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Fig. 3. Synthetic spectra as would be observed by spacecraft for atmospheres
with no cloud or dust and 30 pm-atm 03 (solid line), vertical opacities of dust

and cloud of 0.3 and 1.0. respectively, and 30 pm-atm of O_(dashed line), and

vertical opacilies ofdust andcloud of 0.3 and 1.0,respectively, and 100 pm-atm
ofO_ (dotted line). All cases assume a solar zenith angle of 75 o(typical for winter
polar observations), and a polar cap albedo of 0.6.

to observe through the increasing effective optical depths as one
goes poleward.

By using a photochemical model that included multiple scatter-

ing of solar radiation, Lindner [3] showed that the absorption and

scattering of solar radiation by clouds and dust should actually

increase 03 abundances at winter polar latitudes. Hence, regions

with high dust and cloud abundance could contain high 03 abun-

dances (heterogeneous chemistry effects have yet to be fully under-

stood [2,9]). It is quite possible that the maximum 03 column

abundance observed by Mariner 9 of 60 pro-arm is common.In fact,

larger quantities may exist in some of the colder areas with opt ically

thick clouds and dust. As the Viking period often had more atmos-

pheric dust loading than did that of Mariner 9, the reflectance

spectroscopy technique may even have been incapable of detecting

the entire 03 column abundance during much of the Mars year that

Viking observed, particularly at high latitudes. The behavior of 03

is virtually unknown during global dust storms, in polar night, and

within the polar hood, leaving large gaps in our understanding.
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Rubincam [1] has shown that the martian obliquity is dependent

on the seasonal polar caps. In particular, Rubincam analytically

derived this dependence and showed that the change in obliquity is

directly proportional to the seasonal polar cap mass. Specifically,
Rubincam showed

d ¥/dt - 3 x 10--m M(t)/M(0) degrees/Eanh year (I)

where V is the obliquity and M is the mass of the seasonal polar caps,

with time t of 0 being the present. This expression assumes uniformly
thick spherical caps with identical angular radii of 45 ° . However,

even ifa very different polar cap mass distribution is used, Rubincam

estimates the total uncertainty in the constant in equation (I) to be

less than a factor of 2. Using the current mass of the seasonal polar
cap as typical over geologic time, Rubincam calculates that the

amount that the obliquity would secularly change is only 1.4 ° .

Considering that the current obliquity of Mars is 25 °, Rubincam

concludes that seasonal friction does not appear to have changed
Mars' climate significantly.

Using a computer model for the evolution of the martian atmos-

phere, Haberle et al. [2,3] have made a convincing case for the

possibility of huge polar caps, about IOx the mass ofthe current polar

caps, that exist for a significant fraction of the planet's history. Given

the large uncertainties in input parameters and in the model itself, the

results must be regarded as speculative. Also, the Haberle et al.

results have been unable to favor or rule out a large polar cap
scenario vs. a small polar cap scenario.

Nonetheless, since Rubincam showed that the effect of seasonal

friction on obliquity is directly proportional to polar cap mass, a

scenario with a ten-fold increase in polar cap mass overa significant

fraction of the planet's history would result in a secular increase in

Mars' obliquity of perhaps 10 ° (using equation (I)). Hence, the

Rubincam conclusion of an insignificant conlribution to Mars' cli-

mate by seasonal friction may be incorrect. Furthermore, if seasonal

friction is an important consideration in the obliquity of Mars, this

would significantly alter the predictions of past obliquity as pre-

senled by Ward [4--61, Murray et al. [7]. Ward et al. [8], Rubincam

[9], Chao and Rubincam [10], Bills II I], Ward and Ruby [12].

Touma and Wisdom [ 13], and Laskar and Robutel I 14]. That in turn

would significantly alter the predictions of past climatel which are

based on obliquity predictions [15-20]. The mechanics of the polar

cap system also depend on obliquity [21-26]. If obliquities were

often much smaller than at present, that could have implications for
past atmospheric composition [27].

Given the enormity oft he implication s, the effect of the polar caps

on the obliquity of Mars should be given more attention and study.

