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Chapter 1

Introduction

Both the practitioner using computational fluid dynannics in engineering design

calculations and the scientist grappling with gaps in the theoretical foundations

are aware that much remains to be done before the subject can be put on

firm ground. This is particularly true in the theory and numerical analysis

of hyperbolic conservation laws, vital in gas dynamics and compressible fluid

mechanics and a fundamental component in the resolution of solutions of the

Navier-Stokes equations for compressible flow. There the numerical solution of

hyperbolic systems is confronted with a list of major difficulties and questions

that have been under study for many years.

These include classical problems of numerically resolving shocks and dis-

continuities, characteristic of solutions of hyperbolic problems, while sirnulta-

neously producing high-order, non-oscillatory results near shocks and elsewhere

in the solution domain. Moreover, the basic issue of quality of numerical solu-

tions is fundamentally important: how accurate are the numerical simulations

and how does one obtain the most accurate results for a fixed computational re-

source? These questions lie at the core of modern adaptive methods that aim

to control the error in the computed solution and to optimize the computa-

tional process. In addition, methodologies that attempt to address these issues

1
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cannot be limited to one-dimensional cases; they must be extendable to prob-

lems involving realistic geometries, boundary and initial conditions in arbitrary

domains in two- and three-dimensions. Finally, there is the issue of computa-

tional efficiency. Modern numerical schemes for large-scale applications should

be readily parallelizable for implementation in emerging multi-processor archi-

tectures.

This dissertation addresses these issues for modcl classes of hyperbolic

conservation laws. The basic approach developed in this work employs a new

family of adaptive, hp-version, finite element methods based on a special dis-

continuous Galerkin formulation for hyperbolic problems. The discontinuous

Galerkin formulation admits high-order local approximations on domains of

quite general geometry, while providing a natural framework for finite element

approximations and for theoretical developments. The use of hp-versions of the

finite element method makes possible exponentially convergent schemes with

very high accuracies in certain cases; the use of adaptive hp-schemes allows

h-refinement in regions of low regularity and p-enrichment to deliver high ac-

curacy, while keeping problem sizes manageable and dramatically smaller than

many conventional approaches. The use of discontinuous Galerkin methods is

uncommon in applications, but the methods rest on a reasonable mathemat-

ical basis for low-order cases and has local approximation features that can

be exploited to produce very efficient schemes, especially in a parallel, multi-

processor environment.

The place of this work is to first and primarily focus on a model class

of linear hyperbolic conservation laws for which concrete mathematical re-

sults, methodologies, error estimates, convergence criteria, and parallel adap-
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tive strategies can be developed, and to then briefly explore some extensions to

more general cases. Next, we provide preliminaries to the study and a review

of some aspects of the theory of hyperbolic conservation laws. We also provide

a review of relevant literature on this subject and on the numerical analysis of

these types of problems.

1.1 Some Mathematical Preliminaries

The broad aim of this work is to lay mathematical foundations and to develop

new numerical schemes which will aid in understanding and solving general

systems of hyperbolic conservation laws of the form

U,t Fi(U),,, = S,x (xi, x2) E S2 C Rd, t > 0 (1.1)

where U is a vector consisting of rn components to be conserved in St and

S is a vector-valued source term. The flux vectors F', i = 1, • • • , d are, in

general, a nonlinear function of U. The subscript t denotes differentiation with

respect to time and the subscripts xi denote differentiation with respect to the

spatial coordinate xi, and in which summation convention for repeated indices

is employed. Alternatively, (1.1) can be written in the quasi-linear form

U,t Ai(U)U,x, = S (1.2)

where the flux Jacobian matrices

aFi
A' = (1.3)au

have real eigenvalues. To complete the initial-boundary value problem, one

must specify initial conditions of the form

U(x, 0) = Uo(x) (1.4)
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and appropriate boundary conditions.

Most of this investigation focuses on a simpler and restricted class of

hyperbolic problems for which concrete results can be obtained and for which it

is possible to treat some specific numerical issues in more detail than is possible

for the general case.

The first difficulty encountered in developing numerical methods for

hyperbolic systems of conservation laws in multiple space dimensions is the

absence of a general mathematical theory. Hence, many popular numerical

schemes for multi-dimensional systems are based on existence and uniqueness

results for scalar hyperbolic conservation laws of the form

u,t fi(u),x, = ; x E Rd, t > 0 (1.5)

u(x, 0) = uo(x)

where the fluxes i = 1,• • • ,d are Lipschitz continuous functions of u and

the initial data uo E L"(V) n Ll (V) have compact support.

Historically, existence and uniqueness proofs have relied upon compact-

ness arguments for sequences of solutions generated by the vanishing viscos-

ity method, see KruAov [32], or low-order finite difference approximations,

see Glimm [22] and Crandall and Majda [15]. More recently, uniqueness re-

sults have been generalized using the concept of measure-valued solutions (see

DiPerna [20]) providing a new tool for convergence proofs for a variety of numer-

ical methods [14], [31]. Here some well-known results for scalar conservation

laws are summarized.

Solutions to (1.5) develop discontinuities in finite time, even if the initial

data is smooth. Thus, (1.5) must be interpreted in the sense of distributions,
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or equivalently, weak solutions are sought which satisfy

(ttOt E f ( )0,.) dx dt I no cb dx = 0 (1.6)AT Iv Rd

for all test functions cb E C°°(Rd x [0, T)) with compact support. There are an

infinite number of weak solutions satisfying (1.6) for given initial data no; how-

ever, the physically relevant solution satisfies an additional constraint, namely

an entropy condition. The entropy condition takes into account the fact that

physical processes are dissipative and that (1.5) models a physical process in

the limit as the dissipation tends to zero. This solution, the so-called entropy

solution, satisfies

Tf f

Jo hd Iu — dot + sign(u — c)(fi(u) — ft(c))0x,dx dt > 0 (1.7)

for all nonnegative test functions cb E CnRd x [0, T)) and all c E R.

The following lemma summarizes some basic properties of solutions to

(1.5) or (1.6).

Lemma 1 (Crandall and Majda [15]) For every choice of initial data uo E

L' (Rd) fl Ll (Rd), there exists a unique entropy solution u E Cal), co) : Ll(Rd))

of (1.5) with u(x, 0) = uo(x). Denoting u(x, t) by E(t)uo, we have

0) I IE(t)uo — E(t)vollL1(v) < — voilL100)

(ii) u0 < vo a.e. —+ E(t)uo < E(t)vo a.e.

(iii) uo E [a,b] a.e. E(t)uo E [a,I)] a.e.

(iv) Ifuo E BV (Rd), t E(t)uo is Lipschitz continuous into Li (Rd)

and liE(OuollBv00) C lluolkozd)
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The functions in the space BV (Rd) C Lloc(Rd) have bounded variation

and distributional derivatives that are locally measures. The variation of a

function v E BV (Rd) for d = 2 is defined as

sup 
lv(x + (5,y) — v(x, y)I 

dx dy
sER0} 161

+ sup 
(v(x,y .5) — v(x,y)l 

dx dy
SERVO} JR2

These results ale typical of the mathematical theory that has influenced

the development of many numerical schemes over the past decade: they apply

to unbounded domains, scalar-valued solutions, and characterize the solutions

as among function classes of low regularity. Our goal is to consider problems

in bounded domains with specific inflow conditions, since these are the types

of problems encountered in realistic application of the theory. Moreover, when

there exist portions of the domain over which the solution is smooth, we wish to

take advantage of that smoothness by exploiting higher-order methods which

can exhibit high local accuracies. These types of considerations suggest discon-

tinuous Galerkin methods as an approach worthy of study and set the present

work apart from most conventional approaches to this subject.

1.2 Higher-Order Methods

A major challenge in designing higher-order methods for the numerical solu-

tion of hyperbolic conservation laws over the last decade has been to prevent

nonphysical oscillations from occuring near discontinuities without destroying

accuracy in smooth regions. These oscillations can pollute the solution glob-

ally and can lead to numerical instabilities not revealed by traditional stability
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analysis applied to a linearized equation. One should also note that the notion

of the "order" of a numerical scheme is not always defined consistently in the

literature. In classical finite-difference literature, the order of a scheme refers

to the order of the truncation error in the time-step At, and this may be quite

different from the actual order of the error in, say, the L2-norm. In discussing

the order of various schemes in the literature on this subject, we generally refer

to the truncation error, since this use is prevelent, albeit imprecise. In subse-

quent Chapters, we develop error estimates in well-defined norms so that the

question of order of accuracy is clearly resolved.

The classical remedy for controlling oscillations, namely, regularizing

the conservation law by adding an "artificial" diffusive term (e.g. [28], [34],

and [34]), is easily applied to methods of arbitrarily high order [18], [49]. Un-

fortunately, this approach is not completely effective at eliminating oscillations

and may destroy accuracy in smooth regions. The most successful methods

for solving realistic problems are typically second-order accurate and attack

oscillations directly by simply preventing them from occuring. These schemes,

such as those based on the Flux-Corrected Transport (FCT) ideas of Boris

and Book [8], or the Total Variation Diminishing (TVD) ideas of Harten [25],

and the monotone reconstruction ideas of Van Leer [51], use a form of flux

or solution limiting to enforce the discrete counterpart of properties (iii) or

(iv) in Lemma 1 onto the approximate solution. Unfortunately, this limiting is

based on one-dimensional concepts which are heuristically extended to multi-

dimensional systems. Often these extensions result in a loss of accuracy in

smooth regions [24].

Higher-order accurate (greater than second-order) methods for discon-
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tinuous solutions of hyperbolic conservation laws are primarily in a develop-

mental stage. Spectral methods have been combined with FCT ideas [10] and

filtering methods [50] to control oscillations, but much of the work is for one

space dimension and lacks the geometric flexibilty needed for adaptivity. Es-

sentially NonOscillatory (ENO) schemes introduced by Harten, Enquist, Os-

her and Chakravarthy [26] produce high-order approximations for hyperbolic

problems by using high-order polynomial interpolation of solution mean values.

Oscillations are controlled by using a solution dependent stencil which avoids

interpolation across discontinuities. To date, a full theoretical basis for these

schemes is not available beyond one dimensional cases.

Cockburn, Shu, and collaborators [12], [13] developed one of the first

high-order numerical schemes for hyperbolic conservation laws in two space

dimensions. This work employed Runge-Kutta schemes for advancing the so-

lution in time and an elaborate projection strategy that guaranteed that the

total variation of the solutions remained bounded throughout the evolution pro-

cess. Their TVB (total variation bounded) schemes thus generalized the TVD

schemes of Harten and others. Goodman and LeVeque [24] showed that TVD

schemes are at most first-order accurate in dimensions greater than one and

hence, are not justified mathematically in two- or more dimensions. The TVB

schemes, however, provide a basis for the development of high-order schemes

on spatial domains of dimensions two and three. The Cockburn and Shu TVB

methods are constructed using discontinuous Galerkin methods and, thus, ex-

tend these methods to nonlinear conservation laws. However, the emphasis of

their work was in treating the discontinuous Galerkin method as a higher-order

finite volume method, that is, focusing on the accuracy of solution mean values.
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Moreover, these TVB schemes, thusfar, have delivered only second-order meth-

ods on non-cartesian meshes in multiple space dimensions. This work inspired

some of the developments discussed in Chapter 7.

Among the earliest work on finite element approximations of hyperbolic

problems is the classical paper of Lesaint and Raviart [33] which introduced

the discontinuous Galerkin method for linear scalar hyperbolic problems. This

work contained the first a priori error estimates for h-version methods based

on elements of arbitrary, but uniform, polynomial order p. In their work, sub-

optimal error estimates, with a loss in global accuracy of O(h) in the L2-norm,

were obtained.

A detailed analysis of discontinuous Galerkin methods for h-version

methods was contributed by Johnson and his collaborators [29], [30]. There

quasi-optimal a priori estimates showed a global accuracy of O(hP+1) in mesh-

dependent norms. This work provided a general approach to the mathematical

analysis of these methods that proved to be invaluable in the present work.

Among the results established in the present study are developments of new

a priori and a posteriori error estimates for hp-version discontinuous Galerkin

finite element approximations of linear, scalar hyperbolic conservation laws.

Thus, this study extends and generalizes the results of Johnson and others to

p- and hp-version finite elements and provides, for the first time, a posteri-

ori error estimates for such problems using extensions of the element residual

method (see [1], [2]).

One reason for renewed interest in discontinuous Galerkin methods is

the advent of parallel computations. The decomposition of large-scale prob-

lems into several computational components that can be handled simultane-



10

ously by multiple processors makes possible significant improvements in the

efficiency with which large hyperbolic systems can be resolved. Some progress

in parallelizations of high-order schemes for hyperbolic problems in one- and

two-dimensions has been made by Biswas, Devine, and Flaherty [7]. In their

work, extensions of the ideas of Cockburn and Shu [12], [13] are presented

which make use of higher moments of the solutions over an element in defining

a broader class of projections for imposing TVB behavior on the entire solu-

tion in an element and not just the mean values. At present, however, moment

limiting is restricted to cartesian grids. A component of the work reported

here is concerned with parallel computing methods for hp-finite element ap-

proximations of scalar conservation laws. The fact that discontinuous Galerkin

methods involve very localized approximations over individual elements makes

our techniques particularly amenable to element-by-element decomposition and

parallel processing.

To a great extent, the present work represents a significant departure

from conventional methods for the numerical solution of hyperbolic problems.

Several fundamental issues are addressed: the use of discontinuous hp-methods,

to provide high-order local approximation to deliver high accuracy when possi-

ble but also allowing mesh refinement to resolve irregularities in the solutions;

the development of a priori error estimates to establish proofs of convergence

and qualitative information on the performance of the method; the development

of a posteriori error estimates to monitor the performance of the calculation and

to estimate quality of the solution; the development of new adaptive strategies

to control error and optimize meshes; and the development of parallel comput-

ing strategies to exploit the local character of discontinuous approximations
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and to increase the speed with which solutions can be obtained. In addition

to these developments, applications to nonlinear conservation laws are also

presented.

1.3 A Posteriori Error Estimation and Adaptivity

The power of adaptivity to efficiently improve solution accuracy was recognized

early on in the development of unstructured grid methods for hyperbolic conser-

vation laws. These h- adaptive methods, based on refinement and derefinement

of an initial mesh [35], [36], [16] or a complete remeshing of the domain [43],

continue to be the preference for realistic flow simulations. With an emphasis

on resolving certain features of the solution, many refinement indicators have

been proposed which are based on some a priori knowledge of the solution

behavior associated with certain phenomena. Typically, these indicators are

loosely based on interpolation error estimates applied to key variables and can

be grossly in error. While this approach may provide some relative measure of

the local error in the solution, it does not in general provide a reliable estimate

of the actual error in the approximate solution.

