flow of probability into and out of state 0 (red). Equations 2. Ib and 2. Ic are associated in

a similar fashion with states 1 (green) and 2 (yellow) respectively. Equation 2. Id simply

indicates that the states 0, 1, and 2 define a complete probability sample space. Finally,

notice that this system of equations defines an iterative formula for the state probabilities

of the Markov model.
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0.1

Figure 2.1: Discrete-Transition State Transition Diagram

P0[n+J]= 0.1P0[n] + 0.1Pi[nJ + 0.8P2[n] (2. la)

P![n+l]= 0.8P0[n] + O.lPjfnJ + 0.1P2[n] (2.1b)

P2[n+l]= 0.1P0[n] + 0.8P][n] + 0.1P2[n] (2.1c)

M + P][n] + P2[n] = 1.0 (2. Id)

The broken traffic light example presented above represents a discrete-state

discrete-transition Markov process. One distinguishing characteristic of such a process is

that state transitions occur at deterministic points in time.

If the transition time for a Markov process is a continuous random variable then

the resulting system is referred to as a discrete-state continuous-transition Markov

process. This type of Markov process is characterized by transition 'rates' py(t) which

define the flow of probability from state i to state j. These rates represent the conditional

probability of making a transition to state j given the system is in state i in a differential

time from t to t + dt.

If the broken traffic light discussed above makes transitions between states at

random times, then this process can be described graphically by the continuous-time

transition diagram of figure 2.2. In this diagram, transition rates replace transition

probabilities. Notice the absence of self transitions in figure 2.2. If a transition is not

taken in differential time then the process remains in the same state. Also, the discrete

time state equations are now replaced by the system of differential equations 2.2.
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Figure 2.2: Continuous-Transition State Transition Diagram

dP,
dt
dP,

o _
= ~( Poi + A>2 )P0 P20P2

dt
dP.
dt

2 _
= -(P20 P02P0 + Pl2Pl

(2.2a)

(2.2b)

(2.2c)

This system of equations can also be presented in the matrix form of equation.

d
dt II =

M-

-(P01+P02) PlO P20

n ^r n -4- n ^ PKOI v "10 ' "12 / * 21

P02 Pl2 -(P20+P2l)_

-(P01+P02) PlO P20

P02 Pl2 ~(P20+P2l).

>o(0"
P / *\

D /" *\

>o(0"

TO= />,(*)
/2(0.

(2.3a)

(2.3b)

dP(t)
dt

= [A]P(t)

(2.3c)

(2.3d)

If the transition rates are time-invariant, then the process is considered

homogeneous. In this case, the solution to equation 2.2 is the time-invariant matrix

exponential, commonly referred to as the matrix exponential [McCarragher]. A variety of

methods exists for calculating the matrix exponential [Moler]. In practice, the matrix
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exponential is often calculated by numerical integration of the system of equations. We

will assume for the next section that all transition rates are time-invariant.

2.1.1 Numerical Integration Using Euler's Method

One particularly simple numerical integration technique is Euler's method. This

technique involves replacing derivatives with respect to time with differences divided by
a small change in time (i.e., d/dt I— > A/ At). The matrix equation of 2.3 was modified

according to Euler's algorithm by replacing ^p- with (P[(n + l)Af] - P[At])±. The result

is

P[(n + l)Af] = P[nAt ] + Af[A]P[nAf ] (2.4a)

The matrix and vector quantities, [M] and P[n] can be defined according to equations

2.4b and 2.4c, where 7j is the 3x3 identity matrix.

(2.4b)

P[n] = P[nAt] (2.4c)

= [M]P[n] (2.4d)

These quantities can be used to produce the iterative formula, 2.4d for the state

probabilities P0, Pj, and ?2- Equation 2.4d can be 'stepped' forward in time to estimate

the state probabilities at several points in time.

To estimate P[n], given P[0] would require n matrix-vector multiplications. For
f*

a Markov model with m states, each matrix-vector multiplication involves m scalar

multiplications. In order to estimate the state probability vector at time n by this 'matrix

stepping' routine would require nm2 scalar multiplications.

Notice from equation 2.4c that P[\] = [M]P[0] and P[2] = [M]P[l] . Applying

equation 2.4d gives P[2] = [M]2 P[0] , and in general P[n] = [M]" P[Q] . However,

multiplying two matrices involves m3 scalar multiplications. Clearly, multiplying the

matrix [M] n times requires much more computation than n matrix-vector multiplications.

Notice that if n is even we can express P[n\ = [Mf2P[n/2] = [Af]^[M]/2 P[Q]. Here,

the matrix [M] is multiplied n/2 times and then squared. This only requires (1 + n/2)m3

scalar multiplications. In general if n is an integer power of 2, (i.e., Iog2n is an integer)
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[M]n can be determined through repeated squaring (i.e., [M][M] = [M]2

—> [M]2[M]2 = [M]4...). This 'matrix doubling' routine requires only (Iog2n)m3

multiplications. Thus for large n, and relatively small m, matrix doubling may be less

computationally demanding than matrix stepping [Moler, p. 809].

The next section will illustrate how Markov models are used in reliability

analysis. However, it is important to bear in mind that when actual reliability estimates

are sought, this problem reduces to the numerical integration of a system of differential

equations. Although many different numerical integration methods exist, Euler's method

provides us with a very simple approach to solving this problem.

2.2 Reliability Analysis Using Markov Models

The two component system of figure 2.3 represents an active parallel

configuration. In order for the system to operate, either component A or component B

must be operational. In a 'standby' configuration, the first component starts in an

operating state and the second component remains idle until the first component fails.

However, in this example the system will be called 'active' because both components are

in operation until a component failure occurs.

Component
A

Component
B

Figure 2.3: Two Component Parallel System

The operation of the parallel system in figure 2.3 can be characterized by the

Markov reliability model of figure 2.4. Notice that each state in the Markov model

represents a distinct operational or failed state of the system. Also, transitions between

these states result from either a component failure or repair. Components A and B fail at

rates AA and AB respectively. These components are repaired at rates (IA and (0,3- Notice

that the Markov model captures different failure sequences in different states (i.e., A then

B vs. B then A failed). Also, since the reliability of the system is the probability of
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continuous operation, no repair transitions are permitted out of the two states which

correspond to system failure. These states may also be referred to as system loss states.

Failure Level
0

Failure Level
1

Failure Level
2

Figure 2.4: Parallel Configuration Markov model

The Markov model of figure 2.4 can be evaluated to obtain the probability in each

of its states as a function of time. The states of this Markov model are broken up into

failure levels, (i.e., 0, 1, 2). Each failure level contains all states with the same number of

failed components (e.g., failure level 1 contains states with either A failed or B failed).

The probability of being in all of the operational states of figure 2.4 can be summed to

obtain the reliability for the system.

If the systems analyst is only interested in the overall system reliability, then the

two system loss states of figure 2.4 may be combined into one state without penalty.

Such a state aggregation results in a Markov model whose state space is an exhaustive list

of all combinations of failed and unfailed components in the system with no distinctions

made for order of failure. The number of states in this model is necessarily 2n, where n

denotes the number of components in the system (i.e., the number of combinations of n

binary objects). Since sequence dependencies only increase the state space of the Markov

model, this aggregated model provides a lower bound on state space growth as a function

of the number of components in a system. We conclude that without any model

reduction techniques, Markov model state space grows at least exponentially with the

number of components, n.
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2.2.1 State Space Reduction Techniques

Two common state space reduction techniques are exact state aggregation and

model truncation. [Babcockl, ch. 6]. In order to describe these techniques, the following

terms are introduced: We say that a component is unfailed when the component itself is

operational. We say that a component is functional when both the component itself is

operational, and all of its supporting equipment is operational. Finally, in order to

simplify this problem we assume in the following and in the remainder of this thesis that

all systems are non-repairable (i.e., |i = 0).

State Aggregation

The system in figure 2.5 requires at least one of the two processors to be

functional. In order for processor 1 to be functional, either processor 1 and memory 1

must be unfailed, or processor 1 must be unfailed and processor 2 must be functional (i.e.,

processor 1 can borrow processor 2's memory, via processor 2). Similarly for processor

2.

Figure 2.5: A Sample "Processor Core'

The full, unaggregated Markov model for the system of figure 2.5 is shown in

figure 2.6. The states in this model are labeled by a list of their failure level and order

within that failure level (e.g., the first state is labeled 0,1). Notice that XM is the failure

rate for a memory unit, and Xp is the failure rate for a processor unit. Notice that there are

no exit transitions from system loss states to any subsequent failure levels since it is

assumed that the system has stopped operating in these states. States grouped by dashed

lines have the same functional "condition", such that the outcome of all subsequent

failures do not depend on the distinctions among these states. Thus, these states can be

aggregated exactly without any loss of model accuracy.
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Figure 2.6: Markov Model for 'Processor Core1

If all of the indicated states are aggregated, the Markov model of figure 2.7

results. The reliability estimate obtained from this model is exactly the same as the

estimate obtained from the unaggregated model (i.e., there is no approximation involved

in this type of state aggregation).
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Figure 2.7: Aggregated Markov Model for 'Processor Core'

Model Truncation

Model truncation involves aggregating all states beyond a certain failure level into

one state. Truncation introduces an approximation into the calculation of the system

reliability. Since the exact operational condition of the system is not known in this

"truncation" state, bounds are obtained by assuming it is either all operational or all

failed. Thus the bounds for system reliability are obtained by summing all operational

states (without the truncation state) and also by summing all operational states including

the truncation state. The true reliability lies between these two bounds. A truncated

version of the processor core model is shown in figure 2.8.

For the model of figure 2.8, the system reliability is bounded by the following

inequalities:

R(Sys)>P(0,l) + P(l,l) + P(l,2) + P(l,3) + P(l,4)

R(Sys) <P(0,1) + P(l,l) + P(l,2) + P(l,3) + P(l,4) + P(Trunc State)

As long as the probability in the truncation state is small, the truncated model provides a

good approximation to the untruncated models in figures 2.7 and 2.6. Finally notice that

even on this simple example the resulting model state space has been reduced

substantially from figure 2.6.
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Figure 2.8: Truncated Markov model

2.3 Overview of Hierarchical Modeling Process

It has been shown that Markov model state space grows exponentially with the

number of components in the system. Breaking the system into smaller segments and

evaluating these segments takes dramatically less time than the evaluation of a complete

system. For example, a sixteen component system has 216 states under simple

assumptions. Dividing it into four subsystems of four components gives 4-24 states. This

enables the system's analyst to produce substantially more accurate Markov models by

relying less heavily on model truncation. Consequently, there is a clear advantage to

decomposing one large system into subsystems which can be evaluated separately then

recombined to obtain the reliability for the overall system.

The hierarchical approach proposed here relies on a very special dependence

between different segments of a system. The overall approach is outlined in figure 2.9.

Often, dependence on a particular subsystem within some larger system is

restricted to a small set of operational conditions. This set of operational conditions can

be represented by some small set of effective components. For example, consider the

system represented in figure 2.10.
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Exact System

Decompose exact subsystem
from the large exact system

Approximate System

Solve
approximate
system using
Markov
models

Recombine approximate
subsystem

Calculate effective failure
rates for the approximate

subsystem using Markov model

Exact Subsystem Approximate Subsystem

Figure 2.9: Overview of Hierarchical Modeling Process

In order for decoder 1 to be functional it must receive input from processor 1. In

order for decoder 2 to be functional it must receive input from processor 2. Both

decoders can drive either actuator through the cross-link. This system uses the same

processor core shown in figure 2.5. In order for the system to be considered operational

at least one actuator must be functional.

Figure 2.10: Exact System

From the description of the system in figure 2.10 we surmise that the effect of the

processor core on the decoders, actuators and cross-link is completely captured by the
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operational state of processors 1 and 2. Consequently, the decoders, cross-link and

actuators in figure 2.10 exhibit what we will call a simple dependence on the processor

core. Notice that arrows pointed away from the processor core are used to emphasize the

direction of this dependence.

Selecting a candidate decomposition often requires looking for 'focal points' for

system behavior. For example, the utility of a specific decoder depends on its associated

processor being operational. Determining processor operability requires examination of

the memory units. Thus, the concept of processor 'channels' that mimic the behavior of

each processor and its memory dependencies may provide the basis for simplification to

be captured in an approximate subsystem. These channels represent a simple dependence

on a particular subsystem. This sort of dependence is not always obvious, but once it has

been identified it can be used to produce a candidate decomposition. For example one

candidate decomposition of the system in figure 2.10 would be to isolate the processor

core as indicated in figure 2.11.

Mem 1

Mem 2

'rocessor
Core

Froc

" Prc

1

)c 2

^ *-

-•' ^

Decod 1
\

/

Decod 2

V /

XLink
/ ^

Act 1
/

\
Act 2

Figure 2.11: Candidate Decomposition

Once a subsystem has been identified for decoupling from the exact system, the

next step is to produce a set of effective components which mimic the functionality of the

subsystem, as well as its reliability. For example, in order to determine the reliability of

the system in figure 2.11 we could replace the processor core with two effective

processors, as shown in figure 2.12.

Exact Subsystem Approximate Subsystem

Figure 2.12: Exact Subsystem and Corresponding Approximate Subsystem
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The approximate system which results from the decomposition of figures 2.11 and

2.12 is shown in figure 2.13. This approximate system can be used to estimate the

reliability of the exact system shown in figure 2.11. In this approximate system, effective

processor 1 has the same probability of being functional as the corresponding processor

channel in the exact subsystem.

Effective
Proc 1

p^ Decod 1

Effective
Proc 2

^^ Decod 2

Figure 2.13: Approximate System

In order to evaluate the system shown in figure 2.13, we must be able to

summarize the reliability of both effective processors in terms of their failure rates. In

order to determine the effective component failure rates we must derive a system of

equations which incorporate these failure rates as unknowns. One way to develop such a

system of equations is to examine the Markov model for the approximate subsystem.

2.4 Determination of the Effective Component Failure Rates

A discrete-state continuous-transition Markov model can be produced which

describes the reliability of the approximate subsystem. This Markov model is described

by a system of state equations. The resulting system of equations relates the state

probabilities at different points in time, to the effective failure rates in the approximate

subsystem. If the state probability time histories are known, this system of equations can

be solved for the set of effective failure rates.

Each of the states in the Markov model for the approximate subsystem maps to

some set of states within the Markov model for the exact subsystem. By evaluating the

Markov model for the exact subsystem, numerical values can be obtained for the state

probabilities in the Markov model for the approximate subsystem. These values can be

used in the system of state equations for the approximate subsystem model to solve for

the effective failure rates. Once these rates have been determined, they can be used in a

Markov model for the approximate system to determine system reliability.

Consider the system of figure 2.13. For this system we would like to determine

failure rates for effective processors 1 and 2. In order to do this the Markov model of
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figure 2.14 is used to describe the approximate processor core. The transitions in this

Markov model are labeled with effective failure rates, denoted by a superscript e.

Subscripts are used to denote the effective component. In general these rates will be

time-varying. These rates will also vary as a function of the failure condition of the

subsystem, i.e., the states. In figure 2.14 dependence on state is captured within the
parentheses. For example, A* (2) is the effective failure rate of processor 1 when

processor 2 has failed. Thus, state dependence in the effective failure rate is captured by

using a different, time-varying, effective transition rate at each state.

(0,1)

(1,2) (2,2)

Figure 2.14: Markov Model for Approximate 'Processor Core'

The Markov model in figure 2.14 can be described by equations 2.5.

(2.5a)

(2.5b)

(2.5c)

(2.5d)

(2.5e)

This system of equations can be solved for A'(), A2(), A^(2), and A2(l). In order to

solve such a system of equations we need to determine the appropriate state probabilities

for the Markov model in figure 2.14. These state probabilities can be determined by

evaluating a Markov model for the exact subsystem. If the Markov model of figure 2.7 is

used, then the probability of being in states (0,1), (1,1) and (1,3) sum to produce the
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probability of being in state (0,1) of the approximate subsystem model. Similar mappings

can be produced for all of the remaining states of the Markov model in figure 2.14.

Evaluating a model that includes time-varying, state dependent transition rates

proceeds in a fashion similar to that of a more traditional time-invariant, state-

independent transition rate model. The unique aspect is that the time-varying character is

captured as piece-wise constant and the appropriate transition matrix is called at each

time step of the numerical integration.

For now, we postpone discussion of how equations 2.5 are solved for the effective

failure rates. We also postpone discussion of other reliability parameters such as fault

coverage and repair rates until chapter 7. Until then we treat all systems as non-

repairable and we assume that all components have perfect coverage.

Since a Markov model state space depends on the number of components in the

system being evaluated, evaluation of the approximate system produced by this technique

(figure 2.13) produces a smaller Markov model than that of the exact system (figure

2.11), which is easier to evaluate. More importantly, this means we do not have to rely as

heavily on model truncation and its introduction of bounded solutions, to control the state

space. This allows us to produce meaningful reliability estimates for a broader class of

systems. However, the full benefits of this hierarchical modeling technique depend

heavily on many of the details involved in determining the effective component failure

rates; a subject treated more fully in chapters 4 and 5.

33



Chapter 3

Decomposition and Recombination

We have seen that by replacing a set of components from a large system with

some smaller set of components, we can reduce the amount of work necessary to evaluate

the reliability of a given system. Unfortunately, a decomposition which leads to a

tractable solution is not always obvious. Clearly, if we can identify independent

subsystems, these can be replaced by single components. But when can we replace a

subsystem with some set of effective components? In the example used in chapter 2, the

exact system depended on the functional status of different processor 'channels'. We use

this notion of channelized dependence in developing guidelines for system

decomposition.

We have concentrated on using Markov models to evaluate system reliability.

However, it may be easier to understand what this decomposition accomplishes in terms

of conditioning events which can be used to compute system reliability. For example,

consider the system of figure 2.10, reproduced here in figure 3.1. The reliability for this

system can be expressed in the form of equation 3.1.

