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CHAPTER 1

Introduction

From the beginning of communication technology, the industry has used

increasingly higher frequencies of electromagnetic waves to transmit signals. Radio waves

on the order of kilometers were soon shortened to meters which were then shortened to

fractions of meters. Microwave technology soon followed and finally, after the invention

of the laser, optical communications with wavelengths on the order of nanometers was

developed. After it was discovered that light could be guided down hollow pipes with the

use of lenses, the industry sought a continuous media which could guide the light waves

for long lengths.

The first optical waveguides ( optical fibers) developed had such high light losses it

was assumed that this method would not produce a usable communications media. These

losses, referred to as attenuation, are caused by manufacturing defects and the

environmental losses due to conditions in which the fiber is placed. Examples of

manufacturing defects are (1) impurities which cannot be removed from the optical fiber

as it is formed and (2) slight discontinuities in the guide structures. Examples of

environmental losses are when the fiber is subjected to (1) tension, (2) axial twisting, (3)

temperature changes, or (4) bending.

Kao and Davies [1] during their study of the transmission of light in pure fused

silica rods found that the attenuation for this media was on the order of tens of dB/km for

a straight rod with no environmental loss effects included. This was a tremendous

improvement compared to losses of thousands of dB/km for the material used in the first

optical fibers. In 1970, a high silica fiber produced by Corning Glass had losses of 20



dB/km. Presently, silica optical fiber with losses of less than 0.2 dB/km are being

produced which satisfy the current communication industries needs.

All of the principles used to develop fiber optics for the communications industry

hold true for strain sensing applications except that some of the advantages in fibers for

communications are disadvantages for smart sensing. In communications, the ideal fiber

would have zero attenuation from both manufacturing defects and environmental loss

effects. This would essentially mean that light could travel an infinite length through an

optical fiber without losing any optical power. For strain sensing, the attenuation due to

the impurities is not important, but the losses due to bending or axially loading are. The

optical fibers property of light attenuation when bent is the basis of mechanical strain

sensing since the embedded fiber is strained in bending as the structure deflects. In this

way, advancements in optical fibers for the communications industry are developing in a

direction opposite to the needs of the strain sensing industry.

There are many different fiber designs on the market today and they are

categorized as either singlemode or multimode fibers. Singlemode fibers are ones which,

when used with a matching wavelength laser, allow only a specified mode of light to pass

through the fiber without significant attenuation. All other modes except the specified

mode are attenuated after a short length of travel in the fiber. Multimode fibers allow

hundreds of different modes to pass through the optical fiber without being greatly

attenuated.

There is also a wide variety of products on the market which determine the levels

of attenuation in the optical fibers, and these also fall into two classes. These classes of

attenuation measurement are either Through Transmission testing or Optical Time Domain

Reflectometry(OTDR). With the Through Transmission testing the laser source is placed

at one end of the optical fiber and the light is detected at the other end of the fiber. Using



the OTDR, light is sent through the fiber and light reflections in the fiber are detected at

the same end. A more sophisticated OTDR called a Photon Counting

Reflectometer(PCR) uses microwave technology and highly stable triggering to provide

much higher resolution than the typical OTDR, but it still operates on the same reflection

principle.

The main source of attenuation which will be studied is the fiber's sensitivity to

bending at radii that are much larger than the radius of the fiber. This type of

environmental attenuation causes losses that are a function of the severity of the bend.

The average attenuation caused by bending varies exponentially with the bend radius.

There are many different fibers, sources, and testing equipment available. This

thesis describes tests that were performed to evaluate the variables that effect bending

related attenuation and will discuss the consistency of the results. Descriptions and

comparisons will be made between singlemode and multimode fibers as well as

instrumentation comparisons between detection equipment. Detailed analysis of the

effects of the Whispering Gallery mode will be performed along with theorized methods

for characterization of these modes.



CHAPTER 2

Analytical Relationships For Optical Waveguides

Optical fibers can be thought of as two coaxial cylinders of glass, each of which

has a different index of refraction. The inside cylinder is termed the core of the fiber and

the outside cylinder is called the cladding. The index of refraction of the core is always

slightly larger than the index of the cladding and there is typically less than 2 percent

difference in the indexes. The differences in indexes allows the rays to reflect at the

interface so they are guided along the length of the fiber by internal reflection. If the core

has a uniform refraction index the fiber is called a "step index fiber." This is due to the

"step" change in index between the core and the cladding. If the core has a nonuniform

index which gradually decreases from the center toward the cladding, the fiber is termed

"gradient-index fiber." This is due to the gradient change in the index of the core. Figure

2.1 shows schematics of singlemode and multimode fibers with the different refractive

indexes for the core and cladding.

I 100 125 urn

Single-mode Fiber Graded-index
Multimode Fiber

Step-index
Multimode Fiber

Figure 2.1. Schematics of typical singlemode and multimode fibers



Optical fibers can be separated into two major classes, singlemode and multimode

fibers. Within these major classes, various types of fiber such as step-index and gradient-

index are found which have different guide structures. A singlemode fiber is one which

allows only one mode of light to travel through the waveguide. This type of fiber is used

in communications where very high bandwidths are required. Although the singlemode

fiber carries only one mode, the mode exists in two mutually orthogonal polarizations.

Multimode fibers are used with lower bandwidth systems such as optical scanners or

image projection equipment. Multimode fibers can transmit hundreds of different modes

simultaneously due to the design of the guide structure.

In both singlemode and multimode fibers, the light travels through the core by

internal reflection at the cladding-core interface. If the rays of light pass through the

interface they are only able to propagate for a short distance until they are lost through the

cladding to the surroundings or are attenuated in the cladding. From SnelTs law there is

an angle at which total internal reflection occurs and is termed the critical angle. The

numerical aperture (NA) of an optical fiber is related to the critical angle by

NA=n}sm6 c (2.1)

where Oc = the critical angle for total internal reflection and

/?l = the refractive index of the fiber core.

The numerical aperture is a means of defining the maximum acceptance angle of light for a

fiber. The NA is also related to the difference between the core and cladding refractive

indexes by the relationship [3]



NA =^n{ -»< (2.2)

where n^ = the refractive index of the fiber cladding.

Based on how the light is guided in different types of optical fiber it seems that the

singlemode fiber would produce the best strain sensor. This is because the guide

properties of the singlemode are simple in comparison to the multimode fibers. With the

singlemode fiber, the derivation of wave propagation, wave equations, types of

propagating modes, and the field descriptions are not complicated by having hundreds of

modes propagating in the fiber. For this reason, optical waveguide properties are derived

in this thesis for the singlemode fiber only.

The main type of attenuation studied for optical strain sensing is the optical fibers

attenuation due to macrobending. This type of loss is found when an optical fiber is bent

to a radius much larger than the radius of the fiber. When the optical fiber is bent, there

are three main locations on the fiber which have significance. These are the two points of

transition from a straight fiber to the bent section of a prescribed radius and the length of

the fiber which experiences the actual bend. The two radius transition points produce

transition losses and the bent section produces a pure bend loss. These two loss

mechanisms are based on different principles and are treated as individual properties of

attenuation due to bending.

2.1 Derivation of Singlemode Optical Fiber Properties

The study of how light propagates in an optical fiber is an important part of

understanding what causes attenuation and how the guide parameters affect relations in

attenuation and fiber bending. Important factors such as cutoff conditions, types of



propagating modes allowed, and propagation parameters can all be obtained from the

characteristic equations which describe a specific waveguide.

Characteristic equations are used in many different sciences and are the basis for

describing systems. Due to the many different factors involved in optical waveguides the

characteristic equations are complex. For this reason the derivation of these equations in

the next sections is approached by starting with Maxwell's Equations for electromagnetic

fields.

2.1.1 Wave Propagation

The derivation of how light waves propagate in an optical fiber will be made with

respect to a singlemode step index fiber, but the formulation is similar for all types of

fibers. The mathematical development that follows is a condensation of material found in

References [2], [3], and [4].

The derivation begins with the differential form of Maxwell's equations since they

are the basis for relating field vectors at a given space and time. The Maxwell's equations

for electromagnetic fields are found to be

V X£ =- (2.3)
at

V xj? =J +^- (2.4)

V - 0 = 0 (2.5)

V - J = p (2.6)

where £"= electric field intensity, Volt/meter, V/m

$ = magnetic flux density, Weber/meter2, Wb/m2

J)= electric flux density, Coulomb/meter2, C/m2

%= magnetic field intensity, Ampere/meter, A/m



9 = current density, Ampere/meter;

and

p= Charge density, Coulomb/meter^, C/nvV

For a linear, isotropic, homogeneous medium such as a dielectric guide, Equations (2.3) to

(2.6) are related by the constitutive relations

J =£(£) (2.7)

i =n(X) (2.8)

I =a(£] (2.9)

where e = Permittivity, F/m

^i = Permeability of the medium, Henry/meter, H/m

and

a = conductivity of the medium, 1/(Ohm*meter), l/(fl-m).

For lossless dielectrics the permittivity, permeability, and conductivity have the following

values:

(7=0

=—=1 (2-10)
MO

Sr

where nr= relative permeability of the medium,

sr- relative permittivity of the medium,



JUQ =47r XI o 7, H/m = free space parameter,

and

1
- n
367rXio9 , F/m = fi"ee space parameter.

Since the medium used in optical fibers is glass, the permittivity is usually referred to as

the index of refraction of a medium. The relation of the index to permittivity is

(2.11)

The Maxwell's equations for a charge-free, lossless, linear isotropic material such as the

dielectric waveguide are the same as Equations (2.3) to (2.6) except that Equation (2.6) is

set equal to zero since the guide is charge free so there is no charge density. Equation

(2.6) then becomes

V-j j=0 . (2.12)

By substituting Equation (2.10) into Equations (2.7) to (2.9), the constitutive relationships

for the specific guide become

. (2.13)

=e£.
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The wave equation for an optical fiber can be found using Equations (2.3) to (2.5),

Equation (2.12) and the constitutive relations from Equation (2.13). This equation

provides a simple relation for describing the propagation of energy through a medium.

For the research in this thesis the medium is an optical fiber and the propagation energy is

in the form of light photons. The equations which describe the electric and magnetic fields

are found using the same derivations therefore only one type will be presented. The

electric field equations will be derived and only the important magnetic field equations will

be shown.

Taking the curl of Equation (2.3) and substituting Equation (2.13):

V XV X£ =V x =~Mo—(V x^)- (2-14)

Using Equation (2.4) in Equation (2.14):

„ „ - , . , ^ T ^V XV X£ _-*,_{_)-^_ (2.15)

Substituting Equation (2.13) into Equation (2.15):

V XV X£ = - j i0cy. (2.16)
dt

Using the Curl identity: V XV xF =V(V -F)-V2F, Equation (2.16) becomes after

arrangement:
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dt
(2.17)

In order to get the right side of Equation (2.17) in the proper form, apply Equation (2.13)

to Equation (2.12) as follows:

V-5 =0=* V-(£g)=0. (2.18)

Using the identity of the Del operator, V -(/F) =/V • F +F • V/, Equation (2.18) becomes

V-(£g)=eV-£ +£-Ve=0. (2.19)

Solving for V •£ in Equation (2.19):

V •£=-£•—. (2.20)
£

Substituting Equation (2.20) into Equation (2.17) results in the inhomogenous equation:

(2.21)
dt

For a homogenous medium, the gradient of the permittivity ( refractive index) is zero

therefore Equation (2.21) becomes
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V2e -,*<>£—f =0- (2-22)

Equation (2.22) is the homogeneous wave equation for the electric field. Similarly

by starting with Equation (2.4) of Maxwell's equations the homogeneous wave equation

for the magnetic field is

=° (2-23)a/

Equations (2.22) and (2.23) are vector wave equations which can be separated into their

x, y, and z components. Letting

then from Equation (2.24):

v - ,l m/s (2.24)

- (2-25)

and Equations (2.22) and (2.23) can be written as scalar equations with the general form:

=0 (2-26)
v2 dt2
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where \p represents the components of the electric and magnetic fields in rectangular

coordinates.

The general solution of Equation (2.26) is given as

(2.27)

as long as the second derivative of / exists. Equation (2.27) defines a plane wave

propagating in a dielectric medium since it is the general expression for both electric and

magnetic fields. F is a radius vector given in rectangular coordinates as

f =xax +yay +zaz (2.28)

where ax, ay, and az are unit vectors in the x y z space, n is a unit vector in the

direction of wave propagation which is also perpendicular to surfaces of constant phase

and is defined as

n =nxax +nyay +nzaz. (2.29)

To describe how the constant phase planes propagate, a function can be defined

, where /3 is located on the plane. By letting

0 = t — n - r (2.30)
i;
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then for a fixed time t = t], 0 = /3o which equals a constant on the plane defined by

n-f ^constant (2.31)

and

nxx +nyy +nzz =constant. (2.32)

By taking the same fixed value on another plane at an incremented time t =t\ +At and

space r =t\ +AF the following relation is found:

1 _ 1
Po =/i +A/ —« •(/! +Ar)=ti —n -r\. (2.33)

v v

After simplification, Equation (2.33) becomes

=/7-Ar. (2.34)

From Equation (2.34) it is seen that n • Ar is the distance traveled by the plane of

constant phase, which is also the plane wave, during the time increment A/. This defines

the variable v as the velocity of propagation of the plane wave or the phase velocity.

2.1.2 Steady-State Wave Propagation

By studying the steady-state wave several wave parameters can be defined which

are useful in describing the characteristics of waves in a dielectric medium. For simplicity

the following notation will be used to describe the fields propagating in the medium. The

descriptions will be made for a steady-state sinusoidal propagating wave in the electric

field but they also apply exactly to the magnetic field. The new notation for the electric

field is as follows:
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c =£x(xy,z,t)ax +£y(xyj,t)ay +Sz(xjj,t)az (2.35)

where

(2.36)

(2.37)

(2.38)

and

EXQ, EVQ, and EZQ are real functions of position.

Using the real part of the following complex relation:

(2.39)

Equation (2.36) can be rewritten as

. (2.40)

By defining the variable EX as the space part of Equation (2.40):

Ex =£x0(W)e^'. (2.41)

Equation (2.36) then becomes

(2.42)
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Using the same procedure for £v and Sz, Equations (2.37) and (2.38) become

(2.43)

and

(2.44)

Substituting Equations (2.42) to (2.44) into Equation (2.35), the simplified form of the

electric field equation becomes

£ =Re[(Exax +Eyay +Ezaz)e
J<J}t] (2.45)

or

£ ='Rs(EeJot). (2.46)

In a similar fashion as the derivation of the electric field, the magnetic field

equation is found to be

% =Re(77e-/a"). (2.47)

Using Equations (2.46) and (2.47), the Maxwell's equations can be derived for a

sinusoidal steady-state propagating wave in the optical fiber. By substituting these

equations into the constitutive equations ( Equations (2.7) to (2.9) ) one finds

£ =e(Re(EeJot )) (2.48)

8=p(Re(HeJut)) (2.49)

and
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j =a(Re(EeJut)). . (2.50)

Taking the derivatives of Equations (2.48) and (2.49) with respect to time:

(2.51)

) (2.52)
ot

and substituting these equations into Equations (2.3) to (2.6), Maxwell's equations in a

simplified form are found:

V XRe(EeJat) = -y«ji(Re(77*'w/)) (2.53)

V xRe(HeJut) =ff(Rff(EeJwt)) +j(ae('Re(EeJut)) (2.54)

v Lti j[̂ .ct nt* it ~~"\/ \^*• J^/

and

(2.56)

Since the optical fiber is assumed to be a charge-free lossless dielectric, the conductivity

(a) and the charge density (p) are zero so Maxwell's equations become

V xRe(£) =-yco/*(Re(77)) (2.57)

V XRe(77) =/o)£(Re(£)) (2.58)

V-Re(77)=0 (2.59)

V-Re(£)=0. (2.60)
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These are the equations for a charge-free, lossless, linear isotropic material with a

sinusoidal steady-state propagating wave.

Using Equations (2.57) to (2.60) and applying the same procedure used to find the

wave equation for any type propagation (Equations (2.22) and (2.23)) the wave equations

for a sinusoidal steady-state wave are found:

and

V2(Re(£)) +/i£o>2(Re(£)) =0 (2.61)

V2(Re(//)) +/*eo>2(Re(#)) =0. (2.62)

By letting k2 =/i£co2 and substituting back into Equations (2.61) and (2.62), the wave

equations for a sinusoidal steady-state are found. These are also known as the Helmholtz

equations:

=0 (2.63)

and

V2(Re(#)) +Jt2(Re(#)) =0 (2.64)

where

k =o>J^£ =A . (2.65)
v

By giving the scalar value k a direction, a propagating vector can be defined such that

k =kn =2-n (2.66)
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where n defines the direction of propagation of a wave. Now with k in place of k, the

solutions of Equations (2.63) and (2.64) are propagating waves. An example of the

electric field component in x is

=Re(£ +e ~'f ) +Re(£~<? +7* * ) . (2.67)
X X

The actual component solutions for Equations (2.63) and (2.64) have the form:

0 -A +cos(ut -kn -r)+A ~cos(wt +kn -f) . (2.68)

Equation (2.68) says that there are two plane waves propagating in the 4« directions.

This equation is the same as Equation (2.27) except that now the propagation of the wave

is sinusoidal in form.

2.1.3 Wave Parameters

Wave parameters basically descriptive terms for how waves travel through a given

medium. In most cases these parameters are referenced to constant properties found in

free space conditions. Comparisons of how waves travel through different mediums are

made through these parameters.