While the bulk of previous work has concentrated on h-adaptive meth-

ods combined with low-order approximations, the effectiveness of p-adaptive

[7] and hp-adaptive [18] methods has been demonstrated for certain classes

of hyperbolic problems. As noted earlier, the present study extends existing

adaptive strategies to discontinuous approximations of hyperbolic conservation

laws.
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1.4 Scope

Following this introduction, a new formulation of the discontinuous Galerkin

method is given for a model class of steady-state, scalar, linear hyperbolic prob-

lems in two dimensions. There a notion of hp-dependent norms is introduced

which generalizes to hp-methods the idea of mesh-dependent norms used by

Johnson and Pitkaranta [30]. Conceptually, one considers a partition of a do-

main 12 c into finite elements and assigns to each element K a positive

number p„ which is designed to appear in coefficients of a mesh-dependent

norm in a way to optimize subsequent estimated convergence rates. The num-

bers p, are identified with the maximum spectral orders of the shape functions

used in approximations over K. A priori error estimates are derived in these

norms.

In Chapter 3, the subject of a posteriori error estimates for the model

problem is investigated. An extension of the element residual method to hy-

perbolic conservation laws is described. In the present investigation, two types

of estimates are produced, one which delivers an upper bound to the global

error in a suitable mesh-dependent norm and a lower bound in another related

norm. Theorems are proven which establish that these estimates are indeed

valid bounds on appropriate measures of the approximation error.

The availability of both a priori and a posteriori error estimates provides

a powerful basis for developing adaptive strategies to control the error. In

Chapter 4, an extension of the 3-step adaptive strategy for hp-finite element

methods is presented. This work extends the development in [39] to hyperbolic

conservation laws and represents, we believe, the first hp-adaptive methodology

ever developed for this class of problem.
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Chapter 5 is devoted to numerical experiments and testing of the the-

oretical results developed in earlier chapters. Several model problems in two

dimensions are studied, including examples in non-rectangular domains. The

numerical results exhibit significant features of the theory and the methodolo-

gies developed: 1) the asymptotic rates of convergence predicted by our theory

of a priori estimates are fully confirmed by the computed rates; 2) exponential

rates of convergence or super algebraic rates are observed, justifying finally the

decision to use nonuniform hp-meshes for these types of problems; 3) the a

posteriori estimation methods produce very good estimates of the actual error,

with effectivity indices near unity in many cases, and with remarkably good

local error indicators in most of the cases considered; 4) the 3-step adaptive

strategy works surprisingly well and delivers a targeted error level quite regu-

larly in around 3 steps; the significant accuracy with which the 3-step scheme

was able to produce a mesh with a prescribed global error was unexpected.

In Chapter 6, issues of parallelization of the adaptive methods are in-

vestigated. There the local character of discontinuous Galerkin methods is

exploited when possible. A parallel algorithm designed for implementation on

the Intel iPSC860 computer with 16 processors is described and the results of

numerical tests are presented. A major issue in the parallel implementation

of hp-adaptive schemes is the design of domain decomposition strategies which

result in a balanced work load on all processors. Two domain decomposition

strategies recently developed by Patra [40] are used and nearly linear increases

in speed are observed for certain cases.

Chapter 7 is devoted to some preliminary results on extensions of the

work to nonlinear conservation laws. A model problem involving the solu-
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tion of Burgers' equation on a two-dimensional domain is investigated. The

exploratory results suggest that the methods developed here could be very ef-

fective for problems of this type. The local projection developed in this work

is extremely effective at controlling oscillations at discontinuities without de-

stroying accuracy in smooth regions. The projection strategy is a simple one

designed with the idea of combining low-order approximations at shocks with

higher-order approximations in smooth regions.

Finally, in Chapter 8, the major conclusions of the study are given

together with suggestions for future work.



Chapter 2

The Discontinuous Galerkin Method

The methods presented in this chapter are valid for hyperbolic systems of con-

servation laws in multiple space dimensions. For clarity of presentation and

for the purposes of analysis, however, we limit the discussion to a scalar lin-

ear hyperbolic conservation law. We begin with a detailed description of the

method for a linear model problem ancl prove some important properties. Next

we describe a finite element approximation and derive a priori error estimates

for an hp-version of the discontinuous Galerkin method.

2.1 A Linear Model Problem

We consider a linear scalar hyperbolic conservation law on a convex polygonal

domain Q. Let = (/31, t32)T denote a constant unit velocity vector. The

domain boundary 01/ with an outward unit normal vector n(x) consists of two

parts: an inflow boundary F_ Ix E 0Q /3 • n(x) < 01 and an outflow

boundary F+ =0SZ \ F_. Let u denote the quantity that is to be conserved in

Q and consider the following hyperbolic boundary-value problem:

•vu + au = f in Q C (2.1)
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O•nu = O•ng on F_ (2.2)

where f E L2(1.2), g E ), and a = a(x) is a bounded measurable function

on SI such that 0 < a() < a(x). While this is the simplest of hyperbolic conser-

vation laws, solutions to (2.1) may contain discontinuities along characteristic

lines x(s) defined by = 13. Solutions to (2.1) belong to the space of functions

V(S2) = {v E L2(0) I vo E L2(1-2)} where vo = Vv.

2.2 Notation

Throughout this work, notations ancl conventions standard in the literature

on the mathematics and application of finite elements are used. Particularly,

IPA denotes the usual Sobolev space of functions with distributional deriva-

tives of order s in L2(S1), equipped with the norm,

2= 110 la
<s 
IDaul2dx1 

Other notations and norms are defined in this section and where they first

appear in the text.

The starting point for the discontinuous Galerkin method is (2.1) defined

on a partition of D. Let Ph denote a partition of SZ into N = N(Ph) subdomains

K with boundaries OK such that

(i) N(Ph) < oo

(ii) S2 = U{K : K E Ph}

(iii) For any pair of elements K, L E Ph such that K L,KnL=0



(iv) K are Lipschitzian domains with piecewise smooth boundaries. The

outward unit norm to OK is denoted by nK.

(v) OK_ = {x E • nK < 0} and OKA_ = OK \ aK_ and no

boundary aK coincides with a streamline, nK • 0

(vi) F. = UZI(' l aK n F_ coincides with F_ for every h > 0

(vii) FKL = aK n a is an entire edge of both K and L

(viii) The elements K E Ph are affine maps of a master element K=

[-1,1] x [-1,1], K = F„.(k) as illustrated in Fig. 2.1.

(ix) Ph E ,T where is a family of quasi-uniform refinements. Let hK

diam(K) and ph- denote the supremum of all spheres containcd in

K; then for all Ph E there exist positive constants a and T,

independent of h = maxKEph hK, such that

< T and
hK

hK
< Cr

PK —

We extend V(0) to the partition using the broken space

V(Ph) = V(K)
KEPh

V(K) = {v E L2(K)1 vo E L2(K)}

(2.3)

which admits discontinuities across element interfaces and use the following

notations concerning functions v, w E V(Ph):

Vint K = v1K(x), x E ôK
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Figure 2.1: The affine map of the master element k to a typical element
K E Ph.



vext K 
= V I L(x), x E n aL

v± = lim v(x f13)
c---+0

(v,w),), = I vwl0 • ds, y c OK

((V))
2

7 
= (v,

(v,w)K = I vwdx

11v11, = (v, v)„

We define the following norms for functions v E V(Ph):

11H11/3,1( 
def 

{Ilv011K 1ld 12K + (0)))2aKI

= {Ilv0112K + 111'112K ((v+»2aK_ «V ))2.9K+11.

def
{1 l vOlI2 lvl 1K ((v+ V1)81‘_\p- ((v))2aKnan}

2
def

E 1111)111
2 

113,K

{KEPI,

111v111-

111v111+

111v1119,p

def

def

E
{ KEPti

1EKEph
I[IlvIl2K + (1 + bk) ((v+))aK_]1 

2

[11v112,, + + (SrZ) ((v VaK+1 1 

def 
E [0„IlvollK+IlvIlK
KEPh

(2.4)
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12
hK

4- (1 + 8—T) (((V+ ))2aK_ K(V))28Knac0 } (2.5)

where 0 is used to indicate the value of the parameter 0„.

If 0 = 6hp then 0,, = b
h
2
PK

If 0 = hp then 0 =
h 
2

K

px

If 0 = h then OK = h„.

If 0 = 0 then 01c = 0

If 0 = 1 then 0,„ =1

The parameter p, appearing in the definition of 0, in the mesh-dependent

norm (2.5) will later represent the spectral order of the polynomial approxima-

tion in K. The case in which the coefficient 0,. = 4- in (2.5) plays an important
PK

role in the stability and error of the method, as we show later. Throughout C

is used to denote a generic positive constant, not necessarily the same at each

occurence.

2.3 Weak Formulation

Property (v) of the partition implies that solutions u E V(9) to (2.1) are con-

tinuous across element interfaces. Since the broken space admits discontinuities

along element interfaces, we have the following problem corresponding to (2.1)
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on the partition Ph:

Find u E V(Ph) such that for every K E Ph,

Ito -I- au = f in K

uint Kp nK = uext Ko nK Vx E aK_
uint Ko nK = y 0 • nK Vx E n

for which weak solutions are sought satisfying

Find u

(uo + au, OK

(uint K 0K ._\ao

(uint K

E V(Ph) such that for every K E Ph,

(f, w)„ Vw E V(K)

(text K, v).9K_\an Vv E V(K)

(g,v)aK_nr_ Vv E V(K)

(2.6)

(2.7)

where we have taken the absolute value of • nK for convenience. Next, we

introduce a global parameter b which has a value of either 0 or 1. Recall that

for any v E V(K) we have that vo E 0(K) so that we can set w = v-F(54-vo inK
(2.7) and then add the boundary integral equations multiplied by any constant.

It will be convenient to choose this constant to be (1 + 6) and to write the
PK

method in the following abstract form. Let

hic hK _
BK 

def 
(u,v) = (up+ au, v S—T-vp)„ -F(1+ 45 

PK
2 )(dr — U el-)0K_\r_

PK 

hK„ 4_,
+ (1 + 

, 
, ' )8K_nr_

PK

K (V) 
def 

f , v (5. ph vo.),„ + (1+ 6-
PK 

)(g,t)).9K_nr_

(2.8)

(2.9)

where, by definition, u = uint K + and u- = uext K on Olf_. Summing over all

the elements in the partition yields the variational boundary value problem for

weak solutions to (2.1) on the partition:
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Find u E V(Ph) such that

B(u, v) = L(v) , for every v E V(Ph)

where

B(u,v) def E Bli (u , v)
KEPh

L(v)
 def E Lx (v)

K EP h

Remarks:

(i) The case 45 = 0 in (2.8) is referred to as the "standard" discontinu-

ous Galerkin method which can be viewed as a standard Galerkin

method for a single element with weakly imposed boundary condi-

tions for elements lying on the inflow boundary and weakly imposed

continuity for elements on the interior of the domain.

(ii) The case 45 =1 in (2.8) is the hp extension of the so-called "stream-

line upwind" discontinuous Galerkin method [29]. The modification

of the test function is important when approximating solutions with

sharp gradients as the additional term in the test function adds

diffusion in the streamline direction without modifying the conser-

vation law, i.e., without destroying accuracy in regions where the

solution is smooth.

(2.10)

(2.11)

(2.12)

Lemma 2 Let the bilinear form, B(•,•) be defined by (2.11) and (2.8). Then

there exists positive constants a, M1, and M2, independent of h,„ and ph, such



that

B(v,v) > albvilihpo

B (w , v) 
h K

E (1 + Allitvili%,,12
PKKEPh

x {We + S E h2 [ilvall2„+((v+))20KjI
KEPhPK

< 1 E +5 E r
i-"K

hK
B(21),

KEPh KEPh 

X AEh (5-hp0 1111)1111AR'

1

B(w,v) < M2/ E (1+641111142B 

2

K EP h PK

E (1+6hOffivH12B,K1
KE P h PK

for every w , v E V(Ph).

Proof: (i) From the definition of B (• , •),

2

1
12K + ((w—))201,-+]

(2.13)

(2.14)

(2.15)

(2.16)

B (v , v)
K EP h

min(1,mina(x)) E {(1+ (v , vo) + 
2 

HvH2,xEs1 PK PK

+ (1 + 1) (((v+))28K_v, — (v- ,v+)aR-_\F ((v))28A-_,I, _)}

Equation (2.13) follows by substituting the results of applying Green's formula

to the term (v,v0)„, that is,

:E: (v, vo)K == 2 :E: (( (v1) 28fic_v_ + ((v+))2ax_w_ + ((v))2aKrIao)
KEPh KEPh

(2.17)
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into the above and choosing a = 2 min(1, minxEo a(x)).

(ii) Applying the Schwarz inequality to B(•,.) as defined in (2.11) and (2.8)

yields

B(w , < ,[11WollIlv11„. + 614 11WoilavollK
KEPh PK

6PK 
h4- wiLlIvollK+ (i+s

Pk 
, NR-)((w+—w- _\,_ «V+NK

+ + 6hi)((w+WK_nri(v+NK__nr_l

< E (1+61'0 [liwidi2K +11w112„
EPh

«W+ W »20K_\F__ «W»28Knaftil2

1
1 2

X [215-LChOlv 2lIv lI2K + (1 + 
6PK
h0 ((v+))2aK-] 1

K EPh PK 13

Equation (2.14) follows by selecting

(iii) Equation (2.15) is obtained by applying Greens formula to the term (w, vo)„..

and (1 po,v), in (2.11), and applying the Cauchy-Schwarz inequality.

(iv) Equation (2.16) is obtained by adding (2.14) and (2.15), applying the

Cauchy-Schwarz inequality to the result, and selecting M2 = -Nall00,0'

Corollary 1 Let 6 =1 in (2.8). Then

B(v,v)?, albv1112hp,0

and there exists a constant ro such that if 4- < ro VK E Ph,
PK

B(w,v) 1111P1112- E 1211v0112
KEPh PK

(2.18)

(2.19)
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13(tU, v) 1144111410H 12  1 1 wo 1 11 Illy 11 1 43

KEPh PK
13 (ID ,v) < Af 2(1 + r o)111741

(2.20)

(2.21)

Proof: Set S= 1 in (2.13)-(2.16) and choose Mi = M1V1 ro max(1,

Corollary 2 Let S= 0 in (2.8). Then

B(v, v) (2.22)

B(w, v) < 11/11111wIlli,piilvIll- (2.23)

B(w,v)

B(w, v)

Remark:

(2.24)

(2.25)

25

Note that modified test function for the streamline upwind discontinuous Galerkin

method results in improved stability of the bilinear form when compared to the

standard Galerkin method (see (2.18) and (2.22)). The coercivity of the bilin-

ear form for the streamline upwind discontinuous Galerkin method contains

terms which do not appear in the coercivity condition for the standard

Galerkin method. The significance of this additional stability is less important

as approaches zero.
PK



2.4 hp Finite Element Approximation

We seek approximate solutions to (2.10) in the finite dimensional subspace

Vp(Ph) C V(Ph) defined as follows:

Vp(Ph) = {v E L2(52) : vl„ = vIK o FK E QPK(K)} (2.26)

where QPK (K) is the space of tensor products of polynomials of degree PK

defined on the master element. The basis for QPK (K) is formed by tensor

products of Legendre polynomials. We use the notation v„ E QPK (K) to mean

E QPK (k) and v„ = v,t o FK. We have the following inverse estimates for

polynomials on a single element:

Lemma 3 Let K E R2 be an affine map of a master element k =[-1,1] x

[-1, 1]; that is K = FK(k). Let y denote any edge of alf which is an affine
map of a master edge = [-1,1]. Let 211K be a polynomial of degree 13K defined

on the master element. Let ?DK = 7:1)K 0 FK denote the image of WK under the

transformation FK. Then 0 • VtDK satisfies the following:

p2
HO • VIDKIIK 5 C-1--chK lIwKIIK

4
PK

(03 • V ID K))1 C FlOw K))ry

where the constants C are independent of hK,pK, and WK.