R(Sys) = R(Sys\ChannellChannel2)Pr(ChannellChannel2)

+R(Sys\ Channel !Channel2) Pr(Channel IChannell) (3.1)

+R(Sys\ Channel !Channel2) Pr(ChannellChannel2)

+R(Sys\ Channel !Channel2) Pr(ChannellChannel2)

This equation can be obtained by application of the law of total probability. In this set of

equations channels 1 and 2 refer to processor channels 1 and 2, where an overbar

indicates a failed channel and no overbar indicates an unfailed channel. The joint

probability that channel 1 has not failed and channel 2 has not failed is denoted by the

term Pr(ChannellChannel2). The probabilities of the remaining three combinations of

failed and unfailed processor channels are denoted similarly. The notation R(Sys\-)

denotes the system reliability conditioned on a given event. In this case the conditioning

events are all of the failed and unfailed combinations of the various processor channels.
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Figure 3.1: Exact System

Failure rates for the effective components of the approximate subsystem (figure

2.12) are derived to match the state probabilities of the Markov model in figure 2.14.

These states correspond to the requisite conditioning events in equation 3.1. For

example, the probability of being in state (0,1) equals the probability of having both

channels 1 and 2 available, i.e., P(o,i)=Pr(C/ian«e/7C/ianne^2). Also, the Markov model

for the approximate system of figure 2.13 combines the probabilities of these

conditioning events to obtain the system reliability. Notice, that equation 3.1 is an

alternative, but equivalent method for combining these joint probabilities (assuming that

the requisite conditional reliabilities can be calculated).

Although equation 3.1 was derived for a particular system, the same equation

holds for any system which contains two subsystem channels. In fact, a similar

expression can be derived for any system which exhibits a channelized dependence on

some subsystem. Therefore, a sufficient condition for the validity of a given

decomposition to hold is that the Markov model for the approximate subsystem must

accurately reflect all the requisite combinations of failed and unfailed subsystem

channels. For example, if the probability of being in state (1,1) of the Markov model in

figure 2.13 does not equal the probability of channel 1 being failed and channel 2 being

unfailed, then the approximate system of figure 2.12 will not produce the reliability for

the corresponding exact system. This concept of decomposition is captured in the

guidelines of the following section.

3.1 Guidelines for Decomposition

In order to determine an acceptable decomposition for a given system, the analyst

must rely on a detailed knowledge of the system in question. The first guideline outlines

a basic approach for finding a subsystem which can be decomposed. Once a candidate

decomposition has been selected, guidelines two and three help determine the validity of

this decomposition. The following sections explain these guidelines in greater detail, and

provide supporting arguments.
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1. In selecting a candidate decomposition, the analyst should look for a

subsystem which contains a substantial amount of complexity, but which has a very

simple interface with the remainder of the exact system.

2. Only information summarized by the effective components will be available in

the approximate system. No detailed information of the status of the subsystem beyond

these effective components is available to the approximate system.

3. Components outside of the subsystem may depend on the effective

components in any way; however, effective components may only have a "global"

dependence on components outside of the subsystem.

3.2 Exploring Decomposition

Consider the system of figure 3.2. The processors of this system need access to at

least one memory unit in order to be functional. The memory units do not rely on any

supporting hardware. The sensors require input from at least one processor. Actuators 1

and 2 are driven by processors 1 and 2 respectively. In order for the system to function,

at least one sensor/actuator pair must be functional.

Figure 3.2: Exact System - Case I

Notice that the sensors interact with both processors. Thus, a single effective

component, representing the whole processor core would be sufficient to characterize the

interaction between the processor core and the sensors. However, the functionality of

actuators 1 and 2 depend on the availability of specific processor channels, not the

availability of the processor core as a whole. Replacing the processor core with a single

effective component would not give sufficient information to characterize the interaction

between the processor core and actuators; the functionality of the processor core as a

whole does not indicate explicitly the functionality of either actuator. By replacing the

processor core with two effective components, each representing a processor channel, we
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do have sufficient information to characterize all interaction between the processor core

and the remainder of the overall system. Such an approximate system is shown in figure

3.3.

Act 1
Effec
Proc 1

Effec
Proc2

Act 2

Figure 3.3: Approximate System - Case I

A crucial point in determining the number of effective components in the above

example is an understanding of the level of detail necessary in order to fully capture all

interaction between some subset of components and the remainder of a given system. In

the example presented in figure 3.2 information between the processor core and the

remainder of the system is completely characterized by knowing which processor channel

is operational. This makes the decomposition in figure 3.3 possible.

Consider now a system where the cross strapping is such that the sensors and

actuators need detailed information about the status internal to each processor channel.

For this case the above reduction would be insufficient. Figure 3.4 shows such a system.
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Core

Mem 2
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y
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Act 2

Figure 3.4: Exact system - Case II

In this configuration, in addition to the actuators depending on processor

functionality, information about the status of the memory is necessary in determining the

functional status of the sensors. Here, the channelized decomposition of figure 3.3 is

insufficient in characterizing the interaction between the processor core and the

remainder of the exact system. In fact, as long as the memory units are shared by both
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processors it is not clear that the processor core can be replaced by a smaller set of

components at all.

We have already explored system decomposition in terms of the component space

of the system, but now consider a closed form expression for system reliability. Notice

that the reliability for both the system of figure 3.2 and the system of figure 3.4 can be

expressed by equation 3.1. However, for the system of figure 3.4, this decomposition

does not lead to a tractable model, i.e., the conditional reliabilities of this equation are not

easily calculated since they do not correspond to a simple component description of the

system.

We conclude that for the proposed system decomposition to work, the subsystem

to be removed must only interact with the overall system through a set of 'channels'

which will be replaced in the approximate system by an appropriate set of effective

components. This ensures that all interaction between the exact subsystem and the

remainder of the exact system will be completely captured by the approximate subsystem,

as suggested in the second guideline for system decomposition (§3.1).

It is up to the systems analyst to determine a natural way in which a particular

system may be decomposed. Often a system can be broken up with effective components

representing power channels, processor channels, etc. Once a decomposition has been

chosen, it is desirable to know whether or not a given set of effective components will

accurately characterize the relationship between the subsystem and the remainder of the

system. The following section discusses some of the conditions governing this decision.

3.3 Global vs. Channelized Dependence

The motivation behind the first two guidelines is clear from the examples in §3.2,

but the third guideline is not immediately obvious. In order to understand this guideline

we distinguish between two types of dependence. If a subsystem has a "global"

dependence on some component in the remainder of the system, then the loss of this

component makes all of the subsystem channels become non-functional. If a subsystem

has a "channelized" dependence on some component in the remainder of the exact

system, then the loss of this component causes specific subsystem channels to become

unavailable, but not necessarily all subsystem channels.

Now, to explain the need for the third guideline, recall that the analysis technique

as presented in chapter 2 represents a decomposition of the system architecture in which
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all of the information is derived from the underlying Markov models. In particular, the

effective components of the approximate subsystem are an accurate representation of the

exact subsystem in only the following way: the effective failure rates of these

components are derived in such a way that the probability of being in specific failed or

operational states is the same for the approximate and the exact subsystems.

The effective failure rates for the approximate subsystem are derived

independently of any components outside of the subsystem in question. If, in fact, these

effective components depend on the remainder of the system, then the states of the

Markov model for the approximate subsystem no longer match the probability of the

necessary conditioning events (i.e., joint probabilities of failed and unfailed effective

channels). Consequently, the approximate system will no longer yield an accurate

measure of the exact system's reliability.

Consider the two systems of figure 3.5. The processor core of the second system

has a channelized dependence on the two power units in the remainder of the exact

system, while the first system has no such dependence. According to the third guideline

just proposed, only the processor core of figure 3.5a can accurately be replaced with two

effective processors. We test this guideline by examining the reliability of both systems.
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Figure 3.5a: No Channelized Dependence
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The processor core of either system in figure 3.5 can be replaced with two

effective processors. In chapter 4 we will find that the failure rates for these components

are derived independently of the remainder of the exact system. Consequently,

expressions for the reliabilities and conditional reliabilities of these effective components

can be derived by repeated application of the law of total probability on the processor

core of figure 3.5. Such a set of expressions is shown in equations 3.2. In this set of

expressions, the reliability of processors 1 and 2 are denoted by R(Procl) and R(Proc2)

respectively. The reliability for the two memory units operating in parallel is denoted

R(Meml I \Mem2) as a shorthand for the component expression 1 - Q(Meml)Q(Mem2),

i.e., R(Meml or Mem2).

R(EffectProcl) = R(Procl}R(Meml\\Mem2) (3.2a)

R(EffectProc2) = R(Proc2)R(Meml\\Mem2) (3.2b)

R(EffectProcl\ EffectProc2) = R(Procl) (3.2c)

R(EffectProc2\ EffectProcl} = R(Proc2) (3.2d)

R(Procl)Q(Proc2)R(Meml\\Mem2)
R(EffectProcl\ EffectProcl) = " VT p V o r>A7 nnA7 -n (3-2e)^ JJ JJ ' roc2) + R(Proc2)Q(Meml)Q(Mem2) ^ '

D/I--CC r» 11 ~Efc — 5 - 1\ R(Proc2)O(Procl)R(Meml\\Mem2) ,~ 0~R(EffectProc2\ EffectProcl) = -^7^ - ,. yr;n - .^;,, - ,,„,,, '~ (3.2f)v JJ JJ ' l) + R(Procl)Q(Meml)Q(Mem2) ^ '

The law of total probability can be applied to the approximate system which

results from the decomposition of the system in figure 3.5a, to produce a closed form

expression for system reliability. This expression is listed in equation 3.3. Also, terms in

equation 3.3 which represent effective components can be replaced by the corresponding

term in equation 3.2. This yields equation 3.4 which expresses the system reliability

solely in terms of components within the exact system. It can be determined by

inspection that this expression does indeed accurately express reliability for the system of

figure 3.5a. Thus for this sample system, hierarchical modeling can accurately be used to

estimate reliability.

R(Sys) = R(Actl\\Act2)R(EffecProc2\EffecProcl)R(EffecProcl)

+R(Actl)R(EffecProcl\EffecProc2)Q(EffecProc2) (3.3)

+R(Act2)R(EffecProc2\EffecProcl)Q(EffecProcl)
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R(Sys) = R(Actl\\Act2)R(Procl)R(Proc2)R(Meml\\Mem2)

+R(Actl)Q(Procl)R(Proc2)R(Meml\\Mem2) (3.4)

+R(Act2)R(EffecProc2\EffecProcl)Q(EffecProcl)

Notice that hierarchical modeling of the system in figure 3.5b will yield the same

effective component reliabilities of equation 3.2. In order to illustrate how this leads to

inaccurate results we must derive two separate expressions for system reliability. First

we use only components within the exact system, then we use effective component

reliabilities.

Equation 3.5 can be derived by repeated application of the law of total probability

on the system of figure 3.5b. This equation is simply the sum of the probabilities of all

mutually exclusive operational states of the system in figure 3.5b.

R(Sys) = R(Meml\\Mem2)[R(Pwrl)R(Pwr2)R(Procl)

+R(Pwrl)Q(Pwr2)R(Procl) (3.5)

+Q(Pwrl)R(Pwr2)R(Proc2)

+R(Pwrl}R(Pwr2)Q(Procl)R(Proc2)}

Equation 3.6 corresponds to the reliability of an approximate system in which the

processor core of figure 3.5b is replaced by two effective processor components. This

equation can be simplified by replacing all of the effective component reliabilities with

the corresponding expression of equation 3.2. Equation 3.7 results from such an

simplification.

R(Sys) = R(Pwrl)R(Pwr2)R(EffecProcl)

+R(Pwrl)Q(Pwr2)R(EffecProcl) (3.6)

+Q(Pwrl)R(Pwr2)R(EffecProc2)

+R(Pwrl)R(Pwr2)R(EffecProc2\EffecProcl)Q(EffecProcl)

R(Sys) = R(Meml\\Mem2)[R(Pwrl)R(Pwr2}R(Procl}

+R(Pwrl)Q(P\vr2)R(Procl) (3.7)

+Q(Pwrl)R(Pwr2}R(Proc2)

+R(PWrl)R(P»r2) X(Proc2)Q(Procl)
Q(Procl} + R(Procl)Q(Meml)Q(Mem2y

Notice that the last terms in equations 3.5 and 3.7 differ by a normalization factor.

In equation 3.7 this last term is conditioned on the event that effective processor one has
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failed. However, equation 3.5 indicates that no such conditioning is necessary. Since

the reliability of the effective components in the hierarchical analysis is determined

independently of the two power units, their dependence on these two power units is not

accurately captured by such an analysis. For example, the joint probability that effective

processor one will be functional while effective processor two has failed depends on the

state of the second power unit. However, no such dependence is included in the

hierarchical analysis. In short, if some subsystem exhibits a channelized dependence on

the remainder of the exact system, then effective components of the approximate

subsystem no longer accurately match the conditional reliabilities of the exact subsystem.

Finally, we would like to demonstrate that the problems exhibited by channelized

dependence do not arise when the approximate subsystem exhibits a global dependence

on some outside component or set of components (i.e., if all effective components within

an approximate subsystem depend on the same external component or set of

components). In such a situation the conditional reliabilities for the effective components

of the approximate subsystem are the product of the conditional reliabilities obtained by

analyzing the exact subsystem independently and the reliability of any external

components necessary for the subsystem to operate.

Figure 3.6: Global Dependence

Consider the system of figure 3.6. The processor core for this system is the same

one used in all of the previous examples in this chapter. In this case the processor core

requires power from at least one of the two power units operating in parallel. These

power units depend on the availability of actuator 1. Actuators 1 and 2 rely on the

availability of processor channels 1 and 2. In order for the system to be considered

functional, at least one of the two actuators must be functional.
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In order to explore the effect of this cross-strapping, we break up the expression

for system reliability in terms of actuator 1, and the two power units operating in parallel.

The resulting expression is listed in equation 3.8. Notice, that R(PwrlI\Pwr2) denotes the

reliability of the two power units operating in parallel. Also notice that if either actuator

1 fails or the parallel power unit configuration fails, the system fails.

R(Sys) = R(Sys\Pwrl\\Pwr2Actl)R(Pwrl\\Pwr2)R(Actl) (3.8)

Clearly the addition of the external dependencies of figure 3.6 change the

reliability of the exact system as well as the reliability of the processor core. However,

the conditional reliability of equation 3.8 can now be considered independently of

actuator 1, and the two power units. Expanding this term yields equation 3.9.

R(Sys) = R(Actl)R(Pwrl\\Pwr2}R(EffectProcl) (3.9)

The external dependencies of the system in figure 3.6 alter the subsystem

reliability. However, the resulting expression for system reliability depends on the

reliability for the same effective processors of figure 3.3.

In general, it will be the case that either some external component is available, or

the necessary external component/s has/have failed. In the former case the subsystem can

be considered independently of the remainder of the exact system. In the latter case the

system can be considered in the absence the subsystem altogether. We conclude that if a

subsystem exhibits only a global dependence on some external component or set of

components, the reliability of this subsystem may be considered independently of the

remainder of the exact system.

3.3 Multiple Level Decomposition

Some systems will have subsystems which could themselves be analyzed

hierarchically. The processor core presented above for example contains a parallel

combination of memory units which could be regarded as an independent subsystem.

This memory subsystem could be replaced by one effective memory unit, and this

effective memory unit could in turn be used to evaluate the reliability of the processor

core. Alternatively, some systems may be composed of several subsystems which may

each be replaced with a different set of effective components.

In general, there may be several levels and several different components to any

given hierarchical analysis. However, there may also be some more detailed interaction
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between different subsystems which can be captured hierarchically. Figure 2.9 gives an

overall view of the hierarchical modeling process. Without loss of generality, we may

assume that some of the components in the exact system of this diagram are themselves

effective components. But, what happens when information from an approximate

subsystem is needed at two distinct levels within a decomposition?

.Exact System

Approximate System

Decompose exact
subsystem #1

Decompose
subsystem #2

CH

Calculate Ae 's
for subsystem #1

Recombine approximate
subsystem

\ Calculate Ae 's
\ for subsystem #2

Subsystem #2 Approximate Subsystem #2

Figure 3.7: Overview of Multiple Level Hierarchical Modeling

Figure 3.7 represents an overall view of a more intricate hierarchical analysis . In

the situation represented here there are two subsystems which may be decomposed from
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the exact system. Information about the functional status of one approximate subsystem

is needed by both the second subsystem, and the remainder of the exact system.

In the situation depicted in figure 3.7, effective failure rates for subsystem 1 are

calculated as though subsystem 2 were not present. However, the effective failure rates

for the second subsystem need to have some dependence on the effective components of

the first subsystem. In chapter 4 we will see that this can be accurately captured by

including the components of the first subsystem in the state dependence of the second

subsystem. For example, assume that the second subsystem is the processor core of

figure 2.11, and that the first subsystem is the cooling unit of figure 3.8.

Figure 3.8: Exact Subsystem 1

Thermal units 1 and 2 of figure 3.8 provide cooling to certain components within

the exact system. The amount of cooling is controlled by actuators 1 and 2. Notice that

thermal unit 1 can only function properly if actuator 1 is available, whereas thermal unit 2

may be controlled by either actuator.

The thermal subsystem indicated in figure 3.8 can be replaced by two effective

thermal units within the exact system of figure 3.7. Also, assume that the second

subsystem of 3.7 is the processor core in figure 2.11. This processor subsystem may also

be replaced by two effective processor components.

Let the terms A^,(-), and Ae
r2(-) denote the effective failure rates for the resulting

approximate thermal subsystem, and let Ap,(-), and /Ip2(-) denote the effective processor

failure rates. We know from the discussion of chapter 2 that A^.,(-) will be a function of

whether or not the second thermal unit has failed, and similarly for A^2(-)- However,

since the thermal subsystem does not depend on the processor subsystem, neither of these

failure rates depends on the functional status of the two effective processors. These two

processors on the other hand do depend on the functional status of the two effective
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thermal units. This dependence is captured by a dependence of Ap,Q, and Ap2(-) on the

state of the approximate thermal subsystem.

