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ABSTRACT

Contact stress distribution of spiral bevel gears

using non-linear finite elementstatic analysis is presented.

Procedures have been developed to solve the non-linear

equationsthat identify the gear and pinion surface

coordinates based on the kinematics of the cutting process;

and, orientate the pinion and the gear in space to mesh with

each other. Contact is simulated by connecting GAP elements

along the intersection of a line from each pinion point

(parallel to the normal at the contact point) with the gear

surface. A three - dimensional model with four gear teeth

and three pinion teeth is used to determine the contact

stresses at two different contact positions in a spiral bevel

gearset. A sunm_ry of the elliptical contact stress

distribution is given. This information will be helpful to

helicopter and aircraft transmission designers who need to

minimize weight of the transmission and maximize

reliability.
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CHAPTER I

INTRODUCTION

Spiralbevel gears are used to transmitpower between

intersectingshafts. One criticalapplicationis a

helicoptertransmissionin whichpower is transmittedfrom

the horizontalengineto the verticalrotor shaft.

Thesegears operateat relativelyhigh rotational

speeds and transmitsubstantialpower. (i. e. 15,000rpmand

900 hp) Accuratepredictionof toothbendingand contact

stressesare importantto designstronger,lightergearswith

longerservicelives.

Much efforthas focusedon predictingstressesin

gearswith the finiteelementmethod. Most of this work has

involvedparallelaxis gears with two dimensionalmodels.

Parallelaxis componentshave closedform solutionsthat

determinesurfacecoordinates. Spiralbevel gears,however,

do not have closedform solutionsavailableto identify

surfacecoordinates.

Only a few researchershave investigatedfinite

elementanalysisof spiralbevel gears. [1-3] The research

reported here will develop a finite element model to study
t

meshingof a spiralbevel gearset. Pinionand gear tooth

surfaceswill be developedbased on the kinematicsof gear
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manufacture. The individual teeth are then rotated in space

to create a multi-tooth model.

The initial model has one pinion tooth and one gear

tooth. Subsequent models consist of four gear teeth and

three pinion teeth. The tooth pair contact zones are modeled

with GAP elements. The model development procedures and

finite element results are presented.

2



CHAPTER II

GEAR SURFACE GEOMETRY

This chapter describes the gear manufacturing

process, the kinematics of cutting, tooth surface coordinate

solution procedure, concave and convex surface rotations of

the gear and pinion, and different orientations required for

the spiral bevel gears to mesh with each other. Also

described is the transformation process which transforms a

point on the cutting blade to a point on the workpiece.

Application of tooth surface coordinate solution technique is

also described.

2.1 GEAR M_A_UFACTURE

The GleasonWorks,Rochester,NY, providesmachinery

for the manufactureof spiralbevel gears.The machine shown

in figure (i) is used to cut these gears [4].Thesemachines

are preferredbecausethey can be used for both milling and

grindingoperations. Grindingis especiallyimportantfor

producinghardenedhigh qualityaircraftgears.This machine

consistsof three main parts: the machine frame,the cradle

and the slidingbase. The gear cutteris mounted to the

cradleof the cuttingmachine.The machine cradlewith the
t

cuttermay be imaginedas a crowngear that mesheswith the

gear being cut as shown in figure (2).The gear which is

being cut and the cradlewith the mountedhead cutterrotates

3



slowlyabout its own axis. The combinedprocessgeneratesthe

gear tooth surface.

The cradle rotates far enough so that only one space

between the tooth is cut out. It then reverses rapidly while

the workpiece is withdrawn from the cutter and indexed ahead

by the translation of the sliding base (on which the work is

mounted) with respect to the cutter, in preparation for the

next tooth. This sequence of operations is repeated till the

last tooth is cut [4].

The bead cutter, which holds the cutting blades or

the grinding wheels, is shown in figure (2). The cutter

carries blades of straight lined-profile which generate a

cone during rotation. It rotates about its own axis C-C at a

speed for efficient metal removal, independent of the cradle

or workpiece rotations. The head cutter is connected to the

cradle through an eccentric that allows adjustment of the

axial distance between the cutter center and the machine

center. The adjustment of the angular position between the

two axes provides the desired spiral angle.

The pinion is typically cut on one side at a time, concave

and convex tooth sides, whereas the gear is cut both sides

simultaneously (duplex method). The cradle and workpiece are
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connectedthrougha systemof gears and shafts,which

controlsthe ratioof rotationalmotionbetweenthe two, This

ratio is calledthe ratioof roll. For cutting,the ratio is

constant;but for grindingit is a variable.

2.2 TOOTH SURFACE COORDINATE SOLUTION PROCEDURE

From the kinematicsof the manufacturingprocessan

analyticalmethodwas developedby Litvin [4,5]to generate

the surfacecoordinatesof spiralbevel gears. The

manufacturingdata,the surfacegeometryand the equationof

meshing are used to developthe equations.

The first equationis the EQUATIONOF MESHINGgiven

in reference[4-6]. This equationis based on the kinematics

of manufactureand the machine tool settings.The equationof

meshing requiresthat the relativevelocitybetweena point

on the cuttingsurfaceand the same point on the pinionbeing

cut must be perpendicularto the cuttingsurfacenormal.

