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1 Introduction

BUCKY is a program written to analyze structures with a high degree of accuracy. Specifically, BUCKY can analyze
plates for their buckling behavior, as well as their behavior in plane stress and plate bending. In addition, BUCKY
provides elastic-plastic solutions of isotropic plates in a state of plane stress. Three-dimensional problems can be

• treated using BUCKY's axisymmetrie solution sequence. Using a higher order displacement function, known as the
p-finite element method, BUCKY can be used to determine a plate's response to a variety of loading and boundary
conditions. The very nature of p-finite elements allows for several traditional h-elements to be replaced by a single

, p-element. Additionally, the high order of the displacement functions enables the user to produce results that are
more accurate than traditional h-finite elements.

In the current version of BUCKY (version 3.3), the user can choose between plane stress, plate bending (Kirchoff or
Reissner-Mindlin theory), plate buckling, two-dimensional plane stress plasticity, and three-dimensional axisymmetric
analysis. The current version assumes that the plate can vary its thickness linearly in the spatial coordinates.
Additionally, the user can prescribe pressure loads, distributed edge moments, or edge tractions that are constant,
linear, or quadratic in behavior. For plate bending, loads can also be applied in the form of concentrated point loads.
BUCKY also supports orthotropic as well as isotropic material properties on an element level.

The BUCKY mamml is subdivided into several main sections, including

• Program history
• Installing BUCK¥
• Running the program
• Interpreting the output
• Examples
• Error messages
• Theoretical background
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2 BUCKY Program History

BUC,KY is currently up to version 3.1. Major upgrades are denoted by a higher first digit; minor upgrades are
represented by the number after the decimal point in the version number. The brief program history is

Version 1.0 - First BUCKY l)rogram. Fully functional two-dimensional plane stress and plate buckling analysis.
August 1992

Version 2.0 - Plate bending solution added. Linearly varying element thickness, quadratically varying loads
(edges tractions and pressure forces) added.
January 1993

Version 2.1 - BOR,DER card added to make bending and buckling analysis have a different p-order from the
plane stress case. Analysis is done out of core (disk based), so large problems may be done.
July 1993

Version 2.2 - Dependance upon disk-based solutions relieved somewhat. Data are stored on disk, but heavy
calculations are done in core for faster execution.
July 1993

Version 2.3 - Much faster execution by optimizing constraint reductions. Perforrnanee increases of upwards of
1000% over the previous version.
July 1993

Version 3.0 - Major update. Distributed edge moments which may vary quadratically along the element edge
were added. These moments come in the form of bending and twisting moments. The constraint
reduction and application were modified to gain even more speed. The Cholesky decomposition
was improved to decrease the required solution time. Plane stress plasticity solution has been
added. This solution is performed with the tangent stiffness method.
August 1993

Version 3.1 - I-DEAS Universal File format added to output options to give further flexibility of graphical
interpretation.
October 1993

Version 3.2 - Three-dimensional axisymmetric analysis added to library of solution sequences.
I-DEAS to BUCKY translator added for pre-processing (node and element generation).
Script file added to run BUCKY so that input file does not need to be named ftn07.
November 1993

Version 3.3 - Program converted from single to double precision in all respects. A new element "type" was
added - BUCKY now supports the use of shear deformable plates based on P_eissner-Mindlin
plate theory.
January 1994
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3 Installing BUCKY in a Computer Environment
Included Distribution Files

bucky_v3.3.tar - UNIX tar format file

BUCKY_v3.3/src - FORTRAN source files
BUC, KY_v3.3/exampies - BUC, KY sample input files

. BUCKY_v3.3/Makefile.unix - standard UNIX f77 compiler Makefile
BUCKY_v3.3/Makefile.unicos- Cray UNICOS cft77 compiler Makefile
BUCKY_v3.3/P_EA DM E - information file
BUC,KY_v3.3/ideas_to_bueky.f- I-DEAS to BUC, KY translator
BUCKY_v3.3/bucky - UNIX script file to run BUCKY
BUCKY_v3.3/BUCKY_v3.3.Manual.ps- BUCKY manual in postscript format

Installation

Cray UNI(:_OS Platforms

l) Copy bucky_v3.3.tar to root directory
2) type 'tar xvf bucky_v3.3.tar'
3) type 'cd BUCKY_v3.3'
4) type 'cp Makefile.unicos Makefile'
5) type 'make'

Standard UNIX system

l) Copy bucky_v3.3.tar to root directory
2) type 'tar xvf bucky_v3.3.tar'
3) type 'cd BUCKY_v3.3'
4) type 'cp Makefile.unix Makefile'
5) type 'make'

Problems

Problems with installation or run-time errors shonld be directed to

James P. Smith

NASA/Johnson Space Center
Mail Code ES2

Houston, TX 77058

(713)-483-1242
smithj (<_.smd4.jsc.nasa.gov
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4 Running BUCKY

There are two methods for running BUCKY. In the first, BUC,KY can be called directly, or it can be run using a
UNIX script file. In the first case, an input data file must be prepared to run BUCKY. The data file will be read
corresponding to file input/output device 7. Thus, prior to running BUCKY, the file to be executed should be copied
to tile file corresponding to unit 7. In the current version of BUCKY, it is assumed that the file associated with the
file device 7 is named ftn07, so to copy an input file to the proper location, type

cp file ftn07

Then, to run BUCKY, type

BUCKY

at the system prompt. The formats for the data cards in the input file are given in Section 8. As BIJ(I'.KY runs, a
log file is generated. Should an error occur during the execution of BUC, KY, the log file will contain the reason for
the error. Upon successfifl completion of BUCKY, an additional output file is generated with the data results from
the problem solution. PATRAN and I-DEAS-readable output files are also prepared at this time.

In the second case, to run BUCKY we can use the supl)lied UNIX script narned bucky. The script file will prompt
the user for the input and output filenames. The input filename should be an existing file. The output file will be
created upon completion. The script file will then execute BUCKY automatically, and, upon completion, the output
file and a file named bucky.log are created.
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5 BUCKY Problem Size Limitati°ns

In the current version of BUCKY, problems are solved with a dimensioned array. The size of this array is given by a
parameter MATSIZ in the main program. The current value for MATSIZ is 3000. All approximate formula for the
required number of bytes for BUCKY is

mere = 8[9 * MATSIZ + (MATSIZ)2].

There should be mere bytes of storage available in real or virtual memory for BUC, KY to work properly.
The size of the problem solved with BUCKY is currently dictated by the value of MATSIZ. This parameter gives

the largest unconstrained problem size. The application of constraints yields a smaller problem size, but, at this
point, the code is not enhanced with advanced solving features. The total number of degrees of freedom (NDOF)
associated with a problem is given by the expression

ndoftotat = ANALTYPE, NUMELE, (p2 + 3p+6)2

where ANALTYPE takes a value of l (Kirchoff plate bending), 2 (two-dimensional plane stress, plasticity, or three-
dimensional axisyrnrnetric problems), or 3 (Reissner-Mindlin plate bending); NUMELE is the number of elements in
the problem; and p is the polynomial order of the solution. A proper combination of ANALTYPE, NUMELE, and p
must be chosen to make sure that ndof, o_at is equal to or below the parameter MATSIZ. Valid values for p are p = 4
top-= 8.
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Figure 2: Sign convention of applied edge loads.

6 BUCKY Input

The following sections describe how to put a BU(:_KY model.together for analysis.

6.1 Element Geometry

The geometry of the elenmnts used in BUCKY are eight-noded subl)arametric elernents. The nodes that are the
basis of the data file give the geometry of the model. For each element, the element consists of eight local nodes,
listed from l to 8, and four element sides, listed as I to IV. The element geometry is shown in Figure I.

As a general rule, an edge should not have too much curvature, or numerical errors may arise. The following
guidelines are good rules of thumb:

• Do not let the angle fl for any edge be less than 135° or greater than 225 °.

• Do not let the angle c_ between two edges be greater than 135° or less than 45°.

• Side nodes should be near the center of the side; if the length of the side is L, then the side node should not
be a distance L/4 or less from either corner node on that side.

• Aspect ratios of the element should be less than 5 to l and absolutely no greater than l0 to 1; the aspect ratio
is the greater of the width to height or height to width; a large aspect ratio can seriously degrade the quality
of the computed results.

BUCKY models can also be prepared using the commercial program I-DEAS, In this case, I-DEAS can be used to

prepare the model geometry, the element material properties, and the element thicknesses. The translator program
_'_supports the linearly varying thickness capabilities of B[ CKY. The boundary conditions and loading parameters
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Figure 3: Sign convention for applied loads and rriornents.

must still be written in to the BUCKY data file. The I-DEAS to BUCKY translator is named ideas_to_bucky, and
this program prompts the user for the I-DEAS Universal file. Upon completion, a BUCKY input file is generated.

6.2 Plane Stress Loading Conventions

The loading conventions are shown in Figure 2 for the plane stress analysis. As the norrnal and tangent vectors move
around the element perimeter, the normal (n) is always directed away from the element edge. The tangent vector,
t, is always oriented 900 counterclockwise from the normal vector. For tensile stresses, if the stress is tensile, then
an is positive. If the load is compressive, then it acts in the direction opposite the normal, and its value should be
less than one. By the same token, a positive shear load on any edge is in the direction of the tangent vector. Thus,
to enter a shear load opposite the tangent vector, a negative value should be entered.

6.3 Plate Bending Loading Conditions

The loading conventions for the case of plate bending are shown in Figure 3. A positive value of the l)ressure and
point load acts in the +z direction in the frame of reference of the plate. Also, this convention means that a pressure
or point load is positive if it causes tension on the top side (z -- +h/2) of the plate. The bending moments M_ and

My are positive if they produce tension in the upper surface of the plate. The twisting element M_v is positive if its
vector equivalent acts normally to the plate side.
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7 Interpreting the Output

This section gives an explanation of the output files generated by BUCKY. There are two primary output files, plus
the PATRAN and I-DEAS post-processing files. To access the data contained in either the PATRAN or I-DEAS
related files, the PATRAN or IDEAS card must be supplied in the BUCKY data deck.

7.1 Output Data File - ftn08

This file contains the nodal and element information used during the execution of BUC,KY. Also, depending on the
type of analysis chosen, displacements, strains, and stresses from the analysis are given for the eight nodes plus
the element center for each element. The displacements are given in the global (x,y) system for Cartesian two-
dimensional analysis or in the global (r, z) system for axisymmetric cylindrical coordinate problems, and the stresses
and strains correspond to the global (x, y) or (r, z) systems as well. If the BUCKLE option has been included in the
data file (ftn07), then the last number in the file is the buckling factor. This number determines critical buckling
load. If this number is equal to one, then the loads (stresses) input in the data file will cause the plate to buckle. If
the buckling factor is below one, then this number times the input loads will produce buckling (the plate has already
buckled). Finally, if the buckling factor is above one, then the plate has not buckled, and to buckle the plate requires
that the loads be multiplied by the buckling factor. A negative number indicates a change in direction of the loads.
For example, if the plate has an applied tensile rather than a compressive load, the buckling factor would be negative
and the load would have to be in the opposite direction (making it compressive) to induce buckling.

If the BENDING option is included in the data deck, then a bending analysis of the plate subject to lateral pressure
and distributed moment loads is performed. The output file contains information on the deformed configuration of
the plate due to transverse pressure loads, point loads, and distributed edge moments. The out-of-plane displacement,
normal stresses, and the shear stress are reported to the user at eight nodes in an element, plus the element center.

The stresses computed at the nodes and center correspond to the maximum stresses. The strains vary linearly
through the plate thickness, and the strain in the midplane due to bending is identically zero. The stresses at the

outer fibers are equal and opposite in magnitude. The strains at the top fibers (at z -- hi2) are given in the output
file.

Should a plastic analysis of the plate be requested, this file c.ontains the displacements, stresses, and strains as
the plate deforms plastically. In this case, either the total deformation is recorded or the user can specify that the
results file be updated after each iteration or after a certain number of iterations (using the UPDATE card).

7.2 BUCKY Logfile - ftn09

This file simply contains an echo of the input file, any errors that may cease program operation, and messages about
the execution of BUCKY.

7.3 I-DEAS Files Written by BUCKY

BUCKY can write the problem geometry to an I-IDEAS Universal file for analysis. In addition, the displacement,

stress, and strain data are also written to a universal file by specifying I-DEAS output in the BUCKY data deck.

7.3.1 I-DEAS Universal File Model File - IDEASIUNV

This file contains the model file for the plate. The plate element is subdivided into smaller elements for graphical
analysis. The number of element subdivisions is given by the BUC,KY card SUBDIV. There are SUBDIV*SUBDIV
elements created for each BUCKY element. The model is read into I-DEAS by issuing the following commands after
entering I-DEAS and establishing a model file:

FE (F E_Modeling_&_Analysis)
PO (Post_Processing)
MA (Manage_Models)
REA (Read)
U (Universal)
ID EAS. U NV (Select defaults when prornl)ted)
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DR (Draw)
AU (Autoscale)

I-DEAS reads the problem in and draws it on the screen.
+

7.3.2 I-DEAS Plane Stress Displacements File - IDEAS.DIS

To view the deformed shape of the plate due to the plane stress analysis, the file IDEAb+.DI,5' is used. To read this
file, type

MA N (M anage_M o dels)
REA (Read)
U (Universal)
IDEAS.DIS

A (Analysis_Dataset_Selection)
CU (Current)
L (Loadset_&_Type)
DISP (Displacements)
DE (Deformed_Geometry)
LIN (Line)
EX (Execute)

7.3.3 I-DEAS Plane Stress Stress File - IDEAS.STR

There are seven different quantities of stress that can be plotted in two-dimensional plane stress analysis: crx, cry,
rxy, ai, _r2, aE, and rrnax, where 17"1 and ¢2 are the principal stresses, ee is the Von Mises equivalent stress, and
7"ma_ is the maximum shear stress. Similarly, if axisymmetric analysis is chosen, the following quantities can be
plotted: at, Crz, rrz, a0, ¢1, _r2, and aE. To read these quantities requires knowledge of the I-DEAS menu selection
Data_Component. To plot the results, type the following commands in I-DEAS:

MA N (M an age_M odels)
REA (Read)
U (Universal)
l DEAS.STR

A (Analysis_Dataset_Seleetion)
CU (Current)
L (Loadset_&_Type)
STRE (Stress)
CO (Contour)
DA (Data_C, omponent)
desired stress

CONTI (Continuous_Tone)
EX (Execute)

7.3.4 I-DE/kS Bending Analysis Displacement File- IDEAS.BEN

When a bending analysis is desired (specified by the BENDING card), BUCKY determines the deformed configuration
' as well as the stresses in the plate. The file IDEAS.BEN gives the deformed shape of the plate subjected to normal

pressure loading. To view the deformed shape, type the following commands in I-DEAS:

MAN (Manage_Models)
REA (Read)
U (Universal)
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IDEAS.BEN