3.5 Conclusions

In this chapter certain guidelines and rules for system decomposition are

presented. Arguments and examples are presented in this chapter which support the

following guidelines:

1. In selecting a candidate decomposition, the analyst should look for a

subsystem which contains a substantial amount of complexity, but which has a very

simple interface with the remainder of the exact system.

2. Only information summarized by the effective components will be available in

the approximate system. No detailed information of the status of the subsystem beyond

these effective components is available to the approximate system.

3. Components outside of the subsystem may depend on the effective

components in any way; however, effective components may only have a "global"

dependence on components outside of the subsystem.

The arguments presented here do not provide rigorous proof of the accuracy of a

given hierarchical analysis. Rather, these arguments are presented in order to develop

some intuition about the nature of this problem. Further insight is provided through

closed form expressions for system reliability, which are produced by application of the

law of total probability.

Although only simple decomposition was explored in detail, more complicated

hierarchical analyses are achieved through repeated application of these principles. The

overview of figure 3.7 is presented as one example of a more complicated hierarchical

analysis.
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Chapter 4

Properties of Effective Component Failure Rates

In chapter 3, it was shown that the reliability for many systems can be expressed

in terms of certain conditional reliabilities and the probabilities of their conditioning

events (e.g., equation 3.1). The hierarchical technique presented in this thesis captures

the probability of those events in the approximate subsystem. The effective component

failure rates are used to summarize multiple aggregate state information, whereas more

traditional hierarchical techniques only indicate availability of a given subsystem

[Abraham].

Effective component failure rates capture state information for subsystems which

may be very complex internally. In some sense, we use effective failure rates to hide this

complexity from the higher level model. However, as mentioned in previous chapters,

effective failure rates may exhibit complicated behavior as well (i.e., state dependence

and time variation). This chapter explores how effective failure rates capture different

aspects of the exact subsystem, and its interaction with the remainder of the exact system.

We begin with a general method of solving for effective failure rates.

4.1 Calculating the Effective Failure Rate

Recall from chapter 2 that continuous transition Markov models can be described

by the matrix equation 4. la. Notice that if a discrete time approximation is made to the

continuous time differential, then we can use equation 4. la to derive an expression which

relates the effective failure rates to the probability of being in different states of the

approximate subsystem model. If Euler's method is used to make the discrete time

approximation, the matrix expression of equation 4.1b results.

(4. la)
at

avg • avg

The matrix in equation 4.1b can contain probabilities from states several failure

levels apart. Thus, the resulting matrix elements can easily differ by many orders of

magnitude. This makes solving for effective failure rates a numerically sensitive

procedure. This topic is more fully discussed in chapter 5. There we will see that a
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reasonable approach to solving for these effective failure rates is to obtain a closed form

expression for each of the unknown effective transition rates which make up the effective

failure rates.

An approximate subsystem with two effective components will generally be

composed of four unknown effective transition rates (as in figure 2.14). An approximate

subsystem with three effective components will generally be composed of twelve

unknown effective transition rates. In order to produce reasonably simple closed form

expressions for large numbers of effective transition rates a reasonably high degree of

sparsity is required from the transition matrix for the approximate subsystem model. In

particular, each state within the Markov model for the approximate subsystem may only

have one unknown transition rate associated with all entering transitions. Thus, even for

large Markov models we need only solve one equation for each unknown effective

transition rate. This approach minimizes numerical evaluation problems (see chapter 5).

Figure 4.1: General 3 - Component Model

In general this approach to generating the Markov model for the approximate

subsystem ends with a series of system loss states with one unknown entering transition
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rate. The equations for these states are solved for the unknown transition rate and the

resulting solution can be used in the equation for the source state. Consider for example a

general approximate subsystem with three effective components. Such an approximate

subsystem could be described by the Markov model of figure 4.1.

Consider equations 4.2, which describe states (3, 1) and (2, 1). Although state (3,

1) has two entering transitions, both of these transitions have the same unknown effective
rate, Aj(l,2). Also, the solution for this effective transition rate is independent of any of

the other state equations. The effective rate associated with the transition into state (2, 1),
A2(l), depends only on states (1, 1), (2, 1) and A, (1,2).

AP
(4.2a)

= A'2(1)P(U)(0 - A3(l,2)P(2il)(f)

In general, each effective transition rate depends on its source state probability history,

destination state probability history, and all effective rates associated with transitions out

of its destination state. Thus, all effective transition rates can be calculated from known
state probabilities, and previously calculated effective rates. Thus, the solution for A2(l)
uses the previously calculated A3(l,2) and known state probabilities. Finally, notice that

although many of the states in figure 4. 1 could be aggregated according to the rules for

state aggregation (see §2.2), this would produce states with more than one unknown

entering transition rate.

Now consider the system in figure 4.2. For this system a processor channel is

considered functional if the corresponding processor is functional (e.g., processor channel

1 is functional if processor 1 , and all of its supporting hardware are unfailed). Assume

that the functionality of both sets of sensors and actuators depends on whether or not a

given processor channel is functional. Also assume that the processor core does not

depend on any components in the remainder of the exact system. For the time being no

assumptions are made about the internal connectivity of the processor core itself.
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Processor

Core

Figure 4.2: Sample System with Arbitrary Cross Strapping

Suppose we would like to replace the above processor core with two effective

components which represent the functional status of processor channel 1 and 2

respectively. Since the reliability of the overall system depends only on the operational

status of both processor channels, this set of effective components characterizes all of the

information necessary to estimate system reliability.

The reliability of the approximate processor core can be described using the

Markov model of figure 4.3. Effective failure rates in this model use the same notation of

figure 2.13. The states for this model are also defined as in figure 2.13. For example

state (0,1) corresponds to the state in which neither effective component has failed, and

state (1,1) corresponds to the state in which effective processor 1 has failed, but effective

processor 2 remains unfailed.

(0,1)

(1,2)

Figure 4.3: Approximate Subsystem Markov Model

The Markov model for the approximate processor core is described by a system of

state equations. This system of state equations may be discretized according to Euler's

50



method (see §2.1.1) These state equations as well as their resulting discretization are

listed in equation 4.3.

(4.3a)

AP
) (4.3b)

AP
) (4.3c)

avg

u- = A< (l)P(U)(nravg) (4.3d)
avg

(4.3e)
avg

In equations 4.3 P(o,i), P(i,i)> P(],2), P(2,i)> and P(2,2) represent the probabilities of

being in the corresponding states within the approximate subsystem's Markov model

(figure 4.3). Notice that the discretization, or averaging interval, takes on special

significance in this analysis. Recall that the effective failure rates are continuous

functions of time which we are approximating as piece-wise constant. Tavg defines the

length of the interval over which these failure rates are taken to be constant, i.e., this

parameter defines the length of the averaging interval.

The discrete approximation in equations 4.3 can be used to derive a closed form

expression for the effective component failure rates in terms of the state probabilities

P(0,i)> P(Uh P(i.2)> P(2,i)> and P(2,2)- In particular, we derive solutions for the effective

transition rates to the second failure level, and then use these solutions to solve for

transition rates to the first failure level. The resulting solutions are listed in equations 4.4.

(4.4a)
avg/

AP"" - (4.4b)
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Thus, the solutions of the higher failure level transition rates are used to solve for lower

failure transition rates.

Notice that equations 4.4 do not explicitly depend on the exact processor core.

This means that these expressions for the effective failure rates are independent of the

details of the exact subsystem. But, in order to determine numerical values for the state

probabilities of equations 4.3, we need to evaluate the exact subsystem and match its

states to those in figure 4.3. Consequently, the internal details of the exact processor core

will affect the numerical behavior of the effective failure rates.

4.2 Affect of Exact Subsystem Architecture on Effective Rates

4.2.1 No Shared Resources

Given the same system of figure 4.2 and the same proposed decomposition,

assume the resulting processor channels share no resources. This is the case in which

processor 1 depends only on the availability of memory 1 , processor 2 depends only on

the availability of memory 2, and the two memory units do not depend on each other or

any other components. The Markov model for such an exact subsystem is shown in

figure 4.4. The time-invariant transition rates of this Markov model have subscripts that
indicate specific components of the exact subsystem (e.g., &M2 is the failure rate for

memory unit 2).

The states in the Markov model for the exact subsystem (figure 4.4) are shaded to

indicate which state they correspond to in the Markov model for the approximate

subsystem (figure 4.3). In this case, all of the states in the model for the exact processor

core can be mapped into the states of the Markov model in figure 4.3. Thus, the

probability of being in any given state of the Markov model for the approximate

processor core is the sum of the appropriate state probabilities in the Markov model for

the exact processor core (e.g., the probability of being in state (1,2) in figure 4.3 is the

sum of the probabilities of being in states (1,3), (1,4), (2,9), and (2,12) in figure 4.4).
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Figure 4.4: Markov Model for 'Processor Core' - No Shared Resources

Since the effective components in this sample system share no resources they are

completely independent of one another. Consequently, we expect the failure rate of

either effective component to be independent of the operational status of the other

effective component. Notice that both processor channels represent a simple series

configuration composed of a memory and processor unit. This leads us to expect the

failure rate for each of these effective processors to be the sum of the failure rates for the

memory and processor. For example, R(EffectProcl) = e~*~"'e~*m' = e~ (* f > +*M 1* = e'^',

i.e., the failure rate for effective processor 1 is the sum of the failure rates for processor 1

and memory 1. Thus, A*() = A* (2) = A,,, + AM1.

53



Now examine the Markov model for the exact processor core. Close examination

of this Markov model reveals that all the states which correspond to the same state in the

Markov model of figure 4.3 have the same exit transitions. For example, all of the states

in figure 4.4 which correspond to state (1, 1) in the effective Markov model have exactly

two exit transitions, and these exit transitions are associated with a memory failure and a

processor failure in every case. Therefore, the Markov model of figure 4.4 can be

reduced exactly into the form of figure 4.3 [Babcockl]. The associated transition rates

for this aggregated Markov model would be the sum of the processor and memory unit

failure rates.

For the case in which no resources are shared between channels of the system in

figure 4.3, the effective failure rate should have a very simple form. This expectation is

confirmed with the following numerical example. The exact processor core was

evaluated with a failure rate of 10~4 (failures per hour) assigned to each of the memory

units and 10~5 assigned to each of the processor units. State probabilities were

determined every 100 hours from 0 to 1000 hours, and the results were used to determine

the state probabilities for the Markov model of the approximate subsystem. Using the

data obtained, the effective failure rates were determined over successive 100 hour

intervals. This corresponds to selecting an averaging interval, Tavg of 100 hours. Values

produced for the effective failure rates are listed in table 4.1.

Time(hr's) A'() Aj()

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0 -

- 100.0

- 200.0

- 300.0

- 400.0

- 500.0

- 600.0

- 700.0

- 800.0

- 900.0

1000.0

1

1

1

1

1

1

1

1

1

1

.1000e-04

.1000e-04

.1000e-04

.1000e-04

.1000e-04

.1000e-04

.1000e-04

.1000e-04

.1000e-04

.1000e-04

1

1

1

1

1

1

1

1

1

1

.1000e-04

.1000e-04

.1000e-04

.1000e-04

.1000e-04

.1000e-04

.1000e-04

.1000e-04

.1000e-04

.1000e-04

Af(2)

1.1050e-04

1.1016e-04

1.1010e-04

1.1007e-04

1.1005e-04

1.1004e-04

1.1004e-04

1.1003e-04

. 1.1003e-04

1.1002e-04

1

1

1

1

1

1

1

1

1

1

Ae
2(l)

.1050e-04

.1016e-04

.1010e-04

.1007e-04

.1005e-04

.1004e-04

.1004e-04

.1003e-04

.1003e-04

.1002e-04

Table 4.1: Test Results - No Shared Resources

Since A* (2) = A*() and k\(\) ~ A^() to within the level of accuracy of our test

data, this supports the argument that the effective component failure rates are independent
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of state. Since all of the above failure rates are constant from one time interval to

another, we also conclude that effective component failure rates are time-invariant.

Finally, notice that the resulting effective failure rate is indeed the sum of the processor

and memory failure rates.

4.2.2 Shared Resources

Figure 4.5: Markov Model for 'Processor Core' - Shared Resources

In the previous section the two effective components were independent of one

another because they did not share resources. Consider now the case where the effective

components share memory. In particular, what happens if processor 1 remains functional
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so long as either memory 1 or memory 2 is operational, and similarly for processor 2? If

we again try to represent this new processor core with the two effective processors, we

may still use the same Markov model for the approximate subsystem (figure 4.3).

However, the exact processor core is now described by the Markov model of figure 4.5.

The Markov model of figure 4.5 contains states which do not correspond to any of

the states in the Markov model for the approximate subsystem. In particular, states (2, 2)

and (2, 8) correspond to a simultaneous failure of both effective components (i.e., a

common mode failure). Recall however, that the goal of evaluating the exact subsystem

is to determine specific state probabilities and to capture that information in the effective

component failure rates. If the remainder of the approximate system depends on which

effective components have failed but not on the order of their failure, then the probability

of states (2, 2) and (2,8) can be mapped arbitrarily into either system loss state within the

Markov model of figure 4.3. In order to retain the symmetry of the original system, the

probability of being in states (2, 2) and (2, 8) are divided evenly between the two system

loss states in the Markov model for the approximate subsystem.

In, §4.2.1, the effective component failure rates for the case where there is no

resource sharing were neither state nor time dependent. By looking at the mapping of

states between the Markov models for the exact and approximate subsystem, we saw that

the effective component transition rates corresponded to a specific set of transitions in the

Markov model for the exact subsystem. For example, all of the states in figure 4.4 which

correspond to state (1, 1) in the approximate subsystem model have exactly two exit

transitions, and these exit transitions are associated with a memory failure and a processor

failure in every case. However, it can be seen from the Markov model of figure 4.5 that

this is not the case when resources are shared.

Transitions out of state (0, 1) in the Markov model for the approximate subsystem

(figure 4.3) correspond either to a processor failure in the exact subsystem or a common

mode failure attributable to the consecutive loss of both memory units (i.e., before any

other component failures). Transitions out of the first failure level correspond to a

mixture of either a processor or memory failure. For example, the transition from state

(1, 1) in the Markov model of figure 4.3 to state (2,1) corresponds to either the loss of

processor 2 at the first failure level of the Markov model in figure 4.5 or to the loss of

processor 2 or a memory unit at failure level 2. Since the probability flows from failure

level 0 to the system loss states, at different times either one of these failure modes will
dominate A,'2(l). This suggests that for short mission times we would expect both
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effective failure rates to look like a processor failure, and for longer times we expect

these failure rates to look like the sum A^/ and A/>. Although, it is hard to characterize the

effect of the common mode failure on the resulting effective component failure rates, it

seems clear that the resulting failure rates will depend on the state of the Markov model

in figure 4.3, as well as with time.

We now see that effective component failure rates can capture many different

failure modes for a given subsystem channel. Differences attributable to the loss of one

or more channels are captured by the state dependence, and differences at different failure

levels are captured by time dependence. In order to illustrate this effect, the numerical

study of table 4.1 was conducted again using state probabilities obtained from the

Markov model of figure 4.5, and the same component failure rates for the exact

subsystem. The results of this study are listed in table 4.2.

Time(hr's) A*() AjO A^(2)

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0 -

- 100.0

- 200.0

- 300.0

- 400.0

- 500.0

- 600.0

- 700.0

- 800.0

- 900.0

1000.0

1

1

1

1

.0495e-05

.1465e-05

.2408e-05

.3324e-05

1.4213e-05

1

1

1

1

1

.5078e-05

.5919e-05

.6738e-05

.7534e-05

.8309e-05

1

1

1

1

1

1

1

1

1

1

.0495e-05

.1465e-05

.2408e-05

.3324e-05

.4213e-05

.5078e-05

.5919e-05

.6738e-05

.7534e-05

.8309e-05

1

1

1

1

1

1

1

1

1

1

.1050e-04

.1016e-04

.10106-04

.1007e-04

.1005e-04

.1004e-04

.1004e-04

.1003e-04

.1003e-04

.1002e-04

A'2(D
1
1
1
1
1
1
1
1
1
1

.1050e-04

.10166-04

.1010e-04

.1007e-04

.1005e-04

.1004e-04

.1004e-04

.1003e-04

.1003e-04

.1002e-04

Table 4.2: Test Results - Shared Resources

The effective component failure rate changes with state by a full order of

magnitude. However, for the range of times in table 4.2, the effective transition rates

remain on the same order of magnitude. This suggests that dependence on state may be

significantly stronger than dependence on time. As would be expected due to the

symmetry of the exact subsystem, the failure rates for effective processors 1 and 2 are

equal for all time (i.e., A' = Aj). Surprisingly, the effective transition rates, A*(2) and

AjO), did not reflect the failure modes as we expected. This indicates that the presence

of a common mode failure complicates our intuition about the effective failure rates.

This also suggests the need for a more detailed analysis of the relationship between the
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Markov model for the exact system and the effective component failure rates. In the next

section we examine this problem more closely by explicitly calculating a common mode

failure rate.

4.2.3 Decomposition with Common Mode Failure

We noted in §4.2.2 that the Markov model for the exact processor core contains

two states which correspond to a simultaneous failure of the two effective components. It

was also noted that the addition of this common mode failure complicates our intuition

about the effective component failure rates. In order to clarify the effect of the common

mode failure, we explicitly include a common mode failure transition in the Markov

model for the approximate subsystem. The resulting Markov model for the approximate
•

subsystem is shown in figure 4.6.

