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1. ABSTRACT

The combined load (mechanical or thermal load) buckling equations were established for orthotropic
rectangular sandwich panels under four different edge conditions by using the Rayleigh-Ritz method of
minimizing the total potential energy of a structural system. Two-dimensional buckling interaction curves
and three-dimensional buckling interaction surfaces were constructed for high-temperature honeycomb-core
sandwich panels supported under four different edge conditions. The interaction surfaces provide overall
comparison of the panel buckling strengths and the domains of symmetrical and antisymmetrical buckling
associated with the different edge conditions. In addition, thermal buckling curves of these sandwich
panels are presented. The thermal buckling conditions for the cases with and without thermal moments
were found to be identical for the small deformation theory.

In sandwich panels, the effect of transverse shear is quite large, and by neglecting the transverse shear
effect, the buckling loads could be overpredicted considerably. Clamping the edges could greatly increase
buckling strength, more in compression than in shear.

2. NOMENCLATURE

Amn, Agg Fourier coefficients of trial function for w, in.

/Lj extensional stiffnesses of sandwich panel, 1b/in.

a length of sandwich panel, in.

Qo edge length of square sandwich panel, in.

aifm ki coefficients of characteristic equations

B, Bie Fourier coefficients of trial function for Yzz, in/in.

b width of sandwich panel, in.

Crny Cre Fourier coefficients of trial function for VYyz, in/in.

D;; bending stiffnesses of sandwich panel, in-1b

Dqz, Dg, transverse shear stiffnesses in zz,yz planes, 1b/in.

D* flexural stiffness parameters, \/Dy; Dag, in-1b

dz, dy differentials of z and y, in.

E., E, Young’s moduli of face sheets, 1b/in?

Ecz,Ecy,Ec, effective Young’s moduli of honeycomb core, 1b/in?

Fon Fourier coefficients for M7 (in-1b)/in

Gezy, Gezz, Gcy, effective shear moduli of honeycomb core, 1b/in?

Gzy shear modulus of face sheets, 1b/in?

Hpyn Fourier coefficients for M;r , (in-1b)/in.

h depth of sandwich panel = distance between middle plane of two face
sheets, in.

he depth of honeycomb core, A, = h — ts, in.

I moment of inertia, per unit width, of a face sheet taken with respect to

horizontal centroidal axis of the sandwich panel,
I, = Jt.h? + 4¢3, int/in.
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index, 1, 2, 3, - --
index, 1, 2, 3, ---
index, 1, 2, 3, ---

2
compressive buckling load factors in z- and y-directions, ky = J;Vf—g—,, ky =

for a = constant

2
shear buckling factor, kzy = ]—:—;”DGT, for a = constant

modified compressive buckling load factors in z- and y-directions,

- 2 _ 2
k: = %’—;—% = k,,g, ky = g,”g—i = ky%, for ab = a2 = constant

N, a2

N,a?
=

™

modified shear buckling load factor, kzy = ;;”D—,,Q = kxyg, for ab = a2 = constant

index, 1, 2,3, ---

bending moment intensities, (in-1b)/in.

twisting moment intensity, (in-1b)/in.

thermal moments, (in-1b)/in.

number of buckle half waves in z-direction

normal stress resultants, 1b/in.

shear stress resultant, Ib/in.

thermal forces, 1b/in.

number of buckle half waves in y-direction

transverse shear force intensities, Ib/in.

Fourier coefficients for MZ;, (in-1b)/in.

temperature, °F

assumed temperature, °F

critical buckling temperature, °F

thickness of sandwich face sheets, in.

total potential energy of sandwich panel, in-1b

strain energy of sandwich panel, in-1b

work done by external forces, in-1b

component of V; associated with a particular indicial condition, in-1b
component of V, associated with a particular indicial condition, in-1b
component of V, AV = AV} + AV, in-1b
displacement components in z-, y-, and z-direction, in.
rectangular Cartesian coordinates

coefficients of thermal expansion, in/in-°F

transverse shear strains in zz- and yz-plane, in/in.
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numerical coefficient of Ny in a0

numerical factor in buckling equation, which changes with the edge condition
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numerical coefficient of NT ifi apyy



Vzy, Vyz Poisson ratios of face sheets, also used for those of sandwich panel
VCzy,VCyz)VCzz Poisson ratios of honeycomb core
Pr specific weight of titanium material, 1b/in3

Pric specific weight of titanium honeycomb core, Ib/in3
3. INTRODUCTION

Structural components of hypersonic flight vehicles (e.g., spacecraft, rockets, reentry vehicles, hyper-
sonic aircraft, etc.) are subjected to hyper-thermal loadings due to hostile aerodynamic heating during as-
cent and reentry, or due to solar radiation during spaceflights. The structural components of those vehicles
have to operate at elevated temperatures and are, therefore, called hot structures. Because of nonuniform
heating (which is magnified by the cooler substructural frames which act as heat sinks) and the mechanical
structural constraints, severe thermal stresses could build up in those hot structures. Excess thermal load-
ing may induce (1) material degradation, (2) thermal creep, (3) thermal yielding, (4) thermal buckling,
(6) thermal crack fracture after cool-down, etc. Any disruption of surface smoothness of the structures
(e.g., metallic thermal protection system (ref. 1), hypersonic aircraft engine inlet structures (refs. 2, 3), etc.)
caused by the previously mentioned failure modes, especially thermal buckling, could disturb the flow field,
creating hot spots which could cause serious consequences on the structures. Thus, the thermal load does
play a key factor in the design of the hot structures. Reference 1 discusses various design concepts of hot
and cryogenic structural components for the hypersonic flight vehicles. The potential candidates of high-
buckling-strength-hot-structural panels (fabricated with super alloys) for hypersonic aircraft applications
are tubular panels, beaded panels, truss-core sandwich panels, hat-stiffened panels, honeycomb-core sand-
wich panels, etc. (refs. 4, 5). The combined-load buckling behavior of the tubular panels was extensively
studied by Ko et al. (ref. 4), theoretically and experimentally. The compressive buckling characteristics of
the beaded panels were investigated by Siegel (ref. 5).

Recently Ko and Jackson (ref. 6), and Percy and Fields (ref. 7) studied the compressive buckling
behavior of the hat-stiffened panel designed for application to a hypersonic aircraft fuselage skin panel.
Furthermore, Ko and Jackson conducted simple analysis of thermal behavior (thermal buckling of a face
sheet) of the honeycomb-core sandwich panel (ref. 8), and compared the relative combined-load buckling
strengths of the truss-core and honeycomb-core sandwich panel (ref. 9). They also investigated the effect
of fiber orientation of the metal-matrix face sheet on the combined-load buckling strength of honeycomb-
core sandwich panels (refs. 10, 11). Most of the past mechanical buckling analyses of the sandwich panels
(refs. 4-7, refs. 9-12) and flat plates (refs. 13, 14) were conducted for simply supported edge conditions
because the analysis was mathematically less involved. For the case of clamped edge conditions, one can
cite the work by Green and Hearmon (ref. 15), who studied combined loading stability of plywood plates,
and Smith (ref. 16), who considered only pure shear buckling of the plywood plates. Kuenzi, Erickson,
and Zahn (ref. 17) considered also shear stability of flat panels of sandwich construction. The works cited
here ignored the transverse shear effect in their analyses. King (ref. 18) analyzed the stability of clamped
rectangular sandwich plates subjected to in-plane combined loadings, taking into account the rotational
effect of the sandwich core. He used a less-compact displacement function (which could be reduced to
a simpler Green and Hearmon displacement function (ref. 15)), resulting in a complicated expression for
the potential energy of the sandwich system. Most of the past thermal buckling analysis was done on
single plates (refs. 19-22) or laminated composite plates (refs. 23-27), for which the transverse shear effect
may be neglected. In actual application of the hot structural panels, most panel boundary conditions
are closer to the clamped edges rather than to the simply supported edges. Therefore, this report will
consider the combined-load mechanical and thermal buckling of sandwich panels under different types of



edge conditions by taking into account the transverse shear effect. The report also compares the buckling
interaction curves and surfaces for different edge conditions.

4. DESCRIPTION OF THE PROBLEM

Figure 1 shows the geometry of a rectangular honeycomb-core sandwich panel having identical face
sheets. The extensional and bending stiffnesses of the sandwich panel will be provided by the two face
sheets only, and the transverse shear stiffnesses by the honeycomb core only.

