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Abstract

Specific forms for both the Gibb's and complementary dissipation potentials are chosen such
that a complete (i.e., fully associative) potential based multiaxial unified viscoplastic model is ob-
tained. This model possess one tensorial internal state variable, that is associated with dislocation
substructure, with an evolutionary law that has nonlinear kinematic hardening and both thermal
and strain induced recovery mechanisms. A unique aspect of the present model is the inclusion of
non-linear hardening through the use of a compliance operator, derived from the Gibb's potential,
in the evolution law for the back stress. This non-linear tensofial operator is significant in that it
allows both the flow and evolutionary laws to be fully associative (and therefore easily integrated)
and greatly influences the multiaxial response under non-proportional loading paths. In addition
to this nonlinear compliance operator, a new consistent, potential preserving, internal strain un-
loading criterion has been introduced to prevent abnormalities in the predicted stress-strain curves,
which are present with nonlinear hardening formulations, during unloading and reversed loading of
the external variables. Specification of an experimental program for the complete determination of
the material functions and parameters for characterizing a metallic matrix, e.g., TIMETAL 21S, is
given. The experiments utilized are tensile, creep, and step creep tests. Finally, a comparison of this
model and a commonly used Bodner-Partom model is made on the basis of predictive accuracy and
numericalefficiency.

Keywords: viscoplasticity,nonlinearhardening,isothermal,deformation,multiaxial,correlations,

predictions



1 Nomenclature

Invariants

¢

F

G,@

J_
12
H1

complementary dissipation potential
Gibb's complementary potential

Bingham-Prager threshold function
normalized second invariaat functions

second invariant of effective deviatoric stress tensor

second invariant of internal deviatoric stress tensor

invariant material functions

Stresses

aij

Ol,T

tXij

aij
K, Ko

Y

Cauchy stress tensor
deviatoric stress tensor

effective deviatoric stress tensor

internal state variables (stress-like)

internal (or back) stress tensor
deviatoric internal stress tensor

drag stress and initial drag stress

yield stress

Strains

eij,e/j, R Teij , eij

Ae

A_j

total, inelastic, reversable, and thermal strain tensors, respectively

conjugate internal state variables (displacement-like)
internal strain tensor

Material Parameters

Bo, B1, R,_

p,g
/3
n, p, q
g(e), f(F)
$(aij ), [-I(a._), Z(T)

,7,_,0

elastic compliance and stiffness tensor, respectively

hardening and thermal recovery material parameters

material parameters
denotes the extent of strain induced recovery

material exponents
material functions

material functions

coefficient of thermal expansion, Young's modulus, shear modulus

Miscellaneous

T,_f

_g'( )
Qijkt, Lijk;

()
Hv[]
(-)
$
¢,/_

reference temperature

sign function: takes on 1 or -1 depending upon the sign of argument

internal compliance and internal stiffness operators, respectively
Kronecker delta function

Macauley bracket
Heaviside unit function

time derivative (or rate) notation

instantaneous state trajectory

components of the state trajectory, S •



2 Introduction

A number of Titanium Matrix Composite (TMC) systems are currently being researched and evaluated

for high temperature air frame and propulsion system applications. As a result, numerous computational

methodologies for predicting both deformation and life are under development. An integral part of these

methodologies is an accurate and computationally efficient constitutive model for the metallic matrix

constituent. Furthermore, because of the proposed elevated operation temperatures for which these

:Systems are designed, the required constitutive models must account for both time-dependent and time-

independent deformations. To accomplish this we will employ a recently developed complete potential

based framework[l] utilizing internal state variables which was put forth for the derivation of reversible

and irreversible constitutive equations. This framework, and consequently the resulting constitutive
model, is termed complete because the existence of the total (integrated) form of the Gibbs comple-

mentary free energy and complementary dissipation potentials are assumed a pr/or/. The specific forms

selected here for both the Gibbs and complementary dissipation potentials result in a fully associative,

multiaxial, isothermal, unified viscoplastic model with nonlinear kinematic hardening. Thus this model

constitutes one of many models in the GVIPS (Generalized VIscoplasticity with Potential Structure)
class of inelastic constitutive equations which can be constructed using the generalized framework of

Arnold and Saleeb[1].

The particular unified GVIPS model of interest in this study possesses one tensorial internal state

variable (i.e., the back or internal stress) that is associated with dislocation substructure and an evo-

lutionary law that has nonlinear kinematic hardening and both thermal and strain induced recovery
mechanisms. A unique aspect of the present model is the inclusion of non-linear hardening through the

use of a compliance operator (derived from the Gibb's potential) in the evolution law for the back stress.