Figure 4.6: Approximate Subsystem Model with Common Mode Failure

The transition rate associated with the common mode failure is denoted in the
Markov model of figure 4.6 by XComm . Consequently, the state equations of the Markov

model for the approximate subsystem need to be revised to incorporate equations 4.5.

Equation 4.5a replaces equation 4.3a, and equation 4.5b is an additional equation which

describes the common mode failure state.

dP,(0.1) _

dt
—»•

AP,(0.1) _ (4.5a)
avg
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(4.5b)

For this revised decomposition we can again produce a direct mapping between

states in the Markov model of figure 4.5 and the states in the Markov model for the

approximate subsystem. We would like to add equation 4.6 to the set of closed form

solutions in equations 4.4.

AP1e _ _ Comm _

For this decomposition, all single effective processor transitions from the full up

state correspond to a processor failure within the exact subsystem. Consequently, we
expect the rates A'() and A2() to equal A/> for all times. Also, in the previous section it

was suggested that A* (2) and A2(l) would vary with time to match two distinct failure

modes. Because of the influence of the common mode failure, these transition rates did

vary in time, but not exactly as expected. Since the common mode failure transition no
longer has any affect on these transition rates, we now expect A' (2) and A2(l) to

approximate A/> for short times and the sum of A/> and AM for longer times.

Our intuition about the behavior of A; (2) and A2(l) is supported by examining

the relation between these effective failure rates and failure rates within the Markov

model for the exact subsystem. In particular consider the equation for state (1, 2) in the

Markov model for the approximate subsystem (equation 4.3c). The flow of probability
out of this state is defined by the product P(1 2)A'(2). State (1, 2) in the Markov model for

the approximate subsystem maps to the sum of states (1,4), (2, 3), (2, 9), (2, 10), and (2,

12) in the Markov model for the exact subsystem. If we assume that both memory units

share the same failure rate, then net flow out of these states is defined by the sum
(AM1 + A,,, )(P(2 3) + ^(2,9) + P (2,10) + ^(2,i2))- These two probability flows can be equated to

derive an expression for A, (2) in terms of parameters of the exact subsystem. We will

denote the probability of being in state (i, j) in the Markov model for the approximate
subsystem by P(i j} and the probability of being in state (i, j) of the Markov model for the

exact subsystem by P(ijr Under this convention, equation 4.7 yields the aforementioned

expression, where P(1 2) has been replaced by P(1 4) + P(2 _3) + P(2 9) + P(2,]0) + PV 12) *n

equation 4.7b.
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, , (4.7a)

^ fl + ^l)(^(2.3) + ^(2,9) + ^(2.10) + ^(2.12)) ,, -y, x
'

P + P + P + P + P'(1,4) ^ M2,3) ̂  '(2,9) ̂  ' (2,10) ^ ' (2,12)

Notice from the symmetry of the Markov model for the exact subsystem that

P\2 3) = ^(2,9) = ^(2,10) = ^(2,12) • Also ^ can be shown that for short times P(1 4) = AP2t and

Pa 10) = AP2AW1
 r/^ [Babcock2]. By applying these approximations to equation 4.7b we

get the short time approximation of equation 4.8.

lt

Equation 4.8 verifies our intuition about the short time behavior of A^(2) and, by

symmetry, /14(1). Notice however that if the common mode failure transition were not

explicitly included in the Markov model for the approximate subsystem, then equation

4.7a would not hold and these effective transition rates would not exhibit the suggested

behavior.

The common mode transition in the approximate subsystem corresponds to a total

memory failure in the exact subsystem. This might lead us to believe that the common

mode failure rate equals the failure rate for the memory unit. In order to see why this is

not the case, we relate the effective transition rate for the common mode failure to values

from the Markov model for the exact subsystem (figure 4.5).

State (0, 1) in the Markov model for the approximate subsystem (figure 4.6)

corresponds to the sum of states (0, !),(!, 1) and (1, 3) in the Markov model for the exact

subsystem. Equation 4.9a results from equating the time derivative of the above state

probabilities.

,, + *»;,.„ + ̂ ,,3)1 - ^Otfo.,, + ̂ (,,i) + ̂ ,.3,] (4.9a)

(oj) + °(1,1) + ' (1,3)]

) + "(1,1) + M1,3)J~A/>2LMO,1) + (l.D + (1.3) J

dt dt dt
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Probability flows in the exact subsystem model which correspond to the failure of

effective processor 1 or effective processor 2 in the approximate subsystem can be

identified. By equating these probability flows with the corresponding probability flows

of the approximate subsystem in equation 4.9a, we obtain equation 4.9b.

(4.9b)

This approach can be used to obtain an expression relating the effective common mode

failure rate with values from the exact subsystem. If both memory units have the same

failure rate, then 4.9c relates the common mode failure rate to the failure rate of the

memory unit and a ratio of state probabilities.

M0,l) (1,1) "" (1,3)

Clearly, the resulting common mode failure rate will exhibit a dependence on time

which is governed by this ratio of state probabilities. This behavior, as well as the

behavior of the other effective failure rates, can be seen empirically.

The original test of §4.2. 1 was run again using the new approximate subsystem

model (figure 4.6) and the following results were obtained.

Time(hr's) k\() Aj()

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0 -

- 100.0

- 200.0'

- 300.0

- 400.0

- 500.0

- 600.0

- 700.0

- 800.0

- 900.0

1000.0

l.OOOe-05

l.OOOe-05

l.OOOe-05

l.OOOe-05

l.OOOe-05

l.OOOe-05

l.OOOe-05

l.OOOe-05

l.OOOe-05

l.OOOe-05

l.OOOe-05

l.OOOe-05

l.OOOe-05

l.OOOe-05

l.OOOe-05

l.OOOe-05

l.OOOe-05

l.OOOe-05

l.OOOe-05

l.OOOe-05

A'Comm ^i(2) ^(l)

9

4

4

6

.888e-07

.930e-06

.816e-06

.647e-06

8.427e-06

1

1

1

1

1

.0>16e-05

.184e-05

.347e-05

.507e-05

.662e-05

1

1

1

1

1

2

.131e-05

.303e-05

.488e-05

.669e-05

.846e-05

.018e-05

2.086e-05

2

2

2

.349e-05

.508e-05

.663e-05

1.131e-05

1.303e-05

1.488e-05

1.669e-05

1.846e-05

2.018e-05

2.086e-05

2.349e-05

2.508e-05

2.663e-05

Table 4.3: Test Results - Common Mode Failure
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Notice that the effective component failure rate at the first failure level is indeed

independent of time. The common mode failure rate varies with time as expected. Also,

the effective component failure rates at the second failure level are still time varying. In

order to see how closely the actual behavior of these transition rates matches the expected
behavior consider the following comparisons. Since for the given test case A/>/ = Xp2 =

10"5, &MI = &M2 - 10 4 and t = 900 hours then by the approximate equation 4.8 we would

expect AjCl) to be approximately 2.52xlO~5, and this value is about what we see in table

4.3 in the interval from 900 to 1000 hours. For t = 100 hours and the same processor and
memory failure rates, the approximation of equation 4.8 says that X\(\) should be about

1.2xlO"5, very close to Apy, which is what we get in table 4.3 in the range from 100 to

200 hours.

The above example illustrates how different aspects of the exact subsystem

architecture are captured by the effective failure rates of the approximate subsystem.

Subsystem channel failure modes which depend on the status of the remainder of the

subsystem are mimicked by state dependence. Failure modes which depend on the

failure level of the Markov model for the exact subsystem are captured by time

dependence. The following section further examines the relationship between the exact

subsystem and the approximate subsystem.

4.3 Defining States for the Approximate Subsystem

4.3.1 Sequence Dependencies

In the previous sections we discussed how different aspects of an exact subsystem

affect the effective component failure rates of the corresponding approximate subsystem.

However, most of these aspects are captured naturally by using Markov models to

perform the reliability analysis of the exact subsystem. For example, Markov models

naturally capture sequence dependencies within the exact subsystem [Babcocklj.

Consequently, in performing a given hierarchical analysis, the user generally need not

consider the internal structure of the exact subsystem. As noted in chapter 3, a far more

important consideration is the interaction of this exact subsystem with the remainder of

the exact system.

In the hierarchical technique proposed here we are seeking to capture states of the

exact subsystem which fully characterize its effect on the remainder of the exact system.

While the components of the approximate subsystem are used to replace specific channels

of the exact subsystem, the probability of being in specific subsystem states is captured
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by effective component failure rates. Clearly, the states needed to fully characterize the

dependence of the exact system on the subsystem must appear in the Markov model of

the approximate subsystem. Otherwise this Markov model would not produce the

necessary effective failure rates to properly represent the exact subsystem's influence on

the remainder of the exact system.

Notice that the Markov models of figures 4.3 and 4.6 are used in conjunction with

the same exact subsystem. However, the two models capture different states of the exact

subsystem. The approximate subsystem model of figure 4.3 captures all of the possible

combinations of operational and inoperational subsystem channels. It also distinguishes

between two sequences of channel failures. For example, state (2, 1) of this Markov

model represents the failure of effective component 1 followed by a failure of effective

component 2. The model of figure 4.6 on the other hand captures all of the information

in the model of figure 4.3 and explicitly tracks the probability of having a simultaneous

fault of both channels. Deciding which model is appropriate depends on the interaction

we are trying to capture between the exact subsystem and the remainder of the exact

system.
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Figure 4.7: Example System

Consider the system of figure 4.7. Assume that the processor core for this system

has the same connectivity described in §4.2.2. In order for the system to function

properly there must be at least one functioning sensor/actuator pair. Each actuator

receives data from its corresponding sensor and control signals from the processor core,

as indicated. Initially the system uses the first sensor/actuator pair. If this pair becomes

non-functional, then the system reconfigures to the active second sensor/actuator pair.

Assume that if a sensor/actuator pair does not receive control input from the processor

core that it may continue to operate in a degraded mode as long as the sensor and actuator

are both unfailed. However, the system will always attempt to operate in the highest

operational mode possible.
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Consider the following possibilities. If the first processor channel becomes

unavailable, the system immediately attempts to reconfigure to the second sensor/actuator

pair. If this pair is unavailable and the first sensor/actuator pair is unfailed, the system

continues to operate in the degraded mode mentioned earlier. If the processor core is not

needed to perform the actual reconfiguration, the reliability of the system depends only

on the availability of either processor channel. For this case, the approximate subsystem

need only capture the probability of having both channels operating, channel 1 failed,

channel 2 failed, or both channels failed. No information about the sequence of channel

failures is required. For this case the Markov model of figure 4.3 is sufficient to describe

the dependence of the sensor/actuator suite on the processor core.

Consider now the case where the system operates as before, except that now

processor channel 2 is responsible for the reconfiguration from the first sensor/actuator

pair to the second. Assume that if this processor channel is unavailable when a

reconfiguration is attempted the system waits indefinitely and a system failure occurs.

Here the reliability of the system depends on the order in which the two processor

channels fail. For example, if processor channel 1 fails first, the system will reconfigure

to the second sensor/actuator pair and continue to function even after processor channel 2

becomes unavailable. However, if processor channel 2 fails followed by a failure of

processor channel 1, a system failure will occur even though one or the other

sensor/actuator pair could continue to operate in a degraded mode.

When the reliability of the system depends on the order in which subsystem

channels become unavailable, the approximate subsystem must correctly capture the

sequence of effective component failures. Since the Markov model of figure 4.3

differentiates between different failure sequences we might be led to believe that we can

use this model to capture failure sequence dependencies on the subsystem channels.

However, notice that the processor core of figure 4.7 has a common mode failure which

is not captured in the Markov model of figure 4.3, i.e., the failure of both memory units

before either processor fails. The probability of this state is distributed between the two

effective component failure sequences, and thus does not accurately reflect the operation

of the system. For example, if the system is using the first sensor/actuator pair and a

common processor channel failure occurs the system would try to reconfigure to the

second sensor/actuator pair and fail. However, if the Markov model of figure 4.3 is used

to calculate effective component failure rates, this situation would sometimes allow the

system to continue to operate and sometimes not. We conclude that the effective
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component failure rates must be calculated with the Markov model of figure 4.6 in order

to correctly capture the effect of the common mode failure.

It seems that order dependencies on effective component failures could be

captured by explicitly including common mode failures in the approximate subsystem

model. For the purposes of this thesis we simply note that order dependencies are

difficult to handle unless they occur completely within the exact subsystem.

From this example we conclude the following.

1. The states of the approximate subsystem model must be generated to correctly

capture the effect of the exact subsystem on the remainder of the system.

2. In order to correctly capture these states we may need to pay close attention to

odd states of the exact subsystem. In particular, common mode failures require care in

capturing the sequence dependencies of the exact subsystem in the states of the model of

the approximate subsystem.

4.3.2 States with Zero Probability

In many situations, states of the approximate subsystem model have no

probability because of the unreachability of certain states within the exact subsystem.

Consider for example the system of figure 4.8. In this system the memory units represent

a redundant pair but processor 1 must be unfailed in order for processor 2 to have access

to either of them.
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Figure 4.8: System with Unreachable State

We would like to replace the processor core of this system with two effective

processors. Solving for the effective component failure rates of such an approximate

subsystem by the Markov model of figure 4.3, results in equations 4.4. Also, the states of
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this model are defined in terms of which effective components are functional. Since in

the processor core of figure 4.8 the loss of processor channel 1 causes the loss of

processor channel 2, there will be no probability in state (1, 1) of the approximate

subsystem model.

Numerically, this zero state probability produces a division by zero in equation

4.4b. Physically, this zero state probability corresponds to the unreachability of a specific

state within the exact subsystem. How can this physical interpretation be reflected in the

Markov model for the approximate subsystem?

One simple approach is to use the same Markov model but to redefine the states in

terms of which effective components have failed as opposed to simply becoming non-

functional. A failure of the first processor within the exact subsystem of figure 4.8 might

correspond to a failure of effective processor 1, while effective processor 2 might be

considered to be unfailed but non-functional. Thus, if the states of the Markov model in

figure 4.3 are defined in terms of which effective components have failed, then state (1,

1) still contains some probability, but state (2, 1) has zero probability. Numerically, this

results in-a zero transition rate from state (1, 1) to state (2, 1), i.e., we have eliminated the

division by zero error encountered previously. In general, this definition of the states

only permits states with zero probability to exist 'downstream' from states with non-zero

probability. This avoids division by zero and it sets all transitions into an unreachable

state of the exact subsystem to zero.

The limitation of this technique is that for large exact subsystems, with complex

interdependencies among subsystem channels, it becomes difficult to define when a

channel has failed and when it has simply become non-functional. For example, in the

system of figure 4.8, the consecutive failure of both memory units causes both processors

to become non-functional. Do we interpret this as the failure of effective processor 1 or

effective processor 2? If the states of the approximate subsystem model are defined as

before, then the loss of this shared resource corresponds to a common mode transition to

system loss. However, under this revised state definition we are trying to avoid common

mode transitions in order to avoid having states with non-zero probability follow states

with zero probability.

An alternative approach to reflecting the unreachability of certain subsystem

states in the Markov model for the approximate subsystem is the following:

66



1. Build a Markov model for the approximate subsystem under the assumption

that all of the states which need to be captured will have finite probability.

2. Determine the actual state probabilities using a Markov model for the exact

subsystem. States within the approximate subsystem model with zero state probability

correspond to unreachable subsystem states.

3. Eliminate all unreachable states from the approximate subsystem model.

Appropriate transitions must be created between the remaining states in the approximate

subsystem model.

4. Develop state equations for the resulting approximate subsystem model and

use this system of equations to determine numerical values for the remaining effective

transition rates.

In terms of the processor core of figure 4.8, the previous multi-step procedure

would call for the elimination of state (1, 1). The transition emanating from state (0, 1)

due to the loss of effective processor 1 would go directly to state (2, 1). This is

demonstrated in the revised Markov model of figure 4.9. ~*

Figure 4.9: Revised Approximate Subsystem Model

The transition rates present in the Markov model of figure 4.9 can be calculated

by deriving a closed form solution from the state equations, as in §4.1. Such a closed

form solution can be found in equations 4.10.

AP,(2.1)

*• avg"(0,\)(n* avg)

AP,(2,2)

AP,(1,2)

(4.10a)

(4.1 Ob)

(4.10c)
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Thus, a closed form solution for the effective component failure rates is not

derived until an approximate subsystem model has been derived which only contains

states with finite probability. Once such a Markov model has been generated, the

remainder of the analysis proceeds as usual.

4.3.3 State Space Reduction Techniques

From the discussion of §4.1 it can be seen that the number of effective transition

rates which must be solved for grows rapidly with the number of effective components

within the approximate subsystem. For example, consider a subsystem which contains

four channels to be modeled by four effective components. If the effective components

need only capture the probability of having any combination of failed and unfailed

effective components available without regard to the failure sequences, then the resulting

effective transition rates will simply depend on which effective components have already

failed. This results in 4-23 or thirty two unknown effective transition rates.

Clearly, even for approximate subsystems of only moderate size the number of

parameters (i.e., effective transition rates) to be solved for becomes unreasonable. In

order to mitigate this problem we need to simplify the effective failure rate, or develop a

simple approximation to the effective failure rate.

State Aggregation

For many systems the order of failures which cause a subsystem to fail completely

has no bearing on system reliability. For such systems, we would like to reduce the size

of the approximate subsystem model by aggregating all of the system loss states.

However, it appears that this would violate the assumption that only one unknown

effective transition flow into any given state of the approximate subsystem model of §4.1.

In order to get around this problem we assume that all transitions leading to a system loss

state occur at the same rate. Although this may not accurately model the failure rate for a

particular effective component, it will accurately model the net flow of probability into

system loss. This assumption allows us to use the same approach for calculating effective

transition rates. In fact it is this assumption which reduces the number of unknown

parameters to be calculated.

