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ABSTRACT 

Computational ft.uid dynamics is being used increasingly to predict ft.ows for 

aerospace propulsion applications, yet there is still a need for an easy to use, computa­

tionally inexpensive turbulence model capable of accurately predic~g a wide range 

of turbulent flows. The Baldwin-Lomax model is the most widely used algebraic 

model, even though it has known difficulties calculating flows with strong adverse' 

pressure gradients and large regions of separation. The modified mixing length model 

(MML) was developed specifically to handle the separation which occurs on airfoils 

and has given significantly better results than the Baldwin-Lomax model. The success 

of these calculations warrants further evaluation and development of MML. 

The objective of this work was to evaluate the performance of MML for zero 

and adverse pressure gradient flows, and modify it as needed. The Proteus Navier­

Stokes code was used for this study and all results were compared with experimental 

data and with calculations made using the Baldwin-Lomax algebraic model, which is 

currently available in Proteus. 

The MML model was first evaluated for zero pressure gradient flow over a flat 

plate. then modified to produce the proper boundary layer growth. Additional modifi­

cations, based on experimental data for three adverse pressure gradient ft.ows, were 

also implemented. The adapted model, called MMLPG (modified mixing length 

model for pressure gradient flows), was then evaluated for a typical propulsion ft.ow 

problem, ft.ow through a transonic diffuser. Three cases were examined: flow with no 

shock. a weak shock and a strong shock. 
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-
The results of these calculations indicate that the objectives of this study have 

been met. Overall, MMLPG is capable of accurately predicting the adverse pressure 

gradient flows examined in this study, giving generally better agreement with experi­

mental data than the Baldwin-Lomax model. 

iii 

-
The results of these calculations indicate that the objectives of this study have 

been met. Overall, MMLPG is capable of accurately predicting the adverse pressure 

gradient flows examined in this study, giving generally better agreement with experi­

mental data than the Baldwin-Lomax model. 

iii 



TABLE OF CONTENTS 

Page 

. LIST OF TABLES ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. vi 

LIST OF FIG'URE.S ................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. vii 

LIST OF SYMBOLS ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. x 

CHAPTER 

I. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 

1.1 Motivation and Objectives .................................... 1 

1.2 Overview ................................................. 3 

II. BACKGROUND ............................................... 4 

2.1 The Proteus Navier-Stokes Code. . . • . . . . . • . . . . . . . . . .... • . . . . . . . . . . 4 

2.2 Algebraic Turbulence Modeling and the Baldwin-Lomax Model .. • . . .. 5 

2.3 The Modified Mixing Length Turbulence Model. . • • . • . . . • . . . . . • . . . • 9 

lIT. EVALUATION AND MODIFICATION OF MML. . . . • . . . . . . . . • • . . . . .• 14 

3.1 Optimization of Shear Stress Estimate .......................... 14 

3.2 Evaluation and Modification for Zero Pressure Gradient Flows ....... 20 

3.3 Modifications for Adverse Pressure Gradient Flows. . . . . . • • . . . . • . .. 25 

3.4 Final Model ............................................... 33 

3.5 Averaging for Multiple Boundaries. . . . . . . . . . . . . . • . • . . • . • . . . . . .. 38 

IV. ADVERSE PRESSURE GRADIENT TEST CASES. . . . • . . . . . . . • . . • . .. 39 

4.1 Weak Shock Case ............... ~ ......................... . 41 

4.2 No Shock Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 

4.3 Strong Shock Case . . . . . . . . . . . . . . . . . . . . . . • . . . . . • . . . • . . • . . . .. 49 

iv 

TABLE OF CONTENTS 

Page 

. LIST OF TABLES ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. vi 

LIST OF FIG'URE.S ................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. vii 

LIST OF SYMBOLS ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. x 

CHAPTER 

I. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 

1.1 Motivation and Objectives .................................... 1 

1.2 Overview ................................................. 3 

II. BACKGROUND ............................................... 4 

2.1 The Proteus Navier-Stokes Code. . . • . . . . . • . . . . . . . . . .... • . . . . . . . . . . 4 

2.2 Algebraic Turbulence Modeling and the Baldwin-Lomax Model .. • . . .. 5 

2.3 The Modified Mixing Length Turbulence Model. . • • . • . . . • . . . . . • . . . • 9 

lIT. EVALUATION AND MODIFICATION OF MML. . . . • . . . . . . . . • • . . . . .• 14 

3.1 Optimization of Shear Stress Estimate .......................... 14 

3.2 Evaluation and Modification for Zero Pressure Gradient Flows ....... 20 

3.3 Modifications for Adverse Pressure Gradient Flows. . . . . . • • . . . . • . .. 25 

3.4 Final Model ............................................... 33 

3.5 Averaging for Multiple Boundaries. . . . . . . . . . . . . . • . • . . • . • . . . . . .. 38 

IV. ADVERSE PRESSURE GRADIENT TEST CASES. . . . • . . . . . . . • . . • . .. 39 

4.1 Weak Shock Case ............... ~ ......................... . 41 

4.2 No Shock Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 

4.3 Strong Shock Case . . . . . . . . . . . . . . . . . . . . . . • . . . . . • . . . • . . • . . . .. 49 

iv 



V. SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 

REFERENCES .................................................... 60 

APPENDICES •........•........•.............. ~ . . . . . . . . . • . . . . . . .. 64 

APPENDIX 1: GOVERNING EQUATIONS OF PROTEUS. . . . . . . . . . . . . . .. 65 

APPENDIX 2: ARTIFICIAL VISCOSITY AND GRID CONVERGENCE ..... 70 

APPENDIX 3: THE BALDWIN-LOMAX TURBULENCE MODEL ••.•..•.. 78 

.... "", 

v 

V. SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 

REFERENCES .................................................... 60 

APPENDICES •........•........•.............. ~ . . . . . . . . . • . . . . . . .. 64 

APPENDIX 1: GOVERNING EQUATIONS OF PROTEUS. . . . . . . . . . . . . . .. 65 

APPENDIX 2: ARTIFICIAL VISCOSITY AND GRID CONVERGENCE ..... 70 

APPENDIX 3: THE BALDWIN-LOMAX TURBULENCE MODEL ••.•..•.. 78 

.... "", 

v 



LIST OF TABLES 

Table Page 

1. Parameters used in pressure gradient modifications. • . . . • . . . . . . • . • . . . .. 30 

2. Computational times for flat plate flows. . . • . . . . . . . . . . . . . . . . . . . . . . . .• 37 

3. Shock location and Mach number, weak: shock case .......... . . . . . . . . . 45 

4. Maximum Mach number, no shock case .........•................... 48 

5. Shock location and Mach number, strong shock case ........•.......... 52 

6. TIme differencing schemes in Proteus . . • . . . . . . . . . . . • . . . . . . . . . . . . . .. 69 

vi 

LIST OF TABLES 

Table Page 

1. Parameters used in pressure gradient modifications. • . . . • . . . . . . • . • . . . .. 30 

2. Computational times for flat plate flows. . . • . . . . . . . . . . . . . . . . . . . . . . . .• 37 

3. Shock location and Mach number, weak: shock case .......... . . . . . . . . . 45 

4. Maximum Mach number, no shock case .........•................... 48 

5. Shock location and Mach number, strong shock case ........•.......... 52 

6. TIme differencing schemes in Proteus . . • . . . . . . . . . . . • . . . . . . . . . . . . . .. 69 

vi 



LIST OF FIGURES 

Figure Page 

1. F(y) profiles for attached and separated flow conditions •................ 8 
(a) Attached flow 
(b) Separated flow . 

2. Dimensionless mixing length distribution across a turbulent boundary layer, 
taken from reference 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11 

·3. Mixing length profJle for the MML modelS .••...•.•.••.•...••.•••••• 13 

4. Estimation of 'tw using equation (3.3) ....•...•..•.............•.•.. 16 

5. nlustration of flow over a flat plate. ............................••. 18 

6. Computational grid for zero pressure gradient flat plate case ...... '. . . . • . .. 18 

7. Velocity-defect profiles for zero pressure gradient flat plate flow, Rex=7xl06. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 19 

(a) MML 
(b) BLM 

8. Shear stress profile near the wall for zero pressure gradient flat plate flow, 
Rex=7xl06 ................................................... 21 
(a) MML 
(b) BLM 

9. Velocity-defect profiles for zero pressure gradient flat plate flow at three 
Reynolds numbers . . • . . . . . . . . . . . . . . . . • . . . . . . • • . • . . . . . . . . . . . . . .. 22 
(a) MML' 
(b) BLM 

10. Turbulent viscosity for zero pressure gradient flat plate flow at three Reynolds 
numbers. . . . . . . . . . . . . . . . . . . . . . . : . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 24 
(a) MML 

. (b) BLM 

11. Velocity-defect for zero pressure gradient flat plate flow calculated using the 
modified MML of section 3.2 ........... . . . . . . . . . . . • . . . . . . . . . . . .. 26 

vii 

LIST OF FIGURES 

Figure Page 

1. F(y) profiles for attached and separated flow conditions •................ 8 
(a) Attached flow 
(b) Separated flow . 

2. Dimensionless mixing length distribution across a turbulent boundary layer, 
taken from reference 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11 

·3. Mixing length profJle for the MML modelS .••...•.•.••.•...••.•••••• 13 

4. Estimation of 'tw using equation (3.3) ....•...•..•.............•.•.. 16 

5. nlustration of flow over a flat plate. ............................••. 18 

6. Computational grid for zero pressure gradient flat plate case ...... '. . . . • . .. 18 

7. Velocity-defect profiles for zero pressure gradient flat plate flow, Rex=7xl06. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 19 

(a) MML 
(b) BLM 

8. Shear stress profile near the wall for zero pressure gradient flat plate flow, 
Rex=7xl06 ................................................... 21 
(a) MML 
(b) BLM 

9. Velocity-defect profiles for zero pressure gradient flat plate flow at three 
Reynolds numbers . . • . . . . . . . . . . . . . . . . • . . . . . . • • . • . . . . . . . . . . . . . .. 22 
(a) MML' 
(b) BLM 

10. Turbulent viscosity for zero pressure gradient flat plate flow at three Reynolds 
numbers. . . . . . . . . . . . . . . . . . . . . . . : . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 24 
(a) MML 