(2.27)

(2.28)

Proof: For polynomials of degree pK on the master element (see Dorr [21]):

1/-1/K1,k 5 IttbKlis,k < CprIPKIlk

IthK136 5 IP 1136 5 CAjlltbKlk

where the constants C > 0 depends on s, but not on p„. or tbK•

(2.29)

(2.30)

26
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For affine mappings FK , a standard scaling argument (see Ciarlet [11])

yields that for an integer .s > 0, there exist constants C > 0 such that

kulds,K < Chh sPids,k (2.31)

IWK18,-y C4- ski3K1s,i (2.32)

lwh 1s h< ChsK7-11wK IS,K (2.33)

ChsK 2 levh-1,,i, (2.34)

where C depends on s,o-, and r (see (2.3)), but not on h„,p„, or WK.

The first estimate (2.27) follows by combining (2.31), (2.29), and (2.33).

The second estiinate (2.28) follows from (2.32), (2.30), and (2.34).

Lemma 4 (Babuška and Suri [3]) Let K E Ph, -y denote any edge of OK ,

and u E H3(K). Then there exists a constant C = C(s, 7", a) independent of

u,pK, and hK, and a sequence z;), E QPK (K),pK = 1, 2, . .., such that for every

0 < < PR-,

411,,K C
h'r 

HUILA,S-r

PK

Ilu -

where v = min(pK + 1, s).

hK 2
< c  s ›— 2s—

PK

1

(2.35)

(2.36)

The approximate solution to (2.10) is obtained by replacing the exact

solution u E V(Ph ) by Vh E Vp(Ph) and the test function v E V(Ph) by

vf, E Vp(Ph):

Find ttPh E Vp(Ph) such that
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B(4,11,) = L(vfi) , Vv7i: E Vp(Ph) (2.37)

The improved stability of the streamline upwind discontinuous Galerkin

method, S= 1 in (2.8), is recovered by the standard discontinuous Galerkin

method, S= 0 in (2.8), on the finite dimensional space Vp(Ph).

Lemma 5 Let S= 0 in (2.8). Then for every vri E Vp(P h) there exists a

wh E VP(Ph) such that

and

13(243024„) °11117)11112h hp,0

1114,1Hhp,a 5_ CHIvialhp,o

(2.38)

(2.39)

where the positive constants a' and C are independent of hit., pR,, and vT,.

Proof: Define the restriction of 01, E Vp(Ph) to an element K E Ph as

hK
P I + -0 •VVPIWh K - Vh K ,11 2 K

px
(2.40)

where -y E (0,1] is defined later in the proof. Dropping the h, p, and K scripts

for ease in notation, we have

hK
BK(v,w) 11(

( 

+ av)(v 
7—P2K 

vo) dx

hK
(v+ — v-)(v+ + Y ds

2,K2 v0+) VI • nh-

hK
v+(v+ + 7 vo+)10 • nK ds

19K_nr_ PK

hKaollvd + + f vvo dx
PK
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hK
vvo dx ((t; aK ((v alc_v-

+))2 +))2
ph- ✓1-(

v+v-10 • nKlds y
hK 

-
2 (V+ - V1V0+1,61 • nK 1 ds

JaK_\r_ faK_Nr_
hK

"Yr v+v0+10 • nK1 ds
PK faK-nr-

where (to = minxet-2 a(x). Noting that

'trap dx = .7; 1. 
K 
(v-)210 •• nK 

1 
i ds - - f (v+)210 • nK 1 ds (2.41)

z a 2 aK_

and that from Lemma 3

p2

f VVO dxl
hK

p2

I 7)+1/0+0 • nKl dsj < C2 K ((VI-W.3aK_ hK

we have

BK(v,w) > (ao - ci-1)11vU +7ih WI 2K

1 1

((VI-))aK_ \F_ c27)((V))aK_nF_

v+v113 • nK l ds 
hK 

(v+ - v-)v,e+10 • n ds
PR- faK_\r_

Using the Schwarz inequality and the previous inequalities, one can show that

f
KV-

(v+ - v1v0+113 • nK l dsi < 
3 
2
c2 

-y(((v ))2aK_\r_
PK O

+ ((c))28R-_\r_)

Now summing over all the elements K E Ph and realizing that

V"N 3C2 \

19"v 110K-\r- 2 7"v I 1 aK-\r-KEPh



results in
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1 
(-
2 
- 

32

c2 
7)((v+))2ah. \r —1 

K_V_ 
v+v lo .nK I ds}

8 

1 2 1 3C2

2((v))/, -
2 

min(1, - -y) E ((v+ -
2 KEPh

hK
B(vT,,,wPh) > (ao - L, Ilvf3H2K

KEPh vK

1
(2 Ca7)«v»21-_ -12((v))r2+

min(1,1 
2 2 
- —

3c2
7) E ((v+ - v-))82K_w_

KEPI,

Choosing 7 = min(1
7 2C1

a 
5 6C2 

1 ) yields the first inequality.4 

The second inequality easily follows from the definition of 4, and Lemma 3.

2.5 A Priori Error Estimate

The discontinuous Galerkin method (2.37) was first analyzed by Lesaint and

Raviart [33] for a given fixed value of pK, i.e. for the case in which p„, = p for

every element K E Ph. The error in a solution uh to (2.37) approximating an

exact solution u E HS (ft) to (2.10) was shown to be

Ilu — 6111'1 lulls,o

This estimate is not optimal in the sense of interpolation error estimates and

was improved by Johnson and Pitkaranta [30]. Using a mesh-dependent norm,

they showed that

Illu — Chs—Illulls,0
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While this estimate is not optimal in the sense of interpolation error estimates

for ljello = II u— uhl1Q, it is optimal with respect to Vhic llepik- and ((e+ —

e-))8K_\r_. We shall derive estimates similar to Johnson and Pitkaranta [30]

taking into account that p„. is not constant.

Theorem 1 Let u E Ils(Q) be a solution to (2.10) and let uPh be a solution to

(2.37). Then there exists a positive constant C , independent of h„, p„, and u,

such that the error, e = u — uh, satisfie.s the following estimate

2v -1
h, K

Men1P,0 C
23-2 

max (1,
KEP, P K

where v„ = min(pR. + 1, s).

2

P

„
Ilull23,Kll

,
(2.42)

Proof: Let LIPhu e Vp(Ph) be an approximation of u that satisfies the estimates

in Lemma 4 and write

e= u — uh = u — uPh

which implies that

111c1114,3 II lu — rrhul I Ihp,o + IlluPh — HPhulllhp,o

se-f lliwillhp,0

(2.43)

(2.44)

where, to simplify the notation, we set ri = u — fehu and w = uPh —

Realizing that

12

C E [h411v,(3112„+11v112,„+ ( 11+ (51li2— ((v))20K1 1 Vv E V(Ph)
PKKEPh 13K
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combined with Lemma 4 yields bounds for the first term in (2.44):

17/111hp,0 < c{ E  
KEPh r K

Th
P K PK PKs+1

2
h2/41( 

2s 

-1 h2i

2s 2s-1  +6 2 
2!i" h2AK-1 h2P"

< E  
2S-2 

max
KEPh PK PK PK 

1111112s,„

2/1 
" 
--1 2

hK 1 hK
(2.45)

where tti, = min(p, + 1, s). Bounds for the second term in (2.44) follow from

the orthogonality condition which is obtained by subtracting (2.37) from (2.10):

B(e,v;),) = B(77,74)— B(w,v7;,) = 0 , bvh.E Vp(Ph) (2.46)

We choose vf, = vb in (2.46) where the particular choice for v5 depends

on the parameter S in (2.8). For 6. = 0, we choose v6 to be the function which

satisfies Lemma 5. For b= 1, we choose v6 = w and combine (2.46) with

Corollary 1. The result for either case is

B(w,v8) = B(ii,v5) (2.47)

Integrating the terms (770, v6)K and (ri, v60)K by parts in the definition of B(•,•)

in (2.11) yields

B(77,v5) < E [117711K0611K+  P " 117711K v 
KEPh \PIK pK

hK
+ 2 + bjt2

PK PK

+ 6121(0 NR-1.\r+ K(v6+ — NK_F\r+

1 + 45--)((71»aic+„+«v6-»alcfnr+1
C PK

p2

< 
+6)1 [(1 —1-C1(EPh hl;)
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6--ThK (1+ -hK)11710112,
PK PK

(1- + 6 ) (01)2 K +1}2 iiiv6111hp,0 (2.48)
PK

Recall that for our choice of v5 we have lliv8111hp,fl = when S= 1

and Illv8Illhp,0 5- CillwIllhp,0 when 6 = O. Equations (2.48), (2.47), and the

estimates in Lemma 4 imply that
< 
z h2p  [hK ( 

+ 6(1 + hii)
Ilk-1)14Na 1+

KEPh P2i;--- 2 Pk

+ (1 + Hull
2 
12SI/V

px PK

c z n2s-2
KEPh rK

2

max 
2

(hK 
/ 11 

1 
1 4 

.hR.) 
II 11.9 

/02

,KPK PK PK

Combining (2.49), (2.45), and (2.44) completes the proof.

Remarks:

(2.49)

h'ic (i) For 
PK
< 1, the estimate becomes l lel 14,0 C{EKEP

h p IS K3-2 11104}1

(ii) For pi, =constant, the a priori error estimate reduces to the one

derived by Johnson and Pitkaranta[30].

(iii) Let h = maxKEph h, and p = minp,, then <  

2.6 Implementation Issues

In the preceeding sections of this Chapter, the discontinuous Galerkin methods

were represented as global methods for the purpose of analysis. The approxi-
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mate problem is actually a local one since the approximate solution in an ele-

ment is independent of the solution in the neighboring elements with the only

coupling between elements occuring weakly through the fluxes on the element

inflow boundary. Assume that uPh- is known on K_ , then the approximate

solution in element K satisfies

where

lj.„(41„,vii1„)= L„(vTil„-) 7 V '4, E QPK (K)

hK
kWh, c—f. (Oho auh,vh o i-vh0)„

PK

+ (1 + 2 )(24.
PK

L( p\ def 
fr P n hfC

K Oh) — 0-2 vh- K + (1 + 6 -)(tiPh vr
PK PK

Pk+ (1+ 6 2 )(g,vh+ 
)8K._nr_

aK_\r_

(2.50)

(2.51)

(2.52)

(2.53)

In order to solve (2.37) in this fashion, one must define an ordering of elements

that starts at the domain inflow boundary and sweeps through the partition in

such a way that uPh- is known on aK_ prior to solving (2.50). Such an ordering
always exists (see [33]) and is fairly straightforward to construct. This is the

optimal solution technique for solving the linear model problem where element

inflow boundaries can be identified a priori. However, an alternate approach is

needed for solving the conservation law (1.5) where the fluxes depend on the

solution, and thus, element inflow boundaries cannot be identified a priori.

With the aim of solving more general problems in mind, we will solve the

linear model problem in a way that is easily extendable to the nonlinear case,
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that takes full advantage of the discontinuous approximation, and is amenable

to parallel computations; that is, by solving the time-dependent conservation

law for the steady-state solution. Since time accuracy is not important in

obtaining the steady solution, we use the classical forward or backward Euler

time marching with a truncation error of 0(At2). Let un-" = u7;,(•, 441) where

tn+1 (ri +1)At and At is the time step increment. Assuming the solution at

time tn is known, then the forward Euler version of the scheme is given by

E (un+1,0, = E (un,o, + At [L(v) — B(un, v)] (2.54)
KE Ph KE Ph

and the backward Euler version is given by

E (un+1, v)R.. + At E E (um, v)R—F At E LK(v) (2.55)
KEPh KEPh KEPh KEPh

To preserve the local character of the method, the inflow boundary terms ap-

pearing in the definition of LK(v) (see 2.53) are evaluated at time level tn.

The initial data, u° = 0), needed to complete the initial-boundary-value

problem is taken to be a uniform field with a value associated with the inflow

boundary conditions.

A time-accurate Runge-Kutta time marching scheme for nonlinear con-

servation laws is described in detail in Chapter 7. It can essentially be written

as a sequence of steps in the same form as (2.54). Parallel implementation of

the time marching discontinuous Galerkin methods for general hp meshes is

described in Chapter 6.



Chapter 3

A Posteriori Error Estimation

The a priori estimates derived in the previous chapter are useful for predicting

how the error in numerical solutions behaves with h-refinement or p-enrichment.

Uiifortunately, their usefulness in assessing the accuracy of a given numerical

solution is limited since the estimate involves unknown constants and the exact

solution we are approximating. Nevertheless, a priori error estimates such as

(2.42) and interpolation error estimates such as (2.45) have been used exten-

sively as error indicators to drive adaptive methods for hyperbolic problems

[16], [43], [36]. Typically the unknown constant is set to unity and some post-

processing of the approximate solution is used in place of the exact solution.

While the element contributions to these global estimates may provide some

relative measure of the local error, this approach in general fails to provide a

reliable estimate of the actual error in a particular numerical solution and can

be grossly in error.

In this chapter, we derive error estimates which are computed locally

on a single element and contribute to a global error estimate which is accu-

rate enough to provide a reliable assessment of the quality of the approximate

solution.

36
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3.1. Element Residual Method

The estimates derived here, based on the element residual method, are simil-

iar to those proposed by Bank and Weiser [4] for elliptic problems and Oden,

Demkowicz, Strouboulis, and Devloo [38] for solid and fluid mechanics prob-

lems. The element residual method was extended to hp-approximations for

elliptic problems by Oden, Demkowicz, Rachowicz, and Westerman [37]. A

global estimate of the error is obtained by summing element indicators which

are the solutions to a local problem with the element residual as data. In

references [38] and [37] , the local problem is of the same form as the global

problem.

For continuous finite element approximations, the element residual in-

volves fluxes on the boundary of an element. Since the fluxes are multi-valued,

an averaged flux is used. Recently, Ainsworth and Oden [1], [2] have shown

that it is possible to use a self-equilibrating average flux that results in an error

estimate which is equivalent to the actual error and can be asymptotically ex-

act for certain elliptic problems. For a discontinuous approximation, the jump

in the element boundary flux arises naturally in the residual, eliminating the

need for flux balancing.

The main difficulty with our formulation for hyperbolic conservation

laws is that the norms associated with the continuity and coercivity of the

bilinear form are different. Therefore, use of different norms makes it impossible

to construct a single local problem which results in an upper and lower bound

of the error in the same (or an equivalent) norm.

In the following sections we show that it is possible, however, to con-

struct one local problem with a solution that provides a lower bound on the
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actual error and another local problem with a solution that provides an upper

bound on the actual error. We also show that a local problem based on the

original problem results in a local lower bound. Moreover, if the approximation

of the solution to this local problem is limited to a certain class, then the es-

timate is equivalent to another commonly used approach: estimating the error

as the difference between a newly contructed (and hopefully more accurate)

solution and the approximate solution on hand.