This non-linear tensorial operator is significant in that it allows both the flow and evolutionary laws to

be fully associative (and therefore easily integrated) [2] and greatly influences the multiaxial response

under non-proportional loading paths [1],[3],[4]. In addition to this nonlinear compliance operator, a

new consistent, potential preserving, internal unloading criterion has been introduced to prevent abnor-
malities in the predicted stress-strain curves, which are present with nonlinear hardening formulations,

during unloading and reversed loading. This new criterion is motivated by considering the trajectory of

the state point through the state space during unloading and hinges upon the introduction of internal

state discontinuity inequalities for the conjugate back (or internal ) strain rate.

A primary objective of the present study is to specify material functions and characterize the associ-
ated material parameters for the current kinematic, isothermal GVIPS model given TIMETAL 21S 1, an

advanced titanium-based matrix commonly used in TMCs. Although both long and short term behavior

is important, capturing the short term (or transient) behavior and rate sensitivity of the material is of

primary importance given that the applications of interest are primarily those involving processing and

propulsion systems. Furthermore, to illustrate the effectiveness of the present model a comparison of
the GVIPS model and a particular Bodner-Partom (BP) model discussed in [5] (of the commonly used

BP models [6]-[8] in the literature) is made on the basis of predictive accuracy and numerical efficiency.

The paper begins by briefly summarizing the complete potential structure, followed by a multiaxial

and uniaxial statement of the newly proposed GVIPS model, including a discussion on the recent addition

of a potential preserving internal unloading criterion. A discussion, regarding the characterization of the

proposed model is then followed by numerous results illustrating the predictive accuracy and numerical

efficiency of the model.

3 Complete Potential Structure

Here the basic thermodynamic framework put forth by Arnold and Saleeb [1] is summarized. Expressions

for the Gibb's thermodynamic and the complementary dissipation potential functions are assumed in

l T1METAL 215 is a registered trademark of TIMEr, TitaniumlVletals Corporation.



termsof a number of state and internal variables characterizing the changing internal structure of the

material. For conciseness, the discussion is limited to a case involving i) small deformations (in which
the initial state is assumed to be stress free throughout), ii) an initially isotropic material, iii) isothermal

conditions, and iv) the specialized potential framework discussed in [1]. A Cartesian coordinate reference
frame and index notation are utilized (repeated Roman subscripts imply summation).

Given the Gibb's potential in the following form

¢ = ¢b(aij, a._, T, e_ij) (1)

and assuming a priori that the inelastic strain is an independent parameter (and not an internal state

variable), for example

,7i_qj+ f-I(c,.y)-Z(T)- _k_ ,,..-..-_-_?(._ - 7".), (2)

an expression for the total strain rate can be obtained by differentiating, that is,

• d -0_ t/j + _ •

as well as the rate of change of the conjugate internal variables (A(),

(3)

d .-c9@.
(4)

where

_02v _a2g(_ij) (5)

-02¢ -O_ -_ ('_") (6)
QeY = Oa_Oa_ -- Oa_Oa 7

are the external and internal compliance operators, respectively. Note the three terms in equation (3)

may then be identified as the reversible, irreversible (inelastic), and thermal expansion components of

the total strain rate, respectively. Thus,

where

_,j= _,_+ q_+_,_ (7)

and

;_ = c,.,,. (8)

but t/Ij (the inelastic strain rate) is

ft(aij, a. c, T).
Given

tT = 6ij 71 •. _T

defined separately using the

(9)

concept of a dissipation potential

f_ = f_(aij, aT, T) (10)

and using the Clausius-Duhem inequality; the flow law becomes

and the evolutionary laws for the thermodynamic conjugate internal state variables:

(11)



on (12)

Utilizing equation (4) the internal constitutive rate equations for the internal state variables is obtained,

&_ --" Lye A_ (13)

where

[ ]_1
L.v_ = [Q.v_]-z = LOa_Oa'rJ (14)

Thus, equations (11) and (12) represent the flow and evolutionary laws, for an assumed f2 = f_(_ii, a'v, T),

and equation (13) the internal constitutive rate equations, given a Gibb's potential @, wherein both

potentials are directly linked through the internal state variables a_.