. (b) BLM 

11. Velocity-defect for zero pressure gradient flat plate flow calculated using the 
modified MML of section 3.2 ........... . . . . . . . . . . . • . . . . . . . . . . . .. 26 

vii 



12. Local skin friction coefficient for zero pressure gradient flat plate flow; MML of 
section 3.2 used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

13. Mixing length profiles at three pressure gradients.2S 
••••••••••••••••••• 28 

14. Velocity-defect for zero pressure gradient flow calculated using the modified" 
~ of section 3.3 .....•..•.••.....•....•....•••.•..•...• " •.••• 30 

15. Velocity-defect for mild pressure gradient flow ...........•........... 31 
(a) Modified MML of section 3.3 
(b) BLM 

16. Velocity-defect for strong pressure gradient flow .....................• 32 
(a) Modified MML of section 3.3 
(b)BLM 

17. Velocity-defect profiles computed using MMLPG 
(a) Zero pressure gradient flow. . . . . • • . • • . . . . • • . • . • . . . • . . . . . . • . . .• 35 
(b) Mild pressure gradient flow. • • . . • . • . . • . . . . . . . . . • •. • • . • . • • • • . .• 35 
(c) Strong pressure gradient flow . . . . . . . . . . . . . • . . . . . • . . . . . . . . • • . .. 36 

18. nlustration of the Sajben diffuser geometry ......•........•....... : .. 40 

19. Computational grid for the Sajben diffuser .........................• 40 

20. Static pressure history at two locations on the top wall: just upstream and just 
downstream of the normal shock . . . . . . . . • . . . . . • . . . • . . . . • . . • . . . . . . . 43 
(a) MMLPG 
(b) BLM2 

21. Static pressure distribution on the top and bottom walls of the Sajben diffuser, 
weak: shock case ......... '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 
(a) Topwall 
(b) Bottom wall 

22. Static pressure distribution on the top and bottom walls of the Sajben diffuser, 
no shock case •••••••••• -••••••••• : ••••••••••••••••••••••••••• •• 47 
(a) Topwall 
(b) Bottom wall 

23. Shock static pressure on top wall for the Sajben diffuser, strong shock case .. SO 

24. Static pressure distribution on the top and bottom walls of the Sajben diffuser, 
strong shock case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 51 
(a) Topwall 
(b) Bottom wall 

viii 

12. Local skin friction coefficient for zero pressure gradient flat plate flow; MML of 
section 3.2 used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

13. Mixing length profiles at three pressure gradients.2S 
••••••••••••••••••• 28 

14. Velocity-defect for zero pressure gradient flow calculated using the modified" 
~ of section 3.3 .....•..•.••.....•....•....•••.•..•...• " •.••• 30 

15. Velocity-defect for mild pressure gradient flow ...........•........... 31 
(a) Modified MML of section 3.3 
(b) BLM 

16. Velocity-defect for strong pressure gradient flow .....................• 32 
(a) Modified MML of section 3.3 
(b)BLM 

17. Velocity-defect profiles computed using MMLPG 
(a) Zero pressure gradient flow. . . . . • • . • • . . . . • • . • . • . . . • . . . . . . • . . .• 35 
(b) Mild pressure gradient flow. • • . . • . • . . • . . . . . . . . . • •. • • . • . • • • • . .• 35 
(c) Strong pressure gradient flow . . . . . . . . . . . . . • . . . . . • . . . . . . . . • • . .. 36 

18. nlustration of the Sajben diffuser geometry ......•........•....... : .. 40 

19. Computational grid for the Sajben diffuser .........................• 40 

20. Static pressure history at two locations on the top wall: just upstream and just 
downstream of the normal shock . . . . . . . . • . . . . . • . . . • . . . . • . . • . . . . . . . 43 
(a) MMLPG 
(b) BLM2 

21. Static pressure distribution on the top and bottom walls of the Sajben diffuser, 
weak: shock case ......... '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 
(a) Topwall 
(b) Bottom wall 

22. Static pressure distribution on the top and bottom walls of the Sajben diffuser, 
no shock case •••••••••• -••••••••• : ••••••••••••••••••••••••••• •• 47 
(a) Topwall 
(b) Bottom wall 

23. Shock static pressure on top wall for the Sajben diffuser, strong shock case .. SO 

24. Static pressure distribution on the top and bottom walls of the Sajben diffuser, 
strong shock case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 51 
(a) Topwall 
(b) Bottom wall 

viii 



· 
25. Velocity profiles for the strong shock case ........................... 54 

(a) xIH = 2.88 
(b) xIH = 4.61 
(c) xIH = 6.34 
(d) xIH = 7.49 

26. Turbulent viscosity ratio, 1lt/J1, for the Sajben diffuser, strong shock case . .. 55 
(a) MMLPG 
(b) BLMI 
(c) BLM2 

27. Comparison of weak shock static pressure distributions, computed using 
MMLPG and three different amounts of artificial viscosity •.•.••........ 75 
(a) Top Wall 
(b) Bottom Wall 

28. Comparison of no shock static pressure distributions, computed using MMLPG 
and two different grids. . . . . . . . . . . • . . • . . . . . • • • . . . . . . . . . . . . . . . . . . . 77 
(a) Top Wall 
(b) Bottom Wall 

ix 

· 
25. Velocity profiles for the strong shock case ........................... 54 

(a) xIH = 2.88 
(b) xIH = 4.61 
(c) xIH = 6.34 
(d) xIH = 7.49 

26. Turbulent viscosity ratio, 1lt/J1, for the Sajben diffuser, strong shock case . .. 55 
(a) MMLPG 
(b) BLMI 
(c) BLM2 

27. Comparison of weak shock static pressure distributions, computed using 
MMLPG and three different amounts of artificial viscosity •.•.••........ 75 
(a) Top Wall 
(b) Bottom Wall 

28. Comparison of no shock static pressure distributions, computed using MMLPG 
and two different grids. . . . . . . . . . . • . . • . . . . . • • • . . . . . . . . . . . . . . . . . . . 77 
(a) Top Wall 
(b) Bottom Wall 

ix 



a, b, C 

A+ 

cf 

cp 

CI 

,C2 

Ccp 

CKIeb 

Cwk 
01,02 

E,F 

ET 

EV,Fv 

fI' f2 

F(y) 

FKIeb 

Fmax 

Fwake 

GI 

G2 

G3 

LIST OF SYMBOLS 

parameters used to compute shear stress 

van Driest damping constant = 26 

local skin friction coefficient 

specific heat at constant pressure 

MML parameter; controls mixing length saturation level 

MML parameter; controls curvature of blending region 

Baldwin-Lomax turbulence model constant = 1.6 

Baldwin-Lomax turbulence model constant = 0.3 

Baldwin-Lomax turbulence model constant = 0.25 

parameters used in turbulence model averaging for multiple walls 

inviscid ftux vectors 

total energy per unit volume 

viscous flux vectors 

parameters used in turbulence model averaging for multiple walls 

function in Baldwin-Lomax turbulence model (equation (C.7» 

Klebanoff intermittency factor 

parameter in Baldwin-Lomax turbulence model 

parameter in Baldwin-Lomax turbulence model (equation (C.6» 

MMLPG parameter; controls mixing length saturation level 

MMLPG parameter; controls curvature of blending region 

MMLPG parameter; controls slope of inner layer mixing length 

x 

a, b, C 

A+ 

cf 

cp 

CI 

,C2 

Ccp 

CKIeb 

Cwk 
01,02 

E,F 

ET 

EV,Fv 

fI' f2 

F(y) 

FKIeb 

Fmax 

Fwake 

GI 

G2 

G3 

LIST OF SYMBOLS 

parameters used to compute shear stress 

van Driest damping constant = 26 

local skin friction coefficient 

specific heat at constant pressure 

MML parameter; controls mixing length saturation level 

MML parameter; controls curvature of blending region 

Baldwin-Lomax turbulence model constant = 1.6 

Baldwin-Lomax turbulence model constant = 0.3 

Baldwin-Lomax turbulence model constant = 0.25 

parameters used in turbulence model averaging for multiple walls 

inviscid ftux vectors 

total energy per unit volume 

viscous flux vectors 

parameters used in turbulence model averaging for multiple walls 

function in Baldwin-Lomax turbulence model (equation (C.7» 

Klebanoff intermittency factor 

parameter in Baldwin-Lomax turbulence model 

parameter in Baldwin-Lomax turbulence model (equation (C.6» 

MMLPG parameter; controls mixing length saturation level 

MMLPG parameter; controls curvature of blending region 

MMLPG parameter; controls slope of inner layer mixing length 

x 



p 

Pt 

Pr 

Q 

R 

Rex 
t 

T 

u,v 

1lt 

V 

x,y 

+ y 

* y 

Ymax 

MMLPG parameter; nondimensional boundary layer thickness 

MMLPG parameters; used to compute 04 

MMLPG parameters; used to compute displacement thickness 

throat height of Sajben diffuser 

coefficient of thennal conductivity 

turbulent mixing length 

static pressure 

total pressure 

Prandtl number 

heat fluxes in the x and y directions 

vector of dependent variables (equation (A.2» 

ratio of exit static pressure to inlet total pressure for Sajben diffuser 

Reynolds number based on x-coordinate 

time 

static temperature 

velocities 

freestream x-velocity 

shear velocity 

total velocity 

difference between maximum and minimum total velocities 

Cartesian coordinates 

y coordinate nondimensionalized by shear length scale 

shear length scale (equation (2.7» 

parameter in Baldwin-Lomax turbulence model 

Clauser's equilibrium parameter 

boundary layer thickness 

xi 

p 

Pt 

Pr 

Q 

R 

Rex 
t 

T 

u,v 

1lt 

V 

x,y 

+ y 

* y 

Ymax 

MMLPG parameter; nondimensional boundary layer thickness 

MMLPG parameters; used to compute 04 

MMLPG parameters; used to compute displacement thickness 

throat height of Sajben diffuser 

coefficient of thennal conductivity 

turbulent mixing length 

static pressure 

total pressure 

Prandtl number 

heat fluxes in the x and y directions 

vector of dependent variables (equation (A.2» 

ratio of exit static pressure to inlet total pressure for Sajben diffuser 

Reynolds number based on x-coordinate 

time 

static temperature 

velocities 

freestream x-velocity 

shear velocity 

total velocity 

difference between maximum and minimum total velocities 

Cartesian coordinates 

y coordinate nondimensionalized by shear length scale 

shear length scale (equation (2.7» 

parameter in Baldwin-Lomax turbulence model 

Clauser's equilibrium parameter 

boundary layer thickness 

xi 



1C 

displacement thickness 

second- and fourth- order artificial viscosity coefficients in constant 
coefficient model 

implicit artificial viscosity coefficient 

parameters determining type of time differencing used 

von Karman constant = 0.4 

constants in nonlinear coeffi~ient artificial viscosity model 

second coefficient of viscosity 

molecular viscosity 

computational coordinate directions 

density 

pressure gradient scaling parameter in nonlinear coefficient artificial 
viscosity model (equation (B.9» 

spectral radius in nonlinear coefficient artificial viscosity model 
(equation (B.6» 

