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ABSTRACT

Contact stress distribution of spiral bevel gears
using non-linear finite element static analysis is presented.
Procedures have been developed to solve the non-linear
equations. that identify the gear .and pinion surface
coordinates based on the kinematics of the cutting process;
and, orientate the pinion and the gear in space to mesh with
each other. Contact is simulated by connecting GAP elements
along the intersection of. a line from each pinion point
(parallel to the normal at the contact point) with the gear
surface. A three - dimensional model with four gear teeth
and three pinion teeth is used to determine the contact
stresses at two different contact positions in a spiral bevel
gearset. A summary of the elliptical contact stress
distribution is given. This information will be helpful to
helicopter and aircraft transmission designers who need to
minimize weight of the transmission and maximize

reliability.
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CHAPTER I

INTRODUCTION

Spiral bevel gears are used to transmit power between
intersecting shafts. One critical application is a
helicopter transmission in‘which'power is transmitted from
the horizontal engine to the vertical rotor shaft.

These gears operate at relatively high rotational
speeds and transmit substantial power. (i. e. 15,000 rpm and
900 hp) Accurate prediction of tooth bending And contact
stresses are important to design stronger, lighter gears with
longer service lives.

Much effort has focused on predicting stresses in
gears with the finite element method. Most of this work has
involved parallel axis gears with two dimensional models.
Parallel axis components have closed form solutions that
determine surface coordinates. Spiral bevel gears, however,
do not have closed form solutions available to identify
surface coordinates.

Only a few researchers have investigated finite
element analysié of spiral bevel gears. [1-3] The research
reported here will develop a finite element model to study
meshing of a spiral bevel gearset. Pinion and gear tooth

surfaces will be developed based on the kinematics of gear




manufacture. The individual teeth are then rotated in space
to create a multi-tooth model.

The initial model has one pinion tooth ahd one gear
tooth. Subéequent models consist of four gear teeth and
three pinion teeth. The tooth pair contact zones are modeled
with GAP elements. The model development procedures and

finite element results are presented.




CHAPTER II

GEAR SURFACE GEOMETRY

This chapter describes the gear manufacturing
process, the kinematics of cutting, tooth surface coordinate
solution procedure, concave and convex surface rotations of
the gear and pinion, and different orientations required for
the spiral bevel gears to mesh with each other. Also
described is the transformation process which transforms a
point on the cutting blade to a point on the workpiece.
Application of tooth surface coordinate solution technique is

also described.

2.1 GEAR MANUFACTURE

The Gleason Works, Rochester, NY, provides machinery
for the manufacture of spiral bevel gears. The machine showﬁ
in figure (1) is used to cut these gears [4]. These machines
" are preferred because they can be used for both milling and
grinding operations. Grinding is espécially important for
producing hardened high quality aircraft gears. This machine
consists of three main parts: the machine frame, the cradle
and the sliding base. The gear cutter is mounted to the
cradle of the cutting machine. The machine cradle with the
" cutter may be imagined as a crown gear that meshes with the
gear being cut as shown in figure (2). The gear which is
being cut and the cradle with the mounted head cutter rotates
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slowly about its own axis. The combined process generates the

gear tooth surface.

The cradle rotates far enough so that only one space
between the tooth is cut out. It then reverses rapidly while
the workpiece is withdrawn from the cutter and indexed ahead
by the translation of the sliding base (on which the work is
mounted) with respect to thé cutter, in preparation for the
next tooth. This sequence of operations is repeated till the

last tooth is cut [4].

The head cutter, which holds the cutting blades or
the grinding wheels, is shown in figure (2). The cutter
garries blades of straight lined-profile which generate a
cone during rotation. It rotates about its own axis C-C at a
speed for efficient metal removal, independent of the cradle
or workpiece rotations. The head cutter is connected to the
cradle through an eccentric that allows adjustment of the
axial distance between the cutter center and the machine
- center. The adjustment of the angulér position between the

two axes provides the desired spiral angle.

The pinion is typically cut on one side at a time, concave
and convex tooth sides, whereas the gear is cut both sides

simultaneously (duplex method). The cradle and workpiece are




connected through a system of gears and shafts, which
controls the ratio of rotational motion between the two. This
ratio is called the ratio of roll. For cutting, the ratio is

constant; but for grinding it is a variable.

2.2 TOOTH SURFACE COORDINATE SOLUTION PROCEDURE

From the kinematics of the manufacturing process an
analytical method was developed by Litvin [4,5] to generate
the surface coordinates of spiral bevel gears. The
manufacturing data, the surface geometry and the equation of

meshing are used to develop the equations.

The first equation is the EQUATION OF MESHING given
in reference [4-6]. This equation is based on the kinematics
of manufacture and the machine tool settingé. The equation of
meshing requires that the relative velocity between a point
on the cutting surface and the same point on the pinion being

cut must be perpendicular to the cutting surface normal.

