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ABSTRACT

A flight experiment to test and evaluate the skin-friction drag characteristics of a riblet surface in
turbulent flow at supersonic speeds was conducted at NASA Dryden Flight Research Facility. Riblets
of groove sizes 0.0030 and 0.0013 in. were mounted on a F-104G flight test fixture. The test surfaces
were surveyed with boundary-layer rakes and pressure orifices to examine the boundary-layer profiles
and pressure distributions of the flow. Skin-friction reductions as a result of the riblet surface were
reported based on measured differences of momentum thickness between the smooth and riblet surfaces
obtained from the boundary-layer data. Flight test results for the 0.0030-in. riblets show skin-friction
reductions of 4 to 8 percent for Mach 1.2 to 1.6 and Reynolds numbers ranging from 2 to 3.4 million
per unit foot. The results for the 0.0013-in. riblets show skin-friction reductions of 4 to 15 percent for
Mach 1.2 to 1.4 and Reynolds numbers ranging from 3.6 to 6 million per unit foot.

NOMENCLATURE

b span length of the flight test fixture, 24 in.

Cd drag coefficient for skin friction

Cp average skin-friction coefficient

Cpr average skin-friction coefficient for riblet surface

Cps average skin-friction coefficient for smooth surface

Cp pressure coefficient, (P — Poo)A?oo

c chord length of the flight test fixture, 81 in.

Cf local skin-friction coefficient

FTP flight test fixture

Fc compressibility factor

H shape parameter, where H — 8*/6

HSCT high-speed civil transport

h peak-to-peak height in the riblet film, in.
fcTh+ nondimensional riblet height, h+ = h Re 1 ft \J -£

Me local Mach number at edge of boundary layer

MOO free-stream Mach number
/>

P local static pressure, Ib/ft

POO free-stream pressure, Ib/ft

#00 free-stream dynamic pressure, Ib/ft2

Re Reynolds number based on chord length of flight test fixture

Re/ft Reynolds number per unit foot

Re# Reynolds number based on momentum thickness



s spacing of peaks in riblet film, in.

Ue local velocity at edge of boundary layer, ft/sec

UQO free-stream velocity, ft/sec

u local velocity of boundary layer parallel to wall, ft/sec

u+ nondimensional wall parameter in scales of velocity

ur friction velocity, ft/sec

x horizontal distance from leading edge of flight test fixture, in.

y normal distance from test surface, in.

y+ nondimensional wall parameter in scales of length

z vertical distance from bottom edge of flight test fixture, in.

a. angle of attack, deg.

8 boundary-layer thickness, in.

6* displacement thickness, in.
rS

0 momentum thickness, where 6—1 ffi (1 — rr-)dyJQ peu c^ uc' "

^aft.r momentum thickness at aft end of test section for riblet surface

momentum thickness at aft end of test section for smooth surface

momentum thickness at forward station of test section

fj, viscosity coefficient, lb/ft-sec

p density of fluid at local conditions, slug/ft3

Poo density of fluid at free-stream conditions, slug/ft

iAv kinematic viscosity at the wall, ft2/sec

rw shear stress at the wall, lb/ft2

INTRODUCTION

Currently, NASA is developing new technologies for the design and development of a high-speed
civil transport (HSCT). A primary concern in the design of an HSCT is how to improve the aerodynamic
efficiency or overall lift-to-drag ratio. Typically, turbulent skin-friction drag accounts for approximately
40 percent of the total drag for an HSCT configuration. Therefore, reduction of this drag may not only
improve aerodynamic efficiency, but can also lead to appreciable fuel savings.

One successful method to reduce turbulent skin-friction drag at subsonic speeds has been to re-
configure smooth aerodynamic surfaces with narrow grooves in the direction of the stream. These
microscopic longitudinal grooves embedded in the surface have been commonly referred to as riblets.
Briefly, the grooves in a riblet surface act to reduce turbulent skin-friction drag by diminishing the mo-
mentum losses of the low-speed region of fluid near the wall (ref. 1). Over the past several years, many



investigations have been conducted to determine how these grooves interact within the turbulent bound-
ary layer (ref. 2) and to evaluate the drag reduction performance of this riblet concept. References 3
through 6 report skin-friction reductions of 6 to 8 percent for subsonic flow.

To extend these results into the supersonic flow regime, two wind-tunnel tests have recently been
conducted. Gaudet's results (ref. 7) showed drag reduction of 7 percent at Mach 1.2. Robinson's
results, reference 8, concluded that changes in turbulence intensity caused by the application of riblets
in a supersonic boundary layer were in agreement with riblet results obtained at low speeds. Although
drag-reduction performance was not measured in Robinson's experiment, his findings suggested that
riblets could be effective for reducing friction drag at supersonic as well as subsonic speeds. To date,
these are the only two sets of supersonic wind-tunnel data obtained. Therefore, to verify the performance
of riblets at supersonic speeds, flight data over a supersonic Mach number range were needed.

