

PARALLEL PROCESSING FOR NONLINEAR DYNAMICS

SIMULATIONS OF STRUCTURES INCLUDING ROTATING

BLADED-DISK ASSEMBLIES

by

Shang-Hsien Hsieh

Report to NASA Lewis Research Center

Grant Number NAG 3-1063

Structural Engineering Report 93-2

School of Civil and Environmental Engineering and

Program of Computer Graphics

Cornell University

Ithaca, New York 14853-3501

Research supervised by John F. Abel

May 1993

ABSTRACT

The principal objective of this research is to develop, test, and

implement coarse-grained, parallel-processing strategies for nonlinear

dynamic simulations of practical structural problems. There are

contributions to four main areas: (a) finite element modelling and analysis

of rotational dynamics, (b) numerical algorithms for parallel nonlinear

solutions, (c) automatic partitioning techniques to effect load-balancing

among processors, and (d) an integrated parallel analysis system.

Two finite element approaches are implemented to account for

rotational nonlinearities involved in dynamic analysis of rotating bladed-

disk assemblies: the Consistent Mass (CM) and Lumped Mass (LM)

approaches. It has been found that the analysis results obtained using the

CM and LM approaches are in close agreement. In addition, for transient

analysis using explicit time integration, the LM approach has been found to

be significantly more efficient than the CM approach.

For explicit and implicit dynamic analyses, the present work

implements a parallel central difference method and a parallel Newmark

method, respectively. A parallel static solver is also implemented for

steady-state solutions of rotational dynamics. For the parallel central

difference method applied to specific test problems run on 6 processors,

parallel efficiencies of over 90% have been achieved. For the parallel

Newmark method and the parallel static solver, parallel efficiencies of more

than 80% have been obtained.

Two automatic spectral partitioning algorithms are developed to

effect load-balancing among processors. They are compared with several

automatic partitioning algorithms by previous researchers. It has been

found that the proposed RST partitioning algorithm with the

communication graph approach gives the best results in most examples

studied. In addition, interactive graphics tools are developed to allow for

manual partitioning and for examining and modifying results of automatic

partitioning.

A parallel analysis system is integrated to help evaluate the parallel

strategies investigated, verify the finite element approaches employed, and

demonstrate how advanced computer technologies can assist engineers in

parallel dynamics simulations. This system takes advantage of the

advanced computing environments, data structures, and interactive

computer graphics to provide a useful research software testbed for study of

nonlinear structural dynamics.

ii

ACKNOWLEDGMENTS

This report is essentially a reproduction of the thesis submitted by

the author in partial fulfillment for the Degree of Doctor of Philosophy. The

author would like to express sincere gratitude to Professor John F. Abel, the

faculty investigator for the project, for his continuous support, guidance,

advice, and encouragement throughout the course of this research, and for

his patience in reading and improving this report. The author is indebted to

Professors Gregory G. Deierlein and Subrata Mukherjee for their patience

in reviewing this report. Thanks also go to Professor Donald P. Greenberg

for providing the excellent research environment at the Program of

Computer Graphics which has made much of this research possible.

The author would like to express special thanks to Dr. Charles

Lawrence of NASA Lewis Research Center for his advice, help, and support

in the course of this research. Thanks also go to Dr. Horst D. Simon of

NASA Ames Research Center who kindly provided the source code of the

RSB algorithm and several valuable references, and Professor Charbel

Farhat of University of Colorado at Boulder for providing corrections to the

published version of the FP algorithm.

The research reported in this report benefits tremendously from the

previous work of other researchers at the Program of Computer Graphics,

especially that of Dr. Jerome Hajjar on parallel nonlinear solutions of

structural dynamics, Dr. Sanjeev Srivastav and Dr. Brian Aubert on

development of BASYS and ABREAST, and Dr. Paul Wawrzynek, Dr. Luiz

Martha, and Dave Potyondy on development of FRANSYS. The author is

in

also deeply indebted to Glaucio Paulino for his invaluable discussions and

ideas about automatic domain partitioning algorithms. The helpful advice

and assistance from Sanjeev Srivastav, Brian Aubert, Paul Wawrzynek,

Dave Potyondy, Gyula Greschik, Victor Balapoulos, Christopher White,

DaHong Tao, Jeong-Jae Lee, Daniel Kartch, Hurf Sheldon, and Mitch

CoUinsworth are gratefully acknowledged.

The support of the NASA Lewis Research Center under Grant No.

NAG 3-1063 has been essential to the research reported in this report and is

highly appreciated. The partial support from the U.S. Air Force Office of -

Scientific Research under Contract No. AFOSR-90-0211 is also appreciated.

The generous equipment grants from both the Digital Equipment

Corporation and Hewlett-Packard to the Program of Computer Graphics are

gratefully acknowledged. However, any opinions expressed herein are those

of the author and do not necessarily reflect the views of the sponsors or

equipment donors.

iv

TABLE OF CONTENTS

1 Introduction .. 1

1.1 Background ... 2

1.2 Objectives ... 5

1.3 Scope ... 6

1.3.1 Parallel Processing Strategies ... 6

1.3.2 Finite Element Modelling and Analysis 7

1.3.3 An Integrated Parallel Analysis System 8

1.4 Organization ... 10

2 Finite Element Modelling and Analysis .. 12

2.1 Modelling of Framed Structures with Flexible Floors 12

2.2 Modelling of Bladed-disk Assemblies .. 14

2.2.1 Review of Previous Research ... 14

2.2.1.1 Modelling of Blades .. 15

2.2.1.2 Modelling of Disks .. 18

2.2.1.3 Modelling of Bladed Disk 20

2.2.2 Present Approach .. 21

2.2.3 Verification Studies ... 22

2.3 Formulation of Equations of Motion ... 29

2.3.1 Coordinate Systems .. 29

2.3.2 Assumptions .. 30

2.3.3 Rotational Nonlinearities ... 31

2.3.3.1 Consistent Mass Approach 31

2.3.3.2 Lumped Mass Approach 36

2.3.4 Geometric Stiffness Effects ... 38

2.4 Analysis of Framed Structures .. 43

2.5 Analysis of Rotating Bladed-disk Assemblies 46

2.5.1 48

2.5.2 50

2.5.3 54

2.5.4 65

Review of Previous Research ..

Present Approach ..

Verification and Comparative Studies

Closure ...

V

3 Parallel Nonlinear Solution Algorithms ... 69

3.1 Parallel Computing Environment .. 70

3.2 Review. of Previous Research ... 73

3.2.1 Parallel Time Integration Algorithms 73

3.2.2 Parallel Equation Solvers ... 80

3.3 Present Approaches ... 84

3.3.1 Parallel Explicit Transient Solution 84

3.3.2 Parallel Implicit Transient Solution 88

3.3.3 Parallel Steady-State Solution .. 95

3.4 Effectiveness of Parallel Analysis ... 96

3.4.1 Parallel Explicit Transient Analysis 97

3.4.2 Parallel Implicit Transient Analysis 103

3.4.3 Parallel Steady-State Analysis .. 109

4 Load Balancing Among Processors ...

4.1 Review of Previous Research ...

4.2 Theoretical Background and Definitions ..

4.3 Domain Partitioning Algorithms ..

4.4

4.5

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

Load

4.4.1

4.4.2

4.4.3

Load

4.5.1

4.5.2

113

115

118

127

Farhat's Algorithm ... 127

Al-Nasra and Nguyen's Algorithm 130

Malone's Algorithm .. 133

Simon's Algorithm .. 135

Present Algorithms ... 138

Balancing for Parallel Implicit Analysis 142

Element and Node Labelling .. 144

Subdomain Renumbering ... 145

Comparative Studies Among Algorithms 146

Balancing for Parallel Explicit Analysis 158

Element and Node Labelling .. 159

Comparative Studies Among Algorithms 159

5 An Integrated Parallel Analysis System 169

5.1 System Overview ... 169

5.2 Interactive Modelling ... 174

5.3 Domain Partitioning .. 178

vi

6

5.4 Parallel Nonlinear Analysis .. 182

5.5 Response Visualization .. 183

5.6 Interactive Monitoring and Steering .. 184

5.7 Application Examples .. 186

5.7.1 Framed Structure Subjected to Seismic Loading 186

5.7.2 Rotating Bladed-disk Experiencing Tip Rubs 190

I

Summary and Conclusions .. 198

6.1 Summary .. 198

6.2 Conclusions .. 204

6.3 Suggestions for Future Research .. 209

A Parallel Implementation Using ISIS ...

A.1

A.2

A.3

A.4

214

General Purpose Routines ... 214

Initialization ... 215

Interprocess Communication and Synchronization 217

Termination .. 227

Bibliography ... 229

vii

LIST OF TABLES

2.1 Comparison of natural frequencies (Hz) of a cantilever beam

obtained by the present approach with those reported by

Johnson and Field (1973), and Petyt (1990) ... 24

2.2 Comparison of natural frequencies (Hz) of a free-clamped

annular plate obtained by the present approach with those

reported by Rao and Prasad (1975), Petyt (1990), and Irie et al.

(1982) ... 26

2.3 Comparison of thickness-independent frequency parameters,

cob(p/E) 1/2 of cantilevered parallelepipeds obtained by the

present approach with those reported by previous researchers

(a/b = 1, _ = 30 °) 28

2.4 Comparison of in-plane normalized frequencies, co(pAL4/EI) 1/2 of

a rotating cantilever beam obtained by the present study with

those reported by Putter and Manor (1978) and Yokoyama

(1988) ... 57

2.5 Comparison of out-of-plane normalized frequencies,

c0(pAL4/EI) 1/2 of a rotating cantilever beam obtained by the

present study with those reported by Yokoyama (1988) 59

2.6 Comparison of normalized frequencies, c0(pAoL4/EIo) 1/2 of a

rotating tapered beam obtained by the present study with those

reported by Khulief and Bazoune (1992) .. 61

2.7 Comparison of nondimensional frequencies, o)(phro4/D)l/2 of a

rotating annular plate obtained by the present study with those

reported by Sinha (1987) .. 63

3.1 Parallel explicit algorithm 87

3.2 Parallel implicit algorithm ... 93

3.3 Assembly of the vector at subdomain boundary 93

3.4 Parallel preconditioned conjugate gradient algorithm 94

3.5 Assembly of the dot product ... 94

3.6 Parallel steady-state (static) algorithm ... 95

°**

VlU

3.7

3.8

3.9

3.10

3.11

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

The speed-up and efficiency of the parallel central difference

algorithm for analysis of the rotating bladed-disk problem of

Fig. 3.7 .. 102

The speed-up and efficiency of the parallel implicit algorithm for

analysis of the thirty-story building of Fig. 3.5 (with the use of

modified-Newton iteration solution scheme) 104

The speed-up and efficiency of the parallel implicit algorithm for

analysis of the thirty-story building of Fig. 3.5 (with the use of

simple incremental solution scheme) ... 105

The speed-up and efficiency of the parallel implicit algorithm for

analysis of the twenty-story L-shaped building of Fig. 3.9 107

The speed-up and efficiency of the parallel steady-state

algorithm for analysis of the rotating bladed-disk of Fig. 3.7 110

Farhat's partitioning algorithm (here designated FP) (Farhat

1988) .. 128

AI-Nasra and Nguyen's partitioning algorithm (here designated

ANP) (A1-Nasra and Nguyen 1991) .. 131

Malone's reduced bandwidth decomposition (RBD) algorithm

(Malone 1988) .. 133

Simon's recursive spectral bisection (RSB) algorithm (Simon

1991) .. 135

Recursive spectral sequential-cut (RSS) algorithm 139

Recursive spectral two-way (RST) algorithm 140

Comparison of different algorithms for element-based

partitioning of the thirty-story building of Fig. 3.5 (Np = 4) 148

Comparison of different algorithms for element-based

partitioning of the transmission tower of Fig. 3.3 (Np = 3) 148

Comparison of different algorithms for element-based

partitioning of the space station of Fig. 3.4 .. 149

Comparison of different algorithms for element-based

partitioning of the 12-story L-shaped building of Fig. 3.9 152

Comparison of different algorithms for element-based

partitioning of the 12-bladed turbine disk of Fig. 3.7 154

Comparison of different algorithms for element-based

partitioning of the turbine blade of Fig. 4.9 ... 155

ix

4.13

4.14

4.15

4.16

4.17

5.1

5.2

5.3

Performance on DEC5000's of the parallel steady-state analysis

of the bladed-disk problem of Fig. 3.7 with domain partitioned

by the FP and RST(CG) algorithms (Np = 3) 158

Comparison of different algorithms for node-based partitioning

of the space station of Fig. 3.4 (Np = 3) ... 163

Comparison of different algorithms for node-based partitioning

of the twelve-story L-shaped building of Fig. 3.9 (Np = 3) 163

Comparison of different partitioning algorithms on the bladed-

disk problem of Fig. 3.7 ... 164

Performance on DEC5000's of the parallel central difference

analysis of the bladed-disk problem of Fig. 3.7 with domain

partitioned by different algorithms .. 168

The time required for parallel implicit analyses of the twleve-

story L-shaped building studied in Section 5.7.1 (six

HP9000/720's are used) ... 188

The time required for parallel steady-state analyses of the

rotating turbine bladed-disk studied in Section 5.7.2 (six

DEC5000's are used) .. 192

Modal frequencies of the turbine 12-bladed disk studied in

Section 5.7.2 ... 193

X

2.5

2.6

2.7

2.8

2.9

2.10

3.1

LIST OF FIGURES

2.1 A cantilever beam used for vibration analysis 23

2.2 A free-clamped annular plate used for vibration analysis 25

2.3 Finite element meshes used in vibration analysis of an annular

plate ... 25

2.4 Twisted cantilevered parallelepipeds used in vibration

analysis ... 26

Coordinate systems used in finite element formulation 30

Motion of body in body-fixed undeformed coordinate system 39

A rotating cantilever beam for in-plane vibration analysis 56

A rotating cantilever beam for out-of-plane vibration analysis 58

A rotating tapered beam for vibration analysis 60

A rotating annular plate for vibration analysis 62

The partition of structural data for the parallel explicit

algorithm (Hajjar and Abel 1989a) ... 86

3.2 The partition of structural data for the parallel implicit

algorithm (Hajjar and Abel 1988) ... 89

3.3 The finite element model of a transmission tower with 434

elements, 160 nodes, and 468 unrestrained degrees of freedom 97

3.4 The finite element model of a space station with 1,428 elements,

304 nodes, and 912 unrestrained degrees of freedom 98

3.5 The finite element model of a thirty-story building with 1,200

elements, 496 nodes, and 2,880 unrestrained degrees of

freedom ... 99

3.6 Speed-up results obtained for the parallel analysis on the

structures of Figs. 3.3 - 3.5 _... 100

3.7 A finite element model of a 12-bladed turbine disk with 504

elements, 3,828 nodes, and 10,044 unrestrained degrees of

freedom ... 101

3.8 Speed-up of the parallel central difference method applied to the

bladed-disk of Fig. 3.7 102

xi

3.10

3.11

4.10

3.9 A finite element model of a 12-story L-shaped building with 468

beam-column elements, 72 shell elements, 482 nodes, and 2,508

unrestrained degrees of freedom ... 106

Speed-up for the twelve-story L-shaped building of Fig. 3.9

using the parallel implicit algorithm ... 108

Speed-up for the 12-bladed turbine disk of Fig. 3.7 using the

parallel steady-state algorithm ... 111

4.1 Correspondence among mesh, matrix, and graph 120

4.2 Spectral analysis ... 122

4.3 Correspondence among mesh, dual graph, and communication

graph ... 126

4.4 Partitioning of a transmission tower using FP algorithm 129

4.5 An 8-bladed disk and its partitioning by ANP algorithm 132

4.6 Partitioning of the space station shown in Fig. 3.4 by the RBD

algorithm .. 134

4.7 Example of the RST partitioning process ... 141

4.8 Partitionings of the thirty-story building of Fig. 3.5 by the (a)

ANP, (b) FP, (c) RBD, and (d) RSB, RSS, or RST algorithms 150

4.9 A finite element model of a turbine blade with 944 20-noded

elements and 6,427 nodes ... 153

Partitioning results of the (a) ANP, (b) FP, (c) RBD, (d) RST

algorithms for the 12-bladed turbine disk of Fig. 3.7 (Np = 3) 156

5.1 Organization of the parallel analysis system 170

5.2 Parameters for definition of a bladed-disk model 177

5.3 Parameters for definition of a sector .. 181

5.4 Interactive monitoring of parallel analysis using the

preliminary version of the parallel analysis system 185

5.5 A simulation playback of dynamic responses of the 12-story L-

shaped building in BASYS ... 189

5.6 Time history of the normal traction Tn used in the transient

dynamic analysis of Section 5.7.2 ... 195

5.7 A simulation playback of dynamic responses of the turbine 12-

bladed disk in FRANSYS .. 197

6.1 Interactive monitoring and steering of parallel analysis 213

xii

Chapter I

Introduction

In recent years the rapid development of novel computer hardware

environments with parallel processing capabilities has created new

opportunities for revolutionizing engineering computing. In computational

structural dynamics, the utilization of these powerful systems may lead to

increasingly complete and sophisticated simulations of advanced structural

systems. Through such simulations, better engineering understanding,

analysis, and design can then be achieved. The realization of advancing

engineering simulations in the novel computing environments, however,

often requires the difficult tasks of designing new computer codes or

adapting old ones. In addition, development of new solution strategies is-

often required to take full advantage of these new computers. This thesis

focuses on one aspect of advances in computational structural dynamics --

the development, testing, and evaluation of coarse-grained, parallel-

processing strategies for nonlinear dynamics simulations of large-scale

practical structural problems. The work also presents an integration of the

latest advanced computing environments, data structures, and interactive

computer graphics to facilitate more efficient and powerful simulations of

nonlinear structural dynamics.

Computing environments with parallel processing capabilities include

shared-memory supercomputers (e.g., Cray Y-MP and IBM 3090), shared-

memory intermediate-sized or personal supercomputers (e.g., Convex and

Alliant), distributed-memory parallel or multiprocessor computers (e.g.,

2

Intel iPSC and Connection Machine), and a network of high performance

workstations (e.g., Apollo/HP 9000 Series 700, IBM RS/6000, and

DECsystem 5000). The supercomputers are very powerful machines;

however, they are expensive and are not easily accessible in the same sense

as traditional batch-oriented mainframes. On the other hand, engineering

workstations which are not as powerful as supercomputers are more

affordable and cost-effective. With the growing availability of workstations

in the workplace, it is increasingly feasible for engineers to utilize networks

of workstations to achieve improved turnaround through parallel

computations for computationally intensive simulations such as nonlinear

dynamic analysis (Hajjar and Abel 1988, 1989a). This coarse-grained,

distributed-memory networked workstation environment is the principal

parallel processing environment considered in this thesis.

1.1 Background

The work reported in this thesis is a continuation of the research

conducted by Dr. Jerome F. Hajjar (1987, 1988) at Cornell University.

However, due to the rapid advance of computer technologies, there have

been several new developments in computational structural dynamics since

the time Hajjar finished his work in 1988. The exponential growth of

computer speed in the last few years has allowed engineers to conduct

increasingly complete dynamic analyses on more complicated engineering

problems. Recent progress in the area of high speed communication

networks (for example, FDDI as opposed to Ethernet) together with growing

body of software tools to support distributing computing, such as PICL

(Geist et al. 1991), Linda (Leler 1990), and ISIS (Birman et al. 1991), have

made network-based distributing systems a viable environment for

3

engineering computations. Advanced modelling and analysis tools based on

new software architecture, data structures, and computer graphics have

also been developed to aid engineers in all phases of dynamic simulations,

i.e., the data preparation, analysis monitoring, and result visualization.

The present work takes advantage of these new developments and further

addresses the parallel-processing strategies for nonlinear dynamics

simulations.

The major contribution of Hajjar's research to the present work is the

investigation and development of numerical time integration algorithms for

parallel processing. After re-evaluating these algorithms, this research

investigates and implements two parallel algorithms developed by Hajjar

for solutions of structural dynamics: the central difference algorithm (Hajjar

and Abel 1989a) and the domain decomposition algorithm (Hajjar and Abel

1988).

Using a prototypical environment consisting of one to four

VAXstation Irs under the VAXELN operating system, Haiiar has shown the

feasibility of utilizing networked engineering workstations as a parallel

computer to achieve improved turnaround for computationally intensive

simulations of structural dynamics. However, the performance of the

prototypical configuration was limited by the low computational speed of the

VAXstation II (less than 1 Mips) and the lack of generality and portability of

the VAXELN operating system. With the advance of computer technology

of individual workstations, the present work implements and evaluates

parallel algorithms in a more generally applicable and powerful computing

environment.

4

The computer network interface used in this research is Ethernet,

which is the same one used by Hajjar. However, faster networks such as

FDDI (Fiber Distributed Data Interface) have recently become available.

The approximate communication speed of the FDDI is 100 Mbits per second,

which is one order of magnitude faster than Ethernet. Cornell's Program of

Computer Graphics (where the writer is carrying out this research) is also

in the process of installing the FDDI for its parallel processing environment

at the time of this writing (March 1993).

To take advantage of parallel processing in the finite element

analysis of structural dynamics, the finite element domain is usually

partitioned (or decomposed) into a number of subdomains which are

distributed among the processors and solved concurrently. The key problem

of this approach is how to partition the domain to achieve well-balanced

workload distribution among processors and to minimize the amount of

interprocess communication so that significant speed-up can be obtained in

the parallel analysis. Hajjar has addressed this problem by developing a set

of tools with interactive computer graphics to help manual partitioning of

the structural domain. However, even with the aid of interactive computer

graphics, manual partitioning may be difficult for large finite element

meshes with arbitrary geometries. The present work investigates and

improves techniques of automatic domain partitioning to effect load-

balancing among processors. Graphics tools are also provided for manual

partitioning and for examining and modifying results of automatic

partitioning.

The application problems of structural dynamics studied by Hajjar

focus on the analysis of three-dimensional steel frames subject to

5

earthquake loading. Beam-column elements, which are 1-D elements, were

used for modelling frames. Both geometric and material nonlinearities were

considered. In addition to beam-column elements, the present work uses a

2-D shell element to model floor flexibility in the dynamic analysis of steel

frames. However, only geometric nonlinearity is considered in the shell

elements. A new emphasis in the present work has been on application

problems dealing with finite element analysis of rotating turbine bladed-

disk assemblies experiencing tip rubs. Solid elements (3-D elements) are

used to represent the disks and blades. Both rotational and geometric

nonlinearities are included in the finite element formulation to derive the

governing equations of motion.

1.2 Objectives

The principal objective of this research is to develop, test, and

implement coarse-grained, parallel-processing strategies for nonlinear

dynamics simulations of practical structural problems. The parallel-

processing strategies addressed include (a) numerical algorithms for

parallel nonlinear solutions and (b) techniques to effect load-balancing

among processors.

The second objective of the research is the application of finite

element techniques for rotational dynamics. Emphasis is on the structural

dynamics of rotating turbine bladed-disk assemblies.

The use of advanced computing environments, data structures, and

interactive computer graphics for a more efficient and powerful simulation

of nonlinear structural dynamics is the third objective of this research.

6

1.3 Scope

The scope of the research reported in this thesis may be summarized

by the three main tasks involved, each paralleling one of the principal

objectives. The first and primary task addresses parallel-processing

strategies for finite element analysis of structural dynamics. The second

one focuses on finite element approaches for modelling and analyzing

problems of rotational as well as non-rotational dynamics although

emphasis is on the rotational dynamics. The third includes the

development of an integrated parallel analysis system. A more detailed

discussion of these tasks is provided in the following sub-sections.

1.3.1 Parallel Processing Strategies

The paral!el-processing strategies addressed include numerical

algorithms for parallel nonlinear solutions of structural dynamics and

techniques to effect load-balancing among processors. Although these

strategies are suitable for a variety of machine environments sharing a few

common features, the major configuration investigated is a coarse-grained,

distributed-memory system in a message-passing environment, in

particular, networked engineering workstations, each with large memory

and one or more powerful processor.

For transient dynamic analyses, the numerical algorithms

investigated include both parallel explicit and implicit time integration

algorithms. As mentioned earlier, the present work investigates and

implements the parallel central difference and parallel domain

decomposition algorithms proposed by Hajjar and Abel (1989a, 1988) for

explicit and implicit dynamic analyses. For steady-state stress analyses of

7

rotating systems, a parallel static solution method is implemented using the

domain decomposition approach.

In this work, these parallel algorithms are implemented in a program

called ABREAST (Srivastav 1991; Aubert 1992), which is a batch finite

element analysis program for nonlinear structural dynamics. The

verification and evaluation of these algorithms are studied using a variety

of example problems.

To effect load-balancing among processors, the present research

focuses on the automatic domain partitioning techniques for parallel finite

element analysis of structural dynamics. The automatic partitioning

algorithms proposed by Farhat (1988), Malone (1988), A1-Nasra and Nguyen

(1991), and Simon (1991) are studied. Modified recursive spectral

partitioning algorithms are then proposed. In addition, interactive graphics

tools are developed to allow for manual partitioning and for examining and

modifying results of automatic partitioning.

These partitioning algorithms as well as graphics tools are

implemented in a program called PSAINT (Hsieh and Srivastav 1992), an

interactive program that performs domain partitioning on finite element

meshes. Comparative studies are conducted to evaluate and compare both

efficiency and effectiveness of these partitioning algorithms.

1.3.2 Finite Element Modelling and Analysis

The finite element method is employed to study structural dynamics

problems for the development, testing, and evaluation of parallel-processing

strategies addressed in this work. Two classes of structural dynamics

problems are investigated. The firstone includes framed structures with

flexiblefloorssubjectedto seismic loading,and the second includes rotating

turbine bladed-disk assemblies experiencingtiprubs.

For modelling and analysis of framed structures with flexible floors,

the beam-column and shell elements already existing in the finite element

library of ABREAST are employed. Geometric nonlinear analysis is

conducted.

For modelling and analysis ofrotatingbladed-disk assemblies, a solid

element is implemented in ABREAST. Both rotational and geometric

nonlinearitiesare considered in the finiteelement formulation of equations

of motion. Two finite element approaches for handling rotational

nonlinearitiesare also implemented in ABREAST and compared through

numerical studies.

Both modal vibration and transient dynamic analyses of rotating

bladed-disk systems are investigated and discussed. In the modal vibration

analysis, a steady-state stress analysis is followed by an eigensolution. A

static solution capability, which was previously not provided by ABREAST,

is implemented in ABREAST for the steady-state analysis. In addition,

verification studies are conducted to evaluate the finite element rotational

dynamics and formulations implemented in ABREAST.

1.3.3 An Integrated Parallel Analysis System

An integrated parallel analysis system is developed to help (a)

evaluate the parallel strategies investigated, (b) verify the finite element

approaches employed, and (c) demonstrate how advanced computer

- 9

technologies can assist engineers in parallel dynamic simulations. The

system integrates four computer programs: BASYS (Srivastav and Abel

1990; Srivastav 1991) and FRANSYS (Wawrzynek et al. 1988; Martha 1989;

Wawrzynek 1991) for three-dimensional modelling and visualization;

PSAINT for finite element domain partitioning; and ABREAST for

nonlinear dynamic solutions.

BASYS is primarily designed for modelling and visualization of

buildings and other framed structures. FRANSYS was originally developed

to model general, 3-D fracture processes in arbitrarily shaped solids. It has

been extended to provide general tools for modelling and simulation of

complex 3-D solid models. Both BASYS and FRANSYS provide the analyst

an efficient way of modifying and manipulating the structural data through

the use of a radial edge data representation (Weiler 1986, 1988) and a

hierarchical modelling scheme. They also provide a convenient means of

displaying the structure model and visualizing the response of the structure

using interactive computer graphics. In the present work, graphics tools for

visualization of dynamics simulations are implemented in FRANSYS.

PSAINT serves as an interface between BASYS/FRANSYS and

ABREAST. Its primary job is to partition finite element domains for

parallel analysis. Both automatic and manual partitioning tools are

provided. It also collects the results of parallel analysis for simulation

playback in BASYS/FRANSYS.

ABREAST was originally developed for analyzing framed structures

consisting of either truss or beam-column elements and has been extended

to include a nine-node Lagrangian shell element for modelling floors, walls,

10

or panels. It is capable of both geometric and material nonlinear transient

dynamic analyses. In the present research, a twenty-node brick solid

element is implemented in ABREAST for modelling rotating bladed-disk

systems. Parallel explicit and implicit time integration methods as well as

parallel steady-state (static) solution methods are also implemented using a

multiple-instruction, multiple-data (MIMD) algorithm.

1.4 Organization

The organization of this thesis is briefly described in this section.

Chapter 2 addresses the finite element approach used for modelling

and analysis of framed structures and rotating bladed-disk assemblies. The

selection of finite elements for modelling purposes is discussed. Equations

of motion for both rotational and non-rotational dynamics are formulated.

Two approaches are presented to account for rotational nonlinearities in

rotating bladed-disk systems. Numerical comparisons between these two

approaches are also conducted. Finite element analyses of both framed

structures and rotating bladed-disk assemblies are discussed. In addition,

verification studies are reported on both finite elements and analysis

algorithms implemented in ABREAST for this work.

Chapters 3 and 4 investigate parallel processing strategies which

include parallel nonlinear solution algorithms for structural dynamics and

domain partitioning techniques for load-balancing among processors. In

Chapter 3, the parallel computing environment used in the present work is

described first. Then, parallel solution algorithms for transient dynamics

analysis as well as steady-state analysis are evaluated. The algorithms

selected and implemented in this research are discussed and their

- 11

effectiveness is studied using numerical examples. In Chapter 4, load-

balancing techniques based on domain partitioning are reviewed and

investigated. Algorithms both proposed by previous researchers and

developed in this work are studied and compared. The effectiveness of these

algorithms for parallel finite element dynamic analysis is also discussed.

A parallel analysis system integrated in this research is presented in

Chapter 5. An overview of the system is first described. The

implementation and application of the system for each phase of parallel

simulation are discussed. In addition, application examples that examine

and demonstrate the efficiency and flexibility of the parallel analysis system

and the parallel processing strategies developed in this research are

included.

Chapter 6 summarizes and concludes the work reported in this

thesis. Suggestions for future work are also provided.

Chapter 2

Finite Element Modelling and Analysis

Two classes of structural dynamics problems are studied for the

development, testing, and evaluation of parallel-processing strategies

addressed in this thesis. The firstone includes framed structures with

flexiblefloorssubjected to seismic loading, while the second one includes

rotatingturbine bladed-disk assemblies experiencing tiprubs. This chapter

discusses the finiteelement approach employed in the present work to

model complex structuralgeometries and material properties,to account for

various nonlinearities,and to formulate the governing equations of motion

forthese problems.