Consider the Markov model of figure 4.3. We can simplify this model by

aggregating states (2, 1) and (2, 2) as in figure 4.10. The transition from states (1,1) and
(1, 2) are both labeled with the same failure rate Ae(7 Comp). The solution to the set of
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unknown effective transition rates is in equations 4.11. Notice that in this system we now

have only three unknown transition rates to solve for as opposed to four. Also 2ie( 1

Comp) is used to replace the transition rates which were a function of state, i.e., which

effective components had already failed.

(IComp)

(IComp)

Figure 4.10: Approximate Subsystem Model with State Aggregation

Ae(IComp) = •

AP,,

S\s-Loss=

ove'

| X(lComp)P(l2)(nTavg)

(4.11 a)

(4. lib)

(4.lie)

An additional benefit to state space reduction of the approximate subsystem

model is that it permits additional state aggregation of the exact subsystem model. For

example, consider the Markov model of figure 4.5. Since we need to capture specific

state probabilities within the approximate subsystem model, only the states which have

the same shading can be considered for aggregation. Although all of the states in the

final failure level of the exact subsystem model satisfy the rules for state aggregation of

§2.2.1, they cannot all be aggregated if the final failure level states of the approximate

subsystem model have not already been aggregated.

Model Truncation

Most systems of interest will exhibit progressively degraded reliability as more

subsystem channels become unavailable. Therefore we may assume that a given

subsystem has failed entirely at a certain failure level without increasing our estimate of

system reliability. This intuition is captured in the following model truncation technique.
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Consider an approximate subsystem composed of three effective components.

Such a subsystem can be described by the Markov model of figure 4.1. What happens if

we assume that the loss of any two effective components will cause the subsystem to fail?

This corresponds to eliminating all of the states at failure level three. If we also

aggregate all of the states at the second failure level, this results in the Markov model of

figure 4.11. Notice that this Markov model contains substantially less unknown

transition rates than the Markov model of figure 4.1.

X(lComp)

(IComp]

Figure 4.11: Approximate Subsystem Model with Truncation

In theory the Markov model of figure 4.1 could capture the essential

characteristics of the corresponding exact subsystem perfectly. However, the truncated

model can at best provide an approximation to these characteristics. The quality of this

approximation depends on the difference between the probability in the truncation state

and the true probability of system loss. Once the probability in the truncation state is

known, the systems analyst can decide whether or not to expand the subsystem model.

When the probability of the truncation state is viewed as a system loss probability,

the resulting effective failure rates provide a pessimistic estimate of subsystem reliability.

If we add the probability of being in the truncation state to the first state, then the

resulting set of state probabilities produces an optimistic estimate of subsystem

reliability. However, this estimate seems unrealistic since it yields no probability of

losing the entire subsystem. We conclude that model truncation yields a simple over

bound to subsystem unreliability, and consequently system unreliability. However, a

good corresponding lower bound on subsystem unreliability is not obvious.
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4.4 Conclusion

The relationship between the approximate subsystem and its corresponding exact

subsystem reflects in many ways the relationship between the exact subsystem and the

remainder of the exact system. Certain aspects of the subsystem behavior have a direct

impact on system reliability and these must be captured in the Markov model for the

approximate subsystem. Other aspects of the exact subsystem have no direct impact on

the remainder of the exact subsystem, and these aspects are reflected indirectly in the

values of the resulting effective failure rates.

This chapter explores the relationship between the approximate subsystem and its

corresponding exact subsystem, developing some intuition about this relationship. From

the general system of figure 4.2 we saw the following:

1. Resource sharing between subsystem channels provides the basis for

dependence between effective components in the approximate subsystem.

2. Dependence between subsystem channels is captured in the effective

component failure rates by state dependence. Also, failure modes which depend on the

failure level of the Markov model for the exact subsystem are captured in the effective

component failure rates by time dependence.

These two conclusions provide understanding of the nature of what we call an

effective failure rate. Specifically, the conclusions of §4.3.1 can guide the system's

analyst in developing appropriate approximate subsystem models:

1. The states of the approximate subsystem model must be generated to correctly

capture the effect of the exact subsystem on the remainder of the system.

2. In order to correctly capture these states we may need to pay close attention to

odd states of the exact subsystem. In particular, common mode failures require care in

capturing the sequence dependencies of the exact subsystem in the states of the model of

the approximate subsystem.

In §4.3.2 we note the potential problems presented by the unreachability of certain

states within the exact subsystem, and one approach to dealing with this problem.

Finally, we note that state space reduction techniques can be used in conjunction with the

approximate subsystem model in order to simplify the hierarchical analysis.
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Chapter 5

Numerical Issues

The previous chapter discussed one method for determining effective component

failure rates, and highlighted some of the characteristics of this parameter. However, one

of the greatest difficulties which arises in the actual implementation of this modeling

technique is finding accurate values for the necessary effective component failure rates.

Because the solution technique proposed in chapter 4 is based on the difference in state

probabilities, the resulting effective failure rates are highly sensitive to roundoff error.

Here, we look more closely at the numerical issues involved in determining effective

component failure rates. We pay close attention to the effect of Tavg on the resulting

effective failure rates.

5.1 Effects of Discretization

In the previous chapter we derived closed form solutions for effective component

failure rates from the Markov model associated with the approximate subsystem. The

system of linear differential equations associated with this Markov model was used to

develop finite difference equations which in turn were used to solve for the effective

failure rates. In order to develop a set of finite difference equations Euler's method of

integration was applied.

Equation 5.1 is a matrix representation of the state equations for an arbitrary

Markov model. A distinguishing characteristic of determining effective component

failure rates is that we are interested in finding elements of the transition matrix, [A]
given values of the probability vector, p . This means that the second form of equation

5.1 must be used to obtain a solution for the vector of transition rates, a .

Equation 5.2 is produced by applying Euler's method of integration to the second

form of equation 5.1. From linear algebra, we know that if the rank of the matrix [P] is

= - - (5.2)
avg
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equal to the length of the vector a the elements of this vector are uniquely determined by

equation 5.2 [Strang]. If the Markov model for the approximate subsystem is generated

as suggested in §4.1 the resulting system of effective failure rates will always be uniquely

determined.

The solution of equation 5.2 necessarily involves a difference in state

probabilities. In contrast, when equation 5.1 is used to solve for state probabilities, the

probabilities are stepped forward in time and no such difference is used. Notice that

subtraction is an operation which is particularly susceptible to roundoff error. Whereas

roundoff error is a secondary concern in the forward integration of equation 5.1, we

expect roundoff error to play a relatively significant role in solving equation 5.2 for the

effective transition rates. This issue is incorporated in the following observations.

1. As Tavg decreases, the differences in state probabilities, Ap, become small.

Since these state probabilities are calculated using finite precision, as Tavg shrinks the

differences in these state probabilities may introduce significant roundoff error.

2. As Tavg increases, the discretization of equation 5.2 becomes a poor

approximation to the corresponding continuous differential equation. Such error is

referred to as integration error.

5.2 Choosing an Appropriate Tavg

Clearly, our choice of Tavg involves a tradeoff between integration and roundoff

error; large values for Tavg produce large integration error, while small values of Tavg

produce very small Ap and large roundoff error. This may be conveyed by the following

example.

Consider the set of components in figure 5.1. Solar arrays 1 through 4 provide

energy to the four power supplies. The starboard radiator (Rad S) regulates the

temperature for arrays 1 and 3. Similarly, the port radiator (Rad P) regulates the

temperature for arrays 2 and 4. The power supplies 1 and 4 are cross-strapped to allow

them to share solar arrays. Thus, in order for power supply 1 to function, solar array 1

must be functional or power supply 4 must be functional. Power supplies 2 and 3 are

similarly cross-strapped. These dependencies are summarized graphically in figure 5.1.
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Array 1 Pwr 1

Array 3 Pwr 3

Pwr 2 *4 Array 2

Pwr 4 Array 4

Figure 5.1: Exact Power Subsystem

Let the components in figure 5.1 represent a subsystem which we would like to

replace, within some large system, by the four effective components in figure 5.2.

Because of the symmetry of this particular subsystem, we can assume that all four

effective components in the approximate subsystem will share the same failure rate.

Assume also that the reliability of the resulting approximate system depends only on

which effective power supplies have failed, but not on the order in which they fail.

Figure 5.2: Approximate Power Subsystem

Under the stated assumptions, the 'chain' model in figure 5.3 can accurately be

used to determine the correct state dependent failure rate for each of the effective power

units in figure 5.2. The 'chain' model has at most one entering and one exit transition for

each state. Because of this special structure, closed form solutions for the effective

component failure rates can be derived by starting from either the transition rate leaving

state (0, 1) or the transition rate entering state (4, 1). For this particular example, we will

start with the transition rate leaving state (0, 1).
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Figure 5.3: Markov Model for Approximate Power Subsystem

In the Markov model of figure 5.3, the transition rates Af(OComp), Af(lComp),

Xe(2Comp) and ke(3Comp) all make up the shared effective failure rate for the

approximate subsystem of figure 5.2. This failure rate is a function of how many other

effective components have failed as opposed to which effective components have failed.
For this subsystem, A' (2) = A'(3) = A'(4) = X(lComp). In order to compute this

effective failure rate, we develop the following system of equations which describe the

Markov model of figure 5.3.

„(*) (5.3a)
at

- = 4K(OComp)P(0 „(/) - 3V(lComp)P(l „(*) (5.3b)
at

(l ,,(0 - 2Ae(2Comp)P(2 n(f ) (5.3c)
dt

(t) (5.3d)
at

(t) (5.3e)

The Markov model in figure 5.3 produces only four independent state equations.

In particular, equation 5.3e above results from the negative of the sum of equations 5.3a

through 5.3d. Thus, the Markov model is fully described by equations 5.3a through 5.3d.
Since there are four unknown effective transition rates, ^f(OComp), ke(lComp),

Xe(2Comp) , ke(3Comp) and four equations, the effective failure rate is uniquely

determined by the equations 5.3a through 5.3d.

In order to solve the system of first order differential equations, 5.3, we need to

integrate out the time derivatives on the left hand side. Application of Euler's method

results in the system of difference equations, 5.4. Here we have excluded the discretized

version of equation 5.3e, since it is not used in solving for the effective failure rates.
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AP
_J2dl = -4K(OComp)PW)(nTavs) (5.4a)

avg

AP
-^ = 4X(OComp)P(0l}(nTavg)-W(lComp)P(l.)(nTmg) (5.4b)

avg

AP
-^ = 3X(lComp)P(lv(nTavg)-2V(2Comp)P(2.)(nTavg) (5.4c)

avg

AP
) (5.4d)

The state probabilities on the right hand side of equations 5.4 are evaluated at the

beginning of each time averaging interval. It would be equally valid to use the state

probabilities at the end of the averaging interval, or some other point between the

beginning and the end. For example, P^o.i) could be evaluated at nTavg, (n+l)Tavg or

some point between the two. Also, it is unlikely that this choice will affect roundoff

error, but it may affect integration error. When Euler's method is used to integrate

forward in time, the state probabilities are typically taken at the beginning of each

averaging interval. Thus, we assume for the time being that this is also the case in our

solution of equations 5.4.

Recall from §4.1 that, in general, effective transition rates can most easily be

solved for by starting from the system loss states and working backwards. Due to the

particularly simple structure of the chain model, it is just as easy to begin solving for the

effective transition rates by starting at the fully operational state, (0, 1). Equation 5.5 can

be derived in such a manner.

AP
(5.5a)

l-(JComp) = -r<"'_"'"•"] (5.

-p j
'(O.u'avg

2X(2Comp) = -[ ai) ~™ ' - K M ) ] (5 5c)

±] (5.5d)P....T(3,1) avg

In order to obtain a numerical solution for the effective failure rates in a given

decomposition, we must choose an appropriate value for Tavg. Our choice of Tavg may

vary with time or it might be fixed for all times of interest. It is possible that the roundoff

error may be more significant than integration error during some portions of the
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evaluation and less significant during other portions of the evaluation. Consequently, the

above tradeoff would call for a different Tavg for different periods in the evaluation. For

simplicity, we assume that Tavg will be fixed.

5.2.1 Sensitivity to Roundoff Error

For small times, the change in state probability, AP(o.i) may be several orders of

magnitude smaller than the probability of being in state (0, i). The difference calculation

to derive AP(o,i) will result in a significant loss of accuracy for this case.

Suppose the full subsystem is evaluated using 4 digits of machine precision. If

P(0,i)(t) = 9.004x10-' and P(0,i)(t+Tavg) = 9.000X10'1 then AP(0iJ) = 4xlO'4, but has only

one digit of precision. The same loss of precision is also possible at any other state.

In order to mitigate the problem of roundoff error, we either need to increase the

precision of our data, or increase Tavg until an acceptable level of roundoff error is

achieved. In the above example this would mean either increasing the machine precision

a few more digits, or increasing Tavg until all AP(o,i) are greater than 10'3. Since the

precision of our data is always limited, unreasonably small values for Tavg should be

avoided.

5.2.2 Sensitivity to Integration Error

All numerical integration techniques are by nature an approximation of the

definite integral. Therefore, any numerical integration technique that is applied will

result in some level of error based on whatever simplifying assumptions are used to

perform the integration. For example, by applying Euler's method to equations 5.3, we

have assumed that the state probabilities, P(o,i), and effective transition rates, ke(i Comp)

are constant over each averaging interval. The three equations below indicate how

equation 5.3a was integrated using Euler's method.

'+T°"S dP '+T<"S

J

P(0.n('+Ta*g)

il) = -4V(OComp)PW)(t)Tavg

Tavs ) - P(0ll)(0 = -4V(OComp)PW)(t)Tavg

AP
- = -4X(OComP)P(0l)(t)

avg
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In the second step indicated above, we have assumed a constant value for

ke(OComp} and we have assumed that P(o,j) = P(o,i) (t) across the interval from /to t +

Tavg. Figure 5.4 gives a graphical interpretation of how Euler's method is used in

numerical integration.

t

P(t)

avg

Figure 5.4: Euler's Method Applied to State Equations

By assuming constant state probabilities, and constant effective transition rates

across an averaging interval, two distinct sources of integration error have been

introduced. From the discussion of §5.1 and the graph in figure 5.4, we conclude that

integration error will be small if the state probabilities and effective transition rates

change very little across an averaging interval. This will only be the case for small

enough Tavg.

5.3 A Numerical Example

5.3.1 Roundoff Error

A Markov model was built for the exact power subsystem shown in figure 5.1

using an automated Markov model construction tool. This tool is briefly presented in

chapter 6 (for a more detailed discussion of this tool see Hutchins, Babcock, and Rosch).

The failure rates for all components in this subsystem were set to 10~4 failures per hour.
The resulting Markov model was evaluated using an integration time step, At of one hour

and single precision arithmetic (i.e., eight digits of precision). State probabilities within

the exact subsystem model were mapped to states within the approximate power
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subsystem model (figure 5.3). The length of the averaging interval, Tavg was also set to

one hour.

A partial listing of the results taken at one hour time intervals is given in table 5.1.

Notice that it takes several integration steps for any probability to flow into higher states,

i.e., states (2, 1) and (3, 1). Because table 5.1 contains results from each time step in the

original integration the first few entries for P(2,i) and P(3j) are zero.

Time(hours)

0.0

1.0

2.0

3.0

5.0

5.0

P<o.i)(time)

l.OOOOeOO

9.9960e-01

9.9920e-01

9.9880e-01

9.9840e-01

9.9800e-01

P(i.n(time)

O.OOOOeOO

5.0000e-04

7.9956e-04

1.1987e-03

1.5974e-03

1.9956e-03

P(2.n(time)

O.OOOOeOO

O.OOOOeOO

5.0000e-07

1.1993e-06

2.3972e-06

3.9929e-06

P(3.l)(time)

O.OOOOeOO

O.OOOOeOO

O.OOOOeOO

1.4400e-lO

5.7565e-lO

1.4383e-09

Table 5.1: Evaluation Results for Exact Subsystem

(taken at 1 hour time intervals)

Since results have been taken from each integration time step, the above data

gives us a lower bound on all possible Tavg for this evaluation. Values for the effective

failure rate can be calculated over each averaging interval by substituting the above state

probabilities into equations 5.5. Some of the results of this calculation are given in table

5.2.

T1 ave

0.0

1.0

2.0

3.0

4.0

(his)

-1.0

-2.0

-3.0

-4.0

-5.0

4Xe(OComp)

5.0000e-04

5.0011e-04

5.002 le-04

5.0044e-04

5.0058e-04

3V(lComp)

O.OOOOeOO

9.7500e-04

9.6253e-04

1.0670e-03

1.0631e-03

2K(2Comp)

O.OOOOeOO

O.OOOOeOO

-7.4230e-02

6.7643e-02

5.2694e-02

Xe(3Comp)

O.OOOOeOO

O.OOOOeOO

O.OOOOeOO

5.6036e02

1.7629e02

Table 5.2: Effective Failure Rate (Tavg = 1.0 hour)

Initial inspection of the results in table 5.2 may lead the reader to believe that

some of the entries have been calculated incorrectly. In particular, the negative failure
rate shown for 7£(2Comp) has no physical meaning. However, close examination of the
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original data in table 5.1 reveals that the calculations which produce the results in table

5.2 are indeed correct.

The change in state probability AP(o,i) from 2 to 3 hours is -3.9989xlO~4, and that

AP(ij) across the same time interval is 3.9912xlO~4. Since P(o,i) is only accurate to the

seventh decimal place, the sum, AP(oj) + AP(ij) - -7.6960xlO~7 has only one significant

digit. When we add this to the value of AP(2,i) U-e-> 7.9929xlO~7) the sum becomes

-2.9692xlO~8, but this value has no digits of precision. In this case, finite precision

arithmetic has resulted in catastrophic cancellation (i.e., a result which has no meaning

because it has no digits of precision).