The objectives of the present flight experiment were (1) to determine if the application of
riblet material to a surface in turbulent flow can reduce skin-friction drag at supersonic speeds,
and (2) to verify that the physical characteristics of the riblets that yield maximum skin-friction reduc-
tion (ref. 2) are consistent with previous subsonic investigations. To meet these objectives, two riblet
sizes were tested. Each was tested in a design Reynolds number range selected to yield maximum
skin-friction reduction.

The F-104G flight test fixture (FTP) (ref. 9) was the test facility for this experiment. Each side of
the fixture provided a test area of 56.75 in. by 19 in. The right side was the test side; comparisons of
the average skin-friction results with and without riblets were made. The left side was used strictly as
the control side to monitor the flow and ensure repeatable flow condition of the test points.

Two identical boundary-layer rakes were used to survey the boundary layer of the flow with the
same differential pressure transducer over the control and test surfaces. The differences in measured
momentum thickness between the smooth and riblet test surfaces on the right side of the FTP were
calculated from the boundary-layer profiles generated by the respective surfaces. These differences led
to measurements of average skin-friction reduction as a result of the application of riblets. The results
of this investigation, with a complete description of the experiment setup and data analysis, will be
presented here.

FLOW PHYSICS OF RIBLETS

The concept of skin-friction reduction through modification of the wall structure is not new. Over
the past three decades, several approaches, as described in reference 1, have evolved into the present
drag-reduction technique known as riblets. One of the earliest investigations of more than 30 years ago,
reference 10, examined shark skin and its interaction with the flow structure.

Until approximately a decade ago, it was commonly assumed that turbulent structures were ad-
equately described through statistical quantities. Time averages of turbulence in terms of velocity,
pressure, and temperature fluctuations, as well as cross-correlations of these, were examined and used
to develop turbulence models. In some cases, however, a time-dependent description was necessary to
show an identifiable sequence of events. These events are commonly called coherent structures. The



motion is strongly three dimensional, and may be described simply as bursts of flow moving away from
the surface followed by sweeps moving toward the surface. More recently, discussions of coherent
structures have led to many studies in which various schemes to manipulate the coherent structures, in
particular riblets, have been attempted.

Walsh (ref. 2) conducted several investigations in determining how the physical geometry of the
riblets (i.e., the size and shape of the grooves) affect the performance of riblets. Aspect ratio, or the
height (h) and spacing (s) of the grooves, as well as the shape of the grooves, such as corner rounding,
were taken into consideration. As a result, it was demonstrated that an aspect ratio of 1 (that is, h = s)
was optimum for maximum drag reduction performance (fig. 1). For best performance, grooves of
triangular shape were also concluded to be optimum.

In addition, Walsh found that optimum skin-friction drag reduction in subsonic flow occurs at a
nondimensional riblet height, h+, of 12 to 15 wall units (ref. 2). By interpreting h+ values to Reynolds
numbers, a design range of Reynolds numbers was determined for the present flight experiment based
on Walsh's subsonic data to yield optimum skin-friction drag reduction.

Choi (ref. 11) conducted detailed investigations examining the effects of riblets on the structure
of the turbulent boundary layer. The results from Choi's subsonic investigations yielded two important
conclusions. First, riblets act in thickening the sublayer. The law of the wall for the time-averaged
boundary-layer profile was commonly taken to be u+ = 5.45 log(y+) + 5.45. In the presence of a riblet
surface, the law of the wall was altered to u+ = 5.5 log(y+) + 6.89. In Robinson's experiment, the
effect of the riblet surface of nondimensional height h+ = 15 also resulted in thickening the sublayer,
corresponding to an outward shift of 6.8 in y+ wall units.

Second, Choi's investigation concluded that riblets cause an appreciable reduction of turbulence
intensity level in the inner regions of the boundary layer. His riblet data showed a reduction in level
from y+ =18 out to y+ — 70, where the smooth wall turbulence production was at its maximum at
y+ = 50. Robinson performed a similar documentation of the turbulence intensity for a supersonic
boundary layer at Mach 2.97. His findings showed similar results. Although a reduction of turbulence
intensity level usually indicates a reduction in turbulence production in the boundary layer, it does not
necessarily translate to a reduction in skin-friction drag.

