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INLET DISTORTION IN ENGINES ON VSTOL AIRCRAFT

Executive Summary

This report presents the results of a research program on "Inlet Distortion in Engines on

VSTOL Aircraft" carried out at the MIT Gas Turbine Laboratory during the period October 1989 -

December 1993. The program focused on: (1) the development of three-dimensional flow

computational methodology for predicting the effects of nonuniform flow on the performance of

aircraft engines in VSTOL aircraft; (2) the development of a three-dimensional instability analysis

of flow in multi-stage axial compressors; and (3) the preliminary applications of these newly-

developed methodologies for elucidating the effects of flow three-dimensionality. The

accomplishments of the program are brought out when the current status of predictive capabilities

for three-dimensional flow instabilities in compressors is assessed against that in 1989.

1.0 Introduction

This document constitutes a final report for a research program on "Inlet Distortion in

Engines on VSTOL Aircraft" sponsored by NASA Lewis Research Center under Grant NAG3-

953 with Dr. Colin Drummond as Technical Monitor. The report is organized as follows. The

background that motivated the initiation of this research program will first be presented. The

technical objectives of the program and the approach adopted are then delineated. Next, we

describe the predictive methodologies that have been developed to address the response of aircraft

engines to inlet flow nonuniformities (with radial and circumferential variation) and the stability of

multi-stage compressors for which flow three-dimensionality is important. Assessment of the

methodologies against known analytical results will be made. We also present results from our

preliminary examination of the effects of flow three-dirnensionality on the response of aircraft

engines to inlet distortion and on the stability of multi-stage compressors. Finally, we summarize

the accomplishments of the research program, and describe where we stand in terms of: (i) multi-

stage compressor 3-D stability predictive capability, (ii) methodology for computing the response

of the engine to inlet distortion, and (iii) methods for computing the nonlinear evolution of engine

instability.



2.0 Technical Background

The reingestion of hot exhaust gases (that originate from the nozzles) into a VSTOL

aircraft's aeroengine intake can give rise to a non-uniform stagnation temperature and stagnation

pressure distribution at the inlet face of the compressor [1]. Moreover, for near-ground

maneuvers, the resulting flowfield configuration in the immediate neighborhood of the VSTOL

aircraft can be such that there exists a high potential for the development of strong streamwise

vorticity; this could assume the form of an inlet vortex stretching from the ground or the fuselage

into the engine intake. Such situations of non-uniform inlet flow can cause a major loss in

performance and affect the aerodynamic stability boundary of the compression system in an

adverse manner. As a consequence, the engine may encounter rotating stall and surge,

aerodynamic instabilities which are detrimental to the engine and aircraft performance.

Because of the importance of quantifying stability and performance, it is necessary during

the course of developing a VSTOL aircraft that extensive model and prototype tests be

implemented to measure the extent of hot gas reingestion over a wide range of aircraft maneuvers.

Based on these test data, empirical correlations are then devised for estimating the associated loss

of engine performance. These correlative approaches employ a limited test database, so the

resulting uncertainty associated with its application to advanced aeroengine designs can be

considerable. Furthermore, such a correlative approach does not reflect the basic fluid dynamics

underlying the resulting loss in performance and stability margin. A predictive methodology for

addressing the effects of hot gas reingestion and other general forms of inlet distortion (for which

flow three-dimensionality is significant) would thus be a useful tool in the development of

aeroengines for VSTOL applications. Such a methodology was nonexistent at the initiation of this

research program. One objective of the research effort was thus the development of a

computational methodology for predicting the effects of non-uniform flow on the performance of

aircraft engines on VSTOL aircraft.

The aerodynamic interaction between different engine components can have a major effect

on the behavior of the individual flowfields, and it is critical that any computational methodology
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developedhavethecapabilityto includetheeffectsdueto suchinteractions.Forinstance,theeffect

of interactionbetweenthecompressorandintake[1] on theinlet fiowfieldcanbediscernedfrom

theresultsof Fig. 1,in whichthepresenceof anaeroengine(compressor)affectstheupstream

flow in theinlet operatingatincidence.At 30° incidencewithouttheaeroengine(Fig. la), theflow

separatedoff the lip of theinlet with theformationof a largeregionof low stagnationpressure

fluid. However,with theaeroengine,evenwhenoperatingat a largerincidenceof 35°, theextent

of separationflow is muchsmaller(Fig. lb vs.Fig. la). Thereductionin thesizeof separated

flow is aresultof thefact thata lowerinlet flow velocityin theseparatedflow regioncorresponds

to thecompressoroperatingwith a largerpressureriseandhenceamorefavorablepressure

gradient.Theinteractionbetweenenginecomponentscanthushaveanimportantbearingon

stabilityassessmentandtheinterpretationof datafrom distortiontestson isolatedcompressors,

andit is importantthattheresultingmethodologyincludessucheffects(e.g.spool-spool

interactionsin multi-spoolcompressors)in aconsistentmannerwhenassessingengineresponse

to inlet distortion. It shouldalsobenotedthatthemethodologyto bedevelopedcanbeusedto

addresscompressorstabilityproblemsfor whichtheflow non-uniformitiesareself-induced(i.e.

internalflow distortionratherthaninletflow distortionwhichis externallyimposed).

For theflow situationsencounteredin VSTOLaircraft,thethree-dimensionalityin the

(engine)compressorresponseis dueto extemallyimposeddistortion. However,recent

experimentaldataof Day [2] andMIT/GE [3] alsopointto the importanceof three-dimensionality

in compressorinstabilityphenomena,even in situations that were thought to be nominally two-

dimensional. In particular, the data [2], [3] indicate that there are two routes to stall even in high

hub-to-tip ratio multistage compressors: (i) a long wavelength or "modal" type of stall precursor

which is essentially two-dimensional [2] - [5]; and (ii) a short wavelength type with an inherently

three-dimensional structure [2], [3]. The first of these constitutes a flow disturbance with a

wavelength of the order of the circumferential length of the compressor annulus and is observed to

span the region from hub to tip. The waves associated with these precursors propagate about the

annulus at a phase speed usually between 0.2 to 0.4 times the rotor speed. The sequence of events
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is thatsmallamplitudelongwavelengthdisturbancesgrowin intensity,finally evolvinginto afully

developedstallcell asthecompressoris throttledtowardthestallpoint.

In contrast,theshortwavelengthtypeof stallprecursoris not two-dimensionalandis

characterizedby strongthree-dimensionality.As theoperatingpointof thecompressorapproaches

stall,this typeof precursordisturbancehasbeenobservedto appearnearthebladetip (usuallyin

thefirst rotor for multistagecompressorsrepresentativeof currentdesign)andto covera

circumferentialextentof afew bladepitchesonly. Duringthestallinceptionprocess,theshort

wavelengthtypeof disturbanceis observedto propagatecircumferentiallyata speedapproximately

three-quartersof therotor speed.As thecompressorstalls,thedisturbancegrowsradially aswell

ascircumferentiallyin extent,andits propagatingspeeddecreasesto avalueapproximately0.4to

0.5timesrotorspeed.

Thetwo-dimensionalflow modelthathasbeendeveloped[6] - [10] hasbeensuccessfulin

addressingthestabilityissuesin compressorswhichexhibitlongwavelengthstall disturbances,

but thereareclearlyimportantpracticalsituationsin whichthismodeldoesnot apply. To describe

thesesituations,athree-dimensionalflow modelneedsto bedeveloped.This is especiallyrelevant

to machinesof low hub-to-tipratioaswell asfans. Thus, during the course of the research

program, it was deemed necessary to initiate a complementary task on the development of a 3-D

instability analysis of flow in multi-stage axial compressors.

