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INTRODUCTION

The overall science objective of our participation in TRMM is the determination of daily rainfall

and latent heating in the tropical atmosphere using TRMM and complementary spacecraft observations.

Our major focus these first three years has been to extend, in space and time, the TRMM satellite

observations of rainfall. Observations from TRMM active and passive microwave radiometers will

provide the fundamental observations for understanding the hydrological cycle of the tropics. Due to the

orbit of the TRMM satellite and the extreme variability of convective rain systems, the TRMM

observations provide rainfall estimates representative of a one month period. Monthly mean rainfall rates

provide valuable information; however, in our view, this time scale limitation neglects the great value of the

data towards a better understanding of the physics of tropical convection. Many tropical periodicities will

not be characterized by these monthly averages, e.g. diumal cycles, the 4-6 day easterly waves and the 30-

60 day cycle. In the spatial domain, due to its orbit, the TRMM satellite will over-fly many convective

systems only once. Indeed, some precipitating systems will not be sampled at all.

Observations from geostationary satellites can be used to extend the TRMM observations to

smaller time and space scales. Although geostationary satellites cannot probe the interiors of precipitating

systems, they do observe their life-cycles. To acquire information on cloud water content and rain rate, we
propose to combine geostationary and other satellite observations with the TRMM satellite measurements.

In these pre-mission years, we will use DMSP microwave, TOGA radar and other observations as proxies
for TRMM.

WORK COMPLETED UNDER THIS PROPOSAL

Cloud Classification Scheme

Cloud classification methods have been developed using bi- or tri-spectral methods for data from

the GOES, GMS and Meteosat satellites. Pattern recognition is another important method for

characterizing cloud type and coverage. These techniques are more-demanding than pixel based methods

i_but provide more information. Our approach for specifying the rain classes is to analyze pattern and

te-K-ture in multi-spectral images from geostationary satellites. Our present classification scheme is

rboted in the algorithm developed by Garand (1988) for the north Atlantic. The method uses visible (VIS)

and infrared OR) images from a geostationary satellite to classify cloud in a 128×128 km region, or

classification box. Garand's twenty cloud classes are illustrated in Figure I. For each cloud class there are

four examples. Each example consists of two parts: a view in VIS (above) and a view in IR (below).
White numerals are the cloud class numbers.
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Figure 1. Garand cloud classes 1-6. Top-left is class 1, middle-left is class 2, lower-left is class 3,

top-right is class 4, middle-right is class 5 and lower-right is class 6. Continued.

Figure 1 (continued). Top-lei_ is class 7, middle-left is class 8, lower-left is class 9, top-right is
class 10, middle-right is class 11 and lower-right is class 12. Continued.





Figure1(continued).Top-leftis Class I3, middle'left is class 14, lower-left is class 15, upper-fight

is class 16, middle-right is class 17 and lower-fight is class 18. Continued.

Figure I (concluded). Top is class 19 and bottom is class 20.





Wehaveenhancedtheoriginalalgorithmtoincludethefollowingoptions:
1. TheVISandIR observationsbothcanhaveanominalspatialresolutionof4 kmatnadir rather

than 1 km data sampled at 2 km intervals. This change will allow us to process GMS

(approximately 4 km) and Meteosat (approximately 5 km) observations in a consistent global

analysis.

2. To set the clear sky IR temperature threshold, NMC sea surface temperature (SST) data rather

than climatological SST data is imported into the algorithm. Presently the threshold for cloud is

T 11<(SST-4°). This change should result in an improved rain classification.

3. To extend coverage to nighttime hours the algorithm can be run with IR data alone.

4. The algorithm is being adapted to the tropical oceans. This entails verification by comparison

with subjectively determined parameters as well as verification by comparison with parameters
retrieved from satellite microwave observations..

5. Anisotropic factors have been included for determining clear sky thresholds for the tropical

oceans. This change also entails subjective verification.