A (Analysis_Dataset_Selection)
CU (Current)
L (Loadset_&_Type)
[)IS P (Displacements)
D E (Deformed_Geometry)
LIN (Line)
EX (Execute)

The deformed shape can also be displayed using a contour plot. Since only one component of displacement is used
in the bending analysis, we can type

CO (Contour)
D (Data_Component)
Z (Z_Component)
CONTI (Continuous_Tone)
E (Execute)

7.3.5 I-DEAS Bending Analysis Stress File - IDEAS.BST

There are seven different quantities of stress that can be plotted: az, au, rzy, cri, _r2, aE, and rmax. To plot the
results, type the following commands:

MAN (Manage_Models)
REA (Read)
U (Universal)
IDEAS.BST

A (Analysis_Dataset_Selection)
CU (Current)
L (Loadset-&-Type)
STRE (Stress)
CO (Contour)
DA (Data_Component)
desired stress

CO (Continuous_Tone)
EX (Execute)

7.3.6 I-DEAS Buckled Mode Shape File - IDEAS.MOD

Finally, the last file contains the mode shape corresponding to the critical buckling load of the plate. This file can
be manipulated in one Of two ways. First, if a deformed plot is desired, the user can search for the best perspective

by changing the view from I-DEAS. Then, to read the data from IDEAS.MOD, follow the same procedure as with
the previous displacement file, IDEAS.DIS, but with the new filename, IDEAS.MOD. Second, a contour plot may
be easier to read. This requires the commands

MAN (Manage_Models)
REA (Read)
U (Universal)
IDEAS.M()D

A (Analysis_Dataset_Selection)
C,U (Current)
L (Loadset_&_Type)
[)IS[' (Displacements)
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DE (Deformed_Geometry)
LIN (Line)
EX (Execute)

f

7.3.7 I-DEAS Plasticity Displacenients File - IDEAS.PLD

To view the deformed shape of the plate due to the plane stress analysis, the file IDEAS.PLD is used. To read this
• file, type

MAN (Mallage_Models)
REA (Read)
U (Universal)
IDEAS.PLD

A (Analysis_Dataset_Selection)
CU (Current)
L (Loadset_&_Type)
DIS[' (Displacements)
DE (Deformed_Geometry)
LIN (Line)

EX (Execute)

7.3.8 I-DEAS Plasticity Stress File - IDEAS.PLS

There are seven different quantities of stress that can be plotted: crx, ay, T_U, al, Or2,aE, and Tmax, where al and
a2 are the principal stresses, (rE is the Von Mises equivalent stress, and rmar is the maximum shear stress. To plot
the results, type the following commands:

MAN (Manage_Models)
REA (Read)
U (Universal)
IDEAS.PLS

A (Analysis_Dataset_Selection)
CU (C,urrent)
L (Loadset_&_Type)
STRE (Stress)
CO (Contour)
DA (Data_Component)
desired stress

CONTI (Continuous_Tone)
EX (Execute)

7.3.9 I-DEAS Plasticity Strain File - IDEAS.PLE

There are six different quantities of strain that can be plotted: (_, ¢y, _xy, _1, _2, and _eq, where _1 and _2 are the
principal strains, and _q is the equivalent strain (similar to the Von Mises stress). To plot the results, type the
following commands:

MAN (Manage_Models)
REA (Read)
U (Universal)
IDEAS.PLE

A (Analysis_Dat aset_Selection)
C,U (Current)
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L (Loadset_&_Type)
STRA (Strain)
C() (Contour)
DA (Data_Component)
desired strain

CONTI (Continuous_Tone)
EX (Execute)

7.4 PATRAN Files Written by BUCKY

BUCKY can write a PATRAN neutral file for the problem geometry as well as output files for the data, whether the
data are displacements, strains, or stresses.

7.4.1 PATRAN Neutral File - PATRAN.PAT

This file contains the model file for the plate. The plate element is subdivided into smaller elements for graphical

analysis. The number of element subdivisions is given by the BUCKY card SUBDIV. There are SUBDIV*SUBDIV
elernents created for each BUCKY element. The model is read into PATRAN by issuing the following commands
under the MODE menu:

5 (INTERFACE)
1 (NEUTRAL)
2 (INPUT M()DEL)
PATRA N. [)AT

N (OFFSET IDS)
Y (PROCEED WITH FILE)

PATRAN then reads the problem in and draws it on the screen. To turn the element and node numbers off, type
SET,LABELS,OFF, and then type PLOT to replot the model.

7.4.2 PATRAN Plane Stress Displacements File - PATRAN.DIS

To view the deformed shape of the plate clue to the plane stress analysis, the file PATRAN.DLS. _ is used. To read this
file, type (under the MODE menu)

4 (RESULTS)
2 (EXTERNAL DATA)
1 (DEFORMED SHAPE)
PAT RAN. DIS

1 (UNDEFORM)
2 (DEFORM)

7.4.3 PATRAN Plane Stress Stress File - PATRAN.STR

There are seven different quantities of stress that can be plotted in two-dimensional plane stress problems: _, av,

rxy, al, o'2, (;rE, and rm_, where _1 and cr_ are the principal stresses, aE is the Von Mises equivalent stress, and
rmax, is the maximum shear stress. To read these quantities requires knowledge of which cohmm of PATRAN.STR
each is in. The columnsassociated with each stress are

l - ¢x (Normal-x stress)
2 - (ry (Normal-y stress)
3 - v_ (Shear stress)
4 - al (First principal stress)
5 - tr2 (Second principal stress)
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6 - eE (Von Mises stress)
7 - rmax (Maximum shear stress)

Ill three-dimensional axisymmetric problems, tile following stresses can be plotted: crr, c%, ¢e, arz, cA, ¢2, and o'E.
• In the axisymrnetric problem, the third principal stress is given by ¢0. The columns associated with each stress are

I - er (Radial stress)
2 - ez (Normal-z stress)
3 - rr_ (Shear stress)

4- ¢0 (Circumferential stress)
5 - ¢1 (First principal stress in (r, z) plane)
6- ¢2 (Second principal stress in (r, z) plane)
7- eE (Von Mises stress)

To plot the results, type the following commands under the M()DE menu:

4 (RESULTS)
2 (EXTERNAL DATA)
4 (NODAL)

col (column _ of desired quantity)
1 (CONTOURS)
PATRAN.STI_

1 (AUTO)

1 or 2 (CONTOUR) or (FRINGE)
7 (['LOT)
5 (DISPLAY LABELS)

7.4.4 PATRAN Bending Analysis Displacement File - ['ATRAN. BEN

When a bending analysis is desired (specified by the BENDING card), BUCKY determines the deformed configuration
as well as the stresses in the plate. The file PATRAN.BEN gives the deformed shape of the plate suhjected to normal
pressure loading. To view the deformed shape, type the following commands under the MODE menu:

4 (RESULTS)

2 (EXTERNAL DATA)
1 (DEFORMED SHAPE)
PATRAN.BEN

1 (UNDEF()RM)
2 (DEFORM)

The deformed shape can also he displayed using a contour plot. Since only one component of displacement is used
in the hending analysis, we can type (under the MODE menu)

4 (RES ULTS)
2 (EXTERNAL DATA)
4 (NODAL)
3 (column number)
1 (CONTOURS)

PATRAN.BEN (or 1 for newfile followed by PATRAN.BEN)
l (C()NT() U R)

7 (PL()T)
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7.4.5 PATRAN Bending Analysis Stress File - PATRAN.BST

There are three different quantities of stress that call be plotted: crz, Cry, and rxy. To read these quantities requires
knowledge of which column of ['ATRAN.BST each is in. The columns associated with each stress are

1 - ax (Normal-x stress)
2- _ry (Normal-y stress)
3- V_y (Shear stress)

To plot the results, type the following commands under the MODE menu:

4 (RESULTS)
2 (EXTERNAL DATA)
4 (NODAL)
col (column # of desired quantity)
1 (CONTOU RS)
PATRA N. BST

1 (AUTO)
l or 2 (CONTOUR) or (FRINGE)
7 (PLOT)
5 (DISPLAY LABELS)

7.4.6 PATRAN Buckled Mode Shape File - PATRAN.MOD

Finally, the last file contains the mode shape corresponding to the critical buckling load of the plate. This file can be
manipulated in one of two ways. First, if a deformed plot is desired, the user can search for the best perspective with
the VIEW command within PATRAN. Then, to read the data from PATRAN.MOD, follow the same procedure as
with the previous displacement file, PATRAN.DLq, but with the new filename, PATRAN.MOD. Second, a contour
plot may be easier to read. This requires the commands (under the MODE mem O

4 (RESULTS)
2 (EXTERNAL DATA)
4 (NODAL)
3 (column number)
1 (CONTOURS)
t'ATRAN.MO[) (or 1 for newfile followed by PATRAN.MOD)
1 (CONTOUR)
7 (PLOT)

7.4.7 PATRAN Plasticity Displacements File - PATRAN.PLD

To view the deformed shape of the plate due to the plane stress analysis, the file PATRAN.PLD is used. To read

this file, type (under the MODE menu)

4 (RESULTS)
2 (EXTERNAL DATA)
l (DEFORMED SHAPE)
PAT RAN. P LD

1 (UNDEFORM)
2 (DEFORM)
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7.4.8 PA.TRAiN Plasticity Stress File - PATRAN.PLS

There are seven different quantities of stress that can be plotted: a_, au, r_y, al, ¢2, (rE, and r,_a_, where (rl and
_ are the principal stresses, O'E is the Von Mises equivalent stress, and r,_a_ is the maximum shear stress. To read
these quantities requires knowledge of which column of PATRAN.PL,_ each is in. The columns associated with each
stress are

l - (r_ (Normal-x stress)
2- (ry (Normal-y stress)

• 3- V_y (Shear stress)
4 - (rl (First principal stress)
5 - (r:_(Second princil)al stress)
6 - (rE (Von Mises stress)
7- v,,ax (Maxinmm shear stress)

To plot the results, type the following commands under the MODE menu:

4 (RESULTS)
2 (EXTERNAL DATA)
4 (NODAL)

col (column # of desired quantity)
1 (CONTOURS)
['ATRA N. PLS

1 (AUTO)
I or 2 (CONTOUR) or (FRINGE)
7 (PLOT)
5 (DISPLAY LABELS)

7.4.9 PATRAN Plasticity Strain File - PATRAN.PLE

There are six different quantities of strain that can be plotted: _x, _y, _xy, _1, _2, and _eq, where _1 and €2 are the
principal strains, and _.q is the equivalent strain (similar to the Von Mises stress). To read these quantities requires
knowledge of which column of PATRAN, PLE each is in. The columns associated with each strains are

l - (_ (Normal-x strain)

2- (y (Normal-y strain)
3 - (xy (Shear strain)
4 - _l (First principal strain)
5 - _:_(Second principal strain)
6- _eq (Equivalent strain)

To plot the results, type the following commands under the MODE menu:

4 (RESULTS)

2 (EXTERNAL DATA)
4 (NODAL)
col (column # of desired quantity)
1 (C 0 NTO U RS)
['AT RAN. PLS

1 (AUT())
1 or 2 (C()NT()UR.) or (FRINGE)
7 (PLOT)
5 (DISPLAY LABELS)
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8 BUCKY Data Cards

This section gives tile data card formats for BUCKY. Each card is 80 columns wide and has 10 fields associated with
it. Each field is 8 cohm-ms wide, and not all data cards utilize all 10 fields.

# Card

The # card indicates that a comment is on the line. The inclusion of this card does not affect the execution of the
problem; this card simply allows the user to input some information about the model within the data deck.

 .e.d3 F ie.dI ie.d0  .o.dl0Itext

The inclusion of the ://: card indicates that a cornment follows on the line.

AXIS3D Card

The AXIS3D card specifies that a three-dimensional axisymmetric analysis is requested. This type of solution, while
modeling a three-dimensional problem, can be found using a two-dimensional approach.

I FieldlAIXS3DField2 I Field3 Field4 ] Field5 Field6 Field7 Field8 I Field9 Fieldl0

Plasticity solutions are currently not supported in the axisymmetric analysis.

BEND Card

The BEND card specifies the bending boundary conditions for an edge on the element. Displacements and slopes
are specified with the BEN[) card.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field l0
BEND EID SID ICI IC2
BEND 8 1 l 1

Ell) Element identification of the element the constraint is acting on (Integer>0)
SID Side number the constraint is acting on for element Ell) (Integer>0)

ICI Displacement boundary code. l=no displacement, 0-free (Integer)
IC2 Slope boundary code. l=no slope, 0=rotation (Integer)

SID lnust be a number between and including 1 and 4. The sides corresponding to SID are shown in Figure 1. If
more than one side of element Ell) is constrained, a separate card must be used.

BENDING Card

The BENDING card indicates that a bending analysis of the plate structure is desired. The plane stress and bending
problems are decoupled from each other.

BENFieldlDINGField2 Field3 I Field4 I Field5 Field6 Field7 I Field8 ] Field9 I Fieldl0

The inclusion of the BENDING card indicates that, a bending analysis of the plate is to be performed.
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BORDER Card

The BORDER card specifies the polynomial degree of the displacement functions for the plate bending and plate

buckling solutions. A higher p value, which corresponds to the highest polynomial degree, gives a more precise result
than a lower p value, but solution time is increased.

Field 1 Field2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field 10

BORDER p
BORDER 8

F

p Polynornial degree (Integer>0)

The value of p is between 4 and 8. Any values of p below 4 will result in p = 4, and any p > 8 will result in
p = 8. If the BORDER, card is not used to define the polynomial order for the plate bending or buckling problems,
then the polynomial order defaults to the same as the plane stress solution.

BUCKLE Card

The BUCKLE card indicates that the plate buckling solution is desired.

L FieldlBucKLE Field2 ] Field3 Field4 Field5 Field6 Field7 Field8 Field9 ] Fieldl0

The inclusion of the BUCKLE card indicates that a buckling solution of the plate is to be performed. If the
BUCKLE card is not included in the data file, then only a plane stress solution is made.

ELEMENT Card

The ELEMENT card specifies the geometry of the element. The geometry is deterrnined by eight node points

(specified by NODE cards).

Field I Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field I0
ELEMENT EID NID1 N[D2 NID3 NID4 NID5 NID6 N1D7 NID8
ELEMENT 4 3 l 12 44 23 8 l0 17

E1D Identification number of the element (Integer>0)
NIDI Local node l of the element geometry (Integer>0)
NID2 Local node 2 of the element geometry (Integer>0)
NID3 Local node 3 of the element geometry (Integer>0)
NID4 Local node 4 of the element geometry (Integer>0)
NID5 Local node 5 of the element geometry (Integer>0)
NID6 Local node 6 of the element geometry (Integer>0)
NID7 Local node 7 of the element geometry (Integer>0)
NID8 Local node 8 of the element geometry (Integer>0)

" The ELEMENT card must have a unique element Eli) field. That is, no other ELEMENT card may have the
same Eli) value. The nodes are numbered in the local element system. The node numbering scheme is shown in

Figure 1.
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ENDDATA Card

The ENDDATA card indicates the end of the data deck.