This is givenby:

" n * V = 0
t

where 'n' is the normalvector to the cutterand the

• workpiecesurfacesat the specifiedlocationof interest,and

'v' is the relativevelocitybetweenthe cutterand the
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workpiece surfaces at the specified location. This equation

is developed in terms of the machine tool coordinates u,8,_c

where u and 8 (length and rotational orientation) locate a

point on the cutting head cone and @c is the rotated

orientation of the cutter as it swings on the cradle. This

equation which is in terms of (u, 8, _c) could be transformed

into (x, M, z) coordinate system using the transformation

process described in the next section. The equation of

meshing for straight sided cutters with a constant ratio of

roll and left-hand spiral tooth is given by [4-6]

(u rcot_ cos_)cosy sinT

+ s[(mcw- siny)cos sin8

- cosy sin_ sin(q - _c)] (2.2.1)

+ Em (COSy sin_ + siny cos_ cosT)

- T.msiny cos_ sinT = 0

Where y is the root angle of the gear being manufactured,

the blade angle, q the cradle angle and T equals (8 q +

Since the equation of meshing has three unknown

parameters u, @, _c, two more equations have to be developed

to solve for points on the surfaces. The two other equations

are obtained considering the pinion and gear geometry.

The orientation of the gear on a coordinate system with

the apex of the cone at the origin is as shown in figure (3).
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Any point on this surface is located by determining

'r' and 'z' coordinates when projected on to the XY plane.

These are determined using the geometry of the gear.

The value of Zw, found by the transformation process

of a point from the head cutter to the workpiece surface,

should match the value of Zbar found by the projection of the'

tooth in the XY plane. To satisfy this condition the

following equation is used.[1]

Z - Zbar = 0 ..................... (2.2.2)

The radial location of a point from the work axis of

rotation must be equal to the value of r as shown in figure

3. This forms the third equation [1]

Rbar- '_/(X2w+ y_)................. (2.2.3)

These three above equationscouldbe writtenas

fl(u, 0, _c) = 0

f2(u, 0, _c) = 0

f3(u, 0, _c) = 0 ...........,....(2.2.4)

2.3 COORDINATE TRANSFORMATIONS

The purpose of the coordinate transformations are to

transform a point on the cutting head to a point on the

7



workpiece. These points on the workpiece will then describe

the gear surface geometry. During the cutting process, the

cutting head acts as if in mesh with a simulated crown gear.

Therefore, the appropriate point in the cutting head is a

point that satisfies the equation of meshing. (i. e. the

' normal of the point on the generating surface should be

perpendicular to the relative velocity between the cutter and

the gear tooth surface.)

To perform these transformations homogeneous

coordinates are used to allow rotations and translations of

vectors by simply multiplying the matrix transformations. To

transform a point on the cutting head to the workpiece five

such transformations are carried out. These are as follows

[4-6]:

l.Cutter coordinates (So) --> Cradle coordinates (Ss)

2.Cradle coordinates (Ss) --> Machine fixed (Sm)

3.Machine fixed (Sm) --> Pinion-pitch angle (Sp)

4.Pinion-pitch angle (Sp) --> Pinion axis of rotation (Sa)

5.Pinion axis of rotation (Sa)--> Pinion fixed system (Sw)

Before discussing these the following points should

be noted:

i. The head cutter coordinate system Sc is rigidly connected Q

to the coordinate system Ss. The system Ss is rigidly

8



connected to the cradle that rotates about the Xm axis of the

machine coordinate system Sm.

2. The cutting head is attached to the cradle with a specific

orientation 's' and 'q' where 's' is the distance between Ss

and Sc origins (s = OcOs) and _c is the roll angle of the

cradle.

3. The cradle rotates at a constant _ (_cradleor _c)-

4. The workpiece rotates at a constant _ (0_workpieceor 0_w).

5. The ratio of _0cradle/ _0workpieceis the same as the ratio of

angular velocity of the simulated crown gear meshing with the

gear being cut.

6. The cutting head rotation is not relevant. It only effects

the metal removal rates. It is helpful to think of the

cutting head as being fixed. The cradle rotation sweeps the

cutting head cone through the workpiece cone. The

interference between the two shapes the tooth surface.

7. The orientations of the coordinate transformations are

different for left-hand and right-hand gears. The Gear tooth

spirals to the left while looking from the front of the gear

(the front is being viewed from the apex) in case of left-

hand gear whereas, for the right-hand gear it spirals to the

right (see figure 4). In the following discussions the left-

hand gear transformations are described exclusively.

Beginning with a point on the cutting blade given by

° [4-6]:



Frcos_p- ucos lpc]
| usin_=sine /

_ = L usinw{cosOj (2.3.1)

where 'r' is the radiusof the blade at xe=0 in figure (2),

and '_' is the blade angle.Parametersu and @ locatea point

in the systemSc and are unknowns,whose valueswill be

determined.

To transformthe head cutterinto coordinatesystem

Ss, the followingmatrix is used :

[!0 0 0][Msc ] = cos q -sin q -s sin q

sinq cosq sc sqj- 0 0 _ (2.3.2)

where 'q' is the cradle angle and 's' is the distance between

the coordinate systems Ss and Sc as shown in figure 5. In

this view, Xm the axis of rotation of the cradle, and Xc the

axis of rotation of the cutting head are coming out of the

page. These are parallel to each other and fixed in space.