This is given by:

n *vs=2>90
where 'an' is the normal vector to the cutter and the -
workpiece surfaces at the specified location of interest, and
'V' is the relative velocity between the cutter and the

5



workpiece surfaces at the specified location. This equation

is developed in terms of the machine tool coordinates u,0,¢¢
where u and 6 (length and rotational orientation) locate a
point on the cﬁtting head cone and ¢c is the rotated
orientation of the cutter as it swings on the cradle. This
equation which is in terms of (u, 6, ¢c) could be transformed
into (x, y, z) coordinate system using the transformation
process described in the next section. The equation of
meshing for straight sided cutters with a constant ratio of

roll and left-hand spiral tooth is given by [4-6]

(u - rcoty cosy)cosy sint

+ 8[(mgw - siny)cosyp sinbd

- cosy siny sin(qg - ¢c¢)]l (2.2.1)
+ BEp (cosy siny + siny cosy cosT)

- Lp siny cosy sint = 0

Where Yy is the root angle of the gear being manufactured, V¥
the blade angle, q the cradle angle and T equals 6 - g +
dc) -

Since the equation of meshing has three unknown
parameters u, 6, ¢., two more equations have to be developed
to solve for points on the surfaces. The two other equations
are obtained considering the pinion and gear geometry.

The orientation of the gear on a coordinate system with
the apex of the cone at the origin is as shown in figure (3).

6




Any point on this surface is located by determining
'r' and 'z' coordinates when projected on. to the XY plane.
These are determined using the geometry of the gear.

The value of Z,, found by the transformation process
of a point from the head cutter to the workpiece surface,
should match the value of Zpary found by the projection of the®
tooth in the XY plane. To satisfy this condition the:

following equation is used. [1]
Z - Zbar = 0 ceteeeenenn ceeeeeeeeaa( 2.2.2)

The radial location of a point from the work axis of
rotation must be equal to the value of r as shown in figure

3. This forms the third equation [1]

Rbar“V(xev"'y%V).. ............. .o 2.2.3)

These three above egquations could be written as

fl(ul el ¢C) =0
fz(u,~9, ¢c) =0

f3(u, 6, dc) =0 ... (2.2.4)

2.3 COORDINATE TRANSFORMATIONS
The purpose of the coordinate transformations are to
transform a point on the cutting head to a point on the

7




workpiece. These points on the workpiece will then describe
the gear surface geometry. During the cutting process, the
cutting head acts as if in mesh with a simulated crown gear.
Therefore, the appropriate point in the cutting head is a
point that satisfies the equation of meshing. (i. e. the
normal of the point on the generating surface should be
perpendicular to the relative velocity between the qut;er and

the gear tooth surface.)

To‘perform.these transformations homogeneous
coordinates are used to allow rotations and translations of
vectors by simply multiplying the matrix transfo;mations. To
transform a point on the cutting head to the workpiece five

such transformations are carried out. These are as follows

[4-6]:

l.Cutter coordinates (Se) --> Cradle coordinates (Sg)
2.Cradle coordinates (Sg) --> Machine fixed (Sm)
3.Machine fixed (Sm) --> Pinion-pitch angle (Sp)
4 .Pinion-pitch angle (Sp) --> Pinion axis of rotation (Sj)

5.Pinion axis of rotation (Sa)--> Pinion fixed system (Sw)
Before discussing these the following points should

be noted:

1. The head cutter coordinate system S is rigidly connected
to the coordinate system Sg, The system Sg is rigidly

8




connected to the cradle that rotates about the X axis of the
machine coordinate system Sp.

2. The cutting head is attached to the cradle with a specific
orientation 's' and 'qQ' where 's' is the distance between Ss
and S¢ origins (s = O¢Og) and ¢ is the roll angle of the
cradle.

3. The cradle rotates at a constant ® (Weragle Or We) .

4. The workpiece rotates at a constant ® (Wyorkpiece Or W) .

5. The ratio of Weradle/ thmkpiece.is the same as the ratio of
angular velocity of the simulated crown gear meshing with the
gear being cut. .

6. The cutting head rotation is not relevant. It only effects
the metal removal rates. It is helpful to think of the
cutting head as being fixed. The cradle rotation sweeps the
cuttiﬁg head cone through the workpiece cone. The
interference between the two shapes the tooth surface.

7. The orientations of the coordinate transformations are
different for left-hand and right-hand gears. The Gear tooth
spirals to the left while looking from the front of the gear
»(the front is being viewed from the apex) in case of left-
hand gear whereas, for the right-hand gear it spirals to the
right (see figure 4). 1In the following discussions the left-

hand gear transformations are described exclusively.

Beginning with-a point on the cutting blade given by

[4-6]:



TCOS P - UCOS Y,
T, = usin ycsin 6
usin P cos 6
1 (2.3.1)

- where 'r' is the radius of the blade at xo=0 in figure (2),
and 'y ' is the blade angle. Parameters u and 6 locate a point
in the system S, and are unknowns, whose values will be.

determined.

To transform the head cutter into coordinate system

Sg, the following matrix is used :

1 0 0 0
[M ]= 0 cosq —sinq -s sinq
scI”10 sinq cosq scosq
) 0 O 0 1 23.2)

Qhere 'q' is the cradle angle and 's' is the distance between
the coordinate systems Sg and S¢ as shown in figure 5. In
this view, Xp the axis of rotation of the cradle, and X, the

" axis of rotation of the cutting head are coming out of the
page. These are parallel to each other and fixed in space.