ENDDATAFieldlI Field2 ] Field3 Field4 Field5 Field6 I Field7 Field8 I Field9 Fieldl0

The ENDDATA card is the last card in the data file.

FORMULA Card

The F()P_MULA card allows traction loadings that vary linearly or quadratically along an element edge. Either
normal or tangential (or both) tractions are defined with one F()RMULA card per element edge.

Field l Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field 10

FORMULA EID SID INOR ISHR

A1 A2 Aa A4 A.5 A6

B1 B2 B3 B4 B5 B6
FORUMU LA 5 2 I 0

5.0 0.0 !.0 0.0 0.0 -2.0

Eli) Element identification of the element tile load is acting oil (Integer>0)
SID Side number the load is acting on for element Eli) (Integer>0)
]NOR Flag if coefficients Ai are present to define an INOP_>0 - first set of terms defines a,_.
ISHR Flag if coefficients Bi are present to define at. ISHP_>0 - if INOR>0, the second set of terms

defines at, otherwise the first set defines at.

SID must be a number between and including I and 4. The sides corresponding to SID are shown in Figure 1.
The equations for the normal and shear stress on the edge, an and at, respectively, are

an = A1 + A2x + A3y + A4x 2 + A_y "z+ A6xy

and
o't = Bl + B2x + Buy + B4x 2 + B_y 2 + B6xy

where the positive and negative directions for the tractions are defined by Figure 2. Also, x and y are defined in terms
of the global Cartesian coordinates (x, y), not some local coordinate systern. If the three-dimensional axisymmetric
solution is chosen, we write the stresses as

a,_ = A1 + A2r + Aaz + A4r 2 + Asz 2 + A6rz

and
ai = BI + B2r + Baz + B4r2 + B5z 2 + B6rz

where r and z are defined in terms of tile global cylindrical coordinates (r, z).
If INOR is greater than 0, than the next line of the FOR, MULA card corresponds to an. If IN()R is not greater

than 0 and ISHR is greater than 0, then the next line of the FORMULA card corresponds to a,. If both INOR
and ISHR, are greater than 0, then the second line of the FORMULA card corresponds to an, and the third line
corresponds to a,.
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IDEAS Card

The I DEAS card specifies that the graphical output information should be written in an I-DEAS compatible Universal
File format,. After BUCKY has completed an analysis, the output can be viewed using I-DEAS if this card is included
in the input file.

Field 1 Field 2 Field 3 ] Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field 10
IDEAS I

MATBIS Card

The MATBIS card specifies the isotropic elastic constants for a set of elements. The MATBIS card uses the given
elastic constants for the bending analysis of the problem. If orthotropic properties are required, the MATBOR '
card should be used. Any element that does not, have a MATBIS or MATBOR card associated with it uses the
corresponding MATPIS or MATPOR card for that element.

Field I Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field 10
MATBIS E1 E2 E u

MATBIS 6 9 10.E6 0.3

El First element in material property list (Integer>0)
E2 Second element in material property list (Integer)
E Value of the modulus of elasticity (Real>0.0)
r, Value of Poisson's ratio (R,eal>0.0)

The value of Poisson's ratio must lie in the range 0 < u < 0.5 and E is always a positive numl)er, The first.
element number, El, must he a valid element number and greater than zero. The second element number in t.lw
list, E2, does not need to be a valid element number. If E2 is less than or equal to El, then only element El has
the properties sl)ecified on the MATBIS card. ()therwise, all elements, from El to E2, have the material properties
specified by the MATBIS card.

MATBOR Card

The MATBOR card specifies orthotropic material constants for a list of elements in the bending analysis. If isotropic
properties are used, then the MATBIS card is preferred. Any element that does not have a MATBIS or MATB()R
card associated with it uses the corresponding MATP1S or MATPOR card for that element.

Field l Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field l0

MATBOR E 1 E2 Ex_ Evv uxv t(_xv

MATBOR E1 E2 E_: E w v_u (;x_ (;_. (;z_
MATBOR 3 5 lI.E6 3.E6 0.21 4.3E6

E1 First element in material property list (Integer>0)
E2 Second element in material property list (integer)

Exz Elastic constant in first direction (Real>0.0)
E_v Elastic constant in second direction (Real>0.0)
u_:v Poisson's ratio (Real>0.0)
(;_v Shear modulus (Real>0.0)
(.;vz Shear n iodulus (Real>0.0) requires SH EAR card
(;.._: Shear modulus (Real>0.0) requires SHEAR card
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The first element in the list, El, should be greater than zero and be an existing element number: E2 does not
need to be a valid element number. If E2 is greater than or equal to El, then only element El has the material

properties specified by the MATBOR card. If E2 is greater than El, then elements El to E2 have the properties
given by the MATBOR card. When using traditional Kirchoff theory, only Fields 1 through 7 are used. Fields 8 and
9 are accessed only if the SHEAR card is included in the deck (Reissner-Mindlin theory).

MATPIS Card

The MATPIS card specifies the isotropic elastic constants for a set of elements. The MATPIS card uses the given
elastic, constants for the plane stress analysis of the problem. If orthotropic properties are required, the MATPOR
card should be used.

Field l Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field l0

MATPIS E1 E2 E v
MATPIS 6 9 10.E6 0.3

E1 First element in material property list (Integer>0)
E2 Second element in material property list (Integer)
E Value of the modulus of elasticity (Real>0.0)
v Value of Poisson's ratio (Real>0.0)

The value of Poisson's ratio must lie in the range 0 < v < 0.5 and E is always a positive number. The first
element number, El, must be a valid element number and greater than zero. The second element number in the
list, E2, does not need to be a valid element number. If E2 is less than or equal to El, then only element El has

the properties specified on the MATPIS card. Otherwise, all elements, from E1 to E2, have the material properties
specified by the MATPIS card.

MATPOR Card

The MATPOR card specifies orthotropic material constants for a list of elements in the plane stress or bending
analysis. If isotropic properties are used, then the MATPIS card is preferred.

Field l Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field 10

MATPOR E1 E2 E_ E_ u_ Gx_
MATPOR E1 E2 E_ E_._ v,._. Grz u,-o

MATPOR El E2 E_x Ey_ u_ (7z_¢ Gvz Gz_
MATPOR 3 5 lI.E6 3.E6 0.21 4.3E6

E1 First element in material property list (Integer>0)
E2 Second element in material property list (Integer)
E_ Elastic constant in first direction (Real>0.0)

Eyy Elastic constant in second direction (Real>0.0)
U_y Poisson's ratio (Real>0.0)
(l_y Shear modulus (Real>0.0)
Gyz Shear modulus (Real>0.0) requires SHEAR card
(/zx Shear modulus (Real>0.0) requires SHEAR card
Err Elastic constant in first direction for axisymmetric analysis (Real>0.0)
Ezz Elastic constant in second direction for axisymmetric analysis (Real>0.0)

Urz In-plane Poisson's ratio for axisymmetric analysis (Real>0.0)
(;r.- Out-of-plane shear modulus for axisymmetric analysis (Real>0.0)
vro Out-of-plane Poisson's ratio for axisymmetric analysis (Real>0.0)
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The first element in the list, El, should be greater than zero and be an existing element number. E2 does not

need to be a valid element number. If E2 is greater than or equal to El, then only element El has tile material
properties specified by the MATPOIL card. If E2 is greater than El, then elements El to E2 have the prol)erties

given by the MATPOR_ card.
In the case of three-dimensional axisymmetric plane stress analysis, the strains are related to tile stresses via the

' equations
fizz O'rr 0"00

' fizz O'rr 0"00

_oo= -v_ E.---:- _'r0E_'--_-+ E_--r-'
O'z z O'rr ff00

_"'_- E.._. u,._.E.----_.u,.._E_._'
and

"rrz
"YT,g

Gr.-

These are the equations for an anisotropic, stratified material.

MOMENT Card

The M()MENT card allows distributed edge moments that vary linearly or quadratically along an element edge.
This option is included for plate bending analysis and is not used in the plane stress or plate buckling solutions. The
moments are defined as either acting normally to the edge or along the edge (twist). Either normal or tangential (or
both) moments are defined with one FO[LMULA card per element edge.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field 10
MOMENT EID SID INOR ITWST

A1 A2 A3 A4 A5 A6
B1 B2 B3 B4 B5 B6

MOMENT 5 2 1 0

5.0 0.0 1.0 0.0 0.0 -2.0

Eli) Element identification of the element the moment is acting on (Integer>O)
SID Side numher the moment is acting on for element Ell) (Integer>0)
IN()R Flag if coefficients Ai are present to define Mn INOP_>0 - first set of terms defines Mn.
ITWST Flag if coefficients Bi are present to define Mr. ITWST>0 - if IN()R>0, the second set of terms

defines hit, otiierwise the first set defines Mr.

SID must be a number between and including 1 and 4. The sides corresponding to SID are shown in Figure 1.

The equations for the normal and twisting moment on the edge, M_ and Mr, respectively, are

Mn : A1 -1-A2x "4-A3y . AaX 2 -4-Asy 2 + A6xy

all d

Mt = Bl + B2x + R3y-4- B4x 2 "4-B5y 2 "4-B6xy

where the positive and negative directions for the moments are defined by Figure 3. Also, x and y are defined in

terms of the global coordinates (x, y), not some local coordinate system.
If INOR is greater than 0, then the next line of the MOMENT card corresponds to Mn. If lNOP_ is not greater

than 0 and ITWST is greater than 0, then the next line of the MOMENT card corresponds to/_/t. If both INOR
and ITWST are greater than 0, then the second line of the MOMENT card corresponds to Mn, and the third line
corresponds to Mr.
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NODE Card

The N()DE card specifies the locations and node identification number for the nodes which make up the problem
geometry. Ill two-dimensional (?,artesian analysis, the coordinates are given as (x, y) pairs. In three-dimensional
axisymmetric problems, the coordinates are given as (r, z) pairs.

Field l Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field l0
NODE NID XLOC YLOC
NODE NID R Z
NODE l0 3.6 123.44

NID Identification number of the node (Integer>0)
XLOC, Global x-coordinate of the node in the Cartesian system (Real)
YL()C (]lobal y-coordinate of the node in the Cartesian system (Real)
R Global r-coordinate of the node ill the cylindrical system (Real)
Z Global z-coordinate of the node in the cylindrical systern (Real)

The node identification numbers (NIDs) should be unique for each node. That is, no two NODE cards should
have the same NID value.

PATRAN Card

The PATRAN card specifies that the graphical output information should be written in a PATRAN compatible
Neutral File format. After BUCKY has coml)leted an analysis, the outl)ut can be viewed using PATRAN if this card
is included in the input file.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 | Field 9 Field 10
TPATRA N

PLANE Card

The ['LANE card indicates that a platte stress analysis of the plate structure is desired. The plane stress and
bending problems are decoupled from each other. By default, if no analysis type is given in the input data file, a
plane stress analysis is performed. However, if a plate bending solution (via the BENDING card) or a plasticity
solution (PLASTIC card) is requested, no plane stress analysis is made unless [)LANE is included.

Fieldl ,Field2 Field3 Field4 , Field5 Field6 Field7 Field8 Field9 Fieldl0
T l[)LANE

The inclusion of the PLANE card indicates that a plane stress analysis of the plate is to be performed. If the
PLANE card is not included in the data file, then a ])lane stress analysis could be bypassed.

PLASTIC Card

The PLASTIC card indicates that a plastic analysis of the plate structure is desired.

[ FieldlpLASTICField2 Field3 [ Field4 i Field5 ] Field6 ] Field7 Field8 Field9 Fieldl0 ]

The inclusion of the PLASTIC card indicates that a plastic analysis of the plate is to be performed. In the current
version of BUCKY. only isotropic materials are supported for the plasticity solution.
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PLBOUND Card

Tile PLB()UND card specifies the plane stress boundary conditions for an element. Either the u (x-direction) or the

v (y-direction) displacement in two-dimensional plane stress analysis or the Ur (r-direction) or the w (z-direction)
displacement in three-dimensional axisymmetric for an element edge may be constrained.

Field l Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field 10

PLBOUND Ell) SID IU IV
, PLBOUND 5 3 1 0

EID Element identification of the element the constraint is acting on (Integer>0)
SID Side number the constraint is acting on for element EID (Integer>0)
IU u displacement code. l=no displacement, 0=free (Integer)
IV v displacement code. l=no displacement, 0=free (Integer)

SID must be a number between and including 1 and 4. The sides corresponding to SID are shown in Figure 1. If
more than one side of element EID is constrained, a separate card must be used.

PLPNT Card

The PLPNT card specifies the plane stress boundary conditions for a node on the element. Either the u (x-direction)
or the v (y-direction) displacement or both for the node may be constrained in two-dimensional plane stress analysis.
In three-dimensional axisymmetric problems, either the ur (r-direction) or the w (z-direction) displacement or both
for the node may be constrained. This feature should be used to constrain out rigid body motion.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field 10
PLPNT EID NID IU IV
PLPNT 5 35 0 1

EID Element identification of the element the constraint is acting on (Integer>0)
NID Node number the constraint is acting on for element EID (Integer>0)
IU u displacement code. l=no displacement, 0=free (Integer)
IV v displacement code. l=no displacement, 0=free (Integer)

POINT Card

The P()INT card allows for point loads to be applied at nodes in the plate bending analysis. The point load acts
normally to the element face. A positive value of the point load yields a positive value of displacement.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field l0
POINT EID NID F
POINT 3 12 100.3

EID Element identification of the element the load is applied to (Integer>0)
NID Node number the load acts on element EID (Integer>0)
F Applied nodal force acting on node NID (Real)
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PORDER Card

The PORDER card specifies the polynomial degree of the displacement functions for the plane stress solution. A
higher p, the maximum polynomial degree, gives a more precise result than a lower p, but solution time is increased.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field l0

PORDER p
PORDER 6

p Polynomial degree (Integer>O)

Tile value ofp is between 4 and 8. Any values of p below 4 will result in p = 4, and any p > 8 results in p = 8.

PRESS Card

The PRESS card defines the pressure field acting on the plate elements. It is used in the bending analysis of the
plate. Due to the nature of the linear plate theory, the bending analysis is decoupled from the buckling and plane
stress solutions. The pressure force is always normal to the plate surface.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field 10

PRESS El[) Po Pt P2 P3 P4 P._
PRESS 3 3.0 -1.0 2.5 0.0 0.0 0.0

EID Identification number of the element (Integer>0)

The pressure field is given by the equation

p = Po+ Plx + t:hy + [_.2 + [hy2 + [_xy (1

where a positive value ofp indicates that the pressure load acts down on the plate element. Also, x and y are defilled
in terms of the global coordinates (x, y), not some local element coordinate system.

SHEAR Card

The SHEAR card specifies that the plate analysis should include the effects of shear deformation. The traditional
BUCKY analysis uses the Kirchoff formulation for plate bending and plate buckling. The SHEAR card switches the
analysis mode to Reissner-Mindlin plate theory. The program automatically assumes a shear correction factor of

,V6.