Using GOES images of the eastern tropical Pacific, we tested the perfornmaace of the modified

cloud classification scheme and its utility in estimating rain. In the eastern Pacific there are neither

independent classifications of cloud nor independent measurements of rain. Lacking independent

observations, Garand trained the algorithm on subjective estimates of cloud type. To verify the MclDAS

cloud classes, we followed the methodology of Garand (1988), except that the analyst could view up to

three image pairs rather than the "target" image pair only. (One of the supplemental image pairs was a half

hour older than the target image pair; the second was a half hour younger.) Looping the triplet enabled the

analyst (D. Martin) to resolve some ambiguous situations through differential movement of clouds. Martin

was one of two analysts who assisted Cawand in the validation of the original algorithm.

For classification boxes in a subset of images Martin also estimated rain class. Classes consist of

nil, light, moderate and heavy (SO, S 1, $2 and $3). Nominal rates are <0.05, 0.05 to 1.0, 1.0 to 10 and

>10 mm/h, respectively. Rain classes were assigned on the basis ofbispectral radiance, texture, pattern

and behavior (see Martin and Howland 1986); never on the basis of the MclDAS cloud class.

We found, as expected, that there is a clear association of cloud class with rain class. This is

evident in Figure 2. Part (a) shows the frequency of cloud class as a function of rain class. The nil-rain

class contains many boxes; the heavy-rain class contains few boxes. Within the "nil" rain class boxes fall

mainly in the "clear" cloud class (1); some fall also in classes of scattered-shallow-cumulus-cells,

altocumulus-clouds and thin-cirrus (3, 13 and 16, respectively). Within the "moderate" and "heavy" rain

classes boxes tend to cluster in the "multi-layer-cirrus" and "thick-cirrus" cloud classes (18 and 19). Part

(b) of Figure 2 replots the information in part (a) as percentage occurrence of rain classes given some cloud

class. Of the 38 boxes which the algorithm classified as "scattered shallow cumulus cells", the analyst

classified 35 (92 %) as "nil" rain and the remaining 3 (7 %) as "light" rain. Of the five boxes which the

algorithm classified as "overcast thick cirrus", the analyst classified one as "light" rain, one as "moderate"

rain and three as "heavy" rain.

Up to one-fifth of the Garand's original classes may not be relevant to cloud classification in the

equatorial tropics. This is suggested by Figure 3, which shows the frequency of occurrence of cloud

classes for the rain sectors. The sample consists of 239 boxes. Of the classes representing species of

cumulus (3, 4, 7, 8, 9,10 and 11) only two were assigned. The algorithm did not classify any boxes as

nimbostratus (class 12) or as cumulonimbus (class 20). The evident presence of these species argues for

tuning the classification coefficients to the tropics. (Following this study, a revised calibration of the

GOES visible channel was included in the algorithm. Cloud albedo plays a prominent role in assigning a

cumulonimbus classification and the revised calibration allows for regions to be assigned this class.)
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Especiallyin the context of rain estimation, it suggests that additional classes may be needed; for example,
a "popcorn" cumulonimbus class.

It is clear that while MclDAS "Garand" algorithms can indeed classify rain cloud types, the

addition of parameters will improve estimates. Tests to do this are an important part of our fiJture
research.
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Figure 2. Cloud class vs. rain class. Part (a) is a 3-D histogram. Part (b) is a 3-D probability

distribution, expressed in percent and conditioned on the occurrence of some cloud class. If a

cloud class occurs, the probabilities at the rain classes totals 100 %.
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Figure 3. Histogram of cloud classes for the rain test. Class 1 is clear. Classes 2-15 are water

clouds; classes 16-20 are ice or ice/water clouds. Within the water group classes 2-12 are low
clouds and classes 13-15 are middle-clouds.