In summary, while the research program was initiated to address the response of aircraft

engines to inlet distortion where three-dimensional effects must be considered, a parallel and

complementary effort was also initiated to examine the importance of three-dimensionality in

compressor instability. It is anticipated that analytical/computational procedures developed in the

program will provide useful tools in the development of effective management techniques for

these aerodynamic instabilities in modem axial compressors. In the next section, the technical

objectives are delineated in the light of the above technical background.



3.0 Technical Objectives

The overall goal of the research program was to develop the capability to predict: (i) the

response of multi-stage compressors to externally imposed and self-induced flow distortion of the

three-dimensional type; and (ii) the manner in which multi-stage compressors stall. This

necessarily involved the formulation of a physical flow model for a multistage compressor and the

compression system representing the aircraft engine. It also included the development of rational

computational models for assessing the stability of three-dimensional flow through a multistage

compressor/fan and for examining the development of these nonlinear instabilities. More

specifically, to achieve the overall goal the following technical tasks have to be implemented:

1) Physical representation of blade-row and compressor:

Development of a physical flow model for computing the performance and response of a

multistage compressor (and each blade row making up the multistage compressor) to

unsteady and non-uniform flow. The unsteadiness and non-uniformities could be compressor

self-induced or externally imposed.

2) Integration of upstream flowfield, flowfield in between blade-rows, and downstream

flowfield with compressor:

Consistent integration of an upstream flow model and a downstream flow model with the

compressor model from (1) must be carried out. In mathematical terms, the compressor

serves as the boundary condition that generates the disturbance flow upstream and

downstream of the compressor. This is also true for the blade rows in relation to the space

between the blade rows.

3) Computational procedures for stability prediction:

Development of computational procedures for assessing the stability of a compressor and a

compression system representing an aircraft engine when subjected to a general three-

dimensional unsteady flow disturbance.

4) Computational procedure for development of compressor instabilities:

Development of a computational procedure to compute the temporal and spatial nonlinear



evolution of initial compressor instability into rotating stall.

5) Inlet conditions for initiation of instability:

Use of the methodologies developed in (3) and (4) for establishing the inlet flow conditions

under which compressor instability can occur.

6) Causal relation between inception of instabilities and design characteristics of compressor:

The research not only addresses the use of methodologies developed in (3) and (4) to examine

compressor stability issues but also the establishment of causal links between the inception of

instabilities and the design characteristics of the compressor. As an example, because of the

implications for dynamic control, one would like to be able to predict the route to compressor

instability (short wavelength type of stall precursor vs long wavelength) based on the

knowledge of compressor design characteristics.

7) Defini_on of necessary experimental investigations:

Finally, it was anticipated that the results from the research program will be used to critically

assess what are the most useful experimental investigations that need to be carried out to

further quantify the technical issues addressed here.

4.0 Technical Approach

One might envisage obtaining compressor performance and response to unsteady and non-

uniform flow by direct computation of flow through the compressor. Even a rudimentary attempt

to assess the computational capabilities needed, however, shows clearly that this is not even close

to being feasible given current and near-term foreseen computational technology [11]. It is thus

essential to develop models for the compressor dynamic behavior. Such an approach has been

shown to be extremely valuable for assessing the stability and response of compressors, in terms

of performance as well as stability, when operating with circumferential distortion as long as the

overall flow is essentially two-dimensional [6] - [10].

The approach that has been taken involves modelling of the response of the individual

blade passage to the non-steady, 3-D, non-uniform flow in terms of the relevant fluid dynamic
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features(in abladepassage)andthencalculatingtheresponseof the overall compression system.

Such an approach has been adopted in the development of methodologies for addressing the three-

dimensional aspects of stability issues for compressors operating in the uniform as well as

distorted flow environment. In essence, the approach adopted here seeks to strike an optimal

balance between computational and intellectual resources.

In the following, the development of the methodologies based on the approach alluded to in

the above will first be described.

5.0 Development of Predictive Methodologies

This section will be organized as follows. We will first present the overall conceptual

approach involving the flow modelling of technical tasks (1) and (2) of Section 3.0. The

quantitative aspects of a physical flow model for computing the performance and response of a

multi-stage compressor to unsteady and non-uniform flow are described next; this is followed by

the computational procedure (i.e. technical task (4)) for implementing the computational flow

model from technical tasks (1) and (2). This essentially yields a predictive tool that enables one:

(i) to compute the response of a compressor, measured in terms of performance and stability, to

flow non-uniformities; and (ii) to compute the temporal and spatial nonlinear evolution of initial

instability into rotating stail/surge.

While the above methodology can be quite general, a more effective (and direct) way for

examining the nature of compressor instability inception and its link to compressor characteristics

is a linear stability calculation for examining the unsteady behavior of a general three-dimensional

disturbance flow imposed upon a steady background flow in a multi-stage compressor. This

essentially constitutes task (3) of Section 3.0. The development of the theoretical and

computational framework for implementing such a three-dimensional calculation for multi-stage

compressors will be discussed and presented in Section 6.0. The availability of such a calculation

procedure would enable one: (i) to determine the most unstable modal disturbance and its spectral

content; (ii) to establish the link between compressor design parameters and flow instability



inception;(iii) to providetheinitial conditionfor thecomputationalprocedureto technicaltask(4)

for examiningthetemporalandspatialnonlinearevolutionof initial compressorinstability into

rotatingstall/surge;andlastbutnot least(iv) to provideaplantmodelfor activecontrolof low

hub-to-tipratiocompressors/fans.Thus,thetwo methodologiesarecomplementaryto one

another,asindicatedabove.

5.1 Overall Conceptual Approach

The key concepts in the approach for the development of a general methodology for

computing the response of aircraft engines to 3-D inlet distortion and for computing the evolution

of 3-D flow instabilities are elucidated in Figs. 2 and 3. Both the upstream and downstream

flowfields perceive the presence of the compressor/fan as a body force distribution. In the

situation where the flow is unsteady, the body force distribution should include the inertia force

distribution within the compressor due to flow unsteadiness (see Section 5.3). For the flow

situation of interest here, the flowfield external to the compressor/fan can adequately be described

by the 3-D unsteady Euler equations. The body force distribution that represents the compressor

then appears as an additional source term in the Euler equations.

The approach can now be conceptually described as follows. Suppose the flowfield at the

inlet face of the compressor/fan at a particular time is known/given, then:

1) Use the flow model for the compressor (see Section 5.3) to compute the flowfield within the

compressor. This computed information is used to calculate/update the body force

distribution within the compressor, and hence the source term in the Euler equations (see

Section 5.3 for more details);

2) Update the entire flowfield;

3) Proceed to the next time level by repeating steps (1) and (2) until no further changes are

observed in the solution or the solution has reached equilibrium state with a (periodic)

temporal variation.

As one can deduce from the above, the entire procedure can be implemented in a time



accuratefashion.Theconceptualapproachisageneralone;it canbeusedto calculatetheresponse

of thecompressorto flow nonuniformityaswell asto computetheflow instabilityinception

process,includingthe(nonlinear)temporalandspatialevolutionof flow instability. If gaps

betweenthebladerowsareto beincluded,thentheblade-gapflowfield canbeadequately

describedby theunsteady3-DEulerequationswhereeachbladerow isperceivedasabody force

distribution. Suchanapproachwouldallow for flow interactionsamongenginecomponentsin a

consistentmanner.

Thereis nolimitationto applyingtheaboveconceptualapproachfor addressingstability

issuesin high speedcompressors.However,duringthecourseof developingthecomputational

methodology,it wasbestto assesstheconceptualapproachby applyingit to low speedmulti-stage

compressorswherethecomputedresultscanbecomparedagainstknownanalytical(aswell as

experimental)results. In whatfollows, wewill first presentthegoverningequationsfollowedby

thedevelopmentof anadequatecomputationalflow modelfor thecompressorresponseto

unsteadyandnonuniformflow. We thendescribethenumericaltechniquefor thesolutionof the

resultinggoverningequations.

