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SUMMARY

A short theoretical study of aircraft aerodynamic model equations

with unsteady effects is presented. The aerodynamic forces and moments

are expressed in terms of indicial functions or internal state variables. The

first representation leads to air cra_ integro-differential equations of

motion; the second preserves the state-space form of the model equations.

The formulation of unsteady aerodynamics is applied in two examples. The

first example deals with a one-degree-of-freedom harmonic motion about

one of the aircraft body axes. In the second example, the equations for

longitudinal short-period motion are developed. In these examples, only

linear aerodynamic terms are considered. The indicial functions are

postulated as simple exponentials and the internal state variables are

governed by linear, time-invariant, first-order differential equations. It is

shown that both approaches to the modeling of unsteady aerodynamics lead

to identical models. In the case of aircraft longitudinal short-period

motion, potential identifiability problems, if an estimation of aerodynamic

parameters from flight data were to be attempted, are briefly mentioned.
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coefficient in Fourier series, j = 0, 1, 2, ...

parameters in indicial function

parameter defined in table I

coefficient in Fourier series, j = 0, 1, 2, ...

parameters in indicial function, 1/sec

parameter defined in table I

general aerodynamic force and moment coefficient

vector of indicial functions

vector of aerodynamic derivatives

lift coefficient

rolling-, pitching-, and yawing-moment coefficient

parameter in indicial function

mean aerodynamic chord, m
vector of deficiency functions

integral defined by eq. (46)

moment of inertia about lateral axis, kg-m 2

transfer function coefficients

reduced frequency, k =-
V

parameter defined by eq. (20a)

characteristic length, m

mass, kg

roll rate, pitch rate, and yaw rate, racYsec or deg/sec

wing area, m 2

parameter in Laplace transform

time lag, sec

time, sec

vector of input variables

airspeed, m]sec

vector of state variables

state variable in eq. (43)

angle of attack, rad or deg

sideslip angle, rad
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k

P

T

't"l
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CO

control surface deflection, rad or deg

vector of state and input variables

internal state variable

variable in characteristic polynomial

air density, kg/m 3

time delay, sec
V

nondimensional time constant, bl---_

roll and yaw angle, tad

angular frequency, 1/sec

Subscript:

A amplitude

0 initial value

Matrix exponent:

T transpose matrix

Derivatives of aerodynamic coefficients Ca where the index a = L, l, m, or n

Cap = _Ca Caq = c)Ca
_ p t _ q__!

V V

Ca_l °3Ca Ca r °_Ca- -._-72 = -'_

v 2 °F

Car _Ca Cad = O_a Ca_ c)Ca

V

Ca. = _Ca

Derivatives Ma,a,q, 5 and Za,q, 5 defined in table I.
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INTRODUCTION

One of the basic problems of flight dynamics is the formulation of

aerodynamic forces and moments acting on an aircraft in arbitrary motion.

For many years the aerodynamic functions were approximated by linear

expressions leading to a concept of stability and control derivatives. The

addition of nonlinear terms, expressing, for example, changes in stability

derivatives with the angle of attack, extended the range of flight conditions

to high-angle-of-attack regions and/or high-amplitude maneuvers. In both

approaches, using either linear or nonlinear aerodynamics, it is assumed

that the parameters appearing in polynomial or spline approximations are

time invariant. However, this assumption was many times questioned

based on studies of unsteady aerodynamics which go back to the twenties.

A fundamental study of unsteady lift on an airfoil due to abrupt

changes in the angle of attack was made by Wagner in reference 1. This

work was extended by Theodorsen to computing forces and moments on an

oscillating airfoil, whereas Kiissner and Sears studied the lift on an airfoil

as it penetrates a sharp-edge or harmonically-varying gust, respectively

(see reference 2). One of the first investigations of unsteady aerodynamic

effects on aircraft motion was made by R. T. Jones in reference 3. He

studied the effect of the wing wake on the lift of the horizontal tail. A more

general formulation of linear unsteady aerodynamics in the aircraft

longitudinal equations in terms of indicial functions was introduced by

Tobak in reference 4. Later, in reference 5, Tobak and Schiff expressed the

aerodynamic forces and moments as functionals of the state variables.

This very general approach includes linear unsteady aerodynamics as a

special case. A different approach to unsteady aerodynamics in aircraft

equations of motion was introduced by Goman and his colleagues in

reference 6. They used additional state variables, which they called

internal state variables, in the functional relationships for the aerodynamic

forces and moments.