In this work, the finite element analysis capabilities of ABREAST,

which has been briefly discussed in Section 1.3, are extended to model and

analyze rotating turbine bladed-disk assemblies as well as other rotating or

nonrotating solid structures. The implementation and verification of these

new capabilities are discussed in this section. Another enhancement of the

analysis capability of ABREAST is the implementation of parallel analysis

algorithms, which is discussed in the next chapter.

2.1 Modelling of Framed Structures with Flexible Floors

The present work uses the pre-existing elements in the finite element

library of ABREAST to model framed structures with flexible floors. To

model beams and columns of steel frames, the beam-column element in

ABREAST is used. To model flexible floors in steel frames, the nine-noded

12

13

Lagrangian shell finite element with 2x2 Gauss integration in ABREAST is

employed.

The beam-column element is a line element with twelve degrees-of-

freedom, consisting of three translations and three rotations at each end of

the element. Bernoulli-Euler beam theory (Ugural and Fenster 1981) is

employed in the formulation of the element stiffness with common

assumptions, such as homogeneous and isotropic material, plane sections

remain plane, doubly symmetric prismatic sections with no cross section

distortion, and small strain theory. In linear elastic analyses, the element

stiffness is a well known one (see, for example, McGuire and Gallagher

1979). For second order elastic analyses, geometric nonlinearities are

handled through the use of an updated Lagrangian formulation and a

geometric stiffness matrix (Argyris et al. 1979). For inelastic analyses,

material nonlinearities are included through the use of a concentrated

plasticity model based on the bounding surface approach and the plastic

hardening reduction matrix derived by Hilmy (1984; Hilmy and Abel 1985).

The nine-noded Lagrangian shell finite element was originally

developed for full nonlinear static analysis by White and Abel (1990) and

further developed for geometric nonlinear dynamic analysis by Srivastav

(1991). A projection operator is used to stabilize spurious zero energy modes

associated with reduced integration. In elastic analyses, a two-point Gauss

integration is performed through the thickness of the element for stiffness

computation. For second order elastic analyses, geometric nonlinearities

are handled through the use of an updated Lagrangian formulation and the

geometric stiffness matrix derived by White (1988). For dynamic analyses,

the diagonal element mass matrix formulated by Srivastav (1991) is used.

14

The verification of the beam-column element for dynamic analysis

has been conducted by Hilmy (1984). The use of the nine-noded shell

element for dynamic analysis has been verified by Srivastav (1991).

Therefore, no further verification is conducted in this work for these two

elements.

2.2 Modelling of Bladed-disk Assemblies

To achieve high performance and efficiency, advanced turbine blades

have been designed to have complex geometry: thin, low aspect ratio,

cambered, twisted, and swept. Some of these geometric parameters have

been shown to have significant influence on the dynamic characteristics of

blades (for example, Petricone and Sisto 1971; Sreenivasamurthy and

Ramamurti 1981). Therefore, to obtain satisfactory results in the dynamic

analysis of turbine blades, it is important to model complex blade geometry

as accurately as possible.

Because of the ability to model complex structural geometry and

properties along with the advancement in computer technology, the finite

element method has been recognized as a promising and powerful technique

for the analysis of turbine bladed-disk assemblies as well as other

configurations. Therefore, it will be employed in this research to model the

turbine bladed-disk assemblies.

2.2.1 Review of Previous Research

Considerable research on finite element modelling of turbine bladed-

disk assemblies has been conducted. A brief review on some of these

research is given below. The turbine bladed-disk assemblies considered in

w

15

this research consist of two major components: blades and disk. Different

modelling strategies for these components in some of the previous research

are reviewed.

2.2.1.1 Modelling of Blades

Turbine blades have been modelled using beam, plate,shell,and solid

finiteelements. In this section, modelling of blades using these finite

elements are brieflyreviewed. For detailed descriptionand formulation of

these elements, standard textbooks (forexample, Zienkiewicz and Taylor

1989; Bathe 1982; Cook et al.1989) should be consulted.

Beam Finite Elements

Developments of beam finite elements for pretwisted blades have

been reviewed by Sisto and Chang (1984). They also developed a pretwisted

beam element for use in vibration analysis. Recently, Abbas et al. (1987)

developed a thick, tapered, pretwisted beam element to study blade

vibration with root flexibility effect.

For blade modelling, the use of beam elements is simpler and

requires fewer degrees of freedom than elements of other types. However,

beam elements are not suitablefor modelling blades with low aspect ratio

and a wide range ofconfigurations.

Plate Finite Elements

Some applications of plate elements to rotating blade problems have

been reported in the literature. For example, Dokainish and Rawtani (1971)

used a triangular plate element with both in-plane and bending stiffness to

16

determine the natural frequencies and the mode shapes of a rotating

cantilever plate. This plate element is a superposition of a plane-stress

element with linear displacement order and a plate-bending element with

an eight term, cubic polynomial displacement order. In addition,MacBain

(1975) used a quadrilateralplate bending element for vibration analysis of

twisted cantileverplates.

The aforementioned plate elements are simple to formulate, easy to

use, and require only a simple geometric description. However, several

shortcomings are present in the application of the plate element to model

blades with shell-likecomplex geometry (Gallagher 1976):

a) The element is unable to model the curved shell surfaces. This

may introduce spurious "discontinuity"bending moments at the

element juncture lines,and thus many elements may be needed to

adequately model shellsurfaces.

b) The coupling of membrane and bending within the elements isnot

included. This isdeparture from the true behavior.

c) When all elements adjacent to a node are coplanar, special

treatment isneeded to avoid a singular globalstiffnessmatrix.

Shell Finite Elements

Some previous studies of rotating structures using shell finite

elements have been reviewed briefly by Sreenivasamurthy and Ramamurti

(1981). A three-noded triangular shell element has also been used by them

and later by Omprakash and Ramamurti (1989, 1990a, 1990b) for blade

modelling. Recently, a ten-noded triangular shell element has been used to

17

model cambered and twisted fan blades in vibration analysis (Khader and

Abu-Farsakh 1990).

Employing standard tests proposed by MacNeal and Harder (1985),

McGee (1987) has compared the overall performance of all shell elements in

NASTRAN. Among other shell elements in NASTRAN, the three node

triangular (TRIA3) and the four node quadrilateral (QUAD4) shell elements

have then been recommended for practical blade applications.

Solid Finite Elements

Bossak and Zienkiewicz (1973) have proposed isoparametric solid

elements with reduced integration for modelling turbine and compressor

blades. Several tests have also been performed to demonstrate the

versatility of these elements to model both "thick" and "thin" blades in the

analysis of rotating machinery. The only limitation pointed out on the

aspect ratio of these elements is that the ill-conditioning is liable to occur

with a 48-bit word for length/thickness ratio larger than 100. Recently,

Kubiak et al. (1987) have used the eight node solid element for the stress

analysis of the blades.

Employing standard tests proposed by MacNeal and Harder (1985),

McGee (1987) has compared the overall performance of all solid elements in

NASTRAN. Among other solid elements in NASTRAN, the twenty node

isoparametric brick element with reduced integration has been highly

recommended for analysis of thin and moderately thick blades.

18

2.2.1.2 Modelling of Disks

The assumption of rigid disks is commonly used in the analysis of

turbine bladed-disk systems. In modern turbine engines designed for

aerospace vehicles,however, blades are usually attached to a relatively

flexibledisk to meet stringentweight requirements. Considerable coupling

between blades and the disk may arise and the validity of rigid disk

assumption is questionable. Mota Soares et al.(1976) has pointed out the

considerable effect of disk flexibilityon the dynamic characteristics of

turbine blades. Recent research conducted by Leissa et al.(1984) and Ernst

and Lawrence (1987) has also shown that the flexibilityof the blade

attachment to the disk has significant effect on the dynamic characteristics

of the bladed disk.

Four types of finite elements, annular, sector, shell, and solid

elements, have been developed to take into account the flexibility of turbine

disks. In this section, modelling of turbine disks using these finite elements

is briefly reviewed.

Annular Finite Elements

An extensive literature survey of the development of annular finite

elements for disk modelling has been presented by Mota Soares and Petyt

(1978a). Annular elements are semi-analytical elements. In their

formulation, trigonometric functions expressed by Fourier series are used to

represent the displacements in the angular direction, while polynomial

functions are used to approximate displacements in the radial direction. By

employing the thick plate theory, one may consider the effects of shear

19

deformation and rotary inertia. The element thickness may be constant,

linear, or parabolic in the radial direction, but only constant in the angular

direction.

The use of the annular element has the advantage of reducing

considerably the number of degrees of freedom in the analysis and leads to

computational efficiency. However, its application to bladed disk analysis is

limited due to the difficulties involved in coupling annular elements with

turbine blades modelled by other finite elements.

Sector Finite Elements

Previous research on development of sector finite elements for disk

modelling has been reviewed by Mota Soares and Petyt (1978a). Unlike

annular elements, the displacements of sector elements are approximated

by two-dimensional functions. Although a larger number of degrees of

freedom is used in disk modelled by sector elements than in a corresponding

disk modelled by annular elements, the sector element models offer more

flexibility in coupling to blades modelled by other finite elements in bladed

disk analysis.

Shell Finite Elements

Omprakash and Ramamurti (1989, 1990a, 1990b) have used a three

node triangular shell element to model disk for a variety of bladed disk

analyses. This shell element has six degrees of freedom per node. The disks

modelled by Omprakash and Ramamurti are thin disks in which the ratio of

disk thickness to disk radius ranges from 0.02 to 0.05. Therefore, further

research may be needed to justify the use of this element for thick disks. In

20

addition, special treatments are usually required for coupling this element

with turbine blades modelled by not only other finite elements but also the

same element if the angle of attack of the blade is not zero.

Solid Finite Elements

Hinton and Benson (1976) have developed an isoparametric parabolic

solid element to study the vibrations of disks. Recently, Midturi et al.

(1987) have used the standard eight node isoparametric solid brick elements

(HEX8 in NASTRAN) to model disks in analysis of flexible bladed disk

assemblies. Solid elements are easy to use and flexible enough to model

disks of various configurations. They can be used to model the whole

turbine bladed-disk assemblies and require no special treatments at the

blade-disk junction (and at the disk-shaft junction if the shaft is also

modelled).

2.2.1.3 Modelling of Bladed Disk

Various modelling approaches have been proposed to account for the

coupling between blades and disk. Mota Soares and Petyt (1978b) have

used the sector element and the eight node superparametric thick shell

element to model disk and blades, respectively. Midturi et al. (1987) have

modelled the blades using the plate element and the disk using the eight

node solid element. In the above two approaches, the compatibility between

blades and disk is achieved by means of multi-node constraints. Recently, A

three node triangular shell element has been employed by Omprakash and

Ramamurti (1989, 1990a, 1990b) for modelling both blades and disk. The

blade and disk attachment is established by a set of constraint equations

obtained by the Love-Kirchhoff hypothesis.

21

2.2.2 Present Approach

As discussed in previous section, the beam and plate elements are not

capable of modelling a wide range of blade configurations. The annular

elements are difficult to couple with other finite elements for modelling

practical bladed disks. In addition, both annular and sector elements are

special-purpose elements. The limited applications of these elements in

modelling only disk-like structures do not serve well the purpose of

development of the general-purpose finite element system targeted in this

research.

Therefore, shell and solid elements are the two candidates for

modelling bladed disks in this research. For shell elements, the robust and

versatile nine-noded Lagrangian element already existing in the finite

element library of ABREAST has been the leading candidate. This element

was originally developed by White and Abel (1990) for nonlinear static

analysis of structural steel sub-assemblages. The accuracy and robustness

of this element has been demonstrated by White and Abel (1989). Recently,

this element has been further developed and used in nonlinear dynamic

analysis to study the effects of floor flexibility on seismic response of

buildings (Srivastav 1991). For solid elements, the twenty node

isoparametric brick element with reduced integration recommended by

McGee (1987) has been considered.

With the consideration of shell and solid elements as possible choices

for modelling purposes, three possible modelling approaches are considered

in this research. They are (1) the use of shell elements for blade modelling

and solid elements for disk modelling, (2) the use of shell elements for both

22

blade and disk modelling, and (3) the use of solid elements for both blade

and disk modelling.

The first approach requires the use of two different types of elements

and special treatment in the region of blade and disk attachment. The

second and third ones both provide a unified modelling approach while the

use of constraint equations to establish the compatibility between blades

and disk is required in the second one. In addition to the simplicity of the

third approach, the solid elements are less complicated than shell elements

and easy to use. They have been shown to be capable of reproducing plate

and shell behavior accurately and economically in analysis of several blade

structures (Bossak and Zienkiewicz 1973). A thorough evaluation of

available published results for the static and dynamic benchmark tests

(especially the free vibration tests) of shells and solids also led to the choice

of solid elements. Moreover, the wide range of applications of the solid

element in finite element analysis serves very well the purpose of

development of the general-purpose structural dynamics simulator targeted

in this research.

As a result of the above consideration, the twenty node isoparametric

brick element with reduced integration is selected to model all components

of turbine bladed-disks studied in the present work. The element is then

implemented in the finite element library of ABREAST.

2.2.3 Verification Studies

Three example problems are used to verify the implementation of the

twenty node isoparametric brick element in ABREAST for modelling

turbine bladed-disks. They are free vibration analyses of a cantilever beam,

23

an annular plate, and twisted cantilever parallelepipeds. The numerical

results from ABREAST are compared with those reported by previous

researchers. All analyses performed in the present research use a) twenty-

node brick elements with reduced integration, b) a lumped mass matrix

formulated using the HRZ lumping scheme with full integration (Cook et al.

1989), and c) a subspace iteration method (Lin 1980) for frequency

computations.

Free Vibration of a Cantilever Beam

The natural frequencies of a cantilever beam were calculated by Petyt

(1990) using twenty-node solid finite elements. Figure 2.1 shows the

dimensions and properties of the beam. Thirty-six elements were used in a

2 x 3 x 6 mesh. (Note that I x m x n denotes the number of elements in the

x, y, and z directions, respectively.) A consistent mass matrix was employed

in the vibration analysis. The computed natural frequencies of the beam

were compared with results based on slender beam theory (Johnson and

Field 1973).

Y

,x ;61
1/o.__3om

,-_ m
11

E=2.068x10 N/m 2

V=0.3

P= 8058 Kg/m 3

Figure 2.1 A cantilever beam used for vibration analysis

m

24

In the present research, three vibration analyses with different

meshes are performed. As shown in Table 2.1, the results obtained by the

present approach are in good agreement with those reported by Johnson

and Field, and Petyt. The slight differences between the present results

and those of Petyt are mainly due to the different mass matrices used.

Table 2.1 Comparison of natural frequencies (Hz) of a cantilever beam

obtained by the present approach with those reported by Johnson and Field

(1973), and Petyt (1990)

mode mode

no. description

first bending
1 in

x direction

2

3

first bending
in

direction

second bending
in

x direction

Johnson

& Field

18.6

37.3

Petyt

18.6

36.5

present analyses

116.8 114.3

2x3x6 2x3x8

18.3 18.3

36.4 36.5

109.1 110.2

2x3x12

18.4

36.6

110.9

Free Vibration of an Annular Plate

Figure 2.2 shows an annular plate which is clamped at the inner edge

while free at the outer edge. Petyt (1990) computed its natural frequencies

using a two-dimensional finite element analysis with four Q8 elements. The

results were compared with those reported by Rao and Prasad (1975) using

plate theory. Irie et al. (1982) pointed out that Rao and Prasad's results

were "incorrect, because there are probably some mistakes in analytical and

computational process". They then presented their results based on the

Mindlin plate theory.

- 25

The present research uses two different meshes, as shown in Fig. 2.3,

in the vibration analysis. (Note that 1 x m x n denotes the number of

elements in the radial, circular, and thickness directions, respectively.) The

present results and those reported by Rao and Prasad, Petyt, and Irie et al.

are compared in Table 2.2. It can be seen that the results agree closely.

However, the present results are closer to the results of Irie et al. than to

those of Rao and Prasad.

inner radius = 0.3 m
outer radius = 1.0 m

thickness = 0.2 m

clamped at the inner edge
free at the outer edge

E = 196 x 109 N/n_

v=0.3

p = 7800 Kg/n_

Figure 2.2 A free-clamped annular plate used for vibration analysis

(a) 4 x 12 x I mesh (b) 4 x 24 x 1 mesh

Figure 2.3 Finite element meshes used in vibration analysis of an annular

plate

26

Table 2.2 Comparison ofnatural frequencies(Hz) of a free-clamped annular

plate obtained by the present approach with those reported by Rao and

Prasad (1975),Petyt (1990),and Irieet al.(1982)

nodal

circles

0

nodal

diameters

0

0 I

0 2

Rao &

Prasad

312

Petyt

(2D FEM)

305

Irie

et al.

296

present analyses

4x12x1

302

4x24xl

299

276 290 280 286 283

323 341 333 332 329

Free Vibration of Twisted Cantilever Parallelepipeds

The natural frequencies oftwisted cantileverparallelepipeds,such as

the one shown in Fig. 2.4,have been a great interestof many researchers.

Recently, after giving an extensive review of previous research, McGee

X

Z

a

y

a/b = 1.0

=30 °
E = 196 x 10 9 S/m 2

V =0.3

p = 7800 Kg/m 3

Figure 2.4 Twisted cantilevered parallelepipeds used in vibration analysis

27

(1992) used the 3-D Ritz method to determine the natural frequencies of a

number of twisted cantilever parallelepipeds. The Ritz results were then

compared with experimental results and those obtained by various 3-D

finiteelement analyses.

In the present study, the twisted cantilever parallelepipeds shown in

Fig. 2.4 are analyzed using 3-D twenty-node solid elements with 6 x 6 x 1

and 10 x 10 x 1meshes. (Note that I x m x n denotes the number of

elements in the spanwise, chordwise, and thickness directions, respectively.)

In Table 2.3, the present results are compared with four sets of results,

which are listed as cases A-D. Results obtained in the present study are

listed as cases E and F. The thickness-independent frequency parameters,

c0b(p/E)I/2,are compared. (Note that cois the circular frequency of vibration.)

for thick and thin cantilevered parallelepipeds (b/h ---5 and b/h = 20,

respectively.) Case A listsexperimental results reported by MacBain et al.

(1985). In case B, 3-D Ritz method were employed using 6 x 4 x 4

polynomials in the x, y, and z directions, respectively McGee (1992).

Standard eight- and sixteen-node isoparametric solid elements were

employed in cases C and D, respectively (Kielb et al. 1985; Leissa et al.

1984). In case C, a 10 x 10 x 1 mesh and a lumped mass matrix were used.

while a 14-point integration rule on a 24 x 12 x 1 mesh and a consistent

mass matrix were used in case D.

For most of the modes calculated, the present results agree with the

3-D Ritz results closer than the finite element results of cases C and D

although they all agree closely. The present results are also in good

agreement with the experimental results (case A) for the thin Co/h --20)

twisted parallelepiped model. However, for thicker model, the present

28

results as well as results of cases B-D do not agree closely with the

experimental results. As pointed out by McGee (1992), this is mainly due to

imperfect clamping of the specimen during testing.

Table 2.3

e0b(p/E)_

with those reported by previous researchers (a/b = 1, ¢ = 30 °)

Comparison of thickness-independent frequency parameters,

of cantilevered parallelepipeds obtained by the present approach

modeno. I 1 I 2] 3 4 5161718

A 0.170 0.418 0.366 0.796 --- 1.283

B 0.196 0.464 0.632 1.063 1.409 1.428 1.567 1.779

b/h =5 C 0.194 0.446 0.628 0.990 1.217 1.313 1.560 1.744

D 0.217 0.479 0.640 1.313 1.453 1.502 1.574 1.789

E 0.194 0.446 0.623 1.005 1.249 1.336 1.558 1.712

F 0.193 0.450 0.625 1.018 1.278 1.362 1.560 1.732

A 0.048 0.198 0.252 0.383 0.474 0.593 0.757 --

B 0.050 0.214 0.272 0.387 0.469 0.620 0.681 0.695

b/h=20 C 0.051 0.215 0.276 0.392 0.505 0.721 0.795 0.888

D 0.057 0.220 0.305 0.431 0.537 0.710 0.875 0.968

E 0.050 0.209 0.269 0.385 0.492 0.677 0.770 0.847

F 0.050 0.212 0.271 0.398 0.505 0.688 0.797 0.864

A = experimental results (MacBain et al. 1985)

B = 3-D Ritz method (McGee 1992)

C = 3-D finite elements - 8-node solid (Kielb et al. 1985; Leissa et al. 1984)

D = 3-D finite elements - 16-node solid (Kielb et al. 1985; Leissa et al. 1984)

E = present 20-node solid elements (6 x 6 x 1 mesh)

F = present 20-node solid elements (10 x 10 x I mesh)

29

2.3 Formulation of Equations of Motion

The finite element formulation of equations of motion for dynamic

analysis of both nonrotating and rotating systems is presented and

discussed in this section. Since the dynamics of nonrotating objects is just a

special case of that of rotating objects, the formulation presented here

targets the dynamic analysis of rotating systems, in particular, rotating

bladed-disks experiencing tip rubs.

For the clarity of derivation and the convenience of discussion, the

equations of motion are first derived for an elastic analysis which accounts

for only nonlinearity associated with kinetic energy of the rotating system.

Then, by using the updated Lagrangian approach, the analysis is extended

to take into account large displacements (but small strains) of flexible

turbine blades, which is the geometric nonlinearity associated with

potential energy of the system.

2.3.1 Coordinate Systems

Figure 2.5 shows two Cartesian coordinate systems used in the

formulation, an inertial coordinate system (X-Y-Z) which is absolutely fixed

in space and a undeformed body-fixed coordinate system (x-y-z) which is

fixed to and rotating with the undeformed structure. The origin of x-y-z

system is denoted as O'. For the rotating bladed-disk system studied in this

work, it represents the center of the disk. Point i is the undeformed position

of a typical material point in a finite element of the model, while point i' is

the deformed position of the material point. Vectors Pi and R are position

vectors of points i and O', respectively, observed from the X-Y-Z system, and

vectors ri and ui are position and displacement vectors, respectively, of

3O

point i observed from the x-y-z system. Vectors (o and (z are the rotational

velocity and acceleration, respectively, of the x-y-z system with respect to

the X-Y-Z system. It should be noted that all vectors used in the following

formulation are referred to the rotating x-y-z system.

2.3.2 Assumptions

The following assumptions are used in the derivation of equations of

motion for the rotating bladed-disk system considered in the present work:

(I) there is no translational motions of the disk center of the bladed-

disk system (i.e., rigid shaft and bearings are assumed and vector

R in Fig. 2.5 is a constant vector), and

(2) the structure may undergo large deformations but strains remain

small and the material remains elastic.

Z

r i

F.E. (j)

Y

Figure 2.5

X

_Y

X

X-Y-Z: Inertial coordinates

x-y-_ Undeformed body-fixed coordinates

Coordinate systems used in finite element formulation

w

31

2.3.3 Rotational Nonlinearities

Nonlinearities due to rotational effects,such as centrifugal and

Coriolis effects,are considered in this section for an elastic dynamic

analysis. Two approaches are presented in this thesis to incorporate this

nonlinearity into equations of motions of the rotating system. They are

called by the writer consistentmass and lumped mass approaches. The

consistent mass approach treats the structure as a continuum with mass

points uniformly distributedin the structure,while the lumped mass treats

the structure as a collectionof discreteconcentrated mass points.

It should be noted that the consistentmass approach presented here

is general for all types of finiteelements. The lumped mass approach

presented here, however, isonly applicabledirectlyto finiteelements with

merely translationaldegrees of freedom, such as truss and solidelements.

The extension of the lumped mass approach for finiteelements with both

translational and rotational degrees of freedom is briefly discussed in

Section 2.3.3.2.

2.3.3.1 Consistent Mass Approach

In the displacement-based finite element approximation, the

displacement field of an element is assumed as

{u}= [N]{q} (2.1)

in which [N] is the shape function for displacements and {q} is the nodal

displacement vector of the element, while the element geometry field is

assumed as

32

{r} = [N']{c} (2.2)

in which IN'] is the shape function for coordinates and {c} contains the nodal

coordinates of the element. For isoparametric finite elements, IN'] and [IN]

are identical. The strain-displacement relationship is expressed as

{E} = [B]{q} (2.3)

in which [B] is the strain-displacement matrix.

relationshipisexpressed as

The stress-strain

{0'} = [C]{E} (2.4)

in which [C] isthe material stiffnessmatrix.

As shown in Fig. 2.5, the instantaneous position vector of a material

point in the element is

{P}= {R} + {r}+ {u} (2.5)

and the corresponding absolute velocityvectoris

{v} = {_} + {CO}x ({r} + {u}) = {u} + [_] ({r} + {u}) (2.6)

in which

I°" oI[_] = o z 0 " x

-COy COx

Note that 0} = 0 due to the first assumption, and the components in {CO}as

well as in [_] are function of time.

w

33

The kinetic energy of the element is

T = 2v p {v}T{v} d(vol) (2.7)

in which p is the density of the material.

expression of the kinetic energy becomes

From Eqs. (2.6) and (2.7), the

T = 2v p {tl}T{l:l} d(vol) + lv P {r}T[_2]{r}d(v°l)

+ 2. v p {u)T[£12]lu}d(v°l) + v P {u}T[_]lr}d(v°l)

+ volP {r}T[,2]{u}d(vol) + vo_p {_}T[_]{u}d(vol) (2.8)

in which [_2] = [_]T[_].

(2.8), one has

After substituting Eqs. (2.1) and (2.2) into Eq.

T= 2vo_ p {q}T[N]T[N]{q} d(vol)+ lvol p {r}T[_2]{r}d(v°l)

+ 2v p {q}T[N]T[_2][N]{qld(v°l) + P {cl}T[N]T[_llrld(v°l)
V

+ volP {r}T[_2][N]{q}d(vol)+ vl

The potential energy of the element is

b

1 I {£}T{(_} d(vol)U = 2v

p {_l}T[N]T[_][N]{q}d(vol) (2.9)

(2.10)

34

From Eqs. (2.3), (2.4), and (2.10), the expression of the (geometrically linear)

potential energy becomes

U- lvo I {q}T[B]T[c][B]{q} d(vol)

Applying the Lagrange equation

d/_qq).___q+__q_=3T3U {FeXt}

one obtains the equations of motion for the element

[m]{_i}+ [Cc]{Cl}+ ([ke]+ [ka] -[kr]){q}+ {re}= {fext}

in which

[m] = element mass matrix = vol p [N]T[N] d(vol)

[Cc]= element Coriolis damping matrix = 2voI p IN]TIll]IN] d(vol)

[ke] = element elastic stiffness matrix = vol [B]T[c][B] d(vol)

[ka] = element centripetal stiffness matrix = vol p [N]T[A][N] d(vol)

[kr] = element centrifugal stiffness matrix = vol p [N]T[f_2][N] d(vol)

{fe} = element rotational force vector

= vol p [N]T[A][N']{c} d(vol) - vol p [N]W[_2][S']{c} d(vol)

(2.11)

(2.12)

(2.13)

{f ext} = element external load vector

35

and

I 0 "Otz _Y I
[A]--[_]= a z 0 -a x

-ay a x 0

If additional damping of the structural system is to be considered, it is

frequently modelled by an element equivalent viscous damping matrix, Icy],

which is added to the coefficient of the velocity term {el}.

After assembly, the final global equations of motion will be of the

form

[M]{Q} + ([Cv] + [Co]){_ + ([Ke] + [Ka]- [Kr]){Q} + {Fe} - {F ext} (2.14)

It should be noted that the formulation presented above is similar to

the one reported by Omprakash and Ramamurti (1989) except that the

assumption of constant co (rotational velocity vector) is not used in the

present formulation. The formulation is different from the one presented by

Davis (1989). In his approach, the system model is first discretized into

finite elements with either concentrated masses described by a lumped

mass matrix or distributed masses specified by a consistent mass matrix.

Using the generalized Newton's second law, Davis then derived the kinetic

equations of motion based on the already discretized finite element model

without the use of shape functions of the finite element for interpolating

fields within the element. However, the lumped mass approach presented

below is similar to his approach with a lumped mass matrix except that the

present formulation mainly considers finite elements with merely

translational degrees of freedom.

36

2.3.3.2 Lumped Mass Approach

Consider the finite element shown in Fig. 2.5 with masses already

lumped at its nodes. With the first assumption applied, the nodal

instantaneous position vector of the element is

{Pn} = {c} + {q} (2.15)

and the corresponding absolute nodal velocity vector is

{v n} = {6} + {co} x ({c} + {q})= {ci} + ([l_]) ({c} + {q})

in which ([f_]) is a block diagonal matrix with [f_]'s on the diagonal.

(2.16)

The kinetic energy of the element is

1
= _ {vn}T[mLJ{Vn}-T

in which [mL] is the lumped element mass matrix.

(2.17), the kinetic energy is expressed as

1 6 ,16 1 {c}T([i_l])T[mL.]([fl]){c}= _ {-,}T[m_{-,} +T

1 {q}T([n])T[mL]([n])lq} + {qlT[mL]([n]> {c}

+ {C}T<[nl)T[mL]<[al){q} + {cl}T[mL] ([al){q}

The potential energy of the element is

(2.17)

From Eqs. (2.16) and

(2.18)

U = 2vol {q}T[B]T[c][B]{q} d(vol) (2.19)

- 37

Applying the Lagrange equation (Eq. 2.12) and taking into account

equivalent viscous damping of the element, one has the equations of motion

for the element

[mL]{_} + ([Cv] + [cc]){el} + ([ke] + [ka]- [kr]){q} + {fe} = {f ext}

in which

and

[Cv]= element equivalent viscous damping matrix

[Cc]= element Coriolisdamping matrix = [mL]([fl]) - ([f_])T[mL]

= [mL]([f_]) + {[_])[m L]

[ke]= element elasticstiffnessmatrix = vol[B]T[c][B]d(vol)

[ka]= element centripetalstiffnessmatrix = [mL] ([A])

[kr]= element centrifugalstiffnessmatrix =([_])T[mL]([_])

{fe}= element rotationalforcevector

= [m L] ([A]){c} -([f_])Z[mL]([fl]){c}

{fext}= element external load vector

IE I}=

After assembly, the final global equations of motion will be of the form

[ML]{Q} + ([Cv]+[Cc]){_ + (EKe] ÷ [Ka]- [Kr]){Q}+ {Fe}- {Fext}

(2.20)

(2.21)

38

By assuming that the lumped masses have no rotational inertia (i.e.,

the mass associated with any rotational degrees of freedom is zero), the

above formulation can be easily extended for finite elements with both

translational and rotational degrees of freedom.