5.2 Governing Equations

The incompressible unsteady 3-D Euler equations can be written in cylindrical coordinates

(r,O,z) as

, g=

with

0 rU V rW 0

rU r(U2+ p) UV rUW V2+p
_= , F= , CJ= __[, H= , S=

, rV rUV V_vP I rVW -UV
l rW rUW r(W2+ p) 0

where (U,V,W) denotes respectively the radial, circumferential, and axial components of velocity,

(1)
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and P denotes the static pressure; the velocity components and the pressure have been made

dimensionless based on the mean wheel speed and the density. The incompressible flow equation

has been cast in conservation form for ease in applying the standard numerical solution technique

(see Section 5.4 for details).

Equation (1) can adequately describe the flowfield upstream and downstream of a

compressor as well as that within the blade gap. However, within the compressor (or each blade

row), the flowfield is assumed to be locally axisymmetric at each circumferential position and that

this flowfield is compatible with the upstream and downstream flowfield at all times; the effects of

pressure change are appropriately described in terms of a body force distribution. Thus, locally at

each circumferential position, the flowfield within the compressor or blade row satisfies

with

+
& _r 0z

0

rU

rV

rW

rU

r(U2 + P)

rUV

rUW

rW

rUW

,
rVW

r(W2+ P)

0

V2+p+rfr

rf0

rfz

(2)

where (fr, f0, fz) (= _') denote the radial, tangential and axial component of the body force

distribution.

Equation (2) can be viewed as a result of suppressing the 0-dependence in the equation of

motion and including its effects on the flowfield in the body force f. In general, the body force

within a compressor consists of a portion associated with the steady pressure rise and a portion

associated with the inertia of the fluid within the rotor and stator blades. The success of the

proposed approach thus depends on our ability to include the relevant features of the fluid dynamic

response of a compressor in f (or equivalently fr, rV, fz). While the above exposition might

appear to indicate that the flowfields (at the circumferential locations) within the compressor are

decoupled in the circumferential direction, in actuality they are coupled non-axisymmetrically
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throughthebodyforcef. As will beseenin thenextsection,thepressurechangeassociatedwith

theinertiaof thefluid within therotor(in relativemotion)andtheflow redistributionthroughthe

compressor(e.g.duetoupstreamflow nonuniformities)will actto couplethe local flowfields at

thecircumferentialpositionsnon-axisymmetrically.Thus,thisrepresentationof thecompressor

(orblade)canbe referredto asanunsteadynon-axisymmetricactuatorductmodel.

5.3 Compressor Modelling

As alluded to in Section 5.1, we will confine ourselves to the application of the overall

methodology to the situation of low speed, multi-stage compressors. Thus, the compressor

pressure rise and the relevant Mach numbers are assumed to be low enough so that

compressibility effects can be considered negligible. However, the compressor hub-to-tip ratio can

be low so that there is a need to account for the effects due to three-dimensionality of the flow in

the compressor model.

In contrast to high hub-to-tip ratio compressors, low hub-to-tip ratio compressors have

essentially three geometrical length scales: compressor circumference, blade span, and blade pitch.

The inclusion of the blade span length scale within the compressor model means that the spanwise

(i.e. radial) distribution of flow properties through the compressor must be considered. For

instance, the spanwise distribution of flow properties across a blade row can be modified as a

result of (i) the radial movement of the streamsurface, and (ii) the deformation/twist in the

streamsurfaces due to the development of secondary flow within the blade passage (see Fig. 4).

The development of secondary flow within a blade passage can be a result of flow

nonuniformities (either externally imposed or self-induced) upstream of the compressor or blade

row. The resulting streamsurface deformation due to secondary flow can alter the pitchwise

average value, and hence the spanwise distribution of the flow properties. Such a redistribution of

flow properties can impact the spanwise distribution of flow properties of subsequent blade rows.

This is a three-dimensional flow effect and constitutes a coupling between the blade pitch length

scale and the blade span length scale nonuniformities (such as that associated with a radial
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variation). Thus,thecompressorpressureriseundertheseflow conditionscanbeconsideredto

consistof theaxisymmetricflow performance(suchasthatdeterminedfrom awell-correlated

streamlinecurvaturecode)andacorrectionto accountfor theredistributionof flow properties

associatedwith flow three-dimensionality(suchasthatresultingfrom streamsurfacedeformation

dueto secondaryflow in abladepassage).In Section5.3.1wepresentthedevelopmentof a

methodologyto computesuchacorrectionto thecompressoraxisymmetricperformance.

Whenthebladerowsaresubjectedto flow unsteadiness,thereis anon-steadyflow effect

dueto theacceleration(ordeceleration)of thefluid within thebladepassages,evenif theblade

passageflowfield respondsin aquasi-steadymanner.Thisacceleration(ordeceleration)of fluid

requiresanunsteadypressuredifferenceacrossthebladerows,andhencethecompressor[6]. The

compressorpressurerisein unsteadyflow thusconsistsof theaxisymmetricflow performance

correctedfor flow redistributionassociatedwith three-dimensionalflow effectandacorrectionto

accountfor thequasi-steadyresponseof thecompressorto flow unsteadiness.In Section5.3.2we

will describehowthisunsteadypressuredifferenceis calculatedwithin theframeworkof the

overallmethodologyaspresentedin Section5.1.

Thecompressorcanbeassumedto respondquasi-steadilyonly if the lengthscaleof the

unsteadyflowfield disturbancesareof theorderof thecompressorcircumference(i.e.disturbances

with low ordercircumferentialharmonic),andtheassociatedreducedfrequencyis low. However,

whentheunsteadydisturbancesaresuchthattheirspectralcontentcontainshighcircumferential

harmonics(i.e.equivalentlyhighreducedfrequency),thebladepressurelossesandtheflow angle

deviationatexit of thebladerowswill respondunsteadily(ratherthanquasi-steadily).These

aspectsof thecompressorresponsewill beexaminedin Section5.3.3.

5.3.1 Flow Redistribution Due to Three-Dimensional Effects

The compressor pressure rise characteristics and the flowfield based on the axisymmetric

flow performance can be calculated using a well-correlated streamline curvature code (i.e. one that

has been developed and used in an engine company). The compressor (axisymmetric) flowfield
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computed by the streamline curvature code will be known as the primary flow. For the situation

where the compressor is subjected to a radially non-uniform flow, the flow redistribution due to

the radial movement of the axisymmetric streamsurfaces through the compressor can be

determined from the streamline curvature code. The flow redistribution due to the streamsurface

deformation/twist associated with the secondary flow development in the blade passage, however,

cannot be assessed nor computed using the streamline curvature code.

A way to get this information would be the direct application of a 3-D Euler flow solver,

but such an approach, though feasible, would be relatively demanding in terms of computational

resources for a multi-stage compressor within the framework of the approach presented in Section

5.1. In view of this, a model (to be described in the following) was developed to allow the

assessment and calculation of flow redistribution in the compressor as a result of radial

nonuniformities. As will be seen later, the usefulness of the model is examined by comparing the

computed results against those from a standard 3-D flow solver; the key idea behind the flow

model is that the three-dimensional flow can be approximated by the superposifion of the

secondary flow on the primary flow. The primary flow can be determined by the streamline

curvature method as described in the above, and the secondary flow can be calculated based on the

concept of classical secondary flow theory [12] - [14].

As the effects associated with the radial movement and the deformation of streamsurfaces

are of an inviscid nature and are not due to compressibility effects, the flow model was developed

based on the inviscid and incompressible assumption (compressibility effects can readily be

included if warranted). The flow model was then used to elucidate the three-dimensional flow

effect on the flow redistribution for a stator blade passage, a rotor blade passage, and a three-stage

compressor.