Despite the advancements of theoretical works, only a limited

number of attempts were made to estimate aerodynamic parameters from

experimental data and to demonstrate the importance of unsteady terms in

aircraft equations of motion. In reference 7, a procedure for the estimation
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of aerodynamic forces and moments from flight data was proposed. It

starts with the estimation of stability and control derivatives. Then, the

resulting residuals of the response variables are used for the estimation of

unsteady terms. Reference 8 addresses identifiability problems for

parameters in integro-differential equations. Examples of estimated

indicial functions from simulated and flight data are given. Fourier

functional analysis for unsteady aerodynamic modeling was applied to

wind tunnel data of a triangular wing and a fighter aircraft in references 9

and 10, respectively. It was shown that this modeling method was

successful in computing the aerodynamic responses to large-amplitude

harmonic and ramp-type motions. Finally, a concept of internal state

variables for expressing unsteady aerodynamics was applied to wind

tunnel oscillatory data and flight data in references 6 and 11.

The purpose of this report is to summarize the approaches of

references 5 and 6 to the formulation of aerodynamic model equations

suitable for parameter estimation from experimental data. The report

starts with expressing aerodynamic forces and moments in terms of

indicial functions and internal state variables. Then, two examples of

aerodynamic models for aircraft in small-amplitude motion are given. A

discussion of these examples is completed by concluding remarks.

AERODYNAMIC CHARACTERISTICS IN TERMS OF INDICIAL

FUNCTIONS

Using the results of reference 5, aircraft aerodynamic characteristics

can be formulated as

t

(t) = C a (0)+ _ Cat (t- v; 5( v))T u__ 5( _)dv (1)

J

Ca
0

where

C a (t) is a coefficient of aerodynamic force or moment,

is a vector of aircraft state and input variables upon which the

coefficient Ca depends,

Cat (t) is a vector of indicial functions whose elements are the responses

in Ca to unit steps in 5, and

C a (0) is the value of the coefficient at initial steady-state conditions.
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The indicial responses, Ca_, are functions of elapsed time (t- T) and are

continuous single-valued functions of _(t). The indicial functions

approach steady-state values with increasing values of the argument

(t- v). To indicate this property, each indicial function can be expressed as

Ca,,j (t- "c; _( v)) = Ca_,j (co; _(v))- Fa¢,j (t- T; _(v)) (2)

where

Ca,.j (oo; _(v)) is the rate of change of the coefficient Ca with 42, in steady

flow, evaluated at the instantaneous value of _j with the remaining

variables _ fixed at the instantaneous values _(v) and

the function Fa_,j is called the deficiency function. This function

approaches zero for (t- v) _ oo.

When equations (2) are substituted into equation (1), the terms involving the

steady-state parameters can be integrated and equation (1) becomes

t

C a (t) = C a (co; _(t))- _ Fa, (t- _; ¢(t))T d_ _( _')dv (3)
0

where

Ca(cO; _(t)) is the total aerodynamic coefficient that would correspond to

steady flow with _ fixed at the instantaneous values _(t), and

Fa_ is a vector of deficiency functions

If the indicial response Ca, is only a function of elapsed time, equations (1)

and (3) are simplified as

t d _(v)dv
Ca(t) = Ca(O)+ _ Ca, (t- v)T_-_

0

t

(cO)T
o

d
(t - 1:)T _(v)dv

(4)

When analytical forms of deficiency functions are specified, the

aerodynamic model based on equations (3) or (4) can be used in the aircraft

equations of motion for stability and control studies involving either linear

or nonlinear aerodynamics. The resulting equations of motion will be

represented by a set of integro-differential equations.
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FORMULATION OF AERODYNAMIC FUNCTIONS USING INTERNAL

STATE VARIABLES

When the indicial functions are used in aircraft aerodynamic model

equations, it is not clear, either from theory or experiment, what analytical

form these functions should have. After postulating models for indicial or

deficiency functions, questions about the physical meaning of terms in

these models may still be asked. In order to avoid, at least partially, these

questions, a concept of internal state variables for modeling of unsteady

aerodynamics was proposed in reference 6. This approach retains the

state-space formulation of aircraft dynamics, that is

= f(x(t),u(t)); x(O) = x 0 (5)

by augmenting the aircraft states with the additional state variable r/(t).