Fieldl I Field2 Field3 Field4 Field5 ] Field6 I Field7 I Field8 Field9 Fieldl0SHEAR

The inclusion of the SHEAR card indicates the use of Reissner-Mindlin plate theory for the plate bending or
plate buckling solution.
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STEPS Card

Tile STEPS card indicates tile number of load increments applied daring the plastic analysis of the [)late structure.
The plate is analyzed at each iteration. For large problems, a high value of STEPS can he very time consuming.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 ......Field 9 Field 10
STE PS NSTEP ]
STEPS 13

NSTEP Number of load steps applied during the plastic deformation (Integer>0)

STRESS Card

The STRESS card defines the loads applied to the edges of the plate elements. Stresses are defined in a normal and
tangential coordinate system.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 FieM 10
STRESS EID SID _rn crt
STRESS 5 2 1000.0 -300.0

Ell:) Element identification of the element the toad is acting on (Integer>0)
SID Side number the load is acting on for element El[) (Integer>0)
or,, Normal stress acting along edge SID (Real)
ct Shear stress acting along edge SID (Real)

SID must be a number between and including 1 and 4. The sides corresponding to SID are shown in Figure 1.
The definitions of the loads, o',, and 0"t,are applied according to Figure 2. Positive shear loads (at) on the STRESS
card are in the direction of t in Figure 2. Positive normal loads on the STRESS card are in the direction of n in
Figure 2.

SUBDIV Card

The SUBDIV card specifies the number of subdivisions to be used for graphic output. A single BUCKY element is
divided into the square of the number specified in the SUBDIV card.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 FMd 10
SUBDIV SUB

........... i

SUBDIV 4

SUB Number of divisions (Integer)

The value of SUB is between I and 9. Any values of SUB below 1 will result in SUB--I, and any SUB>9 results
in SUB=9. The elements are divided into SUB*SUB subelements for graphical output. For example, if SUB=4, then
each element becomes a 4-by-4 e|ement (16 total) mesh in the graphic output files.
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TANGENT Card

The TANGENT card specifies the tangent modulus of the plate elements for the plastic analysis. Elements may have
independent values for the tangent modulus.

Field l Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field l0

TANGENT E1 E2 ET
TANGENT 5 8 3.2E5

E1 First element in thickness list (Integer>0)
E2 Second element in thickness list (Integer)
ET Tangent modulus of the material (Real>0.0)

The element list, defined by E1 and E2, gives the element numbers for which the tangent modulus is ET. If E2
is less than El, then only element El has the material properties specified in the TANGENT card.

THICK Card

The THICK card specifies the thickness of the plate. The THICK card allows for linearly varying thickness of one
or more elements.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field l0

THICK E1 E2 C1 C2 (_3

THICK 5 8 .5 -'.l 0.0

E1 First element in thickness list (Integer>0)
E2 Second element in thickness list (Integer)

The element list, defined by El and E2, gives the thickness equation for elements E1 to E2. If E2 is less than
El, then only element El has the thickness given by the current THICK card. If E2 is greater than or eqaul to El,
then all of the elements from E1 to E2 will have a thickness given by the formula

h = (,1 + (,2x + .,3Y

where x and y are the global Coordinates (not parametric or element coordinates). The thickness of the element
must be everywhere positive and nonzero. The THICK card is not required for axisymmetric problems.

UPDATE Card

The UPDATE card indicates that during the plastic analysis of the plate structure, the output quantities of displace-
ment and stress are to be updated to the output file at each iteration or a number of iterations. If the UPDATE
card is not included, only the final results are given.

FieldluPDATE IiCFie'd2 F eld3IField4 Field8 Field9 Field,0 I

INC, Number of iterations required to be performed to update results (Integer)

The inclusion of the UPDATE card indicates that the deformation during the plastic analysis of tile plate is
updated at each iteration or after INC, number of iterations. This leads to a much larger output data file once the

analysis is completed. If INC is not included, the output is ul)dated after each iteration. If IN(', is zero or negative, no
updates will be i)rovided. If INC is greater than 1, then tile output is updated after each INC, number c)f iterations.
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YIELD Card

The YIELD card specifies the yield strength of the plate elements for the plastic analysis. Elements may have
independent values for the yield strength.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field 10

YIELD E1 E2 (to
YIELD 5 8 50000.0

E1 First element in thickness list (Integer>0)
E2 Second element in thickness list (Integer)

cr0 Yield strength of the material in simple tension (Real>0.0)

The element list, defined by El and E2, gives the element numbers for which the yield strength is (r0. If E2 is
less than El, then only element El has the property defined in the YIELD card.
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Figure 4: Four-elernent model of a square plate.

9 Examples

This section provides example data files for BUCKY. First,, a simple plate is considered, followed by a quarter model
of a plate with an internal circular cutout. In both cases, a buckling solution is performed. As an example of
plate bending, a square plate subjected to a hydrostatic pressure load is studied. To demonstrate the elastic-plastic
capabilities of BUCKY, a plastic analysis of a cantilevered beam is given. As an example of the axisymmetric
cylindrical solver within BUCKY, a spherical pressure vessel is examined and the results are compared to the
theoretical values.

9.1 Square Plate

The first example is a square simply supported plate, a_sshown in Figure 4. The plate is modeled with 4 p = 6 finite
elements for both the plane stress and the plate buckling calculations. Rather than make the edges truly simply
supported (no displacernent or mornent), only the geometric constraint (displacement) is enforced. The plane stress
boundary conditions are as follows:

• Left edge cannot move in the _'-direction

• One of the nodes of element 1, which lies along the model's centerline, cannot move in the y-direction. This
takes out the rigid body motion of the plate while giving pure compression or tension of a square plate.

The plate is loaded in tension on the right side, so the buckling factor cornl)uted by BUCKY should be negative

(tension cannot cause buckling). A buckling solution is requested via the BUC, KLE card. The entire data file is
shown below:

#

# Modelof a simplysupportedsquareplate. Solveforbucklingload.
# We can use Reissner-Mindlin plate theory if we uncomment the SHEAR card.
#
#SHEAR
PORDER 6

SUBDIV 4

BUCKLE
NODE 1 O. O0 O. O0

•NODE 2 I.O0 O.O0
NODE 3 2.O0 O.O0
NODE 4 2.O0 I.O0
NODE 5 2.O0 2.O0

NODE 6 I.O0 2.O0

NODE 7 O.O0 2.O0

NODE 8 O.O0 1.O0

NODE 9 3.O0 O.O0
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NODE I0 4.00 0.00
NODE 11 4.00 1.00
NODE 12 4.00 2.00
NODE 13 3.00 2.00
NODE 14 2.00 3.00

• NODE 15 2.00 4.00
NODE 16 1.00 4.00
NODE 17 0.00 4.00
NODE 18 0.00 3.00
NODE 19 4.00 3.00
NODE 20 4.00 4.00
NODE 23 3.00 4.00
ELEMENT 1 1 2 3 4 5 6 7 8
ELEMENT 2 3 9 I0 II 12 13 5 4

ELEMENT 3 7 6 5 14 15 16 17 18
ELEMENT 4 5 13 12 19 20 21 15 14
STRESS 2 2 1.0 0.0
STRESS 4 2 3.0 0.0
#

# Set upa boundaryconditionto avoidrigidbodymotion
#
PLBOUND 1 4 1 0
PLBOUND 3 4 1 0
PLPNT I 6 0 1

THICK I 4 .375
MATPIS 1 4 I.OE7 0.3
BEND I I 1 0
BEND I 4 I 0
BEND 2 I 1 0
BEND 2 2 1 0

BEND 3 3 1 0
BEND 3 4 1 o
BEND 4 2 1 0
BEND 4 3 I 0
ENDDATA

An abbreviated output data file _omthe run finds that the buckling eigenvalue takes the value

* BUCKLINGFACTOR*

BUCKLINGFACTOR=-.318E+06

The reason for the negative sign in the BUCKLINGFACTOR is that, in the sample problem, the plate has been
loaded in tension. To cause buckling, the loads must compress the plate. Thus, the negative sign represents a
direction change for the load from tension to compression. From [16], for simply supported square plates with a
constant stress applied to opposite edges, we know that the critical buckling load for the plate is given by

lr2Eh2
' _ - :3(1- v_)a2'

where the material properties E and v are given by the MATPIS card; h is given by the THIC,K card; and a is the
dimension of the plate. For this sample problem, a takes the value a = 4. Thus, the theoretical buckling load is
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equal to
_rcr= 317746,

which varies from the computational value by only 0.08%.
If we instead consider a shear deformable plate, we realize that the addition of the shear terms in the strain

energy yields a softer structure. This in turn requires that the buckling stress (rc_ be reduced by some arnount. For
the plate considered, the thickness-to-width ratio is fairly large at 0.09375. For this value of the thickness-to-width
ratio and for an aspect ratio of l, we would expect to find a buckling load of approximately 92% of the non-shear
deformable plate [15]. Thus, we would expect the computer model to find a buckling load near 292000. When using
BUC, KY to determine the buckling load, we find a value given by

$$$@$$*$$$$$$$$@$$$

BUCKLING FACTOR *

BUCKLINGFACTOK=-.278E+06

While this value for the buckling load is below that predicted by [15], it should be emphasized that the same value
for the buckling factor was computed for p = 8, suggesting convergence of the results.

9.2 Square Plate with Cutout, Quarter Model

The next example is that of a square plate with a circular cutout in the interior of the plate, as shown in Figure 5.
A quarter of the plate is modeled since the loading and boundary conditions are symmetric. Also, in the case of
buckling, one shouhl assume that, since the plate is being loaded in cornpression and since the loading is symmetric
about both x and y axes, the first buckled mode shape is symmetric, which leads to the lowest buckling load. If the
loads or boundary conditions were not symmetric, this would not be the case. So taking advantage of symmetry, the
data file reads:

POKDEK 6
BOKDEK 8

SUBDIV 4

#
# Dumpthe output to an I-DEASfile for post processing
#
IDEAS

BUCKLE

NODE 1 1.00 0.00
NODE 2 1.50 0.00

NODE 3 2.00 0.00

NODE 4 1.9239 .3827
NODE 5 1.8478 .7654
NODE 6 1.3858 .574
NODE 7 .9239 .3827
NODE 8 .9808 .1951
NODE 9 3.00 0.00

NODE 10 4.00 0.00

NODE 11 4.00 1.00

NODE 12 4.00 2.00

NODE 13 2.9239 1.3827
NODE 14 1.6310 1.0898
NODE 15 1.4142 1.4142
NODE 16 1.0607 1.0607
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Synunettic BC
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Figure 5: Quarter model of a square plate with an internal circular cutout.

NODE 17 .7071 .7071
NODE 18 .8315 .5556
NODE 19 4.00 3.00
NODE 20 4.00 4.00

NODE 21 2.7071 2.7071

NODE 22 1.0898 1.6310
NODE 23 .7654 1.8478

NODE 24 .574 1.3858
NODE 25 .3827 .9239

NODE 26 .5556 .8315

NODE 27 3.00 4.00

NODE 28 2.00 4.00

NODE 29 1.3827 2.9239

NODE 30 .3827 1.9239
NODE 31 0.00 2.00
NODE 32 _ 0.00 1.60
NODE 33 0.00 1.00
NODE 34 .1951 .9808 '
NODE 35 1.00 4.00

NODE 36 0.00 4.00

NODE 37 0.00 3.00

ELEMENT 1 33 34 25 24 23 30 31 32

ELEMENT 2 25 26 17 16 15 22 23 24

ELEMENT 3 17 18 7 6 5 14 15 16
ELEMENT 4 7 8 1 2 3 4 5 6

ELEMENT 5 31 30 23 29 28 35 36 37
ELEMENT 6 23 22 15 21 20 27 28 29

ELEMENT 7 15 14 5 13 12 19 20 21

ELEMENT 8 5 4 3 9 I0 11 12 13
STRESS 7 3 -I.0 0.0

STRESS 8 3 -1.0 0.0
PLBOUND 1 4 1 0
PLBOUND 5 4 1 0
PLBOUND 4 2 0 1

, PLBOUND 8 2 0 1
THICK 1 8 I.O

MATPIS 1 8 I.OE7 0.3
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Figure 6: von Mises stress distribution in a square plate with cutout.

BEND 1 4 0 1

BEND 4 2 0 1
BEND 5 4 0 1

BEND 5 3 1 0

BEND 6 3 1 0
BEND 7 3 I 0

BEND 8 3 1 o
BEND 8 2 0 1

ENDDATA

In the file above, elements 1 and 5 are restricted to vertical translation only on edge IV. This edge is one of tile
lines of symmetry for the model, the other being edge II of elements 4 and 8, which are restricted to only moving in
the x-direction. The bending boundary conditions correspond to a simply supported full model. However, since the
model used is a quarter scale model, some alterations need to be made. Since the aforementioned edges are along
lines of symmetry, symmetrical boundary conditions need to be imposed. These are displacement and slope along
the edge. The displacement condition is satisfied automatically if the slope condition is utilized. The slope of the
plate along the lines of symmetry must be zero for bending. Thus, for side II of elements 4 and 8 and side IV of
elements 1 and ,5, the slope is constrained to be zero. This will satisfy the symmetrical boundary conditions and lead
to the lowest buckling load and mode for the plate. For the plane stress portion of the problem, a polynomial order
of p = 6 has been chosen. However, for the plate buckling analysis, the fidelity is increased with a higher polynomial
order (p = 8) through the BORDER card.

To show an example of the output capabilities, the yon Mises stress distribution from the plane stress analysis is
plotted using I-DEAS. Figure 6 show this distribution. Notice the fringes near the hole; these are indicative in cases
of stress concentrations. Also, notice that the stress in this region is larger than the input stress.
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9.3 Square Plate Under Hydrostatic Pressure Load

j,Using B[ CKY version 4.0, the response of plates to pressure loads can be investigated. This section gives a sample
BUCKY input file for the case of a square sirnply supported plate that is subject t,o a linearly varying i)ressure Ioa,d.
This is the special ease of hydrostatic pressure loads. The same plate used in the exarnple of Section 9.1 is used here.

