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SUMMARY 

This paper presents a novel means for suppressing gear mesh-related vibrations. The key components in 
this approach are piezoelectric actuators and a high-frequency, analog feed-forward controller. Test results are 
presented and show up to a 70-percent reduction in gear mesh acceleration and vibration control up to 4500 Hz. 
The principle of the approach is explained by an analysis of a harmonically excited, general linear vibratory 
system. 

INTRODUCTION 

Transmissions can generate vibrations and noise by many mechanisms. Inherent in the transmission of 
motion with gears is the time-varying gear mesh stiffness as the number of teeth and position of load changes 
along the tooth profile. Many other factors can also contribute to the resultant level of vibration or noise found 
at the gear mesh frequency. Examples of these controllable factors include shaft misaligrunent or gear manufac
turing errors, such as pitch ronout or profile errors. Therefore, the gear meshing action can be minimized by 
proper profIle manufacture, proper assembly, and tight tolerances on the support structure, but the gear mesh 
vibration or noise cannot be completely avoided. 

Gear mesh vibrations are transmitted from the gear to the shaft and through the bearings to the case. A 
novel approach to reduce transmission vibrations is to apply a force with piezoelectric actuators at the bearing 
outer race. This method has evolved from the application of piezoelectric actuators for active vibration control 
of rotating machinery. Prior research has used piezoelectric actuators to control subsynchronous, synchronous, 
and transient rotor vibrations (Palazzolo et al., 1993). 

Previous work has concentrated on developing an actuator with a small envelope exciter, high-frequency 
range, and high-force capability (palazzolo et al., 1993). The configuration consisted of a piezoelectric actuator 
driving an input piston contained in a hydraulic line. The output piston applies forces to the shaft through a ball 
bearing. 

This research applies piezoelectric actuators to control a high-frequency (4500 Hz) gear mesh vibration 
component. Active control of high-frequency vibration is in contrast to passive gear vibration control using 
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viscoelastic damping materials (Ren et al., 1990). Gear vibration can be reduced by introducing coulomb damp
ing to the radial motion of the rim (Botsford, 1980). A systematic approach to reduce gear noise by improving 
the gear train structure rather than by focusing on the excitation forces of individual gears has been presented by 
Ariga et al. (1992). Nagamatsu et al. (1979) perfonned a theoretical vibration analysis of a casing for a high
speed rotating machine using the reduced impedance method. Choy et al. (1993) developed a dynamic model to 
simulate gearbox vibration and used experimental results from a test rig to verify the analytical modeL Umezawa 
et al. (1988) developed a method to estimate the vibration of encased gears by measuring exterior vibration. The 
work of Umezawa et al. (1988) demonstrated that the transfer function obtained from impact testing while the 
nonrotating gear was under a static torque can be used for the estimation of gear vibration. Gear vibration moni
toring techniques were reviewed by Mathew et al. , (1987) on a test rig. Mathew deliberately induced gear damage 
by eliminating lubrication, applying excessive torque, and introducing dust in the gearbox. 

The objective of this research was to apply feed-forward control to a transmission test rig using piezo
electric actuators to reduce gear mesh vibration. The experimental research was conducted on a four-square spur 
gear transmission test rig at the NASA Lewis Research Center. Active control of gear mesh vibration was per
fonned with various torque, speed, and actuator conditions. The details and results of these tests are presented 
herein. 

THEORY 

The operating principle for the feed-forward active vibration controller may be explained by considering 
the dynamic equilibrium equations for a general linear system 

[M]X + [e]X + [K]X = F D + F c 

where 

[M] mass matrix 

X second derivative of displacement vector 

[C] damping matrix 

X first derivative of displacement vector 

[K] stiffness matrix 

X displacement vector 

F D external force vector (disturbance or gear mesh forces) 

Fe feed-forward control force vector 

The gear mesh and control forces will be at the gear mesh frequencies ; hence 

[M]X + [C]X + [K]X = F De iwt + Fee iwr 

where 

F D complex vector of the disturbance force phasors 

square root of - 1 

2 

-_. - ----- ----- ---- -- ------------.. _-- - ---

(1) 

(2) 