Then, the aerodynamic coefficients are formulated as

where

and

Ca (t) = Ca( _(t), y(t))

it= g(_l(t),_(t),_(t))

_(t)=[x(t) T u(t)T ]T

(6)

(7)

An example of equation (7) for a study of aircraft longitudinal

dynamics is given in reference 6. Here, the internal state variable

represents the vortex burst point location along the chord of a triangular

wing. This location is described as

TIO+ 1,71_< (8)
where

r/0 is the vortex burst point location under steady conditions,

T 1 is the time constant in the vortical flow development, and

T a is the time lag in the same process caused by the angle-of-attack rate

of change.

The experimentally-obtained effect of the angle of attack and pitch rate on

vortex point location is taken from reference 12 and is plotted in figure 1.

The resulting curves were obtained by flow visualization on a delta wing
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undergoing static test and forced pitching oscillations at two reduced

frequencies. The effect of pitch rate is seen by comparing the dynamic
vortex burst point location with the static point location.

EXAMPLES

Th e following two examples demonstrate the formulation of
aerodynamic equations and equations of motion with unsteady

aerodynamics. In these examples, only small-amplitude motion will be

considered, thus leading to a system of linear equations. In the first

example, aircraft one-degree-of-freedom (one d.o.f.) oscillatory motion about

each of the three body axes is considered. The second example deals with

short-period longitudinal motion. In both examples, the formulation of

unsteady aerodynamics using indicial functions and internal state
variables is considered.

Harmonic Oscillatory Motion:

In the development of aerodynamic models of an aircraft performing

a one d.o.f, oscillatory motion, an approach using indicial functions and

internal state variables will be considered. For the oscillatory motion in

pitch, the functional relationships for the lift and pitching moments are

CL (t) = CL(a(t),q(t) )

Cm (t) = Cm (a(t),q(t))

Applying equation (4), the lift coefficient can be expressed as

t l t v)dq(_)d v
C L (t)= CL (0)+ _ CL_ (t- _)--_ a(_)dl_ +_ I CLq (t- dv

0 0

t

o

+LCLq(°°)q(t)v _. t d-_ _ Fq(t- v)--d_vq(v)av
o

(9)
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Similar expressions can be written for Cm(t). Neglecting the effect of q(t)

on the lii_ and taking into account only the increments with respect to

steady conditions, equation (9) is simplified as

t

C L (t)= CLa (¢¢)a(t)- _ Fa(t- v) _----_o_(_)d_ + -_CLq (¢¢)q(t)
0

(10)

For obtaining a model with a limited number of parameters, the indicial

function is assumed to be in the form of a simple exponential

CLa (t) = a(1-e-blt )+ c (11)

Because

(t) = a + c =

equation (11) can also be written as

CLa (t) = CLa (_) - ae -blt

After substituting (lla) into (10) and applying the Laplace transform to

equation (10), the expression for the lift coefficient is obtained as

where

q(s) was replaced by sa(s) and, for simplicity, CLa - CL_ (_) and

cLq---cLq
Using a complex expression for harmonic changes in a(t), that is

a(t) = aA ei°x = a A (cos(o_) + i sin(r_)),

and replacing s by i0), the steady-state solution to equation (12) is

CL(t) =
CLa-ab21 +0)2 aasin(°_)

bl )aA0) cos((_)vCLq -ab2 +0)2
÷

(lla)

(12)

(13)
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The introduction of reduced frequency

to_
k--_

V

and nondimensional time constant

yields

where

C L (t) = CLave A sin(t_) + CLq lXAk cos(tot)

_1 k2

CL a =CLa(°°)-al+ v2k2

CL q = CL q (oo) - a T1
1 + _k 2

(14)

(15)

Similarly, the steady-state solution for the pitching-moment coefficient will

be

where

C m (t) = Crn a ix A sin(a_¢) + Cmq aAk cos(tot)

Cm_ = Cm_ (_)-a _k2
1+ _/k 2

Cmq=Cmq(_ )- a T1
1+ _/k 2

(16)

(17)

The parameters a and _/in equation (17) have, in general, different values

from those in equation (15).