, Tile input deck for this analysis is

#

# Fall model o_ a squareplatewith a linearlyvaryinghydrostaticload.
# We can includethe effectsof transversesheardeformationby uncommenting
# the SHEAR card entry.
#
PORDER S

SUBDIV 4
BENDING

#

# Use sheardeformableplates
#
#SHEAR

NODE I 0.00 0.00

NODE 2 1.00 0.00

NODE 3 2.00 0.00
NODE 4 2.00 1.00
NODE 5 2.00 2.00
NODE 6 1.00 2.00
NODE 7 0.00 2 O0
NODE 8 0.00 I O0
NODE 9 3.00 0 O0
NODE 10 4.00 0 O0
NODE 11 4.00 1 00
NODE 12 4.00 2 O0
NODE 13 3.00 2 O0
NODE 14 2.00 3 O0
NODE 15 2.00 4 O0

NODE 16 1.00 4 O0

NODE 17 0.00 4.00
NODE 18 0.00 3.00
NODE 19 4.00 3.00

NODE 20 4.00 4.00
NODE 21 3.00 4.00
ELEMENT i 1 2 3 4 5 6 7 8
ELEMENT 2 3 9 10 11 12 13 5 4
ELEMENT 3 7 6 5 14 15 16 17 18
ELEMENT 4 5 13 12 19 20 21 IS 14

THICE 1 4 .375
MATPIS I 4 I.OE6 0.3
BEND 1 1 1 0

BEND 1 4 1 0
BEND 2 1 1 o
BEND 2 2 1 0
BEND 3 3 1 0
BEND 3 4 1 0
BEND 4 2 1 0

BEND 4 3 1 0
PRESS I 0.0 1.0
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PRESS 2 0.0 1.0

PRESS 3 0.0 1.0

PRESS 4 0.0 1.0

ENDDATA

In the data deck, a bending only solution is requested by the BENDING card. The pressure load, defined by the
PRESS card, suggests that ti_ere is no constant component of the pressure and the pressure varies linearly with x.

Ttle pertinent data _om the BUCKY run are shown below:

Element Node Z-disp. Sigma-x Sigma-y Tau-xy

1 1 -.74489E-08 .38721E-01 .28948E-01 -.35275E+02

2 -.49027E-12 .35787E-01 .11780E+00 -.28158E+02

3 -.16803E-08 -.15428E-01 -.94797E-01 -.67955E+01

4 .31149E-03 .48644E+02 .53051E+02 -.35236E+01

5 .43068E-03 .65400E+02 .65326E+02 .34991E-01

6 .27794E-03 .35810E+02 .40874E+02 -.21140E-03

7 -.14823E-07 .36584E-01 .90827E-01 -.27523E-01
8 -.69993E-08 .16355E-02 .41951E-03 -.23408E+02
C .20021E-03 .26436E+02 .32451E+02 -.18398E+02

2 3 -.50663E-08 -.35790E-01 -.15257E+00 -.67938E+01
9 - 79859E-09 .83295E-01 .27658E+00 .26302E+02
10 - 38995E-08 .14616E-01 .11284E-01 .53242E+02
11 - 41117E-08 .38379E+00 .11574E+00 .31054E+02
12 10071E-07 -.33953E+00 -.19051E+00 -.38612E-01
13 34507E-03 .70298E+02 .56391E+02 .38591E-02
5 43072E-03 .64900E+02 .64943E+02 .43519E-01
4 31149E-03 .48637E+02 .53050E+02 -.35242E+01
C 25193E-03 .54038E+02 .48016E+02 .18072E+02

3 7 45674E-08 -.50101E-01 -.31118E-01 - 25719E-01
6 27796E-03 .35813E+02 .40884E+02 95495E-03
5 43070E-03 .65314E+02 .65176E+02 35226E-01

14 31149E-03 .48642E+02 .53050E+02 35199E+01
15 33879E-08 -.49871E-01 -.12788E+00 67674E+01
16 16800E-09 .36531E-01 .12028E+00 28157E+02
17 - 13435E-09 -.28200E-02 .33582E-02 35298E+02
18 -.17554E-09 -.34464E-03 -.31173E-03 23410E+02
C .20021E-03 .26438E+02 .32451E+02 18397E+02

4 5 .43068E-03 65024E+02 .65135E+02 .33437E-01
13 .34504E-03 70296E+02 .56381E+02 -.25838E-02
12 -.20221E-07 - 20317E+00 -.93715E-02 -.41627E-01
19 -.13344E-07 38360E+00 .11518E+00 -.31051E+02
20 -.13396E-07 79401E-01 .42919E-01 -.53208E+02
21 .93919E-10 83718E-01 .27914E+00 -.26302E+02
15 -.11491E-07 34852E-01 -.69179E-01 .67535E+01
14 .31147E-03 48640E+02 .53049E+02 .35209E+01
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:Z

C .25193E-03 .54034E+02 .48011E+02 -.18071E+02

In the sarnple case above, we call compare the cornputational solution to known textbook solutions. Fronl classical

theory, we know that at the center of the plate, the plate deflection is given by the expression [17]

ween = .00203 q°a4
D

t

This is the expression for the theoretical plate deflection for the center of a plate subject to a hydrostatic (linearly
increasing) pressure load on its surface. In the example problem, the parameter a is the span of the plate; D is the

modulus of rigidity of the plate; and q0 is the maximum value of load. The rriodulus of rigidity is related to the
rnaterial and physicM properties of the plate. For an isotropic plate of constant thickness, D is constant and given
by

Eh 3
D-

12(1 - v2) '

The values of E and v are given by tile MATPIS card. The thickness, which is constant in this ease, is given by
the THICK card, and the parameter a takes the value a = 4. Finally, from the PRESS card, we have prescribed a
pressure load of

p(z, y) = x

on the plate. At x = 4, p has its maximum of p = 4. Thus, the quantity q0 takes tile value q0 = 4, and the central
deflection is found to be

w,,e,, = .00043045.

By comparison, the central deflection in the plate model is given by the deflection at, node 5. We see that at, node
5, the deflection takes the value

Wnode5 = .00043068,

which represents negligible error.

For the same loading, the classical expression for the stresses can also be compared to the computational results.

In the case above, it was found that at node 6 of element 1 the x and y stresses, c%and _rv, take the values

a_ = 35.81 and av = 40.874.

From reference [17], we find that

a_ = 6M_,/h 2 = 6fllqoa2/h 2 and _y = 6Mv/h 2 = 6flgqoa2/h 2,

where

fll = .0132 and f12 = .0149

for the point corresponding to node 6. Thus, we find that the theoretical stresses are given by

tr_ = 36.045 and o"v = 40.687,

whereas the computational values are

a_:,,o_ = 35.810 and o'y,,o,_6 = 40.874.

If we include the effects of shear deformation into the problem, then we find that tile new central deflection is
given by

wnocte,5: .00048444,

which is 12.48% larger than the non-shear deformable central deflection. Similarly, the stresses at node 6 in the
, model are slightly larger with the inclusion of shear deformations. For this location, we find that the stresses are

a_,,o_,_ = 39.705 and aV.o_,_ = 44.354.
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Figure 7: Two-element bearn model for elastic-plastic analysis.

9.4 Plastic Analysis of a Uniformly Loaded Cantilever Beam

To show the capabilities of BUCKY in plasticity problems, a cantilever beam subjected to a uniforndy distrihuted
pressure load is sthdied. The plasticity solution is an iterative plane stress solution. The finite element model is
comprised of only two elements, as shown in Figure 7. To effectively trace the plastic growth, two elements are
used, with the smaller one near the beam base being the same order as the beam thickness. The input (leek for this
analysis is

#

# Elastic-plasticanalysisof a uniformlyloadedcantilever
#
PORDER 6
UPDATE 10

PLASTIC
NODE 1 0 0 0.0
NODE 2 I 0 0.0
NODE 3 2 0 0.0
NODE 4 2 0 I 0
NODE 5 2 0 2.0
NODE 6 1 0 2.0
NODE 7 0 0 2.0
NODE 8 0 0 .0
NODE 9 6 0 0.0

NODE 10 10 0 0.0
NODE II I0 0 1.0
NODE 12 I0 0 2.0
NODE 13 6 0 2.0
ELEMENT 1 1 2 3 4 5 6 7 8
ELEMENT 2 3 9 I0 ii 12 13 5 4
STRESS 1 3 -505.

STRESS 2 3 -505.
STRESS 1 1 505.
STRESS 2 1 505.
YIELD 1 2 50000.
#

# Specify a 20 step plastic analysis
#
STEPS 20

TANGENT 1 2 I.OEO
MATPIS 1 2 IO.OE6 0.0
PLBOUND 1 4 1 1

THICK 1 2 1.0
ENDDATA

The output _orn this run is quite extensive. To reduce the amount of out generated, only the displacements are
given for the outer element. It should be noted that the applied load given in the STRESS cards is slightly above
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the static collapse pressure of the beam. The exact collapse pressure is 1000 psi (or 500 psi on each face). The

applied pressure in this example is 1010 psi, a 1% increase over the theoretical collapse pressure. Pressures much
higher than this will result in ever-increasing tip deflections that are unbounded. The output _r the second element
(displacements only) is

" *** PLASTICITY ITERATION # 1 COMPLETE ***

*** PERCENTAGEOF LOAD APPLIED= 65.48_***

Element Node X-disp. Y-disp.

2 3 -.81764E-02 - I0073E-01

9 -.15528E-01 - 62242E-01

10 -.16534E-01 - 12795E+00

11 .44650E-11 - 12793E+00

12 .16534E-01 - 12795E+00

13 .15528E-01 - 62242E-01

5 .81764E-02 - 10073E-01

4 -,22120E-12 - 10054E-01
C .11969E-12 - 62222E-01

*** PLASTICITYITERATION#10 COMPLETE***

*** PERCENTAGE OF LOAD APPLIED = 81.01_ ***

Element Node X-disp. Y-disp.

2 3 - 10373E-01 -.12956E-01

9 - 19464E-01 -.78517E-01

10 - 20708E-01 -.16083E+00

11 55711E-11 -.16080E+00

12 20708E-01 -.16083E+00

13 19464E-01 -.78517E-01

5 10373E-01 -.12956E-01
4 - 22696E-12 -.12939E-01

C 19595E-12 -.78492E-01

***PLASTICITYITERATION#20COMPLETE***

*** PERCENTAGEOF LOAD APPLIED= 88.27_***

Element Node X-disp. Y-disp.

2 3 -.16826E-01 -.23165E-01

9 -.27840E-01 -.11963E+00
10 -,29347E-01 -.23639E+00

11 .68262E-11 -.2363TE+00

12 .2934TE-01 -.23639E+00

13 .27840E-01 -.11963E+00

5 .16826E-01 -.2316BE-01

4 -.18119E-12 -.23158E-01

C .27599E-12 -.11960E+00

*** PLASTICITYITERATION#21 COMPLETE***
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15

Figure 8: Axisymrnetric sphere model.

*** PERCENTAGE OF LOAD APPLIED = IO0.OOZ ***

Element Node X-disp. Y-disp.

2 3 -.18274E-01 - 26590E-01

9 -.29472E-01 - 12833E+00
10 -.31005E-01 - 25173E+00
11 .69644E-11 - 25170E+00

12 .31006E-01 - 25173E+00

13 .29472E-01 - 12833E+00
5 .18274E-01 - 26590E-01

4 -.17072E-12 - 25587E-01
C .29341E-12 - 12830E+00

9.5 Axisymmetric Analysis of a Spherical Pressure Vessel

A traditional benchmark for finite element programs is tile exarnination of the characteristics of sl)herical pressure

vessels under some internal pressure. The exact solution is easily found [18]. The finite elernent rnodel of the sphere is
a six-elernent model. We can take advantage of sYmmetry and model only one hemisphere of the vessel. In addition,
because of axisymmetry, we model only a 900 segment of the sphere. The finite element model is shown in Figure 8.
A pressure P0 of 3600 psi acts on the interior of the sphere. The inner radius of the tank is a = 1.735 in., and the
outer radius is given by b = 1.85 in. The input deck for this analysis is

#

# hxisymmetric analysis o_ a spherical pressure vessel under pressure
#
AXIS3D
PORDER 6
IDEAS
SUBDIV 6
NODE 1 1.736 O.

NODE 2 1.7426 O.
NODE 3 1.75 O.

NODE 4 1.617 .670
NODE 5 1.237 1.237
NODE 6 1.232 1.232

NODE 7 1.227 1.227

NODE 8 1.603 .664
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NODE 9 1.77 O.

NODE 10 1.79 O.
NODE 11 1.654 .685

NODE 12 1.266 1.266

NODE 13 1.252 1.252

NODE 14 1 •82 O.
NODE 15 1. 85 O.
NODE 16 1. 709 .708

NODE 17 1.308 1.308
NODE 18 1.287 1.287
NODE 19 O. 1.735
NODE 20 .664 1.603
NODE 21 .670 1.617
NODE 22 O. 1.75
NODE 23 O. 1.7425
NODE 24 .685 1.654
NODE 25 O. 1.79
NODE 26 O. 1.77
NODE 27 .708 1.709
NODE 28 O. 1.85
NODE 29 O. 1.82
ELEMENT 1 7 8 1 2 3 4 5 6
ELEMENT 2 5 4 3 9 10 11 12 13
ELEMENT 3 12 11 10 14 15 16 17 18
ELEMENT 4 19 20 7 6 5 21 22 23
ELEMENT 5 22 21 5 13 12 24 25 26
ELEMENT 6 25 24 12 18 17 27 28 29
MATPIS 1 6 28.5E6 0.3
#

# We are using synuaetryabout z=O, so includesymmetricboundaryconditions
# for the elementsalongthis line
#
PLBOUND 1 2 0 1
PLBOUND 2 2 0 1
PLBOUND 3 2 0 1

#

# Includeconstraintsagainstradialmotion along the r=O line. BUCKY
# automaticallyenforcesit, so it is really superfluous
#
PLBOUND 4 4 1 0
PLBOUND 5 4 I 0
PLBOUND 6 4 1 0
STRESS 1 I -3600. O.
STRESS 4 1 -3600. O.
ENDDATA

Since six elements have been used, the output is extensive. However, we can compare the normal and tangential
stresses in the elements to the theoretical predictions. According to [18], the radial and circum_rential stresses in a
spherical pressure vessel are given by

or(,.): 1- and l+
6

The equations for or and ee were derived in a spherical coordinate system with symmetry. Thus, the stresses are a
fimction of r only. In the cylindrical system, displacements and stresses are fimctions of two field variables, r and
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Figure 10: Circumferential stress distribution in a spherical shell.

z. However, for this problem, the principal stresses, al and cr2 in the r- z plane, are equivalent to the radial and
circumferential stresses in the spherical system. Additionally, the stress tr0 cornputed by BUCKY is theoretically

equivalent to the principal stress representing the circumferential stress (trl).
Figure 9 shows the radial stress distribution along a straight line joining nodes 5, 6, 7, 12, 13, 17, and 18 and

the stresses corresponding to the theoretical prediction at those nodes. Figure l0 shows the circumferential stress
distribution along the same straight line. From Figure 9, we see excellent agreement of the radial stress along
the shell wall. The similarities in the circumferential stress, given by Figure 10, are not as appealing. However, the
relative error between the theoretical and numerical result is small.
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10 Error Messages

This section gives a complete list of all the error messages BUCKY is capable of posting. Along with the rnessages
are reasons for and ways to correct the problem.

*** ER, ROR l *** UNP_ECOGNIZED INPUT CARD - BUCKY found a data card that is not in the BUCKY library

of valid input cards. Check the spelling of the card or delete card.