'g' and 'qQq' are polar coordinates in the Sg coordinate system
that locate the cutting head. They are different for each
gear design. Once the cutting head is located on the cradle
for a specific design, it is locked in place with 's' and 'q'
being fixed and constant for the manufacture of that gear.
[Mscl* Tc is the coordinate of a point in the Sg coordinate

system.
10




To transform Sg to the fixed coordinate system Sp the

following transformation is used:

1 0 0
|0 cos¢, sing,-
Mps=|0 —sin ¢, cos,
0 0 0

-0 OO

(2.3.3)

where ¢ is the roll angle of the cradle. The coordinate
system Sp is fixed in space. The origin of Sm is at the
center of rotation of the cradle. The origins On and Og
coincide as shown in the figure'(5). The rotation of Ss
relative to Sp indicates hdw much the cradle has rotated.
[Mms] [Msc]l* Tc are the coordinates of a point in the

coordinate system Spg.

The third coordinate transformation is from the
coordinate system Sy to Sp which orients the pitch apex of
the gear béing manufactured. This transformation requires
special machine tool settings Ly and Ep along with the
dedendum angle which is obtained from the design data. The
-values of Lp and Bp settings could be obtained from table I.

The coordinate system orientation to generate a left hand

gear surface is shown in figure (5).

The transformation matrix is given by:

11



cos &

0 —sind —-L_sind
M = 0o 1 0 +E .,
Pm sind O cosd L, cos 8
0 O 0 1 (2.34)

The next transformation rotates a point from Sp to
Sa. This is well illustrated in figure 6. The common origin
of Sp and S; locates the apex of the gear under consideration
with respect to the Sp coordinate system. This requires a

rotation about ¥, by the pitch angle pu. This is given by the

matrix shown below:

cosp O -sinp O
M = 9 1 0 0
ap~[—-sinp O cosp O

o 0 o© 1 (23.5)

The final transformation is from the coordinate
system Sy to coordinate system 8., which is fixed to the
component being manufactured. A rotation about the Zp axis is

required through an angle ¢, as shown in figure 6. This

- transformation is given by:

cosd, sin¢g, 0 O
M. =|—sing, cos¢, 0 0
wa"l 0 0 1 0

0 0 01 (23.6)

Using these five transformations any point in the head cutter
coordinate system can be transformed into the workpiece
coordinate system with this equation [4-6] :

12




TCOS | - UCOS P,

fv = Mu] M) [Mpm] Mng] M| USin esin®

usin P .cos 6
1 (2.3.7)

2.4 APPLICATION OF SOLUTION TECHNIQUE
‘'The three equations discussed earlier to describe the ‘

surface coordinates are non-linear equations which do not

have a closed foim solution. These are solved using a

numerical technique. These three equations could be rewritten

as
f](ur el d)c) =0
F (u, 6, ¢c) =|£2(u, 6, ¢c) =0 (2.4.1)
f3(u, 0, dc) =0
oxr
F(x) =0 (2.4.2)
where
u
X=1| 6 (2.4.3)
dc

The equation of meshing which is written in terms of

(u, 6, ¢ ), is numerically differentiated by adding small

increments using a five point formula [7], and then

13




coordinate transformations are used to convert the change in

u, 0, ¢ into change in x,vy,z. By doing so the values of

o o o
0x;1 ’ Oxo 'Ox3

are calculated. The other two equations are already in the
x,y,z coordinates. Newtons method [7] is then used to solve

the equations . The procedure is as follows:

Starting with an initial guess X° for the three parameters
X1, X2 and X3 , F(x°) is calculated. From this we obtain
£f1(X ©)

F(x°) = | £3(x °) (2.4.4)
£3(X )

Now, calculating the Jacobian for X°, nine specific values

are obtained.

9£1(X %) B£;(X°) OF;(X°)
0x; 0x, 0x3
OF)(X °) 0Ep(X °) 9E2(X °) (2.4.5)
0x; 0xo 0x2
0f3(X ©) 0£3(x °) 0£3(x °)
L T ox, 0% Ox3 -

This Jacobian is formed by numerical differentiation and

evaluating the derivatives at the initial guess.

The set of non-linear equations can now be
transformed into a set of linear equations. This is done as

follows:

14




- Y, T oy 7]
0f1(X °) 0£1(X°) 0£1(X ) ! [ f1x %) ,
0%, 0X, 0% *
0f2(X ®) 0£72(X°) 0£52(X °) v 1. o
0xX; 0X, 0X3 * 2 B A
0f3(X °) O0f3(x °) 0£3(X °)
- 0X; 0X, 0X3 - v, L £y(x °

The solution to this set of linear equations is used
as the guess to obtain the solution in the next iteration.
This process is repeated until the difference between the
solutions in two consecutive iterations is within the -

required tolerance.

or; U =0+ Y,
8l =0°+ v,

1 o
¢c =¢c +Y3
The variables used to define the above parameters are
given in reference [3] which illustrates the numerical

example solved for a specific design data.