-,--- ----

viscoelastic damping materials (Ren et al., 1990). Gear vibration can be reduced by introducing coulomb damp
ing to the radial motion of the rim (Botsford, 1980). A systematic approach to reduce gear noise by improving 
the gear train structure rather than by focusing on the excitation forces of individual gears has been presented by 
Ariga et al. (1992). Nagamatsu et al. (1979) perfonned a theoretical vibration analysis of a casing for a high
speed rotating machine using the reduced impedance method. Choy et al. (1993) developed a dynamic model to 
simulate gearbox vibration and used experimental results from a test rig to verify the analytical modeL Umezawa 
et al. (1988) developed a method to estimate the vibration of encased gears by measuring exterior vibration. The 
work of Umezawa et al. (1988) demonstrated that the transfer function obtained from impact testing while the 
nonrotating gear was under a static torque can be used for the estimation of gear vibration. Gear vibration moni
toring techniques were reviewed by Mathew et al. , (1987) on a test rig. Mathew deliberately induced gear damage 
by eliminating lubrication, applying excessive torque, and introducing dust in the gearbox. 

The objective of this research was to apply feed-forward control to a transmission test rig using piezo
electric actuators to reduce gear mesh vibration. The experimental research was conducted on a four-square spur 
gear transmission test rig at the NASA Lewis Research Center. Active control of gear mesh vibration was per
fonned with various torque, speed, and actuator conditions. The details and results of these tests are presented 
herein. 

THEORY 

The operating principle for the feed-forward active vibration controller may be explained by considering 
the dynamic equilibrium equations for a general linear system 

[M]X + [e]X + [K]X = F D + F c 

where 

[M] mass matrix 

X second derivative of displacement vector 

[C] damping matrix 

X first derivative of displacement vector 

[K] stiffness matrix 

X displacement vector 

F D external force vector (disturbance or gear mesh forces) 

Fe feed-forward control force vector 

The gear mesh and control forces will be at the gear mesh frequencies ; hence 

[M]X + [C]X + [K]X = F De iwt + Fee iwr 

where 

F D complex vector of the disturbance force phasors 

square root of - 1 

2 

-_. - ----- ----- ---- -- ------------.. _-- - ---

(1) 

(2) 

-,--- ----



co gear mesh frequency 

t time 

Pc complex vector of control force phasors 

Setting 

x = Xei(J)t 

where X is a complex vector of the displacement phasors, yields 

(-co2[M] + ico[C] + [K])X = F D + F c 

A 

This may be solved for X as 

where 

displacement vector phasor with control 

Xo = [a]P D displacement vector phasor without control 

[a] = (-co2[M] + ico[C] + [K])-l influence coefficient matrix 

a influence coefficient 

Note the case where a single control force FCj is applied at degree of freedom j and the response is 
considered at a degree of freedom i: 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

The control force that nulls the response at degree of freedom i is obtained by solving Eq. (8) with Xci 

set to zero: 

(9) 

Alternatively, Fcj is the control force that makes 

(10) 

3 

co gear mesh frequency 

t time 

Pc complex vector of control force phasors 

Setting 

x = Xei(J)t 

where X is a complex vector of the displacement phasors, yields 

(-co2[M] + ico[C] + [K])X = F D + F c 

A 

This may be solved for X as 

where 

displacement vector phasor with control 

Xo = [a]P D displacement vector phasor without control 

[a] = (-co2[M] + ico[C] + [K])-l influence coefficient matrix 

a influence coefficient 

Note the case where a single control force FCj is applied at degree of freedom j and the response is 
considered at a degree of freedom i: 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

The control force that nulls the response at degree of freedom i is obtained by solving Eq. (8) with Xci 

set to zero: 

(9) 

Alternatively, Fcj is the control force that makes 

(10) 

3 



The phase shifter-amplifier employed in the testing may vary Fcj continuously in both the amplitude and 
the phase angle; hence, Eq. (10) may be approximately satisfied by tuning within the force limits of the actua
tor. In practice, Xci in Eq. (8) is minimized by manually searching (~ning) through Fcj values. Note that the 
influence coefficient uij does not need to be measured to minimize Xci' However, by applying a perturbation 
force, its measurement may expedite finding the optimum value for F c/ In the literature, this latter approach is 
referred to as active or feed-forward balancing. 

Additional displacement phasors may be nulled or minimized if multiple controllers are present. It is 
noteworthy that the displacements other than at degree of freedom i in Eq. (8) may increase or decrease with the 
application of Fcj' as in influence coefficient flexible-rotor balancing. In practice, most displacements decrease, 
especially if a least-squares minimization procedure is employed. 