't shear stress 

'tl, 't2 shear stress at interior grid points 

'tXXt ~ 'txy elements of shear stress tensor (equation (A.3» 

vorticity 

Subscripts 

cap capping or saturation value 

e edge of boundary layer 

eff effective 

i, j indexes in the x and y directions 

xii 

1C 

displacement thickness 

second- and fourth- order artificial viscosity coefficients in constant 
coefficient model 

implicit artificial viscosity coefficient 

parameters determining type of time differencing used 

von Karman constant = 0.4 

constants in nonlinear coeffi~ient artificial viscosity model 

second coefficient of viscosity 

molecular viscosity 

computational coordinate directions 

density 

pressure gradient scaling parameter in nonlinear coefficient artificial 
viscosity model (equation (B.9» 

spectral radius in nonlinear coefficient artificial viscosity model 
(equation (B.6» 

't shear stress 

'tl, 't2 shear stress at interior grid points 

'tXXt ~ 'txy elements of shear stress tensor (equation (A.3» 

vorticity 

Subscripts 

cap capping or saturation value 

e edge of boundary layer 

eff effective 

i, j indexes in the x and y directions 

xii 



inner 

max 

min 

outer 

t 

w 

x,y 

Superscripts 

+ 

inner region of boundary layer 

maximum 

minimum 

outer region of boundary layer 

turbulent 

wall 

differentiation with respect to Cartesian coordinate directions 

nondimensionalized by the shear length scale 

xiii 

inner 

max 

min 

outer 

t 

w 

x,y 

Superscripts 

+ 

inner region of boundary layer 

maximum 

minimum 

outer region of boundary layer 

turbulent 

wall 

differentiation with respect to Cartesian coordinate directions 

nondimensionalized by the shear length scale 

xiii 



1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 



1.1 Motivation and Objectives 

CHAPTER I 

INTRODUCTION 

Computational Fluid Dynamics (CFD) is a valuable tool for calculating the 

turbulent flow fields that occur in engineering fluid flow problems. Some of the 

characteristics of turbulent flow include random fluctuations in fluid properties, the 

enhancement of mixing, diffusion and dissipation, and the presence of eddies of 

various sizes. Turbulent flow is, therefore, very difficult to predict theoretically. 

Experiments provide much useful infonnation about turbulent flow fields but are 

costly and time consuming, so CFD is being used increasingly to reduce or optimize 

the amount of experimental testing which must be done. 

Most CFD codes solve the equations of conservation of mass, momentum 

(Navier-Stokes) and energy and, in principle, completely describe the details'ofturbu­

lent flow. However, except for very simple problems, these equations cannot be 

solved exactly due to the limited capabilities 'of computation'aI resources. Most 

engineering problems are primarily concerned with mean fluid properties and not with 

the details of the turbulent fluctuations; the mean properties can: therefore be 

computed using the ReynQlds-averaged fonn of the Navier-Stokes equations. 1 In 

Reynolds averaging, the conservation equations are averaged over a time scale that is 

large compared to the largest time scale of the fluctuating motion. 1,2,3 The averaging 

procedure introduces new terms which represent the turbulent transport of mean 

momentum, heat and mass. The resulting averaged equations are not closed and 
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empirical information, in the form of a turbulence model, must be used to close the 

system. 

A turbulence model is a mathematical model consisting of an equation or set 

of equations which determines the turbulent transport terms in the mean flow 

equations and hence closes the system of equations. 1 Turbulence models give an 

approximate description of the flow by describing the overall effect of turbulence on 

the mean flow, rather than describing the details of the turbulent motion. Since turbu­

lent transport processes depend on factors such as geometry, swirl effects and 

buoyancy, turbulence models, which are usually developed based on hypotheses about 

a certain flow or range of flows, usually have a limited range of applicability. 

Typically, a model which is complex and consists of a large number of equations is 

difficult to use and is computationally expensive. Often this increase in "cost" is not 

proportional to the improvements in the computation. 

For most engineering applications, a turbulence model should be easy to 

implement, computationally inexpensive and applicable to a wide range of flows. 

Algebraic turbulence models, also called zero-equation models, are simple and 

inexpensive, however they generally have only a narrow range of applicability. The 

most widely used algebraic model, the Baldwin-Lomax model (BLM},4 fits this 

description, but it is known to have difficulties calculating adverse pressure gradient 

and separated flows,5-12 the regime it was designed to handle. 

In 1989, the modified mixing length model (MML) was developed and used io 

calculate separated flows over airfoils, flowfields that BLM was unable to accurately 

predict.5 It is based on Prandtl's mixing length hypothesis3 and uses a mixing length 

that is dependent on the local wall shear stress. The objective of this work is to 
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continue the development of MML to e~pand its range of applicability to include 

boundary layer flows with adverse pressure gradients. 

3 

1.2 Overview 

Chapter II gives some background infonnation on the Proteus Navier-Stokes 

code; which" was used to make all of the calculations in this work. It also describes the 

implementation of turbulence into the governing equations and describes problems 

encountered with BLM, the current algebraic turbulence model in Proteus. Chapter II 

also describes the original formulation of MML. Chapter III reports calculations 

made with MML for zero pressure gradient flow over a flat plate, and then describes 

the modifications made to improve these results for both zero and adverse pressure 

gradient flows. The resulting modified version of MML is called MMLPG. Chapter 

IV compares MMLPG and BLM for three transonic diffuser flow test "cases: flow with 

a weak shock, strong shock, and no shock. Chapter V contains a summary of this 

work and a discussion of the conclusions drawn. 
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CHAPTER II 

BACKGROUND 

2.1 The Proteus Navier-Stokes Code 

The Proteus Navier-Stokes code,13. 14 developed at the NASA Lewis 

Research Center, is a· user-oriented, full Navier-Stokes code for aerospace propulsion 

applications. Proteus solves the Reynolds-averaged, unsteady, compressible Navier­

Stokes equations in strong conservation law form. Two separate versions of the code 

exist: one for two-dimensional plane or 'axisymmetric flow, and one for three-dimen­

sional flow. A primary objective of the Proteus effort was to make the code easy to 

use and modify. Therefore, code readability, modularity and documentation were 

emphasized, rendering the code ideal for the insertion and development of a new 

turbulence model. 

The governing equations in Proteus are written in Cartesian coordinates and 

then transformed to a nonorthogonal, body-fitted system (see Appendix 1).13 They 

are solved by marching in time using a fully-coupled altem~ting direction implicit 

solution procedure with generalized first or second order time differencing.15• 16 The 

boundary conditions are also treated implicitly and can be steady fir unsteady. All 

tenns, including diffusion tenns, are linearized to second order using Taylor series 

expansions. The two turbulence models originally available in Proteus are the 

Baldwin-Lomax algebraic model4 and the Chien k-£ two-equation model. 17 

In addition to solving the full, time-averaged Navier-Stokes equations, 

Proteus includes options to solve the thin-layer and Euler equations~ and to eliminate 
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the energy equation by assuming constant stagnation enthalpy. Artificial viscosity is 

used to minimize the odd-even decoupling resulting from the use of central spatial 

differencing for the convective terms, and to control pre- and post-shock oscillations 

in supersonic flow. 13 Two artificial viscosity models are available: a combination 

implicit/explicit constant coefficient model,18 and an explicit nonlinear coefficient 

model designed specifically for flows with shock waves.19 The artificial viscosity is 

discussed in more detail in Appendix 2. At the NASA Lewis Research Center the 

5 

code is typically run either on the CRAY X-MP or CRAY Y-MP computer, and is 

highly vectorized. For all calculations made herein, the two-dimensionallaxisymmet­

~c version of the code was run on the CRAY Y-MP computer. 

2.2 Algebraic Turbulence Modeling and the Baldwin-Lomax Model 

Accurate modeling of turbulence is essential to the computation of complex 

propulsion flow fields. Several types of turbulence models are available, ranging 

from zero-equation algebraic models to mUlti-equation Reynolds-stress models. 

Algebraic models are the most algorithmically simple and computationally inexpen­

sive models and were therefore chosen as the focus of this effort. 

Proteus, along with the majority of Navier-Stokes codes, uses the Boussinesq 

assumption,3 which states that the turbulent stresses behave like the molecular viscous 

stresses and therefore are proportional to the mean velocity gradient. The resulting 

total shear stress for a two-dimensional flow is given by13 

(2.1) 

The effective viscosity is defined as JLeff = JL + JL" where JL is the molecular viscosity 

and JL, is the turbulent, or "eddy" viscosity. The same analogy applies to the heat flux 

and the normal stresses, which are both defined in Appendix I, such that an effective 
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second coefficient of viscosity is defined as Aeff = A + At and an effective thennal 

conductivity coefficient is defined as keff = k + kt. 

Most algebraic turbulence models are based on Prandtl's mQc.ing length 

hypothesis which builds on the Boussinesq assumption.1 Prandtl made an analogy 

between molecular motion and turbulent ft.ow. In molecular motion, the molecular 

viscosity is proportional to the average velocity and the mean free path of the 

. molecules. In turbulent ft.ow, Prandtl assumed that the turbulent viscosity is propor­

tional to the characteristic velocity of the fluctuating motion and to a typical length, 

called the "mixing length", of this motion. In other words, 

6 

(2.2) 

where Vt is the turbulent velocity scale and the mixing length, 1, is·the transverse 

distance over which ft.uid particles maintain their original momentum. Prandtl further 

assumed that the turbulent velocity scale is equal to the mixing length times the veloc­

ity gradient so that 

(2.3) 

The quantity 11 dUI is the velocity scale, where u is the component of velocity in the 
dy. . 

primary ft.ow direction and y is the coordinate perpendicular to the primary ft.ow direc-

tion. 