2.5 CONCAVE AND COWEX ORIEﬁTA'I‘IONS

The orieﬁtations are performed iniorder to qbtain
the top land on the gear and.pinion tooth. The ﬁoﬁ land
‘thickness is calculated at'the face angle on the toe end of
the gear tooth. 1In figure 7, Pl is the concave side location

of the face angle point at the toe end of the tooth, -

15




P2 and P2' are the initial and final convex locations of the
face angle point at the toe end of the tooth [3]. These
points are described in coordinate system Sy, Tz and Tp are
the desired and initial top land thickness for the gear
tooth. By rotating the convex side points of the gear tooth

by an angle € the desired thickness for the gear tooth is

obtained.
2.6 GEAR AND PINION ORIENTATIONS

The apex of the pinion and the gear cones generated
meet at a point as shown in figure 8. To place the gear and
pinion in mesh with each other the following rotations are

carried out.

(i) The pinion is rotated about its own axis by a very small
:ofation angle in the counter clockwise direction about the
'z axis. The amount of rotation is determined by observing
contact with the three dimensional geometric modeling program
(TDGMP) [8]. The amount of rotation used for the example

presented in Chapter V is 3.56 degrees.

(ii) The second transformation is the rotation of all the
surface points obtained from the previous transformation

"about the global Y axis by 90 degrees in the counter

16




clockwise direction. This transformation places the‘pinion

over the.gear as shown in figure 8.

(iii) The third transformation is to rotate the gear tooth

surface points by (360/N:) + 180 degrees about the global 2
axis in the clockwise direction. By doing so the gear tooth

generated, meshes with the pinion as shown. The rotation

"used in this study was 190 degrees.

17



CHAPTER 1III

CONTACT SIMULATION WITH GAP ELEMENTS

After the gear and the pinion are oriented in mesh
with each other, the contact is simulated by connecting GAP
elements. An assumed contact point is found on the pinion
concave surface and then the normal vector is calculated from
this point. The intersection of the normal vector with the
gear convex surface is found. The intersection of parallel
vectors from neighboring grid points are also found. These
points are connected to form the GAP elements. The solution
technique which performs these steps is presented in this

chapter.

3.1 PROCEDURE TO FIND THE CONTACT POINT

After orienting the pinion concave surface to be in
mesh with the gear convex surface, the two surfaces are
viewed in TDGMP [8] to find an approximate area of contact.
This is done at various slices across the section of the gear
surfaces in the direction of the spiral angle as shown in the
figure 9. Having found the area of contact, the two closest

grid points are chosen to be the contact point.

3.2 PROCEDURE TO DETERMINE THE NORMAL VECTOR
The equations used to find out the normal vector is
provided by Litvin [4]. The normal vector is first found in

18




the head-cutter coordinate system and then is transformed to

the workpiece coordinate system using the transformations

described in chapter II.

Any point in the tool surface which is a cone could

be represented in the coordinate system Sy which is rigidly

connected to the head-cutter is as foliows:

X TCOS P - UCOS P,

Ve| = | usin ypcsin 0
Z usin p.cos 6
1 1 (3.2.1)

‘The coordinate system Sg is an auxiliary coordinate
system that is also rigidly connected to the tool as
mentioned earlier. The following matrix transformation is

used to represent the generating surface in coordinate system

Sg (for a left hand gear).

Xg | [1 O 0 0 Xc

Ys |=[m e |= 0 cosq —-sinq -ssing||y,

z, "[ SC] z.| |0 sing cosq ssing ||z, .

1 1 0 O 0 1 11| - (3.2.2)

. Equations (3.2.1) and (3.2.2) yields

xg = rg cotW, - u cos¥,

Ys u sin¥, sin(6 - @) - s sing

19




zg = u siny, cos(6 - q) + 8 cosq

(3.2.3)

The unit normal to the generating surface in coordinate

system Sg given by [6]

7= N uh N =% , &
= Ny VO s=% = du

From equation (3.2.4):

Oore _ 0i + usinyc.cos(0-q9)j - usin Pesin (0 -k
00
%= -cosPe i +sinycsin(@-q)j +sinyccos(6-qk

using (3.2.2 ) to ( 3.2.6):

i J k :
N = 0 u sin p. cos(® - q) -u siny, sin(@ - @)
-COS P, siny,. sin(@ - q) sinp.cos(® - q)

or
N, = [ usin?yp.cos2(0-q) + usin?p.sin?(®-q) Ji+
[ usinp.cosyesin(0-q)cos(0-9 1j +
[ usinpccosypecos(0-q) 1k
and

(3.2.4)

(3.2.5)

(3.2.6)

(3.2.7)

(3.2.8)

INP = u?[sintyp, + sinp.cos?p,sin®(0 -q) + sin?y. cos2y. cos? (0 - Q)]

20




or Ns = ‘Vuz Sinzlpc =

= usin P,

(3.2.9)
Therefore;
ng = -N—SI: sin Pe i + cosye [sin 6 -q) j + cos (6 -q) k]
o :
or
sin Y,
s = lcosycsin(6-q)
cosypc.cos (6 -q) (3.2.10)

In order to define the unit normal with reference to

the machine fixed coordinate system Sp , the following

procedure is used. First any surface point with respect to
Sm coordinate system is given by:

s

(3.2.11)

- - where

1 0 0O o0
M. = 0 cos¢, sing, O
ms |0 -sing, cos¢, O

0 0. 0 o (3.2.12)

The unit normal with respect to Sy coordinate system is given
as:

[P ,_""" [Lms] [ns]

(3.2.13)
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where [Lgyg ] may be determined by deleting the fourth column

and row in matrix (3.2.12). Thus

1 0 0 sin
n, =|0 cos ¢, sin¢, || cosy, sin(8—q)
0 -sin¢, cos¢, ||cosy, cos(6—q) (3.2.14)

which gives

sin P
Im = |cosycsinT
COS P COS T (3.2.15)

where T=0- @ + ¢ £for the pinion which is a left hand

gear. Note that the normal vector is a function of 6 and ¢g

since q, the cradle angle, is a cbnstant for a given point.
In figure 10, [n] is seen to be the same along the cutting
head cone for any u.