,s, and 'q' are polar coordinates in the Ss coordinate system

that locate thecutting head. They are different for each

gear design. Once the cutting head is located on the cradle

for a specific design, it is locked in place with 's' and 'q'

being fixed and constant for the manufacture of that gear.

[Msc]* _ is the coordinate of a point in the Ss coordinate

system.
i0



. To transform Ss to the fixed coordinate system Sm the

following transformation is used:

Mms = sm _c COS_c
0 (2.3.3)

where _c is the roll angle of the cradle.The coordinate

systemSm is fixed in space.The originof Sm is at the

centerof rotationof the cradle.The originsOm and Os

coincideas shown in the figure (5).The rotationof Ss

relativeto Sm indicateshow much the cradlehas rotated.

[Mms][Msc]*_ are the coordinatesof a point in the

coordinatesystemSm.

The third coordinate transformation is from the

coordinate system Sm to Sp which orients the pitch apex of

the gear being manufactured. This transformation requires

special machine tool settings Lm and Em along with the

dedendumangle Which is obtained from the design data. The

values of Lm and Em settings could be obtained from table I.

The coordinate system orientation to generate a left hand

gear surface is shown in figure (5).

.

The transformation matrix is given by:

ll



cos5 0 -sin5 -L rosin81

0 1 0 +E m |
MPm= sin5 0 cos5 L mosS|

0 0 0 _ J (2.3.4)

The next transformation rotates a point from Sp to

Sa. This is well illustrated in figure 6. The common origin

of Sp and Sa locates the apex of the gear under consideration

with respect to the Sm coordinate system. This requires a

rotation about Ya by the pitch angle _. This is given by the

matrix shown below:

cosg 0 -sin_t !]

0 1 0Map= -s g 0 cosg
0 0 (2.3.5)

The final transformation is from the coordinate

system Sa to coordinate system Sw, which is fixed to the

component being manufactured. A rotation about the Zp axis is

required through an angle_w, as shown in figure 6. This

transformation is givenby:

Mw a= -sOow cOSOw 0o o i

Using these five transformations any point in the head cutter

coordinate system can be transformed into the workpiece

coordinate system with this equation [4-6] :

12



. [_cos_- ucos_o]
' [M_c][ usinlPcsinO [

L J (2.3.7)

2.4 APPLICATION OF SOLUTION TECHNIQUE °

The three equations discussed earlier to describe the

surface coordinates are non-linear equations which do not

have a closed form solution. These are solved using a

numerical technique. These three equations could be rewritten

as

(U, @, _C) = f2(u, 8, _C) (2.4.1)

f3(u' @' _C)

or

F(x) = 0 (2.4.2)

where

X = (2.4.3)
¢c

, The equation of meshing which is written in terms of

( u, e, _c ), is numerically differentiated by adding small

increments using a five point formula [7], and then

13



coordinatetransformationsare used to convertthe change in

u, @, _c into changein x,y,z. By doing so the values of

Oxl'Ox2'Ox3

are calculated.The other two equationsare already in the

x,y,z coordinates.Newtonsmethod [7] is then used to solve

the equations. The procedureis as follows:

Startingwith an initial guess X° for the threeparameters

Xl, X2 and X3 , F(x°) is calculated.From this we obtain

g(x °) = f2(x 0) (2._._)
f3(Xo)

NOW, calculatingthe Jacobianfor Xo, nine specificvalues

are obtained.
m

0fl(X o) 0fl(X o) 0fi(X o)
axl 0x2 0x3

0f2(x oi 0f2(x o) 0£2(x o) (2.4.5)
axl 0x2 0x2

0f3(x o) 0f3(X o) 0f3(x o)
- axl ax2 0x3 -

This Jacobian is formedby numericaldifferentiationand

evaluatingthe derivativesat the initialguess.

The set of non-linearequationscan now be

transformedinto a set of linearequations.This is done as
i

follows:

14



m _ m

- Of l(x o) Of l(x o) Ofl(X o) - Yz fl(X o)

aXz aX2 aX3

af2 (X o) Of 2(X o) af 2 (X o) * Y2 " f2 (X o)
0Xz 0X2 ax3

0f3(X o) _f3(Xo) _f3(Xo)
- _Xz 0X2 0x3 -

- Y3 - - f3(X o) _

• The solutionto this set of linearequationsis used

as the guess to obtain the solutionin the next iteration.

This process is repeateduntil the differencebetween the

solutionsin two consecutiveiterationsis within the

requiredtolerance.

I 0X =X + Y

or; U ! = U ° + Y1

ol = 0°+ Y2

(_cI= _c°+ Y3

The variablesused to definethe above parametersare

given in reference[3]which illustratesthe numerical

example solvedfor a specificdesigndata.

2.5 CONCAVE AND CONVEX ORIENTATIONS

The orientationsare performedin order to obtain

the top land on the gear and pinion tooth.The top land
i

thicknessis calculatedat the face angle on the toe end of

the gear tooth. In figure7, Pl is the concave side location

of the face angle point at the toe end of the tooth,

15



P2 and P2' are the initial and final convex locations of the

face angle point at the toe end of the tooth [3]. These

points are described in coordinate system Sw. Ta and Tb are

the desiredand initial top land thickness for the gear

tooth. By rotating the convex side points of the gear tooth

by an angle _ the desired thickness for the gear tooth is

obtained.