TEST FACILITY DESCRIPTION 

Figures 1 and 2 show a four-square spur gear facility at the NASA Lewis Research Center. The trans
mission is driven by a 7.45-kW (lO-hp) dc motor rated at 3500 rpm. A ring feeder is used to secure the 
96-tooth gear to the low-speed shaft, while a key-way is used to mount the 24-tooth gear to the high-speed 
shaft. There is a 0.875:1.0 gear tooth ratio from the motor to the input shaft and a 1.0:4.0 gear tooth ratio from 
the low-speed to the high-speed shaft. This gear configuration results in maximum shaft speeds of 4000 and 
16000 rpm. 

The spur gears are American Gear Manufacturing Association (AGMA) class 9 with a 20° pressure 
angle, a diametral pitch of 16, and a face width of 22.4 mm (0.88 in.). The low-speed shaft is separated into 
two pieces bolted together at a slotted flange. Pretwisting the two-piece low-speed shaft allows different static 
preload torque to be locked into the shaft in or against the direction of rotation. A pretorque of 178 N"Ill 
(131 ft'lbs) circulates 74.6 kW (100 hp) through the system at a low shaft speed of 4000 rpm. A hydraulic 
system supplies lubrication to the bearings and gears through oil jets. An oil pressure regulator allows the gear 
lubrication to be adjusted or shut off. The rig is instrumented with 19 displacement probes, 8 accelerometers, 8 
flowmeters, 8 pressure transducers, 6 thermocouples, 4 position encoders, and 1 sound pressure level meter. 

Figure 2 shows the orientation of a piezoelectric actuator in the test rig. These piezoelectric actuators 
have a 3000-N (675-lbs) force capacity and 30-~ (0.OOO76-in.) stroke. The control force produced by the 
actuator is transmitted to the shaft via duplex precision angular contact ball bearings, which are fitted in 
adapters with a 0.102-mm (O.OO4-in.) radial clearance and a 19.1-mm- (0.75-in.-) thick steel rig casing. 

ACTUATOR RESPONSE AND SETUP 

Figure 3 shows the piezoelectric actuator that was used in the feed-forward control of the spur gear mesh 
vibration and the actuator's specifications. Figure 4 shows a piezoelectric actuator free-tip frequency response 
and Fig. 5 shows the frequency response of the actuator mounted in the test rig. The actuators ' orientation rela
tive to the gears and bearings is shown in Fig. 6. The actuators are mounted 20° clockwise from the vertical 
axis of each shaft and collinear with the spur gear tooth contact force. Cone washers were used to support the 
bearing and center the shaft in the housing. A small accelerometer is mounted at the actuator tip. 

The block diagram representation of the control loop is shown in Fig. 7. A displacement probe gear tooth 
signal is sent to the analog phase shifter, which has a frequency and a phase adjustment dial. The phase shifter 
converts the gear tooth signal to the feed-forward signal, which is a sinusoidal signal at the same frequency. The 
phase is manually adjusted and a signal inverter is used to ensure a 360° adjustment range. The feed-forward 
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signal amplitude is manually adjusted through the isolation amplifier. An oscilloscope is used to monitor the 
gear tooth and feed-forward signals. Figure 8 shows the gear tooth, feed-forward, and one pulse per revolution 
signal on the oscilloscope. The feed-forward signal voltage and current are monitored by analog meters and then 
sent to the piezoelectric actuators. 

A four-channel dynamic signal analyzer monitors the frequency response of four accelerometers mounted 
on the transmission casing (Fig. 2). Test conditions were adjusted to maximize the gear mesh vibration before 
applying the feed-forward control. The phase and amplitudes of the feed-forward signals are adjusted to mini
mize the gear mesh frequency component amplitudes. 

ROTATING RIG TEST RESULTS 

Feed-forward control using piezoelectric actuators was applied to the transmission rig under different 
torque, speed, and actuator conditions. Test speeds that produced high gear mesh components were chosen for 
the feed-forward tests (Tables I to III). Feed-forward control was tested using a single actuator on the low-speed 
shaft and using two in-phase actuators (one for each shaft). Figures 9 and 10 show the casing vibration spectra 
before and after the feed-forward loop was applied to the low-speed actuator. These figures show a 27-percent 
reduction in gear mesh vibration at 4450 Hz. The sound pressure spectra with and without low-speed shaft 
actuator feed-forward control shows a 22-percent reduction in the gear mesh vibration amplitude at 4650 Hz as 
seen in Figs. 11 and 12. 