3.2 A Global Lower Bound on the Error

We define a local problem which results in a lower bound on the error in a

sense to be defined precisely later. Let fiK E QPK (K) denote the approximate

solution in element K and cp,c E V(K) be the solution to the following local

problem,

LA (

11 KAY" K If) = B K (eic 'UK)

where

— BK(uK, v„) Vv„ E V(K) (3.1)

N clef hh-
Ao(pK,vo = -TO • V(pK, • Vvic)/t. a(co,f,v,JR. ((pK, vK)8R-_,

Pic

and et > 0 is a constant. Then

AL (cp, E AK(V)„,'UK)
KE Ph

induces a norm on V(Ph) which will be referred to as the AL-norm:

Hv II2 = AL (1) v)
A

(3.2)

(3.3)

E V(Ph) (3.4)

The solution to the local problem (3.1) provides a lower bound on the

error in the following sense:
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Lemma 6 Let (,o E V(Ph) be the solution to the following problem:

AL ((,,o , v) = B (e, v) Vv E V(Ph) (3.5)

There exist positive constants k1 and 7-0 such that if 1-1f- < ro VK E Ph then
PIC

IkoH AL 5 W1161111,0 (3.6)

Proof: II(PH2AL = ALG0,(p) = B(e,o)

<
hi;

{1, h(1 + 
px

X 1 KEP rh

E [41k00112K +

h 

+ (1 + 41(((e+))2alc_1} 

2

from (2.14)
px

< M1(1 + bro) max(1, ~)~~~e~~~~,p~~~P~~ AL

The desired inequality (3.6) follows by choosing k1 = M1(1 + bro)max(1,*).

3.3 A Global Upper Bound on the Error

For simplicity, the estimates in this section are derived for the case when b= 1

in (2.8). We construct a local problem which results in an upper bound on the

error. Let UR. E QPK (K) denote the approximate solution in element K and

OK be the solution to the following local problem,

AuK(11),,,vic)=B„(e,,,v,,), L„(vR,)-13,(11„,v,C) V v E V(K) (3.7)



where

def hK (a 17,/, ‘.7. 7.,("Au(lbK., 1C)7"K = 2 \i"' VK)K I "VVK ViiK

PK

and et > 0 is a constant. Then the Au-norm is defined as

110112
A
u = Au(0)0 = E OK)

KEPh

(3.8)

(3.9)

The solution to the local problem (3.7) provides an upper bound on the error

in the following sense:

Lemma 7 Let 11, E V(Ph) bc the solution to the following problem:

Au , v) = B (e , v) Vv E V(Ph) (3.10)

where S= 1 in the definition of B(•,•) in (2.11). Then there exists a positive

constant k2 such that

1101I A, k2111c111hp,o (3.11)

Proof: Using (2.18) of Corollary 1,

allle1114,0 B(e, e)

Choosing k2 =

= Au(0,e)

11011AullellAu

= HollAu{ E Y lleo112,, + eille112„}1
KEPheK

max(1,1f1MOMAuf +

<

  completes the proof.max(1,\AT) •
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3.4 A Local Lower Bound on the Error

Recall the bilinear form (2.50) which characterizes the space marching form of

the discontinuous Galerkin method:

K(uh, (uPh + auPh,vhP 6.
hK 
2 Vh7 p)K
PK

P+ P++ (1 -1-b-7-)(uh ,vh )ah,_
PK

Introducing a local norm,

DK

def
= [4111)„,Ac ( I VKIIK

PK

+ Si)((v+))aK_

(1 it )(0)))2atc.+]2 (3.12)

and using Green's formula, it is easy to show that there exist a constant C > 0

such that

P„(v„,v„) C 11v11%VVK E V(K) (3.13)

Now consider the following local problem:

Find cpK E V(K) such that

f3„ (co„, v„) = B„(e,,,v„) , VvK E V(K) (3.14)

then (pi, provides a local lower bound on the error in the following sense.

Lemma 8 Let (10K E V(K) be the solution to (3.4). Then there exists a

constant k3 > 0 such that

P Kll K k3(1 (3.15)
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Proof: Setting v„ = c,o„ in (3.14) and using (3.13) yields

Setting M„ =

C ik0 K112- :E1K(CPK1(PK) = BK(eK,‘PK)
K

(3.16)

max(l, 1c/1100,K) and applying Young's inequality, ab < 4E a2

cb2, c> 0, to each term in B„(e„,(p„) yields

B„(eK,(PK)< M"4e Cl + 6 211/1„clko„112-,,K (3.17)

Selecting e < 2,÷h, in (3.17) and combining with (3.16) completes the proof.

3.5 Approximation of the Local Problems

An approximate solution to the local problem measured in the corresponding

norm serves as a local error indicator for an element. Since the discontinuous

Galerkin solution satisfies the orthogonality condition,

BK( , ) = 0 Vv E QPK (K) (3.18)

we must approximate the error indicator with a polynomial of degree p„ u„

where u„. > l in order for the discrete local problern to have a non-trivial

solution. If a complete polynomial of degree p„ cr„ (on the master elernent)

is used to approximate the solution to the local problem, then the discrete local

problem requires the solution of a system of order (p„ + QK +1)2 . This system

can be fairly large compared to the system of order (PK + 1)2 equations used

to obtain the approximate solution for which we are estimating the error.

Since (p„ 1)2 terms on the right hand side of the discrete local problem

(corresponding to (3.18)) are zero, we can make a simplification by approxi-

mating the solution to the local problem in the space QPK+ux (K) \ QPK(K).
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In other words, the solution to the local problem can be approximated with

incomplete polynomials of degree p„ cr„ by neglecting the terms associ-

ated with polynomials of degree p„. This simplification results in a system

of a „(c,„ 2p„. + 2) equations for each element.

The size of the local problem can be further reduced by approximating

its solution using only the "bubble" functions in the enriched space denoted

by QP0K-"K (K)\QP0K (K). These are the polynomials in QPK+aK (K)\QPK (K)

which are zero on the boundary of an element. This additional simplification

results in a system of o „(u„ + 2p„ — 2) equations which is smaller than system

of equations used to obtain the approximate solution.

3.6 Remarks Concerning an Alternate Approach

Suppose that an approximation U to the exact solution u can be constructed

which is more accurate than the approximate solution on hand, uPh. Then a

simple estimate of the error, e= u — uP IIU uPhll

where 11 ' 11 is any suitable norm. Using the triangle inequality, we have

Ilell-Ilu- <e<Ilell+llu — UII

or equivalently

1
llu — Uil 0 

-
< < 1+ 112.1 Ull 

— 

If 11u — U11 << = — uPhll, then 0 = 11U — 4111 is a good error estimate

with an effectivity index near unity. The main difficulty with this approach

is to efficiently construct such a U. One obvious strategy for constructing a

more accurate approximation, U, is to re-solve the approximate boundary-value

problem on an enriched space.
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For continuous finite element approximations, this leads to a global sys-

tem of equations that is much larger, and therefore much more costly to solve,

than the original problem. For a discontinuous approximation, re-solving the

problem on an enriched space of complete polynomials is still more costly than

the original problem, but is no more costly than solving the local problems in

section 3.2-3.4 on the complete polynomial space.

The computational cost of this approach can be further reduced by

"freezing" the lower-order solution and re-solving the problem on an incomplete

polynomial space of bubble functions. In other words, let UK = d-WK where

tvK E QP0K+̀7"(K)\QP0K (K) satisfies

B„(w„,v) = K (v) - B K Vv E VoK-1-crK (K)\ (K) (3.19)

In this case, the error estimate is 0 = llu-uPh Il = 114. Note that this is equiv-
alent to solving the local problem (3.14) on the space of bubble functions. We

remark that Peraire and Morgan [44] simply post-process the approximate solu-

tion to obtain the degrees-of-freedom (higher-order derivatives) corresponding

to the bubble functions.



Chapter 4

An hp-Adaptive Strategy

The hp-adaptive strategy used here is based on a 3-step strategy developed by

Oden, Patra, and Feng [39]. The strategy was developed for a large class of

elliptic problems and has been shown to yield exponential rates of convergence

with respect to CPU timc [39]. The hp-adaptive strategy is based on a reliable a

posteriori error estimate for determining the error in the approximate solution

and an a priori error estimate for determining how to modify the mesh to

improve the solution accuracy to a specified level. The goal of the hp-strategy

is to deliver a solution with a specified error in only three steps:

(i) Construct an initial partition Po containing N(P0) elements. The

elements in Po can be of uniform pK = po and essentially uniform

in h, = ho. Solve the problem of interest on Vpo (Po) and estimate

the error.

(ii) Construct a partition P1 by subdividing each element in Po into

the number of elements required to equally distribute the error and

reduce it to a specified level. Solve the problem on Vpo (P1) and

estimate the error.

45
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(iii) Enrich the approximation space by increasing p, for every K E P1

in such a way to equally distribute the error in smooth regions and

reduce it to the specified level. Solve the problem on the enriched

space Vpi (Pi) and estimate the error.

If the estimated error in the solution is larger than the specified error after the

third step, then it is necessary to repeat steps (ii) and (iii) until the desired error

is attained. For discontinuous solutions, p-enrichments in step (iii) are confined

to elements in regions where the solution is smooth, since higher-order elements

at discontinuities may result in oscillatory solutions. Moreover, p-enrichment

of elements in regions where the solution is of low regularity does not improve

the accuracy of the approximation, as indicated by the riori estimate (2.42).

The data structure used for the resulting hp-meshes is based on the

work of Demkowicz, Oden, Rachowicz, and Hardy[19] for continuous finite ele-

ment approximations. The data structure for the initial mesh consists of nodal

coordinates, element connectivities, boundary conditions, a list of neighboring

elements, and element orders based on the number of edge and interior degrees

of freedom. Refinements are achieved via bisection of an element, in the initial

mesh and are added using a tree data structure. The data structure routines

enforce a mesh irregularity index of 1 and enrich the order of an edge for an

element with a neighboring element of higher-order. These two properties are

necessary for maintaining continuity of the finite element approximation and

are not needed when using the discontinuous Galerkin approximation. The

data structure for the degrees of freedom for the discontinuous approximation

consists of three arrays to store the vertex, edge, and interior degrees of free-

dom. For non-uniform p-meshes, the edge (and interior) degrees of freedom are
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stored consecutively with integer arrays which provide the address of the first

location of the edge (and interior) degrees of freedom in the global array.

We make some basic assumptions before describing the adaptive strat-

egy in detail. First, recall that the norrn used in the a priori estimate (2.42)

includes jump terms on the element inflow boundaries:

{E [4-ch licoli2K +lieli2K + ((e+ — e-))aK_\1-__ + ((e))aKnactKE Ph PK

<c{E  KEPh PK

h2AK
2

z~K max (1,  2 li2tlir2,K

2

(4.1)

For the a posteriori estimate we have several choices: the solution to

the local problem which yields a lower bound (3.1), the solution to the local

problem which yields an upper bound (3.7), and the simple estimate obtained

by re-solving the problem on an enriched polynornial space (3.14). Since the

norm induced by the lower bound local problem contains the error on the

element inflow boundary, and not the jump in the error as in (2.42), we cannot

use this estimate to drive our adaptive strategy. Fortunately, the norm induced

by the upper bound local problem contains no element boundary terms and the

simple estimate can be measured in any norm desired. We will use the norm

induced by upper bound local problem with Et = 1 and assume that the meshes

at each step in the adaptive procedure are such that max (1, 4-) = 1. Noting
PK

that (2.42) is valid if we drop the jump terms we can write

llell„ = 1
hK

2

< C{ E ,2t,„ 
2µK
nK II 1 2

KEPh rK KE Ph PK



We assume that the a posteriori error estimate is a good enough approxima-

tion to the actual error to replace the left hand side of (2.42) and treat the

inequality as an equality. Admittedly, this may not be a good assumption for

coarse meshes and rough solutions, but it provides some means of predicting

the structure of the new mesh.

Since the adaptive procedure is based on refinement and then enrich-

ment of an initial mesh, the term Cl 1121 1 7.2,K remains constant throughout the

adaptive process and can be calculated from the estimated error on the initial

mesh. Let 00 denote the estimated error for the solution ito E Vpo (Po) in step

(i). Then,

h2:K 114i K

Bo = E = E  2vK Clka,K = E 2vic AK
K EPo KEP0 po KEP0 Po

or at the element level

API(
A r,„ = LL v0 K,

4.1 The h-Refinement Step

(4.3)

(4.4)

Let 777, denote the target error to be achieved by the entire 3-step strategy. We

specify TIT as a percentage of the solution measured in the same norm as the

error to assign it some physical relevance. For the h-step, we seek a partition

which will deliver an intermediate target error 77, = aq,,, where a is some

constant chosen so that T < 77h. The partition 21 is constructed by subdividing

each element K E 20 into nK elements such that the error 0, = 77,0171.11, +0.)
is distributed equally among the elements in Pi. Following (4.3), we have

nK n K 1,24.rc

el = E E /94 = E E - 2L1K A2L
KEP0 L=1 KEP0 L=1 Po

(4.5)
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where

where

hL

A.
Ii

For a mesh which achieves an equally distributed error,

°IL=  
'vN(Pl) 

°1

(4.6)

L = 1, • • • ,N(P1) (4.7)

Ncpo)
N(P1) = E nK

K=1

Combining (4.5),(4.6), and (4.7) yields

h2P.ic
n"K+1 =  N(P,)• K 1, • • • N(P0)

PO2VK -

(4.8)

(4.9)

Equations (4.8) and (4.9) are solved iteratively to determine n„ for each element

K E

Remarks:

(i) A value of n K < 0 signals that de-refinement is needed to equi-

distribute the error. Although not implemented in this work, de-

refinement significantly decreases the computational cost of the

overall process.

(ii) The largest local errors will occur in elements which contain a dis-

continuity. These elements will receive the highest level of refine-

ment.



(iii) For ease in implementation, the refinement of an element K E Po

is limited to 2 levels.

(iv) The parameters ILK = min(po r — D and vK = r — 1 are global

constants dictated by the regularity of the exact solution u E V(C2).

Formally, (2.42) is not valid when the solution contains a discontinu-

ity on the interior of an element. However, numerical experiments

suggest that (2.42) the rate of convergence of the error is p„_ =

when the solution contains a discontinuity which is not alligned

with the element interfaces. This value of µK is consistent with the

finite difference results of Sanders [47].

4.2 The p-Enrichment Step

Let Oh denote the estimated error in the solution :it, E Vpo (P1) obtained in step

(ii). Treating the a priori estimate as an equality,

"02 = E 02 = hK A 2
h Ls 21. K 'K

K EP1 KEPI Po

which gives the constants AK on Pi:

vK
A
K 

?i 
— L'o 0h,K K = 1, • • • , N(21)

(4.10)

(4.11)

The error is reduced by constructing a distribution of polynomial orders,

p„ where the polynomial order of each element in Pi is selected to equally

distribute the target error. Setting OT = 77T (liii 1 11 Au + h) and using the a

priori estimate, we have

= E = E h K

2h1„ AR2-
KEPI A-EP, PK -

(4.12)
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where for an equally distributed error

OT
OT,K =   

N(21)
(4.13)

Combining (4.11), (4.12), and (4.13) yields the new value 1)1; for each element

in P1:

PovK Oh,K N(Pl)
Pvir = 

OT
(4.14)

For smooth solutions, the parameter in (4.12) depends on pi, which

is unknown at this point. Here we use the value which is actually associated

with po. More discussion on the parameters it, and nu, is given in section 4.4.