5.3.1.1 RadialMovement of Axisymmetric Streamsurfaces

The radial movement of the axisymmetric streamsurfaces through a compressor annulus is

governed by the radial equilibrium equation, which essentially expresses a dynamic balance
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between pressure gradient and the acceleration due to streamline curvature. The equations for

radial equilibrium and the continuity condition can be readily solved using the standard streamline

curvature technique [15]. The inviscid assumption adopted here implies that viscous effects are

not included. Thus, the main mechanism responsible for the radial movement of the

streamsurfaces considered here is the two-dimensional blade pressure rise coefficient, Cp:

( c°s2t_inlet / (3)
Pexit- Pinlet = 1

Cp - -i--- _-- COS20_exit ;pVinlet

where subscripts "inlet" and "exit" pertain to the respective values at the blade inflow and outflow

planes, t_ denotes the flow angle, Vinlet the inlet velocity, and p the density.

To illustrate this qualitatively, consider the flow situation in Fig. 4a; the static pressure rise

along a streamtube is determined by its area ratio change between the blade passage inlet and exit,

i.e.

Pexit- Pinlet = 1 pVi2nlet [ 1 - (Ainle---_t)2lkAexit / J (4)

where A denotes the streamtube cross-sectional area. For the same area ratio, the low stream

would therefore yield a lower pressure rise than the high flow one due to the lower inlet dynamic

head.

Thus, the streamsurface moves in a direction to result in an increased area ratio for the low

flow stream and hence an increased pressure rise. Correspondingly, there would also be a

decreased area ratio for the high flow stream so that there is a larger velocity defect at the passage

exit than at the inlet. Thus, the amount of radial shift in the streamsurface is essentially determined

by the pressure rise coefficient as well as the strength and the extent of inlet flow nonuniformities.

It should also be noted that any loss associated with viscous effects will also affect the pressure

distribution (hence the pressure rise across the blade row) and thus the radial movement of the

streamsurface; this can be included in the model based on appropriate loss correlations (such loss

correlations are included in streamline curvature codes used in the gas turbine industry).
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5.3.1.2 Streamsu__ ace Deformation�Twist

The deformation of the streamsurface within a blade passage (see Fig. 4b) is a result of the

development of secondary flow through the blade passage [12] - [14]. It is thus possible to

evaluate the flow redistribution due to this effect by using techniques developed for secondary flow

problems in turbomachinery (i.e. the secondary flow approximation). This would necessitate the

development of a procedure (see Section 5.3.1.3) to determine the extent of the twist in the

streamsurfaces in terms of the streamwise vorticity generated in the blade passage. The

streamwise vorticity can be developed, for instance, as a result of the turning of the normal

vorticity at the inlet (due to flow nonuniformities) into the streamwise direction. A general

expression for the generation of streamwise vorticity [12] - [14] is

(5)

+2[_x(_x_)]W 2 . (_". V)_V--ff 2(_ x _') •_W2

where the relative velocity W is related to the absolute velocity V and the rotor angular velocity fi via

• =9-fix .

The absolute vorticity _ is V x _¢. The LHS of the equation is the change of (cos/Ws)

(where subscript "s" denotes the streamwise component) along a streamline and is a result of the

generation of streamwise vorticity COs. The first term on the RHS of Eq. (5) is a result of density

nonuniformity, the second term a result of the turning of the flow through the blade passage, and

the last term a result of Coriolis acceleration. It is useful to note that the vector product _ x

appearing in the second term on the RHS of (5) can be expressed in terms of the gradient of rotary

stagnation pressure, Pt*, and density, p, as

- )xW=-_+ W2_ r2_2 Vpp

Equation (5) can be integrated along a nominal streamline on the streamsurfaces deter-
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minedfrom thestreamlinecurvaturecalculationprocedure(i.e.theprimaryflow); thisyieldsan

estimateof thestreamwisevorticitydistributiononacross-flowplanefrom whichtheassociated

secondaryflow canbecomputedfrom a(secondaryflow) streamfunction_ thatsatisfies

V2_g = -(COs + ms ) (7)

where ms is the computed streamwise vorticity from the streamline curvature procedure, while COs

is computed from Eq. (5).

In computing the flow redistribution due to streamsurface deformation at blade trailing

edge plane, a further simplification is adopted as indicated below. Equation (5) is integrated to

give an estimate of the streamwise vorticity distribution at the blade passage exit; Eq. (7) is then

solved for the associated secondary flow field on the inlet and exit of the passage. A linear

combination may then be taken between the inlet and the exit to yield an approximation of the

secondary flow development through the blade passage. The resulting velocity, which consists of

this secondary flow superimposed upon the primary flow, may next be used to determine the

extent of streamsurface deformation at the passage exit. The soundness of this simplification is

assessed by comparing the results against those from a standard 3-D flow solver.

In the next section, we summarize the procedure based upon the flow module in Sections

5.3.1.1 and 5.3.1.2 for computing the flow redistribution through the compressor.

5.3.1.3 Computational Procedure

Given the compressor's geometrical configuration and the flowfield at an axial location

upstream of the compressor face, the following procedures are carried out:

1) Use the streamline curvature procedure to compute the primary flowfield through a blade row;

2) Compute the absolute vorticity from the streamline curvature solution;

3) Compute the streamwise vorticity at the inlet to the blade passage;

4) Compute the streamwise vorticity at the passage exit by integrating Eq. (5) from inlet to exit

along streamlines determined in the streamline curvature solution from step (1) above;

5) Compute the secondary flow at the inlet and exit by solving for the secondary flow
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streamfunction_ from Eq. (7);

6) Estimatethesecondaryflow developmentthroughthebladepassagebasedon the

approximationpresentedin Section5.3.1.2;

7) Computethestreamsurfacedeformationby trackingparticlepathsfrom bladeleadingedgeto

trailing edgeplanebasedonaflowfield thatconsistsof secondaryflow (asdeterminedin step

(6)) superposedontheprimaryflow (asdeterminedin step(1));

8) Determinetheredistributionof flow properties(e.g.p, Pt,Pt*,etc.)from thestreamline

curvaturesolutionandaknowledgeof thedeformedstreamsurfacesin step(7);

9) Computethepitchwiseaveragesof thevelocityandflow propertiesfrom theresultsin step

(8); and

10) Repeatsteps(1) to (9) for all subsequentbladerows in thecompressor.

Theaboveprocedureyieldsamethodologyfor computingthesteady-stateperformanceof

acompressorsubjectedto anincomingspanwisedistortionin stagnationpressureandtemperature.

Thiscomputationalprocedurehasbeencodedin acomputerprogrammodulefor thecaseof

inviscidandincompressibleflow. A simplesteady-lossmodelbasedonHowell's losscorrelation

[16]hasbeenincludedin thecomputationalmodule. In theincompressiblelimit, ameasureof the

temperaturedistortioncanbein termsof densitynonuniformity.A well-correlatedstreamline

curvaturecodecanbeusedin step(1) aboveinsteadof therudimentarystreamlinecurvature

procedurecodedhere. If awell-correlatedstreamlinecurvaturecodefrom industryis usedin step

(1) above,thencompressibilityeffectswouldbeaccountedfor in theaxisymmetricflow

performance.

In the next section, representative examples from the computations based on the flow

model described here will be presented for: (i) illustrating the extent of flow redistribution; and (ii)

comparison against results from a standard flow solver.

5.3.1.4 Representative Examples

Approximations have been introduced in the development of the computational model for
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calculatingflow redistributionin acompressorsubjectedto upstreamflow nonuniformities.As

theflow effectsconsideredareof aninviscidnature,it is thusappropriateto assessthegoodnessof

themodelby comparisonagainstthree-dimensionalEulercalculations[17],[ 18]. A typicalresult

of suchacomparisonfor arotorbladerow is shownin Fig.5. Therotor,with ahub-to-tipratioof

0.8,hasaninletbladeangleof 45° andanoutletbladeangleof 20° (thiscorrespondsto ablade

pressurerisecoefficientof 0.45),andis subjectedto a2:1tanhinlet shearin theaxialvelocity

profile (Fig. 6);therotorspeedis chosento maintainflow incidencenearto zerosothatthe

solutionwouldberepresentativeof aninviscidone.