From the previous discussion we might be led to believe that roundoff error would

be easy to detect because the resulting effective failure rate would be pure noise;
however, the problem is more subtle than this. Notice that AP(o,i) is on the order of 1CT4

for all times with only 4 digits of precision. Since AP(o,i) is the dominant term in

equations 5.5, each component of the effective failure rate will have at most 4 digits of
precision. Since AP(i,i) is comparable in magnitude to AP(o,i) but of opposite sign, there

exists the potential for losing even more precision.

The effects of roundoff error can be explored by taking a detailed look at the

roundoff error present in this particular case. We begin by estimating the number of

digits of precision in each component of the effective failure rate. Assume that the only

loss of precision occurs during the summation involved in equations 5.5. The number of

digits of precision for a given summation is approximately the number of digits of

precision of the largest term in that summation minus the loss in magnitude of the

resulting summation. For example, assume that P(o,i) has 8 digits of precision and is on
the order of 10°. If AP(o,i) is on the order of 10~3, then this difference has about 5 digits

of precision.

The indicated summations are calculated below (table 5.3) for each of the time

intervals specified. This information is then used, as discussed above, to determine the

approximate accuracy of the effective failure rate for each one of these time intervals.

Table 5.3 shows how the resulting effective failure rate from this set of data loses

a substantial amount of accuracy due to roundoff error. We have not set a minimum on

the number of significant digits in our effective failure rate. However, we presume that

the level of error in the effective failure rate for this example would be intolerable for

most applications.
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Summation

0.0

1.0

2.0

3.0

4.0

-1.0

-2.0

-3.0

-4.0

-5.0

0.0-1.0

1.0-2.0

2.0-3.0

3.0-4.0

4.0 - 5.0

AD //\f^//i i \ l_

-5.0000e-04

-3.9995e-04

-3.9996e-04

-3.9996e-04

-3.9994e-04

Xe(OComp)

4

4

4

4

4

*<OJ)+*P<U)

5.4073e-17

-3.9000e-07

-7.6960e-07

-1.2790e-06

-1.6981e-06

Digits

^f(lComp)

I

1

2

2

AP(oj) +AP(jj) + i

5.4073e-17

9.9999e-09

2.9692e-08

-8.1123e-08

-1.0235e-07

of Precision

he(2Comp)

0

0

1

1

^P°'1)+^'1) +

5.4073e-17

9.9999e-09

2.9836e-08

-8.0692e-08

-1.0148e-07

A?(3Comp)

0

0

1

1

Table 5.3: Approximate Accuracy of Xe

(taken at 1 hour time intervals)

The level of accuracy in the first averaging interval cannot be determined by the

same method applied to subsequent intervals. Because we have used the state

probabilities, P(o,i) through P(3,i), evaluated at the beginning of each averaging interval,

calculation of the effective failure rate leads to division by 0 at the first averaging

interval. It is unclear what the effective failure rate should be for averaging intervals in
which the initial state probability is zero (e.g., 2,e(OComp) from 0 to 1 hour). This topic

will be examined further in §5.4.

This example highlights two aspects of roundoff error involved in determining the

effective failure rates for an approximate subsystem:

1. Taking the difference in probabilities across averaging intervals leads to a

significant though not necessarily catastrophic loss of accuracy.

2. Determination of an effective failure rate involves the summation of several

terms which may be of opposite sign but comparable magnitude. This summation may

lead to catastrophic cancellations which result in a numerically unstable solution.
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The first issue is simple enough to detect by examining the data from an

evaluation of the exact subsystem; the difference in state probability across an averaging

interval can be compared to the state probability at a given time to determine its relative

accuracy. The second problem is easy enough to detect in the small example discussed

above, but may not be so clear in general. Still, for this example, an averaging interval of

1 hour is clearly too small.

By increasing Tavg we hope to increase the change in state probabilities used to

calculate the effective failure rates and thereby reduce the amount of roundoff error

mentioned in item 1. We also assume for large enough Tavg that the catastrophic

cancellations discussed in item 2 will not take place.

Driven by the assumption that a larger averaging interval will reduce roundoff

error, we examine the results of our evaluation of the exact subsystem in figure 5.1 at 50
hour time intervals (i.e., every fiftieth step of At = 1 hour). A partial listing of this data is

displayed in table 5.4.

Time (hrs)

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

P(0j)(time)

l.OOOOOOeOO

9.800286e-01

9.6013 14e-01

9.4033 13e-01

9.206495e-01

9.011052e-01

8.817162e-01

8.624988e-01

8.434676e-01

8.246362e-01

8.060167e-01

P(L1](time)

O.OOOOOOeOO

1.946484e-02

3.786809e-02

5.524800e-02

7.164195e-02

8.708646e-02

1.016171e-01

1.152688e-01

1.280752e-01

1.400695e-01

1.512836e-01

P (2.1 )( time)

O.OOOOOOeOO

5.783169e-04

1.872372e-03

5.101050e-03

7.087962e-03

1.076122e-02

1.505324e-02

1.990048e-02

2.52433 le-02

3.102578e-02

3.719546e-02

P<3.i)(time)

O.OOOOOOeOO

2.780214e-06

2.210736e-05

7.298605e-05

1.685688e-04

3.202990e-04

5.380446e-04

8.302236e-04

1.203921e-03

1.664999e-03

2.218200e-03

Table 5.4: Evaluation Results for Exact Subsystem

(taken at 50 hour time intervals)

The number of digits of precision available after roundoff error can be estimated

for each effective transition rate as was done for table 5.3. The results of this estimation

are listed in table 5.5.
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Digits of Precision

Time (hrs)

0-50

50 - 100
100-150

150-200

200 - 250
250 - 300

300 - 350
350 - 400
400 - 450
450 - 500

4Ae(OComp)

6

6

6

6

6

6

6

6

6

6

3Ke(lComp)

4

5

5

5

5

5

5

5

5

5

2X(2Comp)

3

3

4

4

4

4

4

4

5

5

Ae(3Comp)

3

3

4

4

4

4

4

4

4

4

Table 5.5: Approximate Accuracy of Xe (Tavg = 50.0 hour)

For this example a considerable increase in the averaging interval has reduced

roundoff error substantially. We presume that the level of error in the effective failure

rate for this example would be tolerable for many applications. However, we still have

no estimate of the integration error for this example.

5.3.2 Integration Error

As we continue to increase Tavg, we expect roundoff error in he to decrease.

Integration error, which we assumed to be negligible at first, however, will increase. We

assume roundoff error to be monotonically decreasing and integration error to be

monotonically increasing. If this is the case, then for some value of Tavg, roundoff will

cease to be the dominant form of error and integration error will take over. Given the

above assumption of monotonicity, this will take place at the point where total error is at

a minimum. The graph of figure 5.5 illustrates this behavior.

The important point is that the total error has some global minimum, and that this

point can be determined by varying Tavg. Also, for the range of Tavg for which total error

increases, integration error must be greater than roundoff error. Therefore, we would like

to estimate the total error of the effective failure rate for this choice of averaging interval.

In order to estimate the total error, we will have to compare an evaluation of the

approximate system to an evaluation of the corresponding exact system. The difference
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in state probabilities between these two systems would be the total error associated with

the given hierarchical analysis. Assume that the effective components of the approximate

subsystem accurately capture the relationship between the subsystem and the remainder

of the exact system. If this assumption holds, then the total error for the given analysis

can be completely attributed to the effective component failure rates. In practice, once

we have an evaluation for the exact system there is no longer any need to perform the

hierarchical modeling, so this ability to measure total error is not usually available to the

system's analyst.

Error Roundoff Error
Integration Error

Total Error

avg

Figure 5.5: Nature of Total Error

A more useful measure of the total error associated with the effective failure rates

can be obtained by using the resulting effective failure to determine state probabilities for

the approximate subsystem model. The piece-wise approximation to the effective

component failure rates can be used in a Markov model evaluator. The difference

between the state probabilities as determined from the exact subsystem model and the

state probabilities as determined from the approximate subsystem model can be used as

an estimate of the total error associated with the effective failure rates. This measure of

error is demonstrated in the following numerical example.

The state probabilities listed in table 5.4 can be used to calculate an effective

failure rate for the approximate power subsystem of figure 5.1. The piece-wise constant

approximation to this effective failure is listed in table 5.6 for several consecutive
averaging intervals. Notice however that calculation of 3ke(lComp), 2A,e(2Comp),

A,e(3Comp) at the first averaging interval involves division by zero and is therefore
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undefined. In order to evaluate the approximate subsystem we set them to 0 with the

understanding that there may exist some set of values which would better characterize the

reliability of the exact subsystem across this averaging interval.

Time (hrs)

0-50

50 - 100

100 - 150

150 - 200

200 - 250

250 - 300

300 - 350

350 - 400

400 - 450

450 - 500

4Xe(OComp)

3.9943e-04

5.0605e-04

5.1244e-04

5.1862e-04

5.2458e-04

5.3034e-04

5.3591e-04

5.4130e-04

5.4652e-04

5.5158e-04

3V(lComp)

O.OOOOeOO

1.5350e-03

1.2782e-03

1.1902e-03

1.1445e-03

1.1157e-03

1.0954e-03

1.0800e-03

1.0677e-03

1.0574e-03

2A.e(2Comp)

O.OOOOeOO

5.1755e-03

2.0453e-03

1.4680e-03

1.2034e-03

1.0525e-03

9.5470e-04

8.8630e-04

8.3560e-04

7.9653e-04

Ae(3Comp)

O.OOOOeOO

5.7934e-01

1.2720e-01

5.6292e-02

3.2600e-02

2.1765e-02

1.5850e-02

1.2242e-02

9.8610e-03

8.1976e-03

Table 5.6: X,e Using Euler Approximation (Tavg = 50.0 hours)

The effective failure rate shown in table 5.6 can now be used in the numerical

evaluation of the approximate subsystem model of figure 5.3. The results of this

evaluation are listed in table 5.7.

Time (hrs)

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

P(0.]}(time)

l.OOOOE+00

9.8023E-01

9.6053E-01

9.4092E-01

9.2143E-01

9.0208E-01

8.8287E-01

8.6384E-01

8.4499E-01

8.2633E-01

8.0788E-01

P(L])(time)

O.OOOOE+00

1.9773E-02

3.7274E-02

5.3956E-02

6.9758E-02

8.4688E-02

9.8768E-02

1.1202E-01

1.2449E-01

1.3618E-01

1.4713E-01

P(2.i)(time)

O.OOOOE+00

O.OOOOE+00

2.0068E-03

5.5989E-03

7.8346E-03

1.1676E-02

1.6071E-02

2.0966E-02

2.6311E-02

3.2056E-02

3.8152E-02

P(3j)(time)

O.OOOOE+00

O.OOOOE+00

1.3863E-05

6.669 1E-05

1.7168E-04

3.3656E-04

5.6937E-04

8.7744E-04

1.2670E-03

1.7431E-03

2.3098E-03

Table 5.7: Approximate State Probabilities (Tavg = 50.0 hours)

85



The results of table 5.7 can now be compared to the exact subsystem data (as in

table 5.4) and the difference between these two sets of results can be used to estimate the

total error in our effective failure. This estimate of the total (absolute) error is listed in

table 5.8.

Time (hrs)

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

Pastime)

-1.9803E-04

-3.9470E-04

-5.8960E-04

-7.8173E-04

-9.7104E-04

-1.1573E-03

-1.3403E-03

-1.5195E-03

-1.6948E-03

-1.8655E-03

P(Jj)(time)

-3.0857E-04

5.945 1E-04

1.2923E-03

1.8842E-03

2.3988E-03

2.8494E-03

3.2442E-03

3.5894E-03

3.8899E-03

5.1491E-03

P(2.i)(time)

5.7832E-04

-1.3446E-04

-5.9786E-04

-7.4667E-04

-9.1463E-04

-1.0175E-03

-1.0660E-03

-1.0678E-03

-1.0298E-03

-9.5699E-04

P<3,}(nme)

2.7802E-06

8.2443E-06

6.2955E-06

-3.1062E-06

-1.6260E-05

-3.1322E-05

-5.7216E-05

-6.3086E-05

-7.8107E-05

-9.1617E-05

Table 5.8: Total (absolute) Error in Approximate Subsystem Model Probabilities

(Tavg = 50.0 hours)

By comparing tables 5.8 and 5.7, we conclude that the effective failure rate for

this choice of averaging interval yields approximate state probabilities with about 2 to 3

digits of precision. Given that the reliability parameters (e.g., failure rates) of the exact

subsystem are only accurate to within 1 to 2 digits of precision for most real world

applications, we might conclude that A,e calculated above is accurate enough. However, it

may still be possible to gain even more accuracy by increasing Tavg even further.

Consequently, we repeat the above experiment with Tavg equal to 100 hours. The

resulting effective failure rate is listed in table 5.9.

Notice that the values of table 5.9 are close to the values for the effective failure

rate in table 5.6. Since the two effective failure rates are equivalent to within an order of

magnitude, we expect both effective failure rates to yield approximate state probabilities

which are consistent to within one significant digit. We already know that the results

have about two digits of precision when Tavg equals 50 hours. The same analysis which

led to the results of table 5.8 is repeated for Tavg equal to 100 hours. The results are listed

in table 5.10.
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Time (hrs)

0-50

50-100

100- 150

150 - 200

200 - 250

250 - 300

300 - 350

350 - 400

400 - 450

450 - 500

4A,e(OComp)

4.9879E-04

4.9879E-04

5.1142e-04

5.1142e-04

5.2353e-04

5.2353e-04

5.3383e-04

5.3383e-04

5.4488e-04

5.4488e-04

3V(lComp)

O.OOOOeOO

O.OOOOeOO

1.4827e-03

1.4827e-03

1.2205e-03

1.2205e-03

1.1648e-03

1.1648e-03

1.1010e-03

1.1010e-03

2he(2Comp)

O.OOOOeOO

O.OOOOeOO

2.6683e-03

2.6683e-03

1.3589e-03

1.3589e-03

1.0878e-03

1.0878e-03

8.9455e-04

8.9455e-04

tf(3Comp)

O.OOOOeOO

O.OOOOeOO

1. 8010e-01

1.8010e-01

3.8419e-02

3.8419e-02

1.8944e-02

1.8944e-02

1.0915e-02

1.0915e-02

Table 5.9: Xe (Tavg = 100.0 hours)

Time (hrs)

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

P(0.j)(time)

-2.2634e-04

-7.6840e-04

-1.0007e-03

-1.5132e-03

-1.7314e-03

-2.1993e-03

-2.4463e-03

-2.9143e-03

-3.1236e-03

-3.5307e-03

P(L1)(time)

-2.802 le-04

-1.2321e-03

7.4950e-05

1.9294e-03

2.7478e-03

3.9116e-03

5.6587e-03

5.6866e-03

6.1143e-03

6.7803e-03

P(2.i)(time)

5.7832e-04

1.8724e-03

8.1355e-04

-1.3829e-04

-5.4116e-04

-8.8328e-04

-1.1015e-03

-1.2556e-03

-1.2184e-03

-1.1380e-03

P(3.n(time)

2.7802e-06

2.21076-05

3.0165e-05

6.8335e-05

8.4798e-06

6.1261e-05

-1.6765e-05

2.6554e-05

-3.7680e-05

6.5780e-06

Table 5.10: Total (absolute) Error in Approximate Subsystem Model Probabilities

(Tavg = 100.0 hours)

Comparison of the results in table 5.10 with table 5.7 confirms that the

approximate state probabilities in this case have approximately one digit of precision.

This is consistent with the results of the previous case (Tavg = 50 hours) to one significant

digit as expected. A comparison of tables 5.10 and 5.8 shows that the approximate state

probabilities of table 5.10 are noticeably less accurate. This suggests that the effective

failure rates of table 5.9 (Tavg = 100 hours) are less accurate than the effective failure

rates of table 5.6 (Tavg = 50 hours). Presumably, we have passed the optimum value of

Tavg and our results are now affected primarily by integration error.
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In order to gain some intuition about the integration error for this particular

example, we derive an exact solution for 4Xe(OComp). The probability contained in the

first state of the Markov model in figure 5.3 is described by equation 5.6a where P(o,i)(t)

is the probability of being in state 0 at time t. This equation can be solved for

4Xe(OComp) as indicated by equation 5.6b. Note that if 4A,e(OComp) is time-invariant

then equation 5.6a is the exact solution to equation 5.3a. Equation 5.6b can be used to

find exactly what time-invariant transition rate will make the probability in state 0 go

from P(o,i)(tj) to P(o,i)(tt +Tavg). The value of A.e(OComp) derived from equation 5.6b

does not assume a constant value for P(o,i)- Consequently, the value derived from this

equation represents the best constant value that can be achieved for Xe(OComp).

(5.6a)

(5.6b)

In order to gain some appreciation for how much our current solution (table 5.9)

varies from this ideal solution, we calculate the values of 4tf(QComp) using equation

5.6b and compare them to the values listed in table 5.9. This comparison can be found in

table 5.11.

Averaging Interval

0-100

100 - 200

200 - 300

300 - 400

400 - 500

4tf(OComp) Exact

4.0696E-04

4.2012E-04

4.3276E-04

4.4353E-04

4.5508E-04

4Xe(OComp) Euler

3.9879E-04

4.1142E-04

4.2353E-04

4.3383E-04

4.4488E-04

Difference

8.1696E-06

8.7028E-06

9.2305E-06

9.6919E-06

1.0199E-05

Table 5.11: Comparison of Euler Failure Rate to Exact (Tavg = 100 hours)

The above analysis suggests that the effective failure rate for this example at the

zeroth state has approximately 1 to 2 digits of precision across the entire interval from 0

to 500 hours. In order to see how this error depends on time, we concentrate on the first

and last averaging intervals. The first is the most accurate value of 4he(OComp), and the

last is the least accurate. Values for 4Xe(OComp) calculated by Euler's method are

compared to the exact solution, as a function of Tavg (figure 5.6). Since this transition

rate is the least susceptible to roundoff error, we use the comparison of figure 5.6 to

examine integration error only.
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Figure 5.6: Euler vs. Exact Value for 4A.e(0 Comp)

The trend in the above data is clear: as the length of the averaging interval

increases, the integration error in our averaging process becomes unacceptably large.