To describe how a plane wave propagates through a medium only one propagation

direction needs to be studied so Equation (2.68) can be reduced to

\l/ =Acos(wt-k-r) (2.69)
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for a plane wave propagating in the +n direction. On a surface of constant phase, if the

plane wave is advanced one wavelength and it is required that \f/ completes one cycle as F

changes to r +Ar, then r +AF =f +X/7 or

Ar =X». (2.70)

Since the phase is constant, from Equation (2.69) it is found that

co/ -k-f =w/ +2x-/F-(r +Ar), (2.71)

and by substituting Equation (2.70) into (2.71) it is found that

ut -k -r =wt +2ir -k •(? +Xn) (2.72)

which, after canceling like terms and solving for k, becomes

/O T-5\(2.73)
X v

where X = the spatial wavelength in the medium,

v = Phase velocity of the wave in the medium,

and

k = the wave number.

These terms, defined in free space parameters are found to be
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-£= =£ (2.74)

_2irv _2irc _c 1 _X0A — (2./5)
oj co /; / w //

» •" *1 " VI . S**. f* jr*t.k =— =—« =/i*0 (2.76)
A A

where c = /-— - speed of light in free space, m/s
VMO

w =A/fi7 = index of refraction,

and

/ =— = frequency in cycles/sec.

2.1.4 Waveguide Equations

The waveguide equations are useful in describing how energy travels through a

dielectric medium. From these equations various properties of light propagation can be

found such as the proper conditions needed to guide energy, which "modes" of energy can

propagate, and what determines whether or not they will propagate. A mode is an

allowable field configuration which satisfies Maxwell's equations and the boundary

conditions for the system.

For the analysis of dielectric waveguides the direction of propagation, which is the

longitudinal axis of the guide, will be denoted as the z direction. Recalling that k is the

propagation vector for a general waveguide, j3 will be defined as the longitudinal

component of this propagation vector. Since z is the longitudinal direction, the x and y

directions will be perpendicular to the propagation direction and are called the transverse

directions. For an optical fiber, the index of refraction usually varies in the x and y
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directions due to having a cladding and a core, but is constant along the length of the fiber

(z direction). Since the permittivity is related to the index of refraction, it is a function of

x and y only, therefore

e =£(xjO (2-77)

From a similar notation as Equation (2.67), the fields in the waveguide can be

written as

E =E0(xrfe-z (2.78)

and

H =#0(*xF)e~7/?z (2.79)

with the use of the assumptions stated above.

Substituting Equations (2.78) and (2.79) into Maxwell's equations (Equations

(2.57) and (2.58)) and using the Del identity:

(2.80,

Maxwell's equations (Equations (2.57) and (2.58)) in expanded form are found to be

dHx _ Hv _ dHz _—ax -,-^-ay -»—az

9X dy (2.81)
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and

dHz dH dHx 8HZ._
~^ ~r^a* +(~T^ ~~T^)a7 a ~ ~ a z3y dz dz dx y dx 8y

3EX_X_ _ _
— £ - 3— 'T'S - 3. \r ~r~S - 3. <?•

dt * dt y dt

It is a valid assumption that the electric and magnetic fields are varying with time

by ejwt . Using this assumption and partial derivatives from Equations (2.78) and (2.79),

Equations (2.81) and (2.82) can be written in terms of the longitudinal electric and

magnetic fields only. The partial derivatives used in these equations are found to be

(2-83a)

<2-83b>
(2.83c)

(2.83d)

By substituting Equations (2.83a) to (2.83d) into Equations (2.81) and (2.82), the

following equations, in component form, are found:

+j0Hy =jueEx, (2.84a)ydy

X =JueEyt (2.84b)
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.(2.84c)
dx dy

ZF_
(2.85a)

dy

—j@Ex = -juiiH y, (2.85b)

and

(2.85c)

Using the components in Equations (2.84) and (2.85), a modified wave equation can be

found which is in terms of the longitudinal electric and magnetic fields only. These

equations will be used to analyze the dielectric waveguides.

The process of obtaining wave equations as a function of the propagation direction

fields is as follows.

Substituting Equation (2.85b) into (2.84a) and arranging it is found that

t . /f \ «-. Wi-i -T /*^ w^-j^ -^ rtX'X

(/we -1-̂ —)EX =—*• H -^-. (2.86)
wpi dy co^t dx

Multiplying both sides of Equation (2.86) by -yco/i results in

ay dx

and by letting K =k2 —@2 and recalling that k =u ps, Equation (2.87) becomes

(2-87)
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K2 dy dx
(2.88)

Similar substitutions of Equations (2.84) and (2.85) yield the other field solutions:

„
Hx =

dy

-i,~BH7

dx

BE,

K

(2.89)

(2.90)

and

#,
-j,0dHz ^ BE.J I 13 £_ J.,.,0 i

K'
(2.91)

By substituting Equations (2.88) to (2.91) into Equations (2.84c) and (2.85c), the wave

equations are found which are functions of the longitudinal field only:

dy
(2.92)

By multiplying both sides of Equation (2.92) by yK /we , the modified wave equation for

the electric field is found to be

a. 2 ' a 2 ''" z

dx dy
(2.93)
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In a similar manner, the equation for the magnetic field is found to be

3x dy
(2.94)

Equations (2.93) and (2.94) are uncoupled equations which describe the fields in a

waveguide. Coupling of the fields in the two equations occurs by applying the boundary

conditions. If the boundary conditions do not achieve coupling of the specific longitudinal

components we can obtain solutions where the longitudinal electric component or the

longitudinal magnetic component is equal to zero. These solutions define the modes

which can propagate in the dielectric guide. Table 2.1 gives the types of modes and the

values of their longitudinal components.

Table 2.1 Types of propagating modes in a dielectric

TEM(transverse
electromagnetic)
TE(transverse

electric)
TM(transverse

magnetic)
HE or EH (hybrid)

Ez
=Qfl, =0

Ez =0#z *>

Ez *>^=o

Ez &Jiz &
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The formulation up to this point was in rectangular coordinates due to the ease in

understanding the simpler equations. There is no loss in generality by formulating the

equations this way and then converting to cylindrical coordinates. The last part of the

derivation used to find Equations (2.93) and (2.94) will be repeated using equations in

cylindrical coordinates since the dielectric in question has a round cross section. The

derivation in cylindrical coordinates will begin by transforming Equations (2.88) to (2.91)

and then solving for the modified wave equation.

In general, when one set of axes is rotated an angle <£ from another set, the two are

related by

Fxi =Fxcos<l>+Fysm<i> (2.95)

and
Fyl - -FXsin 4> +Fy cos0. (2.96)

To convert from the x-y coordinate system to the r-$ system, xl and yl in Equations

(2.95) and (2.96) are replaced by r and <£, respectively. For the electric field in a dielectric

waveguide the following relations are found:

Er =Excos<t>+Evsin<t> (2.97)

and

£0 = -Ex sin $ +Ey cos0. (2.98)

From trigonometry it is also found that

x =rcos<£ ^=rsin0 (2.99)
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r =V(x2 +y2) 0=arctan(.y/x). (2.100)

A substitution of Equations (2.88) and (2.89) into Equation (2.97) leads to

E r = ^ 0 0 8 ( ^ 0 — c o s 0 + 0 s i n < / > - a v * s i n < # . (2.101)
K2 dy dx dy Bx

The chain rules for relating rectangular and cylindrical coordinates are

M. JL^L +¥_<>* v_ J£.*_ +£** (2102)
dx dr dx d(t> dx dy dr dy d<£ dy

From Equations (2.99) and (2.100), the proper partial derivatives are found which are

used in the chain rules in order to transform Equation (2.101) to cylindrical coordinates.

These are found to be

dr x dr y . ,
— =— =cos0 — =— =sm<£ (2.103)
dx r dy r

x
dx r

2 r dy r2 r

By substituting Equations (2.103) and (2.104) into Equation (2.102) and using the result

in Equation (2.101), the following expression is obtained for the electric field in the radial

direction:
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„
Er =

d//,

K2 dr

d£

d<f> r

or

dr
.

-sm 0 +
. .
)]sin 0

d//7 . dH7

dr
,. , -_.
(2.105)

which simplifies to

(2-106)

Using the same procedure for the electric field in the transverse direction and for the

magnetic field it is found that

K

K

(2.107)

(2.108)

and

K r
(2.109)
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In the same manner as Equations (2.88) to (2.91) were used to find the waveguide

equations in rectangular coordinates, Equations (2.106) to (2.109) are used to find the

waveguide equations in cylindrical coordinates. These equations are found to be

dr2 r dr r
2 d<t>2

and

0

dr2 r dr r

The waveguide equations above can now be solved for their electric and magnetic fields in

order to describe the properties of light propagation through a round optical fiber.

2.1.5 Step-Index Optical Fiber

From the previous work the waveguide equations were found in cylindrical

coordinates for a round dielectric medium or an optical fiber. By treating these equations

as a boundary valued problem they can be solved by the use of boundary conditions.

These boundary conditions are obtained from the core-cladding interface of an optical

fiber. As with any boundary valued problem, by applying the boundary conditions, the

characteristic equation is obtained for a specific configuration. This characteristic

equation allows the formulation of the properties of the optical fiber such as the specific

propagation constants and the modes of light which can propagate in the waveguide.

From these, properties such as mode cutoff parameters and the number of modes which

can propagate for a given fiber configuration are obtained. This allows a better

understanding of the design of the optical fibers and how they are categorized.
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The analysis begins by applying the method of separation of variables to Equations

(2. 110) and (2. 111). Assuming a solution for the electric field in which r and <£ are

independent it is found that

(2.112)

Since the cross section of the optical fiber has circular symmetry, a circular function is

chosen for #<£), specifically

(2.113)

therefore Equation (2.112) becomes

Ez =AF(r)eiv*. (2.114)

From Equation (2. 1 14), the required derivatives to be used in Equation (2. 1 10) are

dr dr

dr2 dr2

and

d<f>2
?-=-Av2ej1"i>F(r). (2.117)
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Substituting Equations (2.115) to (2.117) into Equation (2.110) and multiplying by

\j Ae-i1"**, the solution of the waveguide equation is

(2.118)

The solution is in the form of a Bessel's equation. Since there are many solutions which

satisfy Bessel's equations conditions which limit the solutions must be defined. For an

optical fiber, the electric and magnetic fields must by finite in the core area of the fiber.

Also these fields must decay in the cladding so that they are not guided for long lengths

since this is the purpose of the cladding. The constraints are therefore chosen where the

fields are finite at the center of the core (r = 0) and that the fields decay exponentially in

the cladding at large radii from the center of the fiber.

The Bessel function of the first kind, Jv(x), is a function which is finite at the

origin so it is chosen as a solution to Equation (2.118) for radii smaller than the core

radius:

F(r)=/v(Kr) for r < a; (2.119)

therefore the fields inside the core are given as

E, =AJv(Kr)eJI><i> f o r r < a - (2.120)

and

Hz =BJv(Kr)eJ'"i> for r < a. (2.121)
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For the fields in the cladding a modified Hankel function of the first kind, H(jx), is chosen

as the solution since it has the exponentially decaying properties required to represent the

cladding. This decay is in the form of e ~y' and by letting K =77 for simplicity, it is found

that

E, =CH(jr)eJI"> f o r r > a (2.122)

and

f o r r > a . (2.123)

Recalling that Equations (2. 106) to (2. 109) define the electric and magnetic fields in

cylindrical coordinates, these can be used to find the unknown constants in Equations

(2. 120) to (2. 123) and thus describe the transverse fields in the optical fiber for the core

and cladding.

For the core, to get Equation (2. 106) into functions of the unknown constants,

Equations (2.120) and (2.121) must be differentiated with respect to r and 0 to obtain the

proper terms for substitution:

(2.124)
a/-

where

and

(2.126)
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By substituting Equations (2.124) and (2.126) into Equation (2.106) one obtains

Er =^-[^)8K/;(IOV ̂  +B(jv)(unyJv(Kr)eJ "*]. (2.127)
K2 r

In a similar manner, using Equations (2. 107) to (2. 109) it is found that

(2.128)
K '

#r =^[->£i-A/,(Kr)4K/m/;(Kr)]e-'1'9, (2.129)
K2 r

and

#<* =—^\Ku£\AJ'(Kr)+j&—BJJKr)]eJI"l> (2.130)
K2 r

where

K2 =kf -&2 (2.131)

and

(2.132)

Equations (2.127) to (2.130) give the transverse electric and magnetic fields in the core of

the optical fiber. A similar procedure is used to obtain the fields in the cladding.

For the transverse fields in the cladding, Equations (2.122) and (2.123) are

differentiated with respect to r and 0 and substituted into Equations (2.106) to (2.109).

The results obtained from this procedure are as follows for the cladding fields (r > a):
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Er =-f\0-£H?l'(/r)-tapo-DH],l'VrW*, (2.133)
7 r

(2.134)

(2.135)
y r

and

^ =4[7^2c//;(1)(/y)^-^!,1)(/y)>>* (2.136)
7 r

where

tf̂ jf̂ , (2,37)
3(/y)

72 =/32 -^2
2, (2.138)

and

(2.139)

The electric and magnetic fields in both the core and cladding are described by Equations

(2. 127) to (2. 130) and Equations (2. 133) to (2. 136). The constants A, B, C, D, and j8 will

be found by the boundary conditions for the tangential components of the fields at the

core/cladding interface (r = a). At the interface these boundary conditions are found to be

Ezl =Ez2 E<h =£02 #zi =ffz2 H<h =E^ (2.140)

at r = a.
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Using Equations (2. 120) and (2. 122) and the first boundary condition in Equation (2. 140)

yields the first of four simultaneous equations which can be used to solve for the

unknowns:

(2.141)

Substituting r = a into Equations (2.128) and (2.134) and equating by use of Equation

(2. 140) gives

(2.142)

which is the second simultaneous equation.

The third equation is found by using Equations (2.121) and (2.123) and the boundary

conditions

J,(Ka)B -H(V(jya)D =0. (2.143)

The fourth simultaneous equation is obtained by Equations (2.130) and (2.136) with r = a:

• (2.144)
=0
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Equations (2.141) to (2.144) are four simultaneous equations which provide a nontrivial

solution as long as their determinant is equal to zero. The determinant of this system

given by Equation (2.145) results in the characteristic equation for the waveguide.

W
K

i. \ y -1 J

£2 K2

Also Equations (2.141) to (2.144) can be combined so that the unknowns A, B, C, and D

are in terms of each other. Coefficients A and C and B and D are found to be related by

i (2.146)
""(rrt

and

/ (Kn\
'. (2.147)

Using Equations (2.146) and (2.147) in Equation (2.142) the coefficient B is obtained as a

function of A:



38

A relation of coefficients A and B can also be found by using Equation (2.144) instead of

Equation (2.142):

» ,_.-.
B =JV 777 V- 777 A. (2.149)

Equations (2.148) and (2.149) will become important in determining which modes

propagate in the optical fiber.

2.1.6 Modes in an Optical Fiber

By solving Equation (2.145) the different types of modes which propagate in the

optical fiber can be obtained. For a dielectric waveguide such as an optical fiber, the cross

section is circular so there are four general types of modes in which the light can

propagate. These are: the transverse electric mode, the transverse magnetic mode, and

two hybrid modes which contain longitudinal electric and magnetic field components. The

transverse modes are denoted as TE and TM modes for the transverse electric and

transverse magnetic modes, respectively. The two hybrid modes are denoted as HE and

EH. A special case, where the only modes propagating are the TE and TM modes, occurs

when v is equal to zero.

From the definition of the TE mode it is known that the component of the electric

field in the z direction is zero. If this is true, then from Equation (2.120), the coefficient A

must also be zero. From Equations (2.141) to (2.145) it is seen that if Ez = 0 then

Equation (2.141) is omitted since the field component is zero and the boundary condition

is no longer important. Letting the coefficient A and the value of v equal zero in the

remaining simultaneous equations and solving for the determinant the characteristic

equation for the TE modes is found.
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From the general relations for Bessel functions it is known that

Z6 =-Z,; (2.151)

therefore Equation (2. 150) becomes

1 Jl(Ka) 1 //i

K -/„<»* '™<

Equation (2. 1 52) is the characteristic equation for the TE mode of propagation. Note that

if both sides of Equation (2.152) are multiplied by y2a the second bracket of Equation

(2. 145) would be obtained when »> = 0. In a similar manner the characteristic equation for

the TM mode is found to be

(2.153)

Comparing Equations (2.145) and (2.153) it is seen that Equation (2.153) is the first

bracket on the left-hand side of Equation (2.145) with v = Q.
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Equations (2.145), (2.152), and (2.153) are the characteristic equations used to

describe the propagation of the different modes in an optical fiber. Although all of the

different modes can propagate in the optical fiber, there are limitations which determine

what modes will be guided and which will be lost. These limitations are called the cutoff

parameters and they apply to all modes propagating in the optical fiber.

2.1.7 Cutoff Conditions for Propagating Modes

Each mode in the optical fiber is subject to certain conditions which determine

whether or not it will be guided. These are called cutoff conditions. Although a mode is

guided, the energy is not confined to the core of the fiber. There is a field which enters

the cladding and decays with increasing radius. This part of the guided mode is due to the

total internal reflection at the core/cladding interface and is called an "evanescent field"

due to its decaying nature.