Perhaps further modeling of obliquity could be used to rule out the

possibility of large polar caps for extended times, which would

assist modeling of atmospheric evolution. Similarly, modeling of

atmospheric evolution should be given more attention and study

because of the implications for obliquity history, and therefore
climate history.
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This was done very successfully by the late "Chick" Capen in

I97i, but we now believe that the chance of having a planet-

encircling storm in any given Mars year is less than 50% [ I ]. Capen

suggested that these storms begin around the time of perihelion.

More recent storms have extended this season to nearly one-third of

a martian year, during the same interval that the south polar cap is
receding [2]. There is no observational evidence that storms of this

size have occurred outside of that period, although smaller dust

storms have been observed throughout most of the martian year. The

circumstances that allow a limited storm to become a runaway or

encircling storm are not well understood. Seasonal effects are appar-

ently just one aspect of these circumstances, but apparently a critical

one. Dust activity seen by Viking near the edges of the receding cap

and data showing that the cap may be receding at a faster rate prior

to these storms suggest that the seasonal south cap may be influenc-

ing dust activity.

We have also determined that the north polar hood recedes during

major dust storms, but it is not clear whether impending storms

might have an effect upon this atmospheric phenomenon. Viking

images do show local storm clouds near the hood prior to the first

1977 planet-encircling dust stoma, but the hood is such a dynamic

feature that minor changes may not be meaningful. We are, how-

ever, continuing to analyze these data.

Several datasets indicate that Mars' atmosphere was less clear

before the first 1977 encircling storm, although we cannot discount
of Michigan, Ann Arbor MI 48109, USA.

Luhmann et al. [ I] recently suggested that sputtering of the mar-

tian atmosphere by reentering O ÷ pickup ions could have provided a

significant route of escape for CO 2and its products throughout Mars'

history. They estimated that the equivalent of C in a ~ 140-mbar CO 2

atmosphere should have been lost this way if the Sun and solar wind

evolved according to available models. Another source of escaping

C (and O) that is potentially important is the dissociative recombi-

nation of ionospheric CO+ near the exobase [2]. We have evaluated

the loss rates due to this process for "ancient" solar EUV radiation

fluxes of I, 3, and 6x the present flux in order to calculate the

possible cumulative loss over the last 3.5 Gyr. (Earlier estimates of

loss by McEIroy [2] used the present-day rates and thus represent

underestimates.) The inputs and assumptions for this calculation

are the same as used by Zhang el al. [3] for an evaluat ion of historical

O escape by dissociative recombination of ionospheric 02 ÷. We find

loss rates of C that are at least comparable to the sputtering loss

rates, thereby potentially accounting for another 100 mbar or more

of Mars' original atmosphere.
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the possibility that this was merely a seasonal change. Data from

other Mars years are less detailed and comprehensive, but the 1977

Viking data from both imaging [3] and infrared [4] suggest that dust

in the atmosphere was increasing prior to the storm. Peter Boyce

found that, prior to the 1971 planet-encircling storm, there was

"violet haze" present on Mars. He attributed this to the impending

storm, which may have been correct, but this condition, which could
be due in part to atmospheric dust on Mars, is not uncommon at times

when no storm is on the way. This may also be true for other

indicators of increasing atmospheric dust mentioned above.

Capen also believed that smaller, precursor storms occurred be-

fore a planet-encircling storm. This generally seems to be the case,

although the data are not conclusive. These earlier storms certainly

provide a good vehicle for raising dust into the the atmosphere and

regional dust storms may be a sign of an impending larger storm.

However, many of these storms occur without any subsequent dust

activity, even during the dust storm "season."

Investigations of dust-storm observations show that that the Hellas

Basin is the most active area on Mars for all sizes of storms [2]. This

area is probably their primary dust source.

Earth-based observations suggest that, during the expansion

phase of planet-encircling storms, diurnal cycles often begin at

Hellas, presumably with a new load of dust, as mountain climbers

return to a base camp for more supplies to be cached along their

route. Each day the storms carry an increasing supply of dust farther

to the west, until Hellas is reached from the east, completing the