The current algebraic turbulence model in Proteus, the Baldwin-Lomax model 

(BLM), is given in Appendix 3. It is the most well-known and widely used algebraic 

turbulence model. An extension of the Cebeci-Smith model,20 which requires knowl­

edge of the outer edge of the boundary layer, the Baldwin-Lomax model was devel­

oped to handle separated flows while avoiding the necessity of finding this outer edge. 
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Several references report problems with BLM in regions of strong pressure 

gradient and in flows with large regions of separation. Yu6 reports problems calculat­

ing surface pressures on the outboard wing region of a wing-body configuration when 

the angle of attack is high and separation occurs. Visbal and Knight7 report that the 

BLM outer fonnulation is unsuitable for separated supersonic flow and also is unable 

to predict the recovery of the boundary layer downstream of reattachment. Degani & 

SchiW report that BLM is unsuitable in regions of cross flow separation due to 

ambiguities in computing the outer length scale. Mente~ reports that BLM underesti­

mates the displacement thickness for the increasingly adverse pressure gradient flow 

of Samuel & ]oube~l and that it also gives an incorrect prediction of the adverse 

pressure gradient flow of Driver.22 Potapczu!2 reports problems with BLM in 

predicting the separation and unsteady behavior on airfoils with and without leading 

edge ice accretion. Stock and Haase10 report that BLM does not predict the correct 

trends for Il, or the Reynolds stresses in adverse pressure gradient ~d separated 

flows. 

There are several reasons why BLM has problems computing flows with large 

pressure gradients and large regions of separation. The primary difficulty occurs in 

finding the maximum of the F(y) function (defined Appendix 3), which has two or 

more peaks in regions of separated flow. This behavior is shown in figure 1 taken 

from reference 5. As the relative magnitudes of the local maxima change~ ymax 

. (defined in Appendix 3), may suddenly jump, producing unrealistic discontinuities in 

the turbulent viscosity. Selection of the global maxima often results in a gross over­

prediction of the turbulent viscosity. Some authors 7• 23 have found that choosing the 

outermost peak produces better results, while others have elected to use the innermost 

peak.S To account for upstream turbulence history effects, Visbal and Knight7 used 
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BLM with relaxation. They also found that the BLM constants Ccp and CK1eb (see 

Appendix 3) should vary with Mach number. Sakowski et alII expounded upon this 

by finding a relation for Ccp as a function of Mach number and pressure gradient, but 

encountered problems caused by the vanishing of the Van Driest factor when 'tw ' the 

local shear stress at the wall, approaches zero. To remedy this, they used the local 

shear in place of'tw. Launder and Pridden24 report several modifications to the Van 

Driest facto~ for pressure gradient flows, many of which incorporate the local shear 

stress instead of 'two 

A simpler, yet effective, approach was used by Potapczuk, 5 who developed a 

modified mixing length (MML) model that does not require a boundary layer thick­

ness, but also avoids all problems associated with the determination of a maximum 

F(y). This model is described in detail in the following section. 

2.3 The Modified Mixing Length Turbulence Model 

The modified mixing len~ (MML) model was developed by Potapczu!2 to 

fill the need for an algebraic model to handle turbulent flow with large separated 

regions. The particular problem of interest was an ainoil at angle of attack with and 

without leading edge ice accretions. Previous calculations made with BLM gave poor 

results and the source of the problem was the function F(y), which had mUltiple peaks . . . 

for this flow case. 

The MML model avoids the need to seek a maximum of some ad hoc function. 

In accordance with Prandtl's mixing length theory, the MML model determines the 

mixing length using the wall shear stress and the nonnal distance from the wall, with 

the maximum mixing length capped off at a given value. Thus, it is a two layer 

model, such that the length scale depends on conditions near the surface and remains 
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constant in the separated region~ This assumption is valid since there is no substantial 

enhancement of turbulence in separated regions. The turbulent viscosity is given by 

(2.4) 

where the velocity gradient in equation (2.3) has been replaced by the vorticity magni­

tude, lcol. Figure 2, taken from reference 20, shows the behavior of the mixing length 

in a turbulent boundary layer. Several empirical formulas are available to evaluate the 

inner region,20, 24 which consists of the viscous sublayer and the overlap layer. The 

MML model uses the van Driest formulation,20 which is given by 

- ( ::) linDcr - 'ICY l-e (2.5) 

where A + = 26' and the value of le, the von Karman constant, is 0.4: The quantity y + 

is defined as 

where y * is the shear length scale, 

* J1" y =-== 
Jpl'twl 

(2.6) 

(2.7) 

For y+ ~ SA + (but still in the "inner" region), the mixing length is approximated by 

ley; this is the original Prandtl theory, and is consistent with the well-known logarith­

mic profile. In the outer region of the boundary layer, the outer mixing length behaves 

according to 

* loutcr = constant X y (2.8) 

10 

constant in the separated region~ This assumption is valid since there is no substantial 

enhancement of turbulence in separated regions. The turbulent viscosity is given by 

(2.4) 

where the velocity gradient in equation (2.3) has been replaced by the vorticity magni­

tude, lcol. Figure 2, taken from reference 20, shows the behavior of the mixing length 

in a turbulent boundary layer. Several empirical formulas are available to evaluate the 

inner region,20, 24 which consists of the viscous sublayer and the overlap layer. The 

MML model uses the van Driest formulation,20 which is given by 

- ( ::) linDcr - 'ICY l-e (2.5) 

where A + = 26' and the value of le, the von Karman constant, is 0.4: The quantity y + 

is defined as 

where y * is the shear length scale, 

* J1" y =-== 
Jpl'twl 

(2.6) 

(2.7) 

For y+ ~ SA + (but still in the "inner" region), the mixing length is approximated by 

ley; this is the original Prandtl theory, and is consistent with the well-known logarith­

mic profile. In the outer region of the boundary layer, the outer mixing length behaves 

according to 

* loutcr = constant X y (2.8) 



11 

o.oa 

0.07 

0.06 

I/o 0.05 

0.0'; 

0.03 

0.02 

OOo-~O~.I'--;;-~~~~--~--~--~~~~~--~ 0.2 . 0.3 0.4 0.5 0.6 07 0.8 0.9 1.0 

y/o 

Figure 2. Dimensionless mixing length distribution across a turbulent boundary layer, 
taken from reference 20. 
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The MML model uses a blending function to give a smooth transition between 

the inner and outer layers and is given by 

C1 * y A+ 
( 

+ <;)( (l)) 
l(y) = lC

C2 Y 1- (I-
C1

) l-e , (2.9) 

+ 
Y ~Cl (2.10) 

In this formulation. Cly* is the distance above the surface at which I saturates. and C2 

controls the curvature of the blending region. See figure 3 for a typical MML model 

mixing length profile. 

Calculations made by Potapczuk with the MML model showed improvements 

over the BLM calculations for the prediction of the separated region. the maximum 

lift coefficient and vortex shedding frequencies. Since the MML model was devel­

oped to solve the specific problem of flow over airfoils. a comprehensive evaluation 

of the model for more general flowfields was not a part of that study. The objective of 

the present study is to evaluate the MML model for general zero pressure gradient and 

adverse pressure gradient turbulent boundary layer flows and examine possible 

modifications to improve the performance of the model. 
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CHAPTER III 

EVALUATION AND MODIFICATION OF MML 

The MML model. described in Chapter II, was modified so that it could better 

calculate turbulent boundary layer flows with zero and adverse pressure gradients. 

The first step in this process was to optimize the computation of the wall shear stress 

used in MML. Next, MML was used to calculate a turbulent boundary layer with zero 

pressure gradient. These results exhibited poor agreement with experimental data, so 

modifications were made to MML to remedy this problem. Then modificati~ns corre­

sponding to two adverse pressure gradient flows of Bradshaw25 were successfully 

incorporated into MML. Finaliy, all of the modifications were combined into one 

general model, called MMLPG. 

, 

3.1 Optimization of Shear Stress Estimate 

Since the MML turbulence model is a function of the wall shear stress. it is 

important to accurately calculate this quantity. The wall shear stress is given by 

(3.1) 

The molecular viscosity. J.1. is a very small quantity compared to the velocity gradient, 

(~)w • which is strongly dependent on several fact~rs such as the finite difference 

scheme used, the grid spacing and the numerical features of the code. It is important 

to minimize·the sensitivity of these factors because smaIl changes in the estimate of 

(ou) may actually produce large changes in 'two A more global approach is to use a 
oYw 
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parabolic extrapolation of 'tw ' using the shear stress at two interior grid points, and the 

momentum equation in the streamwise direction, which reduces to 

(3.2) 

at the wall. Using a parabola to define 't, 

2 
't = ay +by+c (3.3) 

where, 

(3.4) 

(3.5) 

(3.6) 

Here, the subscripts 1 and 2 denote interior points as depicted in figure 4. Note that 

'tw=c, since y=O at the wall. Also note that the shear stress at interior points is defined 

by 

(3.7) 

The parabolic extrapolation in equations (3.3) through (3.6) gives a reliable value for 

'tw and avoids problems that could arise from sensitivity of the (~u) estimate. In 
au au Yw 

fact, (cr) can be found from (cr) = 'tw/Ji· 
Yw Yw 
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Figure 4. Estimation of 'tw using equation (3.3). 
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Modifications were made to the Proteus code to calculate the shear stress 

profile in the boundary layer. These modifications made use of the generalized grid 

transformations in Proteus such that 

17 

(3.8) 

where ~y = 'Ilx = 0 for an orthogonal grid. 13 The derivatives in the above equation 

are calculated in Proteus using 3-point, second-order central differencing. To see if 

higher order differencing would improve the calculation, 5-point, fourth-order central 

differencini6 was also used to calculate the velocity gradients. 