2.6 GEAR AND PINION ORIENTATIONS

The apex of the pinionand the gear cones generated

meet at a point as shown in figure 8. To place the gear and

pinion in mesh with each other the followingrotationsare

carriedout.

(i) The pinion is rotated about its own axis by a very small

rotation angle in the counter clockwise direction about the

Z axis. The amount of rotation is determined by observing

contact with the three dimensional geometric modeling program

(TDGMP) [8]. The amount of rotation used for the example

presented in Chapter V is 3.56 degrees.

(ii) The second transformation is the rotation of all the

surface points obtained from the previous transformation
m

about the global Y axis by 90 degrees in the counter

16



clockwisedirection.This transformationplacesthe pinion

over the gear as shown in figure8

(iii) The third transformation is to rotate the gear tooth

surface points by (360/Nt) + 180 degrees about the global Z

axis in the clockwise direction. By doing so the gear tooth

generated, meshes with the pinion as shown. The rotation

used in this study was 190 degrees.

17



CHAPTER III

CONTACT SIMULATION WITH GAP ELEMENTS °

After the gear and the pinion are orientedin mesh

with each other,the contact is simulatedby connectingGAP

elements. An assumedcontactpoint is found on the pinion

concave surfaceand then the normalvector is calculatedfrom

this point.The intersectionof the normalvectorwith the

gear convexsurfaceis found. The intersectionof parallel

vectors from neighboring grid pointsare also found.These

points are connectedto form the GAP elements.The solution

techniquewhich performsthese steps is presentedin this

chapter.

3.1 PROCEDURE TO FIND THE CONTACT POINT

After orientingthe pinion concavesurfaceto be in

mesh with the gear convexsurface,the two surfacesare

viewed in TDGMP [8]to find an approximatearea of contact.

This is done at various slicesacrossthe sectionof the gear

surfacesin the directionof the spiralangle as shown in the

figure9. Having found the area of contact,the two closest

grid points are chosento be the contactpoint.

3.2 PROCEDURE TO DETERMINE THE NORMAL VECTOR

The equationsused to find out the normalvector is

providedby Litvin [4].The normalvector is first found in

18



the head-cutter coordinate system and then is transformed to

the workpiece coordinate system using the transformations

described in chapter II.

Any point in the tool surface which is a cone could

be represented in the coordinate system Sc which is rigidly

connected to the head-cutter is as follows:

"rcostp - ucos _c]
[_]= usinlp_sin0 [

The coordinatesystemSs is an auxiliarycoordinate

systemthat is also rigidlyconnectedto the tool as

mentionedearlier.The followingmatrixtransformationis

used to representthe generatingSurfacein coordinatesystem

Ss i(fora left hand gear).

x,1000,l  tzjYs M Yc 0 cosq -sinq -s q Yc

=[ scllzc = 0 0 COSoq (3.2.2)k,sJkoinq
,Equations (3.2.1) and (3.2.2) yields

xs = rc cot_ c - u cos_ c

Ys = u sin_ c sin(8 - q) - s sinq
19



zs = U sin*pc cos(@ - q) + s cosq (3.2.3)

The unit normalto the generatingsurfacein coordinate

systemSs given by [6]

m

Ns. whel"e N's = 6_c x _cn'-s
INI O0 Ou (3.2.4)

From equation (3.2.4):

Or_
- Oi + usin*pcCOS(O-q)j - usin*pcsin(O-q)k

O0 (3.2.5)

&c = -coS*Pci+ sin*pcsin(O- q)j + sin *pcCos(O-q)k
Ou (3.2.6)

using (3.2.2) to ( 3.2.6):

i j k
Ns = 0 u sin*p_cos(0-q) -usin*pcsin(0-q)

-cos*pc sin*pcsin(0-q) sin*pccos(0-q) (3.2.7 )

or

/

N--_= [ usin2*pccos2(0-q)+ usin2*pcsin2(0-q) ]i+
[ usin*pccos*pcsin(0-q)cos(0-q)]j+

[ usin*pccos*pccos(O-q) ]k (3.2.8)

and ,

_s[2 = U2 [sin4*pe+ sin2*pe C0S2*pcsin2(0-q) + sin2*p_cos2*p¢cos2(0-q)]

2O



or Ns = du 2sin21p¢= u sin_p¢ (3.2.9)

Therefore;

N,
ns = _= sin_ci+cOS_c[an(O-_j+cos(O-_k]

or

[ sin_c ]
ns = |cos :Pcsin( O- q)JLeos_p_cos ( 0 - q) (3.2. zo)

In order to define the unit normal with reference to

the machine fixed coordinate system Sm , the following

procedure is used. First any surface point with respect to

Sm coordinate system is given by:

(3.2.ll)

-.where

Mm s 0 cos _e sin #e= -sin% cos%
0 0 (3.2.12)

The unit normalwith respectto S= coordinatesystemis given

' as :

[rim] [Lm,] [n,] (3.9..13)

21



where [Lms ] may be determined by deleting the fourth column

and row in matrix (3.2.12). Thus

[10 0 Sin_C 7"

nm= LO cosd_e sin4_e cos_c sin (e- q)|-sin_e cOSec cOSec cos(O-q)J (3.2.14)

which gives

[ sin 4>e ]
nm = /cosapesin'r

LCOSapecos-r (3.2.15)

where T = 0- q + _c for the pinion which is a left hand

gear. Note that the normal vector is a function of @ and _

since q, the cradle angle, is a constant for a given point.