These results as well as the results of previous investigations (ref. 1-8 and 11) also imply that
the effects of riblets are locally confined to the riblet surface and are kept within the wall structure of
the turbulent boundary layer. In only one boundary-layer thickness downstream of the riblet surface,
the mean velocity profile can be expected to return to its normal characteristics. Therefore, the tradi-
tional relationships available for the integral properties of turbulent boundary layers were used in the
data analysis.

EXPERIMENT DESCRIPTION AND TEST CONDITIONS

A specially equipped F-104G aircraft served as the carrier vehicle for the supersonic riblet experi-
ment. The aircraft instrumentation included an uplink trajectory guidance system (ref. 12). This uplink
system indicated differences between desired and actual flight conditions, specifically Mach number,



altitude, and angle of sideslip. The pilot flew all test points at steady level flight conditions using this
uplink system to ensure accuracy and repeatability of the data.

The FTP, a fin-like shape with low aspect ratio, was mounted vertically on the lower centerline of
the F-104G carrier aircraft, as shown in figure 2. The chord length of the FTP is 81 in., the semispan
is 24 in., and for the major part of its length, except the forebody, the thickness is a constant 6.4 in. As
described in reference 9, the FTP was specially developed as a unique research facility for conducting
aerodynamic and fluid-mechanic experiments in flight.

The FTP was equipped with interchangeable noseshapes (fig. 3). This experiment used an elliptical
cross section made of foam and fiberglass. This noseshape allowed panels containing the riblet material
to be attached to the sides of the FTP, and provided a smooth continuous surface from the leading edge
of the FTP to the test surface.

A transition grit strip ensured a known and repeatable transition location on the FTP. This transition
strip was positioned 9.38 in. from the trailing edge of the noseshape, and placed on both sides of the
FTP. The transition strip was 0.125-in. wide and made of No. 46 carborundum grains. The selection
of the grit size was determined using reference 13.

This experiment used measurements on both sides of the FTP; see figure 3. Each test surface
covered an area of 56.75-in. long by 19-in. wide. The left side was used strictly as a control side to
monitor the flow and ensure repeatable flow condition of test points. After some baseline flights with
smooth panels on both sides, riblet material was applied to the right side test surface only, 15-in. aft
of the leading edge. Adhesive-backed plastic film, embedded with longitudinal, microscopic grooves in
its surface served as the riblet material in this experiment. A schematic of this grooved, plastic film or
riblet film is shown in figure 1.

The size and shape of the grooves of the riblet film tested in this experiment were selected to
yield optimum skin-friction reduction based on the data presented by Walsh (ref. 2). Two sizes of riblet
film were evaluated: one having a height and spacing of 0.0013 in. and one a height and spacing of
0.0030 in. The grooves in the riblet film were symmetrical and triangular shaped with relatively sharp
peaks and valleys.

Figure 4 shows the flight test conditions obtained for this experiment along with the flight envelope
of the F-104/FTF. For the 0.0030-in. riblets, Reynolds numbers ranged from 2 to 3.4 million Re/ft and
Mach numbers ranged from 1.2 to 1.6. For the 0.0013-in. riblets, Reynolds numbers ranged from 3.6
to 6 million Re/ft and Mach numbers from 1.2 to 1.4. Shown also in this figure are riblet design test
conditions as determined by reference 2. As discussed earlier, these design test conditions were selected
to provide optimum skin-friction reduction results based on subsonic data (ref. 2). As can be seen, both
design and off-design test conditions were obtained for 0.0013- and 0.0030-in. riblet film.

INSTRUMENTATION

The instrumentation for the control and riblet test surfaces consisted of two boundary-layer rakes,
two rows of flush static pressure orifices, and two rows of six modified Preston tubes positioned spanwise



at the trailing edges of the FTP. Figures 3(a) and (b) show right- and left-side views of the experiment
setup. All research and airdata parameters were digitally encoded using pulse code modulation, and
were recorded onboard and telemetered to ground-based recorders.

Boundary-layer rakes were used to determine the boundary-layer profiles and average skin-friction
coefficients at the end of each test section (fig. 3). Each boundary-layer rake consisted of 20 total
pressure probes positioned 71.75-in. aft of the leading edge, x/c = 0.886. Figure 5 illustrates the
boundary-layer rake mounted on the FTP. These rake probes were mounted along a 5-in. plate at the
end of the riblet and control test sections, canted 30° from the plane of the FTP surface. Canting the
rake plate allowed more probes to be located in the boundary layer with minimum probe interference.
With this type of orientation, the last probe on the rake was 2.5 in. from the surface. Each rake was
oriented streamwise to the flow. Table 1 lists the distance of each probe from the surface.