When the internal state variable is used in formulating the unsteady

aerodynamic effect, the development of a model for the lift coefficient starts

with the equations

C L (t) = C L (a(t),q(t), rl(t) ) (18)

TlO+ 7= no(_-T_) (8)
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For small perturbations, both equations can be linearized around a steady-

state condition. Then, the linearized equations (18) and (8) will have the

form

e L (t) = CLa a(t) + V CLqq(t) + CLo rl(t) (19)

T1iT+ _=-(T 1 + Ta) d_° a (20)
da

Applying the Laplace transform, these equations will be changed as

C L (s) = CLaa(S) + _ CLqq(S) + CL_ _7(s) (21)

(Tls + 1)O(s)=-(T1 + Ta ) dT?° sa(s) (22)
" da

When equation (22) is substituted into (21) and q(s) is replaced by sa(s),

CL (S) = CLaOI(s) Tll++ TaTlsdr/0daCL'Sa(S)+ Vt CLqSO_(s ) (23)

Finally, introducing

a = T1 + Ta d770
T 1 daCL' and bl=Ti 1

equation (23) will have the same form as equation (12). The preceding

developments indicate that, for the indicial function given by equation (lla)

and the internal variable given by equation (22), the model

t

CL (t) = CLaa(t)-a_ e-bl(t-v) _ o_( T)dT +vCLqq(t)

0

is equivalent to the model

C L (t) = CLa a(t) + V CLqq(t) + CLn rl(t)

+T _d_?°
Tli?+ rl=-(T1 aj da (_
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Models for an aircraft performing one d.o.f, oscillatory motion in roll

and yaw can be developed in a similar way to that for the pitching

oscillations. The rolling-moment coefficient is a function of the roll angle

and rolling velocity

Cl(t) = Cl( ¢(t), p(t)) (24)

where the roll angle is related to the sideslip angle by the equation

fl = ¢ sin(a) (25)

For the indicial function

Clp (t ) = Clp (oo)- ae-bl t

the rolling-moment coefficient can be formulated as

t

Cl(t)=Clfj (_)_(t)_a;e-bl(t-z) ddzp(z)dz+ Clp (oo)p(t)
0

(26)

which leads to its steady response

where

C l (t) = "_lplpdPAsin(cot) + -_lp¢A k cos(cat)

m

Cl# = Clp (oo)sin(a)-a
v_lk2

1+ _1k2
sin(a)

C/Z = C/p (oo)-a 1+ _/k 2 sin(a)

(27)

(28)

In the yawing oscillatory motion, the yawing-moment coefficient is a

function of the yaw angle and its rate

Cn(t)=Cn(_/(t),r(t))

and the yaw angle is related to the sideslip angle as

(29)

fl = - _cos(a) (30)
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The yawing-moment equation takes the form

t

C n (t): Cn_ (co)fl(t) - a_ e -b'(t-v) _ fl(v)dv + _ Cnr (co)r(t)
0

(31)

and its steady response the form

where

C n (t) = Cnz _A sin(o_) + Cnr V/Ak cos(o_)

v_k 2

Cnfl - Cnfl (co)cos(a)-a 1+ _/k 2 cos(a)

Cn r -_ Crtr (oo) + a "rl cos(a)
1 + v2k 2

(32)

(33)

For the interpretation of measured aerodynamic forces and moments

in the forced-oscillation experiment, the model for an increment in the lift

without any unsteady effect is usually postulated as (see reference 13)

g (CLaa(t)+ q(t))+ CLq_I(t)CL (t) = CLaa(t) + _ CLq
(34)

The unsteady version of the preceding equation will have to include two

indicial functions, CL. (t) and CLq (t). Then the lift coefficient will be

formulated as

t

C L (t) = CLaa(t)- _ Fa(t- v)_v a(l:)dv
0

0

(35)

In both cases, the steady-state solution is given by equation (14) where, for

the neglected unsteady aerodynamics,

CL a = CL a - k2CL(1

CLq = CLq + CLa

(36)
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and, for the deficiency functions specified as

F a = ale-bf and Fq = a2 e-b2t ,

CLa =CLa- al 1+ _/2k2-a2_ 1+ _2 k2

CLa = % - al 1+ "c21k2 + a2 1+ v2k 2

k 2

(37)

From a comparison of equations (36) and (37), it can be concluded that the

expressions in the parentheses are the unsteady counterparts to the

derivatives CL¢ and CL_. For large values of v and small values of k, the

expressions in equations (37) can be simplified to those in equation (15).

Similar comparisons can be made for the remaining aerodynamic

coefficients.