This type of sandwich panel, when fabricated with a high-temperature alloy (e.g., titanium), becomes
the so-called hot structure, and could be a potential candidate for hypersonic aircraft structural applications
(ref. 1). Figure 2 shows the sandwich panel subjected to combined compressive and shear loadings in its
middle plane. The conventional Rayleigh-Ritz method of minimizing the panel’s total potential energy will
be used in the combined-load buckling analysis, accounting for the transverse shear effect (fig. 3). The
sandwich panel will be supported under four different edge conditions (fig. 4)

e Case 1: Four edges simply supported (4S edge condition),
e Case 2: Four edges clamped (4C edge condition),
e Case 3: Two sides clamped, two ends simply supported (2C2S edge condition), and

e Case 4: Two sides simply supported, two ends clamped (252C edge condition)

where sides and ends are parallel to  and y axes respectively.

The problem is to study the effects of the panel edge condition and the panel aspect ratio on the
combined-load buckling behavior of the sandwich panel. Case 1 has already been solved and has been
published in reference 9. However, for completeness, some key equations for Case 1 will be repeated in this
report.

5. GOVERNING EQUATIONS
5.1 Constitutive Equations

Following the classic orthotropic thick plate theory, which accounts for the transverse shear effect,
the membrane force intensities {Nz, Ny, Nzy}, the transverse shear force intensities {Qz,Qy}, and the
moment intensities { Mz, My, Mzy} in an orthotropic sandwich panel may be related to the middle surface
displacement components {u, v, w}, the transverse shear strains {Yzz,Vy:}, thermal forces {NT, NE , NZ;},
and thermal moments {MT, M;F M 7;} through the following constitutive equations (fig. 5)
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For the sandwich panel whose extensional and bending stiffnesses are provided only by the two identical
face sheets, and the transverse shear stiffnesses only by the honeycomb core, the extensional and the
bending stiffness {A;j, D;;} in equations (1) and (2), and the transverse shear stiffnesses {Dgz, Dgy} in
equation (3) may be written as '

- E -

- VeyVyz
An , Dn 1_”&
A12 D12 = VzyVyzx

A21 , Dgy | =2t 21, Ve E. (4)
Ay , Do I = Veylys ‘
Ags , Degs E
T = VzyVyz
L G:x:y J
DQz Gsz
=1h 5
[DQy] [.:J[chz (5)

In equations (4) and (5), {E;,Ey,Gzy, Vzy,Vyz} are the elastic constants of the face sheets,
{Gczz, Gcy:} are the effective transverse shear moduli of the sandwich core, t, is the face sheet thickness,
hc is the sandwich core depth, and I, is the moment of inertia of each face sheet taken with respect to
horizontal centroidal axis, given by I, = %ts R? + Tlgti (6)

where h is the depth of the sandwich panel (fig. 1). The 2 in front of {ts, I} in equation (4) is associated
with two identical face sheets.

The thermal forces { N7, Ng , NZ;J} and the thermal moments {M7T, M;T , Mg;} appearing in equations
(1) and (2) are defined by

E. Vy:z:E:r
NZT , M;.T . T—vpyvye T—veyvyz oy
N,T ) Mf = Z [ ts Ty, (—1)* %ﬁ T; ] ey By Ey 0 Oy (7)
NT MT xy i
W 0 0 Gy |,
i

where ¢ = 1, 2 are respectively associated with the lower and the upper face sheets, {az, ay, azy}
are the coefficients of thermal expansion of the face sheet material, and []i (# =1, 2) implies that the
material properties are associated with temperature T} (i = 1, 2). The thermal force and thermal moment
contributions from the honeycomb core were neglected.



5.2 Energy Equations

Based on the small deformation theory, the strain energy Vi of the heated sandwich panel may be

written as (refs. 23, 24, 26, 27)
a b Ay [Bu\? A22 2 A (Ou  Bv\?
i=/ | {T(&) v (52) (5 2(w) 5 G w)

+ D,

52 () oo 2 ]2 )
22 (8 ()] <[ ) (5]
B By ()-8 (53 7 (3)

[ (-]
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o [ 2 (G - ne) + o (5 )|t @

For the buckling problem, the work done V2 by the in-plane forces to produce transverse deflection is

given by
AL @) @) )] o

The total potential energy V of the sandwich panel is then

V=W+W (10)
For pure mechanical buckling problems, the strain energy equation (8) reduces to
arb (D) [0 (Ow 2 8 (dw 8 (Ow
vi=/ | {—2— 7 (5 )]+ Dia 5 (5 )] s (5 )|
o2 [ G|+ B (e 2 (5 )]
2 |0y \ Oy Ty 2 oy \or Va2 Jzr \ Oy Tyz

D D
+ §’7§z+ gyvﬁz}dxdy (11)

and the signs of the in-plane forces { Nz, Ny, Ny} in equation (9) are to be reversed because the loadings
are in the negative direction according to the sign convention shown in fig. 5. Namely,

Ny —» =Nz, Ny — —Ny) ny - _Nzy (12)

The sign for the shear force Ny, is immaterial because, in the plate buckling problems in which shear
is present, the eigenvalues (or shear buckling loads) always occur in pairs which are equal in magnitude
but opposite in sign.

For thermal buckling problems, if the sandwich panel is under uniform temperature for which
{MT, M, T mMI v} =0, (symmetrical temperature distribution in the panel depth direction will also produce
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zero thermal moments) and if the panel edges are restrained against lateral and in-plane displacements
(e, u = v =w = 0), then the in-plane stress resultants {N,, Ny, Ny} are uniform within the sandwich
panel and according to equation (1) can be written as

Nz =-N7, Ny=-NI, Ny=-NT (13)
then, as will be discussed later, the thermal buckling problem is equivalent to the mechanical buckling

problem if the second-order effect is neglected.

If there exists a temperature difference between the two face sheets, then the thermal moments
{MT, Mg‘ ,Mg;} are no longer zero, and the problem is no longer an eigenvalue problem but a bend-
ing problem. As will be seen later, one can solve for {w, Yzz, Yy} in terms of the thermal moments, and
the conditions for unbounded values of {w, Y2z, vy} will give the buckling loads.

9.3 Panel Boundary Conditions

The sandwich panel is to be supported at its four edges under the following four cases of boundary (or
edge) conditions.

For mechanical buckling:
Case 1. Four edges simply supported (4S edge condition)

T=0a:w=M =1, =0 (14)
Yy =0b:w=M, =1, =0 (15)

Case 2. Four edges clamped (4C edge condition)

x=0,a:w=%§—)='}'u=7yz=0 (16)
y=0,b:w=%§”=%z=7yz=0 (17)

Case 3. Two sides clamped, two ends simply supported (2C2S edge condition)

T=0a:w=M=nr,=0 (18)
y=0,b:w=%%='yn='yyz=0 (19)

Case 4. Two sides simply supported, two ends clamped (2S2C edge condition)

x=0,a:w=%%”=’yxz=’7yz=0 (20)

=06 w=M=1,=0 (21)
For thermal buckling:
In addition to the above boundary conditions, the following edge condition is to be imposed

r=0a:u=v=0 (22)
y=0b:u=9v =0 (23)



6. BUCKLING ANALYSIS

The conventional Raleigh-Ritz method of minimization of total potential energy (V) will be used in
the buckling analysis. To use this method, one has to assume deformation functions for the sandwich
panel in infinite series forms containing unknown coefficients. By minimizing V with respect to each of
those unknown coefficients, one will obtain a set of simultaneous homogeneous characteristic equations for
eigenvalue solutions (buckling loads).

6.1 Panel Deformation Functions

For an eigenvalue solution via the Rayleigh-Ritz method, the trial functions for the sandwich panel
deformation {w, Yzz,Vyz}, satisfying the boundary conditions (eqs. (14) through (21)), may be expressed
in the following double Fourier series for different edge conditions.