4 Viscoplastic Constitutive Model

A complete multiaxial statement of a GVIPS model can be derived by using the above framework, given
a specific form for both the Gibb's potential, ¢, and the complementary dissipation potential, f/. Form

invariance (objectivity) of these potentials requires that they depend only on certain invariants of their

respective tensorial arguments (i.e., an integrity basis [9] ). In the spirit of yon Mises and because of the
deviatoric nature of inelastic deformation, only the quadratic invariant will be considered at this time

in specifying the dissipation potential. Similarly, only the linear elastic strain energy contribution will
be considered in specifying the Gibb's potential, with the internal state groupings being functions of the

respective quadratic invariants. Finally, although equation (10) indicates that an unlimited number of

internal state variables can be specified, here our attention will be restricted to a GVIPS model with

a single independent, evolving, internal state variable. This internal state variable, aij, is taken to be

a second order symmetric traceless tensor that represents the internal (or back) stress associated with
dislocation substructure. Tw.o additional scalar state variables, one representing the drag strength (_)

and taken to be non-evolving and the other a yield stress (Y) that is uniquely assumed to implicitly
evolve with internal stress are considered. Both variables are associated with dislocation density and are

included in anticipation of the subsequent nonisothermal GVIPS model. However, in the forthcoming

nonisothermal formulation _c will explicitly be taken as an evolving internal state variable with its own

associative evolution law (see [3]).

Consequently, the Gibb's potential may be written as

1
= --_C,.,_,*rr, akt - aije_j + Hi(G) - Z(T) - _--_I(T - To) (15)

and the dissipation potential as

- # / f(F)dF + Rc,Bo / g(G)dG

where

(16)

Y = < l - _v_> (18)

G -I2 (19)
_2
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HI(G) = -Bo(G + BIG p) (20)

3
12 = _aijaij (21)

3 (22)
J2 = _S_jEii

Eij= Sij -- alj (23)

1 6
Sij = o'ij - _o'tk i./ (24)

1 6
a_j = aij - _a_k _. (25)

Note thatin the precedingexpressionforthe dissipationpotential,the stressdependence,both
external and internal, enters through the scalar functions F and G in the form of effective (Eli) and

internal (aij) deviatoric stresses, respectively. Furthermore, the function F acts like a threshold surface,
because when F < 0, no inelastic strain can occur. Clearly, this threshold value is dictated by the

magnitude of both the drag strength (_) and yield stress (Y). A unique aspect of this model is that the
internal variable representing the yield stress is specifically taken as a special scaled function of the back
stress and drag strength. Consequently, this allows for 1) the model to possess features of a model with
three internal variables yet without any additional computational cost, and 2) the presence of an induced
strain recovery term (as opposed to the common 'ad-hoc' introduction of such terms) in the evolution of
the back strain (i.e., the associated conjugate variable, A_). It is important to reMize that the product
gY constitutes the radius of the initial threshold surface (see Fig la), thereby dictating from physical

arguments, that both Y and _ be always positive valued. Furthermore, given the spe_ifed form of Y in
equation (18), it is dear that the materiM parameter ratio (/_/_) will dictate the limit value (i.e., when

Y=0) of the internal stress (aij), or the cut-off limit for dynamic recovery.
By selecting the preceding scalar functions, a general yet complde potential-based model, with asso-

ciated flow and evolutionary laws can be constructed. The second invariants, J2 and 12 , are also scaled
for tension. These invariants could just as easily have been scaled for shear by replacing the coefficient

3/2 with 1/2, and modifying the definition of the magnitude of the inelastic strain rate that follows.
Also, it should be stated that the linear form of F and Y in equations (17) and (18) was chosen in order
to allow algebraic manipulation and analytical solution of the resulting expressions (e.g., inversion of the
flow law), so as to ease the characterization stage of the model, as discussed subsequently in sections 4.1
and 4.2. Note, however, that the quadratic form of F and Y does provide some additional interesting
features in the model as discussed previously by Arnold et al. [3].

Finally, it is interesting to note the close similarity between the present assumed form of the threshold
surface F of equation (14) to that used by Lemaitre and Chaboche [13] in the context of inviscid plasticity.
The significant difference between the two forms is that Lemaitre and Chaboche [13] utilized a non-
associated format; the form similar to equation (14) was taken to affect only the directions of inelastic
and internal state, whereas a classical J_ form was employed to control yielding (i.e., the consistency

condition). In the present fully associative case, the same threshold surface F is used to affect both
yielding, and the direction of inelastic and internal state.