As shown in Fig. 5, the contours of rotary stagnation pressure at the passage exit

calculated by the model and a 3-D Euler solver agree both in terms of the deformation and the

radial movement of the streamsurfaces (the discrepancy in the results on the blade surfaces is

most likely due to numerical diffusion inherent in the Euler code). This is also reflected in the

good agreement of the pitchwise-average spanwise profile of stagnation pressure at the blade

passage exit, shown in Fig. 7, predicted by the model and the 3-D Euler solver. The results of

Fig. 7 also show the three-dimensional flow effect on the redistribution of stagnation pressure at

the exit where the spanwise profile predicted by the model is distinctly different from that based

on the streamline curvature prediction. Though not shown here, a similar trend on redistribution

of stagnation pressure at exit is observed when the rotor is subjected to a 2:1 tanh shear in density.

(Note that it would not be necessary to consider the effect of density nonuniformities for stator

passages since the Munk and Prim [19] flow substitution principle may be used to substitute

nonuniform density flows by nonuniform velocity flows with the same streamlines and total

pressure distribution.)

Parametric studies that have been carried out based on the model have indicated the

following:

i) the spanwise movement of the streamsurfaces depends on the blade static pressure rise

coefficient (i.e. blade loading) and the spanwise flow nonuniformities; and

(ii) the importance of the deformation of streamsurfaces due to streamwise vorticity is determined
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by theratioof bladepitchtobladespan;for low valuesof thisratio,theeffectis localized

while for valuescomparableto 1,thetwisting of streamsurfacesaffectstheentirepassage

flow.

As anillustration,themodelhasalsobeenusedto calculatetheaxisymmetricpressurerise

acrossathree-stagecompressor(Fig. 8a)for: (i) uniform upstreamflow, and(ii) upstreamflow

with spanwisenonuniformity. WhenasimplelossmodelbasedonHowell's correlation[16] is

incorporatedinto thecomputationalmodelfor computingtheaxisymmetricpressureriseacross

thethree-stagecompressorfor (i) uniform upstreamflow, and(ii) upstreamflow with spanwise

nonuniformity,thecorrespondingresultsaredisplayedin Fig. 8b. Thesecomputedresultsindicate

that,whenthecompressoris subjectedto upstreamflow with spanwisevariation,theflow

redistributionassociatedwith 3-D flow effectsactsto degradetheperformance.No attempthas

beenmadeto validatetheseagainstexperimentaldata.However,if awell-correlatedstreamline

curvaturecodeisusedinstead,thecomputedpressurerisecharacteristicscanbeexpectedto have

quantitativereliability.

In summary,wehavedemonstratedthevalidity andusefulnessof the model to compute

flow redistribution through multi-stage compressors in a practical manner. The flow redistribution

due to radial movement and deformation of streamsurfaces produces a change in the spanwise

profile of flow properties; this can be interpreted as a radial mixing effect [20], [21] which results

in a coupling among short circumferential length scale, finite blade pitch and radial variation in the

flowfield.

The significance of flow redistribution through the compressor due to three-dimensional

flow effects has to be assessed in terms of the impact it has on the compressor stability margin and

performance in distorted flow. This can only be examined when the compressor model is

integrated with the upstream and downstream flowfield.

5.3.2 Pressure Rise Correction Due to Flow Unsteadiness

This pressure rise correction arises out of the requirement of a non-steady pressure
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differenceto balancetheaccelerationof thefluid in thebladerow. Portionsof thisunsteady

pressurerisecorrectionarecomputeddirectlythroughthesolutionof Eqs.(1)and(2) for theentire

flowfield. However,theportionassociatedwith theaccelerationof fluid in arotorbladerow in

relativemotionto spatialflow nonuniformitiesneedstobemodelledandaccountedfor in the

approachdelineatedin Section5.1. Followingtheexpositionin Refs.[6] and[7], this additional

correctioncanbeobtainedusing

(AP)inertia= _inertia= _ OV (7)_0

where V = (U_r, Ve0, W_z)

and _. - Cx
r cos2_

with Cx as the axial chord length, _ as the blade stagger angle, and (_r, _0, _z) denoting the unit

vector in the cylindrical coordinate system (r,0,z).

As with the influence of flow redistribution, this inertia force term acts to couple non-

axisymmetrically the local axisymmetric flowfield described by Eq. (2) at each circumferential

position. Thus, for flow nonuniformities involving circumferential variation, the inertia force

within the compressor can be calculated as follows:

1) Compute the compressor flowfield at a set of preselected circumferential locations;

2) Evaluate the acceleration vector given by the product of angular velocity and the gradient of

velocity vector in the circumferential direction. This is directly proportional to the inertia force;

3) Advance to the next time step, allowing for the relative motion between compressor blade row

and flow nonuniformity given by the product of relative angular velocity and the differential

time step; and

4) Repeat steps (1) to (3).

5.3.3 Effect of Unsteady Loss and Deviations on Compressor Performance in Distorted Flow

In the work reported in Refs. [8] - [10], the compressor is assumed to respond in a quasi-
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steadymanner.However,experimentaldatahasindicatedthatwhenthecompressoris subjected

to aninlet distortion,theinstantaneousflow quantity(e.g.loss,deviation)lagsthesteadystatedue

to adelayedboundarylayerresponseto changesin incidence;thetime"rfor the boundary layer to

respond scales with the time it takes for a fluid particle to traverse through the blade passage.

Haynes et al. [25], Mazzawy [22] and Nagano [23] suggested the use of a lag law to model the

unsteady losses and unsteady deviations which display such a hysteresis effect. The lag law

reasonably predicts the unsteady blade response to incidence as shown in Fig. 9.

In the light of the above, the effects of the compressor unsteady response on compressor

performance in distorted flow have been examined during the course of this research program.

This work is fully documented in Ref. [24]. While aspects of the effect of compressor unsteady

response were examined based on an extension of the two-dimensional flow model presented in

[8] - [10], nevertheless the results should provide useful guidelines on inclusion of relevant aspects

of unsteady response in the three-dimensional flow model for compressors in distorted flow.

In the calculations and results reported in Ref. [24], the unsteady response of the

compressor are described by the first order lag law as follows:

Loss = (Loss)steady- Loss (8a)"_loss

deviation _ _exit = (_exiOsteady- _exit (8b)

where the flow angle 13is measured in the relative frame.

We summarize below the results of stability calculations with unsteady response of a

compressor, as described by the first order lag law of Eq. (8), in distorted flow:

i) Compressor instability occurs at higher distorted pressure rise and lower flow coefficients

compared to that based on the quasi-steady response of the compressor;

ii) With a first order lag model for unsteady loss and deviations (Eq. (8)), eigenmodes with the

strongest harmonic content greater than the ftrst harmonic are stabilized; thus as shown in Fig.

10 when subjected to a single-lobed distortion, the first harmonic goes unstable first, followed

by the second, the third, etc.;
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iii) Inclusionof unsteadydeviationsandunsteadylossappearsto haveagreaterimpacton the

stability marginof compressorsthatareswirl sensitive.

We concludethis subsectionby presentingthecomparison(Fig. 11)betweenthecalculated

andmeasuredpropagationandgrowthratesfor smallamplitudeflowfield disturbancesundertaken

by Haynesetal. [25] for athree-stagecompressor.By anappropriatechoiceof thetimeconstant

"qoss (-1.5 x convection time), the growth rates and propagation speed for the first three modes

appeared to be well predicted across a range of flow coefficients; however, non-steady deviation

appears to have a negligible effect for this case. In summary, a simple first order lag model for

unsteady loss appears to capture the effects of unsteady response of the compressor; such a model

was used for 3-D linearized stability calculations presented in Section 6.0.