Equation (3.2.15) gives the normal vector with
reference to the machine fixed coordinate system. In order to
generate it with respect to the workpiece coordinate systém

the following transformation is carried out:

sin P,

Ny =[Mpm] [Map] |COSPcsinT

COS P COST
1 (3.2.16)
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3.3 PROCEDURE TO DETERMINE THE INTERSECTION OF NORMAL

'VECTOR WITH GEAR SURFACE

After finding the normal vector with respect to the
workpiece coordinate system it is required to f£ind the
intersection of the normal vector (from the pinion concave
surface) with the gear convex surface. To do so the pinion
concave surface (and the normal vector at the contact
point) is oriented to be in mesh with the gear convex
surface. During the procedure the gear convex surface is
fixed because the equations to solve for the intersection
point are in terms of u, 0, ¢c in Sw. The pinion is rotated-
to the gear. The different rotations carried out on the

pinion are described below and are shown in figure 11.

STEP 1: The pinion concave surface, with attached normal
vector, are rotated by an angle such that the pinion and gear
do not interfere during meshing. (Note: the algorithm
produces the gear and pinion with random rotational

orientation)
STEP 2: The pinion concave surface and attached normal vector

are rotated by 90 degrees in counter clockwise direction

about the Y axis
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STEP 3: The pinion concave surface, with attached normal, are
rotated by 190 degrees counter clockwise about the z axis to
location 3 in figure 10 (to be near the gear convex
"surface). (Note that meshing actually occurs at location 2.)
The rotation in step 3 to location 3 is for convenience in

solving for the intersection point. This location is

convenient because u, 0, ¢¢ identify a gear surface point in

Sw at location 3.

STEP 4: The final rotation of the pinion concave surface with
attached normal is a slight counter clockwise rotation about
the Z axis. This is done to compensate for the rotation of

the gear convex surface done to create the top land.

The procedure used to f£ind the intersecting point is as

follows:

Consider the coordinates of the contact point to be

(Xpins Ypins Zpin) as shown in figure (12). Let a point in

space which the normal vector passes through be given as

(Qx, Qy, Qz) and the unit normal vector coefficients be

given as (nx, ny, nz). Then:

(QX9Qy,Qz)=(Xpin,Ypin,Zpin)+b(nxﬂly,nz) (3.3.1)

where 'b' is a scalar factor.
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Scale factor b is found by incrementing its value (see figure
12) such that it becomes a point on the géar convex surface.
- For this to happen it has to satisfy the following

equations given below. The first equation is given as :

& = Xgear = Xpin *+ b (ny)
Qy = Ygear = Ypin +b (ny) ‘
Q= Zoear = Zpin + b (ng) (3.3.2)

Any point in the gear convex surface could be found by using
the relation as given below (provided the machine settings

are maintained for this surface generation):

X gear TCOS Y - UCOS Yo
Yoeor | = [Mua] [Map] [Mpm] [Mng] [Mi]| Usinwesin®
Zgear | usin y.cos 6
1 e 1 : (3.3.3)

Let

M= Mwa] Mp] [Mpm] [Mms] [Msc]

then using (3.3.2) and ( 3.3.3)

pin *+ b () TCOS P - UCOS YP¢
Ypin + D(ny) | _ [M] | usinycsin®
Zpin * b (ny) usin y.cos 6
1 o1 R ( 3.3.4)

or
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TCOS P - UCOS P¢ pin + b (ny)

M usin Psin 6 Yo + Dy | _ 0
usin y.cos 6 Zpin + b (n)
| 1 (3.3.5)

From equation (3.3.5) three equations could be obtained such

that

Al(q),b,U) = A2(¢9b9u96)=A3 (q)’b’u’e):O (3.3.6)

By using the equation of meshing given in egquation (2.2.1)

along with the three other equations given in (3.3.6), the

unknowns u, 9, ¢¢, and b can now be solved for. These values

of u, 0, ¢c, b will now define the intersection of the normal

vector with the gear convex surface. The same procedure is

- adopted to find the intersection of all vectors (parallel to
the contact point normal, and from grid points on the pinion
concave surface) with the gear convex surface. Later, these
intersecting points are rotated in TDGMP {8] so as to lie on
the gear convex surface in mesh. The following rotations are

carried out:
STEP 1l: The intersection points are rotated by an angle

required to create the top land of the gear surface

about Z axis.
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STEP 2: Later these points are rotated by (360/N.) + 180
degrees in the counter clockwise direction to lie on

the surface of gear convex surface in mesh.