In figure i0, [n] is seen to be the same along the cutting

head cone for any u.

Equation (3.2.15) gives the normal vector with

reference to the machine fixed coordinate system. In order to

generate it with respect to the workpiece coordinate system

the following transformation is carried out:

r sin ape ]
nw = [Mpm] [Map] [cos aPesin'r ] (3.2.16)

22



3.3 PROCEDURE TO DETERMINE THE INTERSECTION OF NORMAL

VECTOR WITH GEAR SURFACE

After finding the normal vector with respect to the

workpiece coordinate system it is required to find the

intersection of the normal vector (from the pinion concave

surface) with the gear convex surface. To do so the pinion

concave surface (and the normal vector at the contact

point) is oriented to be in mesh with the gear convex

surface. During the procedure the gear convex surface is

fixed because the equations to solve for the intersection

point are in terms of u, @, _c in Sw. The pinion is rotated

to the gear. The different rotations carried out on the

pinion are described below and are shown in figure ii.

STEP i: The pinion concave surface, with attached normal

vector, are rotated byan angle such that the pinion and gear

do not interfere during meshing. (Note: the algorithm

produces the gear and pinion with random rotational

orientation)

STEP 2: The pinion concavesurfaceand attachednormalvector

are rotatedby 90 degreesin counterclockwisedirection

about the Y axis
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STEP 3: The pinion concave surface, with attached normal, are

rotated by 190 degrees counter clockwise about the z axis to

location 3 in figure 10 (to be near the gear convex

surface). (Note that meshing actually occurs at location 2.)

The rotation in step 3 to location 3 is for convenience in

solving for the intersection point. This location is

convenient because _, @, _c identify a gear surface point in

Sw at location 3.

STEP 4: The final rotationof the pinion concavesurfacewith

attachednormal is a slightcounterclockwiserotationabout

the Z axis. This is done to compensatefor the rotationof

the gear convexsurfacedone to createthe top land.

The procedure used to find the intersecting point is as

follows:

Consider the coordinates of the contact point to be

(Xpin, Xpin, Zpin) as shown in figure (12). Let a point in

space which the normal vector passes through be given as

(Qx, Qy, Qz) and the unit normal vector coefficients be

given as (nx, ny, nz). Then:

(Qx,Qy,Qz) = (Xpin, Ypin,Zpin) + b(nx ,ny,nD (3.3.1)

where 'b' is a scalar factor.
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Scale factor b is found by incrementing its value (see figure

12) such that it becomes a point on the gear convex surface.

For this to happen it has to satisfy the following

equations given below. The first equation is given as :

Qx = Xg¢_ = Xpin + b (nx)
(_ = Yge= = Ypin+ b (ny)

Qz = Zge= = Zpin + b(n_ (3.3.2)

Any point in the gear convex surface could be found by using

the relation as given below (provided the machine settings

are maintained for this surface generation):

Xg_ [rcos_ -ucos_1
[_o1/us__sm0 /

(3.3.3)

Let

[M]-[IVIwa] [Map ] _pm] [l_S] [Ms¢]

then using (3.3.2) and (3.3.3)

Fp,n+b(n,)] p_os_ u_os,_=lin + b (ny)| [M] | usin lpcsin0 |

[Zpin +b(nz)J = L.smvosoj1 .............. (3.3.4)

or
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[rcostp-ucostPc] [Xlin+ b (nx)]

[M]l usin_csino I - lYv,7_)_++b(ny)l= 0
Ib (nz)J (3.3.5) 'V'

From equation (3.3.5)three equationscouldbe obtainedsuch

that

. A1(4',b,u) = A2(q_,b,u,0) = A3 (_,b,u,O) = 0 (3.3.6)

By using the equation of meshing given in equation (2.2.1)

along with the three other equations given in (3.3.6), the

unknowns u, 0, _c, and b can now be solved for. These values

of u, 0, _c, b will now define the intersection of the normal

vector with the gear convex surface. The same procedure is

adopted to find the intersection of all vectors (parallel to

the contact point normal, and from grid points on the pinion

concave surface) with the gear convex surface. Later, these

intersecting points are rotated in TDGMP [8] so as to lie on

the gear convex surface in mesh. The following rotations are

carried out:

STEP i: The intersection points are rotated by an angle

required to create the top land of the gear surface

about Z axis.
i
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STEP 2: Later these points are rotated by (360/Nt) + 180

degrees in the counter clockwise direction to lie on

the surface of gear convex surface in mesh.

The intersectingpointswhich do not lie within the boundary

of the gear convexsurfaceare discarded. Note that while

doing this care shouldbe taken so as not to createexcessive

distortionof the hex elementson the gear.