It can be seen that the lumped mass approach is computationally

more efficient than the consistent one. However, since the mass coupling

between element nodes is neglected in the formulation, this approach is not

expected to be as accurate as the consistent one. Later in this chapter,

numerical comparison between the lumped mass and consistent mass

approaches will be conducted to examine the questions of accuracy and

applicability of the lumped mass approach.

2.3.4 Geometric Stiffness Effects

As indicated by Lawrence and Kielb (1984), and Simo and Vu-Quoc

(1987), a geometric nonlinear analysis is usually required for accurately

predicting dynamic behavior of rotating blades. The present research

adopts the formulation presented by Bathe (1982) with slight modification

to account for geometric nonlinearity in the analysis using the updated

Lagrangian approach.

Figure 2.6 shows the motion of a typical body in the undeformed

body-fixed coordinate system (x-y-z). Configuration 0 (Co) represents the

original undeformed state; configuration 1 (C1) represents the current

(known) deformed state; and configuration 2 (C2) represents the desired

(unknown) deformed state.

- 39

Similar to the tensor notation used by Bathe (1982), both left

subscripts and superscripts on a symbol are used to denote the three

configurations shown in Fig. 2.6. A left superscript denotes in which

configuration the quantity occurs. The absence of such a superscript

indicates that the quantity is an increment between C1 and C2. A left

subscript denotes in which configuration the quantity is measured. In the

notation adopted, a comma denotes differentiation with respect to the

coordinate following; thus, for example, 2 _2ui
lUi_j = _}lxj

z'xs (2 x 2 x 2x _

t ,, -2, --ss

Configuration 2

r',<',<':<=)t,,. j
t 1, 2, _ Configuration 1

Configuration 0

°x °x °x3)1_ 2

u._ Y, X i

Figure 2.6 Motion of body in body-fixed undeformed coordinate system

The principle of virtual displacements gives the equilibrium of the

body expressed in the deformed configuration C2 being sought

2v21;ij 52eij 2dV = 2R

(2.22)

4O

in which 21;ij is the Cauchy stress tensor, _2eij is the variation of an

infinitesimal strain tensor, and 22R is the external virtual work, with

f2 V (2fs 5 2dS (2.23)2R ffi 2fib 52ui 2dV+j2 S _ 2ui

2fb and 2fs are the components of the externally applied body andin which

surface force vectors, respectively, and 52u i is the variation of the

displacement component.

In the updated Lagrangian formulation, Eq. (2.22) can be

transformed to (Bathe 1982)

t 2Sij _ll_ij ldV = _R (2.24)V

in which 21Sij is the 2nd Piola-Kirchhoff stress tensor and _ ll_ij is the

variation of the Green-Lagrange strain tensor. The incremental

decomposition of stress tensor is expressed as

2Sij - l'_ij + 1Sij
(2.25)

and the strain increments can be decomposed into

1Eij - leij + l'r_ij
(2.26)

in which leij and l_ij are the linear and nonlinear components of the

Green-Lagrange incremental strain tensor, respectively. Using the

linearized constitutive relationship between stress and strain increments,

- 41

1Sij= 1Cijkllekl
(2.27)

and substituting Eqs. (2.25) and (2.26) into Eq. (2.24), one obtains the

incremental equilibrium equation

+ ..5_vl_j
iviCijkliekl51% idV f_vi'C_j

ldV

= 2R- IivlTij 81% ldV (2.28)

ARer applying finite element approximation, one has the matrix form of the

incremental equilibrium equation (Bathe 1982)

(_[Ke] + _[Kg]){AQ} = 2R-_{F} (2.29)

in which

_[Ke] = elastic stiffness matrix =

f l V

_[BL] T I[C] _[BL] idV

_[Kg] = geometric stiffness matrix =

f i V

_[BNL] T 11!,'] _[BNL] ldV

{F} = internal force vector =

f i V

_[BL]T I{T} id v

and I[BL] and _[BNL] are linear and nonlinear

transformation matrices, respectively.

strain-displacement

42

Incorporating Eq. (2.29) into Eq. (2.14) for dynamic analysis, one then

has the equations of motion for geometric nonlinear analysis:

t _[Cc]) t+At{(_ (t t t t A i[M] t+At{{_}+ (t[Cv]+ + t[Ke] + t[Kg] + t[Ka] "t[Kr]){ Q}

t+At{FeXt } t+at,_,i-1 _{Fe} (_[Ka]-_[Kr])t{Q} (2.30)= . t+At_. J - .

for implicit time integration, and

t{_} ÷ (tt[Cv] + _[Cc]) t{(_} = t{FeXt }_{F} _{F e} (tt[-Ka] t[KrIt) t{Q}

(2.31)

for explicit time integration, in which [M] is the time-independent mass

matrix and the symbols t+At and t denotes the configurations at time t+At

and t, respectively. The right superscript in the implicit scheme indicates

the iteration number with respect to which the quantity is evaluated in the

iterative procedure.

In addition, for steady state stress analysis, the

equations are expressed as

(tt[Ke] + _[Kg]- _[Kr]){AQ}i = t+At{FeXt } . t+at'_'jt+atl_li'l. t{Fe}t +

equilibrium

_[Kr] t{Q}

(2.32)

For undamped vibration analysis and with the Coriolis matrix neglected,

the equations of motion have the form of

[M]{Q} + ([Ke] + [Kg] - [Kr]){Q} = {0} (2.33)

which is employed for vibration analysis after the determination of the

static stresses from Eq. (2.32).

It should be noted that Eqs. (2.30), (2.31) and (2.32) assume the use of

t
initial undeformed coordinates to evaluate t{Fe}. If the updated coordinates

w

43

are used (thisisusually the case in the updated Lagrangian approach), the
t

term (t[Ka] " tt[Kr])tlQ} in both Eqs. (2.30) and (2.31), and the term (tt[Kr])t{Q}

t
in Eq. (2.32) are automatically taken into account in tlFe} through the

process of coordinate update. In this case, however, it should be also noted

t
that the shape function in t{Fe} is different from the shape function in both

[[Ka] and tt[Kr] if the consistent mass approach is employed and the finite

element used isnot isoparametric.

For nonrotating systems (i.e., {co} = {0} in Eq. 2.6), the formulation

reverts to the standard forms, i.e., the equations of motions are

t t+At{(_} t tt+At{_} + t[Cv] + (t[Ze]+ t[Kg]){AQ}i

t+At{Fext} t+At{F}i-1= " t+At (2.34)

for implicit time integration, and

[M] t{_} + [[Cv] t{(_}= t{FeXt}.[{F} (2.35)

for explicittime integration,while for undamped vibration analyses, the

equations of motion have the form of

[WI]{_} + ([Ke] + [Kg]){Q} = {0}

2.4 Analysis of Framed Structures

(2.36)

The present work takes advantage of the capabilities already

provided in ABREAST for dynamic analysis of framed structures. These

capabilities include eigensolvers for undamped vibration analysis governed

by Eq. (2.36) and direct time integration solvers for transient analysis

governed by Eqs. (2.34) and (2.35). They are briefly discussed in this

section. More detailed descriptions have been provided by Srivastav (1991)

44

and Aubert (1992). The enhancement of the time integration algorithms for

parallel transient analysis in this work is discussed in Section 3.2.1.

For free vibration analyses, Eq. (2.36) is usually transformed into an

eigenproblem of the form (Bathe 1982)

= co2 (2.37)

in which [K] and [M] are the stiffnessand mass matrices of the system, and

0) and {_} are the eigenvalue and eigenvector corresponding to the angular

vibration frequency and mode shape of a mode. In ABREAST, two

eigensolvers are provided for solving Eq. (2.37). The first solver uses a

rational QL method (Wilkinson and Reinsch 1971) to solve the full set of

eigenvalues and eigenvectors of the system. The second one uses a subspace

iteration algorithm (Lin 1980) to extract only a desired number of low

modes of vibration. In the present work, the subspace iteration solver is

used due to itsfeasibilityand efficiencyfor large structural problems.

Both explicit and implicit integration methods are available in

ABREAST for transient dynamic analysis. The explicit time integration

uses the central difference method to solve the equations of motion given by

Eq. (2.35). The central difference method approximates velocity and

acceleration with second-order accuracy by

t{(_} = (t+At{Q}, t-At{Q}) / (2At)

t{_} = (t+At{Q}. 2 t{Q} + t-At{Q}) / (At2)

(2.38)

(2.39)

in which At is the constant time step size. Substitution of Eqs. (2.38) and

(2.39) into Eq. (2.35) yields

45

((1]At2)[M] + (UC2At))[ICy]) t+at{Q} = t{FeXt } . [IF} +

(2/At2)[M] t{Q}. ((1]At2)[M]. (1](2At)) [[Cv]) t-at{Q} (2.40)

in which the damping matrix [Cv] is assumed to be the linear combination of

the mass and stiffness matrices (Rayleigh damping). With the use of

lumped masses and either no damping or mass proportional damping, Eq.

(2.40) is a set of uncoupled equations and its solution can proceed on a

degree-of-freedom level without assembly of the global stiffness matrix and

solution of simultaneous equation. In the case ofnondiagonal damping (i.e.,

the stiffness-proportional damping is included), Eq. (2.38) is replaced by a

first-orderaccurate approximation for the velocity

t{{_}= (t{Q}. t-at{Q})/ At (2.41)

Substitution of Eqs. (2.41) and (2.39) into Eq. (2.35) yields

(1/At2)[M] t+at{Q} = t{FeXt } . [{F} + ((2/At2)[M] - (1/At) tt[Cv]) t{Q}

- ((1/At2)[M]- (1/At) [[Cv]) t-at{Q} (2.42)

With the use of lumped masses, solution of Eq. (2.42) can also proceed on a

degree-of-freedom level. Since the explicit central difference method is only

conditionally stable, the stability conditions for Eq. (2.40) and (2.42) are

At < 2/0)max and At < (2/(0max)(_f_ + _2 . _), respectively, where (Omax is the

highest undamped natural frequency of the system and _ is the fraction of

critical damping at the highest natural frequency, COmax (Cook et al. 1989).

The implicit integration in ABREAST uses the Newmark family of

schemes to solve the equations of motion given by Eq. (2.34). The Newmark

method relates displacements, velocities, and accelerations by (Bathe 1982)

46

t+At{{_} _ t{{_j ÷ ((1- 5) t{_} ÷ _ t+At{_}) At

t+At{Q} _ t{Q} + t{Q}A t + ((1/2 - a) t{_} ÷ cc t+At{Q})At2

(2.43)

(2.44)

The present work uses the constant average acceleration scheme, in which

_i = 1/2 and a = 1/4, because it is unconditionally stable and second-order

accurate. Substitution of Eqs. (2.43) and (2.44) into Eq. (2.34) and

rearrangement of terms result in the incremental equilibrium equation of

the form

t[_ {AQ}i = t+At{_} (2.45)

in which

and

t t t
t[_[] = (1/(ocAt2))[M] + (5/(coAti) t[Cv] + t[Ke] ÷ t[gg] (2.46)

t+At{_} t+At{Fext} t+At_li-I- " t+Att_'# "

I'M]((1/(o.At2))(t+At{Q} i'l- t{Q}). (1/(ccAt))t{{_}. ((1/2- a)/cc)t{_)-

[[Cv]((8/(o_t))(t+at{Q} i'l- t{Q}). (5/cc + 1)t{{_} - (5/a + 1)Att{Q}) (2.47)

A modified-Newton iterative solution scheme is used to obtain the

equilibrium solution of Eq. (2.47).

The implementation of the above analysis capabilities in ABREAST

has been verified by Srivastav (1991) and Aubert (1992). Therefore, no

further verification is conducted in this work.

2.5 Analysis of Rotating Bladed-disk Assemblies

In recent years the trend for turbine bladed-disk assemblies to have

higher efficiency, performance, and reliability has significantly increased

47

complexities and difficulties in the structural analysis and design of

rotating turbine bladed-disk assemblies. To achieve better understanding

and prediction of behavior of turbine bladed-disk assemblies, considerable

research has been conducted to study the steady-state responses and modal

vibrations of rotating turbine bladed-disk systems. However, little research

has been conducted to investigate the transient responses of rotating

bladed-disk assemblies during a unsteady motion induced by events such as

the start-up, blade tip rubbing, speed or load changes, and passing through

resonant frequencies. The reason for this is usually the lack of both capable

analysis tools and adequate computing power to carry out this type of

analysis due to the complexity and nonlinearity involved in the analysis and

the large size of the problem.

This section discusses the analysis approaches used in this work and

the enhancement of analysis tools in ABREAST for both modal vibration

and transient dynamic analyses of rotating bladed-disks modelled by solid

finite elements. Verification studies of the current implementation are also

provided. The use of parallel processing in a network of powerful

workstations to provide the considerable computing power needed in the

analysis is investigated in Chapters 3 and 4. In addition, the use of

interactive computer graphics to facilitate the modelling and visualization

of the dynamic simulation is presented in Chapter 5.

Due to the attempt in modern design of turbine bladed-disk

assemblies to minimize the clearance between blades and housing for

efficiency and performance optimization, the probability of blade tip rubbing

has been greatly increased. The present work emphasizes the transient

dynamic analysis of rotating bladed-disk assemblies experiencing tip rubs.

48

However, the modal vibration analysis of rotating bladed-disk systems

studied in this work plays an important role in verifying the present

approach and implementation. The present study also contributes

additional sets of data of 3-D finite element vibration analyses of rotating

turbine blades and annular disks.

In the following subsections, a brief review of previous research is

given first. The approach used in the present work is then discussed.

Results obtained using the present approach are compared with those

obtained by previous researchers to assess the accuracy of the present

approach. Furthermore, resultsobtained using the lumped mass approach

are compared with those obtained using the consistentmass approach in the

same verificationstudies.

2.5.1 Review of Previous Research

Previous research on both modal vibration and transient dynamic

characteristicsof rotating turbine bladed-disk assemblies isbriefreviewed

as follows.

Modal Vibration Analysis

Free vibration characteristicsof rotating turbine blades have been

studied by many researchers. Earlier research on the analysis of rotating

blades has been reviewed by Ramamurti and Balasubramanian (1984) and

Rao (1987). In most previous research, beam theory was used in the

vibration analysis of blades often idealizedas cantileverbeams. Although

many effectssuch as pre-twist,hub radius, setting angle, hub flexibility,

and tip mass were investigated in the analysis, the effects of shear

- 49

deformation and rotary inertia were often neglected. Recently, Yokoyama

(1988) used the finite element method to determine the bending frequencies

of a rotating uniform Timoshenko beam. Khulief and Bazoune (1992)

calculated the first three frequencies of rotating tapered Timoshenko beams

with different boundary conditions. However, it has been recognized that

the use of beam theory is not sufficient for modelling blades with low aspect

ratio and complex configurations. Some previous applications of plate and

shell theories to study frequencies of rotating blades were briefly reviewed

by Sreenivasamurthy and Ramamurti (1981). More recent examples are

studies conducted by Omprakash and Ramamurti (1989, 1990a, 1990b).

Some research has been reported on the vibration analysis of rotating

disks. A review has been given by Omprakash and Ramamurti (1988). In

the previous work, Kirchhoff-Love thin-plate theory is often used. The

theory neglects the shear deformation and rotary inertia effects and,

therefore, is limited to modelling thin disks. A recent study conducted by

Sinha (1987) has used the Mindlin's plate theory to account for both effects

in the analysis.

It has been recognized that the dynamic behavior of a bladed-disk

system can not be predicted accurately without considering the coupling

effect between the blades and the disk. Although a few studies have been

conducted on the vibration analysis of nonrotating bladed-disks, little

research has been reported on the vibration analysis of rotating bladed-

disks. Recently, after reviewing previous research, Omprakash and

Ramamurti (1990a) studied the coupled vibration characteristics of rotating

bladed-disk systems.

5O

Transient Dynamic Analysis

Although transient dynamic analysis is important in predicting the

responses of rotating bladed-disk assemblies during events such as start-up,

blade tip rubbing, speed changes, and traversing through system critical

speeds, it has received little attention. Using an extended beam theory,

Irretier(1985) performed a spectral analysis to simulate the run-up of a

turbine blade subjected to partial admission. Davis (1989) implemented

analysis toolsin an existingfiniteelement program to address nonlinear

transient analysis of rotatingbladed-disk-shaftsystems subjected to blade

rubbing. Due to the large amount of computation involved,only bladed-disk

models with coarse meshes were studied in the sample analyses.

Recently, the transient characteristics of a bladed-disk during run-up

were studied by Omprakash and Ramamurti (1990b) in a spectral analysis

using the finite element method. A three-noded triangular shell element

was used to model the bladed-disk. The cyclic symmetry and modal

superposition approaches were used to reduce computational burden. The

spectral analysis employed the lowest three frequencies that are

interpolated quadratically at each time step from the frequencies computed

by actual eigensolution at selected rotational speeds.

2.5.2 Present Approach

As discussed in Section 2.2,the present work uses twenty-node brick

finite elements with reduced integration to model bladed-disk systems

(although both eight-and twenty-node brick finiteelements with eitherfull

or reduced integration have been implemented in ABREAST). The

quadratic displacement model provided by the element goes beyond those

51

provided by MindlinfHmoshenko theory and implicitly takes into account

effects of shear deformation and rotary inertia. However, it should be noted

that numerical ill-conditioning may occur if the aspect ratio of the element

is too large, e.g., exceeding about 50. Such ill-conditioning has been

encountered by the writer in cases where coarse meshes are used to model

very thin blades or disks.

The finite element formulation presented in Section 2.3 has been

implemented in all analysis modules of ABREAST for the brick finite

elements. For rotational dynamics, the current implementation uses the

rotating x-y-z coordinate system shown in Fig. 2.5 as the global coordinate

system. The current implementation also assumes that the time-varying

rotational-velocity vector {co} is the multiplication of a time-varying scalar

and a time-independent reference vector, i.e., the rotational acceleration

vector is colinear with the rotational velocity vector. The user is allowed to

specify in the analysis input file a) the type of formulation for accounting for

rotational nonlinearity (i.e., consistent- or lumped-mass), b) the reference

vector of rotational velocity in terms of three components in the global

coordinates (with the assumption that the vector passes through the origin

of the global coordinate system), and c) the name of the history file in which

the time history of the scalar of rotational velocity is defined.

Modal Vibration Analysis

A two-stage analysis is employed in the present work to carry out

modal vibration analyses of rotating bladed-disk systems. The first stage

involves a nonlinear staticanalysis to obtain a steady-state solution serving

as the initialcondition for the second-stage eigenvalue analysis.

52

For the steady-state solution, a static analysis capability, which did

not previously exist in ABREAST, has been implemented. The solution

schemes implemented include simple incremental, Newton-Raphson

iterative incremental, and Modified-Newton iterative incremental schemes.

Both Gauss elimination and preconditioned conjugate gradient equation

solvers are available. Since the steady-state solution of a rotating bladed-

disk system involves both rotational and geometric nonlinearities (as shown

in Eq. 2.32), the present work uses either the Newton-Raphson or the

Modified-Newton iterative incremental scheme to ensure the satisfaction of

equilibrium. In addition, the load vector (i.e., the right hand side of Eq.

2.32) is nonlinear and displacement-dependent. The current approach

updates the load vector at the end of each load increment aider equilibrium

iteration is completed. At the end of the final increment, a recursive

procedure that updates the load vector and then performs equilibrium

iterations is used until the update of the load vector no longer affects the

equilibrium. Upon completion of the analysis, an initial condition file,

which contains the results for the steady-state nonlinear analysis, is created

for the second-stage vibration analysis.

The second-stage vibration analysis requires the solution of Eq.

(2.33). The system stiffness is computed based on the final equilibrium

state of the system obtained from the first-stage analysis. The present

research uses the subspace iteration algorithm in ABREAST to solve for a

desired number of low modes of vibration.

53

Transient Dynamic Analysis

Both the explicit central difference and implicit Newmark integration

methods in ABREAST have been extended to account for rotational

dynamics for the brick elements. In the present central difference analysis

for rotational dynamics, since the Coriolis damping matrix, [C¢], in Eq.

(2.31) is nondiagonal but skew-symmetric, the velocity and acceleration are

approximated by Eq. (2.41) and Eq. (2.39), respectively. Substitution of Eqs.

(2.41) and (2.39) into Eq. (2.31) results in

(1/At2)[M] t+at{Q} = t{FeXt } " _{F}- _{Fe} - (_[Ka] - _[Kr]) t{Q}

t C+ ((2/At2)[M] - (1/At)(_[Cv] + t[el)) t{Q}

t t t-at{Q}- ((1/At2)[M] - (1/At) (t[Cv] + t[Cc])) (2.48)

The diagonal mass matrix is used to avoid solution of simultaneous

equations. In the present research, the explicit central difference method is

used for dynamic analysis of rotating bladed-disk assemblies experiencing

tip rubs, which is a short-duration dynamic problem. In this case, similar to

the modal vibration analysis discussed earlier, a two-stage analysis is

employed to save computational time. In the first stage, a nonlinear static

analysis is performed to obtain a steady-state solution of the system at a

given rotational speed. This solution then serves as the initial condition for

the second-stage transient analysis which computes system responses

during tip rubbing.

In the implicit Newmark analysis for rotational dynamics, the use of

the constant average acceleration scheme results in the incremental

equilibrium equation of the same form as Eq. (2.45)

54

t{_ {AQ}i _ t+At{_}

in which

t t
t_ = (1/(o_t2))[M] + (_/(o_t)) t[C] + t[K] (2.49)

t+At{_} t+At{Fext} t+At,_li-1 t t t-- "t+Atl_1 .t{Fe}.(t[Ka] " t[Kr])t{Q}

- [M]((1/(oLAt2))(t+At{Q}i'1-t{Q}).(1/(o_At))t{(_}.((1/2-a)/c0t{Q})

tt[c]((/(o_t))(t+at{Q}i-1.t{Q}).(_/a+ 1)t{(_}-(5/a+ 1)Att{Q})(2.50)

t
[[C] - [[Cv] + t[Cc] (2.51)

t t
[[K] = t['Ke] + _N] + t[Ka] - tt[Kr] (2.52)

Since t_Cc] and t_Ka] are skew-symmetric, the effective stiffness matrix t_

is no longer symmetric, resulting in a significant increase of storage

requirement for t[_. To avoid this problem, the current implementation

replaces Eq. (2.49) by

t t [[Kg] - tt[Kr] (2.53)t[_ = (1/(aAt2))[M] + (_/(o_At)) t[Cv] + t[Ke] +

Since the current approach uses a modified-Newton iterative solution

scheme, the use of Eq. (2.53) does not change the final equilibrium solution

although the convergence rate may be affected. The implicit Newmark

method is suited to long-duration dynamic problems such as dynamic

analyses of the run-up of rotating bladed-disk systems.

2.5.3 Verification and Comparative Studies

As discussed earlier, very little research on transient dynamic

analysis of rotating bladed-disk assemblies has been conducted using direct

w

55

time integration solution methods. None of the numerical results of which

the writer is aware provides sufficient information which can be used in the

present implementation to reproduce the results adequately. Therefore, the

present research relies mainly on using some modal vibration results of

rotating beams and plates published in the literature to verify the

implementation in ABREAST for analysis of rotating turbine bladed-disk

assemblies. Both steady-state and vibration analysis capabilities

implemented are directly verified. The transient dynamic analysis

capabilities implemented are verified indirectly and partially because many

portions of them share the same routines with the steady-state or vibration

analysis modules (for example, routines for mass matrix formation and

assembly, stiffness matrix formation and assembly, and stress recovery). In

addition to verification studies, numerical comparisons are conducted

between the consistent mass approach and the lumped mass approach for

accounting for rotational nonlinearities.

Five example problems are used here for verification and comparative

studies. They are (a) the in-plane vibration of a rotating cantilever beam,

(b) the out-of-plane vibration of a rotating cantilever beam, (c) the vibration

of a rotating tapered cantilever beam, (d) the vibration of a rotating annular

plate, and (e) the transient response of a rotating cantilever beam subjected

to an impact load (for comparative study only). The numerical results from

ABREAST are compared with those published in the literature. All

analyses performed in the present research use (i) twenty-node brick

elements with reduced integration, (ii) a lumped mass matrix formulated

using the HRZ lumping scheme with full integration (Cook et al. 1989), and

(iii) a Newton-Raphson iterative method for steady-state solutions, followed

56

by either a subspace iteration method (Lin 1980) for frequency computations

or a central difference method for time integration of transient responses.

The present results obtained using the consistent mass approach for taking

into account rotational nonlinearities are denoted as Present-CM, while

those obtained using the lumped mass approach are denoted as Present-LM.

In-plane Vibration of a Rotating Cantilever Beam

The in-plane vibrations of the rotating cantilever beam shown in Fig.

2.7 are studied in the present research over a wide range of rotational

speeds. An I x 2 x 8 mesh is used in the study. (Note that I x m x n denotes

the number of elements in the x, y, and z directions, respectively.) In Table

2.4, the present results are compared with those obtained by Putter and

Y

X

L = 328 mm _28 mm

E=2.17x1011N/m 2 p =7850 kg/m 3 v =0.3

Figure 2.7 A rotating cantilever beam for in-plane vibration analysis

Manor (1978) and Yokoyama (1988). Putter and Manor used five beam

elements with a fifth-order displacement function and considered effects of

shearing force and rotary inertia, while Yokoyama used eight Euler-

Bernoulli beams with a cubic displacement function. The first and second

normalized frequencies, ¢_(pAL4/EI) y2, of vibrations in the x-z plane are

compared for different values of normalized rotational speeds,

57

_(pAL4/EI) 1/2. (Note that co is the circular frequency of vibration; p is the

mass density; A is the area of cross-section; L is the length; E is the Young's

modulus of elasticity; I is the moment of inertia; and _ is the rotational

speed.)

Table 2.4 Comparison of in-plane normalized frequencies, 00(pAL4/EI) 1/2 of

a rotating cantilever beam obtained by the present study with those

reported by Putter and Manor (1978) and Yokoyama (1988)

[_ in rpm] mode
i

2.0

[809]

5.0

[2,022]

I0.0

[4,044]

Present-LM

Present-CM

Putter and Manor

Yoko_,ama

Present-LM

Present-CM

Putter and Manor

Yokoyama

Present-LM

Present-CM

Putter and Manor

Yokoyama

20.0

[8,0881

50.0

[20,220]

Present-LM

Present-CM

Putter and Manor

Yokoyama

Present-LM

Present-CM

Putter and Manor

Yokoyama

0 1

Ist 2nd 1st 2nd

3.68 22.59 4.45 23.33

3.68 22.59 4.45 23.31

3.61 22.53 4.40 23.28

3.62 22.53 4.40 23.28

4.16 24.97 7.47 28.85

4.16 24.94 7.46 28.78

4.07 24.95 7.41 28.92

4.07

5.22

5.22
r

5.05

24.95 7.41

32.03 13.34

31.92 13.32

32.12 13.26

28.93

42.89

42.67

43.23

5.05 32.12 13.26 43.24

7.17 51.01 25.43 72.08

7.17 50.66 25.39 72.68

6.78 51.35 25.29 76.59

6.79 51.37 25.32 76.66

12.32 115.25 62.47 179.65

12.44 113.83 62.50 176.39

10.48 116.20 61.64 181.94

10.90 116.42 61.88 182.39

58

Both Present-CM and Present-LM results agree well with those of

Putter and Manor and of Yokoyama except the first frequencies when R/L =

0 and f_(pAL4/EI) 1/2 = 20, 50. It is believed that the disagreements are

mainly due to the different approaches used for taking into account

centrifugal forces between the present work and those of Putter and

Yokoyama. Both Putter and Yokoyama compute the centrifugal forces

based on the undeformed beam configuration while the present research

accounts for the deformed beam configuration. As a result, the differences

become more significant as the rotational speed increases (i.e., deformation

of the beam increases). It can be seen that all of the present first-mode

results are higher than those of Putter and Manor, and Yokoyama. Another

observation is that in allbut two cases, the results of Present-LM are either

equal to or slightly higher than those of Present-CM.

Out-of-plane Vibration of Rotating Cantilever Beams

The second example studied is the out-of-plane vibrations of the

rotating cantilever beam shown in Fig. 2.8 over a range of rotational speeds.

X

C _ _vZ

L = 328 mm
Y

E=2.17x1011N/m 2 p =7850 kg/m 3 v =0.3

Figure 2.8 A rotating cantilever beam for out-of-plane vibration analysis

w

59

This is the same beam used in the previous example (Fig. 2.7) but with a

different rotational axis. An 1 x 2 x 8 mesh is used in the study. (Note that

1 x m x n denotes the number of elements in the x, y, and z directions,

respectively.) In Table 2.5, the present results are compared with those

obtained by Yokoyama (1988) using eight Euler-Bernoulli beam elements

with a cubic displacement function. The first and second normalized

frequencies, o_(pAL4/EI) 1/2, of vibrations in the x-z plane are compared for

different values of normalized rotational speeds, G(pAL4/EI) 1/2. (Note that

notations used here are the same as those in the previous example.)

Table 2.5 Comparison of out-of-plane normalized frequencies, ¢_(pAL4/EI) y2

of a rotating cantilever beam obtained by the present study with those

reported by Yokoyama (1988)

i'l(pAL4/EI) 1/2 R/L

[£1 in rpm] mode

Present-LM

2.0

[809]

4.0

[1,618]

6.0

[2,427]

8.0

[3,236]

10.0

[4,044]

1st

4.19

0

I 2nd

22.68

I 1

I 1st I
4.88

2nd

23.41

Present-CM 4.18 22.67 4.87 23.40

22.62

24.31

Yokosama

Present-LM

4.83

7.52

4.14

5.64

23.37

26.93

Present-CM 5.63 24.28 7.51 26.87

Yokosama 5.59 24.28 7.48 26.96

Present-LM 7.42 26.81 10.50 31.91

Present-CM 7.40 26.74 10.47 31.79

10.44

13.57

Yoko_,ama 7.36

Present-LM 9.33

26.81 32.03

37.7329.96

Present-CM 9.30 29.84 13.54 37.55

Yoko_,ama 9.26

Present-LM 11.28
i

Present-CM 11.25

30.00 13.51

33.56 16.67

33.39 16.64

33.64 16.61Yokoyama 11.20

37.96

44.04

43.77

44.38

6O

Both Present-CM and Present-LM results agree closely with those of

Yokoyama. It is observed again that the results of Present-LM are slightly

higher than those of Present-CM in all cases.

Vibration of a Rotating Tapered Cantilever Beam

The frequencies of rotating tapered beams with different taper ratios,

boundary conditions, and rotational speeds were studied by Khulief and

Bazoune (1992) using a tapered Timoshenko beam element. In the present

research, the bending frequencies of the particular rotating tapered beam

shown in Fig. 2.9 are computed. An 8 x 2 x 2 mesh is used in the analysis.