5.3.4 Summary on Compressor Modelling

The procedures presented in Sections 5.3.1 to 5.3.3 essentially provide one with a rational

method of computing the body force distribution _"that represents the action of the compressor on

the flowfield. The modified streamline curvature procedure with flow redistribution due to three-

dimensional flow effects yields (fr, f0, fz) (or alternatively (fr, fz) and pitchwise-averaged tangential

velocity (V) distribution) without the inertia force distribution due to acceleration of fluid in the

rotor blade passage; the latter is computed by the procedure of Section 5.3.2. Additional correction

due to unsteady flow and deviation discussed in Section 5.3.3 can be included in the values of

and V. However, in order to reliably generate the compressor characteristics (and hence the body

force distribution without the inertia force distribution), one may need the use of a well-correlated

streamline curvature code (such as reside in the aircraft engine companies).

5.4 Numerical Techniques

In this section, we briefly describe the numerical technique for the solution of Eqs. (1) and

(2). The state vector U is modified to
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rU

rV
rW

sothatonecanapplythestandardnumericaltechniquefor unsteady3-DEulersolverto the

1 _'P appearingin the
solutionof unsteadyinviscidincompressibleflow equations.Theterm C2 0t

continuity equation is known as the pseudo-compressibility effect. In the limit of steady-state

flow, the steady inviscid incompressible flow equations are recovered. As we are interested in the

time-accurate solution, the numerics and the choice of C 2 must be such as to maintain time

accuracy as well as the relevant frequency wave number information of the disturbance flow field.

A four-stage Runge-Kutta time-stepping scheme is chosen for advancing Eqs. (1) and (2) in time,

and spatial discretization is based on a finite volume procedure. Fluxes of flow variables across a

cell face, A, is evaluated according to

Flux across A = Area of A x ½ (Fj+I + Fj)

and if cell face A is between upstream (downstream) and compressor inlet (exit), then for W > 0:

Flux across A = Area ofA x i (1.5 Fj + 0.5 Fj-1)

and for W < 0:

Flux across A = Area of A x ½ (Fj+I + Fj)

The numerics and the choice of C 2 were evaluated to ensure that the requirements for time-

accuracy and pertinent frequency wave number relation are satisfied.

The approach presented here has been implemented in an executable computer program for

an engine compression system shown in Fig. 3. For convenience of reference, it will be referred

to as the Integrated Flowfield Computational Model (IFCM). The assessment of the IFCM

against known analytical results from Refs. [6] - [8] will be presented in the next section.

5.5 An Assessment of the Present Approach

The integrated flowfield computational model (IFCM) has been applied to the computation

of the response of a multi-stage compressor to inlet distortion. The approach can be assessed by
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comparingtheresultsagainstknownanalyticalresultspresentedin Refs.[6], [7], and[8]. The

two-dimensionalversionof IFCM wasusedto computetheresponseof acompressorsubjectedto

afar upstreamsquarewavedistortionwith acircumferentialextentof 180degrees.As theresults

in Fig. 12show,thecompressorinlet flow coefficientdistributionfrom this calculationwasin

goodagreementwith thatfrom thetwo-dimensionalanalyticalmodelof Ref.[8]. Next, thethree-

dimensionalversionof IFCM wasusedto computetheresponseof acompressor,with a high

hub-to-tipratioof 0.9,to afar upstreamdistortionidenticalto theoneabove.Theflow coefficient

distributionsatthehub,themidspanlocation,andtheshroudfrom thiscalculationareshownin

Fig. 13;notonly do theresultsindicatethenear-absenceof anyspanwisevariationbut theyare

alsoin goodagreementwith thetwo-dimensionalresultsfrom Ref. [8].

Theabovediagnosticcalculationsarenotexhaustive,but theyneverthelessyield computed

resultsthat arein agreementwith knownanalyticalsolutionsfrom Ref. [8]. However,the

proposedapproachhasthepotentialof beingfar moregeneralin applicationto three-dimensional

flow situations.As anillustration,thethree-dimensionalversionof theIFCM hasbeenusedto

computetheresponseof a low hub-to-tipratio (0.4)compressorsubjectedto apurely

circumferentialflow nonuniformityof thesquarewavetypeat afarupstreamlocation. The

compressoris assumedto haveapressurerisecharacteristicthatis invariantradially. Boththe

two-dimensionalandthree-dimensionalversionsof theIFCM havebeenusedto computethe

distortedpressurerisecharacteristicasthecompressoris throttledtowardsthestallpoint; these

computedresultsareshowninFig. 14up to thestabilitylimit (or stallpoint)indicatedin the

figure. Solutionsatorpastthepointof stabilitylimit exhibitunsteadybehaviorin thatnosteady

solutioncanbeobtained.Thesecalculationshavebeenimplementedto demonstratethepotential

of thepresentproposedapproach.Theresultsof Fig. 14give aninitial glimpseof the influenceof

three-dimensionalityonstabilitymargin,eventhoughit issmallfor theflow situationbeing

computedhere.Again,thecomputedresultspresentedsofar arefor incompressibleflow, but

extensionto thehighspeedregimeis conceptuallystraightforwardanddirect.

It wasstatedabovethatwhentheintegratedflowfield computationalmodel(IFCM) was
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usedto computethecompressorresponse(todistortedflow) pastthestabilitylimit, thesolution

exhibitedunsteadybehavior.Asthemethodis time-accurate,suchsolutionbehaviorcanbe

exploitedto computethetemporalandspatial(nonlinear)evolutionof thecompressorflowfield

instabilitiesof varioustypes(one-dimensional,two-dimensional,aswell asthree-dimensional).

This aspectof theIFCM wasassessedby its applicationto thecomputationof flow instabilitiesin

acompressionsystemwithuniform upstreamflow for comparisonsagainstknown2-D resultsin

Refs.[6], [7], and[26]. As theresultsin Table1show,thegrowthrateandphasespeedof the

flowfield disturbancecomputedusingIFCM arein goodagreementwith theanalyticalresults

from the2-D linearizedstabilityanalysis.Thecomputedresultsin Fig. 15showtheevolutionof

incipientflow instabilityinto thefinal stallcellpatternwith characteristicssimilarto those

presentedin Ref. [26].

In summary,thegoodagreementbetweentheIFCM resultsandknowntwo-dimensional

resultsfor thecompressorresponseto inletdistortionandflow instabilitydevelopmentin uniform

flow canbeviewedasanindicationof a high level of confidence in the proposed conceptual

approach.

6.0 Analysis of Three-Dimensional Flow Instabilities in Compressors

The two-dimensional model of Refs. [6] - [9] applies to situations of compressor

instabilities and the response of the overall compression system to circumferential distortion where

a 2-D flow assumption is valid. A key development in the work is the use of rigorous linear

stability analysis techniques, which have been widely used to advantage in classical hydrodynamic

stability problems, to address the stability issues. It would be useful to adopt such an approach for

investigating fluid dynamic stability of radially non-uniform axisymmetric flow through a highly-

loaded fan (e.g. that of ADP) or a compressor subjected to a general unsteady, non-axisymmetric

disturbance. The background flow, being axisymmetric but radially non-uniform, can be

appropriately calculated using a streamline curvature technique, for example.

The major task in this effort consisted of developing a procedure that is computationally
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efficient for assessingthestabilityof theunsteady,non-axisymmetric(andthree-dimensional)

disturbance;thiscouldamountto theefficientsolutionof an eigenvalue problem with the

eigenvalues corresponding to the growth rate of the imposed disturbance field.