A mechanical scanning pressure module or scani-valve, connected to the probes by tubing ap-
proximately 2-ft. long, measured the pressure at each probe. Pressures from both rakes were measured
alternately from left to right. These pressures were compared with a reference pressure measured
with a 17-bit digital absolute pressure transducer. Probes from both rakes were measured by the same
± 12.5-lb/in2 differential pressure transducer. Using one pressure transducer minimized the error in
determining the boundary-layer pressure distribution.

The sampling rate for each pressure probe was 0.41 samples/sec. Data were averaged over 20 sec
for each test condition. Pressures from the differential pressure transducer were estimated to be accurate
to within ± 0.06 lb/in2.

Two rows of 14 flush static pressure orifices each was positioned along the top and bottom of the
left side of the FTP, as shown in figure 3(b). The surface static pressures were used to examine the
FTP chordwise pressure distribution at flight conditions. The bottom row was 3.75 in. above the bottom
edge of the panel, and the top row was 16.81 in. above the bottom edge of the panel. Table 2 presents
the chordwise orifice locations for the top and bottom rows on the left side of the FTP.

Each flush static orifice had an inside diameter of 0.030 in. Pressures were measured with ± 5-
/^

and ± 10-lb/in electronic scanning pressure modules. Plastic tubing ran from each orifice to a pressure
transducer. The maximum length of tubing between the orifices and the pressure transducers was
approximately 3 ft.

A row of six modified Preston tubes was positioned spanwise aft of the test section for each side
of the FTP, 75.75 in. from the leading edge. Although the Preston tubes measured static and total
pressures at each station (ref. 14), only the static pressure measurements were used to determine the
spanwise pressure distributions at the boundary-layer-rake chord location. Figure 5 illustrates some of
these Preston tubes positioned alongside the boundary-layer rake. Table 3 shows the location of each
Preston tube on the FTP.

Pressure data from the static pressure orifices and modified Preston tubes were recorded at
7.8 samples/sec. The pressures from these transducers were accurate to within ± 0.03 lb/in . The
coefficients of pressure were accurate to within 0.01 for the flight conditions tested.



The F-104G aircraft was instrumented with a standard NACA noseboom (ref. 15) to measure total
and static pressure, angle of attack, and angle of sideslip. The FTP was also instrumented with a
noseboom that provided the FTP with an independent measurement of Mach number, dynamic pressure,
and altitude. The FTP noseboom airdata were uplinked to the pilot in flight for trajectory guidance use;
this airdata were also used in the data analysis.

DATA ANALYSIS

The resultant change in skin-friction drag caused by the application of riblets was determined by
measuring and comparing the boundary-layer mean velocity profiles for the smooth and riblet surfaces.
In addition to measuring the mean velocity profile aft of the riblet surface, it was also necessary to
include the initial conditions forward of the riblet surface. A practical solution to estimating the initial
conditions was to use the measured pressure distributions along the top and bottom rows of the FTP
along with the measured momentum thickness, and then to allow a boundary-layer code to compute the
initial conditions.

For this computational analysis, a three-dimensional finite-difference code by Bradshaw et al.
(ref. 16) was used to compute the flow along the smooth right side of the FTF using the measured
aft boundary-layer characteristics including momentum thickness, shape factor, and local pressure co-
efficient. By varying the initial conditions, computations were iterated until the appropriate measured
momentum thickness was matched at the rake location for the smooth surface. In this way, the forward
momentum thickness, 0fwcj, was determined.

The aft momentum thickness values from flight, 0aft, were calculated by integrating the boundary-
layer velocity profile (ref. 17) from the measured boundary- layer-rake data. Differences between the
forward- and aft-momentum thickness values for the smooth and riblet test surfaces were then calculated.

To determine the change in skin-friction drag caused by the application of riblets, the momentum
integral equation was used (ref. 17). Initially, a simplified approach was used which assumed the flow
over the test section to be two dimensional or that of zero pressure gradient and zero crossflow. This
assumption led to the following simplified linear relationship:

C = 2

Skin-friction changes between riblet and smooth surfaces were then computed using the following:

#aft,s ~

Since the riblet experiment included regions of fairly strong pressure gradient caused by shock
interaction from the F-104G aircraft, a more extensive analysis of the data was used to verify the
assumptions of the simplified approach. This analysis used the full momentum equation including
the pressure coefficients and the shape parameter. The simplified approach to the data analysis was



concluded to be sufficient, and therefore, only those results are presented. However, the detailed data
analysis is described in the following.

The analysis was performed for the forward and aft locations using a compressible version of the
Squire- Young method (ref. 18) by Lock (ref. 19). An interpretation of the data including all terms
eventually contributing to the far downstream wake behind the FTP was also included, since this would
reveal the proper drag effects corresponding to any changes in local flow over the FTP.