A mode is said to be cutoff when the field in the cladding is no longer evanescent

and will not decay. In other words the mode cannot be guided by the fiber and becomes a

radiating mode into the cladding which keeps the cladding field from decaying. The rate

of decay in the cladding is determined by the parameter 7 since the modified Hankel

functions are a function of it and the fields in the cladding are dependent of the Hankel

function. For large values 7 the Hankel function has a small value so the fields in the

cladding are small. This means that the fields are concentrated around the center of the

core. As the value of 7 is reduced, the exponential nature of the Hankel function increases

its value so the fields in the cladding are increased. At 7 = 0 the modified Hankel function

is infinite so the fields in the cladding are infinite and will no longer decay. This is the

description of a mode which has been cutoff therefore it can be said that a mode is cutoff

when 7 = 0.

Using Equation (2.138) with the cutoff conditions it is found that
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Which, after simplification, yields

P2
C =k2

2c (2.155)

where

k2c =ucfj.Q82 (2.156)

Similarly for the core the cutoff conditions yield

where

(2.158)

The subscripts 1 and 2 denote the core and the cladding respectively. By substituting

Equation (2. 155) into Equation (2. 157) the following is obtained:

c =4 -*L =a>;W*i -*2)-

By manipulating Equation (2. 159) the relation for the cutoff frequency is found to be

(2.160)
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From Equation (2.160) it is seen that the cutoff frequency can be equal to zero if K

is equal to zero. This says there exists at least one mode which will propagate at any

frequency except zero. The hybrid HE\ \ mode is this mode and it is the only mode which

can propagate at any frequency greater than zero. Since all other modes have a cutoff

frequency greater than zero it is possible to design an optical fiber with only one mode

propagating. By choosing a specific frequency to be guided, the optical fiber is designed

so that this frequency is below the lowest cutoff frequency of the modes other than the

HE\ i mode. This type of fiber is called a singlemode optical fiber.

In order to determine when only one mode is guided in an optical fiber, the cutoff

conditions for the other modes must be found. This is accomplished by solving the

characteristic Equation (Equation (2.145)) using the parameters for each type of mode.

The equation can be written in a simplified form by using identities for the Bessel and

Hankel functions and the following notation.

(2.161)

(2,63)
FP H

and

H~=— -- ': . (2.164)
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The identities for general Bessel, Neumman, and Hankel functions needed are

_l -Zm) (2.165)

and

Zt,_a(x)+Z,,_i(x)=—Zv(x). (2.166)
x

By using the notation shown in Equations (2.161) to (2.166) the characteristic equation

can be simplified. This equation is found to be

(2.167)

Equation (2.167) is used to evaluate the cutoff conditions for the modes propagating in

the fiber. Recalling that at cutoff 7 = 0, so the modified Hankel function is infinite since

its argument is zero. Due to this a non zero argument for the Hankel function must be

used as 7 approaches zero. This is accomplished by taking the limit of the Hankel

functions:

(
n
l '(na) —

•p»0 TT 2
lim Hn (na) — In for v = 0 (2. 1 68)

and

lim H\l)(j^= "'_ '"(—)" for v = 1, 2, 3,... (2.169)
r*~

where T= 1.781672.
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By substituting Equations (2.168) and (2.169) into Equations (2.165) and (2.166) the

limits of the modified Hankel functions with the new notation can be found:

=—r for v= 1,2,3,..., (2.170)
Y*0 (ay)2

lim//~=-m-^- forj^l, (2.171)

and

l i m / / - = — - — for v = 2, 3, 4,.... (2.172)
2(j/ -1)

Equations (2. 170) to (2. 172) are used in Equation (2. 167) to find the cutoff conditions for

the different modes with v > 0. These modes are the HE and EH modes. Equations

(2. 1 52) and (2. 1 53) are used to find the TE and TM modes with v = 0.

For the case where v = 1 the solution to Equation (2.167) as 7-* 0 becomes

(2.173)

which describes the cutoff conditions for the HE\^ and EH^ modes. The HEtt mode is

included since it is a solution to Equation (2. 167) for v = 1 .

The cutoff conditions for the HEpfl and the EHV(JL modes are found by making

v >\ in Equation (2. 167) as y -» 0. This equation has two solutions which after

simplification become
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Jr(ta)=0 for v = 2,3,4... (2.174)

and

for? = 2,3,4.... (2.175)
v —1

It is shown in Reference [2] that Ka = 0 is not a solution of Equation (2. 174) since v is

greater than 1 and thus will not be a solution to Equation (2. 167).

The cutoff conditions for the TE and TM modes are found using the characteristic

Equations (2. 1 52) and (2. 1 53). For small values of y and v = 0 Equation (2. 1 53) becomes

(2176)
*• '

The right side of Equation (2. 176) becomes zero since 7 approaches zero faster than the

natural log approaches infinity, therefore the solution for the TM modes is

(2.177)

Equation (2. 177) is also the solution for the TE modes since the permittivity ratio is

divided out of the solution.

From the derivations it is seen that the cutoff conditions are determined by the

zeros of the different Bessel functions (Equations (2. 173) to (2. 177)). A plot of the

Bessel functions with v equal to 0 and 1 is shown in Figure 2.2 with the cutoff conditions

for the first few modes.
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Figure 2.2. The Bessel Functions and the Mode Cutoff Conditions

From Figure 2.2 it is seen that as long as K ca <2.405 only one mode will propagate since

there is only one mode with a cutoff value number below 2.405. Applying this and the

physical parameters of the waveguide to Equation (2.160) the cutoff frequency can be

obtained which defines a singlemode optical fiber.

Equation (2.160) can be rewritten into a form which is based on common physical

parameters of glass fibers. Using Equations (2.10) and (2.11), after rearrangement, the

equation becomes

(2.178)

From Equations (2.24) and (2.73) it is found that at cutoff

27T

V (2.179)
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Substituting Equation (2.179) into (2.178) it is found that

K ca =^H L2 _,,2 . (2.! go)
Ao

Equation (2. 180) defines the cutoff parameters of an optical fiber based on the general

physical properties of the fiber. The cutoff parameter K ca is sometimes called the "V"

number of an optical fiber and is mainly used to determine the number of modes which

propagate in a fiber of a certain design.

From the previous mathematical development it has been shown that there is one

mode which is present at all wavelengths in an optical fiber. This mode, called the HE\\

mode, propagates regardless of the physical design of the optical fiber. From Figure 2.2 it

is seen that as long as the "V" number of a fiber is below the cutoff value of the T£Q\ or

7M0j modes, only one mode will propagate. When this condition is met the optical fiber

is called a singlemode fiber. Numerically the "V" number must be less than 2.405. From

Equation (2. 180) it is noted that by increasing the source wavelength, X0, for a given fiber

the number of modes which propagate will decrease. It is significant to note that using a

singlemode fiber with a source wavelength less than the cutoff wavelength for singlemode

propagation makes the fiber behave like a multimode fiber since more than one mode can

propagate.

2.2 Loss Properties in Optical Fibers

Losses in optical fibers are due to four main sources, namely absorption losses, the

losses due to internal discontinuities, losses due to the surroundings and losses due to fiber

splicing. Absorption losses arise because the particles that make up the optical fiber
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vibrate when the electromagnetic waves encounter them. The absorption losses transfer

the light power to heat. Internal discontinuities are imperfections caused by

manufacturing the glass fibers, small gaps between the core and cladding, presence of

glass impurities, and the presence of OH ions in the glass. The disadvantage of these

losses is that they are not consistent throughout the fiber therefore their contributions to

the total loss of the fiber are hard to evaluate. Surrounding or environmental losses occur

when the optical fiber is subjected to physical deformation. Examples of losses due to the

environment are: bending with radii much larger than the radius of the fiber, axial twisting

of fiber, cable laying losses which are caused by stretching the fiber as it is laid, and axial

tension applied to the fiber. Splice losses where cables are connected are encountered at

every point where the optical fiber is joined. Discontinuities occur where the fiber is

connected to equipment, connected to fiber couplers, and where a fiber was broken and

then spliced.

The total attenuation of an optical fiber can be found by relating the output power

exiting the fiber to the input power entering the fiber. The relationship is shown in

Equation (2.181) below and uses the logarithm of the power ratio to define a decibel loss

value.

a =101oglo(/WPOM,) indB. (2-181)

The input and output power values used in Equation (2.181) are found by a method

commonly called the "cut-back method." It is used for one way transmission loss

measurements. With the cut-back method, a fiber is connected to a light source and a

power reading (Pout) is taken for a certain length of fiber. Then the fiber is cut to a

desired length, reconnected to the detection device, and the second power reading is taken
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(//„). Using these values of power and the length of fiber cut, a value for the attenuation

per length can be found by dividing Equation (2.181) by the length cut. Attenuation can

also be expressed in terms of a percentage of output power to input. The percent value of

attenuation is sometimes useful in analyzing results when a percentage of a specific loss to

total loss is desired.

As previously mentioned, optical fibers exhibit attenuation due to bending with

bend radii much larger than the radius of the fiber. This light loss has been studied by the

communications industry but the objective was to reduce the effects of bending, not to

study the actual properties of the light as it is transmitted through a bend. Unlike

communications, a strain measuring device requires that the fibers exhibit moderate if not

severe sensitivity to bending. Also the typical length of fiber the communications industry

deals with is on the order of kilometers whereas strain measurements deal with fiber

lengths of meters. Bending losses are composed of two separate loss factors, transition

losses and pure bend loss.

2.2.1 Transition Losses

Transition losses occur in the fiber at the point where the radius of curvature

changes from infinite ( straight fiber) to a prescribed radius. The abrupt change causes the

light to be transformed from a longitudinal wave mode to a cladding mode. Since the

cladding modes are not lost immediately, they are coupled back to the longitudinal wave at

the second transition from bent to straight. Due to the different path lengths of the

cladding mode and the guided mode, different fiber lengths between transition points for

different bend radii, and the index differences in the core and cladding, the cladding

modes can be coupled back to the guided mode out of phase. Oscillations are caused in

the amount of attenuation when the phase differences form constructive and destructive
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interference. The abrupt change in radius leads to an average transition loss as given in

Equation (2.182) from Reference [3]

AR(dB) =-101og[l - k n ( w * R ) ] (2.182)

where k = 2?r/X,

X= wavelength of light passing through fiber,

nj= core refractive index,

wo= mode field radius,

and

R = bend radius.

The value of wo is given as

WQ =a[.65 +434 *3/X/Xc -H0149(X/XC)6] (2.183)

where a = core radius, and

\,= cut off wavelength of the fiber.

The transition loss is usually on the order of .2 dB/km. Since the phase of the coupling

modes is related to the length of bend between the transitions it is therefore a function of

the bend radius. The mode field radius (w0) is always larger than the core radius and

represents the area where the mode is considered guided. Beyond this radius, the mode is

not guided in the fiber so the mode field radius defines a radiation caustic.
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2.2.2 Pure Bend Losses - The Whispering Gallery Mode

The pure bend loss is caused by the constant bend radius being small enough to

allow the longitudinal modes to become cladding modes. These losses only occur in the

bent section of the optical fiber. For a given radius R, the average pure bend loss per unit

length is given by Equation (2.184) from Reference [3]

ac =AcR~i^Q\p(-UR) (2.184)

with AC and U approximated by

and

U= , «(„-) (2.186)
X[2.748-996(X/Xc)f

where AH =n\ —w2 = index difference in the core and cladding.

By knowing the index difference and the fiber cutoff wavelength, the average pure bend

attenuation can be found.

From previous experimental studies is was thought that the pure bend loss was of

an exponential behavior and was completely represented by Equation (2.184) with a

simple dependence on wavelength and bend radius. Experimental research presented in

Chapter 4 of this thesis has shown that the pure bend loss also exhibits oscillations due to

coupling of modes to the guided HE\ \ mode. These oscillations are caused by the

coupling of the Whispering Gallery mode to the guided mode during the constant bend
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section of the optical fiber. Although the Whispering Gallery mode is a cladding mode it

is different from the cladding mode producing the oscillations mentioned in the transition

losses section of the thesis.

The Whispering Gallery mode is described as a mode of light traveling between the

outer surface of the cladding and a radiation caustic within the cladding. A schematic of

the mode travel is shown in Figure 2.3 using ray descriptions.
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Buffer Interface

r.c.
Figure 2.3. Schematic of an Optical Fiber Bent to a Radius R Showing

One of the Whispering Gallery Mode Rays Between the
Radiation Caustic (r.c) and the Cladding Surface

The position of the radiation caustic is defined as the radial distance from the center of the

core in which the evanescent field in the cladding loses guidance and becomes a radiating

field. This is the same analogy applied to an optical fiber to describe cutoff conditions

when a mode ceases to be guided and becomes a radiating mode. When the ray loses

guidance it will travel a path tangential to the caustic and strike the cladding/buffer

interface at a point shown in the figure. Due to the difference in index of the cladding and

the buffer, transmission and reflection of the ray occur. The transmission through the

interface is lost to the surroundings while the reflected portion returns into the cladding

and grazes the radiation caustic at a point farther along the bend. This action of

transmission, reflection, and grazing occurs for the entire length of the bend until the fiber

is straightened or the mode loses its field energy. From these two features it is seen that

the pure bend loss is composed of the losses to the surroundings and the losses which

develop into the Whispering Gallery mode.

At the radiation caustic, the phase velocities of the evanescent field of the guided

mode in the cladding and the Whispering Gallery mode are the same. This also means that

the phase velocity of the evanescent field from the Whispering Gallery mode in the core is
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the same as the guided mode's velocity. Since the modes have the same phase velocities,

coupling in the core is possible each time the Whispering Gallery mode grazes the

radiation caustic. The depiction of the ray travel shown in Figure 2.3 is only one ray

traveling in the cladding. In actuality many rays are grazing the radiation caustic

throughout the length of the bend so there is a continuous coupling of the light between

the Whispering Gallery mode and the guided mode.

With reference to Figure 2.3, the distance from the radiation caustic to the center

of the fiber core is related to the bend radius of the fiber and the wavelength of the light by

(2.187)

From Equation (2.187) it is found that for large bend radii the distance d is large which

lowers coupling of the evanescent field to the mode field and reduces the power transfer.

With smaller bend radii, the caustic is closer to the core so coupling is stronger. This

produces higher energy transfer between the modes and raises the power guided by the

fiber.

The energy coupled from the Whispering Gallery mode to the guide mode not only

depends on the distance between the core and the caustic, but also on the phase difference

between the modes at the point of coupling. Additive or synchronous coupling occurs

when the Whispering Gallery mode which grazes the caustic is in phase with the guided

mode in the core. Asynchronous coupling occurs when the modes are out of phase by 180

degrees. It was found in Reference [4] that the asynchronous coupling occurs at every

other grazing point and since the coupling is constant over the bend length, the net effect



produces little attenuation change. At these points the attenuation values approach the

values for the average pure bend loss.

Again referring to Figure 2.3, the phase equation for synchronous coupling is

found to be

2 717/2 Ll +L2 +<t> -Z0 =2mTT (2.188)
X

where m = an integer value defining the different coupling radii and

<t> = the phase change due to the reflection at the cladding/buffer interface.

From trigonometric relations, the values for the arc length and the ray travel lengths are

found to be

I, =£2 =(R +y -{R +d (2.189)

and

Z =2Rtan~i[—^— 1. (2.190)
R+d

By substituting Equations (2.189) and (2.190) into Equation (2.188) the values of bend

radius corresponding to the positions of synchronous coupling are obtained. After

substitution the equation used to find these positions is found to be
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-(R +d)2

- ) +0
(2.191)

For a given fiber, all of the variables except the bend radius (R) and the integer value of m

in Equation (2.191) are known. This shows that for a particular fiber, values of bend

radius at synchronous coupling positions can be found by substituting the properties of the

fiber and a value for m. Although the variable m has no descriptive name it is a method of

describing which coupling position corresponds to a particular radius value.

2.3 Strain Sensing

Due to the optical fibers sensitivity to bending, it provides a means to detect

structural bending when attached or embedded into a structure. Although this feature is

the basis for optical strain sensing, little information can be found unless the orientation of

the fiber on or in the structure is correct.

In order for an optical fiber to detect strain due to bending it must be curved to a

degree much larger than any load bearing structure could withstand without failing. The

problem is overcome by giving the fiber an initial bend of a prescribed radius and then

using the pre-bent fiber in the structure. By using a pre-bent fiber, the sensor can react to

structural bends immediately upon loading since the fiber is already at a high attenuating

bend radius. This type of fiber orientation is called a serpentine configuration.

If a straight optical fiber was used in a structure for strain sensing the amount of

bending seen by the optical fiber would be the same as the structural bending due to

loading. However for a serpentine fiber this is not the case. From Reference [5] it was

found that the relation for structural bending to fiber bending is given as
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R
(2.192)

V "st

where R = the initial pre-bend for the optical fiber,

Rst = Structural bend radius due to loading,

and

9 f = the angular orientation of the pre-bent fiber.

From Equation (2.192) it is seen that the orientation of the prebend determines the amount

of fiber bending due to structural bending. Recalling that the transition points of an

optical fiber are where the fiber radius goes from straight to a prescribed radius, the angle

6y is defined as the angle between the direction of applied moment causing structural

bending to a line which crosses the transition points of the optical fiber (the right-hand rule

is helpful here). Figure 2.4 is an example of a pre-bent fiber showing the various

parameters used in Equation (2.192).