3.4 VERIFICATION OF THE INTERSECTION POINT

TO check the resultsof the procedureadoptedearlier,

the followingmethod is used. The (u, @, _c) valuesobtained

atthe intersectionof the gear convexsurfaceis transformed

into (Xuear , Yuear, Zuear) valuesusing the coordinate

transformationgiven below. Note that initialmachine

parametersfor the gear convexsurfacegenerationshouldbe

used duringthis transformation.This is given by equation

(3.3.3)which is:

The resultobtainedis now substitutedback in

equation (3.3.2)
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Xoear= Xpin + b (nx)
Yge_r= Yp_n+ b(ny)
Zg0_r= _n + b(nz)

The value of ( Xgear, Ygear, Zgear ) obtained,if

same, verifiesthe point at which the normalvectorpierces

the gear convexsurface and is the intersectionpoint of

interest.

The abovemethod is used to locatethe intersectionof

normals from all points on the pinion surface (inthe contact

zone) with the gear surface. The gear tooth surfaceis

remeshedutilizingthe intersectionpointsas shown in figure

13. GAP elementsare connectedbetween correspondingnodal

points on the pinionand the intersectionpointson the gear ir

surface.
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CHAPTER IV

NUMERICAL EXAMPLES

This chapterdescribesanumerical exampleto determine

• the values of the contactstressesof spiralbevel gearset

using an exampledesign.Three differentmodels of these

gears at differentlevelsof difficultyare analyzed.The

first model simulatesa two tooth contact,one pinionand one

gear tooth.The secondmodel simulatestwo contactpoints

using four gear teethand threepinion teeth,The thirdmodel

simulatesthe two contactpointsalongwith added hub

effects.Various contactstresslevelsare discussed.

4.1 MODEL DESCRIPTIONS

All modelswere constructedin a TDGMP [8]from the

outputof the computerprogramsand were analyzedfor contact

stressdistributionusing a finiteelementprogram [9].A

non-linearstaticanalysissolutiontechniquewith GAP

elementsis used for the analysis. The modelingwas done on

a workstationand the analysiswas done via a supercomputer.

The modelswhere constructedusing 8 nodedHEX elementsand 2

nodedGAP elements.

Q
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MODEL I: The first model contains one pinion and one gear

tooth as shown in figure (14). The model consists of 1280

elements and 1980 nodes. (5940 degrees of freedom). The

torque load was applied as a concentrated force in the beam

as shown. In all of the models; the pinion was fixed by

specifyingzero displacement on the four corner nodes of each

rim face, 8 nodes total were fixed in this manner; and the

gear was free to rotate about its axis of rotation (Z axis).

Model I contains 15 GAP elements along the contact

area. Initially, only one is closed. This simulates the

contact condition in the model. The beam section has a very

high modulus to prevent excessive bending. The various stress

results obtained are as shown in figures (15-18). The

solution iterates 5 times to confirm the assumption on the

GAP elements (i.e. open or closed) is in agreement with the

finite element displacement solution. The structure of the

contact area and the history of the GAP elements at each

iteration is given in figure (19).

The values of the minimum element principal stresses as

plotted by the TDGMP [8] and the average values of the

minimum principal stresses at various nodes in the contact

area is shown in table (I).

a

MODEL II: This model contains four gear teeth and three

pinion teeth in mesh. The model consists of 7626 nodes and

5292 hex elements. (22878 degrees of freedom). The contact
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stresses at two different contact regions are analized with

this model. A metal hub is provided on the gear to transmit

the forces to the two different contact areas. The model

generated and the boundary conditions imposed are as_shown in

figure (20). The model contains 15 GAP elements in the major

contact region and 6 on the edge contact region.

The GAP elements in the major contact region are

located using the algorithms described in this report. At

the edge contact, the GAP elements are located by plotting

lines from the pinion surface and finding the intersection

point with the gear surface with the TDGMP [8]. In both

contact regions one GAP element is initially closed and the

rest are open. The solution iterated 4 times to reach

equilibrium. The status of the GAP elements after every

iteration is shown in figure (29). The values of the minimum

principal stresses and the average minimum nodal principal

stresses are given in table (II). The stress contours are

also shown in figures (21-28).

MODEL III: This model contains four gear teeth and three

pinion teeth, similar to Model II, with the added hub region

as shown in figure (30). It contains I0101 nodes and 7596

elements (30303 degrees of freedom) The model contains 15

GAP elements in the first contact region and 6 in the edge

. contact. As in MODEL II one GAP element in both the contact

regions is closed initially, and the others open. The
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solution iterated 3 times before obtaining the final solution on

the fourth iteration. Different stress contours are shown in

figures 31-34. The status of each GAP element after each iteration

is shown in figure 35. Table III gives the element minimum

principal stress values and the average nodal minimum principal

stress values.

For all three models the torque is applied as a force at a

moment arm of 2.0976 inches. Hence, the total torque applied on

the gear is approximately 9911 inch pounds. The pinion torque is

three times less or 3303 inch pounds.
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CHAPTER V

DISCUSSION OF RESULTS

MODEL I: This model consistsof one gear tooth and one

piniontoothwith minimal hub. In this model the element

minimum principalcontact stresson the pinion is foundto be

around -195,923psi. This value occursat the node connected

by GAP element1231 as shown in figure (19). The average

nodalminimum principalstressesshoweda highervalue of

_about380,000psi, and with a maximum of 447,700psi._ The

maximum influenceof averagenodal minimumprincipalstress

is at the node connectingGAP element 1228. Six GAP elements

are closedin the final iteration.