(Note that I x m x n denotes the number of elements in the x, y, and z

directions, respectively.) In Table 2.6, the present results are then

compared with those obtained by Khulief and Bazoune using sixteen

tapered Timoshenko beam elements. The first and second normalized

frequencies, (o(pAoL4/EIo) 1/2,of vibrations in the x-y plane are compared for

different values of normalized rotational speeds, _(pAoL4/EIo) I/2. (Note

1011

z E = 2.0 x N/m 2

p = 8000 kg/m 3

Figure 2.9 A rotating tapered beam for vibration analysis

61

w

that cois the circularfrequency ofvibration;p isthe mass density;Ao isthe

area of cross-sectionat x = 0; L is the length; E is the Young's modulus of

elasticity;Ioisthe moment of inertiaat x = 0;and _ isthe rotationalspeed.)

It can be seen that both Present-CM and Present-LM results are in

good agreement with those of Khulief and Bazoune. The results of Present-

LM are either equal to or slightly lower than those of Present-CM for the

first mode while the trend is reversed for the second mode.

Table 2.6 Comparison of normalized frequencies, co(pAoL4/EIo)It2 of a

rotatingtapered beam obtained by the present study with those reported by

Khulief and Bazoune (1992)

mode _(pAoL4/EIo) y2 0 1

[fl in rpm] [0] [2,924]

Present-CM 4.37 4.41

1st Present-LM 4.37 4.40

Khulief & Bazoune 4.38 4.43

Present-CM 15.41 15.52

2nd Present-LM 15.41 15.52

Khulief & Bazoune 15.98 16.04

3

[8,772]

4.68

4.68

4.83

16.46

16.48

16.48

5

[14,619]

5.26

5.23

5.55

18.35

18.37

17.34

Vibration of a Rotating Annular Plate

Figure 2.10 shows a rotating annular plate which is clamped at the

inner edge while free at the outer edge. The frequencies of the rotating

plate are computed in the present research using 3-D twenty-node brick

elements with a 4 x 12 x 1 mesh as shown in Fig. 2.3(a). In Table 2.7, the

present results are compared with those obtained by Sinha (1987) who used

Mindlin's plate theory and a modified Rayleigh-Ritz method with a

62

numerical trial function. The nondimensional frequencies, {o(phro4/D) 1/2,

are compared for different values of nondimensional angular velocities of

rotation, _l(phro4/8D) 1/2. (Note that co is the circular frequency of vibration;

is the mass density; h is the plate thickness; ro is the inner radius; 12 is the

angular velocity of rotation; and D = (Eh3)/[12(1-v2)] where E and v are

Young's modulus of elasticity and Poisson's ratio, respectively.)

inner radius = 0.25 m

outer radius = 1.0 m

thickness = 0.2 m

clamped at the inner edge
free at the outer edge

E = 196 x 10 9 N/m 2

v=0.3

p = 7800 Kg/m 3

Figure 2.10 A rotating annular plate for vibration analysis

Again, both Present-CM and Present-LM results agree well with

those of Sinha. The results of Present-LM are either equal to or slightly

higher than those of Present-CM for all three modes.

Transient Response of a Rotating Cantilever Beam Subjected to an

Impact Load

The transient responses of the rotating cantilever beam shown in Fig.

2.7 (in this example, R = 0 and _ = 4,000 rpm) subjected to an impact load

are studied for comparison of the consistent mass and lumped mass

approaches for a transient dynamic problem. The impact load is a uniform

traction in the -x direction applied on the face at the free end of the beam

and has the history shown in Fig. 2.11. The mesh used in the study is

63

shown in Fig. 2.12. The transient responses are computed for a duration of

0.0039 sec. and a time step of 0.0000001 sec. is used. The results are output

every 0.000005 sec.

Table 2.7 Comparison of nondimensional frequencies, co(phro4/D) 1/2 of a

rotating annular plate obtained by the present study with those reported by

Sinha (1987)

nodal

circles

0

nodal £_(phro4/D) y2

diameters [_ in rpm]

Present-CM

0

0 1

0 2

0 2

[0] [16,387]

7.805.54

Present-LM 5.54 7.92 12.79

Sinha 5.56 7.87 12.33

Present-CM 5.08 8.03 13.96

Present-LM 5.08 8.16 14.13

Sinha

Present-CM

5.12

4

[32,773]

12.66

8.26 13.87

10.07 17.646.21

Present-LM 6.21 10.23 18.04

Sinha 6.30 10.25 17.13

O

cJ
05

0.0 1.0 2.0
v

Time (x 1.0E-4 sec.)

Figure 2.11 History of the impact load applied to the rotating cantilever

beam of Fig. 2.7

64

Y

X

Position B Position A

Z

Figure 2.12 Finite element mesh used in the transient analysis of the

rotatingcantileverbeam ofFig. 2.7

The transient displacements at two differentlocationsof the rotating

beam are monitored in the present study (see positionsA and B in Fig.

2.12). In Figs. 2.13 - 2.18,the Present-LM resultsare plotted against the

Present-CM results. It can be seen that the Present-LM results agree

closelywith the Present-CM resultsin Figs. 2.13 and 2.16. In Figs. 2.14,

2.15, and 2.18, the differences between the Present-LM results and the

Present-CM results mainly come from differentdisplacements obtained at

the end of the steady-state analysis between the Present-LM and the

Present-CM approaches, despite the factthat the same tolerance (lx10"8in

this example) is used for Newton-Raphson equilibrium iterationsin both

cases. The transient characteristicsof the Present-LM resultsare in good

agreement with those of the Present-CM results. In Fig. 2.17,itshould be

65

noted that the displacements are so small that the differences between the

Present-LM results and the Present-CM results may be neglected.

2.5.4 Closure

Although the lumped mass approach for taking into account

rotational nonlinearities is not expected to be as accurate as the consistent

mass approach due to its neglect of mass coupling, the modal vibration

results obtained using the lumped mass approach in all of the examples

studied in Section 2.5.3 are in close agreement with those obtained using

the consistent mass approach. In most cases, the frequency results from the

lumped mass approach are slightly higher than those from the consistent

mass approach. In addition, the transient displacements predicted using

the lumped mass approach in the example studied agree well with those

predicted using the consistent mass approach.

On the other hand, the lumped mass approach is expected to be

computationally more efficient than the consistent mass approach.

Although this is usually the case in all of the modal analysis examples

studied in Section 2.5.3, the computational times for modal analyses using

these two different approaches differ by only about five to ten percent. This

is probably due to the fact that the calculation of nonlinear rotational forces

is not the major computational cost when compared with the stiffness

matrix formation, equation solving, and eigensolution in modal vibration

analyses. However, the computational time for transient analysis using the

consistent mass approach is about 8.7 times larger than that using the

lumped mass approach in the example studied.

66

tt_

0_

-0.2

-0.4

-0.6

-0.8

-1.0

-1.2

-1.4

-1.6-

-1.8

Present-LM

Present-CM

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time (x 1.0E-3 sec.)

Figure 2.13 Transient displacements in the x directionat positionA of the

rotating beam in Fig. 2.12

0.5

0.0"

r_ -0.5-

,_ -1.0

,_ -1.5

,_ -2.0

-2.5
.gu

-3.0

-3.5

Present-CM

....... Present-LM

.... I''''I I I I I''''I
).0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time (x 1.0E-3 sec.)

Figure 2.14 Transient displacements in the y direction at position A of the

rotating beam in Fig. 2.12

- 67

8.0

7.9"

7.8.
Le_

_7.7-

7.6-

7.5-

Present-CM

....... Present-LM

¢.J
¢_ 7.3-

 7.2

7.1

70. "_.... i i i i i i i
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time (x 1.0E-3 sec.)

Figure 2.15 Transient displacements in the z direction at position A of the

rotating beam in Fig. 2.12

0.20

0.15.

0.10.

0.05-

0.00-

-o.o5

-0.10

._ -0.15

-0.20

....... Present-LM

Present-CM

-0.25

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time (x 1.0E-3 sec.)

Figure 2.16 Transient displacements in the x direction at position B of the

rotating beam in Fig. 2.12

68

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time (x 1.0E-3 sec.)

Figure 2.17 Transient displacements in the y-direction at position B of the

rotating beam in Fig. 2.12

1.45

1.44 _ Present-LM

1.43 _ Present-CM

_,
1.42

1.41

1.37 -

1.36-
u

1.35 I i I I I I I
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time (x 1.0E-3 sec.)

Figure 2.18 Transient displacements in the z direction at position B of the

rotating beam in Fig. 2.12

Chapter 3

Parallel Nonlinear Solution Algorithms

The parallel processing strategies investigated in the present work

include both numerical algorithms for parallel nonlinear solutions and

techniques to effect load-balancing among processors. This chapter

discusses the parallel solution algorithms for transient dynamic analysis as

well as steady-state analysis. The load-balancing techniques based on

domain partitioning are explored in the next chapter.

The realistic computer simulation of nonlinear structural dynamics of

large finite element systems often requires a significant amount of

computing time and memory. One possible way to reduce the elapsed wall

clock time needed for an analysis is the use of parallel processing which

divides the computational work among several processors running

concurrently. For large structural problems, the analysis may often

requires the use of virtual memory which usually slows down the analysis

significantly. With the workload divided among processors in the parallel

analysis, the computation may be performed in each processor without the

use of virtual memory, resulting in additional time saving.

The present research investigates the parallelization of time

integration algorithms and equation solvers for the solution of the governing

equilibrium equations of structural dynamics discussed in Chapter 2. Focus

is placed on parallel algorithms suitable for the present coarse-grained,

message passing environment where, as mentioned in Chapter 1 and will be

69

70

discussed further in Section 3.1, minimization of the interprocess

communication and parallelization at the substructure level are two key

strategies for the algorithms to achieve good parallel performance.

In this chapter, the parallel computing environment used is described

first. Then, a brief review of previous research on parallel solution

algorithms is given. The parallel solution algorithms investigated in the

present work are discussed. Numerical studies are also performed to

evaluate the effectiveness of the present parallel solution algorithms.

3.1 Parallel Computing Environment

The computing environment for parallel processing in this work

consists of either up to six DECsystem 5000's or up to twelve Apollo/HP

9000 series 720's. Each DECsystem 5000 has 16 Mbytes of memory and a

central processor running at the speed of approximately 24 Mips, while each

Apollo/HP 720 has 128 Mbytes of memory and a central processor running

at the speed of approximately 59 Mips. The DEC workstations utilize the

ULTRIX operating system (DEC's version of UNIX), while the HP

workstations utilize the HP-UX operating system (HP's version of UNIX).

They are connected by Ethernet and communicate via the TCP/IP

(Transmission Control Protocol/Internet Protocol) and DECnet protocol (for

DEC workstations only). Any processor may communicate directly with any

of the other processors. The approximate realizable communication speed of

the Ethernet ranges from 0.1 to 1.0 Mbyte per second.

The communication and synchronization between .processors are

achieved in a message passing environment provided by ISIS (Birman et al.

1990), a UNiX-based parallel application manager developed in the

- 71

Computer Science Department at Cornell University. Two of the most basic

facilities that ISIS provides for interprocess communication are process-

group and broadcast mechanisms. The process-group mechanism provides a

means of grouping and naming processes as a unit (note that a process can

be a member of more than one process group). The broadcast mechanism

allows a process to send a message to a process group and to reply to or

forward a message received. Another important feature provided by ISIS is

a programming paradigm called virtual synchrony. Virtual synchrony

ensures that all members of a process group receive the messages sent to

the group in the same order as they were sent but not necessarily at the

same time. This approach avoids the difficulty and cost involved in

maintaining real synchrony but still provides sufficient synchronicity for

parallel applications. A research version of ISIS is in the public domain

(available via anonymous FTP through the Internet from f_p.cs.cornell.edu)

and has been distributed and used by hundreds of research institutes and

universities, The latest version is now sold commercially.

The parallel computing environment presented above is a coarse-

grained, distributed-memory environment where the number of processors

used is small and no global memory is shared among processors. In the

parallel paradigm, this environment is usually classified as a multiple-

instruction, multiple-data (MIMD) environment where each processor, with

a different set of data, does not necessarily execute the same instruction

simultaneously. It should be noted that the parallel processing strategies

discussed in this chapter are not limited to the networked workstation

environment investigated in this work, but instead are suitable for a variety

72

of machine environments which share the aforementioned features. The

major advantages of this type of environments are their

a) extendibility: it is easy to add more processors to increase

processing power. In addition, as the computer technology

advances, the processors as well as network interfaces in the

environment can be upgraded gradually and in a relatively less

expensive fashion.

b) heterogeneity: computers with different features can be put

together to meet different computational needs and to maximize

the utilization of computer resources. For example, the parallel

simulation of structural dynamics may need a workstation with

high-performance graphics for visualization and a number of fast

processors for parallel computations.

In the present networked workstation environment, the

communication among processors is the major bottleneck for parallel

applications due to slow communication speed of Ethernet. Although the

replacement of the Ethernet by a faster FDDI network will provide

improvement in the near future (as mentioned in the Chapter 1), it is

believed that the interprocess communication is stillthe major bottleneck

because the speed of processors is currently advancing in a faster rate than

that of communication network. Therefore, this research considers parallel

algorithms which minimize communication overhead. In addition, the

parallelization of finite element computations in this type of coarse-grained

environment is usually best devised at the substructure (or subdomain)

level (as opposed to the parallelization at the element level or at the degree-

of-freedom level as in a fine-grained environment).

- 73

3.2 Review of Previous Research

Previous research on both paralleltime integration algorithms and

parallelequation solversisbrieflyreviewed in the followingsubsections.

3.2.1 Parallel Time Integration Algorithms

Considerable research has been conducted on various time

integrationalgorithms to take advantage of parallelprocessing in transient

dynamic analysis. At Cornell University,a preliminary study on a number

of time integration algorithms had been performed to evaluate their

potential in parallel analysis (Hajjar 1987, 1988). In this subsection,

existing time integration algorithms are brieflyre-evaluated for parallel

processing based on the preliminary studies at Cornell and more recent

research work published in the literature.

Explicit algorithms

Among explicit algorithms, the central difference method (see, for

example, Bathe 1982; Cook et al. 1989) is probably the most commonly used.

The central difference algorithm is a conditionally stable explicit time

integration method inherently amenable to parallel processing. With

standard selections of the finite difference relations and the use of lumped

masses, the solution may proceed on a degree-of-freedom level without

assembly of the global stiffness matrix and solution of simultaneous

equations. In addition, groups of degrees of freedom may be readily

apportioned to different processors by substructuring. Finally, with

appropriate preparation of substructure data for each processor, a minimum

74

amount of interprocess communication may be achieved, and this

communication needs to occur only between adjacent processors.

Malone (1988, 1990) formulated a parallel central difference

algorithm which does not duplicate computational work among processors,

but requires interprocess communication in the computation of nodal

quantities at nodes shared by two or more processors. The hardware

configuration considered by Malone was a 32-processor Intel iPSC/d5

hypercube. In a networked workstation environment, Hajjar and Abel

(1989a) presented a parallel implementation of the central difference

algorithm which minimizes interprocess communication at the expense of

duplicating the computation of element quantities in elements shared by

two or more processors. Chiang and Fulton (1990) also investigated central

difference method for two different parallel computers, the FLEX/32 shared

memory multicomputer and the Intel iPSC Hypercube local memory

computer. All of the above studies show good parallel performance of the

central difference algorithm.

Implicit algorithms

Implicit algorithms (see, for example, Bathe 1982; Owen 1980) may

be formulated to be unconditionally stable. Compared to explicit methods,

these methods allow a larger time step size to be selected based on accuracy

requirements exclusively. However, the solution of a set of simultaneous

equations is required at each time step, making the implementation of the

procedure in parallel more difficult than explicit methods. The parallel

simultaneous equation solution also requires significant amount of

interprocess communication, both nearest-neighbor and global.

w

75

Hajjar and Abel (1988) used the implicit Newmark-_ constant

average acceleration algorithm with domain decomposition for the parallel

solution of nonlinear structural dynamics in a networked workstation

environment. The domain decomposition strategy employed uses

substructuring techniques and a preconditioned conjugate gradient (PCG)

algorithm for the iterative solution of the reduced set of unknowns along the

substructure interfaces. The PCG algorithm seems attractive for parallel

processing because it requires less interprocess communication and is easier

to balance the workload among processors than direct methods. Chiang and

Fulton (1990) investigated implicit Newmark type methods with a skyline

Cholesky decomposition strategy for the FLEX/32 shared memory

multicomputer and the Intel iPSC Hypercube local memory computer. It

was shown that the shared database nature of the decomposition algorithm

made the FLEX/32 multicomputer a more efficient parallel environment

than the Hypercube computer.

Mixed-Time Integration Algorithms

Mixed-time integration algorithms use simultaneously different time

integration methods with different time steps in different domains of the

problem to minimize the computational cost. These methods are suitable

for problems consisting of definitive domains of different stiffness

properties, such as soil-structure interaction problems.

A variety of implicit-explicit methods have been proposed. A review

of these methods was given by Hughes and Belytschko (1983) and Liu

(1987). Since the solution of a reduced set of simultaneous equations is still

required in the implicit integration and different time steps are used in

76

different integration methods, parallel implementation of these methods are

more challenging than that of implicit methods, especially in the area of

balancing the computational loads among processors. Liu (1987) discussed

some aspects of parallel implementation of these methods in a shared

memory, parallel processing environment.

Explicit-explicit subcycling (Liu and Belytschko 1982; Liu 1987) is

also one type of mixed-time integration methods. These methods use only

explicit integration with different time steps selected for different domains

of the problem without the solution of simultaneous equations. Therefore,

they are more amenable to parallel processing than implicit-explicit

methods. However, with the use of different time steps in different

domains, their parallel implementation faces challenging tasks for load-

balancing and synchronization among processors to achieve desirable

efficiency, especially in a distributed memory environment.

Semi-Implicit Algorithms

Semi-implicit algorithms first presented by Trujillo (1977) for

structural dynamics are similar to an operator splitting algorithm, termed

the left-right (or right-left) technique (Sauryev 1964), developed in finite

difference analysis. These methods take the form of implicit time

integration algorithms and split the stiffness and damping matrices into

strictly lower and upper triangular matrices. Both symmetric and

unsymmetric splitting algorithms have been presented. With the use of a

diagonal mass matrix, the solution of a set of simultaneous equations is

avoided and only a back substitution or a forward reduction is required at

each time step.

- 77

Trujillo (1977) proved the unconditional stability of the symmetric

splitting method for the undamped case, and referred the method as an

unconditionally stable method. However, the method was shown to have

poor accuracy performance by several researchers (Mullen and Belytschko

1983; Park and Housner 1982; Hughes and Belytschko 1983). The

unsymmetric splitting method was shown more accurate than the

symmetric splitting, but only conditionally stable (Trujillo 1977; Park and

I-Iousner 1982). Using the concept of a penalty matrix for approximate

factorization, Park (1982) presented a strategy to improve the accuracy of

the symmetric splitting method.

It has been pointed out by Hajjar (1988) that these algorithms are not

ideal for parallel implementation due to the inherently sequential nature of

back substitution.

Group Explicit Algorithms

The group explicit algorithms (Evans 1984, 1985; Abdullah and

Evans 1986; Hajjar 1988) use an explicit approach, such as the central

difference method, with a symmetric splitting operator formulated from the

superposition of the left-right and right-left operators. With appropriate

partitioning of the problem domain into subdomains, the stiffness matrix

can be made block diagonal, and the solution can be computed

independently in each subdomain and simultaneously in all subdomains.

Similar to the central difference method, these methods are suitable for

parallel processing and only nearest neighbor communication is required in

a time step due to the explicit solution performed in the subdomain

interfaces. Although the implicit solution performed in each subdomain

78

allows a larger time step than that of the purely explicit solution, Hajjar

(1988) has shown that these methods are only conditionally stable and the

stability limit governed mainly by the explicit solution in the interfaces is

not increased sufficiently to justify the added computation of the implicit

solution.

The alternating group explicit algorithms (Evans 1984; AbduUah and

Evans 1986; Hajjar 1988) perform implicit solution in the interfaces every

other step to achieve unconditional stability. The solution of a reduced set

of simultaneous equations is therefore required. In addition, these methods

have been reported to provide severe amplitude decay for time steps near

and above the explicit stability limit by Hajjar and Abel (1989b).

Group Implicit Algorithms

In the group implicitalgorithms (Ortizand Nour-Omid 1986; Ortiz et

al. 1988; Hajjar 1988), the problem domain is first partitioned into

subdomains and the implicitoperator, such as the Newmark-_ constant

average accelerationalgorithm, is used to obtain a localsolution in each

subdomain. The computed results in the subdomain interfaces are then

weighted by using the mass matrix and averaged to produce a unique

solution.

These methods may be formulated to be unconditionally stable and

are inherently amenable to parallel processing. The implicit solution of

each subdomain may be performed independently of all other domains and

only nearest neighbor communication is required for the averaging

procedure in each time step. However, these methods have limited range of

applicability (Ortiz 1991) and have been shown to provide inadequate

79

accuracy for practical time step sizes in dynamic analyses of framed

structures (Hajjar and Abel 1989b) due to conditionalconsistency in these

methods (Farhat and Sobh 1990).

Summary of Algorithms

As discussed previously,the semi-implicitalgorithms are inherently

sequential and not suitable for parallelimplementation. Both the group

explicit and group implicit algorithms are well suited for parallel

processing, but the group explicit algorithms suffer from inaccuracy

problems, and the group implicit algorithms have limited range of

applicability.In addition,the efficiencyof parallelmixed-time integration

methods depends mainly on how the load-balancing issues are addressed.

In a distributedmemory environment such as the networked workstations

investigated in this work, the inherent high communication overhead may

make the load-balancingtask difficultand expensive.

The explicit central difference method is inherently amenable to

parallel processing, but is conditionally stable and often requires at least an

order-of-magnitude more time steps than an unconditionally stable implicit

method. Therefore, for certain dynamics problems, such as those involving

short-duration loadings (such as impact) where a short time step is

necessary to capture the dynamic phenomena, the parallel central difference

analysis can be a powerful and efficient time integration algorithm.

The implicit algorithms are not as amenable to parallel processing as

the explicit central difference method because a global simultaneous

solution is needed in each time step. However, the unconditional stability of

these methods makes them more suitable for long-duration problems than

80

the central difference method. The major challenge in the parallel implicit

analysis is the devising of an efficientparallel solution technique for the set

of simultaneous equations relating the inter-substructure degrees of

freedom.

3.2.2 Parallel Equation Solvers

The solution of the linear system of equations is required both in a

number of time integration methods (as discussed in Section 3.2.1.2) and in

steady-state (static)analyses (forexample, see Eq. 2.32). Since the equation

solving can be the most time consuming task in an analysis, the efficiencyof

its parallel implementation greatly affects the performance of the entire

parallel analysis. Many techniques for parallel solution of simultaneous

equations have been studied in previous research and are reviewed briefly

in this subsection.

Direct Algorithms

Direct algorithms obtain the solution of the system of equations in a

known number of arithmetic operations and within machine precision (i.e.,

with only the rounding and critical-arithmetic errors introduced in the

computation). The most widely used direct algorithms are Gaussian

elimination and its variants, such as Cholesky (LLT), and LDL w

decompositions. Formulations of these methods are well known (see, for

example, Golub and Van Loan 1989; Bathe 1982) and, therefore, not

repeated here. Because the system of equations arising in many finite

element fo_aulations is symmetric, positive definite, and banded, these

direct methods are usually more efficient than iterative methods on

sequential computers.

81

A significant amount of research has been devoted to parallelization

of direct algorithms on both shared and distributed memory parallel

environments. For example, a parallel row-oriented Gaussian elimination

was devised by Farhat (1987) for both the Intel iPSC Hypercube (local

memory) and the Cray X-MP (shared memory) computers. A parallel active

column solver was developed by Farhat and Wilson (1988) on both the Intel

iPSC Hypercube (local memory) and the Encore Multimax (shared memory)

computers. Parallel Cholesky decomposition solvers were studied by Farhat

(1987) on the Intel iPSC Hypercube (local memory) computer and by Chiang

and Fulton (1990) on both the FLEX/32 (shared memory) and the Intel iPSC

Hypercube (local memory) computers. In addition, a parallel frontal solver

was presented by Zhang and Lui (1991) on the Alliant FX/80 (shared

memory) computer.

In addition to the difficulty involved in the parallel implementation of

direct algorithms due to the sequential procedures inherent in the

algorithms, parallel direct algorithms usually require extensive interprocess

communication and entail difficult load balancing tasks. In the context of

finite element analysis, the partitioning of data for the parallel direct

solvers is generally different from that for other phases of the analysis, such

as element formation and stress recovery. Furthermore, to achieve high

parallel efficiency, different phases of the parallel direct solution (for

example, forward reduction and backward substitution) may require

different data partitioning strategies. All of the above complexities plus the

shared database nature of the decomposition procedure make the shared

memory environment a more efficient parallel environment for parallel

direct algorithms than the distributed memory environment.

82

A popular strategy used in the parallel implementation of direct

solvers is substructuring. The substructuring strategy first partitions the

structure into a number of subdomains and assigns each subdomain to a

separate processor. Then, assembly and static condensation are performed

independently and concurrently within each subdomain without any

interprocess communication. Finally, a condensed set of equations

associated with unknowns along subdomain interfaces is solved by a desired

parallel direct algorithm. This approach greatly reduces the cost of

interprocess communication and, therefore, is more efficient than the

outright use of parallel direct solvers for the solution of the entire set of

original equations.

Iterative Algorithms

Starting with an initial approximation of the solution, iterative

algorithms calculate successive approximations of the solution until the

approximation converges to the exact solution with the desired accuracy.

Some commonly used iterative algorithms include Jacobi, Gauss-Seidel,

successive overrelaxation, dynamic relaxation, and conjugate gradient

methods. Descriptions of these iterative methods are available elsewhere

(see, for example, Hageman and Young 1981; Jennings 1977; Golub and Van

Loan 1989; Underwood 1983) and are not repeated here. When iterative

methods converge sufficiently fast, they generally require less amount of

computation than direct methods. For problems with a considerable

number of unknowns (say, for example, over 10,000) and large bandwidth,

iterative methods appear to be especially more effective than direct

methods. However, the efficiency of iterative methods depends heavily on

how fast they converge which is usually not known a priori.

- 83

Considerable research has been conducted on the parallel

implementation of iterative algorithms. For example, a parallel block SOR

iteration method was developed by Farhat (1987) using a recursive

substructuring technique. Evan and Yousif (1992) reviewed and presented

asynchronous parallel iterative methods, such as asynchronous parallel

Jacobi and Gauss-Seidel methods as well as a purely asynchronous parallel

iterative method. A synchronous parallel Jacobi method was also

implemented for comparison with the asynchronous methods. It was shown

that asynchronous methods were more effective than synchronous methods

because they had less synchronization overhead and it was easier to achieve

load-balancing among processors. A parallel explicit dynamic relaxation

method was implemented by Farhat and Crivelli (1989). Although this

method is robust and amenable to parallel processing, it may be slow in

some applications. In addition, Nour-Omid et al. (1987) investigated a

parallel preconditioned conjugate gradient method with two different

preconditioners: diagonal scaling and incomplete LU factorization. It was

found that the incomplete LU preconditioning was more effective in

reducing the number of iterations than the diagonal preconditioning, but

spent more time per iteration and resulted in an overall increase in the

solution time.

Hybrid Algorithms

Hybrid algorithms combine advantages of both direct and iterative

methods. These algorithms start with partitioning the structure into a

number of subdomains and assign each subdomain to a separate processor.

Then, a direct decomposition method is used for substructure condensation

which is carried out on each processor independently and concurrently

84

without any interprocess communication. Finally, a condensed set of

system equations associatedwith unknowns along subdomain interfacesis

solved by a parallel iterative algorithm. Examples of parallel

implementation of hybrid algorithms can be found in Nour-Omid et al.

(1987) and Hajjar (1987, 1988).

3.3 Present Approaches

This section discusses the parallelsolution algorithms investigated

and implemented in this work for simulations of structuraldynamics. For

parallel explicittransient analysis,the parallelcentral differencemethod

developed by Hajjar and Abel (1989a) is adopted in this research. For

parallelimplicittransient analysis,the parallelNewmark algorithm with

domain decomposition developed by Hajjar and Abel (1988) isadopted with

slightmodifications. The implementation of the former algorithm has been

carried out in collaboration with Dr. Brian H. Aubert, while the

implementation of the latteralgorithm has been carriedout in collaboration

with Dr. Sanjeev Srivastav, both at the Cornell Program of Computer

Graphics. For steady-state analysis,a parallelNewton-Raphson iterative

incremental algorithm has been implemented. This algorithm uses the

same approach as the parallel implicit algorithm except that the time

stepping outer loop isreplaced by the load increment outer loop.

3.3.1 Parallel Explicit Transient Solution

The present research adopts the parallel central difference method

developed by Hajjar and Abel (1989a) for explicit transient solution of

structural dynamics. Formulation of the central difference method has

already been presented in Section 2.4 (see Eqs. 2.38 - 2.42). As discussed

- 85

previously, the central difference algorithm is inherently amenable to

parallel processing. With the use of lumped masses to yield a diagonal

mass matrix, solution may proceed on a degree-of-freedom level without

assembly of the global matrices and solution of simultaneous equations (see,

for example, Eq. 2.42).

To take advantage of parallel processing, the finite element domain is

first partitioned into a number of subdomains which are then distributed

among the processors, and the computation involved in each subdomain is

carried out by a separate processor. The structural partitioning needed by

the present central difference algorithm is shown in Fig. 3.1 for a simple

two-dimensional frame. The elements in a particular substructure are

either interior elements if both their nodes lie completely within the

boundary of the substructure, or border elements if one of their nodes is

resident in a neighboring substructure. The interior nodes in a particular

substructure are nodes lying within the boundary of the substructure. The

boundary nodes are a subset of the interior nodes and connected to at least

one border element. The adjacent nodes are also connected to at least one

border element, but lie outside the boundary of the substructure.

With this partition of structural data, the interprocess

communication can be minimized by including the border elements on both

of the processors associated with neighboring substructures. In this case,

only one nearest-neighbor communication for exchanging the displacements

of the boundary nodes is required per time step. This communication

efficiency is achieved at the expense of a duplication of effort to perform the

element calculations for the border elements on the processors sharing these

elements. This approach is suitable for parallel analyses in which the

86

number of border elements is significantly smaller than the number of

interior elements and the cost of interprocess communication is relatively

high. This is usually the case for the type of problem and environment

characterizing the current work.