The test case of incompressible, zero pressure gradient, turbulent flow over a 

fiat plate, as shown in figure 5, was used to evaluate the shear stress calculations. The 

grid, shown in figure 6,' had 51 points in both the streamwise and normal directions 

and had grid points clustered at the wall to resolve the boundary layer and at the 

upstream boundary to resolve the imposed boundary condition. In addition, it was 

evaluated to insure grid indepence for zero pressure gradient flow. The reference 

velocity, temperature, pressure and length used in Proteus were 33.53 mis, 288.3 K, 

101.3 kPa and 1.98 m, respectively. At the upstream boundary, the velocity profile, 

which was computed using the correlation of Musker,27 was held fixed. The flow was 

computed using both MML and BLM, using both higher and lower order differencing 

of the velocity gradients in the shear stress computation. The MML constants were 

chosen as Cl=3000 and C2=5, which were found to give good results at Rex=7xl06. 

Both turbulence models produced good agreement with experimental velocity-defect 

profiles,28 as shown in figure 7, which shows calculations at RCx=7xl06 made with 

the lower order differencing of the velocity gradients. The quantity Ut in figure 7 is 

the shear velocity, given by Ut = J (It wI / p). The accuracy of the finite differencing 
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Figure 5. lliustration of flow over a flat plate. 

Figure 6. Computational grid for zero pressure gradient flat plate case. 
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produced no noticeable improvement in the velocity profiles, but there were slight 

differences in the shear stress profile very close· to the wall, which can be observed in 

the plots of figure 8. The higher-order differencing produced a smoother shear stress 

profile near the wall, and thus subsequent calculations will make use of the higher­

order calculation of the velocity gradients. 

Near separated regions of flow, 'tw approaches zero which will cause y* and 

thus the mixing length to become infinitely large. To avoid this problem, the follow­

ing.local average used by PotapczuI2 was incorporated: 

(3.9) 

The subscripts in equation (3.9) refer to grid points in the streamwise direction along 

the wall. 

3.2 Evaluation and Modification for Zero Pressure Gradient Flows 

In reference 5, a series of cases were run for flow over a NACAOO 12 airfoil at 

. conditions near stall using both BLM and MML. The MML constants' Cl=2000 and 

C2=5 were chosen based on correlations with experimental data. The Baldwin-Lomax 

model tended to suppress the trailing-edge separation, which occurs on the top surface 

of the airfoil, by over-predicting J1, throughout the separated region. On the other 
. . 
hand, MML predicted high values of J1, only near the separation point, thus allowing 

the reverse flow to develop downstream. In the current study, MML was evaluated for 

turbulent flow over a flat plate at zero pressure gradient, as described below. 

In the preliminary analysis presented in section 3.1, the constants C1 = 3000 

and C2 = 5 were found to give good agreement for Rex = 7xl06. At other locations on 

the plate, i.e., at other Reynolds numbers, the BLM velocity-defect profiles correctly 

exhibit similarity but the MML profiles do not, as shown in figure 9. In a turbulent 
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flow over a flat plate, the boundary layer thickness increases with increasing x­

distance along the plate. To accurately model this flow, the turbulent length scale 

must also increase proportionately with the boundary layer thickness. In MML, the 

outer length scale, as given in equation (2.10), is equal to a constant times the shear 

length scale, y*. The increase in y* with x-distance is negligible, resulting in an 

essentially constant value of the outer length scale for all Reynolds numbers. Plots of 

J.1t , as shown in figure 10, illustrate that the turbulent viscosity profiles calculated with 

MML are nearly the same at all Reynold's numbers, but the BLM J.1t profiles increase 

with increasing Reynolds number. Though MML produced the correct length scales 

for an airfoil near stall,S modifications are needed to make it applicable to general 

boundary layer flows. 

In order to make MML applicable over a range of Reynolds numbers, the 

optimal saturation lengths, or Cl values, were found at several Reynolds numbers. 

The following simplified formulas were used to calculate the inner and outer mixing 

lengths: 

(3.10) 

. ~ . + 
1 cap = KCl . C l ~ Y (3.11) 

Here, t is the nondimensional form of the mixing length, equivalent to l/y *, and the 

outer length scale, t cap, is simply the inner length scale evaluated at y+ = C l - From 

these results, tcap was found as a function of the skin friction, cf, giving 

(3.12) 
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The velocity-defect profiles of figure 11 show that equations (3.10) and (3.12) with 

t = min (t, t cap) , allow the mixing length to grow proportionately with the bound­

ary layer thickness. The modified MML is better than BLM at predicting the local 

skin friction coefficient, cr, as shown in figure 12; the wiggles at the upstream bound­

ary are a result of the imposed upstream boun<;lary condition. 

3.3 Modifications for Adverse Pressure Gradient Flows 

Two equilibrium pressure gradient flows of Bradshaw25 were used' to modify 

MML for adverse pressure gradients effects. Equilibrium turbulent flows are flows 

which have a constant value of Clauser's equilibrium parameter,2 

(3.13) 

In addition, they correspond to a power-law velocity profile distribution, Ue oc xa
, 

where the magnitude of the-exponent, a, indicates the strength of the pressure gradi­

ent. They also exhibit similarity when plotted in velocity-defect coordinates. Three 

flows were examined in the experimental study of Bradshaw;25 these were flows with 

zero, mild, and strong pressure gradients. The corresponding values of the exponent, 

a, are 0, -0.15, and -0.255, respectively; the corresponding values of f3 are 0, 1 and 5. 

The modifications to the turbulence model are based on the trends exhibited in 

the mixing length at the three pressure gradients as shown in figure 13 taken from 

Bradshaw25. Note that for all three pressure gradients, th~ maximum mixing length is 

approximately 0.080, the saturation distance from the wall is approximately 0.40, and 

the slope of the curves near the wall increases with the strength of the pressure gradi­

ent. These three features were used to develop the following model: 
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(3.15) 

A new parameter, G3' has been introduced and the constants C1 and C2 in the original 

MML model have been replaced by the functions Gl and G2' where 

(3.16) 

(3.17) 

Here, G4 is essentially a nondimensional boundary layer thickness which is a function 

of 13 and cf, and G3 controls the slope of mixing length curve and is a function of 13. 

The following correlation was assumed for G4: 

(3.18) 

Separate values of the parameters G3, Gs, and G6, corresponding to each of the three 

pressure gradients, were found and are given in table 1. This results in essentially 

three separate models, one for each pressure gradient, depending on which set of 

parameters is used. The results of these-modifications are compared with Baldwin­

Lomax calculations in the velocity-defect plots of figures 14 through 16. (Note: The 

Baldwin-Lomax. results for the zero pressure gradient case are given in figure 9.) The 

reference conditions used are the same as those given in section 3.1. For the two 

adverse pressure gradient cases, the turbulent velocity profiles at the upstream bound­

ary were computed using a cubic spline fit of the Bradshaw experimental data and 

held fixed; the appropriate pressure gradient was imposed at the freestream boundary. 
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Table 1. Parameters used in pressure gradient modification~. 

Pressure 
Gradient 
Strength f3 G3 GS G6 
zero 0 1.00 23,300 -7.75xl0fJ 

mild 1 1.25 30,100 -1.16xl07 

strong 5 1.53 33,800 -2.09xl07 
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Figure 14. Velocity-defect for zero pressure gradient flow calculated using the 
modified MML of section 3.3. 
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Both cases were computed using the grid of figure 6, but for the strong pressure gradi­

ent case, the number of grid points in the vertical direction was increased to 101. 

3.4 Final Model 

The final step in developing this turbulence model was to combine all of the 

. above modifications to get one general turbulence model: To accomplish this, the 

following correlations were .developed for the parameters G3' GS and G6: 

G3 = 1.0 ~<O.O 

G3 = 1.0 + 0.307(i - 0.0391 (i2 0.0 ~ (i ~ 5.34 

(i >5.34 

Os = 23,300 (i<0.0 

Gs = 23,300 + 8560(i - 1230(i2 0.0 ~ (i ~ 5.34 

Gs = 33, 900 (i > 5.34 

G6 = -7.75xl06 (i<0.0 

G6 = -7.75xl06-4.51 X 106 + 3S6, OOO(i2 0.0 ~ (i ~ 5.34 

G6 =-20,900 ~>5.34 

(3.18a) 

(3. 18b) 

(3. 18c) 

(3.18d) 

(3. 18e) 

(3.18f) 

(3.18g) 

(3. 18b) 

(3.18i) 

The available experimental data is limited to only the three values of (i which are in 

the range 0 ~ (i ~ 5.34, and the quadratic correlations of equations (3.1Sb), (3.1Se) and 

(3.1Sh) are based on this limited data. For (i<0; the values in (3. 1 Sa), (3.1Sd) and 

(3.ISg), were obtained by evaluating the quadratic equations at (i=0. Similarly, for 
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(3)5.34, the values in (3.18c), (3.18f) and (3.18i) were obtained by evaluating the 

quadratic equations at (3=5.34. 

Since (3, which is defined in equation (3.13), is a function of the displacement 

thickness, ai, a correlation was also developed to avoid the problem of calculating al 

directly and thus having to define the edge of the boundary layer: 

(3.19) 

The parameters G7 and Gs were defined in a manner similar to G3, Gs and G6 as given 

below. 

G7 = 2910 (3 <0 

G7 = 2910+ 2700(3 - 343(32 0 ~ (3 ~ 5.34 

G7 = 7560 (3 ~ 5.34 

Gs = -96900 (3 < 0 

Gs = - 988,000 -1.15 x 106(3 + 89,000(32 O~ (3 ~5.34 

Gs = -4.57 X 106 (3 > 5.34 . 

The value of (3 used to define G7 and Gs is lagged in time. 

(3.19a) 

(3. 19b) 

(3.19c) 

(3.19d) 

(3. 1ge) 

(3.19t) 

The final model, called MMLPG, was developed using the equilibrium turbu­

lent flows of Bradshaw and is defined by equations (3.14) through (3.19). The result­

ing velocity-defect profiles for all three pressure gradient flows are shown in figure 17 

and exhibit good agreement with the experimental data, with the exception of the 

strong pressure gradient case. The calculations were performed on a CRAY Y-MP 

computer and the computational times are given in table 2. The strong pressure gradi-
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Figure 17. Velocity-defect profiles computed using MMLPG. 
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Table 2. Computational times for fiat plate fiows. 