Taking the appropriate derivatives of both 4, and f_ as indicated in equations (2) through (14), one
obtains the multiaxiai isothermal specification particular to the present constitutive model. Here the

decomposition of the total strain rate is that of equation (7), where the reversible strain rate is given by
equations (8) and (9) and the irreversible (or inelastic) component is defined by the following flow law:
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Figure 1: Geometric interpretation of the internal unloading criterion relative to positions of the thresh-
old surfaces.

or

where

•_ (27)Qj = 0 if F < 0

i1_._11= ._j,j" M(F)V_'_ ',= _"

The internal constitutive rate equation is always given by

hij = Li_,, J4r,

while the evolutionary law for the back strain rate is given by :

A_t = _- _ Ili_ll Hv[Y] 3RaBol¢, g(G)akz

during internal loading and

J4r, = QrslmEtmnp (_lp _ ) _-Imt[_lla_Hv[Y]2,¢x/G

(28)

(29)

if aijEij > 0 (30)

3RaBolog(G) anp) if aijEij < 0 (31)

during internal unloading, as indicated by the inequality aijEq < 0 . The internal stiffness operator is
defined as

_2 ( 3BI(p_I)G,-2 )Lqr, = [Qijr,]-* = 3Bo(1 + BlpGP-X) hjr, -- _:_(1 7"_",p(_P-*-:i'_ - 5)) ar'aij (32)



with I_j,., = 6_,.6j,.
Equation 31 constitutes a new consistent, potential preserving, internal unloading criterion that

will prevent the classical abnormalities [13] in the cyclic response associated with nonlinear hardening

formulations, upon unloading and reversed loading of the ezternal variables. This new criterion is
motivated by considering the trajectory of the state point within the state space during unloading and

hinges upon the introduction of an internal state discontinuity inequality for the conjugate internal (or

back) strain rate. Mathematically, this is accomplished by the introduction of a dissipation potential that
is distinctly different when the material is undergoing internal loading versus unloading. The geometric

interpretation of ihis criterion (discontinuity inequality) in the It- plane is illustrated in Fig. 1, where

the situation of the deformed material aq _ O, is depicted. Note that the projection of the applied

stress vector aii on the r- plane is, of course, Sii , the deviatoric stress and that the projection of

the cylindrical surfaces of constant inelastic strain rate (F=constant) appear as concentric circles in this

plane, although only one is illustrated in Fig. 1. The current effective stress vector Eq = Sq - aii
emanates from the translated center of the nested circles and the corresponding inelastic strain rate

vector t_j, is collinear with it. Now, if the applied stress is reduced to a value less than the internal
stress, the effective stress will change sign and unloading internal to the material will take place, thus

resulting in a readjustment (state recovery, i.e., shift toward the origin of the _r- plane) in internal stress

alj as shown in Fig. lb. If the stress reversal were continued, the material would also continue to rapidly

readjust until once again internal reloading commenced, as depicted in Fig. lc.
Justification for this criterion stems from the work of Orowan [14] and others, and has indicated

that upon stress reversals dislocations are remobilized and consequently rapid rearrangement of these
dislocations is possible within the wake of the previous load path. To describe this rapid motion of

dislocation remobilization (readjustment of internal stress) during material unloading we introduce, in

the spirit of Robinson [15] and Onat [11] , distinct regions within the state space in which the rate of

the conjugate internal state variable (internal strain) changes discontinuously. Currently, until more

exploratory tests can be performed to fully describe the affected regions of the state space, the internal

(back) strain rate during internal unloading is taken to be proportional to the back strain rate during
loading, through the product of the external stiffness and internal compliance operators, see eq. (30).

Thus, implying that the internal stress and strain during internal unloading are related by the external
stiffness tensor; the accuracy'of such an assumption can be verified by conducting a number of transient

stress dip tests [10]. Furthermore, an examination of the evolution of the conjugate of the internal

stress (i.e., the internal strain, Aij), clearly shows that equation (30) possesses, as typically assumed

in the literature [17], [18] competitive mechanisms consisting of a hardening term (which accounts for

strengthening mechanisms) and two state recovery terms (which account for softening mechanisms).

The first state recovery term evolves with inelasticity; it is strain induced, and is commonly called

dynamic recovery.; whereas, the second term, interchangeably called static or thermal recovery, evolves
with time and is thermally induced. Again, it is important to note that as the internal stress evolves

and finally reaches a limit value (dictated by the material parameters 13 and _) the yield stress will

vanish, as will the strain induced recovery term. The added flexibility provided by the dynamic recovery

term is particularly advantageous under conditions where thermal recovery is relatively small (i.e., low

homologous temperatures).
Finally, the above expressions are further specialized by assuming the nonlinearity of inelasticity and

the thermal recovery process to be represented by power law functions, that is:

f(F) = F" (33)

g(G) = G q (34)