Figure 13 shows that gear mesh vibration and the actuator current increase as a function of the actuator 
voltage; Fig. 14 shows the effect of the feed-forward phase angle adjustment on the casing accelerometer A at a 
4650-Hz gear mesh vibration and is compared with the no-control accelerometer A signal. 

Table I presents the test conditions and the casing vibrations with and without control at four different 
speeds and two different torques using the low-speed shaft actuator only. As shown in the figure, gear mesh 
vibration was reduced as much as 74 percent. Casing accelerometer vibration spectra with and without feed
forward control for a one-actuator system with a +149-Nm (+110-ft'lb) preload torque are shown in Figs. 15 
and 16 and in Table I. The results indicate very significant vibration reductions at A, B, and C. Table II 
presents the results for the condition in which a + 194-N m (l43-ft 'lb) preload torque was applied to a two
actuator system. Figures 17 and 18 and Table II show casing accelerometer vibration spectra with and without 
control for a two-actuator system with a +194-Nm (l43-ft'lb) preload. These results also show very effective 
vibration control using the feed-forward approach. 

Comparing a one-actuator system with a two-actuator system reveals a 74-percent vibration reduction 
with a +149-Nm (llO-ft'lb) preload for the one-actuator system and a 76-percent reduction with a +194-Nm 
(143-ft%) preload for the two-actuator system. The vibration at some accelerometers actually increases with 
control (Table II). This result is similar to flexible rotor balancing and indicates that additional independently 
controlled actuators may be required to suppress vibrations at many locations. The vibration data of tests with 
different gear oil lubrication pressure is summarized in Table III. This test was performed to generate higher 
levels of gear mesh vibration; however, the results show little change in vibration amplitude; therefore feed
forward tests were not conducted. 

SUMMARY OF RESULTS 

Previous tests applied piezoelectric actuators to control rotor vibrations at low frequencies of 100 to 
250 Hz. The results obtained in this study show that a piezoelectric actuator with a feed-forward control can 
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reduce the gear mesh vibration amplitude up to 75 percent for frequencies up to 4500 Hz. Experimental results 
showed a significant reduction in gear mesh vibration at different speeds and torques. Future work will incor
porate independent control for more actuators, development of a digital feed-forward control, and the application 
of an actuator with an increased stroke. 
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Figure 1.-Open-casing test rig showing shafts. 
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Figure 2.--Piezoelectric actuator and casing accelerometers A to D. 
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Figure 4.-Frequency response of piezoelectric actuator free-tip displacement to actuator input voltage. 
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Figure 5.-Frequency response of piezoelectric actuator mounted in test rig with a sine output of 0 to 
6000 Hz. 
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Figure 11.-Sound pressure spectrum with low-speed shaft actuator feed-forward control. Gear mesh frequency, 
4650 Hz; torque, -149 N·m (-110 ft·lb); gear lubrication, 75 psig. 
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Figure 12.-5ound pressure spectrum without low-speed shaft actuator feed-forward control. Gear mesh frequency, 
4650 Hz; torque, - 149 N·m (- 110 ft·lb); gear lubrication, 75 psig. 
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adjustment for the casing accelerometer A Gear mesh vibration, 4650 Hz; 
torque, -149 N·m (-110 tt·lb); gear lubrication, 75 psig. 
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Figure 15.-Casing vibration as function of frequency without feed-forward control for 
accelerometers A to D. Gear mesh frequency, 3100 Hz; torque, +149 N'm (+110 tt·lb); 
gear lubrication, 75 psig. 
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Figure 16.-Casing vibration as function of frequency with low-speed shaft actuator 
feed-forward control for accelerometers A to O. Gear mesh frequency, 3100 Hz; 
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Figure 17.-Casing vibration as function of frequency without feed-forward control for 
accelerometers A to O. Gear mesh frequency, 3750 Hz; torque, +194 N·m (143 ft·lb); 
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Figure 18.-Casing vibration as function of frequency with feed-forward control for 
a two-actuator system for accelerometers A to D. Gear mesh frequency, 3750 Hz; 
torque, +194 N·m (143 tt·lb); gear lubrication, 75 psig. 
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