*** ERROR 2 *** ILLEGAL NODE NUMBER IN NODE CARD - A node must have an identification number of

at least the value one. A zero or negative value for the node number will cause this error. Change the node number
to a positive value.

*** ERROR 3 *** ILLEGAL NODE NUMBER IN ELEMENT CARD - An element has a node in its connectivity
data that is not a valid node immber. Check the ELEMENT card to make sure the proper ilode is specified. If so,

modify or create a new N()DE card to create this inissing node.

*** ERtL()R 4 *** ILLEGAL ELEMENT NUMBER 1N ELEMENT CARD - An element must have all identification
mmiber of at least the value one. A zero or negative value for the element number will cause this error. Change the
element number to a positive value.

*** ERILOR 5 *** ILLEGAL ELEMENT NUMBER IN STRESS CARD - The element referenced in the STRESS

card is nonexistent. Either create the missing element with the ELEMENT card or change the element number in
the STRESS card to an existing element.

*** ERIL()R 6 *** ILLEGAL SIDE NUMBER IN STRESS CARD - An element has four sides, labeled from one

to four. If this error occurs, a number less than one or greater than four was entered as the side immber. Supt)ly a

number greater than zero and less than five.

*** ERROR 7 *** ILLEGAL ELEMENT NUMBER IN PLBOUND CARD - The element referenced in the

PLB()UND card is nonexistent. Either create the missing element with the ELEMENT card or change the element
number in the PLBOUND card to an existing element.

*** EP_tL()R 8 *** ILLECAL SIDE NUMBER IN PLB()UND CARD - An element has four sides, labeled from one

to four. If this error occurs, a number less than one or greater than four was entered as the side number. Supply a

number greater than zero and less than five.

*** EI4R()R 9 *** ILLEGAL C()NSTRAINT C()DE IN PLB()UND CARD - The constraint codes for this card
rnust be zero or one. This error indicates neither a zero nor one value was entered for the IU condition. Enter the

appropriate mlrnber for the IU condition.

*** ERIL()R l0 *** ILLEGAL C()NSTRAINT CODE IN PLB()UND CARD - The constraint codes for this card
must be zero or one. This error indicates neither a zero nor one value was entered for the IU condition. Enter the

appropriate number for the IV condition.

*** EtLROR l l *** ILLEGAL POLYNOMIAL ORDER IN ['ORDER (liAR[)- Valid polynomial orders for BUC'KY

are from four to eight. Specify a value from four to eight.

*** EI4R()R 12 *** ILLEGAL ELEMENT NUMBER IN THICK CARD - The element referenced in the THICK

card is nonexistent. Either create the missing element with the ELEMENT card or change the element number in
the THICK card to an existing element.

, *** ER.ROR 13 *** ILLEGAL ELEMENT NUMBER IN MATPOR CARD- The element referenced in the MATP()R

card is nonexistent. Either create the missing element with the ELEMENT card or change the element number in
the MATP()R card to an existing element.
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*** ERROR 14 *** ILLEGAL ELEMENT NUMBER IN MATPIS CARD - The element referenced in the MATPIS

card is nonexistent. Either create the missing element with the ELEMENT card or change the element nurnl)er in

the MATPIS card to an existing element.

*** ERROR 15 *** ILLEGAL ELEMENT NUMBER IN BEN[) CARD - The element referenced in the BEN[) card

is nonexistent. Either create the missing element with ttle ELEMENT card or change tile element number in the
BEN[) card to an existing element.

*** ERROR 16 *** ILLEGAL SIDE NUMBER IN BEND CARD - An element has four sides, labeled from one to
four. If this error occurs, a number less than one or greater than four was entered as the side number. Supply a

number greater than zero and less than five.

*** ERROR 17 *** ILLEGAL CONSTRAINT (:',ODE IN BEN[) CARD - This error corresponds to Field 4 of the

BEN[) card, which refers to the displacement boundary condition. Valid values for ICl are zero and one. This error
indicates neither of these values was used. Enter a zero or one in the proper field to rectify the error.

*** ERROR 18 *** ILLEGAL CONSTRAINT CODE IN BEN[) CARD - This error corresponds to Field 4 of the
BEN[) card, which refers to tile slope boundary condition. Valid values for IC2 are zero and one. This error indicates
neither of these values was used. Enter a zero or one in the proper field to rectify the error.

*** ERROR 21 *** ILLEGAL SUBDIVISIONS IN SUBDIV CARD - The number of valid element subdivisions is

from one to eight. Any other number of subdivisions is invalid.

*** ERROR 22 *** NODE IN ELEMENT IS INVALID - A nonexistent node was found in the element connectivity
information for the current element. Create a new NODE card or change the element connectivity to remedy the
error.

*** ERROR 23 *** APPLIED LOAD ACTS ON NON-EXISTENT ELEMENT - A STRESS card was found which

acts on a nonexistent element. Check the STRESS card and change the Eli) or create a new ELEMENT card with
the same Eli).

*** ERROR 24 *** ['LANE STRESS BOUNDARY CONDITION AC,TS ON NON-EXISTENT ELEMENT - A

PLBOUND card was found which acts on a nonexistent element. Check the PLBOUND card and change the Eli)
or create a new ELEMENT card with the same EID.

*** ERROR 25 *** BENDING BOUNDARY CONDITION ACTS ON NON-EXISTENT ELEMENT - A BEND

card was found which acts on a nonexistent element. Check the BEND card and change the EID or create a new
ELEMENT card with the same EID.

*** ERROR 26 *** ILLEGAL ELEMENT NUMBER IN PLPNT CARD - The element referenced in the PLPNT

card is nonexistent. Either create the missing element with the ELEMENT card or change the element number in
the PLPNT card to an existing element.

*** ERROR 27 *** ILLEGAL CONSTRAINT CODE IN PLPNT CARD -Valid constraint codes for IU or IV are

zero and one. This error indicates neither of these values was found for either IU or IV. Change the field in question
to a zero or one.

*** ERROR 28 *** [)LANE STRESS POINT CONSTRAINT ACTS ON NON-EXISTENT ELEMENT - A PLPNT

card was found which acts on a nonexistent element. Check the PLPNT card and change the Eli) or create a new
ELEMENT card with the same Eli).

*** ERROR 29 *** [)LANE STRESS POINT C()NSTRA1NT ACTS ()N NON-EXISTENT NODE - A PLPNT card

was found which acts on a nonexistent node. Check the PLPNT card and change the N1D or create a new NODE
card with the same NID.
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*** ERILOR 33 *** NUMBER ()F NODES EXCEEDS ALLOWABLE AMOUNT - BUC, KY has a predetermined
lin-fit old the number of nodes allowed for a problem, and this error indicates the model has exceeded the memory
requirements. Reduce the number of nodes in the model.

*** EtLR()R :34*** NUMBER OF ELEMENTS EXCEEDS ALLOWABLE AMOUNT - BUCKY has a predetermined
' lirrfit on the number of elements allowed for a l)roblem, and this error indicates the model has exceeded the memory

requirements. Reduce the number of elements in the model.

*** ERILOR 35 *** ILLEGAL ELEMENT NUMBER IN FORMULA CARD- The element referenced in the FOR-

MULA card is nonexistent. Either create tide missing element with the ELEMENT card or change the element

number in the FORM [ILA card to an existing element.

*** ERR.()R 36 *** ILLEGAL SIDE NUMBER IN FORMULA CARD - An element has four sides, labeled fi'om
one to four. If this error occurs, a nuinber less than one or greater than four was entered as the side number. Sul)l)ly

a number greater than zero and less than five.

*** ERROR 37 *** NUMBER OF ELEMENTS WITH STRESS CARDS EXCEEDS ALLOWABLE AM()UNT -

BUCKY has a predetermined limit on the number of STRESS cards allowed for a problem, and this error indicates
the model has exceeded the memory requirements. Reduce the number of STRESS cards in the model.

*** ERILOR 38 *** NUMBER OF ['LANE STRESS BOUNDARY CARDS EXCEEDS ALLOWABLE AM()UNT -

BUCKY has a predetermined limit on the number of PLBOUND cards allowed for a prol)lem, and this error indicates
the model has exceeded the memory requirements. Reduce the number of PLB()UND cards in the model.

*** ERROR 39 *** NUMBER ()F BENDING BOUNDARY CARDS EXCEEDS ALLOWABLE AMOUNT -

BUCKY has a predetermined limit on the number of BEN[) cards allowed for a problem, and this error indicates
the model has exceeded the memory requirements. Reduce the number of BEN[) cards in the model.

*** ERROR 40 *** NUMBER OF PLANE STRESS POINT CONSTRAINT CARDS EXCEEDS ALLOWABLE

AM()UNT - BUCKY has a predetermined limit on the number of PLPNT cards allowed for a problem, and this
error indicates the model has exceeded the memory requirements. Reduce the number of PLPNT cards in the model.

*** ERP_OR 41 *** TW() NODE CARDS HAVE THE SAME NODE ID - NODE cards must have unique node

numbers, so a repeated number will result in this error. Change or delete one of tile N()DE cards.

*** ERR_OR 42 *** TWO ELEMENT CARDS HAVE THE SAME ELEMENT ID - ELEMENT cards must have

unique elernent numbers, so a repeated number,will result in this error. Change or delete one of the ELEMENT
cards.

*** ERIL()R 44 *** ILLEGAL ELEMENT NUMBER IN MATB()R CARD - The element referenced in the MATBOR

card is invalid. The element number should be a positive number. Change the element identification number to a
nonzero positive value.

*** ERI_OR 45 *** ILLEGAL ELEMENT NUMBER IN MATBIS CARD - The element referenced in the MATBIS

card is invalid. The element number should be a positive number. Change tile element identification number to a

nonzero positive value.

*** ERROR 46 *** ILLEGAL ELEMENT NUMBER ()N PRESS CARD - The element referenced in the PRESS

card is not valid. The element nurnber rnust have a positive value.

*** ERI_()R 47 *** ILLEGAL P()LYNOMIAL ORDER IN B()RDER CARD - Valid polynomial orders for BUCKY
are from four to eight. Specify a value from four to eight.

*** ERI_OR 48 *** ILLEGAL ELEMENT NUMBER ON MOMENT CARD - The element referenced in the MO-

MENT card is invalid. Valid elednent numbers are positive numbers. If the element referenced in the M()MENT

card is zero or negative, this error will be posted. Change the element number to a positive value.
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*** ER_R()R 49 *** ILLEGAL SIDE NUMBER IN MOMENT CARD - An element has four sides, labeled from olle
to four. If this error occurs, a number less than one or greater than four was entered as the si(le nurnber. Supl)ly a
number greater than zero and less than five.

*** ERROR 50 *** ILLEGAL ELEMENT NUMBER IN YIELD CARD - The element referenced in the YIELD

card is invalid. The element number should be greater than zero. Change the element number in this card to a
positive value.

*** ERROR 51 *** ILLEGAL NUMBER OF LOAD STEPS IN STEPS -The number of load step increments for

the plastic analysis must be greater than zero. Specify a nonzero or nonnegative value.

*** ERROR 52 *** ILLEGAL ELEMENT NUMBER IN TANGENT CARD - The element referenced in the TAN-

GENT card is invalid. The element number should be greater than zero. C,hange the element number in this card
to a positive value.

*** ERROR 53 *** ILLEGAL ELEMENT NUMBER IN P()INT CARD - The element referenced in the POINT

card is invalid. The element number should be greater than zero. Change the element number in this card to a
positive value.

*** ERROR 54 *** POINT LOAD ACTS ON NON-EXISTENT ELEMENT - Either create the missing element
with the ELEMENT card or change the element number in the POINT card to an existing element.

*** ERROR 55 *** PRESSURE LOAD ACTS ON NON-EXISTENT ELEMENT- Either create the missing element
with the ELEMENT card or change the element number in the PRESSURE card to an existing element.

*** ERROR 56 *** M()MENT ACTS ()N N()N-EXISTENT ELEMENT - Either create the missing element with
the ELEMENT card or change the element number in the M()MENT card to an existing element.

*** ERROR 100 *** BAD JACOBIAN - A bad Jacobian is one where the Jacobian is zero or negative. This is due to
poor element geometry such as corner and side angles being too large or too small. Another cause of a bad Jacobian
may be improper node connectivity information. Check the ELEMENT and NODE cards for improper data.

*** ERROR 101 *** NON-POSITIVE THIUKNESS - The thickness of a plate element must be everywhere positive,
and this error indicates a zero or negative thickness was encountered. Check the THICK card for negative values in
the global domain of the element.

*** ERROR 102 *** NON-POSITIVE RADIUS - The radius of an element must always be positive, and this error
indicates a negative radius was encountered. Check the input geometry and be sure there are no negative values in
the R column of the NODE cards.

*** ERROR 200 *** ERROR IN DECOMPOSITION, CHECK CONSTRAINTS - For the most part, you will find
this error if you have a modeling problem. Check the geometry through PATRAN or some other means and also

the boundary conditions. This error is called when a negative or zero is found on the main diagonal of the stiffness
matrix, signifying a non-positive defnite matrix. The two most common reasons for this error are poor geometry
and improper constraints, such as neglecting to constrain out the rigid body motion of the structure. Make sure the
structure is constrained in both x and y directions for plane stress and is sufficiently constrained in plate bending
(at least one edge fixed against displacement and another fixed against rotation).

*** ERR()R 201 *** ITERATIONS EXCEEDED MAXIMUM, EIGENVALUE MAY BE IN ERROR- BUCKY

uses the inverse power method to determine the buckling load of a loaded plate. Should the eigenvalue ever fail to
converge to the criteria specified in the program, this error will be printed and tile calculated eigenvalue may be
incorrect. Every effort has been made to assure convergence.

*** ERROR 202 *** DEC()MPOSITION ERROR IN LEAST SQUARES FIT - During the plastic analysis, tile
stresses and strains are computed at the Gauss points within the element. However, the Gauss points are not a
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preferable location for the output of the stresses and strains. BUCKY performs a nonlinear least squares fit of the

data at the Gauss points to come up with an equation for the stresses and strains anywhere in the plate. If this error
occurs, a I)rol)lem was found with the data and the data in the output may be incorrect.

*** ERR_()R 203 *** DIFFICULTY CONVEIL(_IN(Ii 1N LEAST SQUARES FIT - The nonlinear least squares

' analysis is an iterative process. The routine should converge within only a few steps; but if for some reason it
does not converge after a certain number of steps, this message will be printed. The output data may have some
inaccuracies in them.

*** ERP_()P_ 999 *** MEMOI_Y [_EQUIR.EMENTS EXCEEDED - BUCKY has a predetermined core memory
usage requirement. If the model exceeds this requirement, then an error is posted. Two things dictate the size of tiw
problem: the mesh and the polynomial order. If a high polynomial order is being used, reduce the p level by one or
two to see if the prol)lem fits in core memory. Otherwise, the mesh may need to be less refined such that the munber
of elements is reduced.
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11 BUCKY Theoretical Supplement

11.1 Introduction

Plate structures are a common component in aerospace structures. Whether it is a piece of aircraft or a satellite,
virtually every structure incorporates the use of plates in its design. For example, aircraft wings utilize plates for the
skin. In addition, floor panels within aircraft, or even the Space Shuttle, are comprised of plates. These components
take loads, and the structural engineer must show, with confidence, that the loads do not damage the substructure
or lead to catastrophic failure of the entire system itself.