Case 1. Four edges simply supported (4S edge condition) (ref. 9)

oo oo
w(z,y) = Z z Amnsin 2 sin 22Y (24)
m=1n=1 a b
o0 o0
Yz (T, y) = z z Bmn cos _77_1:_-'17 sin E’Z_y (25)
m:l 'no——ol
Ty (2, y) = Z Z Cn sin m;rz; cos l%rg (26)
m=1n=1

Case 2. Four edges clamped (4C edge condition) (ref. 15)

mnxr . nmy

00 00
w(z,y) = sin T2 sin -ﬂ—} Z Z Apn sin sin 5 (27)
a m=1n=1 a
T, TY o= — mrr . nmy
Yzz(T,y) = cos — sin 5 Z Z Bn sin —— sin -
a m=1n=1 a
LT MY & mnz | nmy
+sin ——sin == Z Z MByn €OS —, o sin—= (28)
m=1n=1
Yyz(Z,y) = sin ™ cos =¥ i S Crmn sin ML sin Y
yx\+y - - e mn N
a b~ = a b
o0 o0
+ sin T2 sin ¥ Z Z nCimn sin T2 o Y (29)
a b mTinzt b
Case 3. Two sides clamped, two ends simply supported (2C2S edge condition) (ref. 15)
TY o= — mrr . nmy
w(z,y) = sin 5 Z Z Apmn sin ——sin 5 (30)
m=1ln=1 a
Y o= mnrr . NIy
Yz2(Z,y) = sin N Z }: Bipun cOS sin > (31)
m=1n=1 a
TY o — . mAT ., N7
Yyz(z,y) = cos —Fy 3" > Cumnsin sin ——by
m=1n=1 a
+sin =2 i i NCpp sin T s Y (32)
b m=inmt a b



Case 4. Two sides simply supported, two ends clamped (2S2C edge condition) (ref. 15)

£ . MTT , nmy
w(z,y) =sin— Z ZA"‘" sin — sin —= (33)

mrr , nny
sin —=
b

m=1n=1

nr &2
Yzz(Z,y) = cos o Z Z B sin

m=1n=1

[> I ]

. T mrx ., nmwy
= -2 34
+sin " Z Zman cos —— sin 5 (34)

m=1n=1

oo o0 <
. T .
Yyz(Z,y) = sin — Z Z Crnsin

m=1n=1

IR o 1Y (3)

In equations (24) through (35), A,,,, Bn, and Cy,,, are the undetermined Fourier coefficients of the
assumed trial function for w, Yzz, 8nd 7y, respectively, and m and n are the buckle half wave numbers in
the z and y directions.

6.2 Uniform Temperature (Zero Thermal Moments)

6.2.1 Mechanical and Thermal Bucklings

It is well known that thermal stress is not caused by external loads, but is the consequence of restrained
thermal distortion. The intensity of thermal stress changes when the structure is deformed and, therefore,
the thermal stress level is the function of strain. In the classical thermal buckling of a structural panel
(under uniform temperature rise with constrained edges), the first-order lateral deflections of the panel will
cause only second-order small changes in the in-plane strains (thus, thermal stresses) at the onset of thermal
buckling (ref. 28). However, in mechanical buckling, the external loads are held constant during buckling.
If the second-order effect is neglected, then the in-plane thermal loads may be considered constant during

problems, and, therefore, the conventional methods of structural stability analysis could be applied to the
thermal buckling analysis.

The buckling equations will be developed first for the mechanical buckling under the combined load-
ing condition described in equation (12). The resulting mechanical buckling equation could then be ap-
plied directly to the thermal buckling of the sandwich panels with constraint edges under uniform panel

temperature, (ie., {N, = —NT, Ny = -NT', N, = ——NZ;} (eq. (13)), {MT, I, MI} = o,
u=v=uw=0).

6.2.2 Rayleigh-Ritz Method

After substitutions of the trial deformation functions (egs. (24) through (35)) into energy equations for
V1 (eq. (11)) and V3 (eq. (9)) (signs of forcing functions reversed according to eq. (12) or (13)), and after

results are presented in Appendix B.
Substituting the expressions of V1 and V; given in Appendix B into equation (10), and minimizing V
with respect to each Fourier coefficient Appn, By, and Crn according to the Rayleigh-Ritz principle
ov ov %

6Amn aan aCm‘n

=0 (36)



there results three homogeneous simultaneous equations (i.e., characteristic equations) for each indicial set
of {m,n}

o 11 D* (m\? 12 13
37373 [amnke + Upre (;) kzybmnke| Akt + Qhanke Bt + @mnkeCie ¢ =0 (37)
k ¢

[aﬁnke/‘kt + a2 ke Bre + a?r?nktckf] =0 (38)

=[]8 =[V]8
~Ms ~[]8

[ava'r}nklAkl + a3t ke Bre + a‘?r:zsnklckl] =0 (39)

where the coefficients aifmkl (i,j = 1, 2, 3) are defined in Appendix C for different edge conditions under
particular indicial conditions, (@l ,.x¢ are nonzero only when {k, £} are related to given {m,n} as shown
in Appendix C), {kz,ky} (contained in the coefficient all,,,, Appendix C) and kzy are respectively the

compressive and shear buckling load factors defined as

N.a? Nya2 N_,wa,2
== p Fv=pr k= Spe
and the flexural stiffness parameter D* is defined as

D* = ___VE’Ey[ (41)

8
1 — vryVys

k (40)

In equations (37) through (39), the indices {k, £} for nonzero a? ., terms are determined respectively
from the given indices {m,n} as shown in Appendix C, and in equation (37), 1 is a numerical parameter,
and 8,,nx¢ is & special delta function which is nonzero only under the indicial conditions m & k = odd, and
n + £ = odd. Both n and &,,nke respectively change their numerical values and functional forms with the
change of panel edge condition as follows.

Case 1. 4S edge condition:

i =32
Omnkt = T = ’;{)‘2‘52 ) :m*k=odd,n+t/f=odd (42)
Case 2. 4C edge condition:
_agp
5 _ mnkﬁ[m2 + k2 - 2][712 + 22 - 2] . (43)
mnkt = T TRy (T — ) [(m + k)Z — 4)[(m — k)7 = 4][(n + )" - 4l{(n - 6° -4’
m=+k=odd,n+f=o0dd
Case 3. 2C2S edge condition:
{ ; -
_ mnkf[2 — (n? +£2)] : _ _ (44)
Case 4. 252C edge condition:
[ ; -
_ mnkl]2 — (m? + k?)] _ _ _ (45)
bkt = T Y= P+ R Al R TR T o= e

10



6.2.3 Characteristic Equations in Terms of Load Factors

From equations (38) and (39), for each set of {mnk¢}, By, and Cke may be solved in terms of Ake as

23 81~ _ 421 23
B, — amnktamnkl mnké mnklA (46)
k¢ = V) 32 k¢
22 33 — 23 a
amnklamnld mnkf“mnk¢
21 32 22 31
a a - Qa [¢]
— —mnkf%mnks mnkfmnks
Ck( = 723 32 Ak! (47)

33 2
CrnkeBmnke — Arnnkt@mnke

Substitution of equations (46) and (47) into equation (37) term-by-term yields a homogeneous linear
characteristic equation containing only the panel deflection coefficient Ay, :

Moy ‘
) ) [\k L 6mnlc€J Ake =0 (48)
k ¢ zy

for every integral value of {m,n}. The stiffness-geometry parameter Mmnke appearing in equation (48) is
defined as

=1ab a\2| 11
Mmnke = 7 5% (2) Smnkg
clagsical
thin plate
theory term

(49)

12 23 31 21 33 13 21 32 22 31
+ Crnke (amnkeamnu ~ GmnktGmnke) + Qrmnke (amnkeamnke ~ %nkeGmnke)

22 33 23 32
- a’mnkla’mnkf - amnkfa'mnlcf ,

transverse shear effect terms

The characteristic equation (48) is written in terms of the load factors {k,, ky,kzy}, and is suited for
combined load mechanica] buckling analysis. For the thermal buckling case, equation (48) needs to be
rewritten in terms of temperature as shown in the next section.

equations associated with the whole range of indicia] combinations of {m,n} (one infinite series equation
for each set of {m, n} values).

Those simultaneous equations generated by equation (48) have the following interesting characteristics.
In equation (48), the nonzero Minke of the first term requires the indicial restrictions {m = korm—k — 2}
and {(n=forn-¢= 2} because of the same indicial restriction for nonzero ay e (eq. (C-49), Appendix
C). Thus, if m+n is even, then k+ ¢ is also even, and if m +n is odd, then k42 is also odd. In the second
term of equation (48), the nonzero Omnke Tequires the indicial conditions: m + k=oddand n+¢ = odd. It
follows that (m+k)+ (ntd) = (m+n) + (k+¢) = even. Thus, the second term of equation (48) also has
the same characteristics as the first term. Namely, if m=n is even, then k+¢ is also even. Likewise, if m+n
is odd, then & + ¢ is also odd. Therefore, there is no coupling between the even case (symmetric buckling)
and the odd case (antisymmetric buckling) in the simultaneous homogeneous equations generated from
equation (48). Thus, those simultaneous homogeneous equations may be divided into two groups which
are independent of each other; one group in which m + n js even, and the other group in which m + n is
odd (refs. 9, 13, 14).
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For the deflection coefficients Ay to have nontrivial solutions under the assigned values of {kx, ky, g—},
the determinant of coefficients of unknown Age of the simultaneous homogeneous equations generated from
equation (48) must vanish. The largest eigenvalue 1/k, thus obtained will give the lowest shear buckling

load factor k,y for given {kz, ky, %} When the transverse shear effect is neglected (eq. (48)), {kz, Ky, kzy}

are a function only of %, and independent of panel size. However, they will become panel-size-dependent
if the transverse shear effect is considered.