4.1 Uniaxial Simplification and State Space Representation

If we consider only a uniaxial state of stress, the deviatoric applied and internal stress tensors become



and

[ 0]12;°osi_ = _ 0 0 -

such that

112 00]air = _ 0 -a 0
0 0 -a

(35)

(36)

Ot 2
V=_

_Z2

and the flow and evolutionary laws, respectively, become

and

.I /ZFn (_r- a) (37)

d=
2 3 L K \/_/ J

&
L K \/_/ )

Utilizing the concept of the state space representation [10] through [12], we can examine and illustrate

geometrically the various features of the present unified viscoplastic model and discuss its characteriza-

tion. The pertinent state space is constructed by combining and rewriting equations (7), (37), and (38),

in standard vector form as follows, and plotting the corresponding _ fields or relaxation trajectories.

That is,

S=6 (_,_)+ i_ (e)

or, for example, during loading,

= sn(i__Ca2)[t,_Z[it, Hgv[y]a_2R__ (_)2,+1] +

where

(40)

IIJ II- _F"

K2

7/=
3B0(1 + Blp (_)2p-2)

3B,(p- 1)(_)_-'
C=

_2(1 + BIp (_)2p-2 (6p - 5))

(41)

(42)

(43)
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Figure 2: State space associated with the material parameters in Table 1.

and _ is the total uniaxial strain rate. These relaxation trajectories are obtained from equations (37)

and (40) by imposing a constant total strain rate (i.e., e- 0), thereby implying that _=_ (a, a).
Figure 2 illustrates the state space representation associated with equations (37), (38) and (39), and

the material parameters given in Table 1. immediately, a number of qualitative features of the first
and third quadrants of the state space can be deduced from equations (37) and (40). For example, the
locus of steady state (or fized) points in creep, denoted by line ab in Fig. 2 is obtained by imposing the

condition S= 0 on equations (40). Mathematically, such a condition is obtained when

O"

and is denoted as the locus of steady state creep. The associated steady state creep rate is

., _ (_)2,+1
e - (sgn(t_) _ _Hv[Y]a) (45)

Secondly, the locus of maxima in stress (i.e., & = 0) during relaxation (e" -- 0) occurs when

= = 0 (46)
E

This is satisfied when
L

= + - ZHv[V]) (47)

and is denoted by line ac in Fig. 2. The points on lines ac do not correspond to fixed points in the state

space, as do those associated with line ab, since the internal stress continues to evolve, that is,

10



Constants Units TEVIETAL 21S

Viscoplastic
K

P
n

B0
B1

P

q
Ra

Elastic

12

MPa

MPa/sec

MPa

1/see

MPa

5.86

5.52x10 -_

3.3

5.86x10 -4

0.05

1.8

1.35
0.1xl0 -5

0.01

80,671
0.3

Table 1: Isothermal material parameters for TIMETAL 21S at 650°C

}
Note that the inelastic strain is zero along and within the zone denoted by line ac, as in this region

F < 0. Finally, Fig. 2 illustrates clearly that the second and fourth quadrants as well as the lower

portions of quadrants one and three contain distinctly different relaxation trajectories resulting from the

imposition of the internal unloading criterion.

4.2 Characterization

The most important, and often times most difficult, aspect of modeling the behavior of a given material

at elevated temperature is obtaining the required material functions, e.g., f(F) and g(G), and material

parameters. The difficulty associated with this process typically stems from not only the variety in

mathematical forms for the material functions (e.g., power law, exponential, hyperbolic sine, etc.), but

also the fact that given the material functions there is not a unique set of material parameters for any

given load path. Therefore, numerous iterations and difficult compromises are required before a final set

of material parameters, for the assumed material functions, can be obtained.

With the present isothermal GVIPS model, nine material parameters need to be determined, as given

in Table 1: three are associated with the flow law (i.e., g, #, and n); three with the nonlinear hardening

operator, (i.e., B0, B1, and p); two with the internal thermal recovery term (i.e., Re, and q); and one

with the dynamic recovery term (i.e., j3). Both elastic and inelastic material parameters given in Table 1

correspond to the reference temperature (T,e!) of 650°C. This temperature was chosen as the reference
temperature because at 650°C the materi_ exhibits cyclically neutral behavior and thus supports the

use of a purely kinematic model, ttere a brief outline of the characterization process is given, with a

more complete discussion regarding both exploratory and characterization testing given by Arnold [10]

and Castelli et al. [19]. All tests addressed are uniaxial isothermal experiments, thus implying that the
multia_dal material constants are typically generalized from their uniaxial counterparts. This need for

generalization is precisely why a consistent multiaxial theory, such as that developed from a potential

formulation, is imperative. The available tests _for use in characterizing the current model are, three

relaxation tests, three creep tests, one multiple-step creep test, and three tensile curves at different total
strain rates.