9=90

Dir. of Moment

KOptical

Fiber

9=0

Figure 2.4. A Schematic Showing the Properties Used in Equation (2.192)



58

The fibers prebend radius is also affected by the stresses caused by loading the

structure since it is attached to the structure and experiences the same deflections due to

load. The relationship between structural stress and fiber curvature change is found to be

[(1 -&- -Vpr -^)2 sin2(6/) +(1
=R st

where R = Fiber Bend Radius,

Est = Modulus of Elasticity of the structure,

v pr = Poission's ratio,

ax = Normal stress in the direction parallel to a line through the fiber transition

points,

and

o y = Normal stress in the direction perpendicular to a line through the fiber

transition points.

Using the contributions of Equations (2.192) and (2.193) the changes in fiber curvature

due to structural radius changes and structural stress levels can be determined.

If a fiber is embedded into a part there is a possibility that it will be placed on the

neutral plane of the structure. The neutral plane is defined as the plane at which there is

no strain acting and as an example would be found at the midplane of a structure with a

rectangular cross section. If the optical sensor is located on the neutral plane then

Equation (2.192) relates the fiber curvature to the structural curvature since there would

be no stress or strain applied to the fiber.
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From Equations (2.182) to (2.186) it is found that the attenuation of the light is a

function of the fiber bend radius. In Equations (2.192) and (2.193) the bend radius of the

fiber is a function of structural curvature and structural stress. Since structural stress and

bending are both related to strain, it is possible to develop a correlation of structural strain

to optical attenuation. In general, the amount of light will vary inversely with the amount

of bend, consequently the amount of strain.



CHAPTER 3

Attenuation Measurement Methods

In order to evaluate the optical fibers sensitivity to bending, the proper equipment

is needed. There are two methods used to test optical fiber setups whether it is used for

communications or sensor applications. These are through transmission and optical

reflectometry. Two products fall under the category of optical reflectometry, these are the

standard Optical Time Domain Reflectometer (OTDR), and the less common Photon

Counting Reflectometer (PCR). These three methods have different advantages and

disadvantages so the best method of testing depends on the constraints of the system being

evaluated. An overview of the methods is presented.

3.1 Continuous Wave Through Transmission

In the through transmission method, a laser source produces a continuous

wave(CW) or a modulated signal which passes into the optical fiber being tested and is

detected at the other end by an optical detector. Due to the stability, compact size, and

ease of coupling to optical fiber, laser diodes are typically used as the light source. The

detection device is either a PIN photodiode or an avalanche photodiode (APD) connected

to an amplifier. The PIN type photodiode receives its name from the layer orientation of

the p-type and n-type semiconductor material. The APD is named for the process used to

excite electron-hole pairs. Internal current gain occurs in the APD when electron carriers

gain enough energy, while traveling through a reverse biased junction, to release new

electron-hole pairs. This is accomplished by impact ionization. The repeated impacts and

releases of electron pairs cause an avalanche effect, thus giving the diode its name. The

amplifier for the photodiode is required since it only produces small amounts of current

60
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which must be amplified in order to be displayed or used. This amplification leads to

significant noise which may hide weak signals and must be averaged out. For CWTT

testing the signal-to-noise ratio is high and averaging is used to allow small real changes in

output light power to be detected that would look like noise fluctuations. Typically five to

ten averages remove the noise which only requires a few milliseconds. The signal may be

displayed on a sampling oscilloscope with a sampling rate that is 3 times greater than the

frequency response of the detection device.

For the through transmission method, large amounts of light (relative to the noise

produced by the electronics) can be sent through the fiber continuously so slight changes

in output power can be easily and accurately detected. The main disadvantage of this

system is that the factors which attenuate the light as it passes through the fiber are

combined to produce the net change (integrated sum) of the attenuation in power

detected by the photodiode. In other words, the CWTT type of detection cannot locate

the position of a zone of loss along the length of the fiber or distinguish between the types

of attenuation.

3.2 Optical Time Domain Reflectometry

The OTDR is essentially an optical pulse-echo system. A pulse of light (typically 5

to 10 ns width) from a laser diode is sent through the fiber and undergoes Rayleigh

scattering continuously along the length of the fiber, producing low-level reflected signals.

Rayleigh scattering is caused by factors such as fluctuations in fiber composition, fiber

impurities, and environmental loss effects. The reflected signals are split off with an

optical coupler and are detected by an APD, and through amplification and processing, the

trace of the signal is displayed as a function of pulse flight time through the fiber. The

signals are processed, stored, and displayed on a storage sampling oscilloscope. Other

types of light reflection such as Fresnel reflections and the losses due to bending are
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detectable since they also produce a reflected signal. Fresnel reflections occur at every

place where the optical fiber has been spliced, connected, or broken. By knowing the

speed of light through the fiber and the flight time of the pulse traveling to a point of

attenuation and back to the APD, the distance from the input end of the fiber to the point

of high backscatter can be found. Due to the electronic circuitry used to modulate the

pulses of light, the amount of energy contained in each pulse is small, consequently the

reflected signal is small. Again the signal must be amplified to be used but the noise from

the circuitry may overcome the reflected signal entirely. OTDRs typically require large

amounts of averaging to produce accurate displays of the attenuation of an optical fiber.

Averaging techniques such as the "boxcar averager" are employed to reduce the noise

level and obtain a usable signal. With a boxcar averager, a signal is repetitively sampled at

a constant time interval relative to the input of the pulse for a specified number of samples

and then the time is advanced and a new set of signals is repetitively sampled to produce

the next boxcar average point. This is done for the entire signal and then the "boxcars"

are placed end to end to display the averaged reflected signal. Higher number of samples

at each time interval yield more accurate results by increasing the signal-to-noise ratio, but

cause slower display regeneration which is on the order of 5 to 15 seconds.

The resolution of the OTDR is mainly based on the pulse width. The smallest

detectable spacing between reflections is one-half of the pulse width. For example, if the

pulse width is 300 ps (300X 10'̂  s) and light is traveling through glass with an index of

1.5, the light's velocity is 2 X 10 8 m/s and the maximum resolution is 3 cm. This is

assuming an absolute square wave and no variation (jitter) in duration or repetition rate.

Pulse widths of 5 to 10 ns require one Giga-Hertz sampling rate or higher from the

circuitry, but allow the equipment to detect both Rayleigh backscatter and Fresnel

reflections. Currently only sampling oscilloscopes can digitize at Giga-Hertz rates.
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Fresnel reflections return a high amount of light which saturates the APD and

essentially blinds the circuitry. This saturation produces a dead zone for a period of time

until the APD can stabilize again. In terms of fiber length, the dead zone is on the order of

several meters. In the dead zone, attenuation values for the fiber cannot be obtained.

Figure 3.1 is a screen display of a Hewlett-Packard OTDR showing the dead zone of a

fiber under test.
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The OTDR can be configured for a variety of fiber types and lengths. As the fiber

length setting is increased, more power is transmitted through the fiber in order to detect

attenuation losses at the longer length. This is accomplished by using broader pulse

widths of the modulated signal. Since the pulse width is wider, the sensitivity of the

equipments position detection is reduced. These are essentially the limiting factors of the

OTDR type equipment. Higher power results in lower position detection accuracy and

lower power results in lower attenuation level accuracy.

3.3 Photon Counting Reflectometer

A specialized OTDR which uses a method of counting photons reflected back from

points of attenuation is called a Photon Counting Reflectometer(PCR). The difference in

the PCR and the typical OTDR is that, while the OTDR takes a boxcar length of light and

averages the data to obtain a group of light reflection values, the PCR takes a single

display resolution point and averages at this time position along the fiber by detecting

whether a photon of light is reflected back at this position. This is accomplished by a

highly accurate and stable time delay circuit with trigger uncertainties of pico-seconds.

The detection device is still an APD but microwave circuitry is used to process the light

readings. The counter detects whether or not a photon is present so it is essentially

processing a 2-bit word, either on or off. Several of these 2-bit words are combined at

each point and the number of "on" values are displayed as the attenuation at the display

point. When two or more photons are returned at the same time, the detector still only

processes that point as "on." By using this method of detection, the effects of saturation

due to Fresnel reflection, when the equipment is in the Fresnel detection mode; is almost

zero. This means that the dead zone is reduced to a minimum when in the Fresnel

detection mode. For the Rayleigh backscattering mode, the high light intensity at splices is

still present but the APD is not saturated as much as the typical OTDR since it is switched
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on and off by the time delay circuitry. Thus the spatial resolution or detectable differences

in attenuation points is much smaller, on the order of millimeters, for the Photon

Counting Reflectometer.



CHAPTER 4

Experimental Evaluation of Whisper Modes - CWTT

The strong theoretical correlation between structural strain and optical attenuation

lead to the development of testing procedures to further verify the findings. Experimental

relations can, in some ways, allow for more accurate correlations since they can

compensate for various discrepancies lost by theoretical approximations. The

experimental procedures begin with a study of the attenuation of optical power to fiber

bend radius. This is a key step in relating the attenuation to strain since the results will

provide information about what the initial serpentine bend radius should be as well as

determine the correlation of attenuation to bending.

The first tests involved a light emitting diode (LED) and multimode fiber tested

using CW through transmission. The LED was powered by circuitry constructed at

Tennessee Technological University and the output power was detected using an Optical

to Electrical (O/E) converter. A DATA 6000 two channel sampling oscilloscope was used

to display the results.

After it was discovered that the optical fiber would attenuate light as a function of

the bend radius, a Seastar temperature stabilized laser source was purchased and used as

the light source. The Seastar laser system employed a pre-pigtailed laser diode stabilized

by a heat sink and a temperature controller and powered by a laser diode driver. Using

this source and an O/E converter, the tests were conducted using a singlemode 850 nm

fiber and a 830 nm laser diode. A schematic of the test setup is shown in Figure 4.1. The

optical fiber was bent around rods of varying radius to obtain the relation. The results of

these tests are tabulated in Table 1 of Appendix A and shown in Figures 4.2 and 4.3.

66
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Oscilloscope

Diode Driver
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Figure 4.1 Test Setup Used to Test Attenuation vs. Bending

Using CWTT and Drill Rods
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Figure 4.2. Pout / Pjn vs. Bend Radius For an 850 nm SM Fiber with an 830 nm Laser

(18 Data Points)
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Figure 4.3. a Attenuation per Bend Length vs. Bend Radius For an 850 nm SM Fiber

with an 830 nm Laser (18 Data Points)

As can be seen in Figures 4.2 and 4.3, the fiber exhibited attenuation properties as a

function of bend radius. It should be noted that eighteen data points were taken over a

radius change of approximately one centimeter which gives a radius increment of .0555

cm between points. Due to the large increments only a rough idea of the fiber's

attenuation is presented in the figures. This small amount of data caused several important

properties of the optical fiber to be hidden that were found later by using more data points

and a different test design.

Although the results were promising, Figures 4.2 and 4.3 show that the amount of

bend change required to cause a change in attenuation were too large to be used as a

strain gage. The material that the gage was testing would most likely plastically deform or

break before the fiber could detect a radius change.
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It was discovered that instead of mounting a straight fiber on the material to be

tested, a pre-bent fiber could be mounted which would increase the bend sensitivity. The

fiber was bent to a certain radius and after mounting would be bent, due to stress, on a

plane perpendicular to the prebend. This led to the development of a serpentine

configuration for mounting the optical fiber [5]. From Figures 4.2 and 4.3 it is seen that

the slope of the attenuation vs. radius curve increases with smaller bend radii. This shows

that the sensitivity of the sensor can be adjusted to meet structural needs by simply using

smaller or larger prebends for the serpentine fiber sensor. Using these correlations, the

goal of a transducer can be achieved where light attenuation is related to strain.

4.1 Reduction of the Whisper Modes

In the initial tests of the singlemode fiber using the Seastar equipment the

attenuation values were taken with radius increments too large to properly evaluate the

fibers sensitivity to bending. To obtain more accurate results, smaller increments between

test radii were needed. A test setup was designed using adjustable tapered shanks to vary

the radius of the bend as shown in Figure 4.4.

Screw used to
Increment Taper

From Laser

Optical Fiber

To O/E Converter

Figure 4.4. Test Setup Using Tapered Shanks to Determine Attenuation

as a Function of Bend Radius
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By using tapered shanks and a fixture, the radius could be incremented by small amounts

and the relation between radius change and attenuation would be more accurate.

A test was performed using this fixture and an 833 nm SM optical fiber with a 850

nm laser source. The radius increments were approximately .013 cm for the test

composed of 23 data points. The results of the test varied dramatically with the first test

using the radius increment of .055 cm. To insure that the test was not producing false

data, two more tests were performed using increments of .0024 cm and .0016 cm, but the

results stayed consistent. The results of testing the 850 nm source and the 833 nm fiber

are tabulated in Appendix A.2 and shown in Figure 4.5 which relates attenuation as a

percentage to bend radius.
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Figure 4.5. PouJPin vs. Bend Radius for an 850 nm SM Fiber with an 833 nm Laser

(23 Data Points, 125 Data Points, and 184 Data Points)
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From Figure 4.5 the effects of an optical property called the Whispering Gallery Mode are

obvious. It could be theorized that the attenuation oscillations shown in Figure 4.5 are the

result of transition losses until it is seen that the percentage of power variation is too large

for this type of loss. Figure 4.5 also shows the average pure bend loss theoretically

predicted from previous work (Equation 2.184) and the predicted bend radii where

synchronous coupling occurs (Equation 2.191). Notice that the experimental curves show

a higher output power percentage than the theoretical curve and that the points of

asynchronous coupling are closer to the theoretical curve. This helps to validate the

findings discussed in the whisper mode section of Chapter 2 of this thesis. To further

evaluate the effects of the whisper mode and its correlation to theory, a fourth test was

conducted where 270 data points were taken for a radius change from approximately .325

cm to .625 cm. This gives an increment between test points of .001 cm. The results of

this test along with the theoretical pure bend loss and points of synchronous coupling are

shown in Figure 4.6 as attenuation in dB/cm as a function of fiber bend radius. From this

type of comparison it is seen that the theoretical data is lower than the experimental curve

and should not be confused with the comparison in Figure 4.5. The power is attenuated

less when the percentages are higher and more when the decibels are higher. The points

of synchronous coupling are the same as the ones obtained for the pervious three tests

since the same fiber was tested. The data for the fourth test was taken approximately one

year after the first tests and used a different laser diode but by comparing Figures 4.5 and

4.6 it is seen that the whisper mode fluctuations are still stable and the points of

synchronous coupling still match. This helps to validate the stability of the correlation.

Data for the experimental test of 270 data points using the taper fixture, the theoretical

pure bend loss curve, and the positions of synchronous coupling are given in Appendix

A.3.
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Figure 4.6. Attenuation vs. bend radius for the 270 data points with the theoretical curve

and the points of synchronous coupling

The results of the previous test show that the large oscillations produced by the

Whispering Gallery mode hamper the development of a strain sensor since the correlation

of attenuation to bend radius is not a simple function. Also since several different bend

radii have the same value for attenuation due to the whisper oscillations, it would be

difficult to determine a reference of the bend radius once the sensor was placed in or on a

structure. It was therefore decided to attempt to remove the whispering effects by using

variations in the source and the fiber wavelengths. By using a singlemode fiber with a

cutoff wavelength lower than the source wavelength, it was thought that the cladding

could be filled with modes that had wavelengths too high to be guided. Then these modes

would either distribute the cladding modes or disrupt the coupling of the Whispering



73

Gallery Modes to the guided modes. Two variations in fiber and source wavelengths were

tested to determine if the fiber-source mismatch would reduce the effects of the

Whispering Gallery mode.

A singlemode optical fiber with a cutoff frequency of 514 nm was tested using a

670 nm laser diode. This setup was tested to see if the large mismatch in fiber and laser

would remove the whispering effects of the optical fiber. Four hundred data points were

used in this experiment and the results are tabulated in Appendix A.4. Figures 4.7 and 4.8

show the effects of bending the fiber using different radii and the hidden effects found by

using a larger number of data points.
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Figure 4.7. Pout / P;n vs. Bend Radius For a 514 nm SM Fiber and a 670 nm Laser Diode
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Figure 4.8. a Attenuation per Bend Length vs. Bend Radius For a 514 nm SM Fiber and a

670 nm Laser Diode

As seen in Figures 4.7 and 4.8, this fiber also showed large amounts whisper coupling

modes for the case when the fiber was not matched to the laser. With the laser emitting

light at a higher wavelength than the cutoff wavelength of the fiber, the light is attenuated

severely at any bend radius due to the lack of mode stability in the fiber. It was concluded

that this setup would not produce a usable strain gage.

A second test was performed to see if the fiber mismatch would reduce the

whispering effects using an infrared laser source and a visible spectrum fiber. The effects

of bending a 633 nm singlemode fiber using a 830 nm laser diode are shown in Figures 4.9

and 4.10. The data is given in Appendix A. 5.
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Figure 4.9. Pout / Pjn vs. Bend Radius For a 633 nm SM Fiber Using a 830 nm Laser

Diode
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Figure 4.10. a Attenuation per Bend Length vs. Bend Radius For 633 nm SM Fiber Using

a 830 nm Laser Diode
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Since this setup uses a laser diode which emits light at a higher wavelength than the cutoff

wavelength of the fiber, the setup shows similar results to the 514 nm fiber with the 633

nm laser diode (Figures 4.7 and 4.8). Again this did not produce acceptable results.