In the eigenvalue computations, the infinite number of the simultaneous equations and the infinite series
summation of each equation may be truncated up to a certain identical finite number if the convergency
of the eigenvalue solutions has reached a specified criterion for convergency.

The determinants in terms of the coefficients of the simultaneous equations written out from equation
(48) up to order 12 are given in Appendix D for the cases m & n = even (symmetric buckling) and
m £+ n = odd (antisymmetric buckling) for different edge conditions. The determinants of order 12 were
found to give sufficiently accurate eigenvalue solutions (ref. 9). In Appendix D, one notices that for the

4S edge condition only, the —A—Jiﬂm‘-‘ term (eq. (48)) forms the diagonal terms of the determinant, and the
zy
nonzero off-diagonal terms consist of known numerical values. However, for other edge conditions, Mtﬂﬂﬂ
Ty

not only forms the diagonal terms of the determinant, but also appears in the off-diagonal terms (mixed
with known numerical terms).

6.2.4 Characteristic Equations in Terms of Temperature

For thermal buckling, the main objective is to find the buckling temperature, Ter. Therefore, equation
(48) needs to be rewritten in terms of temperature rather than load factors. For the uniform temperature
case, the thermal forces have the following forms

2
NT =D (2) = (Ans + Arzay) T (50)
2
Ngq = kyD* (%) = (Azlaz + Agzay)T (51)
NT. = k,,D* ™\’ = Agsan,T (52)
xzy — Mzy a = AUy

which were obtained from equations (4) and (7) setting Ty = T2 = T.

The coefficient a}!,,, appearing in equation (49) contains thermal forcing terms (Appendix C). Thus,

11 ¢ may be written in two parts as

Amnk

ol e = Alhoke + [EGm, ONT + C(n, Ny (53)

where @}, ;, is the first part of all, ., without the thermal forcing terms, £(m, k) and {(n, £) are respectively

the numerical coefficients of N and NE , and whose values change with the indicial and edge conditions.

In light of equations (50) through (53), equation (48) could be rewritten as

Mon
) > Zmnkt | Ponke + Omnke | Ake =0 (54)
PY’ T
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— ab _
ankl = Amnke
NAgeQzy
12 23 31 21 33 13 21 32 22 31
+ Cmnks (amnkeamnke - a’mnkta’mnkl) t ke (a’mnkla’mnkl - amnkeamnu) (55)
22 33 _ 23 32
Amnkt@mnkt ~ CmnktOmnks
ab - _ - -
Prnke = nAsearns [é(m, k)(A11az + Aay) + ((n, £)(Az1a; + Azz0y)] (56)
zy

In equation (54), M ,nke and P, ke terms contain material properties which are temperature depen-
dent. Thus, in the eigenvalue solution process using equation (54), one has to assume a temperature 7T,
and use the corrresponding material properties as inputs to calculate the eigenvalue 1 /Ter where T is
the buckling temperature. This iteration process must be continued until the assumed temperature 7,
approaches the buckling temperature Ts,..

Thus, in thermal buckling, when the buckling temperature is to be calculated instead of the buckling
load factors, the eigenvalue solution process requires a temperature iteration process, and therefore, is

slightly different from that in mechanical buckling for which only a one-step eigenvalue solution process is
needed.

6.3 Different Face Sheets Temperatures (Nonzero Thermal Moments)

When the face sheets temperatures are different (i.e., T1 % T2) the sandwich panel will be subjected
not only to thermal forces {N7T, Ng‘ , N;I;j} but also thermal moments {M7 Mg , Mz;} The problem will
then become a “bending” problem, and no longer an “eigenvalue” problem. One can then calculate the
pancl deflection w in terms of Fourier coefficient Amn. The buckling condition will correspond to the
condition for which the term in series representation of w, (associated with a particular buckling mode
shape), becomes unbounded (i.e., Apn — oo for a given {m,n}).

As will be seen later, the buckling conditions for the case with thermal moments turned out to be the
buckling equation for the case without thermal moments. Therefore, only the case with 4S edge condition
will be analyzed as an example.

6.3.1 Thermal Moments

Let the thermal moments { M7, Mg , Mg;} be expressed in double Fourier series in accordance with

the deformation functions given in equations (24) to (26) for the 4S edge condition as

MT = Z Z Fmnsin m;rr sin _n;r_y (57)
m=1n=1
oo oo
Mg‘ = Z Z H,.,. sin m;r:v sin % (58)
m=1n=1
. o0 mrz  nmy
Mg; = Z Z Smn COS 7 S5 (59)
m=1n=1
where the Fourier coefficients Frn, Hmn, Smn are given by
a pb
Fon = %/ / MT sin m;r:c sin %dxdy (60)
o o]
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a b
Hpn = i/ / MT sin "% sin wdzdy (61)
abJo Jo v

a b
a b
Smn = é—/ / MT cos T cos ﬂy—da:dy (62)
abJo Jo v a b

In light of the deformation functions (egs. (24) to (26)) and the thermal moment expressions
(egs. (57) to (59)), the energy equations (8) (setting u = v = 0) and (9) may be integrated to yield
the forms given in Appendix E. Notice that in equation (E-1), the thermal moment terms turned out to
be linear functions of {Amn, Bmn, Cmn,} and not quadratic functions of {Amn, Bmn,Cmn}

6.3.2 Nonhomogeneous Equations

After the application of the Rayleigh-Ritz method according to equation (36), one obtains three non-
homogeneous simultaneous equations for each indicial set of {m, n} shown in the following

D* /= 2
a’flr}nmnAmn + 32'&' (a‘) kzy Z ZémnklAkl + a}r?nmann + a’}y?nmncmn = Jmn (63)
k ¢
a’?r}nmn Amn + a?r?nmanﬂ + azr?nmnCmn = Kmn (64)
a?rlnmnAm'n + a?r?nmann + agr?nmncmn = Lmn (65)

where the coefficients all, . are defined by equation (C-1), and the nonhomogeneous terms Jmn, Kmn,

and L. are defined as

() (550 () ()

Komn = ~Fmn (—"”) 4 Sumn (—"‘”) (67)
a b

Lmn = _Hmn. (_m__'”) + Smn (nw) (68)
a b

From equations (64) and (65), Bin and Cpy, may be solved in terms of {Amn, Kmn, Lmn, @9 pmn} a8

23 31 21 33 33 23
B _ Ymamnmamn T AnmnPmnmn A + Kmnamn'mn - Lmnamnmn (69)
mn — 022 33 _ a23 a32 mn a22 033 _ a23 a32
mnmn“mnmn mnmn“mnmn mnmn“mnmn mnmn“mnmn
21 32 22 31 32
C . amnmnamnmn - amnmna’mnmn A + Lmﬂa‘mnmn - K'mna’mnmn (70)
mn — a22 a33 _ a23 a32 mn 22 a33 _ a23 a32
mnmn¥mnmn mnmn“mnmn mnmnmnmn mnmnYmnmn

Substitution of equations (69) and (70) into equation (63) yields, for each indicial set {m,n}:

M
"_;:m—nﬂAmn + Z Z 6mnk£Ak£ = Rmnmn (71)
zy k¢

where Mounmn is defined in equation (49) under the condition m=k, n=£, =32, and Rmnmn is defined by

2 12 33 23
R — 1 ab 9‘_ J _ a'mnmn.(Kmna'mnmn — Lm'na’mn
mnmn = —32k —D* mn a22 a — a3 a32
Ty T mamn®mnmn mnmn%mnmn

22
+a‘}r?1512nn(Kmﬂa§3nmn _3 Lmﬂa&nnmn)] (72)

» —
a’mnmnamnmn amnmnamnmn
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Equation (71) forms an infinite number of nonhomogeneous simultaneous equations each of which is
associated with a set of {m,n} values (or mode shape) for the calculation of infinite number of Fourier (or
Ritz) coefficients A,,,, in the series representation of panel deflection w(z,y) equation (24).

6.3.3 Buckling Condition

The calculated Ritz coefficients Amn have the following form

A = L1 (73)

where the numerator | Jmn contains { My pmn, Rimnmn, 6mnke}, and the denominator A is the determinant
of the coeflicients of Ay, of the nonhomogeneous simultaneous equations written out from equation (71).
The determinant A of order 12 is shown in Appendix D for either symmetrical (eq. (D-1)) or antisymmet-
rical buckling (eq. (D-2)).