Integration error is almost zero when the length of the averaging interval is 1 hour. Of

course, for such a small Tavg we get large roundoff error in the other effective rates. Also,

integration error starts to become noticeable even with an averaging interval of 50 to 100

hours. We conclude that there exists only a narrow band of values for Tavg which will

produce an accurate set of effective failure rates (i.e., from about 50 to 100 hours).

5.4 Improved Integration

Only a narrow set of values for Tavg produce an accurate effective failure rate for

the power subsystem. This represents a limitation on the hierarchical modeling process.

It seems likely that this range of values will change from one system to the next; that the

range will grow or shrink, and most certainly change location. Finding a potentially

small range of values for Tavg may prove cumbersome. We would like to alleviate this

problem by increasing the size of this range, by reducing either roundoff or integration

error.
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Roundoff error is a direct result of the method chosen to solve for the effective

failure rate. In particular, an expression for the effective failure rate has been derived by

solving a differential equation backwards. This solution necessarily involves taking a

finite difference. Since this is the source of roundoff error it seems unlikely that any

other choice of integration technique will alleviate this problem. It is also unclear how to

solve for the effective failure rates without numerical integration.

Integration error, unlike roundoff error, depends strongly on the choice of

integration technique. One simple improvement to the Euler's method is based on the

trapezoidal rule of integration [Stewart, pp. 440 - 445]. Instead of assuming a constant

state probability over a given averaging interval, we assume a linear state probability.

This assumption is highlighted in the sample integration presented below, and the

corresponding graphical interpretation of figure 5.7.

l+T.,,
dP,,

dt

avg

AP,(
(0,1)

avg

In the above system of equations P(0 u denotes the average probability in state 0

for a given averaging interval. Notice that we obtain the same result if we use the

average probability with Euler's method, as opposed to the initial state probability.

P(t)

Figure 5.7: Trapezoidal Rule of Integration Applied to State Equations
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Since state probabilities are approximately linear for small enough Tavg, the above

method of integration should be more accurate than Euler's method. In order to verify

this empirically, we calculate the effective failure rate for the power subsystem presented

in §5.3. The resulting effective failure rate is presented in table 5.12.

Time (hrs)

0-50

50 - 100

100 - 150

150 - 200

200 - 250

250 - 300

300 - 350

350 - 400

400 - 450

450 - 500

4he(OComp) 3

4.0346e-04

4.1022e-04

4.1674e-04

4.2304e-04

4.2913e-04

4.3502e-04

4.40716-04

4.4623e-04

4.5156e-04

4.5674e-04

tf(lComp)

1.0410e-03

1.0423e-03

1.0396e-03

1.0365e-03

1.0332e-03

1.0298e-03

1.0265e-03

1.0232e-03

1.0199e-03

1.0167e-03

2Xe(2Comp) A

2.3643e-03

1.6993e-03

1.2822e-03

1.0761e-03

9.5578e-04

8.7750e-04

8.2231e-04

7.8140e-04

7.4973e-04

7.2450e-04

e(3Comp)

3.6676e-01

1.2944e-01

5.9141e-02

3.4017e-02

2.2482e-02

1.6243e-02

1.2465e-02

9.9932e-03

8.2762e-03

7.0298e-03

Table 5.12: I? Using Trapezoidal Rule (Tavg = 50.0 hours)

By using the average state probability, we have eliminated the division by zero

problem present when using an Euler approximation (table 5.6). We can estimate the

accuracy of the transition rates in table 5.12 by calculating approximate state probabilities

as explained in §5.3. The resulting error is shown in table 5.13.

Time (hrs)

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

P(0>i)(time)

2.5700e-06

5.1800e-06

7.5200e-06

9.7700e-06

1.2000e-05

1.4300e-05

1.6360e-05

1.8700e-05

2.0600e-05

2.2790e-05

P(lil)(time)

5.2520e-06

8.0060e-06

1.1212e-05

1.3820e-05

1.6102e-05

1.8490e-05

2.0226e-05

2.1990e-05

2.3230e-05

2.4260e-05

P(2,])(time)

7.7375e-06

1.2558e-05

1.5904e-05

1.8904e-05

2.1760e-05

2.4192e-05

2.6775e-05

2.9347e-05

3.1796e-05

3.4487e-05

P<3,])(time)

3.38086-08

7.9523e-07

1.4107e-06

1.3400e-06

1.0580e-06

6.94366-07

2.9625e-07

1.2710e-07

5.7770e-07

1.06776-06

Table 5.13: Total (absolute) Error Associated with Trapezoidal Rule

(Tavg = 50.0 hours)
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By comparing tables 5.13 and 5.8, we conclude that the trapezoidal approximation

results in substantially less integration error. The effective failure rate as calculated by

the trapezoidal approximation can be compared to the exact failure rate as done in table

5.11. The graphical comparison presented in figure 5.6 is repeated in the graph of figure

5.8.
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Figure 5.8: Trapezoidal vs. Exact Value for 4Xe(0 Comp)

We can conclude from figure 5.8 that the trapezoidal approximation provides a

better estimate of the actual effective failure rate than a simple application of Euler's

method. Also, by using the trapezoidal approximation we have increased the range of

values of Tavg over which we may obtain a valid effective failure rate.

Numerical tests similar to the one presented in tables 5.12 and 5.13 can be

repeated with an averaging interval of 500 hours. Such a test shows that for the given

sample system, even with such a large averaging interval, the effective failure rate
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calculated by a trapezoidal approximation still produces results with at least one digit of

precision. With an averaging interval of 1000 hours, the level of error becomes

unacceptably large for this power subsystem example.

This suggests that a higher order approximation to the behavior of state

probabilities across an averaging interval might further reduce the integration error (e.g.,

a quadratic approximation such as Simpson's rule [Stewart, pp. 440 - 445]). However, for

the representative systems explored so far, the trapezoidal approximation has been

sufficient. Finally, notice that by applying a trapezoidal approximation we have not
eliminated the dependence of Ae on the change in state probabilities. This means that we

have not affected roundoff error at all.

5.5 Dependence of Tavg on Component Failure Rates

Both the integration and roundoff error depend on how quickly the state

probabilities P(o,i) through P(3,]) change over a given averaging interval. Consequently,

the accuracy of the resulting effective failure rate depends on our choice of averaging

interval. The accuracy of our results must also depend on any other parameters which •

affect the change in state probabilities. The failure rate of components within the exact

subsystem have a strong affect on the resulting state probabilities P(o,i) through P(3j).

Consequently, the accuracy of the effective component failure rate, for a given averaging

interval, must also depend on the component failure rates of the exact subsystem.

In order to gauge what effect the component failure rates of the exact subsystem

have on our choice of an appropriate Tavg, we assume that the choice of an appropriate

Tavg will be inversely proportional to the sum of the original component failure rates. For

the power subsystem considered in §5.3, the appropriate Tavg was approximately 50
hours. In this case each component shared the same constant failure rate, A-share, of 10"4.

The sum of these component failure rates was 10"3. For this sample system, the shared
component failure rate, hshare was varied several times, and an appropriate Tavg was

determined empirically. The results of this test are summarized in table 5.14.
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1 c-3 Failures/hr le-4 Failures/hr le-5 Failures/hr le-6 Failures/hr

re le-2 Failures/hr le-3 Failures/hr le-4 Failures/hr le-5 Failures/hr

T
avg 5 hrs 50 hrs 500 hrs 5000 hrs

Table 5.14: Effect of Component Failure Rates on Tavg

In table 5.14, kshare represents the shared component failure rate. The data of

table 5.14 indicates the following relationship for the given example.

camps

Equation 5.7 represents a rough estimate of the appropriate averaging interval,

and in practice an averaging interval 5 to 10 times greater may still be sufficient.

Initially, we assume that the approximate result of equation 5.7 holds generally.

In practice, we can validate our choice of Tavg by varying this parameter and

observing what effect this has on the resulting effective failure rates. If changes in the

Tavg produce comparable changes in the effective failure rates, we may conclude that the

resulting effective failure rates are still a function of Tavg. If this is the case we must

continue to vary Tavg until the effective failure rates cease to change substantially with the

choice of Tavg.

Alternatively, the validity of Tavg can be tested by another means. The effective

transition rates which result from a particular choice of Tavg can be used in a numerical

evaluation of the approximate subsystem model. If the resulting state probabilities

closely approximate the state probabilities from the exact subsystem model, we conclude

that the given Tavg is appropriate.

5.6 Conclusions

In this chapter we have explored some important numerical issues which arise in

calculating the effective component failure rates. The system of difference equations

which results from numerically integrating the state equations for the approximate

subsystem model is especially sensitive to roundoff error. This makes traditional matrix

based solution techniques difficult to apply. It is hoped that by writing separate equations

for each effective transition rate in terms of known quantities that roundoff error is
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reduced substantially. Also, these finite differences arise from the use of numerical

integration of the approximate subsystem model's state equations. Integration error is

reduced by using integration based on the trapezoidal rule.

We have seen that determining a value for the length of the averaging interval

represents a tradeoff between roundoff and integration error. This relationship has been

explored in detail for a small sample system. For this sample system, an empirical

relationship between Tavg and the sum of exact subsystem component failure rates was

developed (equation 5.7). This relationship was proposed as a method for producing an

initial guess for Tavg, with two methods provided to validate the value of Tavg selected.
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Chapter 6

Hierarchical Analysis of Some Sample Systems

One objective of this thesis is to show that there exist some systems which may

accurately be analyzed with the hierarchical technique proposed. Until now a

hierarchical technique has been presented in some detail, but its validity has only been

argued heuristically. Here we use empirical data to support the accuracy of the

hierarchical modeling process.

Another objective of this thesis is to show that the hierarchical modeling

technique is useful in making many intractable systems tractable. In the latter half of this

chapter, a real world example of an intractable system is presented. The hierarchical

modeling technique is then used to obtain an accurate reliability estimate for this system.

6.1 Two Sample Systems

6.1.1 No External Dependence

Consider the system of figure 6.1. The processor core in this system has no

dependence on any components in the remainder of the exact system. Thus, we label this

system as one having "no external dependence", in order to distinguish it from the next

example. This system can also be found in figure 3.5a, and a description of how this

system behaves can be found in §3.3.
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Figure 6.1: Exact System - No External Dependence

According to the guidelines of chapter 3, we should accurately be able to replace

the exact processor core with two effective processors. The resulting approximate system

can be found in figure 6.2. The exact processor core was evaluated with a failure rate of
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10'4 (failures per hour) assigned to each of the memory units and 10"5 assigned to each of

the processor units.
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Figure 6.2: Approximate System - No External Dependence

In order to evaluate the approximate system of figure 6.2 we first need to calculate

effective failure rates for the approximate processor core. We start with the approximate

subsystem model of figure 4.3. The state space of this approximate subsystem model is

used to help generate the exact subsystem model of figure 4.5. As suggested in §4.2.2,

the probability of the two common mode failure states is evenly split between the two

system loss states of the approximate subsystem model. It should be noted however, that

this probability assignment is arbitrary. Since the remainder of the exact system depends

only on the availability of specific processor channels, and not on the order in which they

fail, the resulting approximate subsystem need only capture the aggregate system loss

probability. How the common mode failure probability is assigned to either of the system

loss states has no bearing on the accuracy of the resulting approximate system.

For this system, the approximate relation of equation 5.7 suggests an averaging

interval of about 200 hours. Empirically we find that an averaging interval of 100 is

more appropriate for this system. Also, all of the states in the approximate subsystem

model for this example will contain finite probability. Thus we would like to use the

closed form solution for the effective failure rates of this system, derived in §4.1

(equations 4.4). In order to gain the additional accuracy afforded by the trapezoidal

approximation we simply replace the state probabilities evaluated at the beginning of

each averaging interval with the corresponding average state probabilities
(e.g.P(0 \)(nTavg) —» P(0 0). Although we do not list the resulting numerical values, we

note that the effective failure rates for this system are very similar to the rates in table 4.2.

The reliability of the approximate system of figure 6.2 can be determined by evaluating

the Markov model of figure 6.3.

Assume that a failure rate of S.OxlO"5 (failures per hour) is assigned to both

actuators. These failure rates, along with the numerical values determined for the

effective transition rates can be used to evaluate the Markov model of figure 6.3.

Because this example is small enough, a Markov model for the exact system can also be
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generated and evaluated. These reliability estimates can be compared to determine the

actual error associated with this hierarchical analysis. For this example, the absolute

error associated with both the reliability and unreliability estimates are almost identical.

The error associated with the reliability estimate is plotted in figure 6.4.

Figure 6.3: Markov Model for Approximate System - No External Dependence
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Figure 6.4: Absolute Error in Reliability/Unreliability - No External Dependence
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The reliability for this system is on the order of 10° for the times listed in figure

6.4. On the other hand, the unreliability ranges in value from about 10"4 to 10"3 for this

range of time values. This leads to substantially different amounts of relative error. The

relative error associated with the reliability estimate is plotted in figure 6.5. Compare this

to the relative error associated with the unreliability estimate plotted in figure 6.6.
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Figure 6.5: Relative Error in Reliability - No External Dependence
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Figure 6.6: Relative Error in Unreliability - No External Dependence

Because the reliability for this system is very close to one for the range of time

indicated, the relative error for this example closely matches the absolute error of figure

6.4. However, the relative error for the unreliability estimate decreases substantially with

increasing unreliability. The unreliability estimate is substantially less accurate: the
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reliability for this system has about six digits of precision, the unreliability has only two

or three.

Traditional techniques for reliability analysis generally produce unreliability

results which are only accurate to within one to two digits of precision due to uncertainty

in component reliability parameters (e.g., failure rate). We conclude that for this

example, the hierarchical analysis technique produces a reasonably accurate

approximation to the reliability/unreliability estimate obtainable by a direct analysis of

the corresponding exact system.

6.1.2 Global Dependence

The sample system considered in §6.1.1 contains a subsystem which exhibits no

dependence on the remainder of the exact system. Consider now the system of figure 6.7.

This system contains a processor which exhibits a global dependence on the power

supply. However, according to the guidelines of chapter 3 we should still be able to

replace the processor core of this system with the approximate subsystem implicit in

figure 6.2. The resulting approximate system is shown in figure 6.8.
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The approximate system of figure 6.8 uses the same effective failure rates as the

approximate system of figure 6.2. The effect of the global power supply is captured in

the Markov model for the approximate system, shown in figure 6.9.

Figure 6.9: Markov Model for Approximate System - Global Dependence

Assume that a failure rate of l.OxlO"5 failures per hour is assigned to the power

unit and the actuators for this system have the same failure rate as the actuators for the

system of §6.1.1. The reliability and unreliability of the exact system may be evaluated

directly. The results of this evaluation may be compared to an evaluation of the

approximate system of figure 6.9.

Absolute error between estimates for system reliability and unreliability for this

system are similar (i.e., they differ by no more than a factor of 2). The absolute error

associated with the estimate for system unreliability, obtained through a hierarchical

analysis is plotted in figure 6.10. Since system reliability continues to be on the order of
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one, the relative error for this estimate closely matches the absolute error of figure 6.10.

System unreliability varies from 10~3 to 10~2 for the times of interest. This results in a

relative error which decreases from about 10~3 to 10~4.
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Figure 6.10: Absolute Error, System Unreliability- Global Dependence

The relative error associated with this hierarchical analysis suggests that the

reliability and unreliability estimates obtained have about five and three digits of

precision, respectively. Based on this information and the discussion at the end of §6.1.1,

we conclude that the hierarchical analysis also produces acceptably accurate estimates for

system reliability and unreliability when the subsystem has a global dependence on the

remainder of the system.

The two examples of §6.1 do not prove that the hierarchical modeling technique

proposed in this report can accurately be applied to all systems or even to a certain class

of systems. However, the analysis of these two sample systems does demonstrate that

this technique can accurately be applied to some systems. This technique was proposed

for the analysis of large systems which could not otherwise be analyzed with the aid of

Markov models.

6.2 An Automated Markov Model Construction Tool

The construction of even moderate sized Markov models is an error prone and

tedious process. To deal with this, several software tools have been developed to assist in
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the model construction process [Nicole, Goyal]. A unique example of this class of tools

is the CAME program.

The Computer Aided Markov Evaluator (CAME) [Hutchins] has been produced

at the Charles Stark Draper Laboratory to assist in the reliability analysis of large fault-

tolerant systems with known constant failure rates. An important aspect of this software

package is that it automatically constructs a Markov reliability model based on a user

defined system description. The tool is currently implemented on a Symbolics Maclvory

system.

CAME input is based on the Symbolics graphical user interface. A system can be

described in CAME through four input windows. The architecture window is used to

input components and component parameters (i.e., failure rate, repair rate, coverage

values, etc.). The reconfigurations window can be used to define how the system

reconfigures in response to a specific component failure. The further specifications

window can be used to abstract certain definitions (e.g., specific Boolean conditions can

be defined and labeled in this window). Finally, the performance level window is used

to define different levels in which the system may be considered operational. These

operating or performance levels are evaluated sequentially. For example, if the system

meets the requirements for performance levels 1 and 2 then the system is considered to be

in performance level one.

CAME also has two output windows. The model builder window is where the

user commands CAME to generate a Markov model based on specific model building

parameters (e.g., model truncation, state aggregation). This window can also be used to

invoke the state inspector which allows detailed examination of the resulting Markov

model. The model evaluator can be used to obtain numerical reliability estimates based

on known constant failure rates.