I I
I

I

I I
L

F]

I I

I

I

I

i I

I I

I I
i

[7

I I

I

I
/77 /7 •

I

Interior node

Interior element

m

I

I

I

I

Border element

Boundary node

_" Adjacent node
I

Substructure boundary

Figure 3.1 The partition of structural data for the parallel explicit

algorithm (Hajjar and Abel 1989a)

The parallel central difference method has been implemented in

ABREAST using a multiple-instruction, multiple-data (MIMD) algorithm in

a message passing environment provided by ISIS. Each processor executes

identical code, but asynchronously and on different data (i.e., on a different

v

87

substructure). Within each time step, the one nearest-neighbor

communication for exchanging the displacements of the boundary nodes is

achieved through ISIS process-group and broadcast mechanisms. Table 3.1

briefly outlines the present implementation of this parallel algorithm. It

should be noted that synchronization only between adjacent processors is

required at Steps (5b) and (5c) to avoid race conditions.

Table 3.1 Parallel explicit algorithm

(1) Input and setup basic analysis data.

(2) Compute internal force vector.

(3) Compute load vector.

(4) Solve for displacements.

(5) Exchange the displacements of the boundary nodes with

adjacent substructures through message passing.

(5a) Send requests to adjacent substructures for the

displacements of the adjacent nodes.

(5b) Wait for requests from adjacent substructures, then send

out the displacements of the boundary nodes.

(5c) Wait until displacements for all the adjacent nodes are

received.

(6) Compute velocities and accelerations.

(7) Recover stresses and strains.

(8) Go to (2) for next time step.

In addition, to maximize the portability of the code for any UNIX or

UNiX-like operating system and for alternative message passing

environments, an effort has been taken to provide a layer of software to

isolate the ISIS message passing routines from the application code (this

has been done for all parallel implementations in this work). To illustrate

88

what and how ISIS routines are used in this work to achieve interprocess

communication and synchronization for all implemented parallel

algorithms, some example segments extracted directly from the analysis

program are provided in Appendix A.

3.3.2 Parallel Implicit Transient Solution

The present research investigates the parallel Newmark constant

average acceleration algorithm with domain decomposition described by

Hajjar and Abel (1988) for implicit transient solution of structural

dynamics. Formulation of the Newmark constant average acceleration

algorithm has already been presented in Section 2.4 (see Eqs. 2.43 - 2.47).

Within the Newmark time stepping outer loop, the domain decomposition

approach employs a hybrid algorithm as discussed previously in Section

3.2.1.2 for the solution of a set of dynamic equilibrium equations (see, for

example, Eq. 2.45). For the sake of discussions, formulation of the domain

decomposition approach is brieflyreviewed here.

The domain decomposition approach requires that the finite element

domain be partitioned into a number of subdomains for substructuring

analysis. The structural partitioning needed is shown in Fig. 3.2 for the

same two-dimensional frame of Fig. 3.1. The nodes in a particular

subdomain are either interior nodes, which lie within the boundary of the

subdomain, or boundary nodes, which lie along the interfaces between

subdomains. The boundary nodes are further categorized into primary and

secondary boundary nodes. Each boundary node is a primary node in only

one subdomain but, at the same time, a secondary boundary node in all

other subdomains which share it. The interior elements in a particular

- 89

subdomain are connected to at least one interior node, while the boundary

elements are not connected to any interior nodes but boundary nodes.

I

I

I n D

I

I

I

' I

I I
I

i

I r- --

i l
I I

I

I

--I

I

I

I

I_i_7 /77 /7 _ /77

I I

.... _.1 l,--I

I-: :- .: 1. Di-_--t
'" 1" 1" ,.2 ; :I I

i,, ,_L 2, t._ n l :: , I

-ii II--i ,r','--,' '
• I

I I
I ,. •

• ,_ ,; i- I
I I

,,, I, I

I I
I I

I

• Interior node

• Primary boundary node

[] Secondary boundary node

-- Interior element

Boundary element

Figure 3.2 The partition of structural data for the parallel implicit

algorithm (Hajjar and Abel 1988)

90

For each subdomain s,which has interiordegrees-of-freedom i and

boundary degrees-of-freedomh, the partitioningtakes the form

(3.1)

In this work the modified decomposition algorithm developed by Hart and

Abel (1984) is used for the condensation of the interior degrees-of-freedom.

The condensation resultsin a reduced setofequations

•% A

(3.2)

in which

A A

[K_]--[S_h]-[N_i] [N_i] T (3.3)

,-i _, (3.4)

A

In the current implementation, the skyline format is used for matrices [K_i],
A

[KSh], [N_i], and [LSi]. The Cholesky decomposition is performed in Eq.

(3.5) to obtain [L_i], then the following formula is used directly to compute

()Njk = Kjk - jn Lkn / Ljj (3.6)

in which Njk is the element at the jth row and k th column of [N_], K9¢ is the
#%

element at the jth row and k th column of [KSh], and Lkn is the element at the

k th row and n th column of [LSi]. To take advantage of the skyline format,

the summation index n in Eq. (3.6) does not actually start from one but,

instead, starts from the first nonzero product.

- 91

Upon completion of the condensation, Eqs. (3.2) for all subdomains

are assembled to form a set of global equations for the unknowns along the

subdomain interfaces. In this research, a parallel preconditioned conjugate

gradient method is used for solution of these unknowns. Then, the following

equation is used by each subdomain to solve for {Au_}:

A

{Au_} =[Lii]s -T [Lii]B -1 ({Ri }_ [KSh]{Au_})As (3.7)

The present research investigates two different preconditioners for

the parallel preconditioned conjugate gradient method. The first one, which
A

was used by Hajjar and Abel (1988), factors the coefficient matrix [K_I] (see

Eq. 3.2) of each subdomain, and the factored preconditioner is constructed

as

1 -1)
_=I A

(3.8)

in which Nsub is the number of subdomains and ZA is the global finite
A

element assembly operator. It should be noted that [K_I] in Eq. (3.8) may

not be positive definite for subdomains that does not have enough

prescribed displacements to avoid local rigid body motions. In dynamic

analyses, however, the contribution of the mass matrix (to the effective
A

stiffness matrix of Eq. 2.46) may in many cases help make [K_] positive

definite. Generally speaking, the successful construction of this

preconditioner is not always guaranteed.

The second preconditioner investigated here assembles only the
A

diagonals of [K_I] from all subdomains to construct the diagonal sealing

preconditioner of the form

92

diag K
[P] = j=l ^ (3.9)

in which Nsub is the number of subdomains, ZA is the global finite element

assembly operator, and diag(.) retains only the diagonal terms in a matrix.

This preconditioner is selected in this research over other preconditioners,

such as incomplete Cholesky and block diagonal scaling preconditioners,

because it is simple and requires less computation and interprocess

communication.

The parallel Newmark constant average acceleration algorithm with

domain decomposition described above has been implemented in ABREAST

using a MIMD algorithm. Within each time step, the substructure

condensation for each subdomain is performed on a separate processor

independently and concurrently with no interprocess communication

required. The solution of the unknowns along the subdomain interfaces is

then computed using the parallel preconditioned conjugate gradient

algorithm which requires both nearest-neighbor and global interprocess

communication. For nonlinear analysis, the present research uses a

modified-Newton iterative solution scheme to obtain the equilibrium

solution at the end of each time step. This equilibrium check also requires

both nearest-neighbor and global interprocess communication. Tables 3.2 -

3.5 briefly outline the present implementation of this parallel implicit

algorithm. It should be noted that a host processor is selected among

processors automatically by the program at the beginning of the analysis to

facilitate global interprocess communication whenever it is needed. In

addition, the dot products needed by the conjugate gradient algorithm in

Table 3.4 are computed on the primary boundary nodes.

- 93

Table 3.2 Parallel implicit algorithm

(I) Input and setup basic analysisdata.

(2) Compute internalforcevector.

(3) Compute globalstiffnessmatrix (as ofEq. 2.46).

(4) Compute load vector (as ofEq. 2.47).

(5) Solve fordisplacements.

(5a) Condense the interiordegrees-of-freedom.

(5b) Assemble condensed load vector (seeTable 3.3).

(5c) Use parallelpreconditioned conjugate gradient method

Table 3.4)to solveforboundary degrees-of-freedoms.

(5d) Solve forinteriordegrees-of-freedoms.

(6) Compute velocitiesand accelerations.

(7) Recover stressesand strains.

(8) Check equilibrium fornonlinear analysis.

(9)

(8a)

(8b)

(8c)

(8d)

(8e)

(8_

(8g)

Go to (2)fornext time step.

(see

Assemble internal force and load vectors (see Table 3.3).

Compute unbalanced force vector.

Assemble unbalanced force norm (see Table 3.5).

Go to (9) if convergence is achieved.

Solve for displacements (same as Step 5).

Compute velocities and accelerations (same as Step 6).

Recover stresses and strains (same as Step 7) and go to (8a).

Table 3.3 Assembly of the vector at subdomain boundary

(1) Send requests to adjacent subdomains for their contributions to

the vector being assembled for the current subdomain.

(2) Wait for requests from adjacent subdomains, then send out the

contributions of the current subdomain to adjacent subdomains.

(3) Wait until contributions from all adjacent subdomains are

received and assembled.

94

Table 3.4 Parallel preconditioned conjugate gradient algorithm

A A

[K] = [K_]; k = iteration number = 0; {U}o = {0}; {r}o = {R} ffi {R_t};

While(lJ{r}kN2< (tol.)U{R}]2)

Solve [P]iz}k --{r}k

k=k+l

Assemble {z}k (see Table 3.3) and compute average values over

neighboring subdomains
T

Assemble the dot product {r}k {Z}k (see Table 3.5)

if(k= 1)

{P}I = {Z}o

else

_k T T= (r}k_1(Z)k_1 / (r}k_2 (Z}k_2

(P}k (Z}k-1 + _k(P}k-I

end

Assemble {S} = [K] {P}k (Table 3.3)

Assemble the dot product {p}T {S} (see Table 3.5)

T
(Xk - {r}k_1{Z}k_l/{p}kT[K]{P}k

{U}k = {U}k-1 + (Xk{P}k;

Assemble the dot products

end

{u} = solution vector = {U}k

(r}k = (r}k_l-(Zk[K](P} k

(r}T(r)k and (R} T(R} (see Table 3.5)

Table 3.5 Assembly of the dot product

(1) Signal adjacent subdomains that the current processor is ready for

assembling the dot product.

(2) Wait for signals from adjacent subdomains, then send out local dot

product to host processor.

(3) If the current processor is the host processor, wait until local dot

products from all processors are received and assembled, then

send assembled global dot product to all processors.

(4) Wait until global dot product is received from the host processor.

- 95

3.3.3 Parallel Steady-State Solution

The present research implements a parallel Newton-Raphson

iterative incremental algorithm for steady-state solution of rotational

dynamics. The algorithm uses the same domain decomposition approach as

the parallel implicit algorithm discussed previously. The algorithm has also

been implemented in ABREAST and is outlined briefly in Table 3.6.

Table 3.6 Parallel steady-state (static) algorithm

(1) Input and setup basic analysis data.

(2) Compute global stiffness matrix.

(3) Compute load vector.

(4) Solve for displacements.

(4a) Condense the interior degrees-of-freedom.

(4b) Assemble condensed load vector (see Table 3.3).

(4c) Use parallel preconditioned conjugate gradient method (see

Table 3.4) to solve for boundary degrees-of-freedoms.

(4d) Solve for interior degrees-of-freedom.

(5) Recover stresses and strains.

(6) Check equilibrium for nonlinear analysis.

(6a) Assemble internal force and load vectors (see Table 3.3).

(6b) Compute unbalanced force vector.

(6c) Assemble unbalanced force norm (see Table 3.5).

(6d) Go to (7) if convergence is achieved.

(6e) Compute global stiffness matrix (same as Step 2).

(6f) Solve for displacements (same as Step 4).

(6g) Recover stresses and strains (same as Step 5) and go to (6a).

(7) If at the end of final increment, go to (8); else go to (2).

(8) Perform (8a) and (8b) recursively until the update of the load

vector no longer affects the equilibrium.

(8a) Update load vector (see Table 3.3).

96

3.4 Effectiveness of Parallel Analysis

This sectionevaluates and discusses the effectivenessof the parallel

algorithms implemented in this research. The implementation of the

parallel algorithms have been verifiedby comparing results of parallel

analyses with those of serialanalyses. The following definitionsof speed-

up, S, and efficiency,E, are used to evaluate the performance of the parallel

algorithm:

Elapsed wall clocktime forsolutionon one processor
S --Elapsed wall clocktime forsolutionon Np processors (3.10)

E (%) = Speed-up
Np x 100 (3.11)

in which Np is the number of processors used in the parallelanalysis. The

wall-clocktime is used in Eq. (3.10)because ityieldsthe most conservative

measures of speedup and efficiencies.For example, communication delays

and overhead are fullyaccounted forwith this definition.Nevertheless, it

should be stated that the results reported in this thesis were obtained by

runs overnight while there was littleother trafficon the network.

In the investigation of both the parallel implicit and steady-state

analyses, it should be noted that the single-processor analysis does not use

the substructuring (or domain decomposition) approach but, instead, uses a

direct Gauss elimination method for the solution of the total set of original

equations. For the solution of problems which are not too large to be

accommodated in the core memory of a single processor, this direct

approach is believed to be more efficient than the substructuring approach

with either a direct or an iterative equation solver in most cases. This also

leads to more conservative measures of speed-up and efficiency.

- 97

3.4.1 Parallel Explicit Transient Analysis

Three structures of increasing size have been used in the preliminary

study (Abel et al. 1991; Aubert 1992) to evaluate the effectiveness of the

parallel central difference algorithm described in Section 3.2.2.1. The first

structure is a transmission tower shown in Fig. 3.3. The tower has 434

truss elements, 160 nodes, and 468 unrestrained degrees of freedom. The

Figure 3.3 The finite element model of a transmission tower with 434

elements, 160 nodes, and 468 unrestrained degrees of freedom

98

structure is subjected to the E1 Centro earthquake. Both geometrical and

material nonlinearities are considered in the analysis. Up to four

DEC5000's are used.

The second structure is shown in Fig. 3.4 which is an unsupported

space station with 1,428 truss elements, 304 nodes, and 912 unrestrained

degrees of freedom. The structure is loaded with self-equilibrating external

loads (Aubert 1992; Aubert et al. 1992) and is analyzed with the

consideration of geometrical nonlinearity. Up to four DEC5000's are used.

Figure 3.4 The finite element model of a space station with 1,428 elements,

304 nodes, and 912 unrestrained degrees of freedom

The third structure is a thirty-story building shown in Fig. 3.5. The

structure consists of 1,200 beam-column elements, 496 nodes, and 2,880

unrestrained degrees of freedom and is subjected to the E1 Centro

99

earthquake. Both geometrical and material nonlinearities are considered in

the analysis. Up to five DECS000's are used.

b

Figure 3.5 The finite element model of a thirty-story building with 1,200

elements, 496 nodes, and 2,880 unrestrained degrees of freedom

Figure 3.6 plots the speed-up results obtained in the parallel analyses

versus the linear (optimal) speed-up. For the transmission tower, which is

the smallest structure in these three examples, the speed-up ranges from

100

1.7 for two processors to 2.7 for four processors. For the 30-story building,

the largest one in the three examples, the speed-up ranges from 1.8 for two

processors to 4.1 for five processors.

6

5

4

3

U_

2

0

Linear speed-up

30-story building

Space station

Transmission tower

! I ! I I |

0 1 2 3 4 5 6

Number of processors

Figure 3.6 Speed-up results obtained for the parallel analysis on the

structures of Figs. 3.3 - 3.5

In addition to the above studies, several geometrically nonlinear

analyses using the consistent mass approach have been performed of the

rotating bladed-disk problem with the finite element model of Fig. 3.7. The

- 101

model consists of 504 twenty-node brick solid elements, 3,828 nodes, and

10,044 unrestrained degrees of freedom. Up to six DEC5000's or up to

twelve HP9000/720's are used. A time step of 0.00001 seconds is used, and

100 time steps were run. The speed-up and efficiency results obtained from

the parallel analyses are given in Table 3.7. It takes about five hours and

thirty-two minutes for a single DEC5000 to complete the analysis, while it

takes about two hours and fii_y-five minutes for a single HP9000/720. The

speed-up results of each analysis are plotted versus the linear (optimal)

speed-up in Fig. 3.8.

Figure 3.7 A finite element model of a 12-bladed turbine disk with 504

elements, 3,828 nodes, and 10,044 unrestrained degrees of freedom

102

Table 3.7 The speed-up and efficiency of the parallel central difference

algorithm for analysis of the rotating bladed-disk problem of Fig. 3.7

DECS000

Speed-up

1.9

Efficiency (%)

96

HP9000f720

Speed-up

1.9

Efficiency (%)

96

3 2.9 96 2.9 96

4 3.8 94 3.8 95

6 5.4 90 5.6 93

12 - -- 9.7 81

cD

r/j

12

II

I0

9

8

7

6

5

4

3

2

1

0

A

Linear speed-up

Speed-up on DEC's

Speed-up on HP's

0 1 2 3 4 5 6 7 8 9 10 11 12

Number of processors

Figure 3.8 Speed-up of the parallel central difference method applied to the

bladed-disk of Fig. 3.7

- 103

From Fig. 3.6, Table 3.7, and Fig. 3.8, the effectiveness of the parallel

central difference method is apparent. It should be noted that the analyses

cannot achieve linear speed-up, even with no communication overhead,

because element calculations for the border elements are duplicated in the

processors sharing these border elements. However, as long as the ratio of

the number of border elements to the number of interior elements in each

substructure is small, the parallel central difference algorithm can achieve

high speed-up and efficiency.

3.4.2 Parallel Implicit Transient Analysis

Two structures have been analyzed to investigate the effectiveness of

the parallel implicit algorithm. The first one is the same thirty-story

building shown in Fig. 3.5. The building is subjected to the E1 Centro

earthquake. Geometrically nonlinear analyses are performed. The time

step is 0.01 seconds and 5 seconds of the earthquake are analyzed. The

convergence tolerance for the modified-Newton iterations is lx10 "5, while

the convergence tolerance for the conjugate gradient iterations is lxl0 "s.

Up to three DEC5000's are used for the analyses.

The speed-up and efficiency results obtained from the parallel

analyses are given in Table 3.8. ANCGI denotes the average number of

conjugate gradient iterations, while NIDOF denotes the total number of

degrees of freedom on the subdomain interfaces. The average number of

modified-Newton iterations per time step for all analyses is three. The

analysis on a single DEC5000 takes about four hours and twenty-three

minutes.

104

From Table 3.8, it can be observed that both preconditioners

accelerate the convergence of the conjugate gradient iteration, but the

diagonal scaling preconditioner of Eq. (3.9) is more effective in this case. In

addition, as the number of processors increases from two to three, both the

number of interface degrees of freedom and the number of conjugate

gradient iterations increase, resulting in an increase of the total amount of

synchronization and communication overhead. Although, at the same time,

the amount of computation per processor decreases, the increase of

overhead dominates in this case and the speed-up factors drop. This means

that nothing is gained by having more than two processors in the parallel

analysis of this example.

Table 3.8 The speed-up and efficiency of the parallel implicit algorithm for

analysis of the thirty-story building of Fig. 3.5 (with the use of modified-

Newton iteration solution scheme)

2

3

Preconditioner

Diagonal

Eq. (3.8)

None

Diagonal

Eq. (3.8)

None

ANCGI [

6

S

1.4

[E (%)

68

20 1.1 56

1.129 52

7 1.3 44

31 0.7 24

44 0.7 23

NIDOF

96

192

It should be noted that the use of modified-Newton iteration scheme

is unfavorable to the conjugate gradient solution method because, in the

equilibrium iteration loops, only backward substitution is required for the

direct Gauss elimination method (which is the case of Np = 1), while it is not

- 105

the case for the conjugate gradient method. To demonstrate this point, the

same analyses are performed using the simple incremental solution scheme,

instead of modified-Newton iteration scheme, for the cases of Np = 1 and Np

= 2. The results are given in Table 3.9. It takes about three hours and

twenty-five minutes for the analysis on a single DEC5000. It can be seen

that the average number of conjugate gradient iterations decreases and

better speed-up factors are obtained. Surprisingly, however, the

preconditioner of Eq. (3.8) does not reduce but increases the number of

iterations in this case.

Table 3.9 The speed-up and efficiency of the parallel implicit algorithm for

analysis of the thirty-story building of Fig. 3.5 (with the use of simple

incremental solution scheme)

N V

2

Preconditioner

Dia_onal

Eq. (3.8)

None

I ANCGI

3

S

1.5

I E (%)

75

17 1.4 69

1.416 71

I NIDOF

96

The second structure analyzed is a twelve-story L-shaped building

shown in Fig. 3.9. The finite element model of the structure consists of 468

beam-column elements, 72 nine-node Lagrangian shell elements, 482 nodes,

and 2,508 unrestrained degrees of freedom. Again, the structure is

subjected to the E1 Centro earthquake and geometrically nonlinear analyses

are performed. The time step is 0.01 seconds and only 0.5 seconds of the

earthquake are analyzed. The convergence tolerance for the modified-

Newton iterations is lxl0 "5, while the convergence tolerance for the

106

conjugate gradient iterations is lx10 _.

HP9000/720's are used for the analyses.

Up to four DEC5000's or up to four

Figure 3.9 A finite element model of a 12-story L-shaped building with 468

beam-column elements, 72 shell elements, 482 nodes, and 2,508

unrestrained degrees of freedom

Table 3.10 reports the speed-up and efficiency results obtained from

the parallel analyses. ANCGI denotes the average number of conjugate

gradient iterations, while NIDOF denotes the total number of degrees of

freedom on the subdomain interfaces. The average number of modified-

Newton iterations per time step for all analyses is three. The analysis takes

about three hours and forty-four minutes on a single DEC5000, while it

takes about two hours and nine minutes on a single HP9000/720. In this

- 107

A

example, the preconditioner of Eq. (3.8)is not used because singular [K_I] is

encountered during the analysis. All analyses performed on HP9000/720's

use the diagonal scaling preconditioner of Eq. (3.9). In addition, the speed-

up results of each analysis are plotted versus the linear speed-up in Fig.

3.10.

Table 3.10 The speed-up and efficiency of the parallel implicit algorithm for

analysis of the twenty-story L-shaped building of Fig. 3.9

DEC5000 HP9000/720

Np Preconditioner ANCGI S E (%) S] E (%) NIDOF

Dia$onal 13 2.1 103 2.1 104

2 None 85 1.8 91 84

Diagonal 13 2.5 84 2.5 84

3 None 126 1.6 54

Dia_onal 13 3.3 81 3.3 83

4 None 140 1.6 40

168

252

From table 3.10 and Fig. 3.10, three observations can be made. First,

the diagonal scaling preconditioner of Eq. (3.9) is again very effective in

reducing the number of iterations. As the number of processors increases,

the average number of conjugate gradient iterations increases in the

unpreconditioned analyses but remains the same in the preconditioned

analyses.

Second, the speed-up factors for the unpreconditioned analyses

decreases when the number of processor increases, while those for the

108

preconditioned analyses increase. This shows the significance of the

preconditioning.

CD

Cf_

5

4

,

2

0

Linear speed-up

Speed-up on DEC's (preconditioned)

Speed-up on DEC's (unpreconditioned)

Speed-up on HP's (preconditioned)

| I I ! I

0 1 2 3 4 5

Number of processors

Figure 3.10 Speed-up for the twelve-story L-shaped building of Fig. 3.9

using the parallel implicit algorithm

Third, superlinear speed-up is achieved in the preconditioned

analysis for the case of Np = 2. This is probably due to the fact that the

profile (or skyline) of the coefficient matrix for the whole structure in the

serial analysis is not as well minimized as that of the coeffÉcient matrix for

each subdomain in the parallel analysis. The nodal numbering for the

whole structure is currently done in BASYS by a crude bandwidth

- 109

minimization algorithm (Srivastav 1991), while nodal renumbering is

performed for each subdomain using a modified version of the Gibbs-King

profile reduction algorithm (Paulino 1988) in PSAINT. If the same profile

reduction algorithm used for nodal renumbering in each subdomain is used

to renumber the nodes in the whole structure, it is believed that the

superlinear speed-up would not occur in this example.

Generally speaking, the parallel implicit algorithm is not as efficient

as the parallel explicit algorithm because significantly more synchronization

and communication overhead is required in the analysis. Nevertheless, it

has been shown in the above study that the parallel implicit algorithm is

reasonably effective for parallel nonlinear solution of structural dynamics,

especially when the problem size is large and an appropriate number of

processors is used. In addition, the preconditioning often accelerates the

convergence rate of the conjugate gradient method, leading to better

performance of the parallel implicit algorithm. The effectiveness of the

diagonal scaling preconditioner is evident in both examples studied.

3.4.3 Parallel Steady-State Analysis

The steady-state analysis of the rotating bladed-disk with the finite

element model of Fig. 3.7 is conducted to investigate the effectiveness of the

parallel steady-state algorithm. The structure is rotating at a constant

speed of 100 rpm. Geometrically nonlinear analyses are required. The

consistent mass approach is employed to account for rotational

nonlinearities. The convergence tolerance for the Newton-Raphson

iterations is lxl0 "s, while the convergence tolerance for the conjugate

110

gradient iterations is Ixl0 "I°. Up to six DEC5000's or up to six

HP9000/720's are used forthe analyses.

The speed-up and efficiency results obtained from the parallel

analyses are reported in Table 3.11. ANCGI denotes the average number of

conjugate gradient iterations,while NIDOF denotes the totalnumber of

degrees of freedom on the subdomain interfaces. A total of fourteen

Newton-Raphson iterations is required for all analyses to obtain final

equilibrium solutions.The analysis on a singleDEC5000 takes about three

hours and eight minutes, while it takes about one hour and forty-six

minutes on a singleHP9000/720. In addition,Fig. 3.11 plots the speed-up

resultsofeach preconditioned analysisversus the linearspeed-up.

Table 3.11 The speed-up and efficiency of the parallel steady-state

algorithm foranalysis ofthe rotatingbladed-disk ofFig. 3.7

N o Preconditioner

Diagonal 37

2 None 48

Dia_onal 49

3 None 52

Dia_onal 40

4 None 49

Dia_onal 48

6 None 54

DEC5000

ANCGI S E (%)

1.4 71

1.4 70

2.0 68

2.0 65

3.0 74

3.0 74

3.9 66

3.9 65

HP9000/720

S E (%) NIDOF

1.5 74

.... 144

2.2 74

- -- 216

3.2 80

3.9 65

288

432

From Table 3.11 and Fig. 3.11, two observations are obtained. First,

the diagonal preconditioning successfully reduces the number of iterations

- III

required in conjugate gradient method but the reduction is less significant

for this example than for those examples studied in previous section. In

addition, the speed-up and efficiency of the preconditioned analysis is only

slightly better than the unpreconditioned analysis. This may be because the

additional communication overhead required in the preconditioned analysis

offsets the reduction of communication overhead due to the reduction of

iteration number.

CD

7

6 _. Linear speed-up

Speed-up on DEC's

5

4

3

2

1

O_ | | | ! l B

0 1 2 3 4 5 6

Number of processors

|

7

Figure 3.11 Speed-up for the 12-bladed turbine disk of Fig. 3.7 using the

parallel steady-state algorithm

Second, as the number of processors increases, the speed-up factors

increase. It should be noted, however, that the efficiency factors increase

112

significantly and reach the peak when the number of processors goes from

three to four. The average number of conjugate gradient iterations required

for the case of Np = 4 is also smaller than those for the case of Np = 3. This

is because the nature of the structural domain partitioning affects both the

efficiency of the substructuring condensation in each subdomain and the

condition number of the condensed coefficient matrix. In this case, it

happens to be that the partitioning for the case of Np = 4 results in the best

parallel performance of the algorithm among all cases.

Because the parallel steady-state algorithm is very similar to the

parallel implicit algorithm, the examples presented in both the present and

previous sections may be studied together to evaluate the effectiveness of

the same parallel approach used by both algorithms. Although high

synchronization and communication costs are inherent in the present

networked workstation environment, the results obtained in these examples

are encouraging. These results also indicate that both the implicit dynamic

and steady-state analyses of either framed structures or rotating turbine

bladed-disks can benefit from parallel processing.

Chapter 4

Load Balancing Among Processors

As discussed in Chapter 3, to take advantage of parallel processing in

finite element analysis, the domain is usually partitioned (or decomposed)

into a number of subdomains which are distributed among the processors

and the computation involved in a subdomain is carried out by a separate

processor. The key problems of this approach are how to partition the

domain to achieve well-balanced workload distribution among processors

and how to minimize the amount of interprocess communication so that

significant speed-up can be obtained in the parallel analysis.

Load-balancing techniques have frequently been classified as either

static or dynamic. Static load balancing techniques assume a priori

knowledge of the static characteristics of the tasks and the system to

distribute the tasks among processors. The task distribution is done only

once and before the actual computation starts (i.e.,in the preprocessing

phase). Dynamic load balancing (sometimes referred to as adaptive load

balancing) techniques utilize short-term knowledge of current state

information of the tasks and the system to dynamically distribute the tasks

among processors during the task execution. The tasks originally assigned

to a processor may be migrated (or redistributed) to other processors at any

time during the computation to improve the load balance. Dynamic load

balancing may be important in problems involving material nonlinearity,

self-adaptive mesh refinement, crack propagation, etc.

113

114

In this research, attention is limited to the static load balancing

techniques for the domain partitioning problems involved in parallel finite

element analysis of structural dynamics. Because the methods considered

must be applicable to finite element meshes which are large and generic

(irregular shapes, including multiply connected and/or branched), manual

partitioning may be difficult (if not impossible) even with the help of

interactive computer graphics. Simon (1991) has shown that visual

perception may be inadequate for the task of partitioning large three-

dimensional structures. Therefore, the focus of this work is on automatic

algorithms, although interactive graphics tools are also developed to allow

for manual partitioning and for examining and modifying results of

automatic partitioning. The discussion of development of the graphics tools

is deferred until Chapter 5.

Generic finite element meshes can be defined by the following four

characteristics:

a) large meshes which may lack topological or geometrical

regularity, e.g.,meshes which have holes, loops, and/or branches.

b) meshes combining finite elements of different geometrical

dimensions, e.g.,1-D line elements, 2-D quadrilateral elements,

and 3-D brick elements.

c) meshes with finite elements of different shapes, e.g.,triangular

elements with three nodes and quadrilateral elements with four

nodes.

d) meshes with finiteelements of different interpolation orders, e.g.,

linear and quadratic.

- 115

The above definition gives an idea of the complexity involved in the problem

of efficient partitioning of generic finite element meshes.

Different solution methods used in the analysis may require different

strategies for domain partitioning. Two types of partitioning strategies may

be classified: element-based partitioning and node-based partitioning. The

element-based algorithms focus on partitioning elements in finite element

meshes, while the node-based algorithms focus on partitioning nodes. For

parallel solutions of structural dynamics, implicit solution methods often

require element-based partitioning (for example, Hajjar and Abel 1988),

while explicit methods may require either type depending on the parallel

implementation (for example, Malone 1988; Hajjar and Abel 1989a). Both

types of partitioning algorithms are addressed in this research. However,

emphasis is placed on algorithms suitable for use with the parallel solution

methods investigated extensively in this work as discussed in Chapter 3.