In comparing Figures 4.7 and 4.9 or 4.8 and 4.10 it is seen that the fiber seems to

have an unstable jitter (especially notable in Figure 4.7 at a bend radius of .95 cm and

above). This jitter is consistent and due to the fibers inability to sustain wavelengths

higher than the cutoff wavelength. The smaller bend radii tend to strip the higher modes

which is the reason the signal is cleaner at lower radii. Other than the spikes of

attenuation in Figure 4.10 for the 633 nm fiber, the two tests have attenuation values of

approximately equal magnitude. This relationship could be due to the difference in fiber

and laser wavelengths for each test being approximately equal.

It was decided to evaluate a multimode fiber's sensitivity to bending since the

manipulation of the singlemode fibers were not removing the whisper mode. Multimode

fibers are capable of supporting hundreds of different modes and it was thought that if the

gallery modes were present, their effects would be eliminated due to the different

propagation constants and phase differences of the multiple modes.

Using continuous wave through transmission, a 850/1300 nm Multimode fiber was

tested using an 830 nm laser diode source. The test was conducted using 100 data points.

As shown in Figures 4.11, 4.12 and Appendix A.6, the whispering mode was not

encountered.
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Although the whispering effects were not encountered in the multimode fiber, the

fiber does have pronounced jitter in the results. These light jitters are fluctuations in the

output power over the time taken to obtain each point of data. It was noticed that if the

individual points of data were taken at increments of three to five minutes, the light was

able to stabilize and the attenuation jitter was reduced. For a fiber imbedded or mounted

to the surface of a structure, the initial serpentine bend would show stable attenuation

values but the bend changes due to strain would be inaccurate since they would change as

the time increment in sampling was changed. Due to this instability it was determined that

multimode fiber would not produce a usable strain sensor. It should be noted that the

light could not be fully attenuated in the multimode fiber. Apparently the large core

allowed some light to pass through the fiber as long as the fiber was not broken.

4.2 Characterization of Whispering Gallery Modes

After it was found that the whisper modes could not be significantly reduced using

the variations in the singlemode optical fibers and that the multimode fiber lacked a

consistent attenuation to strain correlation it was decided to characterize the whisper

modes. By characterizing the effects of the whisper modes in the singlemode fiber it was

thought that the usable strain sensor could be produced which included the attenuation

oscillations.

In preliminary tests of the singlemode fiber it was noticed that the level of

attenuation varied slightly with surrounding test temperatures at constant bend radii. A

test setup was designed to allow for heating of the optical fiber while it was subjected to a

known bend radius. A schematic of the heat testing setup is shown in Figure 4.13.
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Temp. Head

Thermocouple Ice Bath
Heat Source

Figure 4.13. Schematic of the setup used to test the optical fibers sensitivity to heating

From this test, values of attenuation as a function of temperature could be found for

specific bend radii. The initial test setup used the original tapers from the tests of

attenuation as a function of bending radius. These tapers were manufactured from 2024-

T6 aluminum. The fiber tested was an 850 nm singlemode fiber attached to an 833 nm

laser source. It was thought that if the taper was heated, the radius would change due to

the thermal expansion of the taper material. This would mean that if a test was conducted,

the levels of attenuation might vary as a function of the fiber bend radius changing due to

the taper expanding. Another taper was constructed from a steel rod and a second test

was performed to determine if the thermal expansion was causing any variations in the

attenuation levels. Tests were performed on the steel taper at the same radius used on the

aluminum taper. Since the thermal expansion is different for the two materials, it could be

determined if the radius change due to the expansion was causing the attenuation or if the

temperature change was. In Figures 4.14 and 4.15, the results of the two tests are

overlaid for comparison. The data for the tests is given in Appendix A. 7.
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If the thermal expansion was causing the attenuation changes, the curves in Figure 4.15

would be similar since this figure shows attenuation as a function of radius change due to

thermal expansion. If the attenuation was caused by actual temperature changes of the

fiber, Figure 4.14 would show similarities because this figure depicts attenuation as a

function of fiber temperature.

From Figures 4.14 and 4.15 one can see that the curves are very similar if the

attenuation due to temperature changes are compared. However, the attenuation

comparisons assuming that the thermal coefficient of expansion is causing radius change

have few similarities. It is concluded that the largest factor causing attenuation due to

heating the fiber is the actual temperature changes, not the radius changes from thermal

expansion. The exact percentage of contribution of each factor is not known but the

temperature effects greatly outweigh the expansion effects.

Based on the knowledge that the fiber exhibited attenuation as a function of

temperature change a test was performed to see if different bend radii produced different

correlations between attenuation and temperature. These correlations could then be used

as a temperature "footprint" for a specific radius.

With reference to Figure 4.6, certain bend radii were selected at specific locations

on the curve where there were maximum or minimum levels of attenuation. These test

points are shown below in Figure 4.16 which is the same data in Figure 4.6 except that the

y-axis is now attenuation as a percentage of output power.
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Figure 4.16. Attenuation vs. Bend radius for the singlemode 850 nm fiber showing the

test points used in the heat test

The test to find the radius footprints was made using a taper manufactured from

monolithic graphite. This material was used in order to minimize any effects of thermal

expansion since, although found to be small, the exact contribution is not known. The

monolithic graphite also produces an extremely smooth surface when machined which

increases the accuracy of locating the specific test radii. Figure 4.16 indicates that five

values for the radius were chosen at points of synchronous coupling of the whisper mode,

two values were chosen to the left of synchronous coupling points, two were chosen to

the right, and five were at points of asynchronous coupling.

The optical fiber was heated from room temperature to approximately 110 degrees

F. The glass of the optical fiber could withstand temperatures much higher than the
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maximum test temperature but this cutoff temperature was chosen to avoid any

deformation of the plastic buffer surrounding the glass fiber.

The results of the temperature testing at the specified points shown in Figure 4.16

for the 850 nm singlemode fiber are shown in Figures B.I to B. 14 of Appendix B. The

data for these tests is tabulated in Appendix C. 1 to C. 14.

From the figures of attenuation vs. temperature in Appnendix B, it is seen that the

fiber also exhibits an oscillation as the temperature is varied. These oscillations are small

compared to the ones due to the whisper gallery mode. Due to the complex nature of the

relation it is unclear what effect the different temperatures have at the particular bend radii

by viewing these figures alone. The only usable values found from these figures is the

mean value of attenuation for the oscillations. This value can be used to determine what

level of attenuation the fiber is seeing and therefore defines a line on the attenuation vs.

bend radius curve which crosses the whispering gallery mode oscillations.

In order to obtain more data from the tests, a Fourier transform is employed which

converts the attenuation as a function of temperature into attenuation as a function of

temperature rate. This is similar to converting data in the time domain to the frequency

domain. Using this conversion, the rate of the attenuation oscillations can be found in the

temperature domain. Since the data was not approaching zero at the maximum and

minimum values of temperature, a Hamming window was used to avoid incorrect data

conversion. Also since the data taken was not in exact incremental values of temperature,

a linear interpolation curve fit was used and the Fourier transform was taken from the

numerical fit. The requirement that the number of data points be multiples of 2", with n

being an integer value, was avoided by taking a Complex Fast Fourier Transform(CFFT).

The CFFT allows data vectors of any size to be transformed from the time domain to the
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frequency domain since it returns a two-dimensional Fourier transform. The results of the

Fourier transforms for the positions tested are shown in Appendix D.

By finding the values of the large frequency peaks from Figures D. 1 through D. 14,

the initial fiber bend radii can be characterized for the tests. In Table 4.1, the values for

the prominent peaks from the tests are presented along with the mean attenuation value.

These will be used to describe the "footprint" of the radius so the fiber bend can be found.

Table 4.1. The Mean and Frequency Values from Temperature

Characterization of Optical Fiber

Position
Type

Peakl
Peak 2
Peak3
Peak 4
PeakS
Middle 1
Middle 2
Middle 3
Middle 4
Valley 1
Valley 2
Valley 3
Valley 4
ValleyS

Radius
(cm)

.329569

.352924

.381840

.409644

.444121

.334017

.347363

.419654

.435019

.340690

.366270

.395186

.427439

.460804

Mean
(%)

.40846

.54546

.73849

.76799

.89458

.27914

.52248

.48689

.59581

.07279

.11214

.20867

.34498

.49691

IstFreq.
(1/DegF)

.0763
.07734
.07744
.07385
.07704
.06454
.03154
.06061
.03202
.07265
.08352
.08453
.08472
.08686

2nd Freq.
(1/DegF)

.178
.1547
.2323
.1477
.1541
.1613
.09462
.1818
.1281
.1453
.167
.1691
.1412
.1448

3rd Freq.
(1/DegF)

.2289
.232
.3098
.2708
.2825
.2259
.1577
.2424
.2241
.2422
.2506
.2536
.2259 '
.2606

4th Freq.
(1/Deg F)

.3307

.3094

.3872
.32
.3595
.3872
.2839
.5455
.3522
.3875
.3341
.4226
.3671
.3764
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An example of determining the fiber bend radius from a temperature test is illustrated as

follows. In Figure 4.17, the whisper fluctuations for attenuation vs. bending are shown.

This is the same data used to plot Figure 4.16. Assume that Figure 4.17 is the attenuation

correlation for the type of fiber under test. Also assume a table similar to Table 4.1 was

previously obtained for the fiber.

0.3 0.35 0.4 0.45 0.5 0.55

Fiber Bend Radius (cm)

0.6 0.65

Figure 4.17. Example Figure Used in Determining the Fiber Bend Radius

from Temperature Testing
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With the background of the fiber known, a heat test is performed on the structure

with the same fiber embedded and a mean value of the attenuation along with the major

frequencies are found. For the example a mean value of fifty percent is used with first,

second, and third frequency values of .080,. 140, and .260, respectively. With the mean

value known a line representing this value is drawn on the attenuation vs. bend radius plot

for the fiber. This is depicted in Figure 4.17 at a value of fifty percent. As seen, the line

crosses the data curve at ten locations; four towards the top of a peak, three around the

middle of a peak, two towards the bottom of a peak, and one point located at a valley.

With the positions of crossing known, a comparison of the frequency values can now be

made. In Table 4.1 there are three positions which have a mean value close to the

example value of fifty percent. In an actual test there would be eight, one for each

crossing. By comparing the first, second, and third frequency values for each of the

"known" positions to the example position it is easily seen that the example position is

Valley 5 with a radius of .4608 cm.

For the actual characterization of an optical fiber, many positions of attenuation as

a function of temperature would have to be found to fully describe the fiber. After the

footprints of a particular fiber were found, these would be used for the entire fiber

regardless of how many sensors were made from it. This is because each fibers footprint

is based on the physical properties of the fiber and they would remain constant for the

entire length of fiber pulled from a single glass ingot.



CHAPTER 5

Experimental Evaluation of Whisper Modes-Reflectometry

The majority of testing of the optical fibers sensitivity to bending and the effects of

the Whispering Gallery mode have been done using Continuous Wave Through

Transmission. This is because larger amounts of energy can be used and the levels of

attenuation can be easily detected. With the higher energy levels the experimental error is

significantly lower than the error involved in using the reflectometry methods. However,

due to the need of equipment capable of detecting multiple positions of bend attenuation,

the OTDR and similar equipment have an important role in the development of a strain

sensor.

In the process of defining and characterizing the effects of the whisper mode using

reflectometry, one is also determining how well this method of testing can detect the

parameters needed to fully describe the strain sensor. The CWTT method of testing

would be the preferred method of strain sensing if there was only one test point and both

ends of the optical fiber were accessible, but this would not be the case in an actual

application of the optical fiber sensor. For structural applications, multiple bends would

be made down the length of one optical fiber serving as individual strain sensors and the

only way to determine individual levels of attenuation would be to use the OTDR method.

For this reason the effects of the Whisper mode on the fibers attenuation must also be

found using an OTDR.

A comparison of attenuation vs. radius change for the singlemode optical fiber was

made using two brands of OTDRs. A Hewlett-Packard OTDR Model 8146 A and an

Ando OTDR Model AQ-7130 were both equipped with 1300/1550 nm singlemode plug-in
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modules. A 1300/1550 singlemode communications optical fiber was tested using the

Rayleigh backscatter method of OTDR detection. Although the cutoff wavelength of this

fiber was different from the fiber used to develop the whisper mode effects with CWTT,

theory predicts that this fiber will also exhibit fluctuations due to the whisper mode.

Figure 5.1 and Appendix E.I show the results of testing the 1300/1550 nm singlemode

optical fiber using the two OTDRs.

0.3 0.4 0.5 0.6 0.7

Fiber Bend Radius (cm)

0.8 0.9

Figure 5.1 a Attenuation vs. Bend Radius for 1300/1550 nm SM Fiber Using the

Hewlett Packard and the Ando OTDRs
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As seen in Figure 5.1 the tests of the OTDRs compared favorably. The oscillations

in attenuation due to the effects of the Whispering Gallery mode are present in both tests

but the accuracy and smoothness of the tests using the CWTT have been lost. This is

mainly due to the reduction in optical energy that can be used in the OTDR method, the

low signal-to-noise ratio, and the smaller number of data points taken. Note that 2 dB/km

of attenuation was added to the results of the Ando OTDR for comparison. It was

assumed that differences in splicing of the fibers and calibration of the OTDRs led to the

increase in attenuation for the Hewlett-Packard OTDR so a linear correction factor could

be added without any loss of accuracy.

Another type of OTDR was tested to determine its abilities in sensing the

attenuation losses due to bending. This was the Opto-Electronics Photon Counting

Reflectometer. The equipment was described as having a better ability in detecting

attenuation than the typical OTDRs. This is due to microwave technology and an

advanced detection method. The specific piece of equipment used was unable to test

singlemode fibers since it was configured to test 850 nm multimode fibers only. For this

reason, a test was conducted on an 850 nm multimode optical fiber to determine the

performance characteristics. The equipment was also not able to detect Rayleigh

backscatter since the data sampler was not taking data at a very high rate (Fresnel

detection mode only) so the attenuation of the free end reflection would be used to find

the attenuation levels due to bending.

Figure 5.2 and Appendix E.2 show the results of testing the 850 nm MM fiber

using the PCR.
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Figure 5.2 a Attenuation vs. Bend Radius for the 850 nm MM Fiber Using the PCR

In comparing Figures 4.12 and 5.2 it is seen that the Photon Counting

Reflectometer produced a smoother curve than the tests using the CWTT on the

multimode fiber. This is partially due to the smaller number of data points tested and the

lower signal-to-noise ratio of the PCR.

The tests of attenuation as a function of bending using the reflectometry methods

show that the lower power levels transmitted through the fiber and the lack of accurate

attenuation position detection reduce the effectiveness of this type of equipment. It is

virtually impossible for the OTDR type equipment to obtain the accuracy found by using

CWTT. This is a problem which must be overcome before a multiple bend strain sensor

can be properly implemented.



CHAPTER 6

Applications of the Optical Fiber Strain Sensor to Test Parts

The characterization of the singlemode optical fiber leads to the assumption that,

with more extensive testing of the fibers sensitivity to temperature, a usable strain sensor

can be obtained which will yield satisfactory attenuation as a function of strain. From this,

test structures capable of utilizing the strain sensor are needed. Through research between

Tennessee Technological University and NASA-MSFC, test structures were designed and

fabricated which could incorporate the optical fiber strain sensor. The strain sensor was

applied to three configurations of test structure, namely a filament wound tube, a filament

wound flat panel, and a polycarbonate (Lexan) flat panel. The design of the parts and the

application of the strain sensor are described in the following sections.

6.1 Application of the Strain Sensor to a

Filament Wound Graphite Tube

A graphite fiber tube was fabricated on a filament winding machine at NASA-

MSFC. The tube was wrapped on a 75 mm diameter mandrel and had a length of

approximately 300 mm. The optical sensor was embedded into the tube since this would

be a typical configuration for sensor applications. A problem is encountered at the places

where the optical fiber exits the structure since the ends of the tube must be machined in

order to remove the part form the mandrel. This means that the optical fiber can not exit

the tube from the ends because the optical fiber would be cut when the tube is'machined.

The only other option is for the optical fiber to exit through the surface of the graphite

tube by crossing the graphite layers which cover the sensor. This too presents a problem

because the places where the optical fiber cross the graphite layers would cause fiber
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bends much smaller than the sensors serpentine bend so the light would be highly

attenuated at the crossings and the sensor would not detect attenuation due to strain. The

problem was solved by developing a fiber optic exit terminator which allowed the optical

fiber to pass through the graphite layers without experiencing bend losses due to the layer

induced bends. A discussion of the development of the terminator is presented in

Appendix F for reference.

A schematic view of the Graphite filament wound tube is shown in Figure 6.1.

Figure 6.1. Schematic View of The Graphite Mandrel Wrapped Tube
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As seen, the strain sensor is composed of a length of fiber bent at three locations

and exiting the tube by use of the terminators. The entire sensor is mounted on a sheet of

uncured pre-preg fiber graphite by a high bond double sided tape manufactured by 3-M

Corporation. The thinness of the tape and the fact that it has no plastic backing make it

ideal for the sensor mounting. Curing of the pre-preg patch will occur when the tube is

cured to avoid unnecessary delaminations in the structure. The center bend is the area of

the fiber which will sense the strain levels and is bent to a prescribed radius. The two

secondary bends serve to orient the optical fiber so that the exit connectors mount flush

with the curved surface of the tube.