Failure of a system can be in terms of fracture, plastic yielding, or buckling. Indeed, often the buckling load is
used as a limit load for tile structure. To prevent against such failures, a medium through which the analysis of
plates can be made must be known. Finite element methods provide an approximation to the behavior of the plates
in a system. Furthermore, for complex structures, finite elements are often the only viable method of solution.

In the past decade,, the field of finite element theory has been somewhat split into two areas of concentration. The

traditional approach to finite element theory, called the h-version, has been to establish a library of low-order (linear)
elements and to apply meshing techniques to approach the exact solution to the governing differential equations.
Recently, research has been done into the effectiveness of keeping the mesh fixed and increasing the order of the
solution. Called the p-version of the finite element method, it reduces the error associated with the trial solution by
increasing the order of the solution well beyond the linear estimations of h-finite elements.

The p-finite element method applied to plates is not well developed. The plane stress portion of the problem
has found its way to commercial codes; I)ut in general, the plate bending l)roblem is not oft.en seen, and the plate
buckling solution has never been seen before in other codes. Plate bending, in sorne cases, has been dropped in
favor of fidl three-dimensional approaches. However, if a plate is ext)anded from Kirchoff plate theory to a fully
three-dimensional problem, the expense skyrockets. Thus, there is some rnerit in studying tile plate bending prol)lenl
in the smaller two-dimensional space.

In the field of buckling of structures, work with h-version finite elements has been done with success, and some

of it has gained acceptance into widely available commercial programs. However, with the exception of the author,
relatively little work has been done extending the p-version of the finite element method to thin plate buckling. In
linear problems of two- and three-diraensional elasticity, the p-version of the finite element method has proven to be
exceptional, and we would expect the attractive qualities to carry over to plate buckling.

The problem of plate buckling is a two-part anMysis. In the first part, the stress distribution throughout the
plate structure must be found. This step involves solving a plane stress problem for a plate undergoing distributed
edge tractions (shear and normal stresses). The solution of such a problem has already been implemented in several
commercial p-finite element software packages. Next, using the stresses from the plane stress analysis, the plate
buckling solution proceeds. A plate will buckle if the stresses in the plate element are large enough to cause
geometrically nonlinear deflections of the plate. Thus, if tile edge loads are below the buckling load, the plate
only deforms in the plane of the plate. If the edge loads have a magnitude equal to the buckling load, then the
plate deforms out-of-plane, and large deformations ensue. Theoretically, the deflections and, thus, the stresses are
unbounded, so we wish to stay below the critical buckling load, and we solve for the minimum buckling load of the
plate. This second part, which yields the critical buckling factor, is an eigenvalue problem.

The plate bending problem is somewhat easier in that it is only a one-part solution method. In linear theory,
there is a decoupling of the membrane and bending action, so the plate bending 1)roblem does not require the stress
information from a plane stress analysis.

The computer program BU(_KY introduced here performs the two-part buckling solution for plates of arbitrary
shapes. For buckling, textbook solutions and tabular information of the critical buckling load exist for rectangular,
elliptical, circular, triangular, and skewed plates, but plates with irregular shapes nmst be solved using an approxirnate
rnethod. BUCKY solves a given problem by rnapping tile irregular plate to a square domain, where the analysis is
made easier. In addition to the geometrical mapping features of BUCKY, other highlights include

* Polynomial trial solutions of degree 4 to 8

• Isotropic and orthotropic plate material properties

. Quadratically varying edge tractions

• Quadratically varying l)ressure loads for plate bending analysis
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Figure 11: Structure broken into a four-element model.

• Linearly varying element thicknesses

• Extensive solution output

• Graphical post-processing support.

Providing a full set of analysis modes, the user may choose between performing plane stress, plate bending, plate
buckling, or plane stress plasticity solutions. Furthermore, any combination of the solutions can be requested without
problern.

In this paper, we discuss some of the features of BUCKY. Also, we present some of the underlying theory to plane
stress and plate bnckling analysis, as well as finite element theory. Plate bending shares many common components
with plate buckling, so its discussion follows closely with the buckling material. Orthotropic material properties
are discussed, since their importance is presently seen with advanced composite materials. Finally, some exarnple
problems are solved, and some remarks about the p-version finite element as it. is applied to plate buckling conclude
this work.

11.2 Problem Stat_ement

For buckling, suppose we wish to find the response of the plate structure of Figure II under some loading situation.
The plate is defined over the region _, and it is broken into several elements _2e. The plate boundary is given by F,
and the element boundaries are given by F_. It follows that F_ _ F and _ E _2.

Stresses in the form of normal and shear tractions act on the elements _-_ at the boundaries Fe. Denoted by cre,

these are known quantities. In addition, there may be pressure forces acting perpendicularly to the plate surface.
To constrain the plate against rigid body motion, we impose the boundary conditions u e on Fe. Next, we perform
a plane stress analysis on l) subject to the sum total of the applied stresses tr.

In the case of plate bending, we have pressure forces p(x, y) acting normally to the plate surface. Again, the plate

has certain prescribed boundary conditions ue on F_. We wish to find the response of the body __to the set of loads

11.3 Minimum Potential Energy

Using the theorem of minimum potential energy, approximate solutions to difficult problems can be found. Indeed,
the entire basis of finite elements is grounded in energy theorems. The principal behind minimum potential energy

is that, given a particular problem, an approximate solution is guessed. With this approximate solution comes an
inherent error. To reduce the error, the total energy is minimized and the minimized function is set to zero. For the

plane stress problem, this gives a linear system of equations, and for the buckling solution, an eigenvalue problem is
created.
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Figure 12: Subl)arainetrically mapped elernent from physical to pararrletric space.

Traditional h-convergent finite elements utilize energy theorems by selecting certain shape functions as the ap-
proximate solutions. These shape flmctions are nodally based such that, when nfinimized, the solution vector is
a vector of nodal displacements and rotations. On the other hand, the method used here is not nodally based.
Rather, displacements are not found at the nodes, so the solution vector does not contain nodal parameters. Instead,
coefficients to an assumed displacement function are found, which in turn defines the displacements anywhere in tide
element, including the nodes. Regardless of which method is followed, the potential energy can be written as

H= U-T= e, (2)

where U is the strain energy of the plate; T is the work of the applied loads; II is the energy; and e is the error
associated with the approxirnate displacement flmction. The strain energy of the plate is

U= 1/v{_.}T{tr}dV. (3)

where {tr} is the stress and {_} is the strain in the body. In (2), T is a vector for linear static analysis (plane stress
and plate bending) and a matrix for buckling analysis.

To solve a given problem, (2) is minimized with respect to the coefficients of the assumed displacement function.
If the coefficients of the displacement flmction are contained in the vector {a}, then minimizing (2) requires

:0._n= \b-_,_ _ d,, = 0. (4)

As mentioned earlier, depending on how T is defined, (4) gives either a linear system or an eigenvalue problem.
One aspect of either method (h-convergent finite elements or the approach used here) is that the system produced

by (4) is singular as it stands. Before either the nodal displacements (h-finite element) or the displacement function

coefficients can be found, constraint conditions must be imposed. Boundary conditions can be added to (2) with
Lagrange multipliers. By writing the constraints Ri such that R_ = 0, no energy is added to (2), and equation (2) is

II = [I "4-_iRi "- U - T + AiRi. (5)

Now equation (5) is minimized such that

-- [OU OT 0 ] 0 ()qRi)dAi = O.6H= 17,,, o,,,+ ( n,). ,t,,,+ (6)

11.4 Subparametric Mappings
To integrate the energy fimctional easily, a subparametric mapping to a new domain is made. The new domain is
generallya square for two-dimensionalanalysis. A mapping of an eight-noded shape in a Cartesian (x, y) system to
the (¢,71)domain is shownin Figure 32. This mapping is done to easily integrate the strain energy and the work of
the loads, which are done using Gauss integration techniques. The mapping fimctions are written as
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x = m1(¢,71) and y = m2(¢,71). (7)

Using information on the shape of the element, the functions rnl and m2 are easily found. With the mapping fnnctions
known, the strain energy can be integrated in the (¢, 71)domain using numerical integration. Gauss quadrature allows
integration of fimctions by simply evaluating fimctions at certain points, called Gauss points, rather than actually
integrating using a technique such as Sirnpson's Rule or Rornberg integration.

Tile subparametric mapping allows us to rewrite the strain energy. Recalling the definition for strain energy in
Cartesian coordinates, the strain energy in the ((, _1)domain becomes

1 {(}T {_} dV = -_ {_.}T {(r} IJ[d_/U=_

where [J] is the Jacobian, and dl)" is the infinitesimal volume in the mapped domain. In two-dimensional analysis,
dV = d(dTldh, where h is the plate thickness.

11.5 Plate Buckling

The derivation of the buckling theory in this section can be found in [16] and [8]. The results of these references

are given here. For an orthotropie plate undergoing compressive and shear loads in its mid-plane, the governing
differential equation can be shown to be [8]

) 04w 04w 04w 02w 2N 02w 0"
['_,_ + 2Hox2i_y---"--_+ [)Y_y4 = Nx,_ + x,yOxOy + Uy_ (8)

where w is the out-of-plane displacement of the plate. Notice that ordinary plate theory is used and that w is a
function of x and y only. The parameters N_, Nu, and Nxu are the compressive and shear loads, with dimensions of

force per unit length, N_ corresponds to a compressive load in the x-direction; Ny is the y-direction load; and Nxu
is the shear load acting on the plate boundary. N,, Ny, and N, u are unknowns and must be found to compute the
critical buckling loads. The orthotropic material constants of the plate, D,, Du, and H, are given by

• (;h 3

D_ Exh3 D,j Eyh3 H = D_y + 2(;_,y, D_y - E_yh3 and Gxy = --_'-. (9)- 12 ' = 1-'_' 12 '

Exact solutions to (8) are few, so approximate solutions are necessary. Equation (8) can be recast using the
theory of minimum potential energy, giving

n = U_- Tb ( l O)

where

Ub = 5 D, \ 0x 2 j +' =y_Tx,2 0y 2 + Dy \ Oy2 j + 4Gxu \0xOyj J (l l)L

an d

T, = 7_ , N, \Ox,] +2N=y_x, _-_y+Ny\_--_y] J dQ. (12)

Equation (10) results due to the existence of a strain energy flmction. This limits the analysis to materials with
material symmetry (i.e., the material is not completely anisotropic). The expression lib is the strain energy due to
bending of the plate. Equation (12) corresponds to tile geometrically nonlinear portion of the plate deflection. For
example, the strain in the x-direction for the plate is

02w du l(Ow) 2+ +

where large deformations are assumed. Tile first expression on the right-hand side of (13) is the strain due to bending,
and it relates to (11). The last two expressions of (13) are the nonlinear components of the strain in the plate. In
plate buckling theory, it is assumed that the plate is inextensible in u and v. Thus, du/dx = 0, and the geometrically
nonlinear strain energy is given by (12).
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To compute the values of Nr. Ny, and Nzy, we take the first variation of (10) and set it equal to zero, or

= 0. (14)

Setting tile first, variation of (10) to zero results in an eigenvalue problem involving N_, Ny, and Nxy. If the edge
loads are related, then we have an eigenvalue problem in terms of only N_, Nv, or Nzy.

11.6 Plate Bending

The plate bending problem is simpler than the plate buckling problem. Rather than resulting in an eigenvalue
problem, the plate bending problem is inherently a linear system, assuming linear elasticity theory is used. The
differences between plate bending and plate buckling are small. The main distinction is the governing differential
equation. The governing equation for plate buckling, equation (8), contains expressions for the mid-plane loads N_,

Ny, and N_y. In plate bending, we make the assumption that these mid-plane loads are nonexistent. Tile work done
on the system comes from transverse pressure loads and distributed edge moments. Denoted by p, these pressures
act perpendicularly to tile plate surface. Thus, if tile plate is acted on by pressure forces alone, we can rewrite (8)
for plate bending, such that

i_4w 0 4w 04w

D,--_x 4 -4-2H ox2Oy------_ . Du_y 4 = p. (15)

In terms of the strain energy of bending, the left-hand side of (i5) corresponds to the bending strain energy of (l 1).

However, we no longer include the energy (12) in the plate bending analysis, but instead replace it with the work of
the pressure forces p, such that

Tb = _ pwd_]. (16)

In the case where distributed edge moments act on the plate, the work of the moments is given by the integral over
the edge of the moment times the slope along that, edge.

11.7 Plane Stress

Unfortunately, the buckling problem cannot be solved directly for irregularly shaped plates. In the case of rectangular
plates, the integration involved with (I 1) and (12) is straightforward. Also, in this this case, the edge loads are easily
definable on the domain _, so the integration of (12) is not problematic. However, once the plate tends from
regularity, the behavior of the loads N_, Ny, and N_y inside f_ vary spatially. Thus, we must know how Nx, IVy, and
Nzu vary within .Q so that we can incorl)orate their effects. To do this, we must perform a plane stress analysis of
the plate structure.

In the case of plane stress analysis of a plate, the potential energy of the system is given by

H =Up-Tp (17)

where

1 [ (du_ 2 (dr) "_ 2E dudv (du dr) 2]Up = -_ E_ \ dx J + Eu -_y + _Y'_x -_y + (¢xu _y + "_x df_dz (18)

and

Tp -- / a . udFdz. (19)
JF

Using (18) and (19) and taking the first variation of (31) yields the deformed configuration of the plate in response
to the applied loads. Once the deformed configuration is found, the stresses on _)_can be found, and subsequently,

N_, Ny, and Nzy can be scaled accordingly to one another. At any point in the plate, N_ = (rxh, N_ : cr,jh, and
Nxy = O'_yh.
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11.8 Three-Dimensional Axisymmetric Analysis

Three-dimensional problems can be solved using a tWo-dimensional approach if axisyrnrnetry is imposed. Imagine

a body of revolution in the cylindrical (r, 0, z) coordinate system. If the body has identical geometry, boundary
conditions, and loading conditions for all values of a, the problem is said to be one of axisymrnetry. Ill this case, the
0 dependence is safely dropped, and the problem becomes one of two dimensions in the (r, z) plane.

Ill the case of cylindrically symmetric problems, there are two degrees of freedom associated with a structure.