In this chapter, a brief review of previous research is given first, and

some basic concepts and definitions of graph theory needed for the purpose

of the present discussions are introduced. Then, domain partitioning

algorithms to effect load balancing among processors proposed by previous

researchers and developed by the present research are studied. Finally,

these partitioning algorithms are evaluated and compared using different

types of structures modelled by 1D, 2D, and 3D finite elements.

4.1 Review of Previous Research

There has been a great amount of research on load balancing in the

field of operating systems. Numerous algorithms and techniques, both

static and dynamic, have been studied and developed to maximize system

116

performance (i.e., minimize job turnaround) and to optimize processor

utilization. Several types of system architectures have been also considered

in the literature. However, relatively little research has been conducted

addressing load balancing for parallel finite element analysis of structural

dynamics.

The problem of domain partitioning of finite element meshes is

equivalent to the problem of partitioning the graph associated with the

mesh. Graph partitioning is an important NP-complete problem (Garey and

Johnson 1979) and so is the general nature of mesh partitioning. Therefore,

obtaining optimal solutions is practically intractable, but is also

unnecessary because satisfactory near optimal solutions can always be

sought at a relatively low cost by the use of heuristic algorithms.

Using interactive computer graphics, Hajjar (1987) developed a set of

tools to help manually partition the structural domain for parallel dynamics

solutions of three-dimensional framed structures. This approach works well

for regular meshes with a small number of partitions. However, itis not in

general effective and feasible for meshes that are complex, irregular, and

large, especially ifthey are multi-connected and/or branched.

Flower et al. (1987) presented a simulated annealing method for

mapping irregular finite element domains to parallel processors. Although

these types of methods can give almost optimal results, they are usually

expensive and time-consuming especially for problems of large size.

After reviewing several decomposition algorithms proposed by

previous researchers, Malone (1988) proposed an automated mesh

decomposition method for transient analysis on hypercube multiprocessor

- 117

computers using an explicit time integrator. The method is called Reduced

Bandwidth Decomposition (RBD) and is based on a scheme which reduces

the bandwidth of the matrix representation of the connectivities in the

mesh. Only element-based partitioning is addressed.

Farhat (1988) proposed an automatic finite element domain

decomposer which seeks to decompose a finiteelement mesh into a set of

balanced domains sharing a minimum number of common nodal points.

The decomposer is suitable for both shared memory and local memory

multiprocessors. This algorithm explicitly addresses the element-based

partitioning. The node-based partitioning is briefly discussed, but no

algorithm is suggested. A drawback of this algorithm is that it may create

domain splitting situation, i.e.,portions of a domain may be unconnected or

not contiguous. The domain splitting increases the size of subdomain

boundaries as well as communication overhead in parallel computations. As

an attempt to avoid the domain splitting situation, AI-Nasra and Nguyen

(1991) incorporated the geometry information of the finite element meshes

into an automatic decomposition algorithm similar to the one proposed by

Farhat (1988). Padovan and Kwang (1991) also developed a direct element

connect filling(DECF) scheme which employs multiple starting nodes and

proceeds with an algorithm similar to Farhat's simultaneously for each

starting node to avoid possible domain splitting. The symmetry of the finite

element domain is considered in the selection of starting nodes and during

the partitioning process.

Simon (1991) compared three partitioning algorithms: recursive

coordinate bisection, recursive graph bisection, and recursive spectral

bisection algorithms, and shows the superiority of the new spectral bisection

118

algorithm over the other two. Only element-based partitioning is

addressed. The bisection nature of these algorithms is suitable for

hypercube computers in which the number of processors is an integer power

of two, but it is too restrictive for applications on coarse-grained parallel

computing environments consisting of an arbitrary number of processors.

In addition to the comparison similar to that made by Simon (1991),

Venkatakrishnan et al. (1991) compared two variants of the partitioning

strategies based on each of the three algorithms introduced by Simon. The

two variants were referred to as domainwise and stripwise decompositions.

It was found that the domainwise partitioning strategies attempt to reduce

the transmission costs of interprocess communication, while the stripwise

partitioning strategies attempt to reduce the start-up costs of

communication.

Recently, Hendrickson and Leland (1992) developed a new spectral

graph partitioning algorithm which combines a recursive spectral

octasection algorithm with a generalized Kernighan-Lin algorithm. In the

example problem studied, it was shown that this algorithm produced better

results than the recursive spectral bisection algorithm proposed by Simon

(1991). However, the octasection nature of the algorithm is again best

suited for hypercube architectures and is not amenable for applications on

parallel computing environments consisting of an arbitrary number of

processors.

4.2 Theoretical Background and Definitions

For the purpose of discussion of domain partitioning algorithms, itis

necessary to introduce some essential concepts and definitions of graph

- 119

theory and to establish their relationship to matrix analysis and finite

element analysis. These concepts and definitions are presented in this

section. Different graph representations of finite element meshes are also

discussed.

A graph G = (V, E) consists of a non-null finite set of vertices

V = {v 1, v 2, ..., v n} together with a set of edges E = {e 1, e2, -.., era} which

are unordered pairs of distinct values from V; E = { (vi,v j) I v i e V, vj e V }.

Edges are elements of the set E and vertices are elements of the set V. A

graph obeying this definition is an undirected graph because the set E is

comprised of unordered pairs of vertices.

The correspondence between a graph and a matrix can be established

by considering a symmetric matrix K of order N with non-null diagonal

components kii. The ordered and undirected graph of K is denoted by

G K -- (V K, EK). This graph has N vertices numbered from 1 to N, and

{v i, vj} eE K if and only ifkij = kji # 0, i # j, where v i denotes the node ofE K

with label i.

The vertices u and v in G are adjacent vertices if {u, v} _ E.

The adjacent set of the subset W of the vertices of G, Adj(W), is

defined as

Adj(W)={ue (V-W) I (u,v) e E, veW, WcV} (4.1)

IfW = {v}, Adj(W) = Adj(v). The degree of the set W is defined as

Deg(W) = I Adj(W) I (4.2)

120

where l-l denotes the number of components of the set.

degree of a vertex v is defined as

Deg(v) = l Adj(v) l

Similarly, the

(4.3)

Consider the finiteelement mesh of Fig. 4.l(a)with nine nodes, four

T3 elements, two Q4 elements, and no boundary conditions. For the sake of

simplicity,assume one degree of freedom (dof)per node. The stiffness

matrix representation associated with this mesh is given in Fig. 4.1(b)by

the symmetric matrix K (oforder nine) with elements kij.With respect to

Fig. 4.1(c),V K = { 1, ...,9 } and EK = { {1,2},{1,4},{1,5},...,{8,9}},where

each pair {vi,vj} contains two adjacent vertices. If W = {1,2, 3}, then

Adj(W) = {4,5, 6} and Deg(W) = 3. For the vertex No. 6, Adj(6) = {2,3, 5, 8,

9} and Deg(6) = 5.

1 2 3

4 5

//6
8 9

FEM mesh

(9 nodes; 6 elements)

(a)

w

XX XX

XXXXXX

XX XX

XX XX X

XXXXXXXX

XX XX XX

XX XX

XXXXX

X XX
m

Matrix K
(9 x 9)

Co)

K
Graph G

(9vertices;18 edges)

(c)

Figure 4.1 Correspondence among mesh, matrix, and graph

- 121

Next, consider the finite element mesh of Fig. 4.2(a) with fifteen

nodes, eight T3 elements, four Q4 elements, and no boundary conditions.

The connectivity of the nodes can be represented topologically by the node

graph of Fig. 4.2(b). In order to establish the connectivity of the finite

elements in a topological sense, a dual graph representation is used as

illustrated by Fig. 4.2(c).

The geometric aspect of the dual graph is used here for the purpose of

representing the connectivity of the finite elements in a generic mesh. The

nodes in the dual graph represent finite elements in the original mesh. The

edges in the dual graph represent adjacent finite elements that share a

common boundary in the original mesh. According to this definition, a finite

element of dimension n (n -- 1, 2, 3) has boundaries of dimension (n-l). As

an example, by applying this definition to the finite element mesh of Fig.

4.2(a), the dual graph of Fig. 4.2(c) is obtained.

A spectral method, based on algebraic properties of the graph

associated with the finite element mesh, can be used to solve the

partitioning problem (Pothen et al. 1990). The spectral method associates

an adequate graph representation (G) to the finite element mesh and forms

the Laplacian matrix L(G). Here, G is assumed to be a connected graph. A

particular eigenvector of this matrix can be used to partition the vertices of

the graph into two sets.

The Laplacian matrix L(G) is a symmetric matrix of order N, where N

is the number of the vertices of the graph G. The components _j of L(G) are

defined as

122

5 4 3 2 1

®
15 14 13 12 11

(a) Finite Element Mesh (arbitrary nodal and element numbering)

A .A
(b) Node graph G (c) Dual graph G

='-31 O0 01 I0 O0 O0 O0 O"
1-5100111 O0 0000 0
01-51 0011 100000 0
00 14100011 00 00 0
0001-20 00 0100 00 0
11000-51000 11 0 0 0
11 10 01-81 00 11 10 0

01 1000 1-71 001 1 1 0
00 110001-6100 0 1 1

00 0110 001400 00 1
00 00 01100 0-31 0 0 0

00 0001110 0 1-5 10 0
00 0000 110 0 01-41 0
00 00000110 00 141

00 0000001 1 000 1-3
B m

(d)L(G A)

--210000 1 00 0 0 0-
1-3010 00 10 00 0
00-210100000 0
011-30000100 0
0000-11000 00 0
00101-3000 01 0

100000-2101000 10000 1-30
00010000-310 1
0 000000 11-20 0
0000010000-2 1
0000000 010 1-2

(e) L(G *A)

(f) Fiedler vector for L(G A)

(_2 =- 0.639)

(g) Fiedler vector for L(G *A)

(_2 =- 0.264)

Figure 4.2 Spectral analysis

- 123

1
lij - . Deg(vi)

0

if and only if {v i, vj} e E
if and only if i = j

otherwise
(4.4)

From this definition, it follows that

L(G) = - D(G) + A(G) (4.5)

where D(G) is a diagonal matrix of order N with diagonal components

dij= Deg(v._ and A(G) is an adjacency matrix of order N with components

aij= 1 if{vi, vj}• E and zero otherwise. Fig. 4.2(d)shows the Laplacian

matrix L(G A) associated with the graph G A and Fig. 4.2(e) shows the

Laplacian matrix L(G *A) associatedwith the dual graph G *A.

The Laplacian matrix L(G) is negative semidefinite. Let the

eigenvalues of L(G) be ordered as _'1 = 0 > L2 > ... _. The largest eigenvalue

is _'1 = 0 and the associated eigenvector Yl has all of its elements equal to 1.

If G is connected, the second eigenvalue is always nonzero and negative.

The special properties of the second eigenvalue _'2 and its corresponding

eigenvector Y2 have been studied by Fiedler (1975). The second eigenvector

Y2 is called the Fiedler vector by Simon (1991). The eigenvalue _'2 is

designated "algebraic connectivity" and is related to the vertex and edge

connectivities of the graph. The components of Y2 are associated with the

corresponding vertices of the graph. Differences in the values of the

components of Y2 give topological distance information about the vertices of

the graph. The components of Y2 also provide a weighting for these vertices

which can be used for partitioning the graph G. For example, all vertices

with weights below the mean weight may be assigned to one partition, and

the rest to the other partition.

124

Figs. 4.2 (f)and (g) show the algebraic connectivity k2 and the Fiedler

vector Y2 for the graph G A and the dual graph G *A. In both cases, the

mean value of the components of Y2 is zero.

Graph Representation of Finite Element Meshes

One approach to partition a generic finite element mesh is to

associate a proper graph representation with the mesh and to partition the

graph. There are several ways to associate graphs with meshes.

An advantage of using the dual graph for partitioning of finite

element meshes is that the number of edges in the connectivity graph is

reduced, leading to a smaller set of data storage (compare Figs. 4.2 (b) and

(c)). This is due to the fact that the dual graph defines the connectivity of

the finite elements by means of their boundaries, instead of their nodes.

However, for framed structures consisting of only 1-D finiteelements, the

elements are connected to their adjacent elements through 0-D boundary

nodes. Therefore, there is no clear advantage in using the dual graph

approach for domain partitioning of framed structures.

A disadvantage of the dual graph approach is that the dual graph

does not represent the true interprocess communication in parallel finite

element analysis. The true interprocess communication occurs across

shared nodes in the original finite element mesh, but not shared boundaries

(e.g., edges or faces). To better describe the communication pattern,

Venkatakrishnan et al. (1991) proposed the use of a communication graph

which is defined as follows. The nodes in the communication graph

represent finite elements in the original mesh. The edges in the

m

125

communication graph represent adjacent finite elements that share a

common node in the original mesh. Figs. 4.3 (a) and (b) show the same

finite element mesh and its associated dual graph (G*A) as used in Figs. 4.2

(a) and (c), respectively. Fig. 4.3 (c) shows the associated communication

graph (G°A).

Both the dual graph and the communication graph do not

differentiate among different types of finiteelements. For example, ifone or

more Q4 elements in Fig. 4.3(a) are replaced by Q8 elements, both the dual

graph and the communication graph remain the same as Figs. 4.3 (b) and

(c),respectively. Therefore, the partitioning algorithms employing these

graphs may not produce partitions with well-balanced computational loads

for meshes with mixed finite element types. Nevertheless, the

communication graph is expected to provide better results than the dual

graph.

For node-based partitioning, since the focus is on partitioning nodes

in finite element meshes, the node graph seems to be a natural choice. The

use of the node graph is advantageous for framed structures consisting of

only 1-D finite elements because structures of this type usually have a fewer

number of nodes than of elements, resulting in less requirement of data

storage. However, this becomes a disadvantage for structures consisting of

2D or 3D elements, especially of higher order.

The best choice among different possible graph representations

depends on several factors such as the type of partitioning desired (node-

based or element-based), the parallel solution algorithms of the dynamic

system (explicit or implicit), and the effectiveness and computational cost of

126

the partitioning algorithm. This topic is further investigated in the present

research.

5 4 3

®
2

®
7

(9

1

6

15 14 13 12 11

(a) Finite element mesh

,A
(b) Dual graph G

eA

(c) Communication graph G

Figure 4.3 Correspondence among mesh, dual graph, and communication

graph

- 127

4.3 Domain Partitioning Algorithms

Four existing automatic algorithms for domain partitioning are

investigated in this research. They are the algorithms proposed by Farhat

(1988), Malone (1988), AI-Nasra and Nguyen (1991), and Simon (1991).

This section illustrates the approaches used by these algorithms and

discusses their strengths and weaknesses. Some aspects of their

implementation in this research are described. Two algorithms have been

developed in this research based on extensions to the spectral partitioning

method used by Simon (1991). They are also discussed in detail in this

section.

4.3.1 Farhat's Algorithm

Farhat (1988) presented an algorithm for automatic decomposition of

arbitrary finite element meshes. The algorithm is designed to meet three

basic requirements: (a) it must be capable of handling arbitrary finite

element meshes; (b) it must generate a set of balanced subdomains (often in

terms of number of elements) to ensure as even as possible distribution of

overall computational load among processors; (c) it must minimize the

amount of interface nodes to reduce the synchronization and]or

communication overhead.

Farhat's partitioning algorithm (here designated FP) is summarized

in Table 4.1. The weight of a node is defined as the number of unassigned

elements connected to it. The interior boundary of a subdomain is defined

as the subset of its boundary that connects to other subdomains. The

present implementation uses the routines provided by Farhat (1988) with

some corrections (Farhat 1992).

128

Table 4.1 Farhat's partitioning algorithm (here designated FP) (Farhat

1988)

(1) Locate a node that belongs to the boundary of the previously defined

subdomains (for the firsttime, the whole domain is used) and has a

nonzero minimal weight.

(2) Assign unassigned elements that are connected to this node to the

current subdomain. Recursively, assign unassigned elements that are

adjacent to the elements in the current subdomain to the current

subdomain until the number of elements equals to the total number of

elements divided by the number of processors.

(3) Repeat (1) and (2) until allsubdomains are defined.

According to Farhat (1988), this algorithm is independent of both

element and nodal numbering, since only adjacency information of elements

is utilized. However, the decomposition obtained from the algorithm is

actually not independent of nodal numbering. In Step (1),there may be

several nodes all with same minimal weight and the firstnode encountered

with minimal weight is arbitrarily selected. In this case, the initialnodal

numbering determines which starting node is to be selected. It has been

found that the selection of the node with minimal weight in Step (1),

especially the very first one in the algorithm, greatly affects the

decomposition result. In some cases, whether domain splitting occurs in the

decomposition may depend on the selection in Step (1). For example, in the

transmission tower shown in Fig. 4.4(a) (this is the same one shown in Fig.

3.3),the six vertices enclosed by a circleare nodes with minimal weight for

the very first step of the algorithm. Fig. 4.4(b) shows the partitioning

- 129

results for two subdomains with a splitting situation occurring in

subdomain #2. In this case, the algorithm uses the upper right minimum-

weighted node as the starting point. If a different nodal numbering is used

which makes the algorithm start from any of the four support nodes

(minimum-weighted nodes), domain splitting will be avoided for this case.

(a) Transmission tower

• , Subdomain #1 ,

I I

I
'w I

Subdomain #2 i
(splitting) ,

(b) Partitioning by FP algorithm

Figure 4.4 Partitioning of a transmission tower using FP algorithm

130

4.3.2 A1-Nasra and Nguyen's Algorithm

Recently, AI-Nasra and NgUyen (1991) presented an algorithm

similar to Farhat's FP (1988) for automatic domain decomposition in finite

element analysis. They incorporated the geometry information of the finite

element meshes in the algorithm as an attempt to avoid domain splitting

problems. The algorithm uses the geometry information to identify the

overall long and short directions of the structure and then discourages

spreading of elements in a subdomain in the long but short direction.

AI-Nasra and Nguyen's partitioning algorithm (here designated

ANP) is summarized in Table 4.2. AI-Nasra and Nguyen (1991) stated in

the paper that domain splitting problems did not occur in their algorithm

for all applications they had tested. However, for some applications the

writer tested, the splitting situation did occur. For example, Fig. 4.5(a)

shows an 8-bladed turbine disk modelled by solid finite elements, and Fig.

4.5(b) presents the partitioning results for two subdomains obtained by the

ANP algorithm. It can be seen that splitting occurs in subdomain #2.

Moreover, when the splitting occurs in a subdomain other than the last one,

Step (3) of the algorithm may go into an endless search for the minimum-

weighted node. Therefore, the present implementation uses the routines

provided by AI-Nasra and Nguyen (1991) with a slight modification in Step

(3) to avoid the problem of endless search for the minimum-weighted node.

The modified Step (3) in the algorithm then becomes

(3) Locate a node that has a nonzero minimal weight and is not

located at the boundaries with other subdomains. If all nodes in

the current subdomain are not qualified, perform a search

among all unassigned nodes in the mesh.

w

131

Table 4.2

ANP) (A1-Nasra and Nguyen 1991)

A1-Nasra and Nguyen's partitioning algorithm (here designated

Ill I

(I) Assign an initialweight to each node. The initialweight of a node is

defined as the number of elements connected to it.

(2) Adjust the initialweight of each node based on its geometric location

in the mesh such that extra weight is added increasingly along the

long direction of the mesh.

(3) Locate a node that has a nonzero minimal weight and is not located at

the boundaries with other subdomains.

(4) Assign .unassigned elements that are connected to this node and their

associated nodes to the current subdomain, and reduce the weight of

the nodes by one.

(5) Locate a node with minimum weight and with at least one adjacent

unassigned element in the current subdomain.

(6) Repeat (4) and (5) until the number of elements equals to the total

number of elements divided by the number of processors.

(7) Repeat (3) -(6) until all subdomains are defined.

In addition, the long and short directions defined in the algorithm are

in terms of the directions of global axes used to build the finite element

model of the structure. This means that different choices of the global axes

and different ways of orienting the structure with respect to the chosen

global axes may result in different partitioning results. Therefore, caution

is needed in preparation of input data for this algorithm.

132

(a) 8-bladed disk model

Subdomain #1

Subdomain #2

(splitting)

(b) Partitioning by ANP algorithm

Figure 4.5 An 8-bladed disk and its partitioning by ANP algorithm

- 133

4.3.3 Malone's Algorithm

Malone (1988) also presented an algorithm for automatic

decomposition of finiteelement meshes. The algorithm is called Reduced

Bandwidth Decomposition (RBD) algorithm by Malone (1988) and is

summarized in Table 4.3.

Table 4.3 Malone's reduced bandwidth decomposition (RBD) algorithm

(Malone 1988)

(1) Reduce bandwidth ofthe matrix representing the nodal connectivities

ofthe finiteelement mesh.

(2) Reorder elements in ascending sequence of their lowest numbered

nodes.

(3) To each processor,assign the elements in order untilthe number of

elements equals to the total number of elements divided by the

number ofprocessors.

In Step (1) of the RBD algorithm, it is stated by Malone that a

modified version of the Collins' automatic nodal renumbering algorithm for

bandwidth reduction (Collins 1973). The present implementation uses a

modified version of the Collins algorithm developed by Paulino (1988).

However, Collins' algorithm is not as "effective for most meshes" as stated

by Malone (1988, pp. 42), who presented only meshes with constant strain

triangles (CST). This algorithm was reported to be unsuccessful for meshes

with eigbt-noded quadrilateral elements (Collins 1973). Moreover, all of the

examples presented by Collins (1973) are too small when compared to large

134

meshes that demand parallel analysis. Therefore, if a more efficient and

effective heuristic algorithm is used in Step (1) to reduce the bandwidth of

the system matrix, better partitioning results may be obtained. However,

further research is needed to justify this idea.

There is no guarantee in the RBD algorithm that domain splitting

does not occur in the subdomains created. In Fig. 4.6, the space station

shown previously in Fig. 3.4 is partitioned by the RBD algorithm into four

subdomains. It can be seen that splitting occurs in subdomains #2 and #4.

iiiIiIII_IIIIIIIIIIIIIIIIIII I

Subdomain #2

(splitting) _ _

,_'-... Subdomain #3 "_f"

• ,,

Figure 4.6 Partitioning of the space station shown in Fig. 3.4 by the RBD

algorithm.

- 135

In the RBD algorithm originally presented by Malone (1988), there is

a Stop (4) to assign uniquely nodes along the interfaces of subdomains to

processors which is required by the parallel dynamic algorithm used by

Malone. It is omitted from Table 4.3 because it is not generally needed by

parallel algorithms and is not implemented in this research. However,

when there is a need to assign uniquely nodes along the interfaces of

subdomains to processors, this research uses an approach different from

Malone's. The approach is discussed later in this chapter.

4.3.4 Simon's Algorithm

Based on the spectral partitioning method proposed by Pothen et al.

(1990), Simon (1991) presented a recursive bisection algorithm for

automatic partitioning of unstructured grids. To establish the partitioning

of the grid, a dual graph representation has been used. The partitioning

algorithm is called Recursive Spectral Bisection (RSB) algorithm by Simon

(1991) and is summarized in Table 4.4.

Table 4.4 Simon's recursive spectral bisection (RSB) algorithm (Simon

1991)

(1) Construct the dual graph associated with the finite element mesh.

(2) Compute the second eigenvector of the Laplacian matrix (called the

Fiedler vector by Simon) of the graph using the Lanczos algorithm.

(3) Sort vertices of the graph according to the value of their associated

components in the Fiedler vector.

(4) Assign half of the vertices to each subdomain.

(5) Repeat recursivel_, for each subdomain.

136

This algorithm has two features that are worth mentioning. First,

the dual graph is used to construct the partitioning problem. As discussed

previously in Section 4.2, this approach decreases significantly the size of

the eigenproblem associated with the Laplacian matrix. As a result, the

computational storage and execution time required to solve the eigensystem

are reduced. Second, this algorithm employs the global information of the

graph provided by the Fielder vector to obtain an edge separator which

partitions the graph into two subgraphs of nearly equal size (one vertex

difference at most).

Very good partitioning results have been obtained using this

algorithm, as reported by Simon (1991). It has also been shown by Pothen

et al.(1990) that the separators computed by this algorithm compare quite

favorably with separators computed by other previously proposed

algorithms.

However, there are some problems associated with the RSB

algorithm. First, the dual graph associated with a finite element mesh may

be a disconnected graph. This situation may happen when n-dimensional

finite elements are not connected through all their (n-1)-dimensional

boundaries and when the adjacent finite elements do not have the same

geometric dimensions (Fenves and Law 1983). Although theoretically this

algorithm is capable of handling non-connected graphs (Pothen et al. 1990),

this situation may not only create difficulties and complexities in the

partitioning process but also deteriorate the partitioning results.

Second, as discussed in Section 4.2, the dual graph does not represent

the true interprocess communication in parallel finite element analysis. To

- 137

better describe the communication pattern, the communication graph may

be used. In the present work, both the dual graph and communication

graph approaches are implemented. For node-based partitioning, the node

graph approach is also implemented.

Third, the bisection nature of the RSB algorithm is suitable for

hypercube computers in which the number of processors is an integer power

of two, but itis too restrictive for computing environments consisting of an

arbitrary number of processors, such as the networked workstation

environments investigated in this research. In Section 4.3.5,two algorithms

developed in this research are presented, both of which generalize the RSB

algorithm for an arbitrary number of partitions. They are called by the

author the recursive spectral sequential-cut (RSS) algorithm and the

recursive spectral two-way (RST) algorithm, respectively. Detail

descriptions of these two algorithms are given in Section 4.3.5.

The last problem associated with the RSB method is related to its

computational cost. In general, the solution of the second eigenvector for

large meshes can be quite expensive, even when the dual graph approach is

used. Venkatakrishnan et al. (1991) have compared the execution time of

the RSB algorithm and two other algorithms for a graph with 15,606

vertices on a Silicon Graphics workstation (Iris 4D/70). It is found that the

RSB algorithm is "quite expensive" (1,750 seconds for the RSB algorithm,

while 4 and 3 seconds for the other two algorithms, respectively) although

the performance of the algorithm improves considerably on a vector

computer such as the Cray Y-MP because matrix vector products in the

Lanczos algorithm can be vectorized. Recently, Barnard and Simon (1992)

have developed a fast multilevel implementation of the RSB algorithm

138

which is reported to attain "about an order-of-magnitude improvement in

run time on typical examples." This multilevel approach has not been

implemented in the present research.

4.3.5 Present Algorithms

Two algorithms have been developed in this research based on the

same spectral partitioning method used by the RSB algorithm. Unlike the

RSB algorithm in which the number of partitions is restricted to an integer

power of two, both the present algorithms can yield an arbitrary number of

partitions.

Recursive Spectral Sequential-Cut (RSS) Partitioning Algorithm

The recursive spectral sequential-cut (RSS) algorithm partitions the

graph in such a way that subgraphs are cut out of the original graph one by

one (or sequentially) in a recursive fashion. The algorithm is given in Table

4.5. The present implementation allows the use of the dual, communication,

or node graph.

Recursive Spectral Two-way (RST) Partitioning Algorithm

Instead of using a bisection approach, the recursive spectral two-way

(RST) algorithm uses a two-way partitioning approach which partitions the

graph into two parts not necessarily equal in size. The algorithm is given in

Table 4.6. The number of vertices in each subdomain D i when the

partitioning task is completed is denoted by m i. It is computed in advance

by sequentially employing the following equation for i = 1, ..., Np:

i-1

m i={[N-_mj]/[Np-(i-1)]} (+lifremainder#0)
j=l

- 139

Table 4.5 Recursive spectral sequential-cut (RSS) algorithm

(1) Construct the dual, communication, or node graph desired graph

associated with the finite element mesh.

(2) Compute the second eigenvector of the Laplacian matrix (called the

Fiedler vector by Simon) of the graph using the Lanczos algorithm.

(3) Sort vertices of the graph according to the value of their associated

components in the Fiedler vector.

(4) Assign 1ANp of the vertices to one subdomain and the remaining to

the other, in which Np is the number of partitions desired (or number

of processors).

(5) Repeat recursively for the larger subdomain in the previous step until

all subdomains are defined.

in which Np is the number of available processors and N is the total number

of vertices of the whole domain. The number of partitions desired in the

intermediate subdomain in each two-way partitioning step is denoted by np

(initially np = Np for the whole domain). Each intermediate subdomain

maintains a list l of subdomain numbers associated with D_ which has been

assigned to it (initially the list is {1, ..., Np} for the whole domain). The k-th

component of this list is denoted by/(k). Figure 4.7 demonstrates the

process of partitioning a graph with seventeen vertices into five subdomains

using this algorithm.

From Table 4.6 and Fig. 4.7, it should not be difficult to see that the

RST algorithm degenerates to the RSB algorithm of Table 4.4 when the

number of processors (Np) is equal to an integer power of two.

140

Table 4.6 Recursive spectral two-way (RST) algorithm

(1) Construct the dual or communication graph associated with the finite

element mesh.

(2) Compute the second eigenvector of the Laplacian matrix (called the

Fiedler vector by Simon) of the graph using the Lanczos algorithm.

(3) Sort vertices of the graph according to the value of their associated

components in the Fiedler vector.

(4) Compute the following integers:

pl = np/2 (discard remainder)

p2 = np - pl
pl

n= Z m/(k)

(5)

k-1

Assign n vertices and the list of the first pl components in/(k) to one

subdomain, and set np = pl for this subdomain.

Assign the remaining vertices and the list of the remaining

components in/(k) to the other subdomain, and set np = p2 for this

subdomain.

Repeat recursivel_, for each subdomain with np > 1.

141

Initialization

N=17; p=5

m1=4; n_2 =4; m 3 ffi3;
l = {1, 2, 3, 4, 5}

17 vertices

npffi5

pl = 5/2 =2
p2ffi5-2=3

lffi {1, 2, 3, 4, 5}
nfml+m2=8

8 vertices

np=2

pl = 2/2 =1

p2=2-1=1
l= {1,2}
n=ml=4

rn4 = 3; m 5 =3

/
i 4 vertices

J
14 1np= 1

I = {2}

9 vertices

np= 3

pl = 3/2 =1

p2=3-1=2
l = {3,4,51

n=m3=3

3 vertices

np= 1

I ffi {31

J

6 vertices
,

np=2

pl = 2/2 =1

p2=2- 1= 1
l = {4, 5}

nfm4ffi3

....

