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1. Introduction

This report covers work performed by Science Applications International Corporation

for the NASA Marshall Space Flight Center under contract NAS8-38566 entitled "LDEF

Satellite Radiation Study" during the period 17 June 1990 to 30 September 1993. The

basic objective of the study was to evaluate the accuracy of presently used models and

computational methods for defining the ionizing radiation environment for spacecraft in low

Earth orbit by making comparisons with measurements made on the Long Duration

Exposure Facility (LDEF) satellite, which was recovered in 1990 after almost six years in

space.

The scope of this work included model predictions for various components of the

space radiation environment (trapped electrons, trapped protons, and galactic cosmic rays)

and comparisons with a variety of different types of measurements made on LDEF (particle

fluence, absorbed dose, LET spectra, and induced radioactivity). A detailed

geometry/mass model of the LDEF spacecraft and experiment packages was developed to

take into account shielding effects in computing the radiation transport of the ambient

environment to the detector locations. The results give a quantitative evaluation of present

environment model uncertainties, indicate areas needed for model improvements, and

provide radiation design guidance for future missions in low Earth orbit.

Results from the work on this contract have been described in several publications

and presentations, which are listed in the Bibliograph (Section 2) and can be categorized as

follows:

Journal Papers

• Contributions to the pre-recovery estimates of LDEF radiation exposure have

been published in the Journal of Nuclear Tracks and Radiation Measurements

[Bibliography listing 1].

• A summary paper [2] comparing predictions and LDEF measurements has been

accepted for publication in the Advances in Space Research journal.

LDEF Post-Retrieval Symposia

• Papers were presented at the First LDEF Post-Retrieval Symposium and

published in the symposium proceedings [3, 4, 5].

• Papers were presented at the Second LDEF Post-Retrieval Symposium and

published in the symposium proceedings [6-9].



Space Radiation Workshops

• Study results have been reported at international workshops on space radiation

environments sponsored by NASA-MSFC [10] and by the European Space

Agency [11].

IRSIG Meetings

• Results from this study have been reported at several meetings of the LDEF

Ionizing Radiation Special Investigation Group chaired at MSFC [12-15].

Space Station IREER Board

• To make available LDEF results to aid in the radiation environment definition for

Space Station design, findings from the work here were briefed to the Space

Station Ionizing Radiation Environment and Effects Review Board [16].

The remainder of this report is organized as follows:

• Section 3 contains a summary of the main conclusions from model comparisons

with LDEF data on trapped proton dose and trapped proton anisotropy.

• Section 4 gives an overview of the importance of LDEF data for evaluating space

radiation model uncertainties for application to spacecraft in low Earth orbit, a

summary of the calculational methods, models, and computer codes used in the

study, and predicted vs. observed comparisons for the trapped proton radiation

dose and a subset of the induced radioactivity measurements.

• Section 5 describes work on development of a 3-D mass model of the LDEF

spacecraft for use in radiation transport calculations.

• Section 6 contains predicted vs. measured results for trapped proton and trapped

electron doses and trapped proton directionality.

• Section 7 describes the 3-D mass modeling of certain experiment trays and

dosimetry, and their incorporation into the spacecraft model discussed earlier in

Sec. 5.

• The final section gives the status of model comparisons and data availability for

the various sets of LDEF measurements at the conclusion of the study.
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ABSTRACT

Some early results are summarized from a program under way to utilize LDEF satellite data for evaluating and improving
current models of the space radiation environment in low Earth orbit. Reported here are predictions and comparisons with
some of the LDEF dose and induced radioactivity data, which are used to check the accuracy of current models describing the
magnitude and directionality of the trapped proton environment. Preliminary findings are that the environment models
underestimate both dose and activation from trapped protons by a factor of about two, and the observed anisotropy is higher
than predicted.

INTRODUCTION

Data from the Long Duration Exposure Facility (LDEF) satellite, recovered in 1990 after almost six years in space, provide
an important opportunity for testing and updating ionizing radiation models for application to future missions in low Earth
orbit In particular, the LDEF orbit parameters (28.5° circular, 479-319 km altitude) are essentially the same as planned for
Space Station Freedom.

The LDEF mission had several features important to radiation model validation: (a) a variety of different types of passive
radiation dosimetry (thermoluminescent dosimeters, plastic nuclear track detectors, activation samples, etc.) were on board at
multiple locations and shielding depths /!/, providing a high-confidence data set for benchmarking the models; (b) the data
have high statistical accuracy due to the long mission duration, which is particularly important for checking model predictions
of the high-LET component of cosmic rays and nuclear interaction products; and (c) the LDEF spacecraft had a very stable
orientation which, together with dosimetry placements at various positions around the spacecraft, provides data to test models
describing the directionality of the radiation environment.

Data analysis in progress /2/ for radiation dosimeters aboard LDEF, and from the radioactivity induced in numerous spacecraft
components, is expected to provide an extensive data base that will allow the accuracy of several different types of models to
be evaluated, including those for predicting trapped proton, trapped electron, and galactic cosmic ray environments; anisotropy
of trapped proton exposure; absorbed dose and linear energy transfer (LET) spectra at various shielding thicknesses; and
spacecraft-generated secondary particle fluxes.

A calculational program utilizing LDEF data for radiation model validation is under way /3/. A summary of some early
results on assessments of the trapped proton environment is reported here.

PREDICTION METHODS

Environment Models - The standard APS trapped proton model /4/ was used to predict orbit-average omnidirectional flux
spectra, with the procedures detailed in 151 applied to account for altitude and solar cycle variations. The LDEF trapped proton
exposure is anisotropic, with protons confined mainly in planes perpendicular to the local geomagnetic field direction and
with in-plane asymmetry due to the east-west effect. The model developed by Watts et al. /6/ was used to predict this
directionality of the trapped proton environment.

Spacecraft Model - The LDEF radiation dosimetry data is influenced to varying degrees by material shielding effects due to
the dosimeter itself, nearby components and experiments, and the spacecraft structure. To help ensure that differences between
predictions and measurements are due to the radiation environment and not masked by shielding effects, a detailed three-
dimensional geometry model of the LDEF spacecraft and experiment trays has been developed /?/ for use in radiation transport
calculations.

+Presentation at COSPAR 92, World Space Congress, Washington, D. C., 28 Aug. - 5 Sept. 1992; accepted for publication
in Advances in Space Research.



Radiation Transport ~ Three-dimensional radiation transport calculations were performed using the 3-D LDEF spacecraft
model and the solid angle sectoring approximation, with the solid angle around each dose point divided into 720 equal solid
angle increments. Transport calculations for each direction were carried out using the Burrell code /8/, which employs the
straightahead approximation together with fits to stopping power and range relations to obtain an analytical solution to the
transport equation.

RESULTS AND DISCUSSION

Trapped Proton Dose

Predictions have been made /9/ to compare with the dose measurements reported by Frank et al. /10/ and by Reitz /11 from
thermoluminescent dosimeters (TLDs), and a summary is shown in Fig. 1 for TLDs at various positions on the spacecraft and
for shielding depths (aluminum equivalent) in the range of = 0.5 to 16 g/cm^. For this shielding range, the trapped electron
dose is small /12/, and doses from solar particle events and galactic cosmic rays are essentially negligible due to the high
geomagnetic cutoff for the low-inclination LDEF orbit /13/, so the dose for these TLDs is dominated by trapped protons.

Fig. 1 shows that the APS model gives a lower dose than observed for all spacecraft locations and shielding depths, with the
predictions usually about a factor of two lower than measured. The dose ratios are practically constant with shielding depth,
indicating that the model environment is too low over a wide range of proton energies.
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Fig. 1. Ratio of calculated absorbed dose (tissue) to dose measurements by Frank, et al. /10/and Reitz/11/ for
TLDs at shielding depths (aluminum equivalent) on LDEF where the trapped proton contribution dominates.
Included are results for TLD placements on the high-dose trailing (west) edge of the spacecraft (Experiments
P0004 and P0006), low-dose leading (east) edge (Exp. M0004), and on the earth end (Exp. A0015).

Trapped Proton Anisotropv

For a few cases TLD dosimeters with similar shielding were located near the trailing (west) and leading (east) side of the
spacecraft, so some data on the dose anisotropy due to trapped protons are available for comparison. For these cases
(shielding depths 1.4 to 2.9 g/cm^), the measured /10/ dose anisotropy (trailing-to-leading dose ratio) is = 2.5, compared to a
predicted ratio of = 1.4.

A more detailed mapping of the environment anisotropy is available from measurements /14/ of induced radioactivity in the
aluminum clamps (1.3 g/cm^ thick) used to secure experiment trays on the spacecraft (Fig. 2). These measurements give the
22fla activity (half-life = 2.6 y, production threshold = 25 MeV) in iray clamps at various locations, providing the angular
dependence of activation relative to the spacecraft velocity vector. Predictions to compare with these data were made using the
transport methods described above to obtain the directional trapped proton flux spectra in the clamps, which were then folded



with available data on energy-dependent ^Na production cross sections to obtain the activation. (Scoping calculations /13/
using detailed Monte Carlo transport techniques, but for a simple 1-D spacecraft model, show that the contributions from
secondary particles, and from galactic proton and albedo neutron sources, are expected to be small for the case of tray clamp
activation.)
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Fig. 2. Location of LDEF spacecraft components and activation samples where measurements of induced
radioactivity are being made/14/, including typical locations of tray clumps whose measured activation is used
here for testing predictions of trapped proton anisotropy.

The predicted activation is lower in magnitude, and not as directional, as the measured activation (Fig. 3). The measured
anisotropy in terms of the west/east ratio is 1.7 compared to a predicted ratio of 1.3, which is less than the difference found
for the dose anisotropy. The predicted magnitude of the activation is about a factor of two lower than measured, which is
consistent with the dose comparisons.
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Fig. 3. Predicted vs. measured /14/ BNa activation of aluminum experiment tray clamps on LDEF showing
angular variation due to anisotropy of trapped protons.

The difference between measured and predicted directionality may be due to approximations in the effective atmospheric scale
heights 161 needed as model input. The appropriate scale heights, representing average atmospheric density variations over
trapped proton trajectories, are not well known from first principles, but can strongly influence the predicted angular
distributions. LDEF data may provide a basis for determining more accurate effective scale heights for model input The
calculations also indicate that the predicted anisotropy is quite sensitive to the spacecraft geometry model used; earlier scoping
estimates for a simplified 1-D spacecraft model gave a much higher anisotropy /14/.