For discontinuous solutions, p-enrichments are confined to regions where

the solution is smooth since increasing p at discontinuities may result in os-

cillatory solutions and does not improve the accuracy of the approximation.

The local regularity of the solution on each element K E Po is estimated by

computing the rate of convergence, p„., of the local error in steps (i) and (ii):

log 00,K — log VE7,A_11 02h,L
 , K =1,• • • ,N(P0) (4.15)

log h„. — log vriv

From the a priori estimate (2.42), the expected rate of convergence is po J2-- if

the solution is smooth in K E Po. To prohibit p-enrichments in discontinuous

regions, we simply set pi, = po, L 1,• • • ,TIK if ii„ < Po for the parent

element. The contribution of these elements to the global error therefore re-

rnains fixed in the p-step of the adaptive strategy. If this contribution exceeds

the target OT, then an additional h-step is required before the p-step in order

to achieve the target error.
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4.3 An hp-step as an Alternative to the p-Step

For smooth solutions or for solutions which contain mild discontinuities, the

p-step should be adequate to reduce the global error to the specified level. For

problems with strong discontinuities, however, the local error at discontinuities

may be significantly large and dominate the global error obtained after the h-

step, particularly in the current implementation where a maximum of 2 levels

of refinement are permitted.

An alternative to the p-step of the adaptive strategy is an hp-step where

h-refinernent is performed at the discontinuity and p-enrichment is performed

in smooth regions. In this case, the target error is specified as a reduction factor

for the error in discontinuous regions and for the smooth region individually.

Let 77, denote the normalized error in discontinuous regions and zis denote the

normalized error in smooth regions. Then the target error for the hp-step is

specified by the reduction factors aD and as as

qT = V(aDliD)2 (a53/5)2 (4.16)

The criteria of it„ < po + 1, where AK is given by (4.15), is used to distin-

guish discontinuous regions from smooth regions. Equations (4.8) and (4.9),

with N(P0) replaced by the number of elements in the discontinuous region,

are used to determine the number of elements required to reduce the error in

discontinuous regions to a„ rip. Equation (4.14), with N(P1) replaced by the

number of elements in the smooth region, is used to determine the values of

p„ required to reduce the error in the smooth region to asqs. This approach

is referred to as an hhp-adaptive strategy.
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4.4 Selection of the Parameters

Formally, the parameters it„ and v„ depend on the global regularity of the

solution. However, the rate of convergence of the local error depends on the

local regularity of the solution. For piecewise continuous solutions, the rate of

convergence of the local error varies greatly between the smooth regions of the

solution and some small neighborhood around discontinuities. Using global val-

ues of these parameters based on an irregular solution results in over-refinement

of smooth regions while using global values based on smooth solutions results

in under-refinement of discontinuities. Here we use local values of tt„ and

v„ which are initially computed for a uniform h-refinement and a uniform p-

enrichment of a coarse mesh. These local values are passed onto the initial

mesh used for the adaptive strategy. Local values of ILK are then re-computed

after the h-step using (4.15). These are the values used in (4.12) for the p-

or hp-step. While there is little theoretical justification for using local values,

numerical results indicate that the approach works quite well for solutions with

discontinuities.

Selection of the reduction factor a used to determine the intermediate

target error for the h-step of the adaptive strategy is important in obtaining an

optimal mesh. Specifying a value of a which gives an intermediate error which

is closer to the target error than it is to the initial error will result in meshes

with mostly h-refinement. Specifying a value of a which gives an intermediate

target error which is closer to the initial error than it is to the target error

leads to meshes with little h-refinement and elements with large values of yr,.

Numerical experiments for elliptic problems suggest that the optimal choice is

a=~,where p and v are the rates of convergence of the global error. [41]



Chapter 5

Numerical Examples

The discontinuous Calerkin method is used to solve several examples to verify

the a priori error estimates derived in Chapter 2, and to investigate the perfor-

mance of the the a posteriori error estimates of Chapter 3 and the hp-adaptive

strategy of Chapter 4. The reliability of the a posteriori error estimates is mea-

sured by the effectivity index which is the ratio of the estimated error to the

exact error. A reliable estimate is one for which the effectivity index is close to

one.

5.1 Example 1

We solve the linear model problem (2.1) with the following data:

(i) f2 = (-1,1) x (-1,1)

(ii) = (0.8, 0.6)T

(iii) a(x) = 1.0

(iv) g = 1.0
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Figure 5.1: Quadrilateral element mesh used for quasi-uniform refinements.

The source term f is chosen so that the exact solution to (2.1) is the C"(C1)

function,

u(s, y) = 1 + sin (--:(1 + x)(1 + y)2) (5.1)

The a priori error estimate (2.42) is verified by solving the problem for a se-

quence of uniform h-refinements and p-enrichments of a mesh of square elements

and quasi-uniform h-refinements and p-enrichments of the mesh of quadrilat-

eral elements shown in Fig. 5.1. The mesh-dependent norm of the actual error

in the solution obtained with varying h and p is listed in Table 5.1 for the

square element mesh and in Table 5.2 for the quadrilateral element mesh.
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Mesh - log h

-log Mu - uhillhp,
p=1 p= 2 p= 3 p= 4

2 x 2 0.000 1.8323 2.2787-

4 x 4 0.301 0.5552 1.7066 2.5426 3.6065

8 x 8 0.602 0.9692 2.3909 3.5467 4.9612

16 x 16 0.903 1.4003 3.1163 4.5834 6.3047

32 x 32 1.204 1.8412 3.8574

Table 5.1: Example 1 - Error using uniform hp meshes.

Mesh - log h

-log Ulu - uhllIhp,0
p= 1 p= 2 p= 3 p= 4

2 x 2 -0.2116 0.8586 1.7402 2.2831

4 x 4 0.0689 0.5153 1.5930 2.5395 3.4998

8 x 8 0.347 0.9571 2.3641 3.5814 4.9723

16 x 16 0.641 1.3913 3.0955 4.6208 6.3196

32 x 32 0.938 1.8129 3.7870

Table 5.2: Example 1 - Error using quasi-uniform h and uniform p meshes.
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Figure 5.2: Example 1- Rate of convergence of error for fixed p.

To verify the estimate (2.42), first consider the case when p„ is fixed

and h„ is varied. According to (2.42), < ChPW(+7iluil,,Q. This is

verified in Fig. 5.2 where lellihmo is shown as a function of h„. On the log-

log scale, the slope of the lines corresponding to a fixed value of PK is indeed

p„-1- 2 for both the uniform and quasi-uniform meshes. Next consider the case

when h„ is fixed and PK is varied. In this case, the estimate (2.42) reduces to

Illeillhp,0 < Hulks-2. Since u E C'(51), exponential rates of convergence

are expected. This is confirmed in Fig. 5.3 where the curves corresponding to

lel 114,0 as a function of p„ have a slope on the log-log scale which increases

as PK increases. These results are combined in Fig. 5.4 where ll lellituo is

shown as a function of the total number of unknowns in the solution. The

solid lines represent h-refinements for a fixed p and the dashed lines represent

p-enrichment for a fixed h. Clearly for smooth solutions, higher-order accuracy
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Figure 5.3: Example 1- Rate of convergence of error for fixed h.

is achieved for the same number of unknowns using higher-order elements.

Next we investigate the performance of the a posteriori error estimates

in Chapter 3. Recall that the complete polynomial space QPK+g•K (K) or the

incomplete space QPI'+7̀K (K)\QPK (K), c r „ > 1 may be used in approximating

the solution to the local problem. The effect of approximating the local problem

on the performance of the error estimate for the lower bound (3.1) is shown in

Table 5.3. The effectivity indices listed in Table 5.3 are greater than one for all

values of clic when the complete polynomial space is used and less than one for

small values of o-„ when the incomplete polynomial space is used. Note that

the effectivity index is closest to one for the complete polynomial space with

a-K = 1. The effect of approximating the local problem on the performance

of the error estimate for the upper bound (3.7) is shown in Table 5.4. The

effectivity indices for the upper bound estimate are significantly larger than
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E QPK+c K K) PK-k (K)\ QPK K)

Mesh P K ?IL 71L

8 x 8 1 1 1.0938 0.7628

8 x 8 1 2 1.1272 0.8921

8 x 8 1 3 1.1347 0.9788

8 x 8 1 4 1.1372 1.0175

16 x 16 1 1 1.1765 0.7933

16 x 16 2 1.2229 0.9492

16 x 16 1 3 1.2340 1.0465

16 x 16 1 4 1.2378 1.0898

8 x 8 2 1 1.1224 0.9555

8 x 8 1.2009 1.0711

Table 5.3: Example 1 - Effect of the approximation of the local problem for
the lower bound on the effectivity index.
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Figure 5.4: Example 1- Rate of convergence of error with number of unknowns.

one when the complete polynomial space is used and close to one when the

incomplete polynomial space with u„ = 1 is used to approximate the solution

to the local problem.

Next we verify that the error estimate exhibits the same rates of con-

vergence as the actual error with h-refinement or p-enrichment. Based on

the results from above, the error is estimated by solving the lower bound lo-

cal problem in QPK-El (K) and by solving the upper bound local problem in

QPK+l (K)\ QPK (K). The estimated error for a sequence of h-refinements of

meshes with fixed p is shown as a function of the mesh size in Fig. 5.5. The

slope of the lines is p+ 2 as in the case of the actual error (see Fig. 5.2). The

estimated error for a sequence of p-enrichments of a uniform mesh is shown in

Fig. 5.6 where the same behavior as the actual error (see Fig. 5.3) is observed.
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zi)„ E QPIC1-(7-1C (K) ;P:T, E QPK-4-̀7K (K) \ QPK (K)

Mesh PK UK gu 71u

8 x 8 1 1 4.1911 1.0536

8 x 8 1 2 4.3603 1.3551

8 x 8 1 3 5.1297 2.0930

8 x 8 1 4 5.3218 2.6803

16 x 16 1 1 6.4441 1.1238

16 x 16 1 2 6.6729 1.4980

16 x 16 1 3 7.9048 2.8298

16 x 16 1 4 8.1157 3.6008

8 x 8 2 1 2.6353 1.1957

8 x 8 2 2 3.7052 1.4012

Table 5.4: Example 1 - Effect of the approximation of the local problem for
the upper bound on the effectivity index.
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Figure 5.5: Example 1 - Rate of convergence of the estimated error with uniform
h-refinements.





64

1.07

1.02

0.97

0.92

0.88

0.83

0.78

0.73

Figure 5.7: Example 1 - Local effectivity index for error estimate based on the
upper bound local problem. (8 x 8 mesh, p = 1)

While the theory developed thusfar applies to global error estimates,

local effectivity indices near unity are desired in order to use the estimate to

drive an effective adaptive strategy. The local (element) effectivity index for

the error estimate based on the upper bound local problem (3.7) using the

incomplete polynomial space QPK+1 (K)\QPK (K) is shown for a uniform 8 x 8

element p = 1 mesh in Fig. 5.7, for a uniform 8 x 8 element p = 2 mesh in Fig.

5.8, and for a uniform 16 x 16 element p = 1 mesh in Fig. 5.9. For all cases

investigated, the local effectivity index is close to one except in a few isolated

elements. This indicates that the error estimate is reliable enough to drive the

hp-adaptive strategy. Therefore, the solution to the upper bound local problem

on the incomplete polynomial space with a = 1 will be used throughout to

drive the hp-adaptive strategy.
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1.25

1.22

1.19

1.17

1.14

1.11

1.08
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Figure 5.8: Example 1 - Local effectivity index for error estimate based on the
upper bound local problem. (8 x 8 mesh, p = 2)

1.11

1.04

0.97

0.90

0.84

0.77

0.70

0.64

Figure 5.9: Example 1 - Local effectivity index for error estimate based on the
upper bound local problem. (16 x 16 mesh, p = 1)
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Estimated Error

9.3E-2

8.2E-2

7.1E-2

6.0E-2

4.9E-2

3.8E-2

2.8E-2

1.7E-2

Figure 5.10: Example 1 - Error distribution on initial mesh.

The results of applying the adaptive strategy described in Chapter 4

to this problem are summarized in Table 5.5. The normalized error listed in

the table is the ratio of the global error to the sum of the global solution and

the error in the norm associated with the local problem. Starting with the

estimated error on an initial mesh of 4 x 4 p = 1 elements, shown in Fig. 5.10,

a target error of 1.5 percent is specified. An estimated error of 1.2 percent is

actually achieved on the resulting h-adapted mesh (see Fig. 5.11). For the

p-step of the adaptive strategy, a target error of 0.1 percent is specified. An

estimated error of 0.11 percent is actually achieved on the p-adapted mesh (see

Fig. 5.12). The distribution of the error on the adapted meshes, shown in Figs.

5.11 and 5.12, is also reduced by an order of magnitude at each adaptive step.
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Figure 5.11: Example 1 - Mesh and error distribution after the h-step.
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Figure 5.12: Example 1 - Mesh and error distribution after the p-step.
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5.2 Example 2

We solve the linear model problem (2.1) with the following data:

(i) 1/ = (-1,1) x (-1,1)

(ii) = (1.0,0.0)T

(iii) a(x) = 1.0

{ 3e-50+0)
(iv) g = _3e-5(1+0)

if y < 0
otherwise

The source term f is chosen so that thc exact solution to (2.1) is the discon-

tinuous function,

3e-5(x2+y2) if y < 0
u(x, y) = { _3e-5(x2+y2) otherwise

(5.2)

The discontinuity is aligned with element interfaces at y = 0 to illustrate the

advantage of using a discontinuous method to capture discontinuities, particu-

larly if the adaptive scheme includes some shock fitting which aligns the grid

with the discontinuity.

The problem was solved using a variety of uniform meshes with h-

refinements, p-enrichments, and the hp-adaptive strategy with no special treat-

ment at the shock. The error histories for two hp-adaptive solutions with dif-

ferent initial meshes are listed in Tables 5.6 and 5.7. For both cases, the target

error was achieved at each step in the adaptive process. Note also that the

global effectivity index is near unity for all steps.

The rate of convergence of the estimated and exact error is compared

in Fig. 5.13. The exact error (denoted by a solid line in the figure) and the
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Adaptive

step

Target

normalized

error

Exact

error

llell„

Estimated

error

Ikbl1A,

Achieved

normalized

estimated

error
11011,u

IliillAiz+HOIIA,

0.03786

0.012105

Initial 4 x 4 p = I mesh 0.1663 0.2078

0.03847h-refinement 0.015 0.03619

p-enrichment 0.001 0.00377 0.00355 0.001116

Table 5.5: Example 1 - Error history for an adaptive hp solution.