The mathematical meaning of the buckling state in light of equation (73) is that the Ritz coefficient
Apmn becomes unbounded (i.e., infinite panel deflection, or A — 0). Namely, when the buckling state is
reached, the term in the series (eq. (24)) which corresponds to the particular deformation mode shape
becomes the most important term.

From the above analysis, one sees that the buckling conditions for the cases with and without the
thermal moments are identical (i.e., A = 0) under the classical small deformation theory. Because of this
finding, similar bending analyses for nonzero thermal moments for other edge conditions were not carried
out.

7. NUMERICAL EXAMPLES
7.1 Physical Properties of Sandwich Panels

The sandwich panel is assumed to be fabricated with titanium face sheets and titanium honeycomb
core, having the following geometrical and material properties.

Geometry:

h=1.2in.
ts = 0.032 in.
@ =a, = 24in. (for varying b),orab = a2 (for constant panel area)

Material properties:
Face sheets

70 °F 1000 °F
E; = E,, Ib/in? 16 x 106 10.5 x 106
Gzy, Ib/in? 6.2 x 10° 4.7 x 108
Vay = Vyz 0.31 0.31
az = ay, in/in-°F | 4.85 x 1076 5.6 x 10—
Qzy in/in-°F 0 0
Pr; Ib/in3 0.16 0.16
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Honeycomb core (properties at 600 °F)

Ec: = 27778 x 10* lb/in’
Ecy = 27778 x10*  lb/in’
Ec. = 27778 x 105  Ib/in’
Gczy = 0.00613 Ib/in’
Geye = 0.81967x 105 Ib/in’
Gec.e = 181x105  Ib/in®
vezy = 0.658x 1072

VCyz = 0.643 x 107°

VCzz = 0.643 x 1078

az=ay, = 537x107%  in/in-°F
Qzry =0 in/in-°F
Pre = 3674x10-3 1b/in®

7.2 Buckling Interaction Curves

In generating the data for plotting the buckling interaction curves, k, was set to zero. For a given aspect

b

ratio 7, different values of k, were assigned; then the corresponding eigenvalues 1/kz, were calculated
from equation (48). The buckling interaction curves plotted in kz-kzy space for different aspect ratios

(a = constant) are shown in figure 6. For the case of the square (% = 1) panel, the additional set of
buckling interaction curves shown in broken curves is for the case when the effect of transverse shear is
neglected. For the square panel, the buckling interaction curves for 4S, 2S2C, and 4C cases are continuous
curves of symmetric buckling. However, for the 2C2S case, the buckling interaction curve is a composite
curve, partly for symmetric buckling and partly for antisymmetric buckling. Notice that the effect of the
transverse shear is quite large for the sandwich panel. Without the consideration of the transverse shear
effect, the sandwich panel buckling strength could be overpredicted considerably. The 4S case has the lowest
buckling strength. Clamping the two opposite edges (i.e., from 4S case to 2C2S and 2S2C cases), could
enhance the buckling strength considerably. By additional clamping of the other two opposite edges (i.e.,
from 2C2S and 2S2C cases to 4C case), further improvement of the buckling strength could be achieved.
However, the improvement is not as large as that for the previous case (i.e., from 4S case to 2C2S and
2S2C cases). With or without the consideration of the transverse shear effect, the improvement of buckling

strength through edge clampings is larger in pure compression than in pure shear.

At aspect ratio g = 0.7 (a = constant), only the buckling interaction curve for the 252C case is
continuous, and for symmetric buckling only. For the remaining three cases (i.e., 45, 2C25, and 4C cases),
the buckling interaction curves are composite curves, each consisting of two segments: one segment for

symmetric buckling, the other segment for antisymmetric buckling.

At higher aspect ratios (i.e., % = 2, 3, 4), most buckling interaction curves are composite curves. Some
interaction curves contain more than two segments. A maximum of four segments could be found for the

cases of 4C and 2S2C at g = 4. At high aspect ratio (i.e., % = 4) the buckling strengths of the 4S and

9028 cases are relatively close, and also those for the 4C and 252C cases.
7.3 Buckling Curves for Pure Compression and Pure Shear

Figures 7 and 8, respectively, show kz (pure compression) and kzy (pure shear) plotted as functions of
b b

aspect ratio ¢. In changing g,

a the length of the panel (a) was kept unchanged (i.e., a = 24 in.). Notice
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that the rate of reductions of kr and k;, values with the increase of g— are the most severe in the region

g < 1, and gradually decrease as g increases. At higher aspect ratios ( g > 2), the buckling curves of k,
(fig. 7) and kzy (fig. 8) for the 2C2S and 2S2C cases, respectively, converge toward those for the 4S and

4C cases because the edge effects from the two sides (i.e., two vertical edges in figs. 7 and 8) of the panel
b

diminish as & increases.

Figures 7 and 8 are the conventional plots of buckling curves. They may not serve as ideal design
curves for aerospace structural panels because when g is changed (under a = constant), the panel weight
(i.e., panel area ab) is also changed accordingly. In the aerospace structural designs, the main objective is
the structural optimization. Namely, for a given panel weight, the objective is to search for a panel with
optimum buckling strengths (or stiffnesses). For this reason, modified buckling load factors kz and Ezy
(ky = 0) were recalculated as functions of aé under the condition ab = a2 = constant (instead of @ =
constant). Figures 9 and 10, respectively, show the alternative plots of k, vs g and Ezy vs g when the panel
area ab was kept unchanged. In practical applications, the panel has to be supported by an edge frame

(cross section assumed constant), therefore, the edge frame weight (or edge frame length, (a + b)/2a,)

was also plotted in figures 9 and 10 as a function of g. The square panel (g = 1) has the minimum edge
frame weight; however, it does not have the optimum buckling strengths in compression and shear. The

compressive buckling strengths (fig. 9) reached minimum at g = 1.6, 1.4, 2.2, 1.0, respectively, for the 48§,
4C, 2C2S, and 2S2C cases. The lowest shear buckling strengths (fig. 10) occur at g =09, 0.9, 1.2, 0.7,
respectively, for the 4S, 4C, 2C28, and 2S2C cases. Figures 9 and 10 serve as design curves for selecting

the desired sandwich panel geometry (i.e., g value). To boost the panel buckling strengths in compression
and shear, some weight penalty due to edge frame is inevitable. The desirable high-stiffness-to-weight ratio

panel shapes will be slightly slender (g <1).
7.4 Buckling Interaction Surfaces

Figure 11 shows three-dimensional buckling surfaces which are plotted in {k,, kzy, g} space for different
edge conditions. In the figure, the domains of symmetric and antisymmetric buckling (lowest buckling
modes) are also shown. Figure 11 gives better visualization of the buckling behavior of the sandwich panel

than the traditional buckling plots shown in figures 6 to 8. For slender rectangular panels (i.e., g < 1),
antisymmetric bucklings occur mostly in the compression-dominated regions. For wider panels (i.e., —g— >

1), the antisymmetric bucklings take place in the shear-dominated regions. In the neighborhood of g =1,
the lowest buckling modes are all symmetric (ie, m = 1, n = 1, fig. 4) for the 4S, 4C, and 2S2C cases.
Only for the 2C2S case is the lowest buckling mode in the compression-dominated region antisymmetric
(ie, m=2n= 1, fig. 4). Such buckling behavior also occurs in the flat rectangular plates of g ~ 1.

7.5 Thermal Buckling Curves

For most of the practical materials, the coupling coefficient of thermal expansion ay,, is zero. Therefore,
in generating the data for thermal buckling curves, the following conditions were imposed.

U = ay, azy =0 (ie, NI, = ML =0) (74)

MI =MT =0 (75)

The above conditions will induce in-plane biaxial thermal compression without shear and bending.
Figure 12 shows the critical buckling temperature (Ter) plotted as a function of g, with the panel length a
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being kept constant. Those thermal (biaxial compression) buckling curves somewhat resemble the uniaxial
compressive buckling (mechanical buckling) curves shown in figure 7. For buckling temperatures higher

than 1000 °F, the face sheet material property data at 1000 °F were used as inputs to equation (54) for
T, calculations because of the lack of material property data at high temperatures. For the honeycomb
core, the only available material property data at 600 °F had to be used as inputs for T, calculations. It

was found that T, was relatively insensitive to the material property change with temperature.

For the present particular panel (i.e., dimensions chosen) the thermal buckling temperatures Ter-exceed

the titanium melting point (3074 °F) at low %, and gradually decrease with the increase of %. At high
aspect ratios, T, for the 4S and 2C2S cases level off at about 1000 °F (below superplastic temperature,

1650 °F), and for 4C and 282C cases, at temperatures slightly below the meltihg point.