The tube is composed of five individually wound layers, each alternating from a

hoop orientation to a helical one. The fiber lay-up for the tube is as follows: (1) the inside

layer is of helical pattern, followed by (2) a hoop, (3) a helical, (4) the transducer patch,

(5) a hoop, and finally (6) a helical layer. The tube with the embedded sensor is cured by

rotating the part in an oven at 350 Degrees F. After the part is cured, machined, and any

excess resin is cleaned from the optical fiber terminators, the sample structure is complete.

6.2 Application of the Strain Sensor to a

Filament Wound Flat Panel

For the application of the sensor to a flat panel the design of the structure is

changed, but the sensor remains the same as the one used in the graphite tube. This will

be the case for most applications involving the strain sensor once the proper design is

found. The flat panel is fabricated on the same equipment as the graphite tube, but the

shape of the mandrel is changed. For the flat panel, the mandrel is a 300 mm b"y 300 mm

flat sheet of aluminum coated with a release agent. The graphite fibers are wrapped

around the square mandrel so the fiber plys are zeros and nineties (Zero degrees from a
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reference direction and ninety degrees from the same reference direction). Due to the

square nature of the mandrel these are the only fiber directions obtainable.

Figure 6.2 shows the orientation of the sensor in the panel.

Zero Direction

Figure 6.2. Schematic View of The Graphite Mandrel Wrapped Flat Panel
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The flat panel consists of five layer of graphite with the sensor embedded three layers from

the bottom. The lay-up of the structure is as follows. (1) the bottom layer is oriented in

the zero direction followed by, a (2) ninety degree layer, (3) a zero, (4) the sensor patch

oriented in the zero direction, (5) a zero, and finally (6) a ninety. The panel was wound

using this configuration and then it was bagged, depressurized, and cured. In order for the

optical exit connectors to withstand the pressure applied to the surface by the bag, sheets

of high temperature rubber were fit over the connectors so they would not experience the

pressure needed to cure the graphite but the rest of the part would. The sample structure

was then cured in an Autoclave at 350 Degrees F.

6.3 Application of Strain Sensor to a Four

Layer Polycarbonate Flat Panel

A multi-sensor test was designed to further study the optical fiber sensor's ability

to detect strain. Since it has been shown that the sensor can be embedded into structural

components such as graphite tubes and panels with relative simplicity, a less sophisticated

structure was fabricated so that the sensor's properties could be more accurately

evaluated. The four layer sample structure was constructed of a polycarbonate plastic

(Lexan) and contained two separate optical fibers each with two prebends to detect strain.

The panel layup and fiber configuration are shown in Figure 6.3.
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Figure 6.3 Configuration of Lexan specimen with Optical Sensors Embedded

As seen, one fiber is located on the neutral axis of the structure between two 3/8" pieces

of Lexan and will be denoted as Fiber 1. A second fiber is placed 3/8" from the neutral

axis of the structure and covered by a 1/8" piece of Lexan which is Fiber 2. Each optical

fiber has two prebends of .375 cm radius, therefore each fiber has two areas which can

detect strain. The individual prebends are considered separate strain gages so there are

four gages embedded within the part. The sensors are denoted as SI, S2, S3, and S4 as

shown in Figure 6.3. Sensors S2 and S4 are located at the midplane of the width of the

part while S1 and S3 are at positions one inch from the midplane. Sensors S1 and S4 are

on the neutral axis fiber while S2 and S3 are above the N/A. This type of configuration

allows several different tests to be performed by simply changing the load position and

direction of the three point bend fixture.

The layers of polycarbonate used to form the structure are bonded with methylene

chloride instead of an epoxy type adhesive. The methylene chloride acts to melt the plastic

which creates a homogenous structure after drying. It should be noted that methylene

chloride is a chemical which can be used to dissolve the plastic buffer which surrounds the
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optical fiber so a coating must be applied to the optical fiber before embedding to avoid

changing the physical properties of the fiber. Once the optical fibers are mounted, the

sheets of Lexan are brushed with methylene chloride, assembled, and clamped for drying.

The graphite filament wound tube, the graphite flat panel, and the Lexan flat panel

will be used to study the capabilities and limitations of the embedded strain sensor.



CHAPTER 7

Evaluation of The Strain Sensor Embedded in a Test Structure

The analysis of the optical fibers sensitivity to bending leads to the need of testing

the strain sensor in an actual manufactured part. The graphite tube, graphite flat panel,

and the Lexan flat panel previously discussed are used as the sample structures to simulate

how the sensor will behave in real loading conditions. Since it was found that the OTDRs

tested could not produce the required accuracy only one bend will be used so that the

maximum accuracy can be found by using CWTT testing.

Temperature tests to determine the radius of the serpentine bends embedded in the

test structure were made on the graphite flat panel. The setup is similar to the one shown

in Figure 4.13 except that the sample structure replaces the taper fixture. A heat source is

applied to the surface of the part and temperature readings are taken on both the top and

bottom surface. Two temperature readings are required since it would be difficult to

experimentally determine the temperature at the center of the structure where the sensor is

without damaging the optical fiber or weakening the structure. The two temperatures are

used to find an average temperature which is a good approximation of the center

temperature.

The tests of attenuation vs. fiber bending were performed using the three point

bend fixture shown in Figure 7.1.
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Force = F
!

F/2 F/2

Figure 7.1. Three Point Test Fixture Used to Find the Attenuation vs. Bending for the

Sample Structures

The three point bend fixture was fitted with a force transducer and deflection sensing

gauges therefore stress and strain could be found for use in Equations 2.192 and 2.193 to

determine the attenuation as a function of fiber radius change. The Seastar equipment was

used as the laser source and the optical output power was displayed on a LeCroy sampling

oscilloscope. Figure 7.2 shows the setup of the test bed for detecting attenuation as a

function of fiber bend radius in the sample structures.

Three Point
Fixture Diode

Driver

O/E
Converter Load Cell

Amplifier

Optical Fiber —-" Load Cell Cable .

Figure 7.2. Test Setup for Determining the Relation of Attenuation to Fiber Bend Radius

using a Sample Structure
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Using this setup and the three sample structures, test were performed to determine the

attenuation to fiber bend relations. From the temperature testing, the serpentine bend

radius would be found which allows the attenuation as a function of bend radius for the

structure to be compared to the theoretical attenuation values found from the taper test.

The results are outlined in the following sections.

7.1 Temperature Testing of The Flat Panel to Determine

The Serpentine Bend Radius

The flat graphite panel was tested using CWTT and a heat source to determine the

sensor's temperature characteristics. In the process of fabricating the serpentine sensor, a

3/8" Diameter mandrel was used to produce the bends. It has been found that the bends in

the optical fiber tend to drift slightly in the curing process of the graphite material,

therefore the actual fiber bend radius is slightly larger than the mandrel radius. Without

the ability to determine the exact bend radius, the accuracy of the sensor would be reduced

since the attenuation to strain relation is based on experimental results obtained from an

unmounted fiber. The results obtained from this temperature test will be compared to the

ones found in Chapter 4 of this thesis.

Figures 7.3, 7.4, and Appendix G. 1 show the results of the temperature test

performed on the flat graphite panel.
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From the temperature testing of the flat panel the mean value of attenuation is

found to be .78824 with the first, second, and third temperature rates of .03395, .2037,

and .3734 respectively. These values would normally be compared to a table similar to

Table 4.1, but upon viewing this table it is seen that data was only taken at major locations

such as Peaks, Middles, and Valleys. Also the temperature tests using the taper were not

taken at radii larger than .4608 cm so the initial bend of the serpentine due to the mandrel

is larger than any radii tested. Although the temperature testing presented in this thesis

serves only as a guide line to the complete characterization of an optical fiber, it should be

noted that the temperature test performed on the flat panel produced a mean value of

.78824 with a first frequency of .03395. From the values shown in Table 4.1, the first

frequency suggests that the fiber bend radius is at a position to the left of a point of

synchronous coupling and at the middle of a whisper mode oscillation (see Middle 2 and

Middle 4). Using the attenuation level of 78.8 percent obtained from the mean and the

first frequency position, it is seen that from the theory of the temperature characterization,

the bend radius should be at the center of the whisper oscillation between Valley 5 and

Peak 6. From Table A. 3 it is found that the mid point of this particular whisper oscillation

is at a fiber bend radius of .47136 cm. This value compares very well with the radius of

the mandrel used to mount the fiber which was .47625 cm.

7.2 Graphite Tube under Three Point Loading

The filament wound graphite tube with the embedded optical strain sensor was

tested using the three point bend fixture. The optical fiber embedded in the tube was a

1300 nm single-mode fiber. A test of attenuation vs. fiber bend radius using the taper test

was performed on the same fiber that was embedded in the graphite tube. Although the

taper test is experimental in nature its results can be considered a semi-theoretical relation
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of the attenuation of the fiber in the tube since the test is not actually of the fiber while in

the sample structure. Since the characterization of the optical fibers sensitivity to bending

was not done in enough detail, an actual serpentine bend radius is unable to be found.

Because of this, the initial bend radius of 4.7625 mm made from the mandrel is used to

find the semi-theoretical attenuation levels and compare the semi-theoretical and

experimental data. Figure 7.5 and Appendix G.2 show the results of the attenuation vs.

fiber bend radius change for the tube test.
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Figure 7.5. Theoretical and Experimental Results for Attenuation vs. Radius Change due

to Three Point Loading of the Graphite Tube
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As seen, the incremental radius changes obtainable are much smaller for the three point

bending test (experimental) than for the taper test (semi-theoretical). This is simply

because the radius changes using the taper can not be accurately incremented on such a

small scale since the optical fiber is moved from one bend radius to another. The fiber in

the graphite tube is stationary and the bending is causing the radius changes of the

structure. From Figure 7.5 it is also noted that the bend radius is reduced as the structure

is loaded. This is because the sensor was located at the top of the graphite tube under

bending and the fiber experienced compression due to the deformation. The tube was

loaded from zero Ibf to approximately 1300 Ibf. Both the tube and the test fixture could

withstand much higher forces but since the load was not distributed across a large area,

the center load point delaminated the composite and depressed into the tube.

The experimental and theoretical data for the graphite tube test show several

comparisons. Although only six semi-theoretical data points are within the experimental

radius change region, the maximum attenuation values are around the same bend radius

for both. From Figure 7.5 it is seen that the semi-theoretical data has a lower attenuation

percentage than the experimental data. If the actual serpentine bend radius was slightly

larger than the approximation used to find the semi-theoretical values, the semi-theoretical

data would have higher attenuation percentages since they would be closer to the top of

the whisper oscillation. This suggests that the serpentine bend drifted slightly to a larger

radius in the sample structure as pointed out in pervious comments.

7.3 Flat Graphite Panel under Three Point Loading

The fabricated graphite panel was tested using the same setup as the gfaphite tube

except that the source and receiver were of a different wavelength. The fiber embedded in

the graphite panel was the same 850 nm single-mode optical fiber used to obtain the first

correlations of attenuation as a function of bend radius with the pronounced whisper
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effects (Figure 4.5). Again the theoretical comparisons are made with respect to

experimentally obtained values of attenuation vs. bend radius using the taper test. Figure

7.6 and Appendix G.3 show the results of the testing flat panel with three point loading.
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The panel was loaded from zero Ibf to approximately 50 Ibf. The three point

fixture was setup where there was a 10 mm spacing between the bottom two load points.

This allowed for maximum deflection and accuracy while minimizing delamination due to

over loading.

The results from this test have several important points. Again the theoretically

obtained values using the taper test have large incremental radius changes compared to the

three point bend values. This shows that characterization of the attenuation properties of

the optical fiber need to be more accurate in order to describe the sensing abilities. The

fluctuations noted in this test are very pronounced. Upon examination of the points of

high and low attenuation it was found that the bend length due to the specific bend radii

were increasing by one wavelength between each attenuation fluctuation. This suggests a

wavelength dependent phase interference between two rays of light. Referring to the

theory describing the Transition losses we see that these fluctuations are very similar to

the descriptions of this type of loss. This idea is further supported by noting that the

difference in attenuation levels for the peaks and valleys of the oscillations are on the order

of the ones found by preceding researchers.

7.4 Lexan Flat Panel Subjected to Three Point Loading

The 4 layer Lexan sample structure was tested using the same setup as the graphite

tube and panel. The same type of 850 nm SM optical fiber that was embedded in the flat

graphite panel is also used for this test. The optical fibers were prebent to a radius of .375

cm at the test points and exited the structure as pigtails instead of by the boot connectors

to reduce any inadvertent attenuation from removable type fiber splices. Due to the

multiple gage configuration of the strain sensors, different loading configurations were

used to study individual sensor responses. Eight tests were performed on the Lexan

structure and are labeled as Tl through T8 as shown in Figure 7.7.
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Figure 7.7 Schematic of Lexan Specimen Showing Load Test Points

For the three point tests, the center load point is directly above the serpentine

prebends for each sensor. The span for the two lower bend points is eight inches so for

any particular test, only one strain sensor experiences stress. Table 7.1 shows the tests

performed, which sensor was active, and the type of stress seen by the sensor.

Table 7.1. Descriptions of the Tests Performed on the Lexan Specimen

Test# Active Sensor Fiber # Type of Stress Distance from
Sensor to N/A

Tl
T2
T3
T4
T5
T6
T7
T8

S2
S3
S2
S3
SI
SI
S3
S3

F2
F2
F2
F2
Fl
Fl
F2
F2

Compression
Compression

Tension
Tension

Compression
Tension

Compression
Tension

3/8"
3/8"
3/8"

1"
1"
1"
1"

3/8"
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A line in Table 7.1 would read as follows: For Test 1 (Tl), Sensor 2 (S2) of fiber 2 (F2)

experienced compressive stress since it is above the neutral axis, N/A, of the part by 3/8 of

one inch while Sensor 1 (SI) on fiber 1 saw no stress. From these tests, the behavior of

the optical strain sensor will be evaluated to determine attenuation characteristics for a

controlled structure.

The Lexan panel was tested using eight positions and configurations. The results

will be used to make several comparisons. These are: attenuation as a function of

structural loading for both the stressed and unstressed fibers at one position, Attenuation

as a function fiber bend radius which will be used to compare to the whisper mode taper

testing, and finally a correlation of attenuation to structural strain to show the sensors

ability to detect strain. These results are presented in the following section.

7.4.1 Lexan Specimen Tests Relating Attenuation To Structural Loading

Using the three Point bend fixture from the previous testing, the Lexan specimen

was tested and a correlation of optical attenuation to structural loading was developed.

Figures 7.8 to 7.15 and Appendices G.4 to G. 11 show the results of the three point tests

performed on the Lexan specimen relating attenuation to structural loading. These

appendices also contain data that will be used relate attenuation to fiber bend radius and

attenuation to structural strain.
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As seen from Figures 7.8 to 7.15, the Lexan panel was loaded above 400 Ibf in all

cases but did not exceed 600 Ibf. This was because previous tests of a similar Lexan

specimen showed that, although theory suggested a yield strength of over 8000 ksi, the

structure failed at approximately 5000 ksi. These figures show how the light in the optical

fiber is attenuated as the structure is loaded. For each test, there is one optical sensor

which is at a strain location and one which receives no strain. If there is no strain on the

optical fiber there is no fiber curvature change. Upon viewing the setup of the bending

test and the amount of load applied, it is seen that the structural radius change is too large

to contribute to attenuation in the optical fiber. Thus it can be concluded that the

unstrained optical fiber should not show attenuation effects due to structural bending of

the sample.

The reasoning of the strain-attenuation relation mentioned in the pervious

paragraph can be used to determine to validity of the tests performed on the Lexan

structure. In Figures 7.8 to 7.15 it is seen that both optical fibers are shown with a

correlation of attenuation to load. For the sensor which is unstrained, there should be a

horizontal curve indicating that there is no attenuation change due to load. In Figure 7.12,

the unstrained sensor shows a significant attenuation change as the structure is loaded and

therefore shows that the loading was no performed correctly. Tests 4, 5, 6, and 7 were

performed with the structure loaded on the thin side parallel with the laminate layers. Due

to the strength of the Lexan and this type of loading configuration, the panel was prone to

tilt while under loading so the neutral axis was no longer at the center of the structure and

the optical sensor experienced strain. For this reason, Test 5 is considered invalid and will

not be studied further. The facts that omit Test 5 should be noted since they also lessen

the accuracy of the other side loaded tests.
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7.4.2 Lexan Specimen Tests Relating Attenuation to Fiber Bend Radius

Figures 7.16 through 7.22 show seven of the eight tests performed on the Lexan

panel and compare optical attenuation to optical fiber bend radius. As mentioned, Test 5

was considered invalid due to poor loading conditions. For these figures, only the stressed

sensor is shown. The fiber bend radius is based on the structural stress at the load point.
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From these figures it is seen that the optical fiber experiences attenuation as the

structure is stressed. Tests 1, 2, and 7 are stressed in compression so the fiber bend radius

decreases while tests 3, 4, 6, and 8 are in tension so the bend radius increases. For all of

the tests, the initial bend radius of .375 cm is used.

7.4.3 Lexan Specimen Testing Compared to Taper Test Data

Figures 7.16 through 7.22 can be compared to the semi-theoretical results of the

taper test since both relate attenuation to fiber bend radius. From the layout of the optical

fibers and their strain sensitive bends in the Lexan structure ( see Figure 7.7) it is seen that

different tests produce results on the same sensor. One test will produce tension results

while another will give compression data for the same sensor. For this reason, certain

tests can be shown together for a comparison of taper test and Lexan experimental data.