The measured boundary-layer data at one location were related to its far downstream value through
Lock's equation:

OT poo \Uoo/

Here 6?, PT> U£T, and H-p are local values. The subscript T denotes trailing-edge values, but the
properties may be determined at any location along the FTP. One way of looking at the implications of
this equation is to evaluate the properties at any location along the airfoil. It will then be a measure of
the integrated boundary-layer development from the leading edge back to the particular location. Any
wall shear occurring farther back will increase the value of the momentum thickness in the far wake.
The far-wake value of the momentum thickness is related to the momentum thickness by the simple
expression C^ = 2#oo- A change in momentum thickness at any particular location will be magnified
or attenuated depending primarily on Cp distribution (Ue or Me development), but also depending on
the shape parameter, H .

A change in pressure distribution along the FTP will be reflected by a considerable change in
momentum thickness, 9. A decrease in 9 locally is possible and common. In the present experi-
ment, changes in pressure distribution must be accounted for when evaluating the experimental velocity
profiles, since they may completely mask the effects of the riblet surface.

Figure 6(a) illustrates how the use of 9 may cause a misinterpretation of effects depending on
the location. If 9 had been measured farther forward of the rake location, x/c = 0.886, the relation
between results would have been misinterpreted. In this case, an interpretation of C^, figure 6(b), was
needed for proper verification of results. In the present report, estimates 9 and C^ were interpreted for
verification of results. In most cases there was good agreement, and therefore, only results from the
simplified approach are presented in this report.

RESULTS AND DISCUSSION

The flow environment of the F-104G/FTF has been well documented in reference 9. As described,
the flow over the FTP is perceived as quasi-two-dimensional. As part of the present experiment,
preliminary flight tests were completed to verify the assumption of quasi-two-dimensional flow. These
flights acquired baseline data for the smooth-panel configuration. These and all subsequent flights
were flown with transition strips located, as shown in figure 3, on both sides of the FTF to ensure
turbulent flow.



The chordwise and spanwise pressure distributions were closely monitored during the smooth flights
to assess the quality of the flow environment. There were two main concerns: (1) whether there were
any Mach number effects on the pressure distributions that might influence the riblet performance and
its interpretation; and (2) whether the variations in pressure distribution from one flight condition to
another would adversely affect the measured flow properties.

Figure 7 shows the development of chordwise pressure distribution as a function of Mach number
for Mach 1.2 to 1.6. The chordwise pressure distributions show a region of strong pressure gradient
associated with the shock across the FTP, as indicated by the sharp rise in pressure apparent in these
figures. As expected, figures 7(a) to (e) illustrate the shock moving aft across the test surface approaching
the boundary-layer-rake station at Mach 1.6. The effect of the nearby shock on the velocity profile at
Mach 1.6 can be seen in figure 8 as compared with the normal velocity profile at Mach 1.2.

Figure 9 shows representative spanwise pressure distributions measured by the Preston tubes at
the trailing edges of the FTF for Mach 1.2 and 1.4. The overall spanwise pressure distributions show
minimal pressure gradients along the span of FTF. Measurements from the fourth probe, z/b = 0.24,
were not included since this probe was located in the wake of the boundary-layer rake.

The effects that variations in chordwise pressure distribution have on the measured flow properties
at the aft location of the test surface were further investigated. In flows where the chordwise growth
of the boundary layer is fairly slow, the inner portion closest to the wall of a turbulent boundary layer
can adjust to the changes in outer flow conditions, in particular pressure gradients. The boundary-layer
profile is considered in equilibrium if no time-lag effects are evident (ref. 17). If the pressure gradient is
too large, however, the inner portion of the boundary layer cannot adjust fast enough, and the common
relationships among skin friction, Reynolds number based on momentum thickness, and shape parameter
are no longer valid.

The measured boundary-layer profiles were examined to ascertain equilibrium conditions for the
flow. In addition, the profiles were evaluated for three-dimensional characteristics and possible shock
interactions that may jeopardize the quality of the data at the measurement station or anywhere else along
the riblet surface. Traditionally, two parameter velocity profile families have been found to describe
turbulent equilibrium profiles. This means that if two of the three parameters cy, Re0, and H are known,
then the third one is uniquely defined (ref. 17). In the present case, since only the computed boundary
layer was required to agree in Re# (i.e., Cp and 0), deviations in cj and H between the computations
and the experiment were used as an indication of nonequilibrium conditions in the experimental data.
Figure 10 compares experimental and computed shape parameters for smooth data. The comparison
shows agreement; however, deviations indicate nonequilibrium conditions at Mach 1.6. Note, as shown
earlier, that at Mach number of 1.6, a shock occurs at the boundary-layer rake station.