Figure 13 shows the alternative plots of Ter as a function of % for constant-area panels (i.e., ab =
constant) the lowest buckling temperatures for 48, 4C, 2C2S, and 2S2C cases are, respectively, 1297 °F,
3702 °F (above melting point), 2194 °F (above superplastic temperature), and 2205 °F (above superplastic
temperature), and which occur respectiveiy at % = 1.0, 0.975, 1.8, and 0.5.

For the present sandwich panel, the actual thermal buckling will take place only for the 4S case in the
region 1.5 < g < 1.8. Outside this region for the 4S case and for all the whole range of —2 for the other

three edge conditions, no “real” thermal buckling could take place because the sandwich panel will first
undergo superplastic creep or melting.

8. CONCLUDING REMARKS

Through the use of the Rayleigh-Ritz method of minimizing the total potential energy of a structural
system, the combined load (mechanical or thermal) buckling equations were established for orthotropic rect-
angular sandwich panels under four types of edge conditions. Two-dimensional buckling interaction curves,
and three-dimensional buckling interaction surfaces were constructed for high-temperature honeycomb-core
sandwich panels supported under four different edge conditions. The buckling interaction surfaces provide
easy visualization of the variation of the panel buckling strengths, and the domains of buckling modes
(symmetric and antisymmetric) with the edge condition. Furthermore, the buckling temperature curves
for the sandwich panels were presented.

The effect of transverse shear on the buckling strength is quite large for sandwich panels, and by
neglecting the transverse shear effect, the buckling strengths could be overpredicted considerably. With the
inclusion of the transverse shear effect, the buckling load factors became panel-size-dependent in addition
to panel-aspect-ratio dependent. Clamping the edges could enhance the buckling strength greatly more in
compression than in shear. Thermal buckling conditions for the cases with and without thermal moments
were found to be identical for the small deformation theory.

Dryden Flight Research Facility

National Aeronautics and Space Administration
Edwards, California, June 30, 1993

The author gratefully acknowledges the contributions by Barry Randall in setting up computer programs for the eigenvalue
extractions. !
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Figure 2. Combined compressive and shear loadings of a rectangular sandwich panel.
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Figure 3. Deformation of a sandwich panel in the z-z plane.
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Figure 7. Comparison of compressive buckling strengths of honeycomb-core sandwich panels under different
edge conditions. a = constant.
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Figure 9. Comparison of compressive buckling strengths of honeycomb-core sandwich panels under different
edge conditions. Constant panel areas.
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APPENDIX A
INTEGRAL RELATIONS

In the integrations of the potential energies V) and Va, the following integral relations were used.

Form =k =1:
¢ 9 T
sin® — sin —
o a
a 2 T
/ cos* — cos —
° a
e 2 nT
cos* — sin —
o a
a 2rx Tz
sin —— sin —
o a a
a 2rx Tz
sin — sin —
o a
Form — k=2:
& o, {L ., MAT
sin® — sin
o a
a T MmRT
sin“ — cos
I a
D) . Mmnz
cos® — sin
° a
e 4 mnzT
cos“ — cos
o a a
a 2 . mnzT
sin — sin
o a
a T mnz
sin —— COSs
0 a
@ o Tz mnT
sin® — cos
° a
e  2nz mnz
sin — sin
o a
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sin
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(0]
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sin

sin

sin
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ool WL 0ol W
e

e oole

T ar=0 (A-1)
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Form =k %1:

/" o TT , mmx , knx a
sin® — sin sin — = —
° a a a 4
a
/ sin? ™ cos mre cos EE dr = ad
o a a 4
a
/ cos? ™ sin mne sin ﬁr_x_ dr = g
o a 4
/“ 9 mnz knx a
cos® — cos cos — = —
o a (4] 4
/ sin 2z sin 77 cos ke dz =0 (A-3)
o a a a
Form = kor m % k:
a
a ; m=k
/ sin mre sin k7r_:z: dr = 2 (A-4)
° a a 0 ; mxk
For m + k = odd or even:
20 m
a -3 3 » m +k=o0dd
/ sinmwxcoskﬂdm= Tm*—k
° a a 0 ; m=xk=even
a 2rx mnx kmz - 87r_a 7 mk ) ; mEk=odd
/ sin sin sin dr = [(m + k)% — 4][(m — k)* — 4]
° a a a 0 : m+k=-even
2 2
; am [_ 1 _ (m®— k) —4 } . m+k=odd
_/ sin? e sin mrz cos EEaiav= m {mz_kz [(m+k)2—4][(m—k)2—4] ’
° @ ¢ @ 0 : m=+k=-even
(A-5)
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APPENDIX B
ENERGY EQUATIONS

After substitutions of the trial deformation functions (eqgs. (24) through (35)) into the energy equations
for Vi (eq. (11)) and V, (eq. (9)) (signs of forcing functions reversed according to eq. (12) or (13)), and
carrying out double integrations using the special integral relations given in Appendix A, the energy
components AV; and AV, respectively for V) and V5 have the following expressions for different edge
conditions under particular indicial conditions.

Case 1. Four edges simply supported (4S edge condition).

Mm=k,n=1¢

ab & X (1] mm\* mm\? (nn\? nmw 2
AVI:TME:“;I{§ Du(a) +2(D12+2D66)(a) -—l-)—) +D22(b) :IAmn
[ 73 nm\ 2
- |Dn ( " ) + (D12 + 2Dgs) ( ) (—b— Amn Bmn
L
[ 7\3 mmr\?2 /nn
- D22 (—b- + (D12 + 2D66) ( ) (_b" Amn Cmn
X . .
+3 [Du (TW + Des (";r) +DQI} B2
+ [(Dm + D66) (?) (n;r)] anCmn
i 2 2
+ '2— D22 (%) + D66 (mTﬂ') + DQy Czn,n} (B-l)
b o0 o0 1 [ 2 2
m=1n=1 L
(2) mxk =0dd,n+{ =o0dd
AV, =0 (B-3)
mnké
AV, =4Nzyzzgg R p)AmnAkg (B-4)
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Case 2. Four edges clamped (4C edge condition).
Wm=kxl,n=¢=1

AV, = 3—;’{[12011 ( +4Dgs %>2J (ZAu - Bu)
[8(D12 + D) ( ) (%)J (gAu - Bu) (bAu - Cu)
a

- 2
[12D22( ) + 4Dgg ] (bAll —Cll

< 2

AVs -%{—3[1\11 (§)2+N (:) JAfl} (B-6)

Qm=k=1,n=10%1

AV, = g—; {[SD“ ( ) +2Dgs ( ) 1+ nﬂ)] GAM - B1n)2
+ [4(012 + Degg) (Z> (E) (1+ nz)] (EAln - B1n> (%Am - C’m)

[gDzz (") [(1+n?)? 4+ 4n? +2D66( ) (1 +n2)J ( Aip — C1n>2
+2Dq. B, + gDQy(l + n2)012n} (B-7)
AVy = g—; :2 {— {21\@c (2)2 + gNy ( ) (1 +n2)J } (B-8)

Bm=kxl,n=¢f=1

AV, =3 ij {[ D11< ) [(1+ m?)? + 4m?) + 2Dgs (”) (1+m2)] (a ml—Bml)z

+ [4(D12 + Deg) (g) (f) (1 +m2)} (gAm — Bml) (%Aml - le)
+ [81)22 (%)2 +2Dgg ( ) (14+m )J (%Aml - Cm1)2

3
+5D0z(1 +m?)BY) +2Dq, C2, 1} (B-9)

AV, = %ng {~ BNx (g)z(l +m?) + 2N, (%)2} Af,,l} (B-10)
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@m=kxl,n=~0%]1
AV, = %g mz_z T {[Du ( ) (1 + m?)? + 4m?] + Des (—)2 (1+m2)(1 + n2)} (%Amn _ B,,,,,)2
[Q(Dm +D66)( ) ( )(1 +md)(1+n )] (“A - an) (:A —cm,,)

[022( ) [(1+n2)2+4n2]+D56( ) (1+m2)(1+n2)]( Anm —Cmn)2

+ Doz(1 + m?) Bl + Dgy(1 +n )c,';,,} (B-11)

AVy = -g—gz Z{ [ ( )2(1+m)+Ny<7r> (1+n)]A$,m}
G)ym=k=1n—£=2
AV, = %;“; {— [41)11 (%)2 + Dee (%)2 1+ 2)2] (%Am - Bm) (gAxe — Bu)
_ [2(1)12 + Dgg) (W) (ﬂ) (149 ] (%Aln - Bln) (%Au —cw)
[31)22( ) (1 +£)4+D66( ) (1 +e)2} (%Aln —Cm> (%Aw - Cu)

(B-12)

4

3
— DgzBinBie - —DQy(l +8)? Clncll} (B-13)

AV, =%—Z;§;{[Nx (_> +3Ny( ) (1+£)}A1,,Au} (B-14)
6)m=kxl,n—-£€=2
AV =§-§ZZZ{——[DU ) [(14m?)? +4m2]+D66( ) (1+m2)(1+i)}

m=2 n ¢

x (%Amn - an) (ZA,,,, Bmg)
[(Dm + Des) ( ) ( ) (1+m2)(1+0) ] ("Am,, - Bm,,> (%Amg - C’mg)

-3 [D22 ( ) (14 6)* + Des ( ) (1+m)(1 +£)2] (%Amn - Cmn)

T
X (EAml - Cm!)