Initially, the yield stress is unity and therefore the radius of the threshold surface is determined by
the drag strength and represents that value of stress below which only elastic behavior is "observed",

11



i.e., no measurable inelastic behavior occurs. The actual numerical value employed will obviously be

non-unique as it will be dependent upon the sensitivity of the experimental equipment and/or definition
of inelasticity employed. A preferred approach to arrive at a value for _ is to conduct a sequence of

creep or relaxation probing tests to determine the maximum value of stress for which no time dependent
behavior (e ! = 0) is observed. An alternative approach and the one taken here (given the availability of

three relaxation test results) is to use the minimum stress value attained at the end of a 24 hour period
as our maximum allowable drag strength (i.e., _; < 7 MPa) since all relaxation trajectories in the state

space tend toward the origin (i.e., u = t¢, a = 0, see Fig. 2).
Given K and taking/3 _ 0 (because at Tr_] the thermal recovery mechanism dominates) the material

parameters p and n may be obtained from either variable strain rate tests or stress transient dip tests,

as discussed in Arnold [10]. Here, given a multiple step creep test which is a type of variable strain rate

test, data pairs can be obtained at the beginning and end of each step in stress, e.g., (O'1, dr), (o'2, d/),

respectively. Assuming that the internal stress a is equal to a" both before and after the step in stress

(i.e., points 1 and 2) the following relation may be obtained from eliminating a* from the corresponding
flow laws at points 1 and 2 (see equation (36)); that is,

where the only unknowns are # and n. Employing a sufficient number of data pairs and a nonlinear

regression scheme, optimal values for/z and n can be found.
Next, assuming that hardening dominates the early portion of a creep test (primary creep stage) the

thermal recovery term in the evolutionary law may be neglected. Consequently, the internal stress rate

of equation (38) can be expressed as

& = 3H( 1 - 2Ca')t' (50)

given that /3 _ 0. Furthermore, an expression for & in terms of i I, gI, &, and a can be obtained from
differentiation of the flow law in equation (37), that is,

[
Thus, equating equation (50) and (51), assuming that _, #, and n are known, considering data pairs

(o',el,iI,_1, a) taken from primary creep data, and using again a nonlinear regression scheme, the
material parameters B0, Bz, and p can be determined. Given multiple creep curves a number of sets of

B0, Bz, and p may be obtained and then a weighted averaged can be computed to give a single optimum

set.

Finally, the material parameters associated with thermal recovery (Ra and q) may be determined

using the data pairs (o',, t,/) associated with the constant strain rate portion of the creep curve, and the

corresponding internal stress (that is calculated from the flow law) at this assumed steady state (a,),

_,-_ 1+_,_,,/ j (52)
oc8 = 1 - _Hv[Y]

Upon obtaining these data pairs, one may take the natural logarithm of both sides of equation (45) and
determine R_ and q from the ordinate intercept and slope, respectively, of the resulting ln-ln plot.

The above outlined procedure can easily be applied to obtained an initial set of required material

parameters. This set must, however, be further optimized to obtain a final set of material parameters

12
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Figure 3: GVIPS correlation with experimental tensile data [18] considering the effect of strain rate.

that will allow accurate correlation of the model over a "wide range of loading". In the present case, the

authors are primarily interested in the short term response (< 7200s) and small strain (_ 1%) regime of

the titanium alloy TIMETAL 21S. The resulting optimized material parameter set for TIMETAL 21S is

given in Table 1.
The corresponding correlation for, 1) the tensile response of TIMETAL 21S over three orders of

magnitude in total strain rate (i.e., _ - 8.33xi0 -4, 8.33x10 -s, 8.33x10 -6) , 2) short term creep at three

stress levels (i.e., tr = 72, 110, and 128 MPa), and 3) relaxation at 238 MPa are shown respectively in
Figs. 3, 4 and 5, wherein the symbols denote experimental data and the lines the model correlations.

In the authors' opinions the model does a very good job, given a single set of constants, for the wide

variety of loading conditions examined. It is important to remind the reader that if one were to focus

on only one type of loading condition, superior correlations could be achieved for that class of loading;

however, predictions of other classes of loading would severely suffer. For example during the above

characterization process excellent tensile correlation was obtained but at the expense of poor creep and

relaxation behavior for a given set of material parameters. Conversely, when the model was calibrated

for creep response poor tensile and relaxation behavior were similarly predicted.