CONCLUSIONS

Based on early results in comparing model predictions with LDEF satellite ionizing radiation data, the standard APS model
underpredicts the trapped proton flux in low Earth orbit by about a factor of two. This conclusion is based on comparisons
with LDEF data for both dose (mainly due to exposure during solar minimum) and ^Na activation (produced during both
solar minimum and solar maximum). This difference between measurement and prediction is not totally unexpected since a
factor of two uncertainty is often quoted for the APS model, but the difference is larger than indicated by some Shuttle
measurements (e.g., /15/). Predictions of the directional effects of trapped protons, based on the anisotropy model of Watts et
a!76/ with a detailed spacecraft model and 3-D transport calculations to take into account shielding effects, give a weaker
anisotropy than observed on LDEF, both in terms of dose and activation. This underprediction of the anisotropy is probably
due to the approximate nature of the effective atmospheric scale heights currently used as input to the anisotropy model.
These conclusions should be regarded as tentative since additional predictions and comparisons with other LDEF radiation data
are still in progress.

Work partially supported by NASA Marshall Space Flight Center, Huntsville, AL., Contract NAS8-38566
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SUMMARY

In conjunction with the analysis of LDEF ionizing radiation dosimetry data, a calculational
program is in progress to aid in data interpretation and to assess the accuracy of current radiation
models for future mission applications. To estimate the ionizing radiation environment at the
LDEF dosimeter locations, scoping calculations for a simplified (one-dimensional) LDEF mass
model have been made of the primary and secondary radiations produced as a function of
shielding thickness due to trapped proton, galactic proton, and atmospheric (neutron and proton
cosmic-ray albedo) exposures. Preliminary comparisons of predictions with LDEF induced
radioactivity and dose measurements have been made to test a recently developed model of trapped
proton anisotropy.

INTRODUCTION

Purpose

A calculational program is in progress as part of the LDEF ionizing radiation investigations,
with the following objectives:

Data Analysis Support - Calculations are being used to help interpret the LDEF ionizing radiation
measurements. In most cases the LDEF dosimetry data represent an integration of several effects,
such as contributions from different environment sources (galactic and trapped radiation), influence
of shielding variations (from both experimental apparatus and spacecraft structure), and secondary
particle contributions from nuclear interactions. The calculations can be used to "unfold" the
dosimetry data to estimate the influence of these individual effects, which is needed if the LDEF
data are to be fully applicable for future missions having different orbit parameters and spacecraft
configurations.

Model Validation - LDEF data are being utilized to evaluate the accuracy of present ionizing
radiation models. This includes models for predicting both the "external" environments (ionizing
radiation fields external to the spacecraft) and the "internal" environments (ionizing radiation
environments at locations internal to the spacecraft, which include the effects of radiation
interactions and transport).

* Work partially supported by NASA Marshall Space Flight Center, Huntsville, AL, Contract NAS8-38566.
+ Presentation at First LDEF Post-Retrieval Symposium, 2-8 June 1991, Kissimmce FL; published in Proceedings
Report NASA CP-3134 (1992).



Future Mission Applications - The overall objective of the calculational program is to fully utilize
the LDEF data to test and revise current ionizing radiation models for future mission applications.
This should result in more accurate models for predicting crew dose for planned long duration
missions (Space Station Freedom, Space Exploration Initiative) and for assessing radiation
backgrounds to sensors and determining achievable measurement sensitivities for planned space-
based observatories (e.g., Earth Observing Observatory). Furthermore, benchmarking models
with LDEF data will reduce present model uncertainties involved in assigning hardware design
margins for meeting mission radiation requirements. This will help prevent both "under-design"
(which can lead to reduced mission performance) and "over-design" (resulting in excessive costs).

LDEF Data for Radiation Model Validation

The LDEF mission had several unique features that are important to the validation of ionizing
radiation models:

Well Instrumented - A variety of different types of radiation dosimetry, with multiple dosimeters
of each type.were onboard, providing a high-confidence data set for benchmarking the models.
Also, dosimeters were placed at various locations on the spacecraft and behind various thicknesses
of shielding, allowing tests of both external environment models and the transport models for
predicting the radiation environment internal to the spacecraft.

Long Exposure - Dosimetry results have high statistical accuracy due to the long mission
duration. This is particularly important for checking model predictions of the high-LET component
of cosmic rays and nuclear interaction products, which is of key importance in assessing radiation-
induced biological and electronics damage.

Fixed Orientation - The very stable orientation of LDEF during the entire mission (< 0.2°, ref.
1), together with dosimetry placements at various positions around the spacecraft, allow the
directionality of the incident radiation to be measured. This provides a unique opportunity for
testing a recently-developed model (ref. 2) for predicting the directionality of the trapped proton
flux. Since the radiation dose (at most shielding depths) for spacecraft in low-earth orbit is
dominated by the trapped proton exposure, this anisotropy may have practical importance for
planned fixed-orientation spacecraft in low-earth orbit, such as for Space Station Freedom.

Thus, the LDEF data provide a significant opportunity for model improvement in addressing
ionizing radiation issues for future missions, as summarized in figure 1.

APPROACH

Figure 2 gives an overview of the calculational approach and indicates some of the specific
models being used. External environment models include the APS and AE8 models for trapped
protons and electrons (refs. 3,4), the MSFC model for predicting trapped proton anisotropy (ref.
2), and the galactic proton and heavy ion environments given by the NRL CREME model (ref. 5).
Transport models include both simplified, one-dimensional models commonly used in quick
assessments of space radiation effects - the MSFC analytical models for proton and electron-
bremsstrahlung transport (refs. 6,7), SHIELDOSE (ref. 8), and CREME (ref. 5) - as well as
three-dimensional Monte Carlo codes, HETC (ref. 9) and MORSE (ref. 10). The Monte Carlo
codes take into account in detail the secondary particle production and transport and can treat three-
dimensional, multimedia spacecraft models, capabilities which are needed in some cases for
definitive comparisons with the LDEF measurements.



This calculational approach can provide predictions for all of the different types of LDEF
radiation measurements - namely: (a) induced radioactivity, including both the activation of metal
samples (Ni, Co, V, Ta, and In) placed in LDEF experiment packages and the activation of various
spacecraft structural components (e.g., trunnions, experiment tray clamps); (b) measurements of
tissue-equivalent absorbed dose using thermoluminescence detectors (TLDs); (c) measurements
of linear-energy-transfer (LET) spectra by plastic nuclear track detectors (PNTDs); and (d)
particle fluence and energy spectra, including secondary neutrons, as measured by fission foils,
specific activation reactions, low-energy neutron detectors (6LiF foils), and PNTDs.

The shaded areas in figure 2 indicate the emphasis of the modeling to date. An important
approximation for the initial calculations is that a very simplified (in most cases one-dimensional)
spacecraft model has been used. To obtain definitive comparisons with most of the measurements,
detailed shielding variations about the detector need to be taken into account, so development of a
3-D LDEF mass model for radiation calculations is underway (ref. 11).

RESULTS

Emphasis of the initial calculations has been in two areas: (a) scoping calculations of the
importance of different exposure sources and secondary particles to the induced radiation
environment, and (b) calculations and comparisons with measurements to check the accuracy of a
recent model for predicting the anisotropy of trapped protons.

Scoping Calculations

The penetrating radiation environment for the LDEF orbit consisted of protons (with a
relatively small contribution of heavier ions) trapped in the earth's magnetic field, protons and
heavier ions of galactic origin, and albedo neutrons and protons due to galactic cosmic-ray
bombardment of the earth's atmosphere (ref. 12). Since the angular variation of these sources is
quite different (figure 3), and since material attenuation within LDEF is different for each source,
an important question for data interpretation concerns the magnitude of the contribution from each
component at the LDEF measurement locations. Thus, a set of scoping calculations was made to
obtain a general indication of: (a) the importance of different space radiation sources, (b) the
importance of secondary particles generated within LDEF, and (c) the spatial variation of the
induced radiation environment.

The calculations were carried out using Monte Carlo transport methods, with the SAIC
version of the HETC code (ref. 13) for high-energy transport and the MORSE code for low-energy
(< 20 MeV) neutron transport. These were only scoping estimates because several important
approximations have been made in this initial work — e.g., a one-dimensional (aluminum slab)
model of LDEF was used, and the angular variation of the incident radiation (particularly the
trapped proton anisotropy) was not accurately simulated. Subsequent calculations using a 3-D
LDEF mass model are planned to remove these approximations.

Example results are shown in figure 4 for the depth-dependent particle fluence, and figure 5
shows fluence spectra at a particular depth (10 g/cm2). (To roughly relate these depths in terms of
areal density to LDEF, if the LDEF spacecraft is represented as a cylinder the average areal density
is 32 g/cm2 across the diameter and and 68 g/cm2 end to end.) These results indicate that the
contribution from albedo neutrons and protons is negligible, and that the relative importance of



trapped vs. galactic sources depends on the shielding depth and radiation effect of interest. In
terms of fluence over all energies, figure 5 shows that secondary neutrons dominate for depths
> 10 g/cm2.

A report on additional results from these calculations, including the induced radioactivity in
aluminum and stainless steel produced by different sources and particle types, is available (ref.
14), and a summary has been accepted for journal publication (ref. 15).

Trapped Proton Anisotropy

The ionizing radiation dose at most shielding depths for spacecraft in low-earth orbit (LEO) is
produced mainly by trapped protons in the South Atlantic Anomaly (SAA) region. The standard
NASA models (AP8MIN and AP8MAX) for describing the trapped proton environment do not
provide an angular dependence, although the proton flux is actually highly anisotropic in the SAA.
This anisotropy has not been an important practical consideration for most previous LEO missions
because the varying spacecraft attitude during passage through the radiation belt "averages out"
anisotropic effects over many orbits. However, for the fixed orientation of LDEF, and for several
planned missions (e.g., Space Station Freedom, Earth Observing Satellite) where the spacecraft
will be gravity-gradient stabilized, the cumulative proton exposure will remain anisotropic, and will
result in a highly nonuniform dose distribution around the spacecraft.