To obtain a general description (i.e. a description to an arbitrary mean background flow in a

representative compressor annulus) it was decided that the most useful approach was to cast the

formulation in terms of the primitive variables (i.e. through velocity components and the pressure

for incompressible flow). Such a formulation for the three-dimensional stability analysis of flow

in terms of the primitive variables will be presented in Section 6.1. In Section 6.2, implementation

of the stability calculations that involve the numerical solution of a three-dimensional eigenvalue

problem formulated in Section 6.1 is described. As in Section 5.0, the technique for the stability

calculation developed here was assessed by comparing the computed results against two-

dimensional results from Refs. [6] - [9] and analytical solutions for three-dimensional rectilinear

cascades. The results of these comparisons are presented in Section 6.3. We then use the

technique to examine the influence of flow three-dimensionality on compressor stability and the

spectral content of the marginally stable flow disturbance field.

6.1 Formulation of the 3-D Linearized Stability Calculation

The radially non-uniform axisymmetric flow in the compressor annulus (Fig. 16) is

represented by the velocity field (U(r,z), _/(r,z), W(r,z)) and the pressure field P(r,z); this flow can

be computed using a streamline curvature approach. To examine the fluid dynamic stability of this

flowfield to a general unsteady, non-axisymmetric disturbance (u(r,0,z,t), v(r,0,z,t), w(r,0,z,t),

p(r,0,z,t)), we first linearize this disturbance flow about the background axisymmetric flow to give,

for the upstream, downstream, and blade-gap flowfields,

Continuity Equation:

1 _ (ru)+l__+c_W_o (9)r 3r _z -

Momentum Equation:

-- _ _---r_ bu _)U _ 2Vv (lOa)8u +U +u--+-- +W-8--_ + w-_-z =- +" r&
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+u u& r _+r _ bz -_=-_
(10b)

(10c)

_n(r,z) e in0 ei°_nt (11)

where we have used the notation

Un(r,z)]

Vn(r,z) [
_n(r,z) = Wn(r,z)[

Pn(r,z)]

u(r,0,z,t) ] [Un(r,z) ]

[ v(r,0,z,t) ] = n_ ] Vn(r,z) [ ein0 eiCOnt nn=_
[ w(r,0,z,t)[ = [Wn(r,z) / = --_

[ p(r,0,z,t) ] [p,_r,z)]

The disturbance flow can be conveniently expressed in the form of:

Sections 6.2 and 6.3).

Substitution of Eq. (11) in Eqs. (9) and (10) gives, upon invoking the orthogonality condition for

the Fourier series in e in0,

conditions depend upon the details of the flow model for the compressor or blade row (see

where the flow variables are appropriately made non-dimensional in terms of the compressor tip

speed, a characteristic tip radius rt*, and the density p. The disturbance flow satisfying the above

linearized equations are subjected to the boundary conditions: (i) specified across the compressor

or each blade row of the compressor; (ii) that the velocity component normal to the hub and the

casing of the compressor annulus should vanish identically; and (iii) far upstream and far

downstream are such that the flow disturbances must at all times have their physical origin at the

compressor. The boundary conditions across the compressor involve the linking of the

disturbance flowfields (external to the compressor or blade rows) across the compressor (or each

of the blade rows) to enforce the conservation of mass, momentum, and specified (geometrical)

constraints on flow path; these boundary conditions reflect the dynamics of the compressor

response presented in Section 5.3. As such, the explicit expressions for the compressor boundary
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where

_n _n

A(r,z) _ + B(r,z) _ + C(r,z) Un + D(f.0) fin = 0

m_

1 0 0 0

U(r,z) 0 0 1

0 U(r,z) 0 0

0 0 U(r,z) 0

(12)

0 0 1 0
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0
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r

0

0000
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Likewise, the use of Eq. (11) allows the boundary conditions across the compressor (or

each of the blade rows at z = ze) to be written as

c(r,ze) -'*un + d(co) f n = 0 (13)

where we have represented the compressor (or each of the blade rows) as an actuator disk at z = zg.

The coefficients c(r,ze), and d(m) depend on the details of the flow model for the compressor; the

specific form of these coefficients will be explicitly delineated in Sections 6.2 and 6.3. In Eq. (13),

fin* (r, ze) is given as
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-.* Un(r'ze) (14)
an --

 n+(r,ze)

where superscripts "-" and "+" denote values evaluated immediately upstream and downstream of

the actuator disk.

In examining the stability of the disturbance flow _(r,O,z,t) for a given steady axisymmetric

background flow, we seek a disturbance flow that can marginally be sustained subject to the

boundary conditions across the compressor, far upstream and far downstream, along the hub and

casing of the compressor annulus. Mathematically, this amounts to the determination of

compressor operating conditions for which a disturbance flow g with a co that has a vanishing

imaginary part. As we shall see later, this is tantamount to the solution of an eigenvalue problem

with the eigenvalue o3 corresponding to the growth rate of the unsteady non-axisymmetric (and

three-dimensional) disturbance flow.

6.2 A Numerical Technique for the Differential Eigenvalue Problem

In this section, we present a numerical method for the determination of eigenvalues (co) of

the system of partial differential equations (i.e. Eqs. (12) and (13)) that govern the unsteady non-

axisymmetric disturbance flow. As a Fourier series has been used to represent the 0-dependence

of the flow, we need only to define a two-dimensional grid on the radial-axial (r-z) plane for a

discrete approximation to the derivatives 0/0r and 0/0z. We have applied a standard second-order

central finite difference approximation away from the boundary and a one-sided finite difference

approximation for a normal derivative at points along the boundary. Upon substituting these finite

difference approximations for the various derivatives in Eqs. (12) and (13), we obtain a matrix

eigenvalue problem of the form

A_ + icoB_ : 0

where the eigenvalues co and the eigenvector

(15)
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.u zk)1 1
can be determined using a standard algorithm for the solution of the matrix eigenvalue problem.

In Eq. (16), subscript "jk" denotes the value at grid point (j,k) on the radial-axial plane, and

superscripts "u" and "d" denote the value upstream and downstream of the actuator disk

representing the compressor. The matrices A and B contain information on the state of the

background axisymmetric flow, geometry of the compressor annulus, compressor design

characteristics (such as pressure rise characteristics, number of stages, etc.), dynamics of the

compressor response, and characteristics of any other components making up the compression

system. Physically, the eigenvector _ provides information on the structure of the flow

disturbance (i.e. the eigenmodes of the compression system) while the eigenvalue co (which has a

real part and an imaginary part) describes the growth rate and phase speed of the corresponding

eigenmode _. Such an analytical procedure would thus provide us with a technique for

establishing a direct link between the 3-D instability inception process and the compressor

characteristics.

In the next section, we apply the above solution technique to the 3-D stability analysis of

flow in specific flow situations through a compressor with specific design characteristics.

(16)

6.3 Computed Results from Instability Analysis

The 3-D linearized stability calculation procedure was first assessed by comparisons

against known two-dimensional analytical results [6] and analytical solutions for three-dimensional

rectilinear cascades. As the background axisymmetric flow far upstream of the compressor is

taken to be uniform in these cases, the upstream disturbance flow can be simply described in terms

of a perturbations potential 0(r,0,z,t) instead of the primitive variables. The boundary conditions

applied are then as follows:

a) continuity condition:

20- = w+ (17)
Oz
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b) blades exert no radial force"

_- = u+
_r

c) momentum condition (i.e. pressure rise condition):

(18)

p+ - p- = _---_ -

where _g denotes the axisymmetric compressor pressure rise characteristic, _, the unsteady

blade response parameter for rotor blades, and g the unsteady blade response parameter for both

stator and rotor blades.

d) compressor exit angle condition:

v + = (tan _exit) w+ (20)

e) at a far upstream location:

3_ =0 (21a)
Oz

f) at a far downstream location:

8p =0 (21b)
Oz

The boundary conditionsinEqs. (17)to(20)can be castintotheform shown in Eq. (13).