5 GVIPS Predictions

The present GVIPS model, characterized to represent the behavior of TIMETAL 21S at 650°C, is

now exercised and its predictive capability assessed. The assessment begins by considering relaxation

tests performed at stress levels above and below that used in the characterization of the model. The

corresponding short term (i.e., < 800s) and mid term (i.e., _ 7200s) relaxation responses are shown in

Figs. 5 and 6, respectively. Again, it is apparent that overall agreement with short term behavior is

good while that of mid term is only reasonable. Note how the initial stress rates are accurate at the

higher stress levels and yet diminish more rapidly than do the actual experimental values.
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Figure 7 illustrates the cyclic behavior under strain control given a total strain rate of 8.33 x 10 -5,

wherein the symbols represent the experimental results and the solid line the GVIPS prediction. Again,

the agreement is adequate with approximately a 20% over-prediction of the maximum stress at q-0.01

strain. Although not shown in Fig. 7, note that two cycles are required with the GVIPS model before

the hysteresis loop will close.
A multiple step creep test is considered next, where the resulting inelastic strain versus time (at

constant stress) is shown in figure 8. Here the GVIPS (solid line) simulation is seen to significantly

under-predict, the accumulated inelastic strain as compared with the experimental data (denoted by the

symbols). This is not surprising, however, given the fact that the model under-predicts the creep behavior

at 72 MPa (see Fig. 4) and that this test was performed under constant load and not constant stress
as was the simulation. As a consequence of the constant load controlled creep test, the experimental

results have both additional geometric effects and possibly creep damage (thereby leading to tertiary

creep) included in them. Neither of these factors have been included in the numerical simulation. The
influence of these factors is particularly evident during the third step, where the inelastic strain rate

during the experiment is significantly greater than that simulated (cf. _r = 128 MPa in Fig. 4).

Lastly, a classic plasticity-creep interaction experiment was performed and simulated to illustrate

the need for a unified viscoplastic formulation. Here the material is subjected to an overload prior to

performing a creep test at a lower stress value, as shown in Fig. 9. Typically, as is found here, the

initial creep response following the overload is significantly reduced when compared to that produced

from a pure creep test at this lower stress amplitude, see Fig. 10. Once again comparing the numerical

simulation (of the GVIPS model) to that of the experimental results one observes reasonable overall

agreement. Although, the amount of total accumulated creep strain at the end of the test, i.e., 72000

seconds, is significantly under estimated, the initial reduction in primary creep rate, due to the overload,

is extremely accurate during the first 800 seconds and good over the first hour of creep loading, thus

fulfilling our primary objective.
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6 GVIPS vs. BP Model

Reviewing figures 3 through 10 it is evident that the present GVIPS model in conjunction with the
material parameters of Table 1 does a very good overall job of simulating the short term and small strain
behavior of TIMETAL 21S at 650°C. In an attempt to assess the relative quality of these correlations

and predictions as well as the numerical efficiency of the present model, an alternative and commonly
employed unified viscoplastic model was implemented into our in-house Inelastic Deformation Analysis

Code (IDAC). The full multiaxial, nonisothermal formulation of the Bodner-Partom (BP) model, given
in [5] was chosen as the alternative model because it too has been characterized for the titanium matrix
TIMETAL 21S. The specific tests employed to characterize this model are unknown to the authors, thus
all of the previous loading conditions will be investigated and assumed to be predictions.

Figures 11 through 15 illustrate the tensile, creep, cyclic, an_relaxation behavior predictions of the
BP model at 6500C. The corresponding GVIPS simulations are also included in these figures for ease of
comparison. Examining Fig. 11 it is apparent that at the higher strain rates (8.33x10 -s and 8.33x10 -4)
the BP model does a better job of predicting the saturated stress values at 0.01 strain than does the
GVIPS model. However, at the lower strain rates the BP model does a poorer job in representing the

knee (or transient portion) of the tensile curves. This poorer simulation by the BP model of the time
dependent behavior is further illustrated in Figs. 12, 14, and 15, wherein the creep and relaxation
behavior is compared with the GVIPS simulations. Clearly, both the primary and secondary creep rates
differ greatly and disagree with the experimental observations. Similarly,-the short and mid term BP
relaxation response is inaccurately predicted in Figs. 14 and 15 as compared with the more accurate
GVIPS simulations. This inferior performance in creep and relaxation is not unexpected as the BP
model is known for its ability to predict the rate-dependent tensile and cyclic response of a material
and not the time-dependent creep and relaxation behavior. The significance of this failure to adequately
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Figure 11: GVIPS and BP simulation of the influence of strain rate on the tensile response.

capture the time-dependent behavior is further emphasized in both the multi-step creep test shown in

Fig. 8 and the plasticity-creep interaction test shown in Figs. 9 and 16 wherein the BP model poorly
represents the primary creep (transient or short term response) following a change in the applied loading.