D D
- -2‘?—1(1 + m?) Byn Bt — ——Q—y—(l +0)? cmncmg}

(B-15)

AV, = (B-16)

2§ 2 (e () 0o s
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Av; =3—222{—BD“ (%)2(1+k) +Des (7) (l+k)](a mt = Bt ) (41~ B )

— [2(012 + Dgg) (Z—) ( ) (1+k) ] (a ml — Bml) (bAkl - C'k1>
- [4D22 (%)2 + Dgs (W) (1+k) ] (b ml — le) (bAkl - Ckl)

3
— ZDQz(l + k)2Bm1 By, - DQyCmICkI} (B-17)

av, =2 )3 { BN (5)2 (1+k)7 + N, (%)2] AmlAkl} B19)

{~ % an G)z (1+k)* + Des <%)2(1 +k)*(1+1n?) ’

>
m n=2 k
() (1)
o ()0 (1) ()
lpm( ) [(1+n2)2+4n2]+1)66( ) (1+ K)2(1 + n?) ( Ay = Com )
(o)
_—QQ—(H»k)QB nBin _%(Hn?) Cmnckn} (B-19)
AVs =§-§§§}_§{%le (g) (L+K)2+N, ( ) (1+n2)jl A An } (B-20)
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QO m—k=2,n—-£€=2
ZZ;;{ [Du< ) (1+k)‘+Dsa( ) (1+k) (1+z)}
x (gAmn - an) (%Akt - Bkt)

+ % [(sz + Des) (E) (E) 1 +k)*(1 +E)2] (gAmn - an) (%Ake - C’ke)

31 [Dgg (ﬂ') (1+£)* + Dgs ( ) (1+k)2(1 +£\2] (EA""‘ B Cmn)

T
TA., —
X (b ke Cke)

+ P2 (14 kY Ban Bue + Djy(ue)?cmncu} (B-21)
1 7\ 2
AV = EZZ -~ |N, (—) (14 k)2 + N, ( ) (1+60? AmnAke (B-22)
32 m a9 4 a
(10) m+ k =odd, n £ £ = odd
AV; =0 (B-23)

 aanr mnkém? 4+ k? — 2][n? + £2 — 2] Apn Ake
Ve =64N2y 2232 r k(a2 ~ )G + B — Al B~ All(n + 0% — A(n — 7 =1

(B-24)
Case 3. Two sides clamped, two ends simply supported (2C2S edge condition).
Dm=kn=£=1
ab ma\? 2 7\*2 ol (T Bmi\?2
AV, = 3—QmZZl { [3D11 (T) m* + 4Dgg (z) m (;Aml - —m )
+ [8(1312 + Dgs) (f) (E) mz] (EAml - {3_7_71_1) (£Aml - le)
a b a m b
2 2 2
+ (16 D32 (%) + 4 Dgg (mﬂ’) :l (%Aml - le)
+3Dg:B2, + 4DQnym} (B-25)
AV, =2 i — 3N (T)z + 4N (3)2 A2 (B-26)
2 = 32 = z a Yy b ml
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@ m=kn=2tx1

av = Z Z {[wu( : )27712+21366 (%)2 2(1+n2)} ("A -

o

+[uwa 50 2) (5) 2<1+n2>J( ) (- =)
[2D22 ( ) [(1 +n?)? +4n?) + 2D66 (1+n? ] %A -
+2Dg. B2, +2Dg,(1 + n2)c,in} (B-27)
AVy =a—;§12{—2[m(?)2+1\7 ( ) (1+n)] A?,m} (B;28)

- [201a + Dss) (2) (5)ma+ 7] (Zamn - 22) (5 Ame = Cme)
2 m
[Dzz (1 + £0)* +D66 ) ¢! +£)2J <_Am Cm ) (EAmZ sz)
Q BrnBrye — DQy(l —{-E) Cm Cmg} (B—29)
2 T 2 2
AVy = ;};;{[ ( ) + N, (3> (1+20) ]AmnAmg} (B-30)
(4) mtk =o0dd, n+ ¢ =o0dd
AV; =0 (B-31)
N mnkl [2 — (n® + €2)] AmnAre
AV SN - B (AT (B
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Case 4. Two sides simply supported, two ends clamped (252C edge condition).

QN)m=k=1,n=/{
2 2 2
{[lGDu (E) + 4Dsgg (M) } (EAm - Bln)
a b a

ab &
AV = —
=3 n}—;
Cin
+ [8(D12 + Des) (E) (1) n2] (EAln - Bln) (EAln - —1—)
a b a b n
2 2 2
+ [3D2g (E) n2 + 4Dgg (-E) n? (zAln - ’Cﬁ)
b a b n
+4Dg. B, + 3DQ,,cf,,} (B-33)
o) 2 2
AV, = g—; {— [41\73c (%) + 3N, (%) ]A'-{,,} (B-34)
n=1

2m=kx1l,n="/¢

2

oo 00 2 2
AV = a—g— Z Z {[21)11 (-;E) [(1 + m2)2 + 4m2] + 2Dsg6 (%) (1 + mz)jl (%Amn - an)
m=2n=1
™ (7 22| (T A — ™ A — Cmn)
+[4(D12+D66)(a) (b) (1+m )TL ] (aAmn an) (bAmn n
2 2 2
+ [2D22 (E) n2 + 2D56 (E) (1 + mz)n2} (I'Amn - Cmn)
b a b n
+2Dqs (1+m?) B, + 2Dch,2,m} (B-35)
ab o 7\ 2 2 nm\%|
AVy = 5 mzﬂn}; {— 2 [Nx (;> (1+m?) + N, (T) ] A (B-36)

v =2S Y Y {— [Du (%)2 (1+ k) + Des (%)2 (1+ k)Q} (ZAmn - Brin) (St - Bin)
s (3 99] o))
_ [Dm (%)273 + Des (g)z (1+ k)znz} (%Amn - %) (%Akn - %)

— Dgx (1+ k)2 BmnBin — DQyCmann} (B-37)
A ab s 7\ 2 2 nr\ 2 A B.138
Vo, = 3—2-2 Zl ; N, (Z) (1 + k) + Ny (T) AmnAkn ( )
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() mtk =o0dd, nx £ =odd

AV =0

mnk? [2 - (m2 + ’Cz)] AmnAke

AV =16Ngy Y Y ; }; o

= k2)(n? — £2)[(m + k)2 — 4] [(m — k)? — 4]

(B-39)

(B-40)
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APPENDIX C
COEFFICIENTS OF CHARACTERISTIC EQUATIONS

The coefficients aﬁfmkt of the simultaneous characteristic equations (37) through (39) are defined in the
following for different edge conditions under different indicial conditions.