3 vertices

np= 1
l = {4}

Figure 4.7 Example of the RST partitioning process

142

4.4 Load Balancing for Parallel Implicit Analysis

There are three major computational components involved in the

parallel implicit analysis (also in the parallel steady-state analysis) that

require attention for load balancing among processors. First, the element

calculations, such as element formation and stress recovery, take a

significant portion of the total computational time, especially in nonlinear

analyses of structures modelled by 2D and 3D elements. The load balancing

of this computation among processors requires an essentially even

distribution of elements among subdomains (if a homogeneous parallel

environment is assumed and all elements in the mesh are of the same type).

In the present implementation, the above load balancing requirement is

fulfilled by all of the partitioning algorithms discussed in Section 4.3

because they all assign equal or nearly equal numbers of elements to each

subdomain. Although this approach does not in general produce optimal

load balancing for meshes with different types of elements, satisfactory

results are still obtained for examples studied in the present work for most

partitioning algorithms (see examples in Section 4.4.3).

Second, the substructure condensation represented by Eqs. (3.3) -

(3.7) may also demand a considerable amount of computational time. At the

outset, the profile for each subdomain should be minimized to increase

computational efficiency within each subdomain. In addition, the load

balancing of this computation requires that the minimized profile of interior

degrees of freedom in each subdomain be equal. None of the partitioning

algorithms discussed in Section 4.3 attempt to satisfy this load balancing

requirement and instead they all focus on the load balancing of element

calculations. This is mainly due to the following two reasons: 1) a

- 143

complicated and expensive iterative strategy may be required to obtain

satisfactory load balancing for condensation because the profile cannot be

known until the subdomain is defined, and 2) for nonlinear analyses of

structures modelled by 2D and 3D elements (which are the major cases in

the present study), it has been found that the load balancing of element

calculations often has a more significant effect on parallel efficiency.

However, for framed structures modelled by 1D elements, it has also been

found that the effect of the load balancing for condensation is dominant.

Third, the efficiency of solving the unknowns along subdomain

interfaces by the parallel preconditioned conjugate gradient method greatly

affects the overall efficiency of parallel analysis. Although the load

balancing of this solution phase requires that all subdomain have an equal

number of boundary nodes, it is more important that the total number of

boundary nodes shared by subdomains be minimized to reduce the

synchronization and communication overhead. The smaller the number of

the boundary nodes, the fewer the number of equations involved in the

parallel preconditioned conjugate gradient analysis. This not only reduces

the size of messages in interprocess communication but also may decrease

the number of iterations required in the conjugate gradient analysis.

Furthermore, if the total number of boundary nodes is minimized, the

workload unbalance due to uneven distribution of boundary nodes among

subdomains may be neglected.

All of the partitioning algorithms discussed in the previous section

can readily be employed to generate the element-based partitioning, as

shown in Fig. 3.2, required by both the parallel implicit and steady-state

algorithms. However, after the elements are partitioned among subdomains

144

(or processors), the partitioning shown in Fig. 3.2 also requires that the

elements in each subdomain be labelled as either interior or boundary

elements, while the nodes be labelled as interior, primary boundary, or

secondary boundary nodes. Moreover, to achieve maximum computational

efficiency within each subdomain for the condensation required in the

domain decomposition approach, nodal renumbering is needed to reduce

either the bandwidth or profile of the subdomain coefficient matrix (see Eq.

3.2). This section briefly describes the present approaches for the element

and node labelling and for subdomain renumbering. Furthermore,

comparative studies are conducted to evaluate the performance of the

partitioning algorithms discussed in the previous section for the element-

based partitioning.

4.4.1 Element and Node Labelling

After the elements in the structure are partitioned among

subdomains by any of the automatic partitioning algorithms, the nodes in

the structure are either labelled as interior nodes if they are shared by

elements residing in the same subdomain or labelled as boundary nodes if

otherwise. Then, the elements are checked to determine if they are

connected to at least one interior node. If they are, they are labelled as

interior elements. Otherwise, they are boundary elements.

secondary boundary nodes.

work:

Next, the boundary nodes are further partitioned into primary and

The following approach is used in the present

All boundary nodes are labelled as secondary boundary nodes

initially. Then, boundary nodes common to any two subdomains are

145

labelled as primary boundary nodes in the subdomain which has

fewer nodes in the subdomain.

4.4.2 Subdomain Renumbering

As mentioned in Section 3.3.2, most of the matrices involved in the

substructure condensation are stored in the skyline format. Although nodal

renumbering for the whole domain is performed for bandwidth or profile

reduction in BASYS/FRANSYS, this nodal ordering may not result in

optimal profile for each subdomain. In this work, the subdomain is

therefore renumbered to minimize the computational cost within each

subdomain for substructure condensation. Consequently, the overall

computational cost of the parallel analysis is reduced.

The present work uses a modified version of the Gibbs-King profile

reduction algorithm (Paulino 1988) for subdomain renumbering. This

algorithm first finds the endpoints of a pseudo-diameter of the node graph

(i.e., a pair of nodes that are at nearly maximal distance apart in the node

graph) using the approach proposed by Gibbs et al. (1976). Then, one of the

endpoints (arbitrarily selected) is used as the starting node and the nodes in

the graph are numbered by a modified King algorithm (King 1970), which

reduces the profile of the sparse symmetric matrix associated with the

graph. Finally, a test is run to determine if the profile based on new

numbering is smaller than that based on the original numbering. If it is

not, the original numbering is retained. Otherwise, the new numbering is

used.

In the present work, only interior nodes in the subdomain are

renumbered. This is due to two reasons. First, the condensation of the

146

interior nodes (see Eq. 3.1) requires that the interior nodes be numbered

before the boundary nodes. The present renumbering algorithm is currently

incapable of handling this constraint. Second, the major computational cost

in the modified decomposition algorithm used for the condensation is

usually the Cholesky decomposition of Eq. 3.5, in which only the interior

nodes are involved. Therefore, if the ratio of the number of boundary nodes

to the number of interior nodes in each subdomain is kept small (which is

usually the case in the present work), renumbering of interior nodes alone

should provide sufficient improvement in computational efficiency.

4.4.3 Comparative Studies Among Algorithms

Six structures of different types have been used to evaluate and

compare the partitioning algorithms discussed in Section 4.3. They include

three framed structures modelled by 1D elements, a building structure

modelled by 1D and 2D elements, and two solid structures modelled by 3D

elements. Some typical results are reported in this section. The following

notations are used in the present study:

Np = the number of partitions,

Nb = the number of boundary nodes in a subdomain,

Nel = the number of 1D elements in a subdomain,

Ne2 = the number of 2D elements in a subdomain,

Ne3 = the number of 3D elements in a subdomain,

Nd = the number of subdomains that have disconnected regions,

Tot(x) = total values of x in the whole domain,

Max(x) = maximum value ofx among subdomains,

Min(x) = minimum value of x among subdomains,

- 147

CG = communication graph,

DG = dual graph, and

Tcpu = the CPU time (sec.) required, which includes time spent in

data preparation for the algorithm, execution of the algorithm,

and setting results into the database.

Framed Structures Modelled by 1D Elements

Three framed structures of increasing irregularity in geometry have

been used to evaluate the performance of different partitioning algorithms.

They are the thirty-story building of Fig. 3.5, the transmission tower of Fig.

3.3, and the space station of Fig. 3.4. The results are given in Tables 4.7 -

4.9. In addition, Fig. 4.8 shows the characteristics of the partitionings

resulted from different partitioning algorithms on the thirty-story building

for Np = 4. It should be noted that the RSB, RSS, and RST algorithms

produce the same results in this particular case.

From Tables 4.7 - 4.9. and Fig. 4.8, the following observations are

obtained:

(1) Compared to the execution time required by a dynamic analysis,

the CPU time spent by all the algorithms are negligible.

(2) As expected, the RST algorithm produces the same results as the

RSB algorithm when Np is an integer power of two.

(3) Except for one case (Np = 3 in Table 4.9), the RST algorithm

consistently gives partitions with smallest Tot(Nb). However,

even for that case, Tot(Nb) resulted from the RST algorithm is

very close to the smallest.

148

(4) Although it is undesirable to have fragmented subdomains

because they usually result in larger Tot(Nb), it should be noted

that having non_fragmented subdomains (i.e.,Nd = 0) is not

sufficientin itselfto obtain smaller Tot(Nb) (see the case ofNp = 4

in Table 4.9).

Table 4.7 Comparison of different algorithms for

partitioning of the thirty-story building of Fig. 3.5 (Np = 4)

element-based

Parameter ANP FP RBD RSB I RSS RST

Tcpu 7 3 2 7 9 8

Tot(Nb) 51 58 51 48 48 48

Max(Nb)

Min(N b)

N_

Max(Nel)

Min(Nel)

34

17

0

300

300

39

19

0

300

300

34

17

0

300

300

32

16

0

300

300

32

16

0

300

300

32

16

0

300

300

Table 4.8 Comparison of different algorithms for

partitioning of the transmission tower of Fig. 3.3 (Np = 3)

Parameter

Tc_v

Tot(Nb)

ANP

0.9

13

0.5

29

RBD

0.3

24

I RSS

1.9

13

element-based

I RST

1.7

13

Max(Nb) 13 28 24 13 13

Min(Nb) 4 16 9 4 5

Nd 0 1 0 0 0

145

144

Max(Nel)

Min(Nel)

145

144

145

144

145

144

145

144

149

Table 4.9 Comparison of different

partitioning of the space station of Fig. 3.4

algorithms for element-based

N o] Parameter] ANP] FP] RBD RSB I RSS I RST

Tcpu 7 3 2 -- 15 14

Tot(Nb) 36 51 47 -- 38 38

Max(Nb) 28 45 47 -- 28 28

3 Min(N b) 17 25 20 -- 20 20

N d 0 1 1 -- 0 0

Max(Nel) 476 476 476 -- 476 476

Min(Nel) 476 476 476 -- 476 476

Tcpu 7 3 2 15 18 15

Tot(N b) 78 55 68 44 50 44

Max(Nb) 58 36 47 32 37 32

4 Min(Nb) 28 17 21 16 17 16

Nd 0 2 2 1 1 1

Max(Nel) 357 357 357 357 357 357

Min(Nel) 357 357 357 357 357 357

A Building Structure Modelled by 1D and 2D Elements

The twelve-story L-shaped building of Fig. 3.9 has been partitioned

using different algorithms. The results are reported in Table 4.10. As

discussed previously, the present implementation of all the algorithms

assumes that all elements in the mesh are of the same type. However, in

this example which represents a mixture of 1D and 2D elements, most

algorithms still produce a satisfactorily balanced distribution of elements

among subdomains. The exceptions are the RSS(DG), RSB(DG), and

RST(DG) algorithms. In addition, both the RSS(CG) and RST(CG) give

partitions with smallest Tot(Nb) for both cases.

150

(a) (b)

Figure 4.8 Partitionings of the thirty-story building of Fig. 3.5 by the (a)

ANP, (b) FP, (c) RBD, and (d) RSB, RSS, or RST algorithms

151

I
II

I I
ili
ill

JlJ

I I
i l
II
I I
II

I

_a

I
I
I

b

(c) (d)

Figure 4.8 (Continued)

152

Table 4.10 Comparison of different algorithms for element-based

partitioning of the 12-story L-shaped building of Fig. 3.9

N_ Parameter ANP FP RBD RSB RSB RSS RSS RST RST

(DG) (CG) (DG) (CG) (DG) (CG)

Tcpu 3 2 2 3 3 3 3

Tot(N_) 30 39 38 139 28 139 28

Max(Nb) 30 38 38 139 28 139 28

Min(N b) 15 20 19 75 14 75 14

3 N d 0 0 0 1 0 1 0

Max(Nel) 156 156 159 180 156 180 156

Min(Nel) 156 156 153 108 156 108 156

Max(Ne2) 24 476 476 72 24 72 24

Min(Ne2) 24 476 476 0 24 0 24
I

T_vu 3 2 2 3 4 4 4 3 4

Tot(Nb) 46 50 57 155 42 155 42 155 42

Max(Nb) 31 32 38 156 28 156 28 156 28

Min(Nb) 15 19 19 56 14 56 14 56 14

4 N d 0 0 0 1 0 1 0 1 0

Max(Nel) 117 120 120 135 117 135 117 135 117

Min(Nel) 117 113 114 63 117 63 117 63 117

Max(Ne2) 18 22 21 72 18 72 18 72 18

Min(Ne2) 18 15 15 0 18 0 18 0 18

Solid Structures Modelled by 3D Elements

Two solid structures have also been used in the present comparative

studies. The first one is the twelve-bladed turbine disk of Fig. 3.7, while the

second one is the turbine blade of Fig. 4.9 which was created by Wawrzynek

(1991) for his work. The partitioning results are given in Tables 4.11 and

4.12. In addition, some typical partitionings on the twelve-bladed disk for

the case ofNp = 3 are shown in Fig. 4.10.

- 153

Figure 4.9 A finite element model of a turbine blade with 944 20-noded

elements and 6,427 nodes

From Tables 4.11 and 4.12, the following observations are obtained:

(1) Unlike the previous examples, all the spectral methods (i.e., the

RSB, RSS, and RST algorithms), which require eigensolutions,

deliver partitions in a shorter CPU time than the non-spectral

algorithms (i.e., the ANP, FP, and RBD algorithms).

(2) In most cases studied, the DG approach produces smaller Tot(Nb)

than the CG approach for the RSS algorithm, while the CG

• approach produces smaller Tot(Nb) than the DG approach for the

RST algorithm.

(3) For the bladed disk example, the optimal partitioning for Np = 3

or Np = 6 seem to be a trivial task for the human. However, it is

154

not the case for the partitioning algorithms. Only the RSS(DG),

RST(DG), and RST(CG) algorithms deliver the optimal solutions.

(3) Except for the case of Np = 8 in Table 4.12, the RST(CG)

algorithm gives partitions with smallest Tot(Nb).

Table 4.11 Comparison of different algorithms for element-based

partitioning of the 12-bladed turbine disk of Fig. 3.7

Nv Parameter ANP FP RBD RSB RSB RSS RSS RST RST

(DG) (CG) (DG) (CG) (DG) (CG)

3

6

Tcpu 74 49 123

Tot(Nb) 395 142 194

Max(Nb) 395 100 194

Min(N b) 116 92 89

N_I 1 2 2

Max(Ne3) 168 168 168

Min(Ne3) 168 168 168

Tcpu 75 48 120

Tot(N b) 724 268 481

Max(Nb) 379 97 210

Min(N b) 130 84 97

Nd 1 4 5

Max(Ne3) 84 84 84

Min(Ne3) 84 84 84

Tcpu 76 48 121

Tot(Nb) 883 369 645

Max(Nb) 473 113 189

Min(Nb) 129 69 92

Nd 1 5 7

Max(Ne3) 63 63 63

Min(Ne3) 63 63 63

.... 40 40 39 38

.... 87 87 87 87

.... 58 58 58 58

.... 58 58 58 58

.... 0 0 0 0

.... 168 168 168 168

.... 168 168 168 168

.... 40 41 39 38

.... 174 258 174 174

.... 58 92 58 58

.... 58 74 58 58

.... 0 3 0 0

.... 84 84 84 84

.... 84 84 84 84

39 41 42 42 41 39

304 276 308 387 304 276

76 69 79 121 76 69

76 69 76 81 76 69

4 0 3 4 4 0

63 63 63 63 63 63

63 63 63 63 63 63

- 155

Table 4.12 Comparison of different

partitioning of the turbine blade of Fig. 4.9

algorithms for element-based

No Parameter ANP FP RBD RSB RSB RSS RSS RST RST

(DG) (CG) (DG) (CG) (DG) (CG)

Tcpu 241 129 278 117 126 124 123

Tot(Nb) 1301 1055 1127 - - 881 868 839 821

Max(Nb) 589 534 516 - - 435 381 382 377

6 Min(N b) 216 210 203 169 180 166 160

N d 2 1 0 0 0 0 0

Max(Ne3) 158 158 158 - - 158 158 158 158

Min(Ne3) 157 157 157 157 157 157 157

Tcpu 243 128 272 113 118 119 125 113 118

Tot(N b) 1430 1255 1460 1138 1179 989 1043 1138 1179

Max(Nb) 495 491 504 444 460 374 365 444 460

8 Min(N b) 194 174 174 195 155 144 143 195 155

N_ 1 1 0 0 0 0 0 0 0

Max(Ne3) 118 118 118 118 118 118 118 118 118

Min(Ne3) 118 118 118 118 118 118 118 118 118

To examine the effect of different partitions on the performance of the

parallel analysis, actual parallel steady-state analyses have been carried

out on the bladed-disk of Fig. 3.7 partitioned into three subdomains by the

FP and RST(CG) algorithm. The partitioning results of these two

algorithms have already been given in Table 4.11. It can be seen that the

total number of boundary nodes in the partitions obtained from the FP

algorithms is almost twice as large as that obtained from the RST(CG)

algorithm. In addition, two subdomains in the partitions produced by the

FP algorithm have disconnected regions. The results of parallel analyses on

DECsystem 5000's are reported in Table 4.13.

156

%
%

%
%
%

%

(a)

I

I
I

I

I
I

!
I

I

I

t

t

I

t

I

I

(b)

I%

I

I

I

I

I
I

I

I

Figure 4.10 Partitioning results of the (a) ANP, (b) FP, (c) RBD, (d) RST

algorithms for the 12-bladed turbine disk of Fig. 3.7 (Np = 3)

- 157

k
% s

• J •

% • SS
• S

• S SJ

(c)

S

I

I

I

I

I

I

I

I

(d)

't
I

I

I

I

I

I

I

I

I

I

I

S

Figure 4.10 (Continued)

158

Table 4.13 Performance on DEC5000's of the parallel steady-state analysis

of the bladed-disk problem of Fig. 3.7 with domain partitioned by the FP

and RST(CG) algorithms (Np = 3)

Algorithm

FP

RST(CG)

Speed-up

0.51

2.03

Effidency

(%)

17

68

Average # of

conjugate

gradient

iterations

270

46

Total # of

dofs on the

subdomain

interfaces

429

216

Summary of Results

The results of the above studies are summarized as follows:

(I) All the algorithms deliver partitions in a very small amount of

time compared to the computational time of a dynamic analysis.

(2) Generally speaking, the spectral algorithms (i.e.,the RSB, RSS,

and RST algorithms) give better results than the non-spectral

algorithms (i.e., the ANT, FP, and RBD algorithms).

(3) In most cases, the RST(CG) algorithm gives the best partitioning

results among all the considered algorithms.

4.5 Load Balancing for Parallel Explicit Analysis

In Section 4.3, only the spectral partitioning algorithms with the node

graph approach have addressed the node-based partitioning. For those

algorithms which address only element-based partitioning, the present work

performs a simple extra step at the end of the algorithms to assign uniquely

common boundary nodes of two or more subdomains to a subdomain so that

- 159

the algorithms can be also used for node-based partitioning. In this extra

step, boundary nodes common to any two subdomains are assigned to the

subdomain which has fewer nodes in its subdomain.

In the rest of this section, a brief description is given first for the

labelling of the elements and nodes in each subdomain required by the

parallel explicit algorithm (as shown in Fig. 3.1). Results of comparative

studies conducted to evaluate the performance of different partitioning

algorithms for the node-based partitioning are then reported.

4.5.1 Element and Node Labelling

After the nodes in the structure are partitioned among subdomains,

the elements in the structure are either labelled as interior elements if all of

their nodes reside in the same subdomain or labelled as border elements if

otherwise. For a particular subdomain, all of its nodes are initially labelled

as interior nodes. Then, the nodes are checked to determine if they are

connected to at least one border element. If they are, they are also labelled

as boundary nodes. Once the boundary nodes are identified, all of the nodes

of the border elements connected to these boundary nodes are checked to

determine if they are residing in this particular subdomain. If they are not,

they are labelled as adjacent nodes of this subdomain.

4.5.2 Comparative Studies Among Algorithms

Numerical comparative studies among the partitioning algorithms

discussed in Section 4.3 have been conducted for node-based partitioning

using three structures of different types: (a) the space station of Fig. 3.4

consisting of only 1D elements, (b) the twelve-story L-shaped building of

160

Fig. 3.9 consisting of both 1D and 2D elements, and (c) the twelve-bladed

turbine disk of Fig. 3.7 consisting of 3D elements. The partitioning results

are given in Tables 4.14 through 4.16. The following notations are used in

these tables:

Np = the number of partitions,

Nb = the number of boundary nodes in a subdomain,

Ni = the number of nodes in a subdomain,

Nel = the number of 1D elements in a subdomain,

Ne2 --the number of 2D elements in a subdomain,

Ne3 = the number of 3D elements in a subdomain,

Nd = the number of subdomains that have disconnected regions,

Sum(x) = summation of values ofx over all subdomains,

Max(x) = maximum value of x among subdomains,

Min(x) = minimum value of x among subdomains,

NG - node graph,

CG = communication graph,

DG = dual graph, and

Tcpu = the CPU time (sec.)required.

Sum(Nb) is related to the amount of interprocess communication, while

Max(Nb)/Min(Nb) shows the balancing of communication loads among

processors. Max(Ni)/Min(Ni) and Max(Ne)/Min(Ne) indicate the balancing of

the computational loads of equation solving and element calculations,

respectively, among processors. Tcpu includes time spent in data

preparation for the algorithm, execution of the algorithm, and setting

results into the database.

161

Intuitively, Nd is a significant parameter because, generally

speaking, compact nonfragmented subdomains would appear to lead to the

most efficient parallelization. In this connection, Fig. 4.11 shows some

typical partitionings of the twelve-bladed turbine disk of Fig. 3.7 for Np = 4.

It should be noted that border elements shared by adjacent subdomains are

included in each subdomain shown.

From Tables 4.14 - 4.16 and Fig. 4.11, the following observations can

be obtained:

(1) In all examples studied, the CPU time spent by all the algorithms

is very small compared to the execution time of a dynamic

analysis.

(2) In the example of the space station, the node graph approach

produces better results than the dual and communication

approaches for the spectral algorithms. Among all the considered

algorithms, the RSS(NG) algorithm gives the best results.

(3) In the example of the twelve-story L-shaped building, the

RSS(CG) and RST(CG) algorithms give partitions with smallest

Sum(Nb), while the RST(NG) algorithm produces partitions with

most balanced bib, Ni, Nel, and Ne2 among subdomains. Among

all the considered algorithms, the RSS and RST algorithms with

the dual graph approach (i.e., the RSS(DG) and RST(DG)

algorithms) give the worst results.

(4) In the example of the twelve-bladed disk, although the optimal

partitioning into four or six subdomains seem to be a trivial task

for the human, it is not the case for the partitioning algorithms.

Only the RSS(DG), RSS(NG), RSB(DG), RSB(CG), RST(DG), and

162

(5)

(6)

RST(CG) algorithms give the optimal solution for the case of Np -

4. The RSS(DG), RST(DG), and RST(CG) algorithms also give

the optimal solution for the case of Np = 6. For the case of Np = 8

which does not have a trivial optimal solution, the RST(NG)

algorithm gives the best results among all the considered

algorithms. In addition, the communication graph approach

produces better or at least not worse partitioning results than the

dual graph approach for the RSB and RST algorithms, while it is

opposite for the RSS algorithm.

Although it is undesirable to have fragmented subdomains

because they usually result in longer subdomain boundaries (see

Figs. 4. II(a) & (c)), it should be noted that having nonfragmented

subdomains (i.e., Nd = 0) is not sufficient in itself to obtain

shorter subdomain boundaries (see Table 4.16 and Figs. 4.11(a) &

(b)).

In all the cases studied, the RST(CG) algorithm, which

consistently delivers good partitioning results, has the best

overall performance among all the considered algorithms.

To show the effect of different partitions on the performance of the

parallel central difference method, actual parallel analyses have been

carried out on the bladed-disk model (shown in Fig. 3.7) partitioned into

four and six subdomains by different algorithms. The partitioning results

have already been given in Table 4.16. The parallel analysis results for

DECsystem 5000's are given in Table 4.17. It can be seen that the results in

Table 4.17 verify the trends observed in Table 4.16.

163

Table 4.14 Comparison of different algorithms for node-based partitioning

of the space station of Fig. 3.4 (Np = 3)

Parameter

Wcu u

Sum(Nb)

Max(Nb)

Min(Nb)

Max(Ni)

Min(Ni)

Max(Nel)

Min(N_l)

Nd

ANP

7

98

45

17

151

119

565

473

FP

2

97

42

18

153

119

568

476

RBD

2

83

42

18

139

117

548

474

0 0 1

NG

2

72

29

18

132

120

521

497

0

RSS

J DG & CG

16

83

39

18

156

115

605

456

0

RST

NG J DG & CG

2 16

75 83

29 39

20 18

132 156

120 115

523 605

494 456

0 0

Table 4.15 Comparison of different algorithms for node-based partitioning

of the twelve-story L-shaped building of Fig. 3.9 (Np = 3)

Parameter ANP FP RBD RSS RST

.... Na I oa ! co I:OCrICa
T¢_ 3 1 1 3 3 3 3 3 3

Sum(Nb) 98 137 134 90 439 81 87 439 81

Max(Nb) 49 60 67 39 290 39 34 290 39

Min(Nb) 14 27 19 18 64 14 19 64 14

Max(Ni) 205 226 223 218 474 223 214 474 223

Min(Ni) 176 187 182 175 232 170 176 232 170

Max(Nel) 181 195 193 207 211 215 204 211 215

Min(Nel) 154 151 152 153 95 137 155 95 137

Max(Ne2) 29 31 31 30 72 30 29 72 30

Min(Ne2) 24 28 27 24 34 24 24 34 24

N d 0 0 0 0 1 0 0 1 0

164

Table 4.16 Comparison of different partitioning algorithms on the bladed-

disk problem of Fig. 3.7

Np Parameter FP RBD ANP

4

Tcou 37

Sum(N b) 484

Max(Nb) 161

Min(Nb)

Max(Ni)

Min(Ni)

Max(Ne3) 146

Min(Ne3) 126

109 64

637 826

237 261

6

8

92 92 184

RSS RST &RSB(No#6)

NG I DG CG NG DG CG

139 28 27 123 27 26

280 280 426 356 280 280

70 70 131 89 70 70

70 70 79 89 70 70

1141 1271 1292 1027 1027 1101 1046 1027 1027

1033 1044 1018 1027 1027 1023 1046 1027 1027

N_

Tcpu

Sum(Nb)

Max(Nb)

Min(Nb)

Max(Ni)

Min(N i)

Max(Ne3)

Min(N@_)

Nd

Tcpu

160 170 132

126 126 132

3 3 0 0

37 110 66 190

624 1107 1569 675

121 246 378 118

89 97 154 105

766 880 1219 768

722 756 747 740

94 104 164 98

9O 84 84 88

3 5 1 2

38 111 69 234

Sum(N b) 908 1567 1722 795

Max(Nb)

Min(N b)

Max(Ni)

Min(Ni)

Max(Ne3)

Min(N¢3)

Nd

140 246 361 126

81 92 136 82

699 711 1051 594

545 573 581 553

86 84 125 74

65 63 63 66

5 7 1 3

132 144 134 132 132

132 126 134 132 132

0 1 0 0 0

28 29 145 29 28

420 624 566 420 420

70 131 130 70 70

70 79 80 70 70

708 779 768 708 708

708 725 718 708 708

90 100 98 90 90

9O 84 88 90 90

0 3 1 0 0

31 33 148 29 27

759 947 672 777 740

116 149 94 130 116

76 81 66 76 69

610 635 572 711 613

537 542 544 531 529

78 84 74 87 80

63 63 66 63 63

3 4 0 4 0

- 165

(a) Partitioning results for the FP algorithm

Figure 4.11 Partitioning results of the FP, ANP, and RST algorithms for

the 12-bladed turbine disk of Fig. 3.7 (Np = 4)

166

(b) Partitioning results for the ANP algorithm

Figure 4.11 (Continued)

w

167

_llililillllllilllllilllOlOJlilillillililllllllllll _

|

|

I

I

|

!

!

!

I

Iililillilillllllllllilillllilllliilililllllllill_

(c) Partitioning results for the RST algorithm

Figure 4.11 (Continued)

168

Table 4.17 Performance on DEC5000's of the parallel central difference

analysis of the bladed-disk problem of Fig. 3.7 with domain partitioned by

different algorithms

Algorithm

FP

N_

Speed-up

3.4

=4

Efficiency (%)

85

RBD 1.8 45

ANP 1.8 44

RSB (CG & DG) 3.8 94

RST (CG & DG) 3.8 94

Speed-up

5.2

N_=6

Efficiency (%)

87

4.6 76

3.0 50

.. .o

5.4 9O

Chapter 5

An Integrated Parallel Analysis System

An integrated parallelanalysis system is developed in this research

to help evaluate the parallel strategies investigated, verify the finite

element approaches employed, and demonstrate how advanced computer

technologies can assist engineers in all phases of parallel dynamics

simulations. The system takes fulladvantage of the advanced computing

environments, data structures, and interactive computer graphics and

provides a research software testbed for study of nonlinear structural

dynamics.

This chapter discusses the implementation and application of this

system for various stages involved in parallel nonlinear simulations of

structural dynamics. The emphasis is on the enhancement of several

software applicationspreviously developed at Cornell Program of Computer

Graphics, the development of new applications,and most importantly, the

integration of these applications into an efficientand powerful analysis

system. In addition,application examples that examine and demonstrate

the efficiency and flexibility of the system are presented.

5.1 System Overview

The parallel analysis system consists of four major software

applications: BASYS (Srivastav and Abel 1990; Srivastav 1991) and

FRANSYS (Wawrzynek et al. 1988; Martha 1989; Wawrzynek 1991) for

interactive three-dimensional modelling and visualization, PSAINT (Hsieh

169

170

and Srivastav 1992) for finite element domain partitioning, and ABREAST

(Srivastav 1991; Aubert 1992) for parallel nonlinear solutions. Figure 5.1

illustrates the organization of the system and indicates the relationship

among these applications.

I] IF sYslModelling &

visualization

programs

Parallel

structural

analysis
interface

Parallel

analysis

program

Figure 5.1 Organization of the parallel analysis system

BASYS is primarily designed for modelling and visualization of

buildings, space structures, and other framed structures. FRANSYS was

originally developed to model general, 3-D fracture processes in arbitrarily

shaped solids and has been extended to provide general tools for modelling

and simulation of complex 3-D solid models. It has been further extended in

the present work to include graphics tools for visualization of dynamics

simulations.