To assess the flow for effects of three dimensionality and shock interaction, the actual velocity
profiles in nondimensional wall parameters were examined and compared. Flow behavior at the wall
in a turbulent boundary layer is generally expressed in wall scales of length and velocity, y+ and u+

u ,
u+ = — and y+ =

UT

where ur =



Figure 11 shows law-of-the-wall plots for smooth wall data for Mach numbers ranging from 1.2
to 1.41. For the supersonic cases, there was good agreement between the law of the wall and the
velocity profiles when plotted in the incompressible form. To account for compressibility effects, it was
necessary to transform the profiles to incompressible form. This transformation was computed using
the compressibility parameter proposed by Gaudet (ref. 7)

where Fc — 1 =

The estimated values for skin friction are clearly in good agreement with the physical characteristics,
and the profiles are in equilibrium at this location. An error in Cf would have created a shift of the
line, and nonequilibrium characteristics would have caused an error in level and slope. Since the values
obtained for the skin friction are acceptable, they are concluded also reliable for determining the proper
h+ values for the riblet surfaces.

Flow angularity effects were also considered. The flow angle is defined as the angle between the
longitudinal grooves of the riblet surface and the oncoming flow (fig. 1). Reference 2 reported flow
angularity effects to be significant at flow angles greater than 15°. Since the riblet surface is mounted
longitudinally on the FTF, changes in aircraft angle of attack corresponded to changes in flow angle as
seen by the riblet surface. Trim angle of attack for the aircraft ranged from approximately 0.5° to 5°
for all the test cases flown. Since these flow angles were much smaller than 15°, flow angularity effects
in this experiment were concluded to be minimal.

Smooth and riblet surface boundary-layer profiles were compared to evaluate the effect of riblets
in reducing skin-friction drag. Figure 12 shows typical boundary-layer profiles for smooth and riblet
surfaces. Comparison of these boundary-layer profiles indicated a slightly less full boundary-layer
profile for the riblet surface, which implied a change in value of momentum thickness. From the
differences in momentum thickness between smooth and riblet surfaces, average skin-friction reductions
were computed for the 0.0030- and 0.0013-in. riblets.

Figure 13 shows average skin-friction coefficients plotted against unit Reynolds numbers for the
smooth and riblet surface test cases for the 0.0030-in. riblets. As expected, average skin friction
decreased with Reynolds number and Mach number accordingly. As this figure shows, average skin
friction for the riblet surface was consistently less than that for the smooth surface for each Mach
number. To make comparisons between the smooth and riblet surface data at exact Reynolds numbers,
curve fits through the data were used. The solid lines in these figures represent the curve fits through the
data for smooth and riblet surfaces, accordingly. These curves should only be interpreted to be accurate
within the range of data.

Figure 14 shows average skin-friction reduction plotted against unit Reynolds number for the
0.0030-in. riblets. These skin-friction reductions ranged from 4 to 8 percent for Mach 1.2 to 1.6 and
Reynolds numbers from 2 to 3.4 million Re/ft. These figures also show the design Reynolds number
range. As can be noted from the figure, however, maximum skin-friction reduction occurred at larger
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Reynolds numbers than expected in all cases for the 0.0030-in. riblets. A 4- to 5.5-percent average skin-
friction reduction resulted within the design Reynolds number range and a 4.5- to 8-percent reduction
resulted outside this range. For the cases shown, skin-friction reductions increased with Reynolds
number but showed little effect for increasing Mach number.

Figure 15 shows average skin-friction coefficients plotted against unit Reynolds number for the
smooth surface and the surface with 0.0013-in. riblets. These results showed skin-friction coefficients
for the riblet surface to be generally less than the corresponding values for smooth surfaces as seen for
the 0.0030-in. riblets. As in the previous figure, average skin friction decreased with Reynolds number
and Mach number accordingly.

Figure 16 shows average skin-friction reductions for the 0.0013-in. riblets plotted against unit
Reynolds number. These results ranged from 4 to 15 percent for Mach 1.2 to 1.4 and Reynolds numbers
ranging from 3.6 to 6 million Re/ft. In addition, skin-friction reductions increased with Reynolds number
and, similar to the results for the 0.0030-in. riblets, showed little effect for increasing Mach number.

Figures 14 and 16 show the design Reynolds number ranges. These results show skin-friction
reductions beyond the upper and below the lower limits of the Reynolds number range. Maximum
skin-friction reduction for the 0.0013-in. riblets occurred beyond the upper Reynolds number range at
Mach 1.2 and below the lower Reynolds number range at Mach 1.4. Although a general reduction in
skin friction is apparent, trends are difficult to substantiate because of the scatter and limited data.