Watts, et al. (ref. 2) have recently developed a model to predict orbit-average, angular
dependent trapped proton flux spectra from the standard omnidirectional AP8MIN and AP8MAX
data bases. Since trapped proton anisotropy effects may be an important consideration for Space
Station design and operation, a priority for the calculational work has been to utilize LDEF data to
evaluate the accuracy of this anisotropy model, as summarized below. These initial results must be
considered as preliminary because of several simplifications in the calculations to date, and because
the LDEF data are not yet fully analyzed.

Anisotropy of Tray Clamp Activation

The measured induced radioactivity of the aluminum clamps (ref. 16) used to secure the LDEF
experiment trays provides very appropriate data for checking the anisotropy model since these
clamps are located on all sides of the spacecraft and at various directions relative to the flight
vector. Also, since the clamps are located on the outer surface and are thin (1.3 g/cm2), we expect
(based on the scoping Monte Carlo calculations; e.g., figure 4) the activation from galactic protons
and secondary particles to be small, so the measured activation is predominantly from the primary
trapped protons.

The 22Na production in aluminum has been predicted as a function of direction (in the
horizontal plane perpendicular to the LDEF longitudinal axis) and for various shielding depths
(figure 6). These calculations were made for a point behind an aluminum slab shield (assuming
that the direction normal to the plane is pointed in the plotted direction, and assuming that no
particles enter from the "back side" of the plane). The proton transport code of Burrell (ref. 6)
was used. The angular distribution of the trapped protons were taken from a pre-computed data
base for discrete altitudes (ref. 17), with results for 450 km and solar minimum used here; thus,
the properly averaged angular spectra for solar cycle variation and the varying altitudes during the
LDEF mission have not yet been applied.



The results (figure 6) show minimum activation near the East (leading edge) of the spacecraft
and maximum activation near the West (trailing) direction. The predicted anisotropy in terms of the
ratio of West-side activation to East-side activation varies from a factor of about 1.8 near the
surface to a factor of 3.5 at 10 g/cm2 depth. This increase in anisotropy with depth is due to the
increasing anisotropy of the incident protons at higher energies (refs. 2, 18).

A comparison of the predicted ^Na activation at a depth corresponding to the mid-depth of the
tray clamp (0.64 g/cm2) with the measured activation (ref. 16) is shown in fig. 7, indicating very
good agreement for these preliminary comparisons. The angular variations are similar in shape,
with the maximum/minimum ratio with respect to direction being 1.8 for the measurements vs. 2.0
for the calculations.

The calculated results in figure 7 are lower than the measurements by about 15% for directions
in the vicinity of West, and lower by about 50% for directions near East. These preliminary
absolute magnitude comparisons suggest a better accuracy for the APS trapped proton model than
the factor of two uncertainty commonly quoted.

Dose Anisotropy

Predictions of the absorbed dose anisotropy have also been made and compared with the initial
TLD measurements reported by Benton, et al. (ref. 19) for Experiments P0006 (bay-row location
F-2, near the trailing edge) and M0004 (tray position F-8, near leading edge). These initial
calculations were also made assuming one-dimensional, plane-geometry shielding, so the results
are preliminary.

The predicted ratios are compared with the measured P0006-to-M0004 TLD dose ratios (using
data from ref. 18 with interpolation applied to obtain common shielding depths) in figure 8. These
preliminary comparisons also indicate that the anisotropy model predictions are consistent with
LDEF data.

Directionality of Trunnion Activation

The measured spatial dependence of radioisotopes produced in the stainless steel LDEF
trunnions (refs. 20, 21) also provide an opportunity for checking the anisotropy model. To date,
calculations have been made to compare with only a small subset of the measured data, with some
initial comparisons for the 54Mn activity given here.

The calculations were made for a "simplified" 3-D geometry with the body of the LDEF
spacecraft and experiment trays modeled as a homogeneous aluminum cylinder (with an average
density to preserve the total mass), and with the earth-end trunnion represented as a stainless steel
rod. The activation at a point in the trunnion was computed by: (a) determining the areal density
along a 3-D grid of rays emanating from the point (720 rays were used, corresponding to the polar-
azimuthal angular grid used in generating the directional proton environment), (b) computing the
attenuation for each ray using the Burrell 1-D proton transport code, with solid-angle weighting for
each ray to get the cumulative proton spectrum at the point, and (c) folding this spectrum with
cross sections for 54Mn production from the constituents of stainless steel.

Shown in figure 9 is a comparison of the calculational results with the measurements of Moss
and Reedy (ref. 20) for the radial distribution of 54Mn produced in a section of the trunnion
centered 3.5 in. from the end ("Section D" in fig. 8a of ref. 20) of the East (leading edge)



trunnion. These results are for two angular segments of the trunnion having surface normals
pointed in the zenith direction (labeled "space") and toward the center of the earth (labeled "earth").
The trapped proton anisotropy model predicts that the external fluxes directed toward the "space"
and "earth" directions should be essentially the same, whereas the measurements and transport
calculation results indicate a lower activation in the space direction. A separate calculation made
with only the trunnion present shows that the lower activation observed in the space direction is
due to the shielding effect of the LDEF spacecraft.

The agreement between the predicted and measured activations in figure 9 is quite good near
the surface of the trunnion, but the agreement becomes somewhatworse near the center. Results
from the 1-D Monte Carlo calculations (ref. 14) show that galactic protons contribute substantially
at penetration depths comparable to the center of the trunnion. Thus, the underprediction of the
activation deep into the trunnion indicated in figure 9 may be due to the neglect of incident galactic
protons in these initial calculations.

CONCLUSIONS

LDEF has provided unique data which, based on preliminary comparisons of initial
measurements and predictions, confirms a recently developed model for the anisotropy of trapped
protons. This anisotropy is important in predicting the radiation exposure of other fixed-
orientation spacecraft in LEO, such as the planned Space Station and Earth Observing Satellite
missions.

Preliminary comparisons also indicate that the LDEF radiation dosimetry data are in good
agreement with predictions using APS trapped proton flux model. Such results can help quantify
the limits on safety margins commonly applied to account for radiation environment modeling
uncertainties in spacecraft design and parts selection and in crew dose assessments.

The emphasis of near-term future calculations is expected to be on model comparisons with
LDEF LET measurements (e.g., ref. 22). LET spectra generally provide a more stringent test of
the environment and transport models than considered to date for induced radioactivity and dose
comparisons, and LET is fundamental in assessing electronics upsets and biological damage. For
future calculations a three-dimensional LDEF geometry/mass model will be implemented to
properly account for dosimetry shielding effects and provide more definitive assessments of the
radiation models.
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Fig. 1. Significance of LDEF data for validation of ionizing radiation models.
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LDEF GEOMETRY/MASS MODEL FOR RADIATION ANALYSES"

B. L. Col born and T. W. Armstrong
Science Applications International Corporation

4161 Campus Point Court, San Diego, CA 92121-1513
Phone: 619/458-5282, Fax: 619/458-5067

SUMMARY

A three-dimensional geometry/mass model of LDEF is under development for
ionizing radiation analyses. This model, together with ray-tracing algorithms, is being
programmed for use both as a stand-alone code in determining 3-D shielding distributions
at dosimetry locations and as a geometry module that can be interfaced with radiation
transport codes.

INTRODUCTION

To aid in the interpretation of ionizing radiation dosimetry data, and to obtain more
accurate comparisons of dosimetry measurements with model predictions, a three-
dimensional geometry/mass model of the Long Duration Exposure Facility (LDEF) satellite
is under development. The modeling approach and level of detail being incorporated is
described below.

APPROACH

Three general categories of LDEF components are defined for modeling purposes
(fig. 1). The major structural components of the spacecraft are being modeled individually,
as illustrated in fig. 2. The mass of other components of the spacecraft ("miscellaneous"
category of fig. 1, which amounts to about 5% of the total mass) is combined with the
mass of the larger components, except that the thermal covers are modeled individually.
The third category is the experiment trays, containing the tray itself and the contents of the
experiment. Since the weight of individual experiments varies substantially (fig. 3), each
of the 84 experiment trays is modeled separately.

For experiment trays containing radiation dosimetry, "detailed" modeling of major
components within the tray is being performed so that local shielding variations in the
vicinity of the dosimeters can be accounted for (fig. 4). For trays not containing ionizing
radiation dosimeters, only the volume and mass of the trays are preserved. The contents of
these "generic" trays are modeled as homogeneous aluminum of reduced density.

* Work supported by NASA Marshall Space Flight Center, Huntsville, AL, Contract NAS8-35866.
+ Presentation at First LDEF Post-Retrieval Symposium, 2-8 June 1991, Kissimmee FL; published in
Proceedings Report NASA CP-3134 (1992).



Input data for the model is based on information provided by the LDEF Project
Office (J. Jones) and others at LaRC (R. Shearer), including engineering drawings of the
spacecraft and pre-flight weight estimates and layouts of individual experiments, and
information on component layouts and materials descriptions obtained from individual
experimenters.

The combinatorial geometry methodology is being used. In this method Boolean
logic is applied to combine descriptions of simple body shapes to simulate complex
geometries.

The model is being programmed to allow operation in either of two modes: as a
geometry module which can be interfaced with radiation transport codes, and as a stand-
alone program with ray tracing (fig. 5). In this latter mode, the areal density and material
composition along rays emanating from specified points can be computed to form a 3-D
grid of shielding variations about the point. For dosimeters where individual particle
tracks are measured, this ray-tracing mode will allow rays to be started that have directions
corresponding to the track direction, so the material traversed in reaching the dosimeter can
be estimated for individual tracks.

STATUS

At present the LDEF spacecraft structure with generic experiment trays has been
modeled. Detailed modeling for several of the trays containing ionizing radiation
dosimeters (Experiments P0004, P0006, and M0004) is in progress.



Category

STRUCTURE

MISCELLANEOUS

EXPERIMENTS

Component

Center Ring
Longerons
End Frames
Diagonal Tubes
Intercostal Rings
Trunions.Pins, & Scuff Plates
End Support Beams

TOTAL STRUCTURE:

Batteries
Initiate Electronics
Wiring
Nuts and Bolts
Damper Assembly
Thermal Covers (Ends)
Ballast Plates

TOTAL MISCELLANEOUS:

Experiment Components + Trays

TOTAL LDEF WEIGHT:

No.
Places

1
24
2
8

72
10
5

2
1
-
-
1

12
1 1

84

Weight
fibs.)