Adaptive

step

Target

normalized

error

Achieved

normalized

error

Estimated

error

Nii„

Effectivity

index

Initial 4 x 4 mesh, p = 2 0.091 0.371 1.055

1.073h-refinement 0.05 0.031 0.127

p-enrichment 0.005 0.0029 0.012 1.424

Table 5.6: Example 2 - Error history for an adaptive hp solution starting from
a uniform 4 x 4 mesh, p = 2.
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Adaptive

step

Target

normalized

error

Achieved

normalized

error

Estimated

error

MIA,

Effectivity

index

Initial 8 x 8 mesh, p = 1 0.154 0.616 0.998

0.996h-refinement 0.075 0.033 0.137

p-enrichment 0.005 0.0055 0.023 0.901

Table 5.7: Example 2 - Error history for an adaptive hp solution starting with
a uniform 8 x 8 mesh, p = 1.

estimated error (denoted by a dashed line) are in close agreement, indicating

the reliablilty of the estimate. Note that with the discontinuity aligned with

element interfaces, the error behaves as if the solution is smooth, that is, alge-

braic rates of convergence are achieved with respect to mesh refinements, and

exponential rates of convergence are achieved with respect to p-enrichments.

In this case, the most significant error reduction with fewest degrees of freedom

will result by specifying a target error for the h-step which is closer to the initial

error than to the final target error. This is verified by the two curves corre-

sponding to the hp-adaptive solutions in Fig. 5.13. Results of the hp-adaptive

solution from the initial 8 x 8 element p = 1 mesh are shown in Figs. 5.14 -

5.20. The estimated error in the solution on the initial mesh is shown in Fig.

5.14 with the corresponding effectivity index shown in Fig. 5.15.

For the h-step in the adaptive procedure, a normalized target error of

7.5 percent resulted in the mesh shown in Fig. 5.16. The estimated error in

the solution obtained on the h-adapted mesh is also shown in Fig. 5.16 and

the corresponding effectivity index is shown in 5.17. Poor local error estimates
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Figure 5.13: Example 2 - Rate of convergence of the error with respect to the
total number of unknowns.

are observed in the two parallel vertical regions indicated by the darker shades

in Fig. 5.17. Moreover, the local error is significantly underestimated in these

regions, possibly due to a failure of the procedure to adequately handle the

very high changes in gradients in these regions. The global effectivity indices,

however, are quite satisfactory with effectivity indices very near unity.

For the p-step, a normalized target error of 0.5 percent resulted in the

distribution of p shown in Fig. 5.18. The estimated error for the solution

obtained on the hp-mesh and corresponding local effectivity index are shown

in Figs. 5.19 and 5.20. The same degradation of the local effectivity indices are

observed in the regions where uo is large. Moreover, there is a slight decrease in

the global effectivity index, however, the global value is still quite acceptable.
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0.20
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Figure 5.14: Example 2 - Estimated error on initial 8 x 8 mesh, p = 1.
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0.95

0.91

0.87

0.83
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0.72

Figure 5.15: Example 2 - Local effectivity index for error estimate on initial
8 x 8 mesh, p = 1.
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0.0257
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0.0149

0.0113

0.0077

0.0041

0.0005

Figure 5.16: Example 2 - Estimated error on h-adapted mesh.

1.0600

0.9414

0.8229

0.7043

0.5857

0.4671

0.3486

0.2300

Figure 5.17: Example 2 - Local effectivity index for error estimate on h-adapted
mesh.
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Figure 5.18: Example 2 - Adaptive p-enriched mesh.

0.0035

0.0031

0.0026
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0.0018
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Figure 5.19: Example 2 - Estimated error on adaptive p-enriched mesh.
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0.6299
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0.2269

Figure 5.20: Example 2 - Local effectivity index on adaptive p-enriched mesh.

5.3 Example 3

The following data is used in (2.1):

(i) S2 = (-1,1) x (-1,1)

(iii) a(x) = 1.0

(iv) g(x, y) 
5e-LO-Y21 3e-[1.4.(y_1)2]

—1 — 8e-5[(z-1)2+4]
x = —1

y = —1

The source term f in (2.1) is chosen so that the exact solution is a function

which is discontinuous along the domain diagonal given by

{ 5e [(x+1)2+y2] 3e_k2+(y_i2.)2] if y x
u(x,y) =

—1 — 8e-5[(r-1)2+(Y+1)2] otherwise
(5.3)

76
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The global effectivity index for the estimate obtained by solving the

upper bound local problem in the space QPK+1(K)\QPK(K) for several uniform

hp meshes is listed in Table 5.8 which shows that the global error is slightly

under-estimated. Results at each step in the adaptive strategy, shown in Figs.

5.21 - 5.27, show that the under-estimation of the global error is primarily due

to the under-estimation of the local error at the discontinuity. A summary of

the hp-strategy is listed in Table 5.9. Note that while the adaptive strategy is

able to reduce the error to the target value in the h-step, the achieved error

after the p-step largely represents the remaining error in the discontinuity after

the h-step.

The error achieved by the adaptive strategy is compared to uniform

refinements of p = 1 and p = 2 meshes in Fig. 5.28. This plot shows that

the rate at which the error is reduced in the p-step is much higher than is

possible using h—refinements alone. Moreover, the main source of the error in

the final solution is attributed to the discontinuity (see Fig. 5.26. In Chapter

6, we solve a similar problem on a parallel computer and use the hhp-adaptive

strategy described in Chapter 4 to rcduce the error in solution over the entire

domain.

5.4 Example 4

The following data is used for (2.1):

(i) 1/ is an equilateral triangle with side length of 2 and the base al-

ligned with the x-axis

(11) - (1,1)T
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Mesh PK Ik'sbllAu IleIlAu 1/u

4 x 4 1 3.01325 3.81716 0.79

4 x 4 2 1.49536 1.97645 0.76

8 x 8 1 1.62507 2.10238 0.77

8 x 8 2 0.82209 1.35611 0.61

16 x 16 1 0.88158 1.37317 0.64

16 x 16 2

1

0.63044

0.85472

1.00438 0.63

32 x 32 1.01102 0.85

Table 5.8: Example 3 - Error estimate obtained by approximating the upper
bound local problem in QPK -1-1(K)\QPK (K).

Adaptive

step

Target

normalized

error

Achieved

normalized

error

Estimated

error

i1011Au

Effectivity

index

Initial 8 x 8 element p = 1 mesh -- 0.118 1.625 0.77

h-refinement 0.05 0.048 0.673 0.63

p-enrichment 0.03 0.038 0.541 0.55

Table 5.9: Example 3 - Error history for an adaptive hp solution starting from
a uniform 8 x 8 mesh, p = 1.
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0.5103

0.4482

0.3862

0.3241

0.2620

0.2000

0.1379

0.0759

Figure 5.21: Example 3 - Estimated error on initial 8 x 8 mesh, p = 1.

1.08

0.99

0.89

0.80

0.70

0.61

0.51

0.42

Figure 5.22: Example 3 - Local effectivity index on initial 8 x 8 mesh, p = 1.
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0.1032

0.0903

0.0774

0.0645

0.0516

0.0388

0.0259

0.0130

Figure 5.23: Example 3 - Estimated error on h-adapted mesh.

1.67

1.48

1.29

1.11

0.92

0.73

0.54

0.35

Figure 5.24: Example 3 - Local effectivity index on h-adapted mesh.
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Figure 5.25: Example 3 - Final p-adapted mesh.
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0.0130

Figure 5.26: Example 3 - Estimated error on adaptive p-enriched mesh.
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Figure 5.27: Example 3 - Local effectivity index on adapive p-enriched mesh.

102 10
3

number of unknowns

Figure 5.28: Example 3 - Rate of convergence of the error with respect to the
number of unknowns.
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(iii) a(x) = 1.0

The source term f in (2.1) is chosen so that the exact solution is a

u(r) = sin 5r{tan-1 100 + tan-1[100(r — 1)]} (5.4)

where

r2 = (x + 0.1)2 -I- 4y2

The inflow boundary conditions are obtained by evaluating the exact solution

along the inflow boundary

y(
r
) 
= f u(r) r2 = (x 0.1)2 on y = 0

u(r) r2 = (x + 0.1)2 -I- 4 tan2(731)x2 on y = tan(i)x

The error history for an hp-adaptive solution is listed in Table 5.10 and the

resulting meshes, local error estimates, and local effectivity indices are shown

in Figs. 5.29 - 5.35.

While the exact solution to this problem is continuous, it contains a

very steep front which can be seen as the dark regions in Fig. 5.29. The global

effectivity indices listed in Table 5.10 demonstrate the reliablility of the error

estimate on non-rectangular meshes. The local effectivity indices for all the

meshes are close to unity over rnost elements, however, there is some slight

under-estimation of the error for the uniform p-meshes. Though it is difficult

to see from the figure, the under-estimation of the error occurs in the region of

the steep front. There is also some rather severe over-estimation of the error

on the p-adapted mesh. This over-estimation occurs primarily in the p = 5

elements and does not have a significant effect on the global effectivity of the

error estimate.
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Adaptive

step

Target

normalized

error

Achieved

normalized

error

Estimated

error

11011„

Effectivity

index

Initial mesh p = 1 0.130 2.514 0.87

h-refinement 0.075 0.029 0.641 1.027

p-enrichment 0.003 0.0025 0.559 1.028

Table 5.10: Example 4 - Error history for an adaptive hp solution.

0.6833

0.5979

0.5125

0.4271

0.3417

0.2562

0.1708

0.0854

Figure 5.29: Example 4 - Estimated error on initial mesh, p = 1.
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1.36

1.21

1.07

0.92

0.77

0.62

0.48

0.33

Figure 5.30: Example 4 - Local effectivity index on initial mesh, p = 1.
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0.0840

0.0720

0.0600
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0.0360

0.0240

0.0120

Figure 5.31: Example 4 - Estimated error on h-adapted mesh.
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Figure 5.32: Example 4 -Local effectivity index on h-adapted mesh.
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Figure 5.33: Example 4 - p-adapted mesh.
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Figure 5.34: Example 4 - Estimated error on p-adapted mesh.
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Figure 5.35: Example 4 - Local effectivity index on p-adapted mesh.



Chapter 6

Parallel Implementation

The time-marching versions of the discontinuous Galerkin methods, (2.54),

(2.55), and the Runge-Kutta discontinuous Galerkin method described in the

next Chapter, fall naturally into the class of singlc program multiple data

(SPMD) parallel applications. Given the solution at time level tri, the solution

is advancecl to time level tn+1 by solving a (p + 1)2 x (PK + 1)2 system of

linear equations for the (13 „ + 1)2 degrees of freedom for every element K in the

partition. The only coupling between elements in the partition arises in the

evaluation of the boundary integrals in (2.8) where the solution along common

edges of neighboring elements is needed. The evolution of the solution can be

performed on all the elements simultaneously, once this information is available.

The primary issue in a parallel implementation of discontinuous Galerkin

methods is to balance the workload among the available processors while min-

imizing the communication between processors, thereby optimizing the utiliza-

tion of the multi-processor environment. For a machine with P processors,

this is accomplished by dividing the partition into P subdomains and assigning

the elements contained in a particular subdomain to a particular processor.

In order to minimize communications, the interface of the subdomain bound-

aries should have as small a measure as possible. Moreover, the local nature
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of the discontinuous Galerkin formulation requires communication of the solu-

tion only along subdomain boundaries at each time step. Since computations

are performed at an element level, communications can be overlapped with

the computation to further minimize the penalty of communicating between

processors.

While the parallel implementation described in this Chapter is targeted

for the Intel iPSC 860 computer which is a distributed memory machine with

32 processors arranged in a hypercube architecture, many concepts are general,

and, therefore applicable to other multi-processor machines.

6.1 Domain Decomposition for hp Meshes

The goal of the domain decomposition strategy is to evenly distribute the work-

load among the processors while minimizing the size of the subdomain bound-

aries. Most domain decomposition methods have been developed and analyzed

for h-type meshes where the number of degrees of freedom, and hence the com-

putational effort, is the same for every element in the mesh. For these types of

meshes, equally distributing the elements among the available processors will

result in a balanced load.

The most successful domain decomposition methods in this situation

are based on recursive bisectioning of either the physical domain or an order-

ing of the elements. In the recursive bisectioning of the physical domain, trial

separators define possible subdomain configurations. The selection of a sepa-

rator as a subdomain interface is based on the resulting load balance as well as

interface size. Vavasis [52] has obtained theoretical bounds on the achievable

load balance and interface size. One disadvantage of this approach is that it



90

can be computationally expensive for multiple space dimensions.

Recursive bisectioning methods based on an ordering of the elements

have a computational advantage since the bisectioning is performed on a one-

dimensional list of elements, regardless of the spatial dimension of the domain.

One difficulty with this approach is constructing an ordering which preserves

the locality of the elements in the mesh. A locality-preserving ordering is neces-

sary to avoid multiply connected or disconnected subdomains and to minimize

interface size. Pothen, Simon, and Liou [45] construct such an ordering by

using the second eigenvector of the Laplacian matrix associated with the graph

of the mesh.

For hp meshes, where the number of degrees of freedom (and hence the

computational effort) vary from element to element, the domain decomposition

must include some measure of the computational work for each element. Here

we investigate two load-based recursive bisection methods developed by Patra

[40] which seek to balance the load using some local measure of the computa-

tional work. In this study, the number of degrees of freedom in an element,

(ph. + 1)2, are used as a measure of its computational load.

6.1.1 Recursive Load Based Bisection of Coordinates (RLBBC)

An algorithm for this method which is based on recursive bisectioning of the

physical domain is given below.

OK: computational effort estimate for element K, OK specified as dof in

the description of the algorithm. It may be replaced by any alternate measure

of computational effort.
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DI : list of elements in subdomain I.

: number of trial separator surfaces.

q, : quality index for a trial separator.

1. Compute maximum and minimum coordinates in any one of the dimensions

of the entire domain Amin, xlma,

For i = 1 to ni do

2. compute

xl. = xlmin (xlmax—xlmln)

do,he ft
qi = dofright * do Lot + dofinter

where dofteft and (Wright are the degrees of freedom to the left and right

of xli, respectively, and (Winter is the degrees of freedom on the trial

separator xli.

3. Choose as interface the separator corresponding to the lowest q,.

4. If the center of mass of element has an xl coordinate less than that of the

interface then

DI {K}

Else

D2 D2 {K}

At this stage, the original domain has been split into two.

5. For the next level of decomposition apply steps 1-4 with D1 and D2 instead

of the entire domain and with x2 as the coordinate. This will result in
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four subdomains. In three-dimensions, for the next level use 1-4 with

these four subdomains and with x3 as the coordinate. This process is

recursively continued until the desired number of domains is attained.

Clearly, for better shaped domains, equal numbers of splits in each coor-

dinate must be made. Thus, for two dimensions, 4' subdomains and in

three dimensions, 8' subdomains are obtained.

6.1.2 Recursive Load Based Bisection of an Ordering (RLBBO)

This method is based on recursive bisectioning of an ordering of the elements.