(a) Zero Pressure Gradient 

sec.liter.l 
Model Iterations grid point 

BLM 2000 2.02xl0-~ 

MMLPG 2000 2.ooxl0-s 

(b) Mild Pressure Gradient 

sec JiterJ 
Model Iterations grid point 

BLM 3000 2. 14x 1 0-.:) 

MMLPG 3000 2.17zl0-S 

(c) Strong Pressure Gradient 

sec.liter.l 
Model Iterations grid point 

BLM 18,000 2.14xl0-=> 

MMLPG 10,000 1.96xlO-S 
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ent case took considerably longer to reach convergence because the code had difficul­

ties resolving oscillations induced at the upstream boundary, which was a fixed 

velocity profile as mentioned in section 3.3. 

3.5 Averaging for Multiple Boundaries 

If both walls in a given coordinate direction are solid surfaces, the turbulent 

mixing lengths are computed separately at each surface and then averaged. The 

Sajben diffuser, which is described in Chapter IV, has solid walls at the upper and 

lower vertical boundaries, and is a typical example of a geometry which would require 

averaging of the mixing length. The averaging formula of Appendix 3 (equation C.9), . 

which was used to average the Fwake function in the Baldwin-Lomax model, is also 

used here to average the mixing length: 

I = I1fl + 12f2 
fl +f2 

(3.20) 

If the lower and upper boundaries in the vertical direction, are solid surfaces, as in the 

Sajben diffuser, then II and 12 are the mixing lengths at the lower and upper bound­

aries, respectively. The functions fl and f2 are defined in equation C.IO of Appendix 

3. 
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CHAPTER IV 

ADVERSE PRESSURE GRADIENT TEST CASES 

To evaluate MMLPG for some typical propulsion flows, a converging-diverg­

ing duct, called the Sajben diffuser, was used. This duct is the diffuser portion of the 

inlet for a rocket/ramjet propulsion system; detailed experimental and computational 

data are available in the literature for flows both with and without external pressure 

pulse excitations.30-3S This study, however, dealt only with the unexcited flows. The 

geometry of the diffuser is given in figure 18: the throat height, H, is 44 mm; the 

entrance-to-throat ratio is 1.4, and the exit-to-throat ratio is 1.5. The grid, shown in 

figure 19, is the same as that used by references 13 and 34, and has 81 streamwise 

points and 51 vertical points. It was packed in the vertical direction near the walls in 

order to resolve the turbulent boundary layers and in the streamwise direction near the 

throat to resolve the normal shock. . The reliability of this grid is discussed in Appen­

dix 2. Three transonic flow cases were run. The flowfields were determined by 

setting R, the ratio of the exit static pressure to the inlet total pressure. The first case 

had a weak normal shock with R=O.82; the. s~ond case had subsonic flow throughout 

(no shock) with R=O.862, and the third case had a strong normal shock with R=O.72. 

The reference velocity, temperature, pressure and length used in Proteus were 4.72 mI 

s, 292 K, 135 kPa, and .044 m respectively. These values match the values used in 

other numerical simulations of this flow. 13,32,34 The initial conditions were zero 

velocity and constant temperature and pressure everywJ:tere in the flowfield. Both 
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cases were run using MMLPG and two implementations of the Baldwin-Lomax 

model. 

Two slightly different implementations of BLM were used because it was 

discovered, during the course of these calculations, that a slight change in the BLM 

coding, which occurred in the update of Proteus from Version 1.014 to 2.0,13 can 

effect turbulent calculations. References 14 and 34 give results for the weak and no 

shock cases calculated with Version 1.0 of Proteus and using BLM. These calcula-

41 

tions were repeated in the current study using the current version of Proteus, Version 

2.0, and slightly different results were obtained. (These results will be presented later 

in this chapter.) Discrepancies in the results were caused by differences in the imple­

mentation of the BLM model, more specifically, in the Fwalce function. Version 2.0 of 

Proteus computes Fwake using equation (C.6) in Appendix 3, and version 1.0 of 

Proteus computes F wake as 

(4.1) 

which is the formulation stated in the original paper by Baldwin and Lomax.4 The 

BLM implementations using equations (4.1) and (C.6) will be referred to as BLMI 

and BLM2, respectively. 

4.1 Weak Shock Case 

The weak shock case was used as an example case in the Proteus User's 

Manual~ 13.14 and therefore was run first in order to gain familiarity with running this 

type of flow. It was computed as described in reference 13: First the exit pressure 

was gradually reduced to R = 0.1338 to establish supersonic flow throughout the 

diffuser; then it was gradually raised to R = 0.82, the desired ratio to establish the 
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weak normal shock, and iterated until the solution was no longer changing apprecia­

bly with time. A plot of the static pressure on the top wall at two locations, one 

upstream and one downstream of the normal shock, as the solution progresses is given 

in figure 20. This indicates that pressure reaches a steady state level, which, for 

practical engineering purposes, can be considered a converged solution. A closer 

examination of the results indicates that the solution oscillates slightly about a mean 

steady level. This may be caused by inherent unsteadiness in the flow; Salmon et al30 

mention that very low-amplitude, self-sustaining oscillations were observed experi­

mentally. It is more likely that the oscillations present in this calculation are numeri­

cal in nature, which is common for flows with shock waves. The oscillations 

originating at the shock may not be damped out by the artificial viscosity and there­

fore tend to migrate upstream. The artificial viscosity used in Proteus to calculate this 

flow was second- and fourth-order explicit, both using the nonlinear coefficient model 

of Jameson et al; 19 the respective smoothing coefficients are 1(2 and 1<4, as given in 

Appendix 2. For the entire calculation, 1(2 was set to 0.1; K.t was set to .005 for the 

first 6000 iterations, while the exit pressure was changing, and decreased to .0004 for 

the remaining 3000 iterations, which were at a constant exit pressure. More details 

about the effects of the artificial viscosity on this solution are included in Appendix 2. 

The static pressure distribution on the top and bottom walls is given in figure 

21. The small discrepancies just downstream of the shock are due to insufficient 

streamwise grid distribution. The shock location on the upper wall and the shock 

Mach number at the edge of the upper wall boundary layer are given in table 3. Both 

MMLPG and BLM2 do a good job of predicting the pressure distribution on the wall 

and the location of the shock. Each case was run for 9000 iterations and calculations 

made using MMLPG, BLMI and BLM2 required 3.44 x 10-5 sec/iteration/grid point, 
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Table 3. Shock location and Mach number, weak shock case. 

Shock Shock 
Turbulence Mach Location 
Model Number (xIH) 

MMLPG 1.233 1.57 

BLMI 1.309 1.73 

BLM2 1.228 1.49 

Experimen~O 1.235 1.41 
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3.90 x 10-5 sec/iteration/grid point and 3.36 x lO-s sec/iteration/grid point, respec­

tively on the CRAY Y-MP computer. 

4.2 No Shock Case 
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The second diffuser test case did not have a normal shock wave. To compute 

this case .. the exit pressure was gradually lowered to R=0.862 then iterated until the 

solution stopped changing. A steady state solution was reached with subsonic flow 

throughout the entire diffuser. The Proteus default artificial viscosity, which uses the 

constant coefficient model of Steger18 with both fourth-order explicit and second- . 

order implicit artificial viscosity, was used; the smoothing coefficients, £E(4) and £[ 

(defined in Appendix 2), had values of 1.0 and 2.0, respectively. 

The static pressure distribution on the top and bottom walls is given in figure 

22 and shows that MMLPG is clearly better than BLMI and BLM2 at predicting the 

pressure distribution, though it still predicts a larger pressure drop than that given by 

the experimental data. The MMLPG results are similar to the calculations of Hseih et 

al33 who attributed the lower throat pressure to the fact that the experiment was highly 

sensitive to small perturbations in exit pr~ssure. The maximum Mach numbers in the 

diffuser are given in table 4. Though no experimental data is available to compare 

these values, the MMLPG results are in best agreement with the calculations of 

Georgiadis3S who used the PARC Navier-Stokes code36 for the same geometry. Each 

case was run for 9000 iterations and calculations using MMLPG, BLMI and BLM2 

required 3.45xl0-S sec/iteration/grid point, 2.90xl0-S secliteration/grid point and 
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Table 4. Maximum Mach number, no shock case. 

Maximum 
Turbulence Mach 
Model . Number 

MMLPG 0.881 

BLMI 0.972 

BLM2 0.976 
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4.3 Strong Shock Case 

The final diffuser flow computed was the case with a strong normal shock 

positioned in the throat. This case was run in a manner similar to the weak shock 

case: First the exit pressure was gradually lowered to R=O.1338 to achieve supersonic 

flow throughout the diffuser; then it was gradually raised to R=O.72 to establish the 

strong normal shock in the throat region, then iterated there until the solution stopped 

changing appreciably with time. Proteus was run in both steady and unsteady modes 

to try to simulate the experimentally observed self-excited oscillations of217 Hz.30 

Unsteady mode in Proteus is achieved by calculating a global time step whereas 

steady mode uses a local time step to speed up the computation. Neither calculation 

simulated the experimentally observed oscillatory behavior, but instead produced very 

small numerical oscillations in the flow properties. (The artificial viscosity used for 

the strong shock calculations was the same as that used for the weak shock calcula­

tion.) Figure 23 shows the static pressure on the top wall at the experimental shock 

location and illustrates the behavior of these small oscillations; the calculation shown 

was run in unsteady mode with MMLPG. 