2,073
2.280
1.374
926
758
501
285

8.197

100
105
100
200
62

154
365

1,086

12.110

21.3^3

Weight
%

9.7%
10.7%
6.4%
4.3%
3.5%
2.3%
1.3%

38.3%

0.5%
0.5%
0.5%
0.9%
0.3%
0.7%
1.7%

5.1%

56.6%

Modeling Approach

Modeled as individual component.
Modeled as individual components.
Modeled as individual components.
Modeled as individual components.
Modeled as individual components.
Modeled as individual components.
Modeled as individual components.

Included as part of earth-end support beam weight.
Included as part of center ring weight.
Included as part of center ring weight.
Included as part of center ring weight.
Included as part of space-end support beam weight.
Modeled as individual components.
Included as part of end frames.

Modeled each experiment tray separately,
individual experiment weights preserved.

with
Modeling

detail for components varies with experiment type.

100.0%

Fig, 1, Level of detail incorporated in LDEF geometry/mass model.



10

Longerons

Diagonal Tubes

Center Ring Intercostal Rings
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Fig, 4, Modeling approach for LDEF experiments.
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RADIATION MODEL PREDICTIONS AND VALIDATION
USING LDEF SATELLITE DATA* +

T. W. Armstrong and B. L. Colborn
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SUMMARY

Predictions and comparisons with the radiation dose measurements on LDEF by thermoluminescent

dosimeters have been made to evaluate the accuracy of models currently used in defining the ionizing

radiation environment for low Earth orbit missions. The calculations include a detailed simulation of the

radiation exposure (altitude and solar cycle variations, directional dependence) and shielding effects (three-

dimensional LDEF geometry model) so that differences in the predicted and observed doses can be attributed

to environment model uncertainties. The LDEF dose data are utilized to assess the accuracy of models

describing the trapped proton flux, the trapped proton directionality, and the trapped electron flux.

_-..__,„ _. INTRODUCTION

Radiation dosimetry data from the Long Duration Exposure Facility (LDEF) mission are being utilized

to evaluate the accuracy of current ionizing radiation environment models and to identify model

improvements needed for future mission applications in low Earth orbit. A calculational program is in

progress to compare model predictions with the different types of LDEF ionizing radiation measurements

(dose, activation, LET spectra, secondary panicles, etc.), and the status of this work is summarized in a

companion paper (ref. 1).

The scope of the present paper is restricted to model predictions and comparisons with LDEF

thermoluminescent dosimetry (TLD) measurements of the radiation dose. These TLD measurements provide

one set of data for evaluating the accuracy of environment models describing the trapped proton flux, the

trapped proton directionality, and the trapped electron flux. Assessments of trapped radiation models

utilizing other LDEF data sets from plastic nuclear track detectors and activation sample measurements of

induced radioactivity are in progress.

*Work supported by NASA Marshall Space Flight Center, Huntsville, AL, Contracts NAS8-38770 and NAS8-39386.
+Presentation at Second LDEF Post-Retrieval Symposium, San Diego CA, 1-5 June 1992; published in Proceedings Report
NASA CP-3194 (1993).



CALCULATIONS METHOD

Environment Model -- Results from the calculations of Wans, et al. (ref. 2) are used to model the LDEF

exposure to trapped protons. These calculations are based on the standard APS omnidirectional proton flux

model (ref. 3), with altitude and solar cycle variations during the LDEF mission included, and with the

MSFC anisotropy model (ref. 4) applied to determine the trapped proton directionality. In the calculations

here, the directionality was taken into account by using different incident energy spectra along directions

defined by a 3-D angular grid of 720 equal solid angle intervals about the dose point. Example spectra are

shown in Fig. 1.

Spacecraft Model - The LDEF radiation dosimetry data is influenced by material shielding effects due to

the dosimeter itself, nearby components and experiments, and the spacecraft structure. It is necessary to

isolate shielding effects particular to the LDEF spacecraft so that the evaluated model uncertainties can be

attributed to the ambient radiation environment and so that the results have applicability to other missions

with different spacecraft configurations. To help ensure that differences between predictions and

measurements are due to the external radiation environment and not shielding effects, a detailed three-

dimensional geometry/mass model of the LDEF spacecraft and selected experiment trays has been

developed (ref. 5)i"aiid fn~is3rD~rn6*d~eThas beentised' to take into account shielding effects for the dose

predictions here.

Radiation Transport - Three-dimensional radiation transport calculations were performed using the 3-D

LDEF geometry/mass model and the solid angle sectoring approximation, in which the solid angle around

each dose point is divided into small sectors and the shielding attenuation along "ray" directions through

each sector is computed. Transport calculations using different trapped proton energy spectra for each

direction were carried out using the MSFC code written by Burrell (ref. 6), which employs the straightahead

approximation together with fits to stopping power and range relations to obtain an analytical solution of the

transport equation. The attenuation is computed for material along each ray direction representing a solid

angle sector, the attenuated fluence spectrum is folded with the stopping power for tissue, and the results

summed for all rays to obtain the tissue dose.

An example TLD shielding distribution used in computing the radiation attenuation is shown in Fig. 2.

Shown are areal densities (aluminum equivalent) along rays emanating at the midpoints of 720 equal solid

angle bins surrounding the TLD. The TLD in this case is located in one of the canisters containing tomato

seeds in tray F2 (SEEDS experiment, Exp. No. P0004). The outward directed TLD normal is at cp = 240°

and 9 = 90°, where +cp is measured from south (row 6) and +0 from the zenith direction. Also indicated in

Fig. 2 is the constant shielding corresponding to a spherical geometry model having a radius equal to the

vertical (minimum) TLD shielding, which is the simple geometry model assumed for some of the scoping



estimates in the LDEF pre-recovery dose predictions (ref. 7). As evident, the spherical geometry model

substantially underestimates the dosimetry shielding.

RESULTS

TLD measurements were made at various locations on the LDEF spacecraft and at various shielding

depths in the experiment trays. Fig. 3 summarizes the TLD data presently available at the larger shielding

depths (> 0.5 g/cm2) where trapped protons dominate the dose contribution. The data shown are from

dosimeters located: (a) on the trailing (west) side of the spacecraft, consisting of the measurements by

Frank, et al. (ref. 8) for TLDs located in experiment tray F2 (Exps. P0004 and P0006), measurements by

Frank, et al. (ref. 8) and Reitz (ref. 9) in tray C2 (Exp. A0015), and measurements by Bourrieau (ref. 10)

in tray B3 (Exp. A0138-7); (b) on the earth-end of the spacecraft, consisting of measurements by Frank, et

al. (ref. 8) and Reitz (ref. 9) in tray G2 (Exp. AGO 15); and (c) on the leading (east) side, consisting of

measurements by Frank, et al. (ref. 8) in tray F8 (Exp. M0004) and by Blake and Imamoto (ref. 11) in tray

D9 (Exp. M0003). In two cases, the Exp. M0006 measurements of Chang, et al. (ref. 12) and some of

_ theJExp. M0003 measurements of Blake and Imamoto (ref. 11), TLD assemblies were located in drawers of

the experiment trays"w'hich^wIrFclosed 40 weeks intolRe"mission. Thus, the shielding changed_d.uring .

flight in these cases, and results from these measurements are not included in Fig. 3.

The doses in Fig. 3, and in subsequent graphs of this type, are plotted as a function of the "vertical"

shielding thickness in g/cm2 of aluminum equivalent material (based on equivalent ranges for 100-MeV

protons), where the vertical direction is along the normal from the TLD face outward from the LDEF

interior. This vertical direction generally corresponds to the direction of minimum shielding, although there

are exceptions, such as for the TLDs located near the edge of the thick detector stack in Exp. P0006.

Predicted doses and comparisons with the data of Fig. 3 are given below with the objective being to

evaluate the accuracy of models describing the magnitude of the trapped proton flux and its angular

dependence. Subsequent comparisons using previous predictions (ref. 7) are then made with the TLD data

at thin shielding depths where the dose contribution is dominated by incident electrons to assess the

accuracy of trapped electron flux models.

Trapped Proton Dose

Figs. 4-6 compare predicted and measured doses for TLDs in LDEF experiment trays located on the

trailing edge, earth end, and leading edge of the spacecraft, respectively. Predictions for Exps. P0004 and

P0006 located in tray F2 and Exp. M0004 in tray F8 are based on a detailed geometry modeling of the tray



contents (ref. 4); for other cases (trays B3, C2, and G2) the tray contents were modeled as a single

homogenized material (aluminum) with reduced density, so the dosimetry shielding is approximate for these

cases. For the TLDs located in the Exp. P0006 detector stack, both measurements and calculations show

appreciable variation of the dose for different locations within the TLD array for the same vertical shielding

depth; the computed doses shown for P0006 are for a point in the middle of the array, and the measured

values are the minimum values observed (ref. 9) across the array. The values shown for the Reitz

measurements in Exp. A0015 are averages of the reported data (ref. 8) for TLD types 100 and 700.

A summary of the predicted and measured doses is given in Fig. 7. These results show that the APS

trapped proton flux model gives a lower dose than observed from TLD measurements aboard LDEF for all

spacecraft locations and shielding depths, with the predictions usually about a factor of two lower than

measured. The predicted-to-measured dose ratios are practically constant with shielding depth, indicating

that the trapped proton model environment is too low by about the same factor over a wide range of proton

energies. Since the total mission dose is accumulated during the early high-altitude portion of the flight,

which occurred predominately during the solar minimum phase of the solar cycle (ref. 2), these conclusions

refer to the solar minimum version (AP8MIN) of the APS trapped proton model. (Model comparisons with

avaifoblfcLDJ:F. induced-radio^ 13, for relatively short half-life radioisotopes

should enable a check of the AP8MAX model since the latter pan of the flight took place during solar

maximum.)

The present dose predictions based on a detailed LDEF geometry model and an anisotropic trapped

proton environment differ from early scoping estimates (ref. 7) made as part of the LDEF pre-recovery

predictions in which simple geometry models (sphere and planar) and an omnidirectional trapped proton

environment model were used. The difference is illustrated in Fig. 8 for comparisons with the TLD data of

Exps. P0004 and P0006. While the omnidirectional, spherical geometry calculations (fortuitously) agree

with the data, the more accurate models give doses about a factor two lower than the measurements. This

illustrates that directional effects and a reasonably detailed spacecraft geometry model are needed in utilizing

LDEF data for definitive assessments of uncertainties in the radiation environment.