Short-Period Longitudinal Motion:

The airplane short-period longitudinal motion can be described by the

equations

6_ = q+ pV-_S Cz(a(t),q(t),5(t) )
Lrn

P V2sc Cm(a(t),q(t),8(t))
_1- 2Iy

(38)

In the following analysis, it will be assumed that the linear approximation

to the aerodynamics contains only one unsteady term represented by the

indicial function

Cr% (t) = Cm_ (oo) - F a (t) (39)
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Using simplified notation for the steady aerodynamic terms, the

aerodynamic equations in (38) will have the form

Specifically, for

Czqq(t)+Cz_5(t )Cz(t)=Czaa(t)+ _

t

C m (t) = Cmaa(t)- _ fa(t- v)_-_v a(v)d_:
0

+ V Cmq q(t) + Cm_ S(t)

Cma ( t ) = a(1- e-blt ) + c

(40)

the pitching-moment coefficient takes the form

where

t

Crn(t):Cmaa(t)-a_e -b1(t-v) d---a(,)d,+_Cmqq(t)+Cm_S(t)
d_

0

t

= ca(t)+ ab 1 _ e -b_va(t- v)dv +VCmqq(t)+ Crn_S(t)
0

Cma _ a-be

(41)

Substituting (41) into (38) and introducing dimensional parameters, the

equations of motion can be written as

& = Zaa + Zqq + Z88

t

Cl = Ca + B_ e -bl" a(t- _)dv + Mqq + MS5

0

where the parameters in these equations are defined in table I.

Introducing a new state variable

x a = _ e-blva(t- v)dv

0

(42)

and the corresponding state equation for this variable

xa = a - blx a
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equations (42) can be expressed in state-space form as

= Mq S + 5

:_ 0 -b 1 x a

(43)

The characteristic polynomial of these equations has the form

A = ,_3 +K2_2 +KI_ " +K 0

where

=-Z. - Mq+bl

Kl : Za(Mq -bl )-blMq -CZq (44)

The state equations of the system under consideration can also be

obtained by using the internal state variable defined by equation (20) as

T1 + Ta I dr/0 a Tllrli?=- "T1 ) da

= ka_- T'_Iu

(20a)

When equation (20a) is combined with the equations of motion, the complete

set of state equations is

= M a Mq M_ + M5 5

kaZa kaZq -Ti 1 rl kaZ, 

(45)

where M a and M_ are also explained in table I. After formulating the

characteristic polynomial, it is found that its coefficients are equal to those

defined by equations (44) for

and

a _-

T1 +Ta] dr/0 CT 1 da m,?

16



It can, therefore, be concluded that equation (43) and (45) represent the

same dynamical system. As in the previous example, the system

description using either indicial functions or internal state variables can be

identical for specific forms of indicial functions and equations for internal

state variables.

The preceding development shows that the introduction of one

indicial function of the form specified by equation (39) into the aerodynamic

model equations results in the increase of the order of the characteristic

polynomial from two (no unsteady aerodynamics) to three. Any further

addition of indicial functions into equation (42) means an additional

increase in the order of the characteristic polynomial by one. From a

simple observation of equation (43) or (45), it is also evident that it is not

possible to estimate all the parameters in these equations from the

measurements of a(t), q(t), and _(t). To assure parameter identifiability,

equation (43) would have to be transformed into a canonical form proposed

in reference 14.

In stability and control analysis where no unsteady aerodynamics is

considered, the pitching-moment coefficient is formulated as

Cm = Crnaa +v(Crnah +Cmqq)+Crn_S

It is expected, therefore, that the integral in equation (40)

t
d

I = _ Fa(t- _:)-_a(v)dv
0

(ea c
should be a counterpart of the term [-_-) m_. The reduction of this

integral to the h-term can be demonstrated by approximating a(t) by a

Fourier series

a( t ) = A 0 + ( n I - iB 1 )e ieat + (A 2 - iB 2 )e i2a_t +...

which leads to

h( t ) = io)( A 1 - iB 1)e i_ + i 2to( A 2 - iB 2 )e i2_t +...

(46)

(47)
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Substituting (47) into (46) results in

t

I = ico( "1 - iB1 )eir°t I Fa ( v)e-ir°rdv

0

t

+ i2('°( A2 -iB2 )ei2°'t I Fa('t') e-i2c°_d'r+...

0

(48)

The exponential functions in (48) can be further expanded in exponential

series

e i°)v = 1+ i(ov+ 1(io)v)2+...

e i2arr = 1+ i2o)v+ 2(icov)2+...

In order to maintain the approximation of the integral to the first order in

frequency, it is sufficient to consider only the first terms in the exponential

series. Then, all the integrals in (48) will be the same and equation (46) can

be simplified as

t

I = hi Fa (v)d_ (49)

0

As a result of this simplification, the counterpart of Cma is proportional to

the area of the deficiency function. A similar conclusion is stated in

reference 4 for simple harmonic motion of an aircraft.