The orclering is based on results of Peano[42] and Hilbert[27] concerning a

class of continuous mappings of the unit interval onto a unit hypercube. The

significance of their results is that one can construct a space filling curve which

connects a set of points in n-dimensional space and uniqely maps them onto the

unit interval. Applying this mapping to the set of points given by the element

centroids, results in an ordering of the elements defined by its location on the

unit interval. Complete details of the Peano-Hilert ordering and proof that it

is locality-preserving can be found in Patra [40]

An algoritm for this method follows:

hr, : Um, where U./ is a the unit interval and Un is the unit hyper-

cube.

DI : list of elements in subdomain I.

rei : number of trial separator surfaces.

: quality index for a trial separator.

1. Create an ordering of the elements by mapping the centroids of the ele-
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ments onto a Peano-Hilbert curve. (See [40])

2. Let tK be the distance of the centroid of element K along the space filling

curve.

3. Compute maximum and minimum of tK, tmax and trnin.

4. Compute ni trial separator levels as

tt = trnin
trnas n

711

5. For each ti compute a quality of interface index qi

qi = abs(  ,  
do fieft 

1) • do Lot + dofinter
a0Jright

Replace do f by error or other load estimate as appropriate.

6. Choose as interface tint the ti that corresponds to lowest qi

7. For K= 1 to the total number of elements

If tK < tint then

D1 4-- D1 U {K}

else

D2 D2 U {K}

end if

end for

At this stage, the original domain has been split into two.

8. Apply 1-7 recursively on each of the generated subdomains.
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6.2 Communications

Communication between processors on distributed memory machines can sig-

nificantly effect the overall performance of the parallel implementation, partic-

ularly if a processor must wait to receive information from another processor

before proceeding with a calculation. To compute the solution at time level tn+i

on a particular subdomain, the solution at tn is needed from interface elements

on neighboring subdomains. Using synchronous communications, that is, re-

questing information from neighboring processors at the time that it is needed,

leads to unnecessary waiting by all processors. Moreover, communication con-

flicts are likely to occur since two-way communication is required across interior

subdomain boundaries. Asynchronous communications are used to minimize

this wait time. When the solution for an interface element is computed on a

processor, it is then sent to the processor containing the neighboring element.

6.3 Numerical Results

Results are presented for an hhp-adaptive solution to an example similar to

example 3 in Chapter 5, except that the source term f is selected so that the

exact solution is

5e-[(x+1)2+Y21 3e-[T2+(Y-1)2] if y > x
u(x, y) = _1 _ 56-5[(x--1)2+(y+1)2] otherwise

(6.1)

The error history obtained with the hhp-adaptive strategy described in

Chapter 4 is listed in Table 6.1 which shows that this approach is very effective

at reducing the global error in the discontinuous solution. These results are

compared graphically with results from Chapter 3 in Fig. 6.1. Note the sig-

nificant decrease in the error due to the additional h-refinement at the shock.
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Adaptive

step

Target

normalized

error

Achieved

normalized

error

Estimated

error

1101lAu

Effectivity

index

Initial 8 x 8 mesh, p = 1 0.126 1.391 0.72

h-refinement 0.0628 0.0759 0.861 0.69

p-enrichment 0.0558 0.0311 0.359 0.53

Table 6.1: Error history for an hhp-aclaptive solution starting from a uniform
8 x 8 mesh, p = 1.

While this adaptive strategy leads to significantly more unknowns in the prob-

lem, the reduction in the error, when compared to error obtained by uniform

h-refinements of a mesh of p = 1 or p = 2 elements, is orders of magnitude.

The final hp mesh, shown in Fig. 6.2, is particularly demanding for a domain

decomposition method because of the concentration of elements resulting from

4 levels of refinement in the lower left quadrant of the domain and the large p

elements in the smooth regions.

We use the speedup as a measure of the effectiveness of the domain

decomposition startegy at balancing the load. The speedup is defined here as

the ratio of the CPU time required to obtain the solution using 4 processors

to the CPU time required to obtain the solution using n processors, where

n > 4. Ideal (also called linear) speedup implies that the work load is equally

balanced among the processors and is indicated by a slope of two on a graph of

the speedup as a function of the number of processors. The speedup obtained

on the hp-mesh using the two decomposition strategies is shown in Fig. 6.3.

Nearly optimal speedup of 1.8 is obtained using the RLBBC method when going
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Figure 6.1: Rate of convergence of the error with respect to the total number
of unknowns.

from 4 to 8 processors. The speedup drops off as the number of processors

increases, indicating that the load is unbalanced. The speedup of 1.3 when

going from 4 to 8 processors when using the RLBBO method indicates that

the method yields very poor load balancing when only a few processors are

used. Fortunately, the RLBBO method provides more balanced loads for a

larger number of processors where a speedup of 1.85 is achieved when going

from 8 to 16 processors.
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Figure 6.2: Final mesh using the hhp-adaptivc strategy.
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Figure 6.3: Parallel speedup for the hp mesh.



Chapter 7

Extensions to Nonlinear Hyperbolic
Conservation Laws

In this chapter, we describe extensions of the discontinuous Galerkin method to

nonlinear hyperbolic conservation laws of the form (1.5) on convex polygonal

domains. For simplicity, the method is described for a two-dimensional scalar

conservation law written as

+ V • q(u) = 0 (x, y) E C R2, t > 0 (7.1)

where q(u) = P (u) i f 2 (u) j denotes the flux vector. For a description of the

method for hyperbolic systems of conservation laws, in particular, the Euler

equations of gas dynamics, see Bey and Oden[6].

To complete the initial boundary-value problem, (7.1) is accompanied

by initial conditions

u(x, y, 0) = uo(x, y); (x , y) E SZ (7.2)

and boundary conditions of the form

u(x , y , t) = d(t); (x , y) E r- (7.3)

where F- is the inflow boundary, r- {(x , y) E aSZ : n < 0} , n is the

outward unit normal to the boundary (an = F- fl F+), and d(t) is prescribed
inflow data.
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The version of the discontinuous Galerkin method used here, first pro-

posed by Cockburn and Shu [13], [12], is based on the method of lines. The sys-

tem of ordinary differential equations resulting from the discontinuous Galerkin

spatial approximation is marched in time using a multi-stage Runge-Kutta

scheme. A local projection is used at each stage to control oscillations and

prevent nonlinear instabilities. In reference [13], a projection is constructed

for p = 1 and p = 2 elements in one space dimension and possible extensions

to higher-order elements are proposed. In reference [12], some important the-

oretical results are derived for multi-dimension problems, but a projection is

constructed and verified only for linear p = 1 triangles. Moreover, the emphasis

of their work is in predicting element mean values, and while the high-order

solution is available, it is ignored in the presentation of numerical results. Here

we construct a very simple projection for general quadrilateral (or triangular)

elements of arbitrary order and take full advantage of the finite element approx-

imation. For alternate projection strategies for quadrilaterals, we refer to Bey

and Oden [6] and to Biswas, Devine, and Flaherty [7] for a general projection

strategy on Cartesian grids.

7.1 Discontinuous Galerkin Spatial Approximation

The primary difference in the discontinuous Galerkin formulation for nonlinear

conservation laws is the treatment of the boundary fluxes at element interfaces

and the need for the projection to control oscillations. Recall that for the linear

conservation law q(u) = Ou and hence 2 • nK = 0 • nK < 0, which defines
element inflow boundaries, is known a priori. For the nonlinear conservation

law, 2 • nK is a function of u and is thus unknown.
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The discontinuous Galerkin spatial approximation is defined on a par-

tition of the domain satisfying the properties in Chapter 2 (except property

(v) defining element inflow boundaries) and solutions are sought in the finite

dimensional space Vp(Ph ) = {v E L1(f2) E QPK(K)). The weak form of

(7.1) on a single element is obtained by multiplying by a test function v(x) and

integrating the first-order spatial term by parts:

Find u(x, j. E L1(K) x CI(O, T) such that

fh u(x, 0)v(x)dx = Jh uo(x)v(x)dx and (7.4)

d

I)) K 

Lq(u) • vvdx 
JaK 

q(u) • nK v ds = 0

for all admissible test functions v(x).

(7.5)

The element boundary flux q(u) • nK in (7.5) is not uniquely defined

when replacing u by its approximation uPh E Vp(Ph). Since 4, is discontinuous

across element interfaces, q(uPh) • nK has two values on a K , one associated with

u7, on the interior of element K and one associated with uPh on the exterior of the

element. The ambiguity in evaluating the boundary flux in (7.5) is eliminated

by replacing it with a numerical flux function:

where

h ic,e

p,int(K)
Uh

=

=

hK,C(u1;:int(K) ,.,p,ext(K))
"h

1171(x .)ledge e of element K

up,ext(K)
h

Uh(x y7 *)ledge e of element K,) aK n F_ = 0

d(t), aK n 0

The numerical flux function is required to have certain properties to

enhance the convergence properties of the approximate solution:



1. h 
p int(K) p,ext(K i„,e(uh' , uh s a monotone flux function, i.e. h„,,, is non-

decreasing in U119,:int(K) and non-increasing in 24:ext(K)

2. h „,(• , -) is consistent, i.e., h „e(u,u) = q(u)

3 h K e h 
up 

(up'int(K) h
,ext(K

)) is Lipschitz continuous

() ,,,p,ext(K)
4. hic,(4,int K ) is directionally consistent in the sense that

h p,ext(K)
K,Juh Uh 

) \
Ke ,e h ,u U

p,ext(K,)
h

Note that this last property enforces continuity of the normal flux at element

interfaces. Any function which satisfies the properties listed above can be used

in this numerical scheme. Some examples of fluxes satisfying these conditions

are the numerical fluxes of Godunov [23], Enquist-Osher [17], and Roe [46].

The semi-discrete problem which results from the discontinuous Galerkin

approximation to (7.1) can now be written for a typical element K E Ph:

Find 4(x, t)1K E QPK (K) x C1(0, T] such that

Leh(x, 0)1 v(x)dx = uo(x)v(x)dx and

Lt4(x, t)v(x) dx dy = Lq(uPh(x, t)) • Vv(x)dx

E f h „,e(uPh'ini
(K), 

urlz
,ext(K

))v ds
eE8K\a0 

E f h e(uph,int(K) d(t))v ds
eEaKnr— e

E fq(eh) • n„,,v ds
eEaKnr+ e

for every v(x) E QPic (K)

(7.6)
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Note that the integral over the element boundary is represented as the sum

of integrals along element edges where nh e denotes the outward unit normal

to edge e of element K . For the linear conservation law, (7.6) reduces to the

methods (2.54) and (2.55) provided that the numerical flux reduces to

p,ext(K))
"K,euh U h

when q(u) = Ou.

1 p,int(K) p,ext(K
= —(Uh Uh )

2 
)/1- riK,e

— 
1
10 • n KUP'ext(K) p,int(K)

2 R,e h — Uh

7.2 Runge-Kutta Time Discretization

The system of ordinary differential equations in (7.6) can be discretized in time

using one of many time marching schemes, e.g. forward Euler, backward Euler,

or some predictor-corrector method. These schemes combined with acceleration

techniques, e.g. local time-stepping or multigrid, are good choices for problems

where only the steady-state solution is of interest. For truly time-accurate

solutions, however, it is necessary to have the order of accuracy of the time

discretization to be equal to the order of accuracy of the spatial approximation.

Using classical interpolation-type error estimates, Cockburn et. al. [12] show

that the Galerkin spatial approximation with uniform p elements satisfies the

estimate

11Lh(4) + V • cl(4)11Lcop 5 Ch(P+1)1q(u)Iwp+2,..,(a) (7.7)

where we have used the abstract notation of Cockburn, Hou, and Shu [12] to

represent (7.6),

dt 
—u7i(x , t)l K = h(1,CX, t)l K) (7.8)
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which formally requires the inversion of the (7) K + 1) x „ + 1) mass matrix

in (7.6). Runge-Kutta methods can be used to obtain a time marching scheme

for which the truncation error is of order At(PK+1) for uPhl, E QP(K).

Let At denote the time step increment and assume the approximate

solution 4(x, tn), tn = nAt is known. We use a special class of explicit Runge-

Kutta schemes written in the classical form as

uPh(X, tn-1-1) 24(X, 1n) E biki

where ki = AtLh(u1,(x, tn) E aijkj)

which is represented by the Butcher-array [9]

(7.9)

0
C2

c,

a21

as1 as,5-1
b1 bs

where ci = aij define the abscissa ti = tn ciAt for a non-autonomous

system which would result, for example, if the

time-dependent source term. The special class

multi-stage form as

where

conservation law contained a

of schemes can be written in

= uPh(•,
2-1

= Hh Ektiku(k) + AtOikLh(u(k))], i = 1, s (7.10)
k----0

u7;,(•, = u(8)

aik and /3ik are free parameters and Ilh denotes a projection operator

to be discussed later. For consistency, aik > 0 and Eikilo cx,k = 1. We use the



Order S aik Pik Classical form

1 1 0
2 1.0

1
2

1 
2 0 2 1 1

1
2

1 1 0

3 1.0 3
4

1
4 0 1

4
1 1

1
3
0 1

3 0 0 5
2 1

2
1
4

1
4

1 1 1
6 6 6

1
2 
1

0

1 1 _ 1 1 1 1
4 1.5 2 2 4 2 2 2

1
9

2
9

2
3

1
9

_ 1
3

1
12 0 12

0 3 3 3 0 16 0 16 1 0 0 1

1 1 1 1
6 3 3 6

Table 7.1: Parameters for the TVBM Runge-Kutta scheme

parameters listed in Table 7.1 which were derived by Shu [48] to result in a time

discretization that is TVD (Total Variation Diminishing) when combined with

finite difference schemes in one space dimension. For multiple space dimensions,

the parameters listed in Table 7.1 result in a scheme which is TVBM (Total

Variation Bounded in the Means) as defined in the following lemma.

Lemma 9 (Cockburn, Hou, and Shu [12])

Let ao inf 7/0(x)
xEct
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bo = sup u0(x)
xEs-2

uh def 1
IKI Kt/h(X, tn)1K dx

Oh -I- AtLh(4)
def

Wp (7.11)

where b> 0 is a parameter. Suppose that the operator Lh satisfies the following

maximum principle:

ux E [a, b] 21)K E [a — B 117,, b B P r] (7.12)

where a and B are non-negative parameters. Then the Runge-Kutta time dis-

cretization defined by (7.10) is Total Variation Bounded in the Mean, i.e.,

fek E [ao — snBh' ,bo snBh'] (7.13)

Proof: By induction. See Cockburn, Hou, and Shu [12] for the case when

a = 2. The case when a is arbitrary follows directly.

Remarks:

(i) The second- and third-order schemes in Table 7.1 require little stor-

age since at each stage there is only one non-zero parameter 0.