Trapped Proton Anisotropy

For the low inclination (28.5°) of LDEF orbits, the dose from galactic cosmic rays is very small due to

geomagnetic shielding, and, except for near-surface shielding depths where the trapped electron

environment is important, the absorbed dose measurements on LDEF are due almost entirely to the trapped

proton exposure during passes through the South Atlantic Anomaly (SAA). In the SAA region at LDEF

altitudes, protons are "mirroring" in the geomagnetic field, with trajectories confined mainly in planes

perpendicular to the local magnetic field direction and with in-plane asymmetry due to the east-west effect.



Since LDEF had a very stable orientation during the entire mission, measurements at various positions

around the spacecraft provide data for evaluating the proton anisotropy model used.

In several cases TLD dosimeters at similar shielding depths were located near the trailing (row 3) and

leading (row 9) edges of the spacecraft. These data and predictions in terms of the ratio of trailing-to-

leading edge doses are shown in Fig. 9. The measured anisotropy is generally higher than predicted by the

MSFC anisotropy model; e.g., the measured anisotropy for Exps. P0004/M0004 and Exps. P0006/M0004

is a factor of = 2.4, whereas the calculated anisotropy factor for these cases is ~ 1.4.

To further investigate the difference found between measured and predicted trapped proton

directionality, several calculations were performed to determine the influence of spacecraft geometry on the

predicted anisotropy. Fig. 10 shows the angular variation of dose at a particular depth (4 g/cm2) for three

assumed geometries: (a) the curve labeled "LDEF" was computed using the three-dimensional LDEF

spacecraft model, (b) the curve labeled "Cylinder" was computed for a cylindrical spacecraft geometry

having the same diameter, length, and total mass as LDEF but with the mass uniformly distributed within

the cylinder, and (c) the "Plane" curve is for a planar shielding geometry with infinite backing and lateral

""dimensTonsrand.wi^vther;plane-nqriaal_.vector pointed injhe plotted direction. These results for different

model geometries show significantly different characteristic shapes for the angular variation of the dose.

The detailed 3-D spacecraft model exhibits a local enhancement of the dose on the east side of the spacecraft,

which is not present for the homogeneous cylinder or planar models. This dose "bump" on the east side is

due to the fact that the interior of LDEF underneath the experiment trays contains relatively little mass, so the

high flux incident on the west side "streams" through the hollow interior and contributes to the dose on the

east side. This radiation streaming through the interior of LDEF can also influence the anisotropy observed

at different shielding depths because at deeper depths on the east side the west-side flux contribution

becomes larger. This is illustrated in Fig. 11 where the dose at various depths is calculated around the

center ring of the spacecraft structure using the 3-D LDEF model. At small depths (e.g., 0.5 g/cm2) the

west side dose is higher, at about 10 g/cm2 depth the west and east side doses are about the same, and at

larger depths (e.g., 14 g/cm2), corresponding roughly to the bottom of most of the experiment trays, the

east side dose is higher.

While these calculations on geometry effects do not fully explain the difference found between the

measured and predicted dose anisotropy, they do indicate that the observed anisotropy can be substantially

influenced by the spacecraft configuration and that a realistic spacecraft geometry model is necessary in

interpreting the measurements and in applying the data to other spacecraft configurations for future

missions.



Trapped Electron Dose

Two experiments on LDEF contained TLDs with sufficiently thin shielding that the response is

dominated by incident electrons. Measured TLD doses for these cases have been reported by Blake and

Imamoto (ref. 11) for Exp. M0003 and by Bourrieau (ref. 10) for Exp. A0138-7. Results from these

measurements are plotted in Fig 12 together with the pre-recovery predictions made by Watts (ref. 7) using

the AE8MIN and AE8MAX trapped electron environment models (ref. 14). The predictions are for a planar

shield with infinite backing, which is expected to be an adequate geometry approximation in this case

because of the shallow shielding penetration of the electrons and secondary bremsstrahlung. The M0003

results reported by Blake and Imamoto for dose in the TLD lithium fluoride have been multiplied by 1.25,

the stopping power ratio of water to lithium fluoride for electrons in the applicable energy range, to compare

with the calculated results in terms of tissue dose. M0003 measurements were also made for thinner

shielding than shown in Fig. 12, but these data points are not included here because, as discussed by Blake

and Imamoto, the results are suspect at present due to possible TLD saturation effects.

Fig. 12 shows that for small shielding depths where the incident electron flux is predicted to clearly

dominate the dose (5 0.1 g/cm2, corresponding to < 15 mils of aluminum shielding), there is general

agreement between the predictions and measurements. The largest difference is at a shielding depth of about

0.04 g/cm2, where the predicted dose is lower than measured by a factor of two; near 0.01 g/cm2, the

predicted dose is higher by a factor of 1.5. Blake and Imamoto (ref. 11) point out that the flattening of the

measured dose profile near 2 x 104 rads for very thin shielding may be due to TLD saturation effects caused

by very high doses in a thin layer of the TLD near the outboard surface and by the steep dose gradient within

the TLD thickness. Thus, this may account for at least part of the difference between measurements and

predictions in the thin shielding region 5 3 x 10 ~~ g/cm2 of Fig. 12 rather than environment modeling

uncertainties.

CONCLUSIONS

Based on the radiation dose measurements by thermoluminescent dosimeters on LDEF, the APS proton

model at solar minimum (AP8MIN) underpredicts the trapped proton flux in low Earth orbit by about a

factor of two. This difference between measurement and prediction is not totally unexpected since a factor

of two uncertainty is often associated with the APS model, but the difference here is larger than indicated by

some Shuttle measurements (e.g., ref. 15). The higher radiation dose observed for TLDs on the trailing

edge of the spacecraft is in agreement with calculations using the MSFC model for describing the angular

dependence of the trapped proton environment, although the measured dose anisotropy, based on the

relatively few trailing-to-leading edge TLD positions onboard at common shielding depths, is somewhat



higher than predicted. For thin shielding where incident electrons dominate the dose, predictions based on

the AE8MIN trapped electron flux model are in general agreement with the TLD measurements (within a

factor of two). Some of this difference may be due to saturation effects in the TLDs, which is still under

investigation (ref. 11).

These conclusions should be regarded as tentative since additional calculations and comparisons with

other LDEF radiation data are still in progress. For example, measurements of the induced radioactivity in

various metal samples, some located in close proximity to the TLDs, provide additional data for evaluating

the trapped proton flux model and will allow a cross-check of the conclusions here based on model

comparisons with TLD data. Also, a more detailed mapping of the proton anisotropy is available from

activation measurements, and these data are expected to provide a more definitive test of the trapped proton

anisotropy model. These, and other, model comparisons with the LDEF ionizing radiation data are

underway.
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Figure 1. Directionality of LDEF radiation exposure to trapped proton environment. Example
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Figure 2. Example of shielding distributions generated using the 3-D spacecraft geometry model in
predicting LDEF thermoluminescent dosimetry (TLD) response. Shown are areal densities along
rays specified by the angles cp and 6 (defined in text) emanating from a particular TLD location in the
SEEDS experiment canister (Exp. P0004). The constant shielding for a simple 1-D spherical
geometry model (used in some LDEF pre-recovery dose estimates) is shown for comparison.
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cent dosimeters (TLDs) at shielding depths where the dose is dominated by trapped protons.
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Figure 4. Predicted vs. measured radiation dose due to trapped proton environment for LDEF
experiments on trailing (west) side of spacecraft.
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Figure 5. Predicted vs. measured radiation dose due to trapped proton environment for
LDEF experiments on earth end of spacecraft.
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SUMMARY

A three-dimensional geometry and mass model of the LDEF spacecraft and experiment trays has been

developed for use in predictions and data interpretation related to ionizing radiation measurements. The

modeling approach, level of detailed incorporated, example models for specific experiments and radiation

dosimeters, and example applications of the model are described.

INTRODUCTION

Measurements of the ionizing radiation and effects on the Long Duration Exposure Facility (LDEF)

.satellite provide new data important to attaining a more accurate definition of the space radiation

environment. An important issue in interpreting the LDEF radiation dosimetry data, and in performing

definitive predictions to compare with the data, is the influence of material shielding effects. For example,

data for the absorbed dose from geomagnetically trapped protons indicate a strong anisotropy for

measurements made at different locations on LDEF (ref. 1), and measured LET (linear energy transfer)

spectra from galactic cosmic rays also exhibit a directional response (ref. 2). A question in interpreting

these results is to what extent this angular response is due to the directionality of the space radiation

environment, which would be common to other spacecraft having orbit parameters similar to LDEF, as

opposed to the influence of shielding variations particular to the LDEF experiment/spacecraft configuration.

The purpose of the present work is to provide a geometry and mass model of LDEF incorporating

sufficient detail that it can be applied in determining the influence of material shielding on ionizing radiation

measurements and predictions. The model can be utilized as an aid in data interpretation by "unfolding"

shielding effects from the LDEF radiation dosimeter responses.

*Work supported by NASA Marshall Space Flight Center, Huntsville, AL, Contracts NAS8-38121 and NAS8-39386.
"•"Presentation at Second LDEF Post-Retrieval Symposium, San Diego CA, 1-5 June 1992; published in Proceedings Report
NASACP-3194(1993).



MODELING APPROACH

Initial work on the development of a LDEF geometry/mass model, which included the spacecraft

structure and individual experiment trays but provide no detailed modeling of the tray contents, has been

reported earlier (ref. 3) The model has now been extended to include a detailed description of the contents

of several trays (F2, F8, H3, and HI2).

The rationale of this tray selection for detailed modeling is as follows: Tray F2 (containing Exps.

P0004 and P0006) and Tray F8 (containing Exp. MOOCH) are located near the trailing and leading edges of

LDEF, respectively, and contain radiation dosimeters important to assessing the directionality of the trapped

proton exposure (ref. 1). Furthermore, other measurements from the P0006 experiment in Tray F2 show a

directional dependence of the spectra from heavy ions in galactic cosmic rays (ref. 2), and shielding

variations around this experiment are needed in interpreting the data. Preliminary data from Exp. M0001 in

Trays H3 and H12 indicate a higher heavy ion flux than expected entering the detector from the direction of

the interior of the LDEF spacecraft (ref. 4), and the influence of shielding on relating the observed ion

spectra to the incident space spectra is of interest in interpreting these data.