Figure 17 shows percentage difference of drag coefficient compared with nondimensional riblet
height, h+, adjusted for incompressible conditions for the 0.0030-in. riblets as an example. As seen
from this figure, the h+ values ranged from 9 to 15 in general. This result was in good agreement with
results of previous subsonic flow investigations (refs. 1 and 2), which found h+ values of 12 to 15 to
yield maximum skin-friction drag reduction.

CONCLUDING REMARKS

A flight experiment was conducted on the flight test fixture of an F-104G aircraft to test the skin-
friction drag reduction characteristics of riblets at supersonic speeds. Average skin-friction results were
determined from boundary-layer profiles for smooth and riblet surfaces. Test points were selected from
a design and off-design Reynolds number range based on subsonic wind-tunnel data.

Flight test results for the 0.0030-in. riblets showed skin-friction reductions of 4 to 8 percent for
Mach numbers ranging from 1.2 to 1.6 and Reynolds numbers ranging from 2 to 3.4 million Re/ft. The
results for the 0.0013-in. riblets also showed skin-friction reductions that ranged from 4 to 15 percent
for Mach 1.2 to 1.4 and Reynolds numbers of 3.6 to 6 million Re/ft. The effectiveness of both riblet
sizes increased with Reynolds number, even above the design Reynolds number range, and showed little
variation with Mach number.

The nondimensional riblet height values, h+, ranged from 9 to 15 in general. This result was in
good agreement with results of previous subsonic flow investigations, which found h+ values of 12 to
15 to yield maximum skin-friction drag reduction.

11



REFERENCES

1. Walsh, Michael J., "Riblets," in Viscous Drag Reduction in Boundary Layers, American Institute
of Aeronautics and Astronautics, Inc., Washington, DC, 1990, p. 203-261.

2. Walsh, M.J. and A.M. Lindemann, "Optimization and Application of Riblets for Turbulent Drag
Reduction," AIAA Paper 84-0347, 22d Aerospace Sciences Meeting, Reno, NV, Jan. 9-12, 1984.

3. Walsh, M.J., W.L. Sellers, HI, and C.B. McGinley, "Riblet Drag Reduction at Flight Conditions,"
AIAA-88-2554, June 1988.

4. Reidy, Laurel W. and Greg W. Anderson, "Drag Reduction for External and Internal Boundary
Layers Using Riblets and Polymers," AIAA-88-0138, Jan. 1988.

5. McLean, J. Douglas, Dezso N. George-Falvy, and Peter P. Sullivan, "Flight-Test of Turbulent
Skin-Friction Reduction by Riblets," in Turbulent Drag Reduction by Passive Means, presented at
the Turbulent Drag Reduction by Passive Means Conference, London, England, Sept. 15-17, 1987,
p. 408-424.

6. Coustols, E., J. Cousteix, and J. Belanger, "Drag Reduction Performance on Riblet Surfaces and
Through Outer Layer Manipulators," in Turbulent Drag Reduction by Passive Means, presented at
the Turbulent Drag Reduction by Passive Means Conference, London, England, Sept. 15-17, 1987,
p. 250-289.

7. Gaudet, L., "Properties of Riblets at Supersonic Speed," Applied Scientific Research, vol. 46,
pp. 245-254, 1989.

8. Robinson, Stephen K., "Effects of Riblets on Turbulence in a Supersonic Boundary Layer," AIAA-
88-2526, June 1988.

9. Meyer, Robert R., Jr., A Unique Flight Test Facility: Description and Results, NASA TM-84900,
1982.

10. Petersohn, Erik, Concerning an Investigation of the Flow in Pipes, Internally Covered with Shark
Skin, AE-I-444, FFA, The Aeronautical Research Institute of Sweden, 1959.

11. Choi, Kwing-So, "Near-Wall Structure of a Turbulent Boundary Layer with Riblets," /. Fluid Mech.,
vol. 208, Nov. 1989, pp. 417^58.

12. Meyer, Robert R., Jr. and Edward T. Schneider, "Real-Time Pilot Guidance for Improved Flight
Test Maneuvers," AIAA-83-2747, Nov. 1983.

13. Braslow, Albert L. and Eugene C. Knox, Simplified Method for Determination of Critical Height of
Distributed Roughness Particles for Boundary-Layer Transition at Mach Numbers from 0 to 5, NACA
TN-4363, 1958.