The nodal stressesare higherbecause they occurat the

GAP elementswhich acts like a concentratedforceapplied

directlyto a node. The elementalstressesare based on

nodal averagesand, as a result,are lower than the nodal

stresses.

Model II: This model was created to distribute the load to a

second pair of teeth in contact. The minimumelement

principal stresses at the major contact region was found to

be -156,041 psi. The average nodal minimum principal stress

. is found to be around -300,000 psi. The maximum influence is

at the node connected by GAP element 1232 (see figure 29)
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which showeda value of -339,064psi. The stresses

decrease,comparedto Model I, because of load distribution

to the edge contactregion.

At the edge contact,the minimumprincipalelement

stress is found to be around -101,661psi and the average

nodal stressesare found to be about -220,000psi. The

maximum average nodalminimumprincipalstressvalue was

concentratedat the node connectedby GAP element6200 (see

figure 29) is around -435,002psi.

The GAP element statusat each iterationshows that

initially9 GAP elementat the major contactarea and i at

the edge contactare closed. Also at the time of

convergence,5 in the major contactarea and 1 in the edge

contactarea are closed. The'5 GAP elementsclosedwere also

closed in the final iterationof model I.

Model III: This model also consists of four gear teeth and

three pinion teeth in mesh. Also modeled is a bigger section

of hub. (see figure 30) The minimum principal element stress

obtained from the TDGMP [8] is found to be -123,967 psi. The

mean nodal principal stresses obtained at the contact region

is found to be 260,000 psi. The maximum influence is at node

connecting, GAP element 1232 (see figure 35) and the value

is -299,931 psi. At the edge contact region, the minimum

principal element stress is found to be around -84,932 psi.

The mean of the average nodal minimum principal stresses in
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the contact region is found to be -200,000 psi. The maximum

influence is at node connected by GAP element 6200 ( see

figure 35) and it is -363,720 psi. These results are

consistent with estimates of hertzian contact stresses for

these gears,

At the end of the first iteration, 8 GAP elements in

the major contact area and i in the edge contact area are

closed and after the final iteration 4 in the major contact

area and 1 in the edge contact area are closed. The same GAP

elements closed in the major contact region were also closed

in Models I and II.

For this model the area of the contact region is

marked as shown in figure 36. To estimate the area the

average area due to the influence of each GAP element is

taken as shown in figure (37). The area of each rectangle is

found to be 0.0049 sq. in. Hence, the area of the entire

contact region is 4 x 0.0049 which equals 0.0196 square

inch.in*in.

For all three models, large node to node stress

variation indicates a need for mesh refinement.
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CHAPTER VI

CONCLUSIONS

The authorspresenteda methodfor doingnonlinearfinite

element contactstressanalysisof spiralbevel gears. The

method incorporatesthe followingfeatures.

i) A model was developed for obtaining spiral bevel gear

surface points. This model is based on numerical analysis of

Lthemanufacturing kinematics.

2) The gear and pinion are orientated for mesh with a series

of coordinatetransformations.

3) The gear surface is remeshed to provide proper

orientation of the GAP elements used to simulate contact.

4) A series of models were analyzed with increased

complexity.

A) Model I - One pinion and one gear tooth in mesh,

(5940 degrees of freedom)

B) Model II - Four gear teeth and three pinion teeth in

mesh. (22878 degrees of freedom)

C) Model II - Four gear teeth and three pinon teeth in

mesh with added hub region. (30303 degrees of freedom)

5) Results agreed well with calculated Hertzian contact

stresses.

6) Large node to node stress variation indicate a need for

refinement.
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Figure 1. - Machine used to generate spiral bevel gear surface. [4]
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Figure 2 - Machining process with workpiece and cutter
orientations.

39



Top tanct

Xw Sur?ace grid
Heel,

i

Xm m

Cleoronce

7

- Zw

I" Zbar "I

Figure 3 - Projection of gear tooth into XY plane
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Figure 5. - Orientation of Coordinate system for cutter, cradle
and system fixed to machine frame.
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Figure 9. - Different sections taken along the pinion spiral.
Used to determine contact point.
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(prevents interference during meshing). Location 2: -90 degree
rotation about Y axis. Location 3:-190 degree rotation about Z
axis to place pinion in mesh with gear. Also; smallrotation of
gear convex surface about Z axis to create top land.
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, Figure 12. - Illustration of normal from pinion intersecting gearconvex surface.
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Figure 13. - Gear geometry distortion after connecting gap
elements.
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Figure 14. - Model I; pinion and gear tooth in mesh with
boundary conditions.
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Figure 15.- Model I; minimum principal element stresses
in pinion tooth. "
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Figure 16. - Model I; Minimum principal element stresses
in pinion. _ •
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Figure 17. - Model I; average nodal minimum principal stresses in
pinion tooth.
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Figure 18. - Model I; average nodal minimum principal stresses in
pinion at contact region.
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FIGURE 19.- Model I: GAP element status at each iteration.
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Figure 20. - Model II. Mesh generation with boundary conditions.
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Figure 21. - Model II. Minimum principal element stresses in
pinion having major contact.
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Figure 22. - Model II; minimum principal element stresses at major
contact region of pinion tooth.
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Figure 23. - Model II. Average nodal minimum principal stresses in
pinion having major contact
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Figure 24. - Model II. Average nodal minimum principal stresses in
pinion having edge contact.