Methodology

The LDEF geometry/mass model has been programmed in FORTRAN using the combinatorial

geometry methodology of describing complex three-dimensional configurations. The computer version of

the geometry module used here has been operated for many years in radiation transport applications, and is

the geometry module commonly used with the HETC radiation transport code (ref. 5).

The combinatorial geometry method describes three-dimensional material configurations by applying

logical operators to form unions, differences, and intersections in combining simple solid bodies (spheres,

boxes, cylinders, etc.) to form a complex geometry. Material properties are assigned to each zone defined

by these operators, and ray-tracing algorithms are included to provide the pathlength and material identifier

for each zone traversed. This material identifier is used as an index to retrieve information (density, atomic

compositions, etc.) from a materials properties table. As an aid in debugging, we have used the SABRINA

code (ref. 6) to obtain a graphical output of the geometry input data.

Input Data Sources

Input data for constructing the LDEF model has been obtained from engineering drawings, preflight

reports from experimenters describing component layouts, dimensions, and materials for individual



experiments, and pre- and post-flight photographs, all kindly provided by the LDEF Project Science Office

(ref. 7). Key modeling input was the weight of individual experiment trays and all spacecraft structural

components provided by NASA LaRC from pre-flight center-of-mass and flight dynamics analyses (ref. 8).

Dimensions for the experiment trays and descriptions of certain electronics and data storage components

common to various experiments were obtained from the LDEF Experimenter Users Handbook (ref. 9).

General descriptions and photographs of individual experiments from Clark, et al. (ref. 10) were also

helpful.

Information needed for the detailed modeling of Exps. P0004, P0006, and M0004 was provided by

Benton and Frank (ref. 11), and a detailed description of Exp. M0001 was provided by Tylka and Adams

(ref. 12).

Level of Detail Incorporated

The LDEF spacecraft is considered to be comprised of the following general categories for modeling

purposes: spacecraft structure, miscellaneous spacecraft components, and experiments, which includes the

experiment trays and components (Tables I-III). The 84 experiment trays on LDEF can be further divided

into four subcategories: (a) space debris experiments (26 trays), for which the tray contents can be

adequately modeled as an aluminum plate; (b) ultra-heavy cosmic ray experiments (16 trays), for which the

contents can be simply modeled as aluminum plus plastic; (c) trays containing ionizing radiation dosimeters

(13 trays), for which some detailed modeling of the tray components is desirable, and (d) all other

experiments (29 trays), for which the tray is considered to be filled with aluminum having a reduced density

such that the individual tray weight is preserved. Thus, each individual experiment tray is modeled, with the

actual weights of the trays and contents included, but only the contents of selected trays are modeled in detail

for assessing shielding effects on the radiation dosimeter responses. Of the 13 trays indicated in Table III as

containing ionizing radiation dosimetry, four trays (F2, F8, H3 and HI2) are modeled in detail.

Experiment Models

Some of the geometry models of the LDEF ionizing radiation experiments are shown here as examples;

other models and details of the modeling procedure are given in ref. 13. Fig. 1 shows a view of the LDEF

spacecraft model with experiment trays, including the four experiment trays in which the contents are

modeled in detail.

Fig. 2 shows the component layout in tray F2 and the corresponding combinatorial geometry model.

This tray contains the six canisters of tomato seeds (SEEDS experiment) with the thermoluminescent



dosimeters (TLDs) of Exp. P0004 for measuring radiation dose at various positions in the seed canisters.

This tray also contains the Exp. P0006 detector stack, which includes several types of radiation detectors:

TLDs, plastic nuclear track detectors (PNTDs), activation materials, and neutron detection foils. The Exp.

P0006 detector model is shown in more detail in Fig. 3.

The layout and geometry model of tray F8 containing Exp. M0004 on space environment effects on

fiber optics is shown in Fig. 4. This tray contains two radiation dosimetry packets in each of two canisters,

with each packet containing both TLDs and PNTDs.

The modeling assumptions for these and other trays in terms of geometry and material simplifications

are detailed in ref. 13.

APPLICATIONS

The LDEF geometry module program can be applied in several operational modes: (a) as a stand-alone

program, material thicknesses along rays emanating from specified spatial points and a specified angular

grid can be generated to provide three-dimensional shielding variations around various dosimetry

components; (b) such shielding distributions can also be used as input to one-dimensional transport codes

which use solid angle sectoring to approximate three-dimensional radiation transport; and (c) the geometry

module can be interface with detailed three-dimensional Monte Carlo radiation transport codes (e.g.,

HETC).

The geometry/mass model is currently being utilized in several studies related to predictions and

comparisons with LDEF radiation dosimetry data and in the interpretation of LDEF radiation measurements.

The model has been used with radiation transport calculations to predict the directionality of the radiation

dose measured on LDEF (ref. 14), which showed that 3-D shielding effects were very important in

comparing with the dosimetry data, and the model has been used by NRL (ref. 12) in analyzing results from

the Exp. M0001 heavy ion experiment.

Shielding calculations using the LDEF geometry/mass model are also being made to investigate the

directionality of protons and heavy ions observed (ref. 2) in Exp. P0006 plastic nuclear track detectors. An

example model application (stand-alone mode) is given in Fig. 5, which shows the shielding distribution in

a horizontal plane around one of the PNTD side modules of Exp. P0006. Here a local coordinate system is

used with the angle a measured in a plane parallel to the tray top. The "dips" in the shielding distribution

designated as (a), (b), and (c) occur for directions between the seed canisters, with the large peak in the

distribution (d) corresponding to directions going through lower trays (toward earth-end) and through the

center ring of the spacecraft structure. The other P0006 side modules see a similar horizontal shielding



distribution but displaced by 90°. Such shielding variations can have an important influence on the observed

radiation environment.
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Figure 1. Combinatorial geometry model of LDEF spacecraft with the four experiment
trays (F2, F8, H3, and H12) containing radiation dosimeters which have been modeled
in detail.
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Figure 2. Layout of components in LDEF experiment tray F2 containing
radiation dosimetry (top) and combinatorial geometry model (bottom), showing
TLD packets (Exp. P0004) in the seed canisters and the Exp. P0006 detector
stack.
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Figure 3. Material layers modeled in the Exp. P0006 detector stack (top) and
corrresponding combinatorial geometry model of detector and canisters
(bottom).
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Figure 4. Layout ofLDEF tray F8 containing Exp. M0004 radiation dosimeters
(top) and corresponding geometry model (bottom).
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Figure 5. Shielding distribution in horizontal plane for a point on the surface of
the detector module of Exp. P0006.

11



Section 8

FUTURE DIRECTIONS FOR LDEF IONIZING

RADIATION MODELING AND ASSESSMENTS



FUTURE DIRECTIONS FOR LDEF IONIZING RADIATION
MODELING AND ASSESSMENTS* +

T. W. Armstrong and B. L. Colborn
Science Applications International Corporation

Route 2, Prospect, TN 38477
Phone: 615/468-2603, Fax: 615/468-2676

SUMMARY

A calculational program utilizing data from radiation dosimetry measurements aboard the LDEF

satellite to reduce the uncertainties in current models defining the ionizing radiation environment is in

progress. Most of the effort to date has been on using LDEF radiation dose measurements to evaluate

models defining the geomagnetically trapped radiation, which has provided results applicable to radiation

design assessments being performed for Space Station Freedom. Plans for future data comparisons, model

evaluations, and assessments using additional LDEF data sets (LET spectra, induced radioactivity, and

particle spectra) are discussed.

INTRODUCTION

Ionizing radiation measurements on the Long Duration Exposure Facility (LDEF) satellite provide a

unique opportunity for reducing present uncertainties in models used in defining the space radiation

environment. The LDEF mission had several features particularly important to radiation model validation --

e.g., various types of radiation detectors were aboard, providing an extensive data set; because of the long

mission duration, the data have unparalleled statistical accuracy; and, the LDEF spacecraft had a very stable

orientation during the flight, allowing unprecedented data to be obtained on the directionality of the space

environment. The radiation measurements performed and key results from analyses to date are summarized

in refs. 1 and 2.

A calculational program is in progress as pan of the LDEF ionizing radiation investigations. The

scope of the program includes model predictions in support of data analysis and interpretation, calculations

for data comparisons and model accuracy assessments, and model updates. The overall objective is to

utilize the LDEF data to provide models that give a more accurate definition of the ionizing radiation

environment. This will enable more accurate radiation designs and design margin assessments for future

missions in low Earth orbit, which in turn will help reduce risk and cost. Specific models which can be

improved utilizing LDEF data, and their importance in addressing particular radiation issues for planned

missions, are discussed in ref. 3.

*Work supported by NASA Marshall Space Flight Center, Huntsville, AL, Contract NAS8-39386.
+Presentation at Second LDEF Post-Retrieval Symposium, San Diego CA, 1-5 June 1992; published in Proceedings Report
NASA CP-3194 (1993).



The purpose of the present paper is to summarize the current status and future emphasis of the LDEF

ionizing radiation modeling work. The next section gives an overview of the calculations made to date,

followed by summaries of the status in terms of specific tasks and in terms of comparisons which have been

made with different measurement data sets. The emphasis of planned radiation modeling work and related

assessments is discussed in the last section.

OVERVIEW

Calculations made to date for LDEF ionizing radiation assessments and for model comparisons with

dosimetry data can be categorized as follows:

Phase 0: Pre-Recovery Predictions -- To aid in the planning and interpretation of radiation dosimetry

data analyses, pre-recovery estimates were made to characterize the expected radiation environment

experienced by LDEF and the general features and magnitude of the induced environment and radiation

effects expected to be observed (ref. 4). This work included estimates of the expected radiation environment

(refs. 5,6) absorbed dose (ref. 5), LET spectra (ref. 7), and induced radioactivity (ref. 6). These

calculations were of a scoping nature and included numerous approximations — e.g., the directionality of the

environment was ignored and shielding calculations were based on simple one-dimensional geometries.