Both BASYS and FRANSYS provide the analyst an efficient way of

modifying and manipulating the structural data through the use of a

topological data representation called the radial edge data structure (Weiler

171

1986, 1988) and a hierarchical modelling scheme. The radial edge data

structure supports an unambiguous boundary representation of non-

manifold topologies of the structural model and therefore, allows BASYS

and FRANSYS to model complex three-dimensional structures. Because the

adjacency relationships of the structural entities are explicitlystored in the

radial edge database, the time required for modelling operations such as

determination of the elements sharing a particular node is considerably

reduced. This contrasts with the use of a geometrically based database in

which time-intensive searches through a connectivity table or time-

consuming floating-point computations and comparisons are required for

the same kinds of modelling operations. In addition, the use of a hierarchy

of topological models to represent the structure allows analysts to work with

the structural model at various levels of abstraction according to their needs

at various stages of analysis and design. The inheritance of structural

attributes (e.g.,material properties, boundary conditions, etc.)from the top

down in the hierarchy of models provides a natural and efficientway for the

analyst to assign the structural attributes. For example, material

properties only need to be assigned to entities in the geometry model at the

top of the hierarchy which is the coarsest discretization of the structure, and

all of the entities in the mesh model at the bottom of the hierarchy

automatically inherit the material properties from their parent entities in

the geometry model from which they are derived. This is opposed to "the

mesh is the model" approach in which tedious assignments of structural

attributes to elements and nodes of the mesh are unavoidable.

Both BASYS and FRANSYS also provide a friendly interface for user-

program interaction and a convenient means of displaying the structure

172

model and visualizing the response of the structure using interactive

computer graphics. The graphical user interfaces provided include pop-up

menus, dialog boxes, message boxes, toggle buttons, data input tools using a

variety of mouse- and keyboard-based techniques, and 2-D and 3-D

graphical windows for displaying 2-D and 3-D objects, respectively. Two

versions of graphics implementation are currently available for both

programs. For convenience, they are simply referred here as X and PEX

versions. The X version is based on the X Window System 1 (Scheifler and

Gettys 1986) for 2-D graphical displays and a simple in-house 3-D graphics

package (Wawrzynek 1987) for transformation of 3-D objects into 2-D

images. To achieve a better 3-D graphical display, the PEX version uses

PEX 2 (PHIGS 3 extensions to X) (Rostet al. 1989) instead of the in-house 3-

D graphics package for the 3-D graphical display, but the 2-D graphics is

still based on the X Window System. The current implementation of PEX in

BASYS/FRANSYS uses a primitive version of PEX implemented by Digital

Equipment Corporation (Potyondy 1992) and is operable only on

DECstations.

PSAINT is developed in this work to serve as an interface between

BASYS/FRANSYS and ABREAST for parallel analysis. It is also the key

component that glues the whole system together. Two major tasks are

1 X is a network-based graphics window system developed jointly by

M.I.T. and Digital Equipment Corporation. It is currently supported by
most of the major computer vendors.

2 PEX is a 3-D graphics package developed to support 3-D graphical

display in a network windowing environment. It has been recently gaining
wider support from the major computer vendors.

3 PHIGS is one of the available 3-D graphics standards. It is now widely

used in the industry.

w

173

performed in PSAINT: (1) the partitioning of structural domains for parallel

analysis in ABREAST and (2) the collection and merging of the parallel

analysis results from the subdomains into a single set of results for

simulation playback in BASYS/FRANSYS. All of the domain partitioning

algorithms discussed in Section 4.3 have been implemented for automatic

partitioning. Interactive graphics tools are also provided for manual

partitioning of the structure and for evaluation and modification of the

results of automatic partitioning. The program automatically generates

various statistics related to partitioning results and allows for visualization

of individual subdomains. Like BASYS and FRANSYS, both X and PEX

versions of graphics implementation are available for PSAINT.

ABREAST is a batch analysis program capable of both geometric and

material nonlinear transient dynamic analyses. Geometric nonlinear

behavior is modelled using an updated Lagrangian formulation with

geometric element stiffness matrices. Material nonlinear response is

included for beam-column elements only through a concentrated plasticity

model which is based on a bounding surface model in three-dimensional

force space (Hilmy 1984; Hilmy and Abel 1985). The original version was

primarily geared towards frame structures consisting of either truss or

beam-column elements. A nine-node Lagrangian shell element is also

available for modelling floors, walls, or panels. For modelling rotating

bladed-disk systems, ABREAST has been extended in the present research

to include a twenty-noded isoparametric brick solid element. Furthermore,

the parallel nonlinear solution algorithms discussed in Section 3.3 for both

transient dynamic and steady-state (static) analyses have been

implemented using a multiple-instruction, multiple-data (MIMD) algorithm.

174

Efforts have been taken in the development of these programs to

maximize theirportability.For example, BASYS and ABREAST have been

ported from DigitalVAXstations running the VMS operating system to both

Digital DECstations running the ULTRIX operating system and Hewlett-

Packard computers running the HP-UX operating system. FRANSYS has

been ported from the VMS operating system to the ULTRIX operating

system. PSAINT has been ported from the ULTRIX operating system to the

HP-UX operating system.

5.2 Interactive Modelling

For the sake of discussion,the modelling of the structure is divided

into two phases. The firstphase creates the geometry of the structure.

Only the coarsest discretizationof the model that accurately characterizes

the structural geometry is required. The second phase involves the

assignment of the structural attributes, such as material properties,

boundary conditions,etc.,and the generation of a mesh for finiteelement

analysis.

Geometry Creation of Framed Structures

Until recently, BASYS relied on a program called CU-PREPF

(McGuire et al. 1989) for creation of the geometry model of framed

structures. CU-PREPF (Cornell University PREProcessor for Frames) is an

interactive program for the definition of two- and three-dimensional framed

structures. It provides a menu-driven interface to help the analyst

construct structural geometry and specify structural attributes. Once the

basic definition of the structure is completed in CU-PREPF, an output data

file is created that can be read into BASYS for further refinements.

M

175

Although CU-PREPF is a complete preprocessor for framed

structures, its effectiveness and efficiency are limited by the use of

geometrically based database and "the mesh is the model" approach as

discussed previously. The use of CU-PREPF for creation of the geometry

model for BASYS has been an expedient in the ongoing software evolution.

Recently, a model creator has been implemented in BASTS (White and Lee

1993) which eliminates the dependence of BASYS on CU-PREPF. Taking

advantage of the hierarchical topology database and the graphical user

interfaces in BASYS, the model creator provides a set of flexible and

powerful tools for the analyst to create and edit complex 3-D framed and/or

panel structures (consisting of line and/or face elements). Nevertheless, the

interface in BASYS for input of models created in CU-PREPF is still

available to allow for retrieval of structural models created in CU-PREPF at

the early stage of this research.

Attribute Assignment and Mesh Generation of Framed Structures

The hierarchical topology database in BASYS includes three discrete

levels of data representation: 4 the structural element (STR) level, the

subdivision (SDV) level, and the mesh (MSH) level. The geometry model of

the structure is first built up in the STR level either using the tools provided

by the model creator in BASYS or based on the model created in CU-

PREPF. Structural attributes are then assigned to structural elements in

the STR level. If the attributes have already been specified in CU-PREPF

along with the geometry model, they are automatically set to the attribute

4 There was a forth representation known as the substructure (SBS)

levelwhich does not use topologicalrepresentation and has been recently
removed from BASTS.

176

database when the input data file from CU-PREPF is read. A set of

graphics tools is also provided for interactive definition and modification of

structural attributes.

To generate a finite element mesh model for the analysis, the

topological edges of the STR model are first subdivided in the SDV level to

define the desired mesh density throughout the structure. Then, the SDV

model is further discretized in the MSH level to obtain the final finite

element mesh (Srivastav 1991). The attributes associated with the

elements in the MSH model are automatically inherited from those

associated with their parent elements in the STR model.

Geometry Creation of 3-D Solids

FRANSYS requires as input a collection of surface patches that

represents the boundary (or skin) of the 3-D solid being modelled. An

object-oriented, boundary-representation, non-manifold solid modeller called

OSM (Potyondy 1991) is used to help the analyst create such surface

patches. Through a scripting language, the user can construct surface

patches in OSM from the simpler entities such as points, lines, and curves.

The statements in the scripting language may be either entered one by one

directly by the user or read from a file prepared in advance. Multiple 3-D

graphics windows may also be activated by the user to display any already

defined entities. Once the desired surface patches are constructed, an

output data file is created that can be read into FRANSYS for further

modelling operations.

For creation of the bladed-disk models with different geometry (see,

for example, Figs. 3.7 and 4.5) in the present research, a simple C program

i

177

called BDM is written to generate automatically the statements in the

scripting language that can be read into OSM to construct the surface

patches of the desired bladed-disk model. BDM allows the user to specify

the followingten parameters fora bladed-disk model (seealso Fig. 5.2):the

totalnumber ofblades (Nb),inner radius of the disk (Ri),outer radius of the

disk (Ro),thickness of the disk (Hd),length of the blades (Lb),thickness of

the blades (Hb),width of the blades (Wb), length of the blade-diskjoint(Lj),

thickness of the blade-diskjointat the disk end (Hj),and pre-twisted angle

of the blades (Ta).

Figure 5.2 Parameters for definition of a bladed-disk model

Attribute Assignment and Mesh Generation of 3-D Solids

FRANSYS uses a hierarchy of topological models to represent the

structure at different levels of discretization. The hierarchy consists of the

178

following five models: the geometry (GEO) model, the volume decomposition

or subdomain (SDM) model, the face decomposition or subregion (SRG)

model, the edge decomposition or subdivision (SDV) model, and the mesh

(MSH) model. After the initial GEO model of the structure is constructed

from the surface patches created in OSM, FRANSYS allows the analyst to

modify the GEO model, and assign attributes to the GEO model. A set of

interactive tools are also provided for refinements of the GEO model into

the SDM model and further into the SRG model.

To generate a finite element mesh model for the analysis, the

topological edges of the SRG model are first subdivided in the SDV level to

define the desired mesh density throughout the structure. Then, the

topological faces and volumes in the SDV model are meshed in the MSH

level to obtain the final finite element mesh. Several meshing tools based

on a variety of techniques are provided for meshing of faces and volumes.

For meshing faces, these include bi-linear transfinite mapping, collapsed bi-

linear transfinite mapping, tri-linear transfinite mapping, and general

triangulation. For meshing volumes, the tools available are tri-linear

transfinite mapping and general sweeping. In addition, the attributes

associated with the elements in the MSH model are automatically inherited

from those associated with their parent elements in the GEO model.

5.3 Domain Partitioning

Once the modelling in BASYS or FRANSYS is completed, an output

data file, called the structural analysis (SA) data file, is created which is

already a valid input file for ABREAST if only a serial finite element

analysis is required. For parallel analysis, the SA file is instead read into

179

PSAINT for partitioning of the finite element domain defined in BASYS or

FRANSYS into a number of subdomains. Both automatic and manual

partitioning tools are provided in PSAINT for such partitioning. The

partitioning results are appended at the end of the SA file. The updated SA

file can then be read into ABREAST for parallel analysis.

Automatic Domain Partitioning

All the automatic partitioning algorithms discussed in Section 4.3

have been implemented in PSAINT for both element-based and node-based

partitioning. The studies in Chapter 4 show that, in most cases, the

RST(CG) algorithm gives the best partitioning results among all the studied

algorithms. However, in many cases, comparisons among results from

different algorithms may be necessary to assure that the best possible

results among allimplemented algorithms are obtained.

Manual Domain Partitioning

A set of graphics tools is provided in PSAINT under the "Interactive

Partitioning" menu for manual partitioning. To define a subdomain, the

user first specifies the corresponding subdomain number of the subdomain

through a dialog box. The subdomain is then defined by collecting nodes in

the structural domain using a set of data collectors. If the node-based

partitioning is required, the collected nodes are assigned to the subdomain.

If the element-based partitioning is required, those elements with all of

their nodes collected are assigned to the subdomain. Upon exit from the

partitioning menu when all subdomains are defined, the elements and

nodes in subdomains are then labelled following the procedures discussed in

Sections 4.4.1 and 4.5.1 for the element-based partitioning and the node-

180

based partitioning, respectively. Various collectors are available for the

user to collectnodes in the structural domain:

(1) MANY NODES: nodes are collected one by one simply by

pointing to them.

(2) NODES ON LINE: Two nodes are selected to define a line. All

nodes lying on the line are then collected automatically.

(3) NODES ON PLANE: Three nodes are selected to define a plane.

All nodes lying on the plane are then collected automatically.

(4) NODES IN CUBE: A rectangular parallelepiped with faces

aligned to the global coordinate axes is defined by selecting the

endpoints of itsdiagonal. All nodes in the parallelepiped are then

collected automatically. The two endpoints can be either existing

nodes in the structure or points at the coordinates specified by

the user.

(5) NODES IN SECTOR: A sector is defined by specifying the

following parameters as shown in Fig. 5.3: a reference point P

which defines the local origin of the sector, a reference vector v

which is aligned to the face, a rotation axis It, the angle of

rotation, ¢, and the thickness of the sector, h. All nodes in the

sector are then collected automatically. The current

implementation requires that vectors u and v align with the

global coordinate axes.

In addition, the above tools can be used to modify previous partitions,

say, resulting from automatic partitioning. In this case, the modification is

achieved by re-defining the subdomain numbers associated with the nodes

(if node-based partitioning) or the elements (if element-based partitioning)

- 181

in the structural domain. First, the user first specifies the current active

subdomain. Then, the collected nodes (if node-based partitioning) or the

elements with all of their nodes collected (if element-based partitioning) are

assigned to the active subdomain. Finally, when the re-definition of nodes

or elements is completed, the elements and nodes in each subdomain are re-

labelled accordingly.

u

h/2 P

v

Figure 5.3 Parameters for definition of a sector

Examination of Partitioning Results

PSAINT also provides graphics tools under the "Display

Substructures" menu for the user to examine partitioning results. Upon

activation of this menu, subdomains in a partitioned domain are displayed

in different colors. The user is then allowed to turn on and off display of any

subdomain, to display subdomains individually, or to display them in a

sequential order for better examination of partitioning results. Message

boxes containing statistics of partitioning results are also displayed. For

element-based partitioning, the statistics provided for each su_domain

include the total number of nodes, the number of interior nodes, the number

of primary boundary nodes, the number of secondary boundary nodes, and

182

the number of elements of different types. For node-based partitioning, the

statistics provided for each subdomain include the total number of nodes,

the number of interior nodes, the number of boundary nodes, the number of

adjacent nodes, and the number of elements of different types.

5.4 Parallel Nonlinear Analysis

After reading the SA file prepared by BASYS/FRANSYS and

PSAINT, ABREAST performs the desired parallel nonlinear analysis

specified in the SA file. As already discussed in Section 3.3, the parallel

solution algorithms implemented in ABREAST for this work include a

parallel central difference algorithm for explicit transient analysis, a

parallel Newmark algorithm with domain decomposition for implicit

transient analysis, and a parallel Newton-Raphson iterative-incremental

algorithm for steady-state (static) analysis. The effectiveness of these

parallel algorithms implemented has also been investigated in Section 3.4.

A UNIX shell script is used to help the user run parallel analyses.

The shell script takes two arguments as input: the name of the SA file

(without file extension) and the name of a user-specified file containing a

list of processors available for use in parallel analyses. The script extracts

the number of subdomains (or processors), Np, from the SA file and remotely

invokes executable image of ABREAST on each of the first Np processors in

the list to start the parallel analysis.

All copies of ABREAST running on separate processors are identical

and read identical copies of the SA file. The order that each ABREAST joins

the ISIS process group is used to automatically determine the distribution

of subdomains among processors (i.e., subdomain No. 1 is assigned to the

- 183

first member in the process group, and so on). Because each processor

executes identical code, but asynchronously and on different data, this is a

MIMD (multiple instruction, multiple-data) approach. As discussed in

Section 3.1, the communication and synchronization between processors are

achieved in a message passing environment provided by ISIS.

5.5 Response Visualization

Once the parallel analysis is complete, an individual response file is

created by each ABREAST on a separate processor which contains analysis

results associated with the subdomain assigned to that particular processor.

PSAINT is then used to gather these response files into a single file for

visualization in BASTS or FRANSYS.

There are three major utilities provided in BASYS and FRANSYS for

visualization of dynamic responses of the structure. The first one is for

animation of modal vibration of the structure. The eigenvectors (or mode

shapes) obtained from an ABREAST eigensolution can be scaled and

dynamically displayed. The second utility provides two-dimensional plots

for selected response data at specific points in the finite element model. The

user can interactively specify the time interval for which the desired

response quantities are to be plotted. The user can also choose from the

following quantities for the ordinate and abscissa axes in the plots: time,

displacements, velocities, accelerations, stresses, strains, and stress

resultants. The third utility is for dynamic simulation of the structure. The

results of displacements and stresses/strains in the response file (which are

calculated at the user-specified time intervals) are used to construct a

sequence of displays that animates the deforming motions of the structure

184

with color contours showing the changing of a selected stress or strain

quantity. The user is allowed to specify the time interval and the

displacement amplification factor for the dynamic simulation.

5.6 Interactive Monitoring and Steering

The capabilities for interactively monitoring and steering parallel

analysis have not been implemented in the current version of parallel

analysis system. However, the idea for monitoring the progress of parallel

analysis has been investigated in the preliminary version of parallel

analysis system consisting of BASYS and ABREAST at the early stage of

this research (Abel et al. 1991; Aubert 1992). At that time, PSAINT had not

been created and temporary graphics tools were provided in BASYS for

interactive domain partitioning. Visualization tools in BASYS were

extended to include a response monitor and process monitors for use in

monitoring the progress of parallel analysis of framed structures. The

response monitor provides a means to display analysis results (i.e.,

deformed shape of the structure with color contours of the selected

stress/strain quantity) as they are being calculated, while the process

monitors display the most current status of parallel processors, such as the

name of the computing node, the time spent for the actual computations, the

time spent for interprocess communication, etc. The user is also allowed to

specify the update frequencies (in terms of time steps) of the monitors. Up

to six DECsystem 5000's were used.

Figure 5.4 shows the interactive monitoring of parallel analysis using

the preliminary version of parallel analysis system in a networked

workstation environment. ABREAST's are run on a number of workstations

- 185

and communicate through ISIS. Also, through ISIS, BASYS collects the

most recent analysis results as they are being calculated by the ABREAST's

and monitors the progress of the parallel analysis. In addition, the graphics

display of BASYS can be visualized on any workstation specified by the user

through the X Window system.

X

Ethernet

Figure 5.4 Interactive monitoring of parallel analysis using the preliminary

version of the parallel analysis system

It was found that the performance of the parallel analysis was

degraded when the interactive monitors (especially the response monitor) in

BASYS were used. This is mainly due to the increase of communication

overhead that is required for the various ABREAST's to send calculated

responses of the structure and timing statistics of the parallel analysis to

BASYS. The amount of response information that needs to be sent to the

response monitor becomes larger as the size of the structure being analyzed

186

increases. It was also found that the time required to update the display of

the response monitor might increase considerably so that a responsive

interactive display environment in BASYS could not be maintained.

However, as the processing power and the speed of communication

network continue to increase, interactive monitoring and steering of parallel

analyses in the current parallel analysis system will become more feasible.

The future development of interactive monitoring and steering capabilities

in the current parallel analysis is suggested in Section 6.2.

5.7 Application Examples

Two examples are used in the present work to examine and

demonstrate the efficiency and flexibility of the parallel analysis system

presented above. The first example analyzes a framed structure subjected

to seismic loading, while the second one analyzes a rotating turbine bladed-

disk experiencing tip rubs.

5.7.1 Framed Structure Subjected to Seismic Loading

A twelve-story L-shaped building is analyzed to demonstrate the

capabilities of the parallel analysis system for dynamic simulations of

framed structures. The structure has been studied by Srivastav (1991) to

examine effects of floor flexibility on building responses and is similar to the

one shown in Fig. 3.9 but with each floor panel modelled by four shell

elements. Only linear elastic analyses are performed by Srivastav.

Detailed descriptions of the design of the structure and assumptions

used in the analysis have been given by Srivastav (1991) and, therefore, are

not repeated here. Four different strategies were used for modelling floor

- 187

slabs of different flexibility in Srivastav's work. In the present work, the

floor slabs are modelled by shell finite elements with the stiffness of a

typical reinforced concrete slab.

The geometry model and attributes of the structure are defined in

CU-PREPF, while the finite element meshes of the structure are generated

in BASYS. The resulting finite element model consists of 696 beam-column

elements, 288 nine-node Lagrangian shell elements, 1,514 nodes, and 7,666

unrestrained degrees of freedom.

The structure is subjected to the El Centro earthquake. Both linear

and geometric nonlinear parallel analyses are performed using six

HP9000/720's. The time step is 0.01 seconds and 20 seconds of structural

responses are analyzed, i.e.,2,000 steps are performed. The structure is

partitioned by floors into six subdomains using the interactive tools

provided in PSAINT. Each subdomain consists of two floors of the

structure. The parallel Newmark implicit time integration in ABREAST is

used for dynamic solutions. For each time step, the equilibrium solution is

achieved using modified-Newton iterations. The diagonal scaling

preconditioner of Eq. 3.9 is used in the parallel preconditioned conjugate

gradient (PCG) iterations. The convergence tolerance for the modified-

Newton iterations is 10-5,while the convergence tolerance for the conjugate

gradient iterations is lxl0 "s. The results are output every 0.05 seconds.

The measured wall clock time required for the parallel analyses using

six HP9000/720's is given in Table 5.1. If only a single HP9000/720 is used,

it is estimated that the linear analysis would take about 13 hours and 14

minutes, while the geometric nonlinear analysis would take about 53 days

188

13 hours and 32 minutes. These estimations are extrapolated from time

required for actual analysis runs of twenty time steps. In this example,

superlinear speed-up is observed in both the linear and nonlinear parallel

analyses. As discussed in Section 3.4.2, this is probably due to the fact that

the profile (or skyline) of the coefficient matrix for the whole structure in

the serial analysis is not as well minimized as that of the coefficient matrix

for each subdomain in the parallel analysis. Moreover, for analysis of this

particular structure, the substructuring approach with the PCG solver in

the parallel analysis may require fewer computational operations (i.e., may

be more effective) than the direct approach in the serial analysis because

only a very small number of PCG iterations is required in the analysis (see

Table 5.1). This also accounts for the superlinear speed-up of the analyses.

Table 5.1 The time required for parallel implicit analyses of the twelve-

story L-shaped building studied in Section 5.7.1 (sixHP9000/720's are used)

Analysis type

Wall clock time (da_'shours:minutes)

Average number of equilibrium

iterations per time step

Average # of PCG iterations

Number of boundary d.o.f.'s

Linear

2:09

420

I Geometric nonlinear

3 15:40

6

12

420

Finally, the response files of the parallel analysis are gathered by

PSAINT into a single response file for response visualization in BASYS. In

this example, the gathered response file takes up approximately 86 Mbytes

of disk space. Fig. 5.5 shows a simulation playback of dynamic responses of

the structure in BASYS.

- 189

Figure 5.5 A simulation playback of dynamic responses of the 12-story L-

shaped building in BASYS

190

5.7.2 Rotating Bladed-disk Experiencing Tip Rubs

The rotating turbine 12-bladed disk problem with the finite element

model of Fig. 3.7 is analyzed to demonstrate the capabilities of the parallel

analysis system for transient simulations of rotational dynamics of solid

models. The bladed-disk rotates at the speed of 12,000 rpm and experiences

a rubbing impact at the tip of one of its blades.

Geometrical Configuration and Material Properties

The geometry model of the structure is constructed using the BDM

and OSM programs discussed in Section 5.2. The geometric configuration of

the model is described by the following parameters (see also Fig. 5.2):

1) the inner radius of the disk (Ri) = 0.048 m,

2) the outer radius of the disk (Ro) = 0.12 m,

3) the thickness of the disk (Hd) = 0.05 m,

4) the length of the blades (Lb) = 0. I0 m,

5) the thickness of the blades (Hb) = 0.0025 m,

6) the width of the blades (Wb) = 0.05 m,

7) the length of the blade-disk joint (_) = 0.02 m,

8) the thickness of the blade-disk joint (Hi) = 0.0075 m, and

9) the pre-twisted angle of the blades (Ta) = 45 °.

The properties of the aluminum are used for the entire structure and are

represented by the following parameters:

1) the Young's modulus = 6.9 x 1010 N/m 2,

2) the density = 2687.36 kg/m 3, and

3) the poison ratio = 0.33.

191

Finite Element Mesh

The finite element mesh model of the structure is generated in

FRANSYS. In the present example, aider the topological edges of the model

are subdivided, the automatic meshing capabilities provided by FRANSYS

are used to construct both surface and volume meshes. The resulting finite

element model consists of 504 twenty-node brick solid elements, 3,828

nodes, and 10,044 unrestrained degrees of freedom. The twenty-node brick

element uses the reduced integration scheme in all analyses performed in

the present example.

Domain Partitioning

The structure is partitioned into six subdomains using the RST

automatic partitioning algorithm in PSAINT. For partitions used in

parallel steady-state analysis, the partitioning type specified is the element-

based partitioning, while the node-based partitioning is specified for

partitions used in parallel central difference analysis.

Parallel Steady-State Analysis

To obtain the steady-state solution of the bladed-disk model rotating

at the speed of 12,000 rpm, parallel steady-state analyses are performed

using six DEC5000's. Both rotational and geometric nonlinearities are

considered in the analyses and a lumped mass matrix is employed. Two

sets of analyses using the lumped mass (LM) and consistent mass (CM)

approaches for the formulation of the rotational terms, respectively, are

performed. The fractional load step size used is 0.2, and Newton-Raphson

iterations are used to achieve equilibrium solutions for each load increment.

192

The measured wall clock time required for the parallel analyses is given in

Table 5.2. The maximum radial displacement at the blade tips is about 0.5

ram.

Serial analyses using a single DEC5000 are also performed. The

analysis with the LM approach takes about 8 hours and 31 minutes, while

the analysis with the CM approach takes about 7 hours and 26 minutes.

Based on these results, a speed-up of 3.8 and an efficiency of about 64% can

be calculated for the parallel analyses with both the LM and CM

approaches.

From Table 5.2, it can be seen that the analysis with the CM

approach takes less time than that with the LM approach. This is mainly

because the former requires fewer Newton and PCG iterations in this

example despite the greater computational effort per Newton step to

account for rotational nonlinearity.

Table 5.2 The time required for parallel steady-state analyses of the

rotating turbine bladed-disk studied in Section 5.7.2 (six DEC5000's are

used)

Approach

Wall clock time (hours:minutes)

LM J
2:16

CM

1:56

Total number of Newton iterations 39 33

78

432

Average # of PCG iter. per Newton iter.

Number of boundary d.o.f.'s

75

432

- 193

Modal Vibration Analysis

The modal vibration characteristics of the bladed-disk model are

examined. Two cases are considered in the analysis. In the first case, the

model does not rotate (_ = 0 rpm), while the model rotates at the speed of

= 12,000 rpm in the second case. For the case of _ = 12,000, the results of

the previous steady-state analysis are used as initial conditions for the

analysis. The subspace iteration method in ABREAST is used for

eigensolutions. A lumped mass matrix is used. The computed frequencies

for the first thirty-six modes are given in Table 5.3. The results are then

read into FRANSYS for visualization of mode shapes. Each of the

eigenanalyses takes about 2 hours and 57 minutes on a single DEC5000.

Table 5.3 Modal frequencies of the turbine 12-bladed disk studied in

Section 5.7.2

Mode

1

2 - 12

13 - 17

18- 24

25 - 28

29

30 & 31

32 & 33

34 - 36

_= 0rpm

181

838

839

1147

Frecluenc 7 (Hz)

= 12,000 rpm

LMapproach I CMapproach

278 278

279

413

279

412

625 620

626 621

629 624

632 627

633 628

194

From Table 5.3, it can be observed that, for both nonrotating and

rotating cases, the frequency results fall into three clusters. The first

cluster includes the first twelve modes, the second one includes the next

twelve modes, and so on. In the first cluster, the frequencies of the rotating

case are higher than those of the nonrotating case. However, the

frequencies of the rotating case in the second and third clusters are lower

than those of the nonrotating case in the second cluster. It should be noted

also that the mode shapes of the same mode number in both the nonrotating

and rotating cases may not necessarily be the same.

Parallel Transient Dynamic Analysis

The transient responses of the rotating bladed-disk model are

analyzed. The model rotates at the speed of 12,000 rpm and experiences a

rubbing impact at the tip of one of its blades. Parallel central difference

analysis using the LM approach is performed using six DEC5000's. Both

rotational and geometric nonlinearities are considered in the analyses and a

lumped mass matrix is employed. The results of the previous steady-state

analysis are used as initial conditions for the analysis.

The blade tip rubs are modelled by a set of applied impact forces

based on a dry friction rub model. In this rub model, the frictional (or

circumferential) force, Ft, is proportional to the normal (or radial) force, Fn.

That is

Ft = _ Fn

in which _ is the coefficient of friction.

(5.1)

In this example, }_ = 0.2 is used and

uniform t.ractions Tt and Tn are applied to the blade tip surface for the

impact forces Ft and Fn, respectively. Figure 5.6 shows the time history of

195

the normal traction Tn which acts in the inward radial direction. The

circumferential traction Tn acts in the direction opposite to the tangential

blade tip velocity.

104

0

0.0 0.7 1.4
Time (x 10

v

-4
sec.)

Figure 5.6 Time history of the normal traction Tn used in the transient

dynamic analysis of Section 5.7.2

The transient responses are computed for a duration of 10 -3 sec. and

a time step of 10 -7 sec. is used. The results are output every 5x10 "6 sec., i.e.,

every 50 time steps. The measured wall clock time required by the parallel

analysis with the LM approach is about 12 hours and 19 minutes. Serial

analysis with the LM approach using a single DEC5000 is also performed.

The analysis takes about 2 days 15 hours and 12 minutes. Based on the

above results, a speed-up of 5.1 and an efficiency of 86% can be calculated.

For analyses with the CM approach, it is estimated that the parallel

analysis using six DEC5000's would take about 4 days 6 hours and 53

minutes, while the serial analysis using a single DEC5000 would take about

196

23 days 1 hour and 47 minutes. These estimations are extrapolated from

the analysis results obtained in Section 3.4.1 for the same turbine 12-bladed

disk model but for only 100 time steps.

Finally, the response files of the parallel analysis are gathered by

PSAINT into a single response file for response visualization in FRANSYS.

In this example, the gathered response file takes up approximately 58

Mbytes of disk space. Fig. 5.7 shows a simulation playback of dynamic

responses of the structure in FRANSYS.

197

Figure 5.7 A simulation playback of dynamic responses of the turbine 12-

bladed disk in FRANSYS

Chapter 6

Summary and Conclusions

The principal objective of this research is to develop, test, and

implement coarse-grained, parallel-processing strategies for nonlinear

dynamics simulations of practical structural problems. The parallel-

processing strategies considered include numerical algorithms for parallel

nonlinear solutions and techniques to effect load-balancing among

processors. Finite element techniques are employed for modelling and

analysis of structural dynamics problems studied in this work. Two classes

of problems are investigated: framed structures with flexible