Case 1. Four edges simply supported (4S edge condition).
O)m=k,n=1¢

mm 4 mmw 2 nmw 2 nmw 4
@anmn = D11 (—a—) + 2(D12 + 2Dgs) (T) (*) + Dao (—)
2 2 2
_p(T mnr nm
D<a) [kz(a)+ky<b)]

3 2
mm mmw nmw
a}r?nmn = agr}nmn == I:Dll ( a ) + (D12 +2066) (_a_) (T) :l

nm 3 mm 2 nm
n7 D D mr nr
Dzz(b> + (D12 +2 66)(0) (b)
2 2
a2 on=Du (?) + Deg (%) + Do

mm nmw
agn3nmn = a?r?nmn = (D12 + D66) ("'a") (——)

= Qa = —

mnmn mnmn

b

2 2
a3 om = Da2 (n_bvr) + Dege (?) + Dgy (C-1)

(2) mxk,nXx¢t

aifmke =0 (C2)
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Case 2. Four edges clamped (4C edge condition).
(lm=n=k=¢=1

(2) m

4 2 /N2 4
aHn = 12Dy, (5) + 8(D12 + 2Dgs) ( ) (3) + 12D52 (3)
2 2
_ap* (T m
3 (a){ () w4 (5) ]
12 7|' m 2
ajin =afl); = - 12Du +4(D12 +2Dgg) | — 2 \%
13 T 2 is
i =ad}y; = 12D22 + 4(D12 + 2Dgg) (E) (3)

2
s
aff“ —12D11 (a) +4D56(b) +3DQ_—C

™ w
afii = aft); = 4(Dig + Degs) (;) (3)
T 2
a“u = 12D22 (b) + 4D66 (E) + 3DQy (C—3)

=k=1,n={¢%1

all, —8Dy, (2)4 1 4(D1 + 2Deg) (3)2 (”)2 (1+n?)+ 3022 ( )4 (40?7 + 4n?)
(3 [ () o3 () 0]
aipin =adh, = - {8D11 (3)3 +2(D12 + 2Dgg) (g) (%)2 1+ nz)}

a}iln—a?hlnf—{guzz( )[4 57 4 422] 4 201z 4 2D40) 2 (%) (1+n2)}

e

2
ai?,, =8Dy, (“) + 2Dgs ( ) (1+n?) +2Dg,
a%?xln a??tln - 2(Dl2 + DGG) (_) (_) (1 + n2)

afin = 2022( ) [(1+n2)2+4n]+2066( ) (1+n )+§DQy(1+n2) (C-4)
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@G)m=kkl,n=£0=1

all = %Du ( ) [(1 +m?)? +4m ] + 4(D12 + 2Dss) ( )2 (%)2 (1 +m?) + 8Dz (%)4

2[%1:,, ” C (14 m?) + 2k, (:)2]
a2y = 02 = {%Dn w (1+m2)2+4m]+2(D12+2D66)( )(%)2(1+m2)}
a3, = a¥ = [1)22 +2(D12 +2De6) (3)2 (f) (1+m2)]

[

0221 = —Du (g) (1+m2)2+4m]+2D66( ) (1+m?)+3 3 Dozl +m?)

m is
a3, = a3, | =2(Di2 + Des) (E) (3) (1+m?)

)

33 2 n 2 2 (0_5)
Aiiml = 8D29 B + 2Dgs 3 1+m ) + 2Dgy

(Wm=k&l,n=£X1

all n = Dni (a) [(1 +m?)? +4m ] + 2(D12 + 2Dss) ( )2 (%)2 (1 +m?)(1 +n?)
+ D22 (%) [(1 +n%)? + 4n2] - D* (%) [kz (%) (1 +m?) + ky (%)2 1+ n2)]
L2 o = Ginmn = {Du ( ) [(1 +m?)? +4m ] + (D12 + 2Des) (W) (%)2 (1+m*)(1+ "2)}
2
ald i =ad e = {ng (b) [(1 +n?2)? +4n ] + (D12 + 2Des) (7(> (E> 1 +mH(1 +n2)}
a2 =Dy ( ) [(1 +m?)? +4m ] +D66( ) (1 +m2)(1 +n?) + Doz (1 +m?)
i = = (D124 D) (5) (5) 1 +m2(1 47

a%, = Daa (b) [(1+ )2 + 4n] + 265 ( ) (1 4 m?)(1 +7) + Doy (1 + %) (C-6)
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(5) m

=k=1n-4£=2

} 4 2 2 3
Qinie = — [4D11 (g—) + 2(Di12 + 2Dgs) (E) (f) (1+6*+ 4D22 ( ) (1+9) ]
2 2
+D* (3) [kz (f) + 3k ( ) (1 +z)2}
a a
12 21 m\3 m m\? 2
Ai1n1e = @ip1e = 4D1n (Z) + (D12 + 2Dgp) (Z) (3) (1+¢
13 31 3 m\* 4 | m\%(n 2
Uinie = @lnie = ;D2 n (14 6)* + (D12 + 2Deg) 2 (1+£)
22 m\? i 2
ain1e = — |4D11 (E) + Dgg ( ) (14+4)° + Do,
s s
afars = a3, = — (D12 + Des) (E) (3) (1+¢)?

33 3 m\? 4 m\? 2 3 2
fue=-|30n (F) 040+ De (T) (1402 + 20g,(1 +072 (c-7)

6)m=kx1l,n—-£=2

+ Do (%)4(1+8)4}+%<§)2[k1 (3) (1+m?) +k, ( ) (1+¢)?

@Bt = Bt = 5 {Dn () [+ m®2 4 4m?) 4 (D12 + 2Deo (2)(3) asma+ 02}
Upmnme = Qonme = % {D22 (%)3 (1+8)* + (D12 + 2Des) (3)2 (f) (1+m?)(1+ 5)2}

1
o2 =—= {DU (Z. [(1+m*)?2 + 4m?] + Des (”) (1+m?)(1 + 8% + Doz (1+m )}
1
ot = 0Fhnme = = 5(D1z + Dao) (2 ) () (Lm0 4 27

1 T \2
al = —= I:Dgg (3) (14 £)* + Degg (;) (1+mH(Q + 0% + Dg,(1+ 3)2} (C-8)
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(Mm —k=2n=¢0=1
Gpmikl = — [ Du (g) (1+k)* +2(Dry +2D66)( )2 (%)2(1 + k)2 + 4Dy (g)“]

+D*(Z 2{ ( ) (1+k)2 + K, (b)z]

12 21 3 m 4 m m\? 2
Uikl = Gmik1 = ; Du (;) (1 4+ k)* + (D12 + 2De¢s) (;) (3) (1+k)

3 2

a1 = @y = 4D2o (%) + (D12 + 2Dgs) (E) (E) (1+k)?

a22——§D"1kD 1k23D1k

mikt = = | 700 (1+k)* + Des { 7 ) (1+k)* + 2Dz (1 + k)?
™ n

a1 = a3, = — (D12 + Des) (-) (—) (1+k)?

33, = [41)22 (%)2 + Des ( ) (1+k)2+ DQy] (C-9)

Bm—-k=2,n=0Xx1

@Hhnin = { Dus (%) 48 4 2001z +20) (2) (2) (k200 42
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Case 3. Two sides clamped, two ends simply supported (2C2S edge condition).
I)m=kn=£=1
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Case 4. Two sides simply supported, two ends clamped (4S4C edge condition).
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APPENDIX D
BUCKLING EQUATIONS

The buckling equations (eigenvalue solution equations) written out from equation (48) up to order 12
(i.e., 12 x 12 matrices) for the case m +n = even (symmetric buckling) and m + n = odd (antisymmetric
buckling) for different edge conditions are given below.

Case 1. Four edges simply supported (4S edge condition) (ref. 9).
m £ n = even (symmetric buckling) (4S)
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m +n = odd (antisymmetric buckling) (4S) (ref. 9)
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Case 2. Four edges clamped (4C edge condition).
m +n = even (symmetric buckling) (4C)
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m *n = odd (antisymmetric buckling) (4C)
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Case 3. Two sides clamped, two ends simply supported (2C2S edge condition).

m + n = even (symmetric buckling) (2C2S)
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m +n = odd (antisymmetric buckling) (2C2S)

Age —
m=1,n=2
m=2,n=1
m=1,n=4
m=2,n=3
m=3,n=2
m=4,n=1
m=1,n=6
m=2,n=5
m=3,n=4
m=4,n=3
m=§,n=2

m=6,n=1

60

A2
M
kzy

A2y

Aia Als

M 44

Kzy 315

8 M

315 v
M4 184
Kzy —945
Maazn

kzy

Symmetry

A3z

(D-6)



Case 4. Two sides simply supported, two ends clamped (2S2C edge condition).

m + n = even (symmetric buckling) (2S2C)
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m +n = odd (antisymmetric buckling) (252C)
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APPENDIX E
ENERGY EQUATIONS WITH NONZERO THERMAL MOMENTS

Using a similar process mentioned in Appendix B, the energy equations with nonzero thermal moments
will be presented in the following for the 4S edge condmon as an example.
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2
_ﬂ' (Dl2 + 2D66) (%r‘) (n_;r) J Amn Cmn

i ]
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| o (—) + Honn (—) — 2Smn (—) (T) Amn
thermal ~ a b a

B o (7)o (5] B o (52) -5 () e},
=g 5 S [ (5 g ()]
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where the last term of equation (E-2) is nonzero only under the indicial conditions: m + k = odd and
n + 1= odd.
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