12



14. Bertelrud, Arild, "Preston Tube Calibration Accuracy," AIAA Journal, vol. 14, no. 1, Jan. 1976,
pp. 98-100.

15. Richardson, Norman R. and Albin O. Pearson, Wind-Tunnel Calibrations of a Combined Pilot-Static
Tube, Vane-Type Flow-Direction Transmitter, and Stagnation-Temperature Element at Mack Numbers
from 0.60 to 2.87, NASA TN-D-122, 1959.

16. Bradshaw, P., K. Unsworth, and G.A. Mizner, Calculation of Compressible Turbulent Bound-
ary Layers with Heat Transfer on Straight-Tapered Swept Wing, AIAA Journal, vol. 14, Mar. 1976,
p. 399-400.

17. Schlichting, H., Boundary-Layer Theory, McGraw-Hill Book Co., New York, NY, 1968.

18. Squire, H.B. and A.D. Young, The Calculation of the Profile Drag of Aerofoils, ARC R & M
1838, 1937.

19. Lock, R.C., "Prediction of the Drag of Wings at Subsonic Speeds by Viscous/Inviscid Interaction
Techniques," AGARD Report 723, Aircraft Drag Prediction and Reduction, 1985.

13



Table 1. Boundary-layer-rake probe heights.

Rake
probe no.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Distance of rake probe
above surface, in.

0.025
0.040
0.095
0.150
0.190
0.250
0.290
0.350
0.400
0.500
0.650
0.850
1.000
1.250
1.450
1.650
1.900
2.100
2.300
2.500

Table 2. Static pressure orifice locations for upper and lower stations on flight test fixture.

Pressure
tap no.
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Horizontal distance
from leading edge, in.

3.24
6.48
9.72

13.06
21.00
27.00
33.00
39.00
45.00
51.00
57.00
63.00
69.00
75.00

x/c
0.04
0.08
0.12
0.16
0.26
0.33
0.41
0.48
0.55
0.63
0.70
0.77
0.85
0.93
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Table 3. Preston tube measurement locations.

Preston
tube no.

1
2
3
4*
5
6

Distance from bottom of flight test
fixture to Preston tube, in.

17.50
15.55
13.55
5.85
3.85
1.80

z/b
0.730
0.650
0.560
0.240
0.160
0.075

* Note: Measurements from this probe not used in the data analysis.
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Top view of riblet material

Direction
of flow

Flow
angle

Cross-sectional view of riblet material
mounted on fiberglass panel
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panel h = height

s = spacing
h = s
h = 0.0030 in.
h = 0.0013 in.

920001

Figure 1. Riblet material.
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Figure 7. Chordwise pressure distributions for flight test fixture at specified Mach numbers.
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Figure 12. Typical boundary-layer profiles for smooth and riblet surfaces.
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Figure 13. Average skin-friction coefficients for 0.0030-in. riblets compared with unit Reynolds
number for Mach 1.2 to 1.6.

27



1.00

.98

Cpr -96

Cps .94

.92

.90
1.5<

-

-

Design
Reynolds
range —,

— /

•

1.00

.98

r .96
CFr

B
 Cps .94

.92

i i Qn

Design
Reynolds
range -7

« A

•
•

i

•

;+6 2.56+6 3.5e+6 1.56+6 2.56+6 3.5e+6

Re/ft 920024 Re/ft

(a) Mach 1.2. (b) Mach 1.4.

1.00

.98

r .96
°Fr

Cps .94

.92

.90
1.5€

-

-

Design
Reynolds
range 7

/

•
•

s+6 2.56+6 3.56

1.00

.98

.96
CFr

CFS .94

.92

.90
+ 6 1.5t

-

-

Design
Reynolds
range^

/ ^

»+6 2.5e+6 3.5e+6

Re/ft Re/ft

(c) Mach 1.5. (d) Mach 1.6.

Figure 14. Average skin-friction reduction for 0.0030-in. riblets compared with unit Reynolds number
for Mach 1.2 to 1.6.

28



.0030

.0028

.0026

.0024

.0022

.0020

O Smooth
• Riblets

3.0e+6 4.0e+6 5.0e+6 6.0e+6 7.0e+6
Re/ft 920028

(a) Mach 1.2.

.0020

O Smooth
• Riblets

3.0e+6 4.0e+6 5.0e+6 6.0e+6 7.0e+6
Re/ft 920029

(b) Mach 1.3.

CF

.0030

.0028

.0026

.0024

.0022

.0020

O Smooth
• Riblets

_

0
O

• •
1 1 1 1

3.0e+6 4.0e+6 5.0e+6 6.0e+6 7.0e+6
Re/ft 920030

(c) Mach 1.4.

Figure 15. Average skin-friction coefficient for 0.0013-in. riblets compared with unit Reynolds number
for Mach 1.2 to 1.4.
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