(ii) The fourth-order scheme is the classical fourth-order Runge-Kutta

method. For this and higher-order schemes, nearly all intermediate

solutions must be stored since most of the parameters are non-zero.
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7.3 Enforcing the Maximum Principle

A crucial step in the proof of the TVBM property is the assumption that the

spatial operator satisfies the maximum principle (7.12). The local projection,

1-11, in (7.10), is designed to enforce the maximum principle by modifying the

solution at each stage in the Runge-Kutta scheme. Cockburn, Hou, and Shu [12]

derive conditions on the solution on the boundary of an element so that (7.12)

is satisfied. These condition are expressed as limits on the deviation of the

solution on an element boundary frorn its mean values based on the difference

between the element mean and the rnean values in neighboring elements. The

"stencil" of elements uscd to define these liinits includes neighboring elements

as well as neighbors of neighboring elements. (See [12] or [6].) Note that (7.12)

enforces the TVB property on solution mean values; it says nothing about

the actual solution in an element. Moreover, values on the boundary of an

element are insufficient to define a p-unisolvent element. Here we use a simple

projection strategy which overcomes some of these difficulties.

The overall strategy for the local projection is as follows:(1) identify

elements in the neighborhood of a shock as those where the jump in the solution

along the elernent boundary P/Ph]] > hi,.; (2) If pi, > 1, perform an intermediate

projection P : QP(K) Q1(K) (for pic = 1, P is the identity operator); (3)

perform a local projection, , on the result of step (2) to enforce the following

condition:

IIKP(uPhlic) E [min(fiK; UK, e E aK),max(fix; uhe7 e E OK)] , Vx E K (7.14)

These conditions are the multi-dimensional extension of those used by Van

Leer [51] in one space dimension and are identical to those used by Barth [5]
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in reconstructing piecewise linear polynomials from mean values in his higher-

order finite volume schemes.

The limits in (7.14) can also be written in terms of the deviation of the

solution from its mean value. Denoting the deviation from the mean by UK

where u7;i 1A, = UK + UK, (7.14) becomes

h K ) E [min(0, UK, — UK), max(0, — UK)] , Vx E K
eEali eE8K

(7.15)

In order to maintain conservation, the projection must also preserve the mean

value,

FIKP(IhIK) = ux

7.3.1 The Projection P :QP(K) Q1(K)

(7.16)

There are several choices for the projection of a higher-order solution onto

the space of bilinear shape functions; the only requirement is that it preserve

the mean value. A computationally efficient approach for the projection P

is to simply truncate the higher-order terms in polynomial representation of

uPh IK. To enforce the conservativity condition (7.16), the bilinear part of uPh IK is

augmented by the mean value of the truncatcd higher-order terms. To describe

this procedure, the approximate solution is decomposed into its linear and

higher-order contributions:

PU,I—.K = ulinear Uh.o.

4 (PIC +1)2

E Itioi(S, + E ajOi(x,y)
i=1 i=5

(7.17)

where Oi(x, y), i = 1, , 4 are the standard bilinear shape functions and

ui, i = 1, , 4 are the solution values at the nodes of the element. The
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element mean value is thus

is

K = Ulinear uh.o.

4 (pK-I-1)2

E + E
i=1

(7.18)

Let u7ew denote the degrees-of-freedom of P(uh IK), then its mean value

  4

P(I K ) = E jih 
i=1

(7.19)

The conservativity condition (7.16) and the property of the bilinear shape func-

tions that EL_, = 1 imply that

4 4
new j,

tpi =  uioi + uh.0.
i=1

4 4

Euioi + (E oi)uh.o.
i=i i=1

4

E(ui + uh.o.)cbi
i=1

 > 2trilew = fih,0,, 2 = 1, . , 4

(7.20)

Combining the definition of f th,0, in (7.18) with (7.20) results in the final

definition for P(4,c):

4 (PK +1)2

P(4, I K = Dui + E ajMoi(x,
i=1 j=5

7.3.2 The Local Projection FIK : Ql(K) Ql(K)

(7.21)

Construction of a projection which results in a function satisfying (7.15) for

every point in the element is straightforward for linear elements since the max-

imum solution values within the element occur at the nodes (vertices) of the

element.
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Let pi, i = 1, • • • , 4 denote the degrees of freedom associated with the

projected solution,
4

HKP(uphIK = E cbi(x, Opi (7 .22)
t=1

which can be expressed in terms of the mean value and the deviation from the

mean,

11R-P(tiPh 1K ) = P(4, ) IIKP(uPh lK ) (7.23)

Evaluating (7.23) at the nodes yields a clirect expression for the degrees

of freedom of the projected solution,

pi = FIR - P K) IIR P(4,1K)(xt ; i = 1, • • • ,4 (7 .24)

where (4"7, Vc) i= 1, • • • ,4 are the coordinates of the element vertices. All

that remains to define the local projection, HK, is to select values for

IIKP(uhl,)(xfc, yr) i = 1, • • • ,4

so that the monotonicity conditions (7.15) and the conservativity condition

(7.16) are satisfied. To simplify the notation, let

pi = HKPTuhi„)(x,ym=rIKP(4.1„)(xt,yr)-HR-P(uhlK)
UR -(4 c ,y1c) = 4 K (xt. , — 2Gjt , i = 1, • , 4

denote the deviation of the projected solution and the actual solution from the

mean value, respectively. A strategy similar to Barth [5] is used to select f3i so

that (7.15) is satisfied:

max(f/K; fiKe, e E aK)) if > 0
pZ 
= (7.25)

max(iti,min(uK; uhe, e E aK)) if ui < 0

Note that (7.25) represents the minimum modification to 4,1R- that satisfies

(7.15) without regard for the conservativity condition.



The conservativity condition is enforced by appropriate scaling of Pi.

From (7.23) we have

4

IIKP(UPIJK) = E(ki Pi

4

= r_.,0i(11KP(uPhIK) Pi) from (7.24)
i=1

and since IIK P(uP i
hi„-) is a constant and = 1, (7.26) becomes

(7.26)

4 _
E = 0 (7.27)
i-_-1

To enforce conservativity, the appropriate fii are scaled by a factor a < 1 which
is is a ratio of the positive and negative parts of (7.27). This scaling process is

described by the following algorithm:

Let s+ = {i : 0}

S = :pi < 0}

P+ = E
ics+

= E
iEs-

P-
I f 13- < P+ , then a = and pi 1—> aP, ; Vi E S+

P+

I f 13- > P+ , then a- = —
P+ 

and /3,1—> up, ; Vi E S- (7.28)
P-

I f = 0 or P+ = 0, then /3, = 0,i = 1, ...,4

This completes the definition of the projection for p = 1 elements since from

(7.24), (7.16), and (7.23) we get

4

HKP(uhIK) = Eoi(x,y) ux + pi (7.29)
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7.4 Numerical Results for Burger's Equation

The performance of the discontinuous Galerkin method is investigated by solv-

ing the two-dimensional Burger's equation with periodic initial and boundary

conditions:

ut f(u)., g(u)y = 0 (x, y) E (-1,1) x (-1,1), t > 0

where f (u) g (u) =
2
.

u(x , y , 0) = 
1 1 

sm ir(x y)

u(1, y) = u(-1, y)

u(x ,J) = u(x , —1) (7.30)

The solution to (7.30) is smooth until the time t = 0.45 when two shocks

form diagonally to the domain boundaries. The exact solution at t = 0.1 and

t = 0.45 are shown in Figure 7.1 where a 40 x 40 mesh is used to generate

the contours and 100 points are used to generate the distributions along the

domain diagonal. The exact solution for t > 0 is computed using the method

of characteristics.

The time accurate solutions presented in this chapter were obtained

using the Godunov numerical flux function [23]

minuE[ui,u2] q(u) • nK,ehK,e(ul,u2)
max.E[u2,uil q(u) nK,e

for u1 < u2
for u1 > u2

(7.31)

and the Runge-Kutta time marching schemes defined in Table 7.1 using p 1

intermediate steps for elements with a polynomial approximation of degree p.

To assess the accuracy of the method, the error in the approximate solution,

e = u — u7i, is computed in the L1 and the L°° norms. The L1 norm is a global
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Figure 7.1: Evolution of the exact solution to (7.30).
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measure of the error and is defined as

- 411Li(0) = fo lu — uPh l dx dy

E 11,1u uPhl dx dy
KEPh 

(7.32)

The element integrals in (7.32) are evaluated using numerical quadrature with

nine integration points in each local coordinate direction to accurately compute

the error near discontinuities. The L°° norm is a local measure of the error and

is defined as

where (Xi)YAil

uhIlLoo(o) max lu — u1;i 1
(x,y)E0

max I max ju — 26hIhIJKEPh (x,y)EK

max

K 

ju(xi, yi) — uh IK(xi,

,9
(7.33)

= 1, , 9 are the coordinates of the integration points in

element K .

Numerical results are shown in the form of distributions of the solution

along the domain diagonal. The actual discontinuous solution is displayed by

subdividing each element into 10 smaller elements, evaluating the approximate

solution at the vertices of the sub-elements, and assuming a linear distribution

of the solution in each sub-element. Discontinuities in the solution at element

interfaces appear as vertical lines connecting two circles in the distribution

plots. These circles represent the solution values at the vertices of an element.

Since the solution is periodic, only one period is shown in the distribution plots.

To assess the accuracy of the Runge-Kutta discontinuous Galerkin method

without the local projection, results are presented at t = 0.1 when the solu-

tion to (7.30) is smooth. The solution obtained on an 8 x 8 mesh of uniform
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p—elements (p = 1,• • • , 4) is shown in Figure 7.2. Note that the approximate

solution is discontinuous at element interfaces even though the exact solution

is smooth. These discontinuites are small, 0(h(P+1)), and thus decrease as the

mesh is refined or as p, is increased.

The rate of convergence of the error in the L1-norm for a sequence of

uniform mesh refinements is shown graphically in Figure 7.3. Each line on the

graph represents a sequence of meshes with a fixed element polynomial degree

p. The slope of the lines on the log-log scale is nearly p 1 indicating that the

error decreases at the rate of hP+1 as the mesh size h decreases. In other words,

the method is (p 1)-order accurate.

A graph of the error as a function of the total number of unknowns

in the solution, Figure 7.4, shows that the number of unknowns required to

achieve a certain level of accuracy decreases by an order of magnitude for each

increase in p. Figure 7.4 also shows that for a fixed problem size, more accurate

solutions are obtained using higher-order elements.

As the solution evolves, the local projection is required to control oscil-

lations in the solution. To demonstrate the effectiveness of the projection at

controlling oscillations, the solution obtained at t = 0.45 on a uniform 8 x 8

and 40 x 40 element mesh with p = 1 and p = 2 is shown in Figure 7.5. The

solutions obtained for p = 3 elements in indistinguishable from the p = 2 so-

lution, and is therefore, not shown. In all cases, the projection is extremely

effective at controlling oscillations at the shock.

The error in the solution in smooth regions, computed on a subdomain

which excludes the shock, is summarized in Figure 7.6. Each line on the graph

represents a sequence of meshes with uniform p-elements. Note that the slope
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of the lines is p 1 indicating that the order of accuracy of the method is

preserved in smooth regions.



Chapter 8

Concluding Remarks

8.1 Summary

The devclopment of a parallel hp-adaptive discontinuous Galerkin method for

hyperbolic conservation laws is presented in this work. A priori error estimates

are derived for a model class of linear hyperbolic conservation laws. These

estimates are obtained using a new mesh-dependent norm that reflects the

dependence of the approximate solution on the local element size and the local

order of approximation. The results generalize and extend previous results

on mesh-dependent norms to hp-version finite elements and to discontinuous

Galerkin methods.

A posteriori error estimates which provide bounds on the actual error

are developed in this work. The a priori and a posteriori estimates play an

essential role in the development of an hp-adaptive strategy designed to deliver

solutions to a specified error level in an efficient way. A generalization of

the three-step hp-adaptive strategy is developed using the error estimates to

provide for detection of discontinuities in the solution and local h-adaptivity

when appropriate.

Numerical experiments verify the a priori estimates and demonstrate the

effectiveness of the a posteriori estimates in providing reliable estimates of the
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actual error in the numerical solution. The numerical examples also illustrate

the ability of the hp-adaptive strategy to provide super-linear convergence rates

with respect to the number of unknowns in the problem, even for discontinuous

solutions.

A parallel implementation of the discontinuous Galerkin methods is pre-

sented which takes full advantage of the local character of the method and

results in nearly optimal speedups on hp-meshes.

Fxtensions of the discontinuous Galerkin methods to nonlinear hyper

bolic conservation laws are also presented. Numerical results illustrate the

effectiveness of the method at delivering high-order accuracy in smooth re-

gions. A local projection, designed to control nonlinear stability, is shown to

eliminate oscillations and provide high resolution of discontinuities.

8.2 Conclusions and Future Work

The study reported in this dissertation represents a significant departure from

conventional studies on the numerical solution of hyperbolic problems. The aim

was to produce new schemes which deliver very high accuracies, were readily

parallelizable, were based on rigorous mathematical foundations, and which

were capable of delivering exponential rates of convergence. All of these goals

were accomplished for a model class of linear hyperbolic conservation laws in

two-dimensions, and encouraging results were obtained on extensions to model

nonlinear problems.

Among the major conclusions drawn from this work are the following:

1. The machinery of elliptic approximation theory can be extended to hp-
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finite element approximations of hyperbolic equations using the notion of

discontinuous Galerkin methods; this is made possible by the introduction

of special bilinear and linear forms which depend upon mesh parameters,

the mesh size h
K 

of a cell K in the mesh and the spectral order p of the

shape functions characterizing local approximations over the cell.

2. The use of the new mesh-dependent norms makes it possible to derive, for

the first time, a priori error estimates for non-uniform hp-approximations

of linear hyperbolic problems; these estimates are quasi-optimal, and the

estimated rates of convergence are fully confirmed by numerous numerical

experiments.

3. Exponential and/or super-linear rates of convergence are obtained, even

for solutions with very low regularity; this justifies the use of hp-methods

and demonstrates their superiority over conventional methods for a model

class of problems.

4. Rigorous a posteriori error estimates are derived using a new version of

the element residual method; these estimates provide computable mea-

sures of local (elementwise) error with remarkable accuracy and provide

a reasonable basis for assessing solution quality and for adaptivity.

5. Equipped with both a priori and a posteriori estimates; an effective hp-

adaptive strategy is developed which can be parallelized and generally

gives a good hp-mesh in three or four steps; this work represents an

extension and generalization of the three-step scheme for non-uniform

hp-meshes; it exploits the unique feature of the a priori estimates for
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hyperbolic problems, in particular, the loss of the rate of convergence in

the vicinity of a discontinuity.

6. The adaptive scheme developed here is quite robust and effective for the

example problems tested; results suggest that it is possible to specify

target global error in an appropriate norm and to then reach that error

quite accurately in three or four steps.

7. New versions of load-balancing schemes based on recursive bisection pro-

vide for a domain decomposition well-suited for hp-version disontinuous

Galerkin methods; the schemes, which are in an early stage of develop-

ment, still provide a reasonably balanced computation when implemented

on a 16-processor Intel iPSC 860 computer. Near linear speedups were

realized on a model problem.

8. Extensions of the methodologies to nonlinear problems appear to be pos-

sible; preliminary studies suggest that with a proper projection to control

oscillations near discontinuities, very high accuracies can be obtained with

hp-schemes using the discontinuous Galerkin method; while much work

remains to be done in this area, the high convergence rates and accura-

cies observed in the numerical experiments on nonlinear problems suggest

that further studies in this area may be very fruitful.
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