The resultsof thecomparisons between thepresentnumericalmatrixeigenvaluesolverand

the analytical solutions are shown in Fig. 17, Table II and Table HI. Figure 17 shows the

comparison of computed flow variables from the present technique against those from the two-

dimensional analytical results, while the results of Tables II and III show the computed

eigenvalues against those obtained analytically for two-dimensional cascades and three-

dimensional rectilinear cascades. The three-dimensional flow disturbance in a rectilinear cascade

has a circumferential harmonic, denoted by n, which is coupled to the spanwise spectral content

(denoted by j). Thus, each eigenmode in the three-dimensional stability calculation for the

rectilinear cascade is characterized by a circumferential harmonic n and a radial harmonic j. The

results shown in Table II are for n = 1 and j = 1, 2, 3, 4. These comparisons, though limited,
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indicatethegoodagreementbetweentheresultsobtainedby thepresentnumericaltechniqueand

thosefrom knownanalyticalsolutions,andserveto impartconfidencein thenumericalsolution

procedurebasedonthetheoreticalformulationof Sections6.1and6.2.

Wenow presenttheresultsfrom a3-Dstabilitycalculationfor arotor-statorcombination

stage.Forabackgroundflow with uniformaxialvelocityin thespanwisedirectionandaslopeof

stagepressurerisecharacteristicthatis invariantfrom thehubto thetip, stabilitycalculationswere

carriedout to examinethedependenceof instabilityonseton theradialspectralcontentof the

modalflow disturbance.Thecomputedresultsfor thissituation,displayedin Fig. 18,indicatethat

themodescorrespondingto non-zeronbutj = 0 (i.e.thetwo-dimensionalmodaldisturbances

analogousto thosein [6] - [10], [26])becomemarginallyunstableataflow coefficientfor which

thetotal-to-staticpressurerisecharacteristicshavezeroslope.However,for modalflow

disturbancesthathaveacircumferentialaswell asradialharmoniccontent(i.e.genuinelythree-

dimensionalmodalflow disturbance),theybecomemarginallyunstableatflow coefficientsfor

whichthetotal-to-staticpressurerisecharacteristicshaveapositiveslope.Whentheslopeof the

stagepressurerisecharacteristicsis allowedto varyfrom hubto tip, asindicatedin Fig. 19,the

computedresultsof Fig. 20showthattheflow disturbancescanbecomemarginallyunstableat

flow coefficientsfor whichtheradially-averagedslopeof thecharacteristicsis still negative.This

is thefirst instancethatsuchaneffectispredictedbasedonatheoreticalanalysis/computation.

Theeffectof unsteadylossontheinstabilityonsetwasassessedby inclusionof a loss

modelbasedon thesimplefirst orderlag lawpresentedin Section5.3.3. Thismodifiesthe

pressureriseconditionin Eq.(19) to

p+-p-= W-tR-gS -_, - g -_--

where the loss £R associated with the rotor is given as

(-_ _R/ _LRER + -_-] = -_-W-w- £R

while the loss £S associated with the stator is given as

(23a)
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_gs _Ls (23b)
= -bW w-es

with LR and LS denoting the quasi-steady loss characteristics for the rotor and the stator, and Wi the

ideal compressor characteristics The computed results based on the above simplistic loss model

show a trend similar to that seen in the two-dimensional results presented in Section 5.3.3.

6.4 Summary of 3-D Linearized Stability Analysis

We now summarize the results from the limited 3-D linearized stability calculations that

have been implemented so far:

i) the three-dimensional equivalence of the two-dimensional modes (i.e. those eigenmodes with

nonzero n but zero p) become unstable first;

ii) the radial structure of the modal flow disturbance depends on the variation of the slope of the

characteristics with radius;

iii) compressor instability onset can occur on the negative slope (radially-averaged) of the

compressor characteristics for the situation where the slope of the pressure rise characteristics

varies from hub to tip;

iv) there is a difference between the instability onset for a three-dimensional flowfield and that

obtained from a 2-D stability calculation based on the radially-averaged compressor

characteristics.

7.0 CONCLUDING REMARKS ON THE STATUS OF PREDICTIVE CAPABILITY

FOR 3-D FLOW INSTABILITIES IN COMPRESSORS

When the research program was initiated in 1989, the analysis/computational tools for

examining compressor flow stability were confined to low speed compressors in situations where

the two-dimensional flow assumption would be approximately valid; this necessarily implies that

the compressor has a high hub-to-tip ratio where flow redistribution (within the compressor) can

be considered to be negligible. Furthermore, in the solution methods reported in [6] - [10] and

[26], the disturbance flowfield upstream of the compressor is taken to be a two-dimensional

irrotational one linearized about the background flow, while that downstream of the compressor is



34

determined by the two-dimensional linearized Euler equations.

When the research program was concluded in 1993, we had the computational tools to

provide us with the capability for addressing three-dimensional stability issues in low hub-to-tip

ratio compressors. These include: (1) a 3-D linearized stability computational procedure for

assessing the stability of a steady, radially nonuniform, axisymmetric flow through a compressor

to a general 3-D unsteady flow disturbance; and (2) a 3-D, nonlinear, computational technique for

computing the temporal and spatial nonlinear development of aerodynamic instabilities in a

compression system (Fig. 3) in situations where the compressor is subjected to an incoming

uniform flow as well as to an externally imposed or self-induced flow distortion of the 3-D type.

The accomplishments achieved in the research program are best summarized in Table IV, which

assesses the current status of compression system modelling against that in 1989.

The completed work in (1) and (2) above constitute a significant advancement in the

methodologies for computing the inception and development of 3-D flow instabilities in

compressors operating in uniform as well as nonuniform flow. The availability of these

computational tools will provide us with the opportunity to now focus more on the key technical

issues of technological interests rather than on the development and modelling issues for the

methodologies. Thus, while the research program was initially focused on problems associated

with the development of VSTOL engines, it also resulted in the defining of an overall conceptual

approach and the developing of the necessary computational methodologies for examining

technical issues associated with compression system instabilities on a long-term basis. Extension

of the approach and methodologies for investigation of instabilities in high speed compressors is

direct and straightforward.
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TABLE I

GROWTH RATE AND PHASE SPEED OF INCIPIENT INSTABILITY

Growth Rate

Phase Soeed

Present ICFM Results

0.253

0.274

2-D Analytical Results

0.259

0.270

TABLE II

NUMERICALLY DETERMINED EIGENVALUES VS. ANALYTICAL

EIGENVALUES FOR A 2-D FLOW SITUATION IN A COMPRESSOR

Analytic Eigenvalue I

-0.3887 - 0.6478 i I

Numerically Determined Eigenvalues

-0.3893 - 0.6488 i

TABLE III

NUMERICALLY DETERMINED EIGENVALUES VS. ANALYTICAL

EIGENVALUES FOR A FLOW SITUATION IN 3-D RECTILINEAR CASCADES

- Results Shown for First 4 Radial Modes

Correponding to Circumferential Harmonic of 1 -

Radial Mode I

0th

1st

2nd

3rd

Analytical Numerically Determined

-0.2222 - 0.1389 i

-0.4719 + 0.2936 i

-0.4855 + 0.3031 i

-0.4902 + 0.3062 i

-0.2213 - 0.1383 i

-0.4719 + 0.2918 i

-0.4856 + 0.2962 i

-0.4904 + 0.2961 i
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Fig.4a: An illustration of radial movement of the streamsurface: radial movement of a

shear layer through a stator passage occurs to achieve the required matching

pressure rise.
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are larger in the high flow stream (upper portion) and the resulting pressure
imbalance causes the streamsurface to twist.
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Fig. 19: Hub-to-tip variation of slope of stage pressure rise characteristics.
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