6.3 Space Station Freedom

The work presented in this report was motivated by the reliability analysis of

Space Station Freedom (SSF). In particular, attitude control for SSF is considered critical

for station survival. Although this represents a highly reliable system, such reliability is

achieved through the use of a high level of redundancy with only moderately reliable

components.
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The combination of high redundancy and moderately reliable components,

combined with long mission (or evaluation) times, is not amenable to traditional

Markovian analysis. Since component failures are common for mission times of interest,

the Markov model used to evaluate system reliability must be built several failure levels

deep in order to obtain satisfactory bounds on system unreliability. This may be very

time consuming and it may not even be possible to produce such a large model given

constraints on processor speed and memory.

Space Station Freedom is scheduled to be built in several stages. The reliability

of the station at each stage, or mission build (MB), is evaluated independently. Here we

examine the reliability of attitude control at MB-2. Although this represents only the

second stage of space station construction it is still a fairly complicated system.

6.3.1 Traditional Analysis of SSF

Figure 6.11 represents the architecture of SSF at MB-2. Layered components

represent duplicates of the given component. For example, there are two top propulsion

modules.

Power Subsystem

Pump-motor
controller-t

Bat-t-is

Bat-b-is

Power
Supply-b

Press Flow
Control-b

Pump-motoi
controller-b

Propulsion
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Std Data
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Comm Link
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Mod - hot

Unint'ptable
Power
Supply

Time
Generation
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Solar Array
Rotary
Joint

Star
Tracker

Navigation

Mux/Demux
s3

Figure 6.11: MB - 2 Exact System Architecture
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In the power subsystem, both top pump motor controllers run off of the top power

supply. This power supply in turn is cooled by the top pressure flow control system.

Also, both of the top batteries need the top pressure flow control system and one of the

two top pump motor controllers in order to function. The bottom half of the power

subsystem contains a complementary set of dependencies between components. This

architecture results in top and bottom power channels. In order for the top power channel

to be operational, the top power supply, pressure flow control system, one of two

batteries and one of two pump motor controllers must be unfailed. The bottom power

channel is considered functional under a similar set of conditions.

The four transformers depend on the availability of top and bottom power

channels but not on the availability of specific components within the power subsystem.

These four transformers are used to supply power to the remainder of the exact system.

The standard data processors however can also use power from the uninterruptable power

supplies. The remaining components are used to directly sustain critical system functions

such as ground communication or guidance and navigation.

The description of this system was entered into CAME. The resulting system

description was then used to generate a four failure level model. This Markov model

took 1 hour and 18 minutes to construct, and was evaluated with a mission time of 4320

hours, approximately 6 months. The evaluation produced bounds on system unreliability

of between 0.209 and 0.290.

For this architecture, connectivity and mission time the system reliability is

clearly unacceptable. This makes the lack of resolution in the resulting reliability

estimate unimportant. However, in the interest of later comparison an attempt was made

to improve the reliability estimate by constructing a five failure level model. In this case

the machine ran out of memory before the model was completed. Both RAM and paging

space (i.e., virtual memory) were exhausted.

6.3.2 Hierarchical Analysis of Baseline SSF Configuration

To apply the hierarchical technique developed in previous chapters, a subsystem

must be selected for decomposition from the exact system. As was noted previously, the

power subsystem interacts with the remainder of the exact system through specific power

channels. This suggests that the power subsystem could be replaced with effective top

and bottom power components. Alternatively, the power subsystem along with the four

transformers could be replaced by four effective transformers. This decomposition
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eliminates only four additional components from the exact system while adding two

effective components to the approximate power subsystem. This would result in a great

deal of added complexity with relatively little computational benefit. Consequently, the

former decomposition was pursued.

The Markov model of figure 6.12 was used to determine effective component_ _ _ _ ^

failure rates for the approximate subsystem.

Figure 6.12: Approximate Power Subsystem Markov model

Given the Markov model of figure 6.12, state probabilities were needed to

calculate the indicated effective failure rates. In past examples both the exact and

approximate subsystems were small enough that their respective Markov models could be

constructed by hand. However, for this system the automated model construction

capabilities of the CAME program were used to obtain the necessary state probabilities.

CAME was used to build a Markov model for the exact subsystem with states

which map into the states of figure 6.12. A system description for the exact power

subsystem alone was produced. In this system description the top and bottom power

channels are defined by the Boolean expressions of equations 6.1. The Markov model

pictured in figure 6.12 was entered as a reconfiguration diagram with transitions triggered

by the evaluation to "false" of the effective channel definitions. For example, the

reconfiguration from state (0,1) to state (1,1) was triggered by the logical expression "not

top-power". Finally, a different performance level was defined for each state in the

approximate subsystem's Markov model.
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top-power - (unfailed power-supply-t) and (unfailedpressure-flow-control-system-t)

and ((unfailed pump-motor-controller-1-t) (6.1 a)

or (unfailed pump-motor-controller-2-t))

and ((unfailed battery-1-t) or (unfailed battery-2-t))

hot-power = (unfailed power-supply-b) and (unfailed pressure-flow-control-system-b)

and ((unfailed pump-motor-controller-1 -b) (6.1 b)

or (unfailed pump-motor-controller-2-b))

and ((unfailed battery-1-b) or (unfailed battery-2-b))

The resulting system description for the exact power subsystem was then used to

generate the appropriate Markov model. Since the exact subsystem in question was

reasonably small, this Markov model was built without truncation. Thus for this

example, no error was introduced due to truncation of the exact subsystem model.

The failure rates for the exact subsystem components sum to l.OOxlO"3. This

yields a rough estimate for the averaging interval of 50 hours, given the rule of thumb
indicated in chapter 4 (i.e., Tavg ~ [20(2, A,.]"1). However, 108 hours divides evenly into

the mission time and this was used for the averaging interval.

In order to calculate all of the unknown transition rates for the Markov model in

figure 6.12 the system of finite difference equations which describe that model was

solved to obtain an approximation to the effective failure rates over several time intervals.

The closed form solution to all of the unknown transition rates is directly associated with

the approximate subsystem model. Consequently equations 4.4 represent a closed form

solution to the set of effective transition rates for this subsystem as well as the subsystem

of figure 4.2. In order to use equations 4.4 we identify the top power channel as effective

component 1, and the bottom power channel as effective component 2.

The closed form of the approximate solution to all of the unknown transition rates

was put into a spreadsheet. Once the Markov model for the exact subsystem was

evaluated, all of the state probabilities were transferred to this spreadsheet to produce a

piece-wise constant approximation to the effective transition rates. Once these rates were

determined, they had to be expressed in terms of the model description tools available

within CAME.

The state dependence of the effective failure rates was captured by using several

components to express all of the possible states for each effective component. All of the
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components used to describe a given effective component were defined as "cold" spares.

Reconfiguration diagrams were used to indicate which components were in use at any

given time. The architecture used in the CAME description is shown in figure 6.13.

Figure 6.13: MB - 2 Approximate System Architecture

Since CAME only accepts constant failure rates, the time varying nature of the

resulting effective failure rates was used merely to obtain bounds on overall system

unreliability. The maximum value of each transition rate over the whole mission time

was used to obtain an upper bound on system unreliability. The minimum value was

used to obtain the corresponding lower bound. Since there was extremely little variation

over time for this particular example, this did not prove to be a limiting factor on the

accuracy of the final reliability estimate.

As was noted previously, the Markov model for the exact subsystem was built

without truncation. Therefore the only contributing factors to the bounds on unreliability

were truncation of the approximate system model and the bounds used to express the time

varying failure rates.

The approximate system architecture in figure 6.13 was used to generate a four

failure level Markov model. This model was produced in approximately 24 minutes.

Since it took roughly 2 minutes to generate the exact subsystem model the total machine

time necessary to produce this Markov model was about 26 minutes. As a figure of merit

this time is misleading because it does not incorporate time spent by the user performing
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different facets of the hierarchical analysis by hand. However, it does suggest that if

these tasks can be automated efficiently, that hierarchical modeling may produce a

substantial reduction in the amount of computer time necessary to analyze this type of

system.

The four failure level model yielded somewhat unsatisfactory though better

bounds on system unreliability (i.e., better than the original four failure level analysis of

the exact subsystem). In order to test the limits of this technique, a five failure level

Markov model, which could not be generated without decomposition, was produced.

Although this proved to require a great deal of machine time, the bounds which resulted

from this model were substantially better than could have otherwise been achieved. The

results of this analysis are compared with previous analyses in table 6.1.

System
Exact

Exact
Approximate

Failure Levels
4

5
5

Time(hours)
1.30

N/A
7.92

Bounds
0.209 - 0.290

N/A
0.253 - 0.266

Table 6.1: Hierarchical vs. Traditional Analysis - Initial Architecture

6.3.3 Improving Baseline SSF Architecture

Although the bounds on system unreliability were large for the direct (i.e., not

hierarchical) evaluation of baseline architecture, this point seems irrelevant given that

even the lower bound unreliability is substantially more than would be tolerable. For all

practical purposes, the reliability of the system must be improved before the accuracy of

our final answer becomes a serious concern.

A Markov model for the exact system was used to help improve the reliability of

the baseline SSF configuration in the following way [Zinchuk]. By varying component

failure rates one at a time, components which affected the lower bound on system

unreliability most strongly were identified. It was assumed that these components would

also contribute strongly to the true unreliability of the system . Steps were then taken to

improve the reliability of the function served by these components. In most cases

additional cross-strapping was used to add redundancy.

The major result of the design improvement process was to cross strap top and

bottom power channels. This yields additional redundancy without adding components
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to the system. Furthermore, the four central transformers in figure 6.11 were used to add

some redundancy to the pump motor controllers.

In order to get a feel for the effect of these changes on system reliability, the exact

system was described in CAME and a Markov model for this system was constructed. A

four failure level model bounded system unreliability between 0.042 and 0.122. While

this is an improvement over the baseline (table 6.1), these bounds do not allow

determination of the acceptability of the reliability of this improved system. An attempt

was made to improve the accuracy of this reliability estimate by extending the Markov

model to the fifth failure level. Here again the machine ran out of memory before the

model was completed.

6.3.4 Hierarchical Analysis of Improved SSF Configuration

In order to obtain tighter bounds on system unreliability, a hierarchical analysis

was applied to the redesigned system referred to in §6.3.3. Unlike the baseline

configuration for this system, the top and bottom power channels could no longer be

replaced by their corresponding effective components. In this redesigned system the top

and bottom power channels depend on components outside of the original power

subsystem (i.e., the central transformers). This introduces a channelized dependence

which violates the guidelines of chapter 3.

Notice that the remainder of the exact system depends on the power subsystem

only through these transformers. Thus, one way to decompose the redesigned exact

system is to incorporate the transformers into the power subsystem. This enlarged power

subsystem can be replaced with four effective power components which reflect the

functional status of the four transformers.

Since the hierarchical analysis described above uses a different set of effective

components, a new Markov model for the approximate subsystem model had to be

produced and the resulting set of effective transition rates had to be re-derived. The

Markov model for the approximate subsystem is shown in figure 6.14. In developing this

Markov model no assumptions have been made about component symmetry. However,

the sequence of effective component failures is known to be of no importance to the

remainder of the exact system, so aggregation is used that removes this level of detail and

reduces the number of effective transition rates to be calculated.
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Figure 6.14: Approximate Power Subsystem Markov Model - Redesign
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The exact subsystem description was entered into CAME and performance levels

were defined for all of the states indicated in figure 6.14. This system description was

used to construct a Markov model for the exact subsystem. The model was truncated at

the seventeenth failure level. Although not exact, this model provided very accurate

bounds on the final state probabilities.

The Markov model for the exact subsystem revealed that several of the states in

figure 6.14 contained zero probability (i.e., several of the states in figure 6.14 represent

unreachable states within the exact subsystem). All of the states in the exact subsystem

model which correspond to having effective power one available and effective power

three unavailable contained zero probability. Similarly, there was no probability

associated with having effective power two available and effective power four failed.

Physically, this means that power channel one cannot function if power channel three is

not available, and power channel two cannot function if power channel four is not

available. The revised Markov model of figure 6.15 incorporates this information and

aggregates all of the system loss states into one. The revised set of unknown transition

rates is also indicated in figure 6.15.

In the Markov model of figure 6.15, all of the ^f(to-SL) are the same value, and

the distinct system loss (SL) states are introduced simply to follow the failure level

convention. All SL states in figure 6.15 correspond to only one state equation for the

purpose of calculating effective failure rates.

We conclude the following about this phase of the hierarchical analysis:

1. The four effective components in our final approximate subsystem could have

created as many as thirty two unknown effective transition rates.

2. The actual number of unknown effective transition rates is substantially less

than the total possible number, due to the unreachability of certain exact subsystem states.

Since the Markov model for the exact subsystem contains a truncation state, the

probability for this state is used to obtain optimistic and pessimistic values for the

unknown transition rates. By adding the truncating state probability to the system loss

state of figure 6.15 this produces a set of effective failure rates which will drive the power

subsystem to failure somewhat prematurely. By adding the truncating state probability to

the initial state of figure 6.15 this produces a set of effective failure rates which will drive

the power subsystem to failure too slowly.
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A'(2,4)

Figure 6.15: Revised Approximate Power Subsystem Markov model

The state probabilities of figure 6.15 were used to solve for the unknown

transition rates and these rates were used in the approximate system model to define the

appropriate effective power units. This approximate system was used to estimate the

reliability of the exact system. The results of this analysis are compared to the original

exact system evaluation in table 6.2.
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System
Exact

Exact
Approximate

Failure Levels
4

5
5

Time(hours)
4.10

N/A
6.64

Bounds
0.042-0.122

N/A
0.061-0.075

Table 6.2: Hierarchical vs. Traditional Analysis - Final Architecture

6.4 Conclusions

In this chapter the hierarchical analysis technique developed in the previous

chapters is used in the analysis of some small sample systems as well as a more realistic

example (Space Station Freedom). The quantitative benefits of this technique have been

demonstrated in the analysis of space station freedom. This technique has been used to

improve the resolution in system reliability estimates by as much as a factor of six (see

table 6.1).

Many systems could not previously be evaluated using Markovian analysis due to

their size. Because of the improvements in resolution afforded by the hierarchical

technique demonstrated here, many of these systems now can be evaluated using Markov

models.
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Chapter 7

Summary and Conclusions

7.1 Summary of Thesis

In chapter 2, a general outline was developed for a hierarchical technique which can

be applied to systems which exhibit a simple dependence on a given subsystem. This

special sort of dependence is used to replace the given subsystem with some smaller set of

effective components. The effective components must be produced in such a way that this

approximate system accurately reflects the reliability of the exact system.

Guidelines were established in chapter 3 to help guide the analyst in determining the

validity of a given decomposition. These guidelines define the allowed interactions which

may exist between the subsystem to be decomposed and the remainder of the exact system.

Examples are also presented here to justify and explore the underlying principles of these

guidelines.

In order for the approximate system to accurately reflect the reliability characteristics

of the exact system, the approximate subsystem must accurately reflect the reliability

characteristics of the exact subsystem. One method for producing such an approximate

subsystem is to determine numerical values for reliability parameters of the effective

components which make up this approximate subsystem. In chapter 4, Markov models

were used to determine effective component failure rates for the case in which the exact

subsystem is non-repairable and has perfect coverage. This yields effective failure rates

which exhibit both time and state dependence.

The number of unknown transition rates which must be solved for in the

approximate subsystem model grows rapidly with the number of effective components in

the approximate subsystem. Some of these transition rates are zero due to the

unreachability of certain states. In order to more easily discover zero transition rates, a

particularly sparse Markov model was recommended. Also, truncation of the approximate

subsystem Markov model was explored in order to help reduce the modeling complexity.

The technique of determining effective failure rates developed in chapter 4 is highly

sensitive to roundoff and integration error. These issues were explored more fully in
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chapter 5. Integration based on the trapezoidal rule was recommended here as a result of

numerical comparison with other integration techniques.

In chapter 6 two small systems were analyzed hierarchically as well as by direct

analysis of the exact system. The hierarchical and traditional analyses were compared to

gain some intuition about the accuracy of the hierarchical modeling technique. Finally, the

Space Station Freedom (SSF) was used as an example of the application of this technique

to a real, and previously intractable, problem. The real advantage of this technique was

demonstrated in its capacity to dramatically improve the accuracy of reliability estimates for

a given system.

7.2 Limitations and Suggestions for Further Work

The hierarchical modeling technique presented in this thesis was developed with a

specific problem in mind: the reliability analysis of the attitude control function of the Space

Station Freedom. Emphasis was placed on producing an engineering method for handling

a real world problem. Most statements were supported by example and simple reasoning.

A more rigorous proof of the accuracy of this analysis technique may yield more precise

information about how to apply and extend this type of analysis.

The work in this thesis was developed for purely decaying subsystems with perfect

coverage. The effect of imperfect coverage in most cases is to drive the system to failure

with fewer component faults. For an exact subsystem with imperfect coverage, this

corresponds to a common mode failure of certain subsystem channels. It is possible that

imperfect coverage within the subsystem could be dealt with by simply ignoring coverage

values, in the same way that common mode failures were ignored in §4.2.2 for the

effective components. The resulting approximate subsystem should still accurately capture

the probability of being in specific states of the exact subsystem.

Dealing with a repairable subsystem is not so straightforward, because the

techniques developed for calculating effective failure rates cannot easily be extended to

calculate effective repair rates. Work in this area may prove useful as most repairable

systems tend not to permit much aggregation and truncation is not as effective as in purely

decaying systems. Thus, repairable systems run into state space limitations for much

smaller numbers of components in the system.

Finally, the real importance of the technique developed in this thesis is that it gives

the analyst a methodology for examining different parts of a system separately. It is
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possible that many of the details of this technique could be performed differently. There

may be a method for calculating effective failure rates which is less sensitive to roundoff

and integration error than the method proposed. Indeed there may be ways for combining

the reliability of different parts of the system without calculating effective failure rates.

Perhaps this latter function could be performed using a decomposition based on the law of

total probability.
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