The static pressure on the top and bottom walls are presented'in figure 24 and 

the shock location and Mach number at the edge of the top wall boundary layer are 

given in table 5. Both BLM2 and MMLPG predicted the shock ldcation too far 

downstream, while BLMI predicted it too far upstream. The experiment predicted a 

region of separation on the top wall just downstream of the shock with the flow 

reattaching at x/H=6.0. MMLPG predicted a very small region of separation on the 

top wall which reattached at xIH=3.6. BLM2 predicted very small regions of separa­

tion on both the top and bottom walls which reattached at xIH=3.8 and x/H=6.2, 

respectively, and BLMI predicted a separation along the bottom wall that did not 
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Table 5. Shock location and Mach number, strong shock case 

Shock Shock 
Turbulence Mach Location 
Model Number (x/H) 

MMLPG 1.626 3.13 

BLM1 1.411 2.11 

BLM2 1.665 2.90 

Experiment30 1.353 1.98 
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reattach. The separated behavior is illustrated in figure 25, which gives the velocity 

profiles at four locations downstream of the shock. These peculiar results can be 

attributed to the behavior of the turbulent viscosity as shown in figure 26. MMLPG 

and BLM2 compute much higher values of J..lt than does BLM1; this is due to the large . 

increase in vorticity downstream of the shock. In BLM1, as given in equation (4.1), 

the second formula results in Fwake being inversely proportional to the vorticity 

magnitude, and this helps to reduce the value of J..lt for this model. Each case was run 

for 10,000 iterations and the steady calculations using MMLPG, BLMI and BLM2 

required 3.54xlO-5 sec/iteration/grid point, 3.83xlO-5 sec/iteration/grid point, and 

3.82xlO-S sec/iteration/grid point, respectively, on the CRAY Y-MP computer. 
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Figure 25. Velocity profiles for the strong shock case. 
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Figure 26. Turbulent viscosity ratio, J.liJl, for the Sajben diffuser, strong shock case. 
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Figure 26. Turbulent viscosity ratio, J.liJl, for the Sajben diffuser, strong shock case. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

The objective of this work was to modify the MML algebraic turbulence 

model to increase its range of applicability to include zero and adverse pressure gradi­

ent boundary layer flows. To accomplish this objective, modifications were made 

based on experimental data for zero and adverse pressure gradient flat plate flows. 

The resulting model, called MMLPG, successfully predicted the flat plate flows and 

also successfully predicted three transonic diffuser flows. This indicates that the 

objective of this work has been met. 

In order to provide meaningful solutions for turbulent flows, CFD codes 

require good turbulence models. Algebraic models are the simplest and the most 

computationally inexpensive of turbulence models, and so were chosen as the focus of 

this study. Proteus, which was used to make all of the calculations in this work, is a 

Reynolds averaged Navier-Stokes code for aerospace propulsion flows and contains 

the Baldwin-Lomax algebraic turbulence model as a default. The Baldwin-Lomax 

model is known to have problems calculating cer.tain flowfields, namely flows with 

strong pressure gradients and large separated regions. A promising newer model, the 

MML model, produced significantly better results than the Baldwin-Lomax model for 

separated airfoil flows,S but it was not evaluated for other types of flows. The objec­
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To accomplish this objective, MML was installed in Proteus and first used to 

calculate zero pressure gradient flow over a flat plate. These results indicated that the 

original MML model was not allowing for the proper boundary layer growth with 

increasing Reynolds number. To remedy this behavior, a relationship was found for 

the saturation length scale as a function of the local skin friction coefficient. This 

modified version of MML allowed for the proper boundary layer growth and therefore 

produced the correct velocity-defect profiles. Next, MML was modified to calculate 

adverse pressure gradient flows using the experimental data of Bradshaw for zero, 

mild and strong adverse pressure gradient flows. These modifications were combined 

into one generalized model, called MMLPG. This new model accurately predicted the 

zero and adverse pressure gradient flows and exhibited better agreement with experi­

mental data than the Baldwin-Lomax model. 

To more thoroughly evaluate MMLPG for other adverse pressure gradient 

flows, this model was also used to calculate three transonic diffuser flow cases: flow 

with a weak shock, flow wit~ no shock, and flow with a strong shock. These are flows 

typically encountered in aerospace propulsion applications. The MMLPG results 

were compared with results calculated using two slightly different implementations of 

the Baldwin-Lomax model, referred to as BLMI and BLM2. The differences in the 

two models arise from the calculation of the Fwake function, as discussed in Chapter 

N. 

For the weak shock case, MMLPG and BLM2 did equally well in predicting 

the shock Mach Number and location, and also in predicting the static pressure distri­

bution on the top and bottom walls. However, BLMI over-predicted the shock Mach 

number and location and did not match the wall static pressures in the throat region of 

the diffuser. For the no shock case, MMLPG was Significantly better than either of the 
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Baldwin-Lomax models at predicting the static pressures on the walls and MMLPG 

also predicted a maximum Mach number that was in close agreement with the results 

of Georgiadis.35 

The strong shock diffuser flow was beyond the capabilities of all three 

models. Both MMLPG and BLM2 over-predicted the shock Mach number and 

location, as well as the pressure distribution on the walls, while the BLMI results 

were in reasonable agreement for these quantities. None of the models were able to 

correctly predict the shock-induced separation on the top wall; in fact, BLMI 

predicted no separation at all on the top wall yet predicted a very large, unattached 

separation on the bottom wall. The primary reason the MMLPG and BLM2 results 

differ greatly from the BLMI results is explained by the turbulent viscosity values. 

MMLPG and BLM2 gave maximum turbulent viscosity values of 23,000 and 21,000 

times the molecular viscosity, respectively, while BLMI gave a maximum turbulent 

viscosity of only 4,600 times the molecular viscosity. The turbulent viscosity is 

proportional to the vorticity, which becomes very large just downstream of the normal 

shock, however, the FWake function used in BLMI is inversely proportional to the 

vorticity resulting in a lower overall turbulent viscosity. The poor performance of all 

of the models for this case can also be attributed to the fact that all of the models are 

equilibrium turbulence models being used to calculate a flow which is clearly 

nonequilibrium. The poor performance of MMLPG for the strong shock case is also 

explained by the derivation of the model, which is based on experimental data for ~ 

values between 0 and 5, while this flow encountered ~ values as high as 12,000. 

Considering that MMLPG did well at calculating the less severe no shock and weak 

shock flows indicates that it is most likely applicable to other propulsion flows at 

these less severe types of conditions. 
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The flat plate and transonic diffuser results indicate that the modified version 

of the MML model, MMLPG, is capable of accurately predicting turbulent flows with. 

and without adverse pressure gradients. Thus, the objective of this work, which was 

to evaluate the original MML model and modify it to increase its range of applicabil­

ity to include adverse pressure gradient flows, has been met. Future work should 

include continued validation of the model for these types of flows as well as continued 

development of the model to better account for stronger adverse pressure gradient 

flows both with and without separation. 
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APPENDIX 1 

GOVERNING EQUATIONS OF PROTEUS 

The governing equations of Proteus are the compressible Navier-Stokes 

equations. The equations given below are taken from reference 13, but may also be 

found in several references.2,3,38 Since the two-dimensional/axisymmetric version of 

the Proteus code was used for all calculations discussed in this work, the two-dimen­

sional, planar equations are given here. (For the axisymmetric version of the 

equations, which are somewhat more complex, consult reference 13.) 

1. Cartesian Coordinates 

In Cartesian coordinates, the continuity, x-momentum, y-momentum and 

energy equations are written in strong conservation law form, using vector notation: 

where 

oQ oE of oEv oFv - +-+- =- +­ot ox oy ox oy 

p 

Q = pu 
pv 

ET 
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In equation (A.2), the dependent variables are p, pu, pv and Er. the inviscid flux 

vectors are E and F, and the viscous flux vectors are Ev and F yo The normal and 

shear stresses, and the heat ,flux are given by 

(A.3) 
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shear stresses, and the heat ,flux are given by 

(A.3) 



2. Equation of State 
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In addition to the above equations, an equation of state is needed to relate the 

pressure to the dependent variables. Proteus contains the equation of state for an ideal 

gas: 

p = pRT (A.4) 

where R is the ideal gas constant. For a calorically perfect gas, this is equivalent to 

(A.5) 

3. Generalized Grid Transformation 

The governing equations in section 1.0 are written in Cartesian coordinates 

and are not well-suited for nonrectangular geometries and grids with unequal 

spacing.13, 39 To overcome these difficulties, the following generalized grid transfor­

mation is used to transform the governing equations from physical (x, y) coordinates 

to rectangular orthogonal computational (~, 11) coordinates. 

~ = ~ (x, y) 

11 = 11 (x, y) 
(A.6) 

The resulting spatial computational domain is square, and has uniform spacing. The 

chain rule is used to transform the partial derivatives in the Cartesian form of the 
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governing equations, (A.l)-(A.3); for details, refer to Towne et al. 13 The transformed 

equations are written as 

where 

Q=Q 
J 

and J is the Jacobian of the transformation, 

4. Time Differencing 

(A.7) 

(A.8) 

(A.8a) 

(A.8b) 

(A.8c) 

(A.8d) 

(A.9) 

The generalized time differencing scheme of Beam & Warming16 is used to 

approximate the time derivative in equation (A.7): 
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dO /)..00 

91 d (/)..00

) I dOD 92 /)..00

-

1 

- =< -- = -- + --- + -----'7-dt /)..t I +92 at I +92 dt 1 +92 /)..t 
(A.IO) 

+ O[ (9 1 - 4 -92) Llt, (/)..t2
) ] 

An ,,0+1 AD 

where /).. Q = Q - Q , and the superscripts n and n+ I denote the known and 

unknown time levels, respectively. 

The parameters 61 and 62 determine the type of time differencing used. Table 

6 summarizes the available schemes. 

Table 6. Time differencing schemes in Proteus 

91 92 Method Truncation Error 

I 0 Euler implicit ", O(/)..t) 

112 0 Trapezoidal implicit O(/)..t) 2 

1 112 3-point backward implicit 0(/)..t)2 

The Euler implicit method is recommended for steady flows and the 3-point backward 

implicit method is recommended for unsteady flows. 

5. Space Differencing 

Spacial first derivatives in the ~ direction are approximated using the follow­

ing second-order central difference formula. 

(A. 11) 

The computational grid spacing, /)..~, is constant. A similar formula is used for first 

derivatives in the Tl direction. 
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APPENDIX 2 

ARTIFICIAL VISCOSITY AND GRID CONVERGENCE 

High frequency nonlinear instabilities can appear as the Proteus solution 

develops. For example, physical phenomena, such as shock waves, can cause instabil­

ities when they are captured by the finite difference algorithm. In addition, high 

Reynolds number flows may have oscillations resulting from the odd-even decoupling 

inherent in the use of central spatial differencing of the convective terms. Artificial 

viscosity may be used to suppress these oscillations. The two artificial viscosity 

models in Proteus are the constant coefficient model of Steger18 and the nonlinear 

coefficient model of Jameson et al. 19 The implementation of these models in general­

ized nonorthogonal coordinates was taken from Pulliam.40 . 