In Figure 7.23, Tests 1 and 3 from the Lexan specimen and the results of the taper

test from Chapter 4 of this thesis ( Figure 4.16) are overlaid for comparison. Tests 1 and

3 are the Compression and Tension tests respectively for Sensor 2. In order to enhance

details, only a portion of the chart is shown.
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Figure 7.24 shows the comparison of the taper test and Tests 2 and 8 of the Lexan

Sample. Tests 2 and 8 are compression and tension respectively for Sensor 3. Figure 7.25

shows the results of Tests 4 and 7 compared to the taper test.



120

40 ,

35

30

25

20

15 -

10

\

\
\

. 1

•

1
»•

,

I

*
•r

* 1ur^Ll> i\ii
4»

— 1

~^l

^

z

]

*

™ TestS

<=> Test2

• T" laper

1 1

0.3 0.35 0.4

Fiber Bend Radius (cm)

0.45

Figure 7.24. Tests 2 and 8 From Lexan Specimen Overlaid onto Taper Test Data

40 -r

35

^ 30
g,

I 25

20

15

10
0.3 0.32 0.34 0.36 0.38 0.4

Fiber Bend Radius (cm)

Taper

Test?

Test 4

0.42 0.44

Figure 7.25. Test 4 and 7 Overlaid onto Taper Test Data



121

The final tests to be compared to the taper test data are numbers 5 and 6 which are

Compression and Tension tests respectively and are shown in Figure 7.26. Due to the

inaccuracy of test number 5 the data is not presented for comparison.
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Figure 7.26. Lexan Test 6 overlaid onto The Taper Test Data
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From the comparisons shown in Figures 7.23 through 7.26 it is seen that the data

for the taper test has few similarities to the data collected from the Lexan specimen tests

when presented in raw form. The whisper modes present in the taper test far out weigh

the fluctuations shown in the specimen testing but there is still some fluctuation present.

Upon examining the physical differences between the taper test and the Lexan test

it is seen that the only difference is that the buffer of the optical fiber in the taper test is

surrounded by air while the Lexan test fiber is surrounded by Lexan. This difference

seems to lack significance until it is realized that the interface between the optical fibers

cladding and the buffer is an important factor in the Whispering Gallery mode theory (See

Chapter 2 Section 2.2). Upon reviewing the structure of the Lexan specimen used in the

test it is seen that the individual layers of Lexan are bonded using Methylene Chloride, a

plastic solvent which softens the plastic and allows the layers to weld together. Since the

optical fibers buffer is composed of a thin plastic coating, it too would be softened by the

Methlyene Chloride used to bond the layers of Lexan. This would lead to a change in

buffer composition which would effect the cladding buffer interface. If the interface is

altered, the constructive and destructive interference between Whisper modes and the

guided modes would be affected and the attenuation properties of the optical fiber would

not be the same.

Since the Lexan specimen is made in separate layers and the optical fibers are

bonded to the layers before assembly, optical transmission readings were taken before the

specimen was assembled in order to assess the quality of the fiber placement. Upon

comparing the transmission powers before and after layer bonding it was noticed that the

power was dramatically reduced after curing. Comparing the values for optical

attenuation for the two cases it was found that the differed by a factor of approximately 9.
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Upon reviewing the laws of Reflection and Refraction it is found that a change in

index of a material which interfaces another material will not affect the direction of a

reflected ray but will change the amount of energy reflected. If the amount of energy

reflected is reduced, the contribution of the energy from the Whisper mode to the guided

mode would be reduced, thus lowering the effects of the mode interference. This would

mean that the variations in attenuation over the whisper modes would be reduced and a

more stable signal would be obtained.

From the previous discussion it was stated that the difference in media surrounding

the optical fiber might play an important role in determining the effects of the Whispering

Gallery Mode. By altering the cladding/buffer interface, the constructive and destructive

interference of the whisper mode to the guided mode could be changed which might

reduce the attenuation fluctuations. Referring to Figures 7.23 through 7.26 it is seen that

this could be the case with the Lexan tested optical fibers but, the details are hidden by the

attenuation differences.

Since it was decided that the only effect of changing the interface would be the

change in attenuation level, an attenuation correction factor was applied to the data for the

Lexan tests. This factor, which will be referred to as the interface correction factor, is

used to compare embedded optical fibers with an optical fiber surrounded by air. The

correction factor is not used to scale the level of attenuation, it is used to scale the effects

of the whisper mode. Therefore if there were no whisper modes present in a set of data,

the correction factor would not greatly affect the data. This is accomplished by

subtracting the attenuation offset from the data, multiplying the correction factor by the

whisper fluctuation, and then adding the offset back to the data.

In the following figures, an interface correction factor of 9 was applied to the data

from the Lexan tests. Appendix G. 12 provides the numerical data of the tests both with
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and without the correction factor applied. Using this method, the whisper attenuation

levels obtained in the Lexan tests are multiplied by 9 in order to compensate for the energy

lost due to the interface change. Figure 7.27 shows the corrected data for Tests 1 and 3

of the Lexan specimen compared to the taper test. Figures 7.28 through 7.30 show the

results of applying the interference correction factor to the Lexan tests 2, 8, 4, 7, and 6.
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Figure 7.27. Comparison of Taper Test With Corrected Data from Lexan Tests 1 and 3
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Figure 7.28. Comparison of Corrected Lexan Tests 2 and 8 to The Taper Test
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Figure 7.29. Comparison of Lexan Tests 4 and 7 to Taper Test
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Figure 7.30. Comparison of Lexan Test 6 and Taper Test

From Figures 7.27 through 7.30 it is seen that by applying the interface correction

factor to the data from the Lexan tests, the effects of the whisper modes are more

pronounced and compare better with the initial taper tests of an exposed fiber. Figures

7.27 and 7.28 show excellent comparisons between the taper test data and the Lexan test

data. The notable differences between the tests are: the radius values which correspond

to peaks of the whisper mode, the height of the whisper mode fluctuations, and the radius

increment between peaks of the whisper mode. These differences will be discussed in

Chapter 8 of this thesis.

7.4.4 Lexan Specimen Tests Relating Attenuation To Structural Strain

Using a controlled test such as the Lexan panel testing, a good approximation of

the structural strain can be formulated from the physical properties of the structure even

with the addition of an embedded optical fiber. This is because the method of bonding the

layers of the polycarbonate produces a uniform bond without the introduction of bonding
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agents. Also the Methylene Chloride softens the polycarbonate so that the optical fiber

embeds into the layers as the specimen dries so the layers are not separated by the fiber.

Since the final result of the characterization of optical attenuation is to produce a

strain sensor, the structural strain of the Lexan specimen is compared to the optical

attenuation of the sensor. Figures 7.31 through 7.37 show how the optical attenuation

correlates with structural strain.
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Figure 7.31. Structural Strain vs. Attenuation For Lexan Test 1 (Compressive Stress)
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Figure 7.36. Structural Strain vs. Attenuation For Lexan Test 7 (Compression)
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Figure 7.37. Structural Strain vs. Attenuation For Lexan Test 8 (Tension)
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Figures 7.31 through 7.37 show the relation of strain to optical attenuation. The

data shows a range of strains from 0 to 12000 micro strain (micro in/in). In Figure 7.31 it

is seen that the optical attenuation varies linearly with strain up to approximately 4000

micro strain. If viewed on an attenuation versus bend radius chart, this area would

correspond to the side of a whisper mode fluctuation. Figure 7.32 shows a correlation

which is not as linear as test 1 but still possesses a simple function through 12000 micro

strain and it is interesting to note that this range of strain detection is much larger than

typical strain gauges can withstand without failure of the strain detector. Similar results

were obtained for Test 3, which is the same sensor as Test 1 but loaded in tension. Tests

4 and 6 did not provide useful correlations between strain and attenuation since the optical

power was not greatly attenuated over the strain range tested. Tests 4 and 7 use the same

sensor as Tests 2 and 8 so these tests can be compared. Tests 4 and 8 produced little

attenuation changes until high strain levels were reached. This leads to the conclusion that

the sensor was either not responding due to mounting errors or that the initial bend radius

was at a position where the whisper mode has a peak or valley and would not attenuate

the light. In comparing Tests 2 and 7 it is seen that Test 2 is exponential shaped while

Test 7 is parabolic in nature. Since the loads applied to the structure were not high

enough to deform the specimen and the optical fiber did not lose transmission, the loading

conditions must have been poor for test 7 which is a side loading condition. This problem

was previously addressed in this thesis and should be taken into consideration when

studying the results of Tests 4, 5, 6, and 7.

From the testing of the Lexan specimen it is seen that although the optical

attenuation is not a linear function over the complete load range tested, there are ranges of

strain which have simple linear correlations to the optical attenuation.



CHAPTER 8

Conclusions and Recommendations For Future Research

In the study of optical fibers as strain sensors, both the descriptions of energy

propagation and the results of sensor testing are very complex. For this reason, the

discussion of the mathematical models, analytical derivations, and the experimental

development were started from basic principles. Descriptions of test procedures and

example scenarios, setups, and types of equipment were also used to simplify the

procedures involved in the thesis. Some of the conclusions that can be made from the

testing are presented in this chapter along with research recommendations that will bring

further insight into the problems of the whispering gallery mode and transition losses and

eventually lead to the development of a usable strain sensor.

From Chapter 2 it was found that the attenuation of light as a optical fiber is bent

is composed of two separate losses, namely transition losses and pure bend losses. Since

the strain sensor is based upon the optical fibers sensitivity to bending, detailed evaluation

of these losses was made and the result was that both possessed oscillatory attenuation

functions as the fiber was bent. The transition losses produce attenuation oscillations on

the order of .2 dB while the oscillations present in the pure bend loss were much larger.

Due to the extreme nature of the pure bend oscillations they have been studied in detail [4]

and found to be caused by a whispering gallery mode combining with the guided mode in

the optical fiber. Both types of bending losses were found in experimental research for

this thesis. The whispering gallery modes found in Reference [4] were not experimentally

tested as thoroughly by Harris and Castle as the testing for this thesis therefore details of

the mode are much clearer now. Although more experimental data was collected for this

132
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thesis, all of the properties theorized in [4] were still in excellent agreement with the test

results presented in this thesis.

Several tests were reported in Chapter 4 and used to evaluate the bending losses.

Singlemode and multimode fibers were tested with both matching and non-matching fiber

and source. It was found that for the singlemode fiber, as the number of data points taken

for a test was increased, the whispering effects were more pronounced. The whisper

modes were present in all of the tests to the same degree, but the increments of the data

points determine how much of the fluctuation will be detected. The tests conducted using

125 and 184 data points shows that, although the mean of the attenuation curve is

logarithmic, the whisper modes yield unsatisfactory results. The test using 125 data points

shows the oscillations higher in magnitude than the test with 184 data points because the

peaks of the oscillations occur at radii closer to the test values for the 125 data point test.

Note that if the initial test data (Figures 4.2) were overlaid onto Figures 4.5, it would be

seen that the data corresponds to the curves at the near centers of each whisper peak.

This shows that the initial tests were accurate, but were not conducted with a small

enough increment to detect the whispering effects. The test conducted on the 850 nm SM

fiber using 270 data points showed the same effects of the whisper mode even though the

test was performed almost a year later using a different laser diode. This helps to validate

the stability of the mode coupling and shows that there is not a dependence on the laser

source but a dependence on the fiber.

From Figures 4.5 through 4.10 it can be concluded that the whispering modes

occur consistently at certain radii for separate configurations of fiber and laser'and that

they are dependent upon the selection of fiber and laser combinations.

The tests performed on various fibers using the different laser sources provide the

following conclusions:
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(1.) When the fiber wavelength is less than the laser source used, the light is not

uniformly transmitted through the fiber. A bend in the fiber acts to strip the higher modes

of the laser source and allow a moderately stable signal to be transmitted, but in the

absence of bends the fiber transmits light erratically.

(2.) A large number of data points at different radii are required to accurately test

the effects of bending the SM optical fiber. The whispering effects are overlooked when

the increments between the data is large.

(3.) The singlemode fiber exhibits higher attenuation than the multimode fiber for

all of the bend radii tested.

(4.) The MM fiber did not seem to exhibit the whispering mode found to be

present in all of the SM fibers, but the many modes present in the MM fiber caused the

light to experience an unstable jitter.

(5.) A bend in the MM fiber, no matter how small, could not fully attenuate the

light transmitted through the fiber. The attenuation in the MM fiber was due to mode

stripping caused by bending the fiber and the higher modes being lost to cladding modes.

Table 4.1 shows several useful properties of the optical fiber from the frequency

analysis of the heat test. It is noticed that the different whisper mode position types have a

different 1st frequency. The 1st frequency values for the Peak positions are all very

similar. This is also the case for the Valley positions. If the Middle positions are

separated into two groups, each group has similar 1st frequency values. One of the

Middle groups corresponds to the positions to the left of a synchronous coupling point

while the other is to the right of a synchronous coupling point.

Comparing the 2nd frequencies for the Middle position it is seen that the value of

the frequency increases as the bend radius increases for both of the types of Middle

positions. This is also true for the 3rd and 4th frequency values. This comparison can
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also be made for the test of the flat panel since the bend radius was found to be close to

the middle of a whisper oscillation. Although the bend radius of the fiber embedded in the

flat panel was higher than any radius tested in the temperature correlation study, the fiber

still had a first frequency which matched the ones found in the testing. Also the second

and third frequencies were larger than the ones obtained for smaller fiber bend radii which

helps to confirm that these frequencies increase with increasing fiber bend radius.

From the correlation between attenuation and temperature change and the

temperature rates, information can be obtained which defines what the initial radius is for

the serpentine fiber mounted in or on a structure. Specifically, the temperature

frequencies define what part if the whisper oscillations the radius of bend is on (Peak,

Middle, or Valley) and the mean value of the temperature oscillations describe a line which

crosses the whisper oscillations. With reference to Figure 4.17, when these two criteria

are met the initial bend radius of the optical fiber for the strain sensor has been identified

and quantified. The test of the temperature footprints are only preliminary research used

to describe a method of calibration, but the temperature testing performed on the flat

panel showed accurate results in both mean and frequency values when compared to the

fiber bend radius produced by the mandrel. A complete mapping of the whispering gallery

mode effects on attenuation as a function of fiber bending would be needed to fully

describe the optical fibers behavior.

From the testing in Chapter 5 of the reflectometry methods of attenuation sensing

it is seen that there is still a need for equipment development which can produce the

required accuracy for strain sensing. Due to the design of the typical OTDRs,1hey lack

the ability to sense the minute variations in the attenuation as a function of bending needed

to correctly describe the relationship. The PCR equipment is theorized to posses better

accuracy in attenuation response and also has the advantage of higher position resolution
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down the length of the fiber. Although the configuration of the PCR tested could not

produce the required results, equipment design suggests that this is the type of equipment

that would be needed to sense the small changes in attenuation found for this type of strain

sensing.

The use of the PCR and CWTT in conjunction would be a means of more

accurately describing the strain of a structure. The CWTT method could be used to obtain

a summed dynamic strain for the series of sensors on one fiber while the PCR would be

the means for locating residual damage after a dynamic event. The CWTT method could

also be used as a trigger to tell the PCR when to determine the strain of the structure.

From Chapter 6 it was found that the optical strain sensor can be easily configured

for use in a variety of structures. The sensor can be embedded into any structure which is

composed of layers. The sensor can be configured to exit from virtually any surface of a

structure by means of the exit terminator/connector developed (See Appendix F for more

information).

In Chapter 7 it was found that the optical sensor possesses a correlation between

temperature and attenuation when embedded in a structure. Although the work

performed on the temperature characterization in this thesis was preliminary research, the

flat graphite panel was tested experimentally and the results of the temperature testing

agreed well with the semi-theoretical results.

The three point load testing performed on the various sample structures provided

interesting results which compared well with previous research and theory. The testing

performed on the graphite filament wound tube and the graphite flat panel showed that

more research needs to be performed on the structures in order to evaluate the effects of

embedding optical fibers within the multilayered graphite structures.
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Testing performed on the Lexan sample structure provided insight into how the

optical fiber reacts to being embedded into structures. With multiple sensors embedded

into the structure, a variety of information was obtained which correlated well with theory

and semi-theoretical results. Although the validity of some of the tests, specifically Tests

4, 5, 6, and 7, were questionable due to the equipment used and the load conditions,

several tests had only a few sources of error and the results were in agreement with

theory. The Lexan testing showed that the optical fiber was very responsive to strain but

each sensor had different strain to attenuation correlations although the sensors were

embedded with approximately the same initial bend radius. This shows the need for an

initial bend determination using a method such as the temperature characterization.

It was also found that the optical fibers levels of attenuation varies with different

surroundings. For the Lexan specimen the sensitivity of the optical fiber was reduced by a

factor of 9 by embedding the fiber into the Lexan structure. The interface correction

factor can be used to compensate for the different surroundings, but this function has not

been evaluated to determine its validity or its value for different materials. The

comparisons made between the semi-theoretical taper testing and the Lexan specimen

testing were in good agreement, but some differences were worth noting. The positions

of whisper peaks and valleys were slightly different for the taper testing and for the Lexan

testing. Part of this discrepancy is due to the pre loading of the force transducer needed to

level the load head on the three point equipment. The preload was not compensated for

so the load is slightly larger than the load used to calculate stress. This is evident in the

tables of Appendix G. This causes the compression data to show a larger initial radius

than it actually has and tension data to show a lower radius than actual. If the data had

been properly corrected, the peaks of the Lexan tests would be separated more and would

compare better with the taper test data. Since it was found that none of the optical
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sensors provided the same correlations of attenuation to strain it is evident that the radii

were different for each sensor. Since the temperature characterization is only preliminary

work, an accurate initial bend radius could not be found so the assumed bend radius from

the mandrel was used for the data. This leads to errors in the positioning of the data

overlaid onto the taper test data.