Relation of GMS IR to Rainfall Established with Microwave Radiance

To estimate tropical rainfall the Global Precipitation Climatology Project employs a thermal

infrared method, the GOES Precipitation Index. Operating on a scale that includes many clouds, GPI

selects "rain fraction" using a 235 K threshold applied to images in the 11 gm window channel of

geostationary spacecraft. This rain fraction is assigned a rain rate of 3 mmh "1- On a cloud system scale it

has been speculated (e.g. see Adler et al. 1993, Kummerow and Giglio 1992 and Vicente and Anderson

1993) that passive microwave observations could be used to tune the threshold or the rate to a region or a

time. On an individual cloud scale the increased latent heating associated with more intense rain might

increase the raining parcel's buoyancy tending to produce cloud at higher levels and (since at reduced

pressure the parcel expands) cooler temperatures. This relationship suggests a scheme in which rain rate is

variable, increasing as the cloud top temperature decreases below a threshold (e.g. see Goodman et al.

1993). To test these ideas we analyzed Geostationary Meteorological Satellite (GMS) and SSMI data from
TOGA/COARE.

The relationship between rain rate and cloud top temperature is modulated by several factors,

including, for example, the profile of temperature and the degree of entrainment of non-precipitating

environmental air. In addition, shear can produce a parallax between the coldest part of the cloud tower

and the precipitation. Equally important are non-precipitating cloud particles, especially cirrus, which can

persist after the precipitation associated with their formation has fallen.

Thus any collection of observations consisting of IR and simultaneous observations of rain rate

will exhibit a distribution of rain rates for a given IR brightness temperature. The best we can hope for is

that the mean relation will be stable and the standard deviation will be small enough to make the estimate

useful. Additional information about the cloud might refine the mean relation and narrow the dispersion.

For example, ifa high cloud is detached cirrus, rather than the top of a cumulonimbus, its assigned rain
rate would be lower.





SinceinourTOGA/COAREinvestigationtheIR andmicrowavedataarenotfrom the same

platforms, it was necessary to tolerate small time differences (_+0.25 hours). It also was necessary to

remap one satellite's view into the other, which cannot be done without some perspective distortion.
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Figure 4. Effect of varying the brighmess temperature threshold on rain rates associated with clouds

at or colder than the threshold. Rain rate is the upper x-axis (lower axis is an arbitrary unit). The

"importance" plotted on the y-axis is the number of occurrences (n) of a given rain rate (R) times the

rain rate [i.e., n(R).R].

Figure 4 illustrates the effect of changing the black body temperature threshold. In both panels the
dotted curve shows the rain rate distribution for all clouds, both above and below the indicated threshold

(i.e. 235, at left;, or 208 K, at fight). Rain rate is indicated on the upper x-axis. The medium-weight solid

line illustrates the rain rate distribution for clouds warmer than the threshold, while the bold line shows the

distribution for clouds colder than the threshold. Note that the peak of the colder cloud curve always lies to

the right of the peak of the warmer cloud curve. Note also that only the colder than 208 K curve has a long

tail on the low-rate side of the peak. These and other results of the study suggest that a temperature-

dependent rain rate would be superior to a fixed rain rate.

Integration of GOES and DMSP SSMI data

We have fully integrated SSMI data from the DMSP satellite with the GOES observations.

Incorporation of the SSMI measurements provides independent information on total precipitable water

(PW), cloud liquid water content (LWC) and rain rate (RR). If they are within 10 minutes of a GOES

image, which is available every half hour, the SSMI data are remapped into the GOES projection. As with

TRMM, we only consider tropical regions. An example of the re-mapping is given in the Figure 5. In this

figure, the GOES infrared channel image is depicted in black and white, overlain with a a color image of

the remapped the SSMI derived cloud liquid water content. As would be expected, the liquid water content

is large (red values) for the qaot towers'. Note also that the SSMI does not sample the entire cloud system.

Individual SSMI values are composited for each classification box. While all the SSMI spectral

observations are available to the classification algorithm, we use the derived products only. The average
PW is derived by averaging all values within a box. The average SSMI LWC and RR for each box are

computed in two ways: 1) averaging only non-zero values and 2) including zero values in the mean.

Standard deviations for each value are also computed for each box.