Phase 1: Preliminary Calculations and Data Comparisons -- Several approximate calculations were

carried out to obtain some quick comparisons with the initial data analysis results (e.g., ref. 8). This

included preliminary comparisons of model predictions with absorbed dose and activation data, which were

reported at the First LDEF Symposium (refs. 9, 10). Various approximations were made in the calculations

to obtain these quick-look comparisons - e.g., one-dimensional geometries were assumed, and the

environment definition was incomplete, with anisotropy and orbit altitude variations neglected in most cases.

Phase 2: Definitive Modeling and Data Comparisons - To obtain more accurate modeling and

definitive comparisons with the more complete data becoming available, basic calculational work was

needed in two areas: (a) a complete definition of the LDEF trapped proton exposure, taking into account

directionality, altitude variation and solar cycle dependence, and (b) a realistic (three-dimensional)

geometry/mass model of the LDEF spacecraft and dosimetry experiments in order to adequately account for

shielding effects. This work has been completed and reported at this symposium (refs. 11, 12). These

improved models have been initially applied for 3-D dose predictions and data comparisons, with results

reported at this symposium (refs. 13, 14).

Future Work — The emphasis of future calculations is on using the revised environment definitions

and 3-D geometry/mass model to make definitive predictions and comparisons with other LDEF radiation

data (LET spectra, induced radioactivity, secondary particles, etc.) as it becomes available. Specific

predictions and planned data comparisons are outlined in the next two sections.



STATUS

In this section a breakdown of the completed and planned calculational tasks is given with the status of

each task indicated.

Most of the work on assessing LDEF exposure to the radiation environment has been completed

(Table I). Initial estimates (refs. 5,6) of the exposure were made to determine the importance of all sources

(trapped protons, trapped electrons, galactic cosmic rays, earth albedo neutrons, and albedo protons) to

different radiation effects. Initial work on the definition of the trapped proton environment was incomplete

in that the altitude and solar cycle dependence of directional trapped proton spectra were not determined, but

revised estimates using the MSFC anisotropy model (ref. 15) to obtain vector fluxes have now been

completed (ref. 11). An input parameter to the MSFC trapped proton anisotropy model is the effective scale

height of the atmosphere, which represents an average over proton trajectories and is difficult to estimate

from first principles. LDEF data provide a basis for investigating appropriate scale height values for model

input, and such studies are planned. Measurements of the LET spectra from heavy ions in the galactic

cosmic ray (GCR) spectra indicate strong directionality (ref. 16). While this observed directionality is

expected to be influenced by shielding variations, there are indications that the directionality of the external

environment is a factor also (ref. 16). Thus, some additional environment definition work to estimate the

angular dependence of the GCR heavy ion exposure may be needed for definitive comparisons with the

observed LET directionality.

Key to obtaining definitive model predictions for data comparisons is a realistic treatment of shielding

effects. As indicated in Table II, work on development of a detailed, 3-D geometry/mass model of LDEF is

now completed (refs. 12, 17), and this model is currently being used in radiation transport calculations and

other shielding assessments.

With the work on revised trapped proton environment calculations and 3-D geometry modeling

completed, definitive predictions with state-of-the-art modeling accuracy can be performed to compare with

the LDEF radiation dosimetry data. Initial calculations using these models have been made for the absorbed

dose and comparisons made with the LDEF measurements (refs. 13. 18-20) using thermoluminescent

dosimeters (TLDs), as indicated in Table III. These comparisons, which are complete except for some

revisions that may be needed when results from final data analyses become available, provide a test of the

accuracy of current trapped proton flux models (ref. 21) for low Earth orbit missions and provide partial

data needed to check models describing the directionality of the environment.

Several experiments on LDEF contained plastic nuclear track detectors (PNDTs) that measured the

linear energy transfer (LET) spectra (Table IV, ref. 1). Model predictions and comparisons with these data

are important because LET has a key role in estimating various radiation effects, and because preliminary

LET measurement results (ref. 22) indicate a high-LET component which is not predicted by pre-recovery

estimates (Fig. 1), but which may have important practical significance. LET calculational tasks involve



several steps (Table IV), including 3-D transport calculations to account for shielding variations and the

directionality of the environment, influence of secondaries from heavy ion fragmentation, and an extension

of present calculational methods to account for target recoils and fragments, which is needed to compare

with the unique data from LDEF on the high-LET tail of the spectrum. For definitive comparisons with the

LET measurements, the calculations should, as suggested by the USE group (footnote 1), include the

response function of the track detectors, which involves including energy and angular-dependent relations

for track detection from observations for different track etch rates and from calibration experiments using

accelerator beams. •

Several measurements of the secondary neutron fluence were made on LDEF using 6LiF foils (ref. 23)

and activation samples (ref. 24). These data provide an opportunity to evaluate the accuracy of nuclear

models and radiation transport techniques for predicting secondary neutron spectra in spacecraft, which is of

interest in mission radiation assessments because such secondary panicles contribute to biological damage,

radiation backgrounds to sensitive instrumentation, and radiation damage to electronics. Planned

calculations related to this are listed in Table V. Since the 6LiF measurements may be influenced by the

high proton fluence present, some initial calculations delineating the neutron vs. proton response are needed

for the particular radiation environment experience by LDEF. To obtain a definitive estimate of the neutron

fluence for data comparisons, a detailed transport calculation using Monte Carlo methods (HETC code) and

the 3-D geometry/mass model of LDEF is planned with trapped , galactic, and albedo environment sources

included. Intercomparisons using the two data sets from ^LiF and activation will provide a check on the

consistency of the neutron measurement methods.

Preliminary data on high-energy neutron and proton spectra are available (refs. 23, 25) from various

fission foil measurements (Table V). Since fission is induced by both neutrons and protons, the relative

contribution to the fission data will first need to be investigated. Of particular interest is the data from

tantalum foils, where the fission threshold is above the energy of trapped protons, so the activation in this

case is a measure of the galactic fluence only.

Induced radioactivity measurements are available from both metal samples placed aboard LDEF and

from the analysis of various spacecraft components (refs. 24, 26-29), as summarized in Table VI. The

activation of samples placed in the P0006 experiment, which also contained TLDs for dose measurements,

is of particular interest for model comparisons because this will provide a cross-check on the differences

found between measured and predicted doses. The activation samples also included some elements (Co, Ta)

where the activation for particular isotopes is only from neutron-induced reactions, providing a cross-check

on the 6LiF neutron measurements and related calculations.

Several approximate calculations (ref. 10) were made to get some early preliminary comparisons with

the activation measurements on spacecraft components (Table VI). Planned are more definitive calculations

that remove the early approximations indicated in Table VI. Calculations to compare with the tray clamp

activation data are of special interest because these measurements provide a detailed mapping of the

directional effects of trapped protons, providing a test of the accuracy of the MSFC anisotropy model. Data



on the production of various radioisotopes in the LDEF spacecraft trunnions is of interest for model

validation because it provides a measure of directional and secondary panicle effects and contains

contributions from both trapped and galactic sources. Measurements for other spacecraft components, such

as the keel and end plates, provide additional directional data for model validation and confirmation.

DATA AVAILABLE FOR MODEL VALIDATION

In this section the status of work on radiation model validation is given in terms of the data available

and comparisons which have been made.

Essentially all of the data on absorbed dose measurements using TLDs is available (Table VII), and the

results of model comparisons are given in ref. 14. Initial results for measured LET spectra from PNTDs

are available (Table VIII) but much data analysis remains, and LET model predictions to compare with the

PNTD data are TBD (To Be Done).

Preliminary data on neutron and proton fluence and spectra from fission and 6LiF foil measurements

are available (Table IX), but results from some recent accelerator calibration tests need to be incorporated to

complete the data analysis (footnote 1). Thus, only very preliminary model comparisons have been made to

compare with this data.

The counting of intentionally placed activation samples on LDEF for the case of neutron measurements

(Co and Ta samples) has been completed (Table X), but analyses to determine absolute neutron fluences are

still in progress (footnote 2). Measurements for the other activation sample materials (Table X) are

essentially complete, with intercomparisons and final data analyses nearing completion. Data available from

induced radioactivity measurements in spacecraft components, and the status of calculations and

comparisons, are summarized in Table XI.

FUTURE WORK

As indicated above, to date calculations have been made to compare with only a portion of the LDEF

radiation dosimetry data. Preliminary evaluations have been made of environment models defining the

trapped proton flux, the directionality of trapped protons, and the trapped electron flux. Interim results

based on these early comparisons indicate that the proton flux model (ref. 21) underpredicts the observed

dose by about a factor of two (ref. 14). The basic validity of the MSFC trapped proton anisotropy model

(ref. 15) has been verified (ref. 14). However, preliminary results indicate that the observed directionality is

somewhat stronger than predicted, and additional data comparisons are needed to resolve this issue. The few

results to date on electron dose measurements indicate that the accuracy of electron flux environment models

(ref. 30) for LDEF-type orbits is about a factor of two (ref. 14), but the validity of some of the data is still



being checked (ref. 20). These findings, while only tentative at present, have already been important in

establishing realistic radiation design margins for Space Station Freedom, and additional model environment

accuracy assessments utilizing the full set of LDEF radiation dosimetry data (outlined below) are expected to

provide important input for upcoming Space Station Freedom radiation design verification evaluations.

The emphasis of future radiation modeling work and related assessments is summarized below.

Calculations and Data Comparisons

Work to date has concentrated on model comparisons with the LDEF absorbed dose data. Subsequent

work will emphasize data comparisons and model evaluations for the other measured data sets, with general

priorities as discussed below. These planned comparisons will provide a test of modeling accuracies for

predicting not only the ambient environment but the induced environment inside spacecraft and instrument

packages as well. Furthermore, these additional data comparisons provide more stringent tests of predictive

capabilities in that the model evaluations will include more detailed comparisons with differential data (LET

and particle spectra), in contrast to the integral-type data (dose) comparisons made to date.

LET Spectra -- Modeling and data comparisons for LET spectra are of high priority for future work

for several reasons: Accurate predictive capabilities for LET spectra are of practical significance for mission

applications due to the fundamental role of LET in assessing various radiation effects, such as biological

damage, electronics upset, and sensor noise. Also, the LET data from LDEF are unique due to their high-

statistical accuracy and the data show features at high LET that are not accounted for in present models (Fig.

1). Updated models that take into account the LDEF observations are of practical importance in radiation

assessments for spacecraft in orbits similar to LDEF, such as planned for Space Station Freedom.