Using the material properties of the Lexan specimen, a correlation of structural

strain to optical attenuation was made. The results of this testing showed that if the initial

configuration of the sensor (initial bend radius, surrounding material effects, and

temperature effects) could be controlled, a usable strain sensor could be developed. In

several cases the optical fiber exhibited strain sensing abilities with ranges of 10000 micro

strain or more.

An important note should be added about the effects of the Whispering Gallery

mode fluctuations. If an optical fiber was developed which lacked the mode fluctuations

present in the singlemode optical fibers it might actually produce a less effective strain

sensor. This is because the oscillations of attenuation due to the Whispering Gallery mode

are increasing the ratio of attenuation to bend radius which increases the sensitivity over

the oscillation area. From the test of the optical fiber in sample structures it is seen that

the changes in the fibers bend radius are much smaller than the changes required to cause

the attenuation to cross multiple synchronous coupling points. Therefore if the sensor is

designed correctly, the attenuation values will follow only one side of a Whispering

Gallery mode oscillation and the sensitivity of the sensor will be large. Without the aid of

the whisper mode oscillations, the attenuation as a function of fiber bend radius would

have almost undetectable changes for the small radius changes. Due to this, the sensor

would be very inaccurate. If the whispering Gallery mode effects could be properly

characterized, a highly sensitive strain sensor can be produced.
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There are several recommendations for future research which can be made since

some of the research for this thesis was preliminary. A more in-depth study of the

temperature characterization for the optical fibers is needed. Once properly evaluated, this

method could possibly be used to determine the initial bend radii of the serpentine optical

sensors. The effects of embedding the sensors in different materials is need to determine

the attenuation to strain correlation. Without knowing the initial attenuation scaling,

accurate strain readings would be impossible. Coatings applied to the optical fiber might

be one solution. A more in-depth analysis of the whisper mode should be made in order to

better understand the optical power issues. This would include using smaller radius

increments between test points until the maximums of the fluctuations are found.
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Tabular Data For Attenuation as a Function of Optical Fiber Bending

Data is Tabulated as Sub-directory APPEND_A in disk Format
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APPENDIX C

Tabular Data for Attenuation as a Function of Temperature Characterization

Data is Tabulated as Sub-directory APPEND_C in disk Format

150



APPENDIX D

Results of Temperature Characterization Using Attenuation as a

Function of Temperature Rate (Fast Fourier Transform)
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APPENDIX E

Data For Attenuation as a Function of Radius Change Using Optical Reflectometry

Data is Tabulated as Sub-directory APPEND_E in disk Format
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APPENDIX F

Termination Methods For Optical Fibers Embedded

in Multilayered Structures
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The termination of an optical fiber as it exits a structure is a sub-topic in the

application of optical fibers as strain sensing devices. Three methods of fiber termination

described are: pigtailing, termination with the use of lenses and prisms, and termination

using a newly developed boot connector. The qualities of each type of termination will be

compared on the basis of simplicity, ease in manufacturing, reliability, and cost.

Production descriptions will also be presented for the connector using prisms and lenses

and for the boot connector.

Methods for terminating an optical fiber as it exits a device are critical in the

application of optical fibers as strain sensing devices. The problem of fiber termination

and connection is made more difficult since the optical fiber is embedded in the composite

structures and cannot be brought through the layers of composite without experiencing

bending. Small radii bends in the optical fiber severely limit the sensitivity of the fiber to

strain induced bending loss and may yield the sensor useless.

In the field of optical communication the main requirement for an optical

connector is that the attenuation levels due to joining fiber ends must be minimal. For

strain sensing applications, the optical fibers are usually embedded in a structure or part

and subjected to a high level of handling after connection. Due to this, the best

connections would not only provide low attenuation losses, but be able to protect the

fragile optical fiber.

Three methods for fiber termination are: pigtailing or leaving a section of optical

fiber exposed at the end of the structure, using a series of lenses and prisms to obtain a

fixed mountable connector, and using a boot which produces a soft bend and terminates

the fiber with a mountable connector. A brief description to the pigtailing method is

described, but the emphases of this paper is on the design and application of the mountable

connectors since they would provide the protection to the optical fibers.
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F. 1 Pigtailing of Optical Fibers

The most simplistic method to exit a structure with an optical fiber is to leave a

free length of fiber at the edge of a part. This method, known as pigtailing, is very cost

effective since the only requirements for connection is the use of a standard glass splice or

a fusion splicing technique. The disadvantages of this method are in reliability, stability,

and orientation of exit direction.

The pigtail fiber is very susceptible to breakage at the point of structure exit since

it is unprotected and very fragile. Normally the buffer on the fiber allows for sufficient

bending to avoid breakage, but since the fiber is fixed to the structure at the exiting

surface, slight bends of the pigtail lead to a sharp bend radius at the exit and can easily

cause breakage. Also if the fiber is embedded in a composite structure, the resin bleed off

on the fiber makes the buffer brittle and decreases the fibers ability to bend without

breaking. When the structure with the optical fiber embedded is being produced, tested,

or placed in assembly, the fiber is susceptible to breakage due to the high level of human

handling and the smallness of the fiber size. The other main disadvantage of the pigtailing

method is the exit orientation of the fiber. The optical fiber must exit on the plane with

which the fiber is placed. This allows for only two dimensional placement of the fiber as it

exits a structure or part. For optical fibers embedded in a structure, the fiber can only exit

from the sides of a part which leads to problems when the part is machined, or placed in

assembly. The many disadvantages of this method greatly outweigh the cost advantage.

F.2 Connectorization Using Prisms and Lenses

A method for eliminating the problems of pigtailing optical fibers is to-use a

mountable terminating connector. Connectors offer a fixed end which allows optic cables

to be attached directly to the structure without the need for a permanent connection such

as splicing. A connector which employs Gradient Index (GRIN) lenses and a ninety
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degree prism has been developed which provides protection to the delicate fiber and

allows for cable connection.

As shown in Figure F. 1, the connector relies on the basic principles that light

exiting a medium travels in a straight line.
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Glass Capillary Holder-
Aluminum Sleeve

Glass Capillary^

GRINLense

Aluminum Block
Supporting Prism

Figure F.I. Prism-Lens System For Fiber Termination
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For an entrance connector, the light from a pigtailed source is lead into the

connector through a glass capillary which centers the fiber on a GRIN lens. The GRIN

lens is mounted with its surface touching a 90 degree prism. An identical setup of

capillary and GRIN lens is placed on the other face of the prism allowing the light to be

passed through the connector. The light enters the first GRIN lens from the source fiber,

is passed through the glass of the prism, and exits the connector through the second GRIN

lens and fiber. Due to the index changes in the lenses, the point source entering the lens

travels as a sine wave as shown in Figure F.2.

Full Pitch .5 Pitch .25 Pitch

Figure F.2. Sine Wave Light Pattern Through GRIN Lens
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If the lens is cut to a .25 pitch length, the point source is magnified, which allows

for ease in alignment at the prism surfaces. The lenses also have property of converting a

broad source to a point source so the second GRIN lens reduces the enlarged light to a

point and transfers the light into the exiting fiber.

The two aluminum sleeves are machined using a lathe with the flange sides cut

after machining to mate with the prism block. The prism block is manufactured using a

milling machine which allows for precision parallel surfaces with good surface flatness.

Glass capillary holders are used for their compatibility to the glass capillaries and GRIN

lenses. The connector is mounted with the embedded glass holder permanently attached

to the aluminum sleeve while the exposed glass holder is not fixed and can be removed

until optical testing is desired. The connector can be embedded completely as long as the

top of the exiting aluminum sleeve is not covered. This allows for the same connector to

be used with a variety of structure thicknesses.

The advantages of this connector type are: the optical fiber is not exposed to the

environment and cannot be inadvertently broken, the optical cables to the equipment do

not have to be permanently fixed to the structure and can be connected only when needed,

and the exit direction of the fiber is unlimited so long as the entrance and exit ports are

separated by ninety degrees. The cost of this type of connection is approximately ten

times the cost of pig tailing the optical fibers, but the prism-lens connector does not have

the disadvantages of the pigtail connection.

Disadvantages of the prism-lens system are in the alignment of the lenses to the

prism and the amount of light attenuation produced from the interfaces. Due to the small

size, the separate parts of the connector must be glued instead of mechanically fixed thus

some drift during bond setup is experienced when the connectors are made. In order for

the connector to transmit light, the aluminum sleeves must be exactly ninety degrees from
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each other in two dimensions and their centers must be at the same plane point on the two

sides of the prism. Any misalignment experienced in curing the bond epoxy yields an

unusable connector. The attenuation of the connector is large compared to commercial

connectors due to the multiple interface surfaces. The connector has four splice points,

two between the fibers and the lenses and two between the lenses and the prism. The

mirror like surfaces on the glass reflect a portion of the light at each interface. The

probability of misalignment is also increased by these numerous interfaces. The high level

of production difficulty and the cost of the connector reduce the advantages of this

method.

F.3 Connectorization Using The Boot Connector

A third method for termination and connection of optical fibers makes use of a soft

radius bend and a base support foot to terminate surface mount fibers or exit composites

with embedded fibers. The connector does not require alignment of optics such as lenses

or prisms, but still retains the desired properties of the prism-lens system. As shown in

Figure F.3 below, the connector is composed of a support foot, a tube which allows the

fiber to exit the composite, and a ferrule which can be polished and connected to an optic

cable with a female-female mating sleeve.

Exit Tubes Ferrule

Side View Top View

Figure F.3. Boot Connector For Fiber Termination
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The connector has the same good qualities of standard pigtailing since it does not

contain lenses or have multiple interfaces. Design of the connector is based on the optical

fibers ability to sustain bends of large radii, with respect to the fiber diameter, and still

transmit light. For strain sensing applications, the optical fiber is of a serpentine

configuration in the structure or part, so a bend larger than the serpentine bends will not

attenuate the light. The only attenuation of the connector is between the ends of the

sensor fiber and the cable leading to the equipment which is equivalent to pigtailing.

The boot, formed from three machined aluminum parts, is surface tapered and

rounded to reduce any resin rich regions around the connector and provide a stable base

for the connector tube. The ferrule is mounted to the aluminum tube by a sized sleeve

providing the proper ferrule length and cavity to epoxy the connector. Although the

connector cannot obtain an exit angle greater then forty-five degrees, it allows the

termination to be on the surface of the structure or part and provides protection to the

delicate optical fibers. The connectors cost is approximately 4 times the cost of pigtailing

and is simplistic in design. It can be fabricated to confirm to virtually any part design and

still provide connector losses comparable to pigtailing and splicing. The boot of the

connector can be made of virtually any machineable or moldable product as long as the

material can withstand the cure temperatures of the optical epoxy and the composite part.

The only limitation of this type of connector is that the bend radius of the connector tube

must be greater than the bend radii of the serpentine fiber mounted or embedded.

F.4 Summary of Termination Methods

The proper termination and connectorization of optical fibers embedded in

composite structures has more requirements than the standard communications industry.

The connectors must provide protection for the optical fibers as well as exhibit low

attenuation at the connection.
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Three types of connections presented were standard pigtailing, connecting with a

series of lenses and prisms, and connection using a soft bend boot. The advantages and

disadvantages of each are as follows:

The pigtail provides low cost and simplistic connection, but does not protect the

optical fiber as it exits the structure. With the pigtail connection, the only fiber orientation

upon exit is from the end of the part and is limited to the sensor plane. If the fiber is

broken, the sensor is rendered useless.

The lens-prism connector offers protection to the optical fiber and allows the

connections to be made from the surface as well as the side, but production difficulties and

high attenuation due to multiple interfaces reduce the effectiveness of the connector. The

connector must be perfectly aligned on two axes and have entrance and exit sleeve centers

aligned. The cost of this type of connector is also high compared to the other two

methods.

The connection using a soft bend and a rounded boot provides the positive

properties of both pigtailing and connecting with the lens-prism system. The attenuation is

minimized by having only one interface, the fiber is protected, the cost is reduced, and the

exit orientation is not limited to the structure end or the plane of the sensor. The

connector base can be machined from various materials such as aluminum, plastic, steel, or

monolithic graphite or can be molded to conform to almost any surface configuration.

The only requirements for this type of connection is that the base material is capable of

withstanding the cure processes for the optical epoxy and the composite and that the bend

radius of the connector is larger than the bend radius of the serpentine. The connector can

be fitted with industry standard ferrules which increases compatibility with products

already on the market.
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Of the three types of connectors discussed, the soft bend boot seems to exhibit the

greatest advantages with the fewest weaknesses. The ease in production and the flexibility

of this connector allow a wide range of connector placement configurations from one

standard connector.
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Results From testing Sample Structures Under Three point Loading

Data is Tabulated as Sub-directory APPEND_G in disk Format
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APPENDIX H

Data Aquisition Program Used to Transfer Data From LeCroy Sampling Oscilloscope to a

Computer
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10 '***** This Prgram Is Used With The LeCroy Sampling
20 '***** Oscilloscope To Retrieve Data For The Optical
30 '***** Fiber Strain Sensing Tests. TheRS-232on
40 '***** The LeCroy Is Connected To The 9-Pin Com2 Of The
50 '***** Computer. Note A NULL MODEM Must Be Used For
60 '***** Communications.
70 '
80 '***** Communications Port and Output Files Initialization
90 '
100 open "com2:9600,n,8,l" as #1
110 open "b4ptnuml .dat" for output as #2
120 open "b4femeal.dat" for output as #3
130 open "b4fesdel.dat" for output as #4
140 open "b4frmeal.dat" for output as #5
150 open "b4ffsdel.dat" for output as #6
160 open "b4clmeal.dat" for output as #7
170 open "b4clsdel.dat" for output as #8
180 open "b4c2meal.dat" for output as #9
190 open "b4c2sdel.dat" for output as #10
200'
210'***** Initializing Computer/Oscilloscope Connection
220'
230 print #1, chr$(27)+"R"
240 remote$=input$(10,#l)
250' print "remote="remote$
260 for x = 1 to 500
270'
280 '***** Triggering Of Oscilloscope
290'
300 print #1, "TRMD NORM"
310print#l, "FE:FRST"
320 print #1, "FF:FRST"
330 ini$=input$(29,#l)
340' print "ini="ini$
350 delay 10
360'
370 '***** Stopping Trigger
380'
390 print #1, "TRMD SINGLE"
400'
410 '***** Calling For Mean and Standard Deviation of Signals
420'
430 print #1, "FEiPAVA? MEAN,SDEV"
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440 feini$=input$(46,#l)
450' print "feini="feini$
460 input # 1 ,femean
470 print "femean="femean
480 bl$=input$(9,#l)
490' print "bl$="bl$
500 input #l,fesdev
510 print "fesdev="fesdev
520 B2$=INPUT$(5,#1)
530' PRINT "B2$="B2$
540 print #1, "FF:PAVA? MEAN,SDEV"
550 ffini$=input$(33,#l)
560' print "ffini="ffini$
5 70 input # 1 ,ffinean
580 print "ffmean="ffinean
590 C1$=INPUT$(9,#1)
600' PRINT "C1$="C1$
610 input #l,ffsdev
620 print "ffsdev="ffsdev
630 C2$=INPUT$(5,#1)
640' PRINT "C2$="C2$
650 print # 1, "C1 :PAVA? MEAN, SDEV"
660 clini$=input$(33,#l)
670' print "clini="clini$
680 input # 1 ,c 1 mean
690 print "clmean="clmean
700 D1$=INPUT$(9,#1)
710' PRINT "D1$="D1$
720 input #l,clsdev
730 print "clsdev="clsdev
740 D2$=INPUT$(5,#1)
750' PRINT "D2$="D2$
760 print #1, "C2:PAVA? MEAN,SDEV"
770 c2ini$=input$(33,#l)
780' print "c2ini="c2ini$
790 input #l,c2mean
800 print "c2mean="c2mean
810 E1$=INPUT$(9,#1)
820' PRINT "El$="£!$
830 input #l,c2sdev
840 print "c2sdev="c2sdev
850 E2$=INPUT$(5,#1)
860' PRINT "E2$="E2$
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870'
880 '***** Printing Input Data To Output Files
890'
900 print #2,using "####.#";x
910 print #3,using "+#.######AAAA";femean
920 print #4,using "+#.######AAAA";fesdev
930 print #5,using "+#.////////////AAAA";ffinean
940 print #6,using "+#.////////////AAAA";ffsdev
950 print #7,using "+#.##M##AAAA";clmean
960 print #8,using "+#.////////////AAAA";clsdev
970 print #9,using "+#.######AAAA";c2mean
980 print #10,using "+^.////////////AAAA";c2sdev
990 print x" loop(s) completed"
1000'
1010'***** Prompt user to restart sequence when ready
1020'
1030 print "press any key to take next data, press 'q' to end"
1040 input aaa$
1050 if aaa$="q" then goto 1100
1060 next x
1070'
1080 ****** Setting Oscilloscope To Local Mode
1090'
1100print#l,chr$(27)+"L"
1110 beep
1120 print "done"
1130 end