The intersecting points which do not lie within the boundary
of the gear convex surface are discarded. Note that while
doing this care should be taken so as not to create excessive

distortion of the hex elements on the gear.

3.4 VERIFICATION OF THE INTERSECTION PdINT

To check the results of the procedure adopted earlier,
the following method is used. The (u, 0, ¢c) values obtained
at the intersection of the gear convex surface is transformed
into (xgear, Ygear, Zgear) values using the coordinate
transformation given below. Note that initial machine
parameters for the gear convex surface generation should be
used during this transformation. This is given by equation

(3.3.3) which is:

Xgear ICOS P - UCOS Y
Yecur| = [Mua] [Map] [Mpm] [Mms] [M]| Usinwesin®
Z%fu umnq?pose

The result obtained is now substituted back in

equation (3.3.2)

27




Xgear = Xpin + b (ny)
Ygear = Ypin + b (ny)
Zoear = Zpin t b(nz)

The value of ( Xgear: Ygear, Zgear ) oObtained, if
same, verifies the point at which the normal vector pierées
the gear convex surface and is the intersection point of
interest. ,

The above method is used to locate the intersection of
normals from all points on the pinion surface (in the contact
zone) with the gear surface. The gear tooth surface is
remeshed utilizing the intersection points as shown in figure
13. GAP elements are connected between corresponding nodal
points on the pinion and tﬁe intersection points on the gear

surface.

28




CHAPTER IV

NUMERICAL EXAMPLES

This chapter describes a numerical example to determine
the values of the contact stresses of spiral bevel gearset
using an example design. Three different models of these
gears at different levels of difficulty are analyzed. The
first model simulates a two tooth coqtact, one pinion and one
" gear tooth. The second model simulates two contact points
using'fdur gear teeth and three pinion teeth. The third model
simulates the two contact points along with added hub

effects. Various contact stress levels are discussed.
4.1 MODEL DESCRIPTIONS

All models were constructed in a TDGMP [8] f£rom the
output of the computer programs and were analyzed for contact
stress distribution using a finite element program [9]. A
non-linear static analysis solution technique with GAP
elements is used for the analysis. The modeling was done on
a workstation and the analysis was done via a supercomputer.
The models where construdted using 8 noded HEX elements and 2

noded GAP elements.

29




MODEL I: The first model contains one pinion and one gear
tooth as shown in figure (14). The model consists of 1280
elements and 1980 nodes. (5940 degrees of freedom). The
torque load was applied as a concentrated force in the beam
as shown. In all of the models; the pinion was fixed by
specifying zero displacement on the four cormer nodes of each
rim face, 8 nodes total were fixed in this manner; and the
gear was free to rotate about its axis of rotation (Z axis).

Model I contains 15 GAP elements along the contact
area. Initially, only one is closed. This simulates the
contact condition in the model. The beam section has a very
high modulus to prevent excessive bending. The various stress
results obtained are as shown in figures (15-18). The
solution iterates 5 times to confirm the assumption on the
GAP elements (i.e. open or closed) is in agreement with the
finite element displacement solution. The structure of the
contact area and the history of the GAP elements at each
iteration is given in figure (19).

The values of the minimum element principal stresses as
plotted by the TDGMP [8] and the average values of the
minimum principal stresses at various nodes in the contact

area is shown in table (I).

MODEL II: This model contains four gear teeth and three
pinion teeth in mesh. The model consists of 7626 nodes and
5292 hex elements. (22878 degrees of freedom). The contact

30




- stresses at two different contact regions are analized with -
this model. A metal hub is provided on the gear to transmit
the forces to the two different contact areas. The nodel
generated and the boundary conditions imposed are as shown in
figure (20). The model contains 15 GAP elements in the major
contact region and 6 on the edge contact region.

The GAP elements in the major contact reglon are
1ocated u51ng the algorlthms described in this report. At
the edge contact, the GAP elements are located by plotting
‘llnes from the pinion surface and finding the intersection
point with the gear surface‘with the TDGMP [8]. In both
contact regions one GAP element is initially closed and the
rest are open. The solution iterated 4 times to reach
equilibrium. The status of the GAP elements after every"
iteration is shown in figure (29). The values of the minimum
principal stresses and the average minimum nodal principal
stresses are given in table (II). The stress contours are

also shown in figures (21-28).

MODEL III: This model contains four gear teeth and three
pinion teeth, similar to Model II, with the added hub region
as shown in figure (30). It contains 10101 nodes and 7596
elements (30303 degrees of freedom) The model contains 15
GAP elements in the first contact region and 6 in the edge
contact. As in MODEL II ene GAP element in both the contact
regions is closed initially, and the others open. The
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solution iterated 3 times before obtaining the final solution on
the fourth iteration. Different stress contours are shown in
figures 31-34. The status of each GAP element after each iteration
is shown in figure 35. Table III gives the element minimum
principal stress values and the average nodal minimum principal

stress values.