Activation ~ Planned model comparisons with the activation data from induced radioactivity

measurements are important in evaluating models for predicting both ambient and induced environments. Of

high priority here are comparisons with the experiment tray clamp activation data, which will allow detailed

anisotropy model evaluations, and comparisons with the Exp. P0006 activation samples, which will provide

a check of the present tentative conclusions on the accuracy of trapped proton flux models based on

absorbed dose comparisons.

Secondaries and Particle Spectra - Model comparisons with fission foil data, measurements of

certain radioisotopes in activation samples, and 6LiF data will allow evaluation of models and transport

methods for predicting secondary particle fluences inside spacecraft. Coarse spectral information for

protons and neutrons are also available from these data. Also of interest here is model comparisons with

the tantalum foil measurements, which will provide a check of model predictions for the GCR proton

fluence at the geomagnetic cutoff of low inclination (28.5°) orbits.



Assessments

From the calculations and data comparisons outlined above, intercomparisons taking into account all of

the LDEF radiation dosimetry data sets are planned, including consistency checks comparing LDEF results

where possible with previous flights. Quantitative assessments of model uncertainties will be performed

and model improvements made, with documentation and dissemination of the updated models, data bases,

and related computer codes provided for future mission applications.

Thus, the product goal of this planned work is improved models for predicting the ambient and

induced ionizing radiation environments. While measurements of radiation effects for some of the newer

component technologies (e.g., radiation sensitive microelectronics and sensors) were not included on

LDEF, the improved radiation environment definitions from LDEF, together with ground-based

measurements of component radiation susceptibilities, will enable improved radiation effects predictions for

future missions and evolving component technologies despite the lack of LDEF radiation effects data for

specific components. In this way, the LDEF radiation modeling results can have a significant impact on

radiation assessments for future missions by reducing risk and cost associated with radiation designs and

tests.
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Table I. Status of LDEF Radiation Environment Calculations

Task Status Comment

I.
Environments
Predictions

1. Initial calculations of trapped
proton exposure

2. Estimates of expoure from galactic
and earth albedo radiation

3. Revise directional trapped proton
exposure, taking into account:
• altitude variation
• solar cycle variation

4. Sensitivity of scale height and
pitch angle assumptions used as
input to anisotropy model

5. Directional GCR spectra

Completed

Completed

Completed

Later

Later

• Published, ref. 5

• Published, ref. 6

• Reported at San Diego meeting,
ref. 3

• Use LDEF data to verify
anisotropy model input
parameters

• Expected to be needed to agree
with observed LET directionality

Table II. Status of LDEF Spacecraft/Experiment Geometry Modeling for Shielding Calculations

Task Status Comment

II.
3-D LDEF

Mass Model

1. 3-D Model of spacecraft structure
and generic experiment trays

2. Extend model to include detailed
experiment tray modeling

3. Generate 3-D shielding
distributions for Exps. P0004 and
P0006

Completed

Completed

Completed

• Reported at Orlando meeting,
ref. 17

• Reported at San Diego meeting,
ref. 12

"Directional shielding" provided
to aid in qualitative interpretation
of directional fluences and LET
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Table III. Status of LDEF Absorbed Dose Calculations

Task Status Comment

III.
Absorbed

Dose

1. Pre-recovery predictions for
simple 1-D shielding geometries

2. Absorbed dose calculations and
comparisons using 3-D mass model
and updated trapped proton spectra

Completed • Published, ref. 5

Completed • Reported at San Diego meeting,
ref. 14

Table IV. Status of LDEF Linear Energy Transfer (LET) Spectra Calculations

IV.
LET

Spectra

Task

1 . Initial calculations based on 3-D
geometry for primary trapped
protons and GCR

2. Sensitivity calculations - infuence
of secondaries, directionality of GCR
(and trapped) environment, etc.

3. Modeling of LET spectra
components, including high-energy
tail (unique data)

4. Silicon calculations and data
comparisons

5. Couple transport with etching
parameters to predict track features

Status

Later

Later

Later

Later

Later

Comment

• First priority: comparisons with
P0006 and P0004
• Second priority: comparisons
with other experiments - A0015,
etc.

• Compare with above

• Calculate components of LET
spectra due to charge.energy,
particle type composition,
directionality, and secondaries
• comparisons for P0004, P0006,
and AGO 15

• Compare with measured
products from Si wafers (SEU
applicability)

• USF suggestion to aid track
measurement interpretation, and
more definitive comparisons
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Table V. Status of LDEF Neutron and Proton Spectra Calculations

Task Status Comment

V.
Neutron

and
Proton
Spectra

1. Calculation of Low-Energy
Neutron Flux

2. Calculation of High-Energy
Neutron and Proton Spectra

Later

Later

• Compare with 6LiF
measurements of thermal and
epithermal neutrons (Exps.
P0004, P0006. A0015)
•Intercomparisons with activation
data
•Investgate 6UF respnse to
protons vs neutrons
• Include all sources (trapped,
GCR, albedo); HETC calc.

• Compare with U, Th, Bi, Ta
fission foil measurements (Exps.
P0006andA0015)
• Assess fission contributions
from neutrons vs. protons
• Infer GCR fluence from Ta
fission;assess calibration

Table VI. Status of LDEF Activation Calculations

Task Status Comment

VI.
Activation
Samples

1. Calculations for metal sample set
in Exp. P0006

Later • Compare radionuclide
measurements for V, In, Ni, Ta
• Provides check on dose
predictions and measurements

2. Calculations for metal sample
sets in other exps. (A0114, M0001,
M0002)

Later • Includes Co samples, with
neutron induced activation

VII.
Spacecraft

Components

1. Initial tray clamp calculations to
compare with early data

2. Definitive tray clamp, end plate,
and keel plate calculations

3. Initial trunnion calculations to
compare with early data

4. Definitive trunnion calculations

Completed

Later

Completed

Later

• 1-D geometry calc., approx.
anisotropy environ., simplified
transport
• Reported at Orlando meeting,
ref.3

• HETC calc. with secondaries, all
sources, 3-D geometry model,
revised anisotropy environment

• 3-D geometry, but trapped
protons only, no secondaries
• Reported at Orlando meeting,
ref.3

• HETC calculations with
secondaries, trapped and GCR
sources
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Table VII. Absorbed Dose Data Available and Status of Calculations

Exp.
No.

P0006

M0004

A0015

M0003

A0138-7

M0006

Exp. Name

LETSME

Fiber Optics

Biostack

Effects on Mat'ls

FRECOPA

Environ. Effects

Exp.

Tray

F2

F8

C2.G2

04, D8

B3

C2

No.
Detector

Locations

5

4

7

8

5

Total
No.

TLDs

180

28

56

104

10.

Data
Presently

Available ?

yes

yes

yes

yes

yes

prelim.

Status of
Calc. and

Comparisons

completed

completed

completed

completed

completed

Table VIII. LET Data Available and Status of Calculations

Exp.
No.

P0006

P0004

A0015

Exp. Name

LETSME

SEEDS

Biostack

Exp.
Tray

F2

F2

C2, G2

No.
PNTD
Stacks

10

10

9

Data
Presently

Available ?

initial results

initial results

initial results

Status of
Calc. and

Comparisons

TBD

TBD

TBD

Table DC. Neutron and Proton Spectra Data Available and Status of Calculations

Exp.
No.

P0006

P0004

A0015

P0006,
A0114,
M0001,
M0002

Exp. Name

LETSME

SEEDS

Biostack

intentionally
placed

activation
samples

Exp.
Tray

F2

F2

C2
G2

F2,
C3,
C9.

H12,
G12

Dosimetry

Plate #1:6U'F, Bi, Ta
Plate #2: U, Th

6LiF - 2 locations

6LiF,U.Th,Bi,Ta
6LiF, U.Th.Bi.Ta

ln,Ta
In.Ta

Co, In, Ta
Co, In, Ta
Co, In, Ta

Data
Presently

Available ?

prelim

prelim

prelim

yes (a)
yes (a)
yes (a)
yes (a)
yes (a)

Status of
Calc. and

Comparisons

TBD

TBD

TBD

TBD .
TBD
TBD
TBD
TBD

(a) Counting complete; analyses to determine absolute fluences in progress.
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Table X. Activation Data Available for Metal Samples and Status of Calculations

Data Presently Available? (a)

Contained
in Exp. No.

P0006

A0114

A0114

M0001

M0002

Exp.
Tray Co

F2 _

C9 yes

C3 _

H12 yes

G12 yes

Activation Sample:

Ni Ta In

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

V

yes

yes

yes

yes

yes

Status of

Calc. and

Comparisons

TBD

TBD

TBD

TBD

TBD

(a) Measurements essentially complete; intercomparisons and final data analyses nearing completion.

Table XI. Activation Data Available for Spacecraft Components and Status of Calculations

Component Data Available ? Status of Calc. and Comparisons

Al tray clamps

Al end plates

Al keel plates

Trunnions

Titanium clips,
Al-alloy Scuff Plates,
Pb ballast, etc.

yes (a)

most
(ESR-1.ESR-5)

most
(KP-3,4,9,10)

yes

most

1 prelim comparisons completed
definitive calc. & comparisons TBD

TBD

TBD

• prelim comparisons completed
1 definitive calc. & comparisons TBD

TBD

(a) Measurements essentially complete; additional measurements on clamps from space and earth ends, and
additional counting to reduce statistics for selected cases, are planned.
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10-r

Pre-Recovery Prediction (J. Derrickson, MSFC)

L A/ ' NRL CREME Code, AL Spherical Shield, Si Detector
* ^ • LDEF Insertion Altitude (481.5 km)

10

10

Measured, Exp. P0006 (Benton, et al. USF) -= -

A: 6.5 g/cm2, MainStack (CR-39(DOP)]

B:0.65g/cm2, Side Stack [CR-39(DOP)J, Multi. Etch

C:7.5 g/cm2, Recoils in MainStack [Sheffield PC]

10'

LET [MeV/(g/cm2)]

Figure 1. Comparison of LDEF pre-recovery predictions of linear energy transfer (LET)
spectra (ref. 7) with interim results from measured spectra in Exp. P0006 (ref. 22). The
predictions were made using the CREME code (ref. 31) and 1-D spherical shielding.
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