Denoted by ur(r,z) and Uz(r,z), these are displacements in the radial and longitudinal directions, respectively.
Furthermore, of the six available components of stress, four are nonzero: (rr, crz, o'e, and "rrz. In all cases, the 0
dependence disappears from the problem. In the case of axisymmetry, the nonzero strains are

Ou_ u OUz Ou_ Ou_
_r = "_-r' _e = -'r <" = "_-z ' and 7_z = _ + --'Oz (20)

The stresses {or}T = {or ao ¢.. vz} are related to the strains {_}T = {_ _o _z 7,'_} via the constitutive relation

{_}= [(:]{d (21)
where

[E11EI_ El3 El4]

|EL2 E2_ E2_ E_4] (22)
[C]: ]E13 E23 E33 E34 '

t El4 E24 E34 E44

In the case of axisymmetric stratified material, the material constants El4, E'_4, and /{:34in (22) are identically zero

(see Zienkiewicz [20]). We can also write tile material constants out explicitly as

[ 1 - v_o nv_.,(1 + u_e) nu_.,(l + v_o) 0 ]
E. ln-.(l+-_o).(I-.L) -(._o+,_.L) o J[C]= (I+ v,o)(l- v,.o- 2nv,<)[nU,.z(l_ v,.o)n(v,.o+ nu_,) n(l- nVr2_) 0 '0 0 m(1+ u,o)(1- u,o- 2_w2_,)

(23)
where n : ErrlEzz _nd m = GrzlEzz.

We recall that we can write the strain energy U in the form

1 _r{_}T[(7]{_}rdrdzdO 'U = __ {d_r[C]{ddy= _fof (24)

where the variable r has been included as a produc.t of a coordinate transformation from Cartesian to cylindrical.

Since {€} and [C] are independent of 0, (24) involves an integration in two variables, r and z. Inserting (20) and (22)

into (24) yields

U = __. 1\Or) + a2--_--_r + m_r_z + +2E_3 u"22r2 r Oz

+ E3a \_] + E44 + rdrdz. (25)

We can integrate (25) in the parametric ((, 7;) domain as before by selecting displacement fimctions

ur : aij¢i71j and Uz = b{j(iTIj (26)

and mapping flmctions
r = nh((,,I) and z = mu((,,I). (27)

, The cylindrical axisymmetric development of the work of the applied loads progresses in much the same way as
for the two-dimensional plane stress case. Writing the stresses as

= _e_ + _e.., (28)
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tile work of _ is given by

T = •urdOdP = 21r/ cr•urdP, (29)
9 Jr

where
u = urer + u_e_. (30)

Thus, (29) differs from the plane stress case by an inclusion of the variable r in the integration.

11.9 Plane Stress Implementation

I '4The p-version of the finite element method for plane stress is well documented, so only the features of B[ CKY which
typify the excellent, accuracy of p-finite elements are included here. Currently, an eight-noded quadrilateral plate
element is used for analysis. The nodes define the element geometry only. With eight nodes, edge curvature can be
easily iinplemented. While the element has eight defining nodes, the order of the element s disl)la.cement function
varies from p = 4 to p = 8.. Using the serendipity flmctions for the displacenlent, the degrees of freedom associated
with the element, vary frorn 17 (p = 4) to 47 (p = 8) for each component of displacement. Hence, in plane stress
analysis, one BI CKY element has as many degrees of freedom as a dozen or more low-order h-finite elements.

Plate elements may have constant thickness or linearly varying thickness in the element, such as

he = (-h+ (:,2, + .,3Y (x, y) _ __. (31)

With a linearly varying thickness, simple three-dimensional problems can be modeled as two-dimensional plates.
The plate material of BUCKY elements is such that individual elements can have unique orthotropic or isotropic
properties. Some plates, such as ribbed and corrugated panels, have different bending characteristics than for plane
stress. In this case, the plate is not assumed to be isotropic, but orthotropic. The new material constants are usuMly
related to the moments of inertia of the rib sections.

Edge tractions in BUCKY are quite flexible and amenable to general loading configurations. Stresses are defined
in normal/tangential components on an element boundary Pe, and can vary quadratically over the element boundary,
such that by

a_ = A1 + A2x + A3y+ A4x 2 + Asy 2+ A6xy (x,y) E fl_ (32)

and

o'_ = B1 + B2x + B3y + B4x 2 -t- Bsy 2-t- B6xy (x, y) E __ (33)

where a_ and _ denote the element normal and shear stress on F_.
We require that the total energy of the system be positive definite, so we must constrain the plate against rigid

body motion. BUCKY allows for two types of constraints: edge and point constraints. Both forms of constraints
are rigid; that is, no elastic boundary conditions are currently supported. The edge boundary condition constrains
an entire element edge in the desired direction, rather than at the nodes, as h-finite eleinent theory does. The point
constraint constrains only a node against motion. This type of constraint is analogous to the point constraints found
in the h-finite element theory. This type of constraint does not constrain the entire edge.

Once a BUCKY plane stress analysis is complete, the plate response can be investigated through BUCKY's
output files or through graphical means. BUCKY output files include information on nodal displacements and
stresses (including principal and yon Mises stresses). In addition to information at the eight defining nodes, the
response at the element centers are computed as well. For a graphical view of the plate response, BUC,KY supports
the commercial program PATP_AN, a pre- and post-processor for many of today's standard finite element software
packages. When writing the PATRAN file, BUCKY divides each BUCKY element into a number of specified
subelements (the user chooses the number). By breaking the large elements into smaller elements, PATRAN receives
a better scattering of data with which to show the plate response. At. most, 1 BUCKY element can be broken into
a 9-by-9 rnatrix of 81 subelernents, with 4 corner nodes each, to enhance the study of the plate.

11.10 Plate Buckling Implementation

As mentioned earlier, it is believed that BUC,KY is the first attempt to extend the p-version finite element method
to plate buckling. Every attempt has been made to assess the accuracy of BUCKY in this new reahn. Unfortunately,
the number of known solutions for plates with irregular shapes, boundary conditions, or loading patterns is few,
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but for known solutions, BUCKY correlates extremely well. Furthermore, buckling solutions of plates with varying
thickness are virtually nonexistent. Recall that one of the capabilities of BUCKY is the irnplementation of a linearly

varying element thickness. The effects of plates with taper are not largely known, so BLIC,KY provides all excellent
test bed for such an investigation.

In some cases, the bending behavior of plates is much differeut than the behavior when tile plate is ill a state of
plane stress. In bending, the effects of the ribs dominate if the plate is ribbed, and the isotropic material takes on
orthotropie properties. It is for this reason that, BUCKY allows for a separate set of material constants for bending.
As in plane stress, both isotropic and orthotropic properties are available.

The boundary conditions for the buckling analysis involve the plate deflection and slope. Either the displacement

or the first derivative (or both) of the displacement can be set to zero. With the choice of boundary conditions,
plates with simply supported, clamped, and free edges can be modeled, as well as those with edges free to translate
but not rotate. In addition, element continuity conditions must be satisfied by matching displacements and slopes

of adjoining elements.
After the buckling eigenvalue is found, BUC,KY reports it to tile output files and writes a PATRAN file for

the buckled mode shape. The buckling eigenvalue corresponds to the applied stresses. For example, if tile applied
stresses on the body are described by the set a_, and the buckling factor is A, then it takes a state of stress )_o'_ to
buckle the structure. If _ is less than or equal to one, then the plate has buckled, and cr, should be reduced or the
plate redesigned to prohibit buckling. If )_ is greater than unity, then the plate has not buckled and its design can
be optimized.

11.11 Plate Bending Implementation

BUC_KY can solve the plate bending problem quickly and with very few elements. The plate can be subjected to a
quadratically varying pressure force of the form

p = (.",l+ (.",2x+ (.",3Y+ C,4x2 + (:sy 2 + C'6zy (x, y) E fY. (34)

In addition, tile plate can have quadratically varying edge moments in the form of (34). These moments are pure
bending moments along the edge or a distributed twisting moment. Portions of the plate ruay be loaded while other
plate elements are unloaded, simulating a real structure. The boundary conditions associated with the plate bending
problem are those of the plate buckling solution. In addition, BUCKY allows for the same isotropic or orthotropic
material properties as with the buckling problem.

()nce BUCKY solves the given problem, the user can view the output graphically or in columnar format. BUCKY

outputs the out-of-plane displacements of the plate due to the pressure loads, and it also computes the stresses in
the plate elements. However, because the stresses are assumed to vary linearly through the element thickness, as
seen with (13), we can question the strain calculations. For convenience, BUCKY computes the strain and stresses
at the extreme outer fibers. This gives the highest stress value in the plate cross section.

11.12 Plastic Analysis

As we progress through the solution of the plane stress problem, it becomes apparent that a single pass is not
sufficient to completely describe the plastic state of a structure. Thus, we conclude that plasticity solutions using the
p-finite element method (or the h-method for that matter) require iterative procedures. During each iteration, we
must coral)ate the stresses and determine if they violate the yield function. If there are region in which the stresses
violate the yield criteria, then actions must be taken to quantify the effects of plasticity. In this section, we develop

the algorithm used to solve the plasticity problem in general, regardless of method, and to present the associated
yield func.tion.

In finite element analysis, there are several widely accepted methods for plastic analysis. One, tile initial stiffness

method, uses the same stiffness matrix for the structure at all times. By determining the response of the plate
to a load, the stresses produced by the loads can be transformed into prestresses. These prestresses, in turn, give
the structure certain plastic-like characteristics. The method nsed in this analysis, however, is the tangent stiffness
method, a much more intuitive approach. As the loads are applied, a region of the structure may yiekl. If the
material properties, such as the strength, change in those regions, we can describe plastic behavior. For metals, a
stress-strain curve shows that, as the metal goes plastic, large strain increases result for srnMler load increments. We
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O2

Figure 13: von Mises yield criterion.

can qnantify this in terms of a tangent rnodulus of elasticity, which is significantly less than the Young's modulus for
the material. The new tangent rnodulus is used where the material is plastic.

For a yield function, perhaps the easiest to implement is the yon Mises yield flmction, shown in Figure 13. It
is much easier to calculate the yield flmction on the von Mises ellipse rather than determining where on the yield

flmction we lie, such as in the case of the yon Mises condition. Thus, for this analysis, we use the von Mises yield
function, given by

fm = J2 - k2 (35)

where k is the yield limit in simple shear. At yield, the yield flmction fm is identically zero. For plane stress, J2, in
terms of principal stresses, is given by

& = - + (36)
Thus, the calculation of J,_ is a simple task for the chosen yield flmction.

Next, we write the algorithm used in the tangent, stiffness method. This involves recalculation of the element

stiffness matrix with each iteration. While this is cornputationally intensive, it. is a necessity .of the method.

1. For the first cycle, a_ssume E at, the current integration point to take the value of Young's lnoduhls. Fornl / r
and T for the fllll set of loads {F}.

2. Conq)ute the displacements, strains, and stresses at each quadrature point by solving the linear prol)lern:

[Kl{Ad}i = {F}

3. Compute {d}i = {d}i-1 + {Ad}i for each integration point. Compute q = q-1 + A_i and _ri = cq-1 + Agi.
For the first cycle, the (i - l) terms are zero. If on the first cycle, scale the results to bring the structure to

initial yield. Set the remaining load increment to AF = (F - Fvietd)/nsteps.

4. For the quadrature points that. have gone plastic, set the modulus of elasticity E at those points to E = ET.
P_ecompute the stiffness matrix, [K]new of the element.

5. Next solve the problem [ff]ne_,,{Ad}i = {AF} and go to step 3.

6. Stop when Fvi_td . _ AF = F

The most expensive steps computationally are l and 4, where the original and new stiffness matrices are computed.
Next, the actual linear solution takes place with less effort. The search for yield violations is relatively inexpensive.
It should be noted that there should be a sufficient number of steps to adequately discretize the load increments. .L

Ideally, an infinite number of steps would provide the exact solution. If too few steps are taken, then the relationship
between the force and displacement deviates from the exact solution, as shown in Figure 3. Notice that a greater
force is required to achieve a displacement than for the exact case.
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11.13 Axisymmetric Analysis Implementation

Through the use of axisymmetry, three-dimensi0nal Stress problerns can be converted into a two-dimensional analysis.
BUCKY has the capability to model three-dimensional axisymrnetric structures in the cylindrical coordinate system.
The formulation of the problem is similar to that of the plane stress analysis, except that the field variable x in
the two-dimensional plane stress implementation is replaced by the variable r in the cylindrical coordinate system.
Likewise, the variable z replaces y.

One difficulty with the implementation of axisymmetric analysis is the careful maintenance of the problem geom-
etry. Because BUCKY can calculate displacements, strains, and stresses anywhere in a structure, geometry resting

on the centerline (r = 0) should be avoided. It is well established in linear elasticity that at r = 0, a singularity arises
in the stress conditions. One way to circumvent this problem is to offset geometry only slightly, creating a slight

gap in the problem. However, there is logic built into BUCKY such that if a zero radius is found, a point inside the
element is used that is close to the desired point. This yields finite values of stresses.

11.14 Conclusions

The main emphasis of this paper has been to introduce the p-version finite element method to the field of thin plate
problems. While the two-dimensional theory for plane stress is well integrated into commercial programs, little or
no work has been done to extend the p-version finite element method to thin plate bending and buckling.

In the context of thin plate buckling, currently the only recourse for finding the buckling loads of regularly
shaped plates has been through tabulated data and h-finite element models. For irregularly shaped plates, the h-
finite element method has been used with some success. BUCKY provides an alternative to this previous method.
The results are exceptional for even a low-fidelity mesh. Likewise, the exceptional accuracy of p-methods has proven
valuable to plate bending problems. The flexibility of the p-method allows for l)roblems to be modeled on a continuum
type domain, with intricate loading situations.

The previous section demonstrates the low error associated with the p-version finite element method when applied
to plate buckling. The same can be said about thin plate bending, although no numerical examples were presented.
With a p-level of 8, the small number of equations needing to be solved yields a highly accurate solution for the
buckling load and mode shape. Indeed, for the few known solutions to the thin plate buckling problem, BUCKY
and the theoretical solutions correlate very well. The plate buckling problem is more expensive to solve than the
linear plane stress or plate bending problem, so a reduced mesh size is optimal when doing a buckling analysis; if we
reduce the number of elements in the model, we reduce the costs associated with computational effort. While the

plane stress problem involves two displacements (u and v), it is a simple linear problem not requiring expensive data
manipulation. However, the buckling analysis is an eigenvalue problem, which is computationally more intensive
and, therefore, expensive. Thus, we want to be able to quickly and accurately predict the buckling load of the plate.
The h-finite element method requires a well-defined mesh to model the mode shapes of the plate. The size of the
problem becomes prohibitively more expensive to solve. If we can instead use only a few elements, then the number
of equations to solve decreases. We can increase the accuracy by simply increasing the polynomial level of the trial
solution. While the solution time increases, it does not increase dramatically if the mesh is held fixed.

The quick solution time and the exceptional accuracy of the p-version of the finite element method makes BUCKY
and the p-finite element method an invaluable tool for the structural engineer. When applied to small plate structures,
BUCKY provides a quick determination of the response of a plate subject to a variety of loads. BUCKY's strongl)oint,
as traditional h-finite element codes, is its ability to predict the response of irregularly shaped plates in plane stress,
plate bending, and plate buckling.
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