In addition to the SSMI observations the classification scheme also incorporates GOES radiances

at 12 Manand 6.7 pan. Nominal resolutions of these infrared channels at nadir are $km and 16 km,









respectively.Becauseneitherchanneladdspattern information, we do not compute class discrimination

features such as the two-dimensional power spectrum for the boxes. Instead, for each quadrant mean,

maximum, minimum, and standard deviation brightness temperatures are computed.

The 12 lxm channel is used in conjunction with the 11 lain channel as a GOES version of Inoue's

(1987) split window rain discriminator. He has observed, as we have, negative brightness temperature

differences (11 _tm minus 12 _m) which are correlated with convective cells. Figure 6 is a set of

histograms of SSMI derived rain rates averaged over the boxes. Boxes are stratified by the brightness

temperature difference between 11 and 12 microns (BT 11-BTI2). The upper two panels show rain rate

frequency for BT 11-BTI2 < 0 (left) and BT 11-BT12 < -1 (right). The lower panels show rain rate

frequency for positive brightness temperature differences. Note that the heavy rain rates generally occur

for negative values, though it is possible to have no rain and still have negative brightness temperature
differences.

Collocated GOES-7 and SSMI Observations
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Figure 6. Histogram of SSMI rain rate categorized by the brightness temperature difference

between observations at 11 and 12 Ima. The categories are listed below each of the four panels.





Detecting Convective Cores using 11 and 6.7 micron observations

The 6.7 pm spectral channel is sensitive to the relative humidity averaged over an atmospheric

depth extending from approximately 200 to 500 mb, and is very sensitive the presence of cirrus. Figure 7 is

a histogram of the SSMI rain rates stratified by the difference between the 11 pxn and the 6.7 ram

equivalent temperatures. Whenever the brightness temperature difference is less than zero (left panel), the

SSMI indicates rain. This is potentially much more valuable than the split window difference. If it is

reliable, this brightness temperature difference would be extremely valuable predictor in characterizing a

precipitation system.
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Figure 7. Histogram of SSMI rain rate categorized by the brightness temperature

difference between observations at 11 and 6.7 pro. The categories are listed below each of

the two panels

Figure 8 depicts the geographic location of each occurrence of a negative difference during July

1993 and January 1994. This Figure was generated from the NOAA- 12 polar orbiting satellite using the

High-resolution Infrared Sounder (HIRS/2) 11 and 6.7 pxn spectral observations. Each circle represents the

geographical location of a single HIRS/2 field-of-view (FOV) within 40 north and south latitude which

displayed the negative difference in BT 1 I-BT6.7. The differences correlate highly with expected regions of
convection. The Intertropical Convergence Zone (ITCZ) is apparent in both months, as is the shift in its

position to the summer hemisphere. The summertime peak in convection over South America and

convection associated with the southwest summer monsoon are also clearly visible. Regions with no

monthly deep convective systems also manifest themselves in this composite analysis. In addition to

regions favorable to tropical convection, negative differences also appear in the mid-latitude storm tracks of

the winter hemisphere. These negative values (which appear to be associated with the convective core) are

an extremely useful tool for studying the hydrological cycle. Convective activity is extremely variable in

both time and space, as is evident by plotting the geographic location of the negative differences for a single

day (Figure 9). On any given day only a very small portion of the globe is convectively active - as

indicated by these observations. The 11 and 6.7 lam observations are currently available on the GOES and

METEOSAT geostationary satellites and the NOAA polar orbiting satellites providing the spatial

completeness and temporal continuity required for studying tropical convection. The capability to locate
the convective core has an important impact on TRMM activities.
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JULY 1993

JANUARY 1994

Figure 8. Location of negative BT 11-BT6.7 as observed by the NOAA-12 HIRS/2 instrument for the

months of July 1993 and January 1994. Each circle represents the geographic location of an occurrence,

JANUARY 12, 1994
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Figure 9. Same as Figure 8 except observations are for a single day.





Participation in TRMM Science Team Meetings

Last but not least, the principle investigator was an active participate in the Mission Facility Team's
deliberations to insure the maximum science return from the mission.
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