61



Psi

A -1573.

B -8476.

C -15379.

D -22281.

E -29184.

F -36087.

G -42989.

H -4989_

I -56795.

j -63698.

K -706O0.

-77503.
L

M -84406.

N -91308.

O -98211.

Figure 25. -Model II. Minimum principal element stresses in pinion
having edge contact.
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Figure 26.- Model II. Minimum principal element stresses
at edge contact region in pinion.
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Figure 27. - Average nodal minimum prinicipal stresses in pinion
having edge contact.
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Figure 28 - Model II. Average nodal minimum principal stresses in
pinion at edge contact region.
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FIGURE 29. Model II: GAP elementstatusat each iteration•
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Figure 30. - Model III. Finite element model and boundary
conditions
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Figure 31. - Model III. Element minimum principal stresses in
pinion at major contact region.
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Figure 32. - Model III. Nodal minimum principal stresses in
pinion at major contact region.
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Figure 33. - Model III. Element principal stresses in pinion
having, edge contact
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Figure 34. - Model III. Nodal principal stresses in pinion
' having edge contact
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• • ® 0 •
1226 1229 1232 1235 1238

1227 1230 1233 1236 1239

• GAP element numberat the con.tactarea
(_) Closed GAP element number at the last iteration

_DGE COI_PACT AREA GAP ET,_ NTTMBER_

6198 6201

6199 6202

0 •
6200 6203

GAP I_,T,k'_'[EN"_CLO_ED AFTER EACH 7TERA_TON

ITERATIONi ITERATION2 ITERATION3 ITERATION4

1228 1228 1228 1228

1229 1231 1231 1231

1231 1232 1232 1232

1232 1233 ..... 1235 1235

1233 1235 6200 6200

1235 6200

1236

1239

6200
4

FIGURE 35.- Model III: GAP element status at each iteration.
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Figure 36. - Approximate contact region
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DISTANCEBETWEENGRIDS 56.46 -- 0.14302 in
DISTANCE BETWEENGRIDS 46-47 = 0.035118 in
APPROX. AREA OF EACHDASHED BOX = 0.14032 " 0.035118 = 0.00492 sq,in
TOTAL AREA OF CONTACT = 4 * 0.00492 = 0.01968 sq.in

• GAP ELEMENT'SCLOSEDAFTER FINAL ITERATION
AREAOF INFLUENCE OF GAP ELEMENTS

Figure 37 - Contact area calculation
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TABLE I

" MAJOR CONTACT AI_EA STRESSES " -

AVERAGE NODAL MINIMUM PRINCIPAL STRESSES (Psi)

-99r278 -447r732 -292r902 -128r307 -32r075

-73r283 -i13r703 -330r360 -292r452 -87r131

-67,939 -94,100 -99,650 -58r195 -209,021

MINIMUM PRINCIPAL ELEMENT STRESS VALUES (Psi)

i

-76r077 -155r833 -195r923 •' _120r920 -35r158

-65r956 -i13r892 -181r131 -151_829 -61r995

-58,335 -76,757 -98,768 -85r134 -59r703

Each box represents a grid point where the gap element is connected
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TABLE II

MAJOR CONTAC_ AREA SqvRE_SES

AVERAGENODAL MINIMUM PRINCIPALSTRESSES (PSi)
%

-51r885 -292r976 -240r226 -80 f869 -22r945

-47,977 -78_740 -339 _064 -170,588 -22,499

-42,036 -61,329 -63,651 -351836 -13r255

MINIMUMPRINCIPALELEMENT STRESSVALUES (Psi)

i

-42r615 -104r243 -156 f041 -97 r885 -21r234

-38 r595 -77 r441 -148 f742 -120 r439 -29 r393
ii

-37 ,185 -51,781 -77,700 -62¢ 839 -20 r 692

EDC_ECONTACT AREA S_SSES

AVERAGENODAL MINIMUM PRINCIPALSTRESSES (PSI)

-53,979 -47,887

-222r448 -123r496

-435,002 -481r34

MINIMUM PRINCIPALELEMENT STRESSES (PSI)

-25,826 -67,699

-74 r485 -83t260

-101,661 -42,817

Each box representsa grid point where the GAP elementis connected
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TABLE III

MAJOR CONTACT AREA STRESSES

AVERAGE NODAL MINIMUM PRINCIPALSTRESSES (Psi)
a

"39[532 -213[109 -200[745 -51r752 -17[504

-39 r085 -64g 462 -299g 931 -103[ 574 -16g 417

-32r710 -49r034 -50,525 -28,640 -9r714

MINIMUM PRINCIPALELEMENT STRESSVALUES (Psi)

-32[508 -79r585 -123[967 -75[732 -13[044

-29r618 : -60r895 -120r019 -90[893 -17_253

-28,952 -41,204 -62r573 -47r993 -140r90

EDGE CONTACT AREA STRESSES

AVERAGE NODAL MINIMUM PRINCIPALSTRESSES (PSI)

.... -45[042 -39[566

-185r999 -I02[755

-363,720 -39,929

MINIMUM PRINCIPALELEMENT STRESSES (PS!)

-21f387 -56r272

-65f541 -69f223

-84f932 -35,293

• L_Each box representsa grid point where the gap elementis connected
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