1. Constant Coefficient Model 

The constant coefficient model uses a combination of explicit and implicit 

smoothing. The standard explicit artificial viscosity uses fourth-order differences. 

Second-order explicit artificial viscosity, which provides more smoothing, is also 

available in Proteus, however it is rarely used because it introduces a large error. The 

implicit smoothing is second order and is used to extend the linear stability bound of 

the fourth-order explicit smoothing. 

The explicit artificial viscosity is implemented in the Proteus alternating 

direction implicit (ADI) algorithm15 by adding the following terms to the right-hand 

side source term for the first ADI sweep. 
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where ei2) and eE(4) are the second- and fourth-order explicit artificial viscosity 

coefficients. The symbols V and Il are the backward and forward first difference 

operators for the first ADI sweep such that 

V'!;Qj = Qj-Qj-l 

Il!;Qi = Q i+1 - Qi 

'V!;Il!;Qi = Q i+1 - 2Qi + Qi-l 

(V!;Il!;)2Qi = Qi+2 -4Qi+l + 6Qi -4Qi-l +Qi-2 

Similar formuias are used in the 11 direction. 

(B.2) 

The implicit artificial viscosity is implemented by adding the following terms 

to the left-hand side of the governing equation. 

(B.3a) 

(B.3b) 

Equation (B.3a) is added for the first ADI sweep and equation (B.3b) is added for the 

second ADI sweep. The constant e] is the implicit artificial viscosity coefficient. 

The optimum values of the coefficients ei2), ei4) and e] vary from problem 

to problem. They should be small so as not to corrupt the physical solution, yet large 

enough to damp any instabilities. The Proteus User's Guide13 recommends starting 

values of eE(4) =1.0, ei2)=1.0 and e[=2.0. 
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2. Nonlinear Coefficient Model 

The nonlinear coefficient artificial viscosity is explicit and contains second 

and fourth-order differences. The following terms are added to the right-hand side of 

the governing equations. 

V; { [ ( j) i + 1 + ( j) J (e~2) a; Q - et) a; v ;a; Q) ) 

+ Vll {['IIJ. + 'IIJ.J (e~2) allQ - e~4) ~ V llallQ).} 
J + 1 J J 

The difference operator a; v ;a; Qi is defined by 

and the expression '" is given by 

where 'II x and 'II y are spectral radii defined by 

(B.4) 

(B.S) 

(B.6) 

(B.7) 

The second- and fourth- order nonlinear artificial viscosity coefficients are a 

function of the pressure field. In the ~ direction, they are given by 

(B.8a) 

(B.8b) 

where 
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(Ji = IPi+1- 2Pi+Pi-l! 
Pi+l +2Pi+Pi-l 

(B.9) 

Similar formulas are used in the 11 direction. 

The parameter (J is a pressure gradient scaling parameter which increases the 

amount of second-order smoothing relative to fourth-order near shock waves. The 

parameters 1C2 and 1C4 are user-specified constants. As with the constant coefficient 

model, the optimum values of 1(2 and 1'4 are problem dependent. Typical values range 

from 1(4=0.005 and 1(2=0.01 for flows with no shocks, to 1'4=0.0004 and 1C2=0.1 for 

flows with shocks. 13 Pulliam gives 1(2=0.25 and K4=0.01 as typical values for an 

Euler analysis. 13, 40 

3. Comments on Artificial Viscosity 

As previously mentioned, artificial viscosity is generally used to minimize 

oscillations which occur when computing high Reynolds number flows and flows with 

shock waves. Since the artificial viscosity terms do not represent anything physical, 

the coefficients should be as small as possible so as not to corrupt the solution, yet 

large enough to damp the nonphysical instabilities. Optimum values of the artificial 

viscosity coefficients vary from problem to problem; the coefficients used to calculate 

the flows presented in Chapters III and IV were selected based on values used for 

similar cases, as given in the Proteus User's Manual. 13 Some representative test cases 

were evaluated to insure that the chosen artificial viscosity did not corrupt the physi­

cal characteristics of the flow. 

The flat plate flows presented in Chapter III were run using the constant 

coefficient model with £i4)=1.0, £E(2)=0.0 and £] =2.0. For these flows, it was possi­

ble to run Proteus with zero artificial viscosity, however the solutions took two to four 

times longer to "converge," or reach a point where the solution stopped changing 
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appreciably with time. Upon close examination, these solutions did not agree as 

closely with experimental data as the solutions computed using artificial viscosity. 
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For the diffuser flows computed in Chapter IV, the artificial viscosity effects 

were examined for the weak shock case. As mentioned in Chapter IV, the nonlinear 

coefficient model was used. A value of 1C2=0.1 was used for the entire calculation, 

with 1C4=0.00S while the exit pressure was changing (i.e, for the first 6000 iterations), 

and 1C4=0.0004 for the remaining 3000 iterations, which were at a constant exit 

pressure. It was not possible to compute this flow without artificial viscosity, so the 

effects of doubling and halving the smoothing coefficients was examined.· The static 

pressure distribution on the top and bottom walls for this comparison (computed using 

MMLPG) is given in figure 27. The solution computed using half of the original 

artificial viscosity was nearly identical to the original solution, indicating that the 

originally chosen artificial viscosity is reasonable for this flow. Doubling the artificial 

viscosity gave a less desirable result in that the normal shock was smeared over a 

greater number of grid points. 

4. Grid Convergence 

Grid convergence is an important factor in the accuracy of a CFD calculation. 

:rhe grids used to make the flat plate and transonic diffuser calculation~ were assessed 

to insure their grid independence. For the zero pressure gradient flat plate calcula­

tions, a 101xlOl grid was initially chosen. The size of this grid was systematically 

reduced in each direction in order to find the coarsest grid that would give a solution 

which would not change if additional grid points were added. The SlxSl grid 

described in Chapter III was chosen based on this study. 

The grid used to make the transonic diffuser calculations had been used previ­

ously by others, 13, 34 so it is probable that this grid gives a reliable solution. As an 
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Figure 27. Comparison of weak shock static pressure distributions, computed using 
MMLPG and three different amounts of artificial viscosity. 
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Figure 27. Comparison of weak shock static pressure distributions, computed using 
MMLPG and three different amounts of artificial viscosity. 
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added check, the number of grid points in each direction was doubled, and the result­

ing 162xl0l grid was used to compute the no shock flow using MMLPG. A compari­

son of these results with the results obtained using the 81 x51 grid of Chapter IV is 

given in figure 28 and indicates that the 81x51 grid is reliable. 
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Figure 28. Comparison of no shock static pressure distributions, computed using 
MMLPG and two different grids. 
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Figure 28. Comparison of no shock static pressure distributions, computed using 
MMLPG and two different grids. 
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APPENDIX 3 

THE BALDWIN-LOMAX TURBULENCE MODEL 

A generalized version of the Baldwin-Lomax algebraic turbulence model4 is 

available in Proteus.13 As mentioned in chapter in Chapter II, the turbulent shear and 

normal stresses and the turbulent heat flux are modeled using the Boussinesq 

approach, where the effective viscosity is defined as J..teff = J..t + J..t t ' the second coeffi­

cient of viscosity is defined as Aeff = A + At' and the effective thermal conductivity 

coefficient is defined as keff = k + k t • 

For wall bounded flows, the Baldwin-Lomax model is a two-layer model: 

y ~ Ycrossover 

(C.l) 

y > y crossover 

where Y crossover is smallest value of Y at which the inner and outer region values of J..tt 

are equal. For f~ee turbulent flows, J..lt = (J..lt) outer' 

1. Inner Region 

The inner region turbulent viscosity is computed from 

(C.2) 

where 1 is the mixing length given by 
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(C.3) 

The quantity 1001 is the magnitude of the total vorticity, defined for two-dimensional 

planar flow as 

2. Outer Region 

lOll = Idv _ dul 
ax ~ 

In the outer region, the turbulent viscosity is given by 

(C.4) 

(C.5) 

where K is the Clauser constant, taken as 0.0168 and Ccp is a constant taken as 1.6. 

The quantity Fwake is computed from 

Fwake = 

1 
YmaxFmax , 

C V
2 Ymax 

wk diffr 
max 

where the constant Cwk is 0.25 and 

for wall bounded flows 

(C.6) 

for free turbulent flows 

where V is the total velocity vector. The quantity Fmax is the maximum value of 

for wall bounded flows 
F(y) = (C.7) 

ylrol , for free turbulent flows 
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and y max is the value of y corresponding to Fmax' FKleb is the Klebanoff intermittency 

factor which accounts for the experimentally observed phenomenon that as the free 

stream is approached, the fraction of time the flow is turbulent decreases. It is given 

by 

F - [1 55 (CKleby) 6J-1 Kleb - -. -y--
max 

(C.8) 

where CKleb is a constant taken as 0.3. 

3. Multiple Boundaries 

If both walls in a given coordinate direction are solid surfaces, the turbulence 

model equations are applied separately at each surface and then averaged. The two 

outer regions overlap, and it assumed that the two inner regions do not overlap. The 

averaging procedure deals with the Fwake function. For example, in the vertical direc­

tion, if the upper and lower boundaries are both solid surfaces, the two values of Fwake 

at a particular streamwise station are combined using the following averaging 

formula: 

(C.9) 

The quantities (Fwake) 1 and (Fwake) 2 are the separate values computed at the lower 

and upper boundaries using equation (C.6). The functions fl and f2 are defined by . 

(C.10) 
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The constant n is set equal to 2.0, Yl and Y2 are the normal distances to the bottom and 

top surfaces, respectively, and Dl and D2 are the normal distances from the two 

surfaces to the location of Ivlmax • In addition, the y/Ymax value used in equation (C.8) 

for FKleb is computed for both surfaces and the minimum value is used. These values 

of FKleb and Fwake are then used in equation (C.S) to compute (J.1
t
) • 

outer 

4. Turbulent Values of A. and k 

The turbulent second coefficient of viscosity is defined as 

(C.Il) 

The turbulent thermal conductivity coefficient is defined using the Reynolds 

analogy as 

(C.12) 

and cp is the specific heat at constant pressure and P't is the turbulent Prandtl number. 

In Proteus, the turbulent Prandtl number may be equal to a constant or computed using 

the empirical formula of Wassel and Catton.37 For the cases described herin, Prt was 

constant with the Proteus default value of 0.91. 
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