For all three models the torque is applied as a force at a
moment arm of 2.0976 inches. Hence, the total torque applied on
the gear is approximately 9911 inch pounds. The pinion torque is

three times less or 3303 inch pounds.
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CHAPTER V

DISCUSSION OF RESULTS

MODEL I: This model consists of one gear tooth and one
pinion tooth with minimal hub. In this model the element
minimum principal contact stress on the pinion is found to be
around -195,923 psi. This value occurs at the node connected
by GAP element 1231 as shown in figure (19). The average
nodal minimum principal stresses showed a higher value of
-about 380,000 psi, and with a maximum of 447,700 psi.. The
maximum influence of average nodal minimum principal stress
is at the node connecting GAP element 1228. Six GAP elements
are closed in the final iteration.

The nodal stresses are higher because they occur at the
GAP elements which acts like a concentrated force applied
directly to a node. The elemental stresses are based on
nodal averages and, as a result, are lower thén the nodal

- stresses.

Model II: This model was created to distribute the load to a
second pair of teeth in contact. The minimum element

- principal stresses at the major contact region'ﬁas found to
be -156,041 psi. The average nodal minimum principal stress
is found to be around -300,000 psi. The maximum influence is
at the node connected by GAP element 1232 (see figure 29)

33



which showed a value of -339,064 psi. The stresses
decrease, compared to Model I, because of load distribution
to the edge contact region.

At the edge contact, the minimum principal element
stress is found to be around -101,661 psi and the average
nodal stresses are fognd to be about -220,000 psi. The
maximum average nodal minimum principal stress value was
concentrated at the node connected by GAP element 6200 (see
figure 29) is around -435,002 psi.

The GAP element status at each iteration shows that
initially 9 GAP element at the major contact area and 1 at
the edge contact are closed. Also at the time of
convergence, 5 in the major contact area and 1 in the edge
contaét area are closed. The 5 GAP elements closed were also

closed in the final iteration of model I.

Médel III: This model also consists of four gear teeth and
‘three pinion teeth in mesh. Also modeled is a bigger section
of hub. (see figure 30) The minimum principal element stress
obtained from the TDGMP [8] is found to be -123,967 psi. The
mean nodal principal stresses obtained at the contact region
is found to be 260,000 psi. The maximum influence is at node
connecting, GAP element 1232 (see figure 35) and the value
is -299,931 psi. At the edge contact region, the minimum
principal element stress is found to be around -84,932 psi.
The mean of the average nodal minimum principal stresses in
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the contact region is found to be -200,000 psi. The maximum
influence is at node connected by GAP element 6200 ( see
figure 35) and it is -363,720 psi. These results are
consistent with estimates of hertzian contact stresses for
these gears.

At the end of the first iteration, 8 GAP elements in
the major contact area and 1 in the edge contact area are
closed and after the final iteration 4 in the major contact
area and 1 in the edge contact area are closed. The same GAP
elements closed in the major contact region were also closed
in Models I and II.

For this model the area of the contact region.is.
marked as shown in figure 36. To estimate the area the
average area due to the influence of each GAP element is
taken as shown in figure (37). The area of each rectangle is
found to be 0.0649 Sq. in. Hence, the area of the entire
contact region is 4 x 0.0049 which equals 0.0196 square
inch.in*in.

For all three models, large node to node stress

variation indicates a need for mesh refinement.
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CHAPTER VI

CONCLUSIONS

The authors presented a method for doing nonlinear finite
element contact stress analysis of spiral bevel gears. The

method incorporates the following features.

1) A model was developed for obtaining spiral bevel gear
surface points. This model is based on numerical analysis of
‘the manufacturing kinematics.
2) The gear and pinion are orientated for mesh with a series
of coordinate transformations.
3) The gear surface is remeshed to provide proper
orientation of the GAP elements used to simulate contact.
4) A series of models were analyzed with increased
complexity..
A) Model I - One pinion and one gear tooth in mesh,
(5940 degrees of freedom)
B) Model II - Four gear teeth and three pinion teeth in
mesh. (22878 degrees of freedom)
C) Model II - Four gear teeth and three pinon teeth in
mesh with added hub region. (30303 degrees of freedom)
5) Results agreed well with calculated Hertzian contact
stresses.
6) Large node to node stress variation indicate a need for
refinement.
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Figure 11. - Rotations required to solve for intersection of pinion
normals with gear surface. ILocation 1: Small rotation about Z axis
(prevents interference during meshing). Location 2: -90 degree
rotation about Y axis. Location 3: -190 degree rotation about 2
axis to place pinion in mesh with gear. Also; small rotation of
gear convex surface about Z axis to create top land.
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Figure 12. - Illustration of normal from pinion intersecting gear
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Figure 13. - Gear geometry distortion after connecting gap
elements.

50




pPinion and gear tooth in mesh with

- Model I:

Figure 14.

boundary conditions

51



-118239.

G

-146353.

-174467.

-202581.

J

= Model I; minimum principal element stresses

in pinion tooth.

Figure 15.

52




Figure ‘16.

= Model I; Minimum principal element
in pinion.

53

stresses

|

o =z X ™

Psi

-6496.
-19560.
-32624.
-45688.
-58752.
-71816.
-84880.
-97944.

-111008.
-124072.
-137136.
-150200.
-163264.
-176328.

-189393.