The ability of the BP model to simulate the rate-dependent cyclic behavior is shown in Figs. 7 and

13, where both the BP and GVIPS responses are in reasonably good agreement, except for the predicted

maximum stress amplitudes achieved, where they differ between 10% and 30% of one another. Also,

note that in Fig. 13 a numerical problem was observed in the BP model during unloading at the fastest

strain rate of 8.33x10 -4. No special numerical techniques where implemented to attempt to overcome

this difficulty as suggested in the work of Kroupa [5], because a strict comparison in the numerical

integration of these two models was desired.
Finally, a comparison of the numerical efficiency of both models is made, relative to the total number

of integration steps required to complete the above simulations. This comparison is completely legitimate
as both multiaxial models were implemented into the same computer code, integrated using the same

self-adapting fourth order Runge-Kutta and Adams Bashforth predictor-corrector integration algorithm,
and executed on the same Sun IPX workstation. Table 2 contains the number of total integration steps

required to perform each loading history discussed. Clearly, the GVIPS model is extremely easy to

integrate (due to the use of power law material functions as opposed to exponential ones and the

potential structure itself) when compared with the BP model and therefore would provide significant

computational savings in a large-scale structural finite element analysis. Note that in the case of tensile

and cyclic behavior both models give similar accuracy and yet the GVIPS formulation provides at least a

factor of 2 improvement in numerical efficiency over the BP model. Furthermore, in the case of creep and
relaxation where the simulation accuracy of GVIPS is clearly superior to the BP model, the numerical

efficiency is also superior, particularly in the case of creep where numerical stiffness can become a problem

[21]. Thus the GVIPS (generalized viscoplasticity with potential structure) formulation provides not
only accurate predictive capability, but also superior numerical performance over other non-potential
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Type of Test

Tensile (1/see)
6 = 8.33xi0 -4

= 8.33xI0 -s

= 8.33xi0 -6

Cyclic (1/sec)
6 = 8.33x10 -4

= 8.33x10 -5

= 8.33x10 -6

Creep (MPa)
a = 72.4

= 110

= 128

Relaxation (MPa)
o"= 345

= 238

= 103

4 Step Creep Test

Plasticity/Creep

Integration Steps
GVIPS BP

170 338

196 619

231 992

761 15007

828 2727

938 4937

335 758

359 12203

364 32621

372 624

365 519

358 382

1189 6631

476 8839

Speed-up

1.99

3.16

4.29

19.72

3.29

5.26

2.26

34

89.6

1.68

1.42

1.07

5.57

18.5

Table 2: Numerical Comparison of the GVIPS and BP Models
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formulations, the BP model being an example.

7 Summary

A fully associative, multiaxial, isothermal, nonlinear kinematic hardening vlscoplastic model has been

presented. It contains in general, three internal state variables (two scalars and one tensor) and both
thermal and strain-induced recovery mechanisms. The two, non-evolving, scalar internal state variables

are associated with dislocation density and are defined as the drag and yield stress. The evolving

tensorial variable known as the internal (or back) stress is a second order, traceless, symmetric tensor

and is associated with dislocation substructure. A unique aspect of the present model is the inclusion of

non-linear hardening through the use of a compliance operator, derived from the Gibb's potential, in the
evolution law for the back stress. This non-linear tensorial operator is significant in that it allows both the

flow and evolutionary laws to be fully associative (and therefore easily integrated) and greatly influences

the multiaxial response under non-proportional loading paths. In addition to this nonlinear compliance

operator, a new consistent, potential preserving, internal strain unloading criterion has been introduced

to prevent abnormalities in the predicted stress-strain curves, which are present with nonlinear hardening

formulations, during unloading and reversed loading of the external variables. The resulting isothermal

unified viscoplastic model was then characterized for the titanium based alloy TIMETAL 21S at 650°C.
Results illustrated the good overall correlation and predictive capabilities of the model for a wide range

of loading conditions, that is tensile, cyclic, creep, and relaxation tests. The proposed model was then
compared with a commonly accepted and employed version of the Bodner-Paxtom viscoplastic model

and was found to be superior both in its predictive capabilities and numerical performance.
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