For a demonstration of aircraft longitudinal motion with and without

unsteady aerodynamic terms, equations (42) and their simplified version

(_ = Zaa + Zqq + ZS_

(1 = Mac + Moth + Mqq + M88 (50)

were used. Aircraft characteristics and flight conditions are summarized

in table II. The unsteady parameter b 1 was selected as b1 = l(sec -1) Which _

co_esponds t0the_0ndimensionai time Constant _Vl = 51. 3. The parameter

a was evaluated from the relationship between the derivative Cma and the

area of the deficiency function

18



Cm _ V aSe-blVdl:= 7
o

as a = 0.05. Because Cma = a + c , the parameter c = -0.23.

In table III, the computed damping coefficients and frequencies of

motion from equations (42) and (50) are presented. The values of these

parameters indicate that the replacement of the terms Cr% a and Crn_ & by

the indicial function Cm_ (t) has a negligible effect on the damping

coefficient and only a small effect on the frequency. Figure 2 shows the

computed time histories a(t) and q(t) for the given input _(t). As could be

expected from the results in table III, the output variables for both cases

differ only slightly. Small differences in a(t) and q(t) might indicate

possible problems when estimation of unsteady parameters from flight data

is attempted.

CONCLUDING REMARKS

A short theoretical study of aircraft aerodynamic model equations

with unsteady effects is presented. First, the aerodynamic forces and

moments are expressed in terms of indicial functions. This formulation

can be modified by including steady values of aerodynamic coefficients,

corresponding to instantaneous values of state and input variables, and the

so-called deficiency functions. A deficiency function defines the difference

between the indicial function and its steady value. When the concept of

indicial or deficiency functions is used, the resulting aircraft model is

represented by a set of integro-differential equations. In the second

approach to the modeling of unsteady aerodynamics, the so-called internal

state variables were used. These variables are additional states upon which

the aerodynamic coefficient depends. Modeling based on internal state

variables preserves the state-space representation of the aircraft equations

of motion.

The formulation of unsteady aerodynamics is applied in two

examples. In these examples, only linear aerodynamics are considered

thus limiting the application to aircraft small-amplitude motion around

trim conditions. In order to further simplify the aerodynamic model
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equations, the indicial functions are postulated in a simple exponential

form and the internal state variables are governed by linear, time-

invariant, first-order differential equations.

In the first example, a one-degree-of-freedom harmonic motion about

one of the aircraft body axes is considered. In the second example, a

longitudinal short-period motion is studied. In both examples, it is shown

that the formulation using either indicial functions or internal state

variables leads to identical models. Further, it is shown that the unsteady

terms in the models are the unsteady counterparts of the aerodynamic

acceleration derivatives. From an observation of the developed longitudinal

equations of motion, it is evident that it will be impossible to estimate all

aerodynamic parameters from measured input/output data. In addition, a

simple numerical example of the short-period motion of a fighter aircraft

indicates only small differences in the output time histories with the

unsteady effects being either included or ignored. These small differences

might create further problems when estimation of unsteady parameters

from flight data is attempted.
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Table I. - Definition of parameters in equations (38) and (39).

- pVSc 2

Zq = I + P4_ Czq Ma = 4 Iy Cm_'

= pSV =
Z& -_---m-mCZ,_ Mq pVSc2 Cmq4Iy

c pV2Sc
=--C

2Iy

B = pV2Sc ab 1
2Iy

pV2Sc

Mr_ = "_y Cm,7

P v2Sc Cm _
M6= -_y

Table !I. - Characteristics of an advanced fighter aircraft

and flight conditions.

Cza = -2.7

Czq = -36.

c=3.51 m

S = 37.16 m 2

m = 15000 kg

Iy 170000 kg- m 2

p =0.56 kg/m 3

V = 90 m / sec

Cz_ = -0.83

Cm_, = -0.18

Cma = -2.5

Crnq = -10.

cm = -o. 88
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Table III.- Damping coefficients and frequencies from simulations with

and without unsteady effects.

with unsteady effects

without unsteady
effects

damping coefficient

0.4859

0.4979

frequency

0.6317

0.5953
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Figure 1. - Variation of internal state variable with angle of attack

in static and oscillatory tests.
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Figure 2. - Computed time histories with and without

unsteady aerodynamic terms.
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