Psi

A 363550.
B 251049.
9.
c 13854
49,
D 260
E -86452.
-198952.
G -311452.
rd y 4 V4
va Z
Figure 17. - Model I; average nodal minimum principal stresses in

pinion tooth.
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Figure 18. - Model I; average nodal minimum principal stresses in

pinion at contact region.
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FIGURE 19.- Model I: GAP element status at each iteratiomn.
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Figure 20. - Model II. Mesh generation with boundary conditions.
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Figure 21. - Model II. Minimum principal element stresses in

pinion having major contact.
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Figure 22.

— Model II; minimum principal element stresses at major

contact region of pinion tooth.
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Figure 24. - Model II. Average nodal minixﬁum principal stresses in

pinion having edge contact.
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Figure 25. - Model II. Minimum principal element stresses in pinion
having edge contact.
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Figure 26.- Model II. Minimum principal element stresses
at edge contact region in pinion.
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Figure 27. -~ Average nodal minimum prinicipal stresses in pinion

having edge contact.
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FIGURE 29. Model II: GAP element status at each iteration.
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Figure 30. - Model III. Finite element model and boundary
conditions
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Figure 31. - Model III. Element minimum principal stresses in

pinion at major contact region.
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Figure 32. - Model III. Nodal minimum principal stresses in

pinion at major contact region.
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Figure 33. - Model III. Element principal stresses in pinion

having edge contact
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-327162.
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Figure 34. - Model III. Nodal prinéipal stresses in pinion

having edge contact
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1226 1229 1232 1235 1238
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e GAP element number at the contact area
© Closed GAP clement number at the last iteration

EDGE _CONTACT AREA GAP ELEMENT NUMBERS

6198

6199

6200

6201

6202

6203

GAP ELEMENTS CIOSED AFTER EACH ITERATION

ITERATION 1 ITERATION 2 ITERATION 3 ITERATION 4
1228 1228 1228 1228
1229 1231 1231 1231
1231 1232 1232 1232
1232 1233 .-} 1255 1235
1233 1235 'szoo 6200
1235 6200
1236
1239
6200

FIGURE 35.- Model III: GAP element status at each iterationm.

72




Figure 36. - Approximate contact region
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0.14302 in

0.035118 in
0.14032 * 0.035118 = 0.00492 sq.in
4 * 0.00492 = 0.01968 sq.in

DISTANCE BETWEEN GRIDS 5646
DISTANCE BETWEEN GRIDS 4647
APPROX. AREA OF EACH DASHED BOX
TOTAL AREA OF CONTACT

® GAP ELEMENTS CLOSED AFTER FINAL ITERATION
AREA OF INFLUENCE OF GAP ELEMENTS

Figure 37 - Contact area calculation

74




AVERAGE NODAL MINIMUM PRINCIPAL

TABLE 1

STRESSES (Psi)

~99,278 -447,732 -292,902 -128,307 -32,075

-73,283 -113,703 || -330,360 -292,452 -87,131

-67,939 || -94,100 -99, 650 -58,195 -209,021
MINIMUM PRINCIPAL ELEMENT STRESS VALUES (Psi)

-76,077 -155,833 || -195,923 -120,920 -35,158

-65, 956 -113,892 -181,131 || -151,829 -61, 995

-58,335 -76,757 -98,768 -85,134 -59,703

Each box represents a grid point where the gap element is connected
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TABLE II

MAJOR CONTACT AREA STRESSES

AVERAGE NODAL MINIMUM PRINCIPAIL, STRESSES (Psi)

-51,885 -292,976 -240,226 -80,869 -22,945

-47,977 -78,740 -339,064 -170,588 -22,499

42,036 -61,329 -63,651 -35,836 -13,255
MINIMUM PRINCIPAL ELEMENT S'I‘RESé VAi:UES (Psi)

-42,615 -104,243 -156,041 -97,885 -21,234

-38,595 -77,441 -148,742 -120,439 -29,393

-37,185 -51,781 -77,700 -62,839 -20,692

EDGE_CONTACT AREA STRESSES

Each box represents a

-53,979

-47,887

-222,448

-123,496

-435,002 -481,34

-25,826 -67,699
-74,485 -83,260
-101,661 || -42,817

grid point where the GAP element is connected
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AVERAGE NODAL MINIMUM PRINCIPAL STRESSES (PSI)

MINIMUM PRINCIPAL ELEMENT STRESSES (PSI)
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TABLE III-

MAJOR CONTACT AREA STRESSES

AVERAGE NODAL MINIMUM PRINCIPAL STRESSES (Psi)
-39,532 ' -213,109 -200,745 -51,752 -17,504
-39,085 -64,462 -299,931 . -103,574 -16,417
-32,710 -49,034 -50,525 -28, 640 -9,714
MINIMUM PRINCIPAL ELEMENT STRESS VALUES (Psi)
-32,508 -79,585 -123,967 -75,732 -13,044
-29,618 '~ -60,895 -120,019 -90,893 -17,253
-28,952 -41,204 -62,573 -47,993 -140,90
EDGE_CONTACT AREA STRESSES
AVERAGE NODAL MINIMUM PRINCIPAL STRESSES (PSI) .
-45,042 -39,566 - -
-185,999 || -102,7s5
-363,720 -39,929

MINIMUM PRINCIPAL ELEMENT STRESSES_(PSI)

-21,387 -56,272
-65,541 -69,223
-84,932 ~-35,293

__ Each box represents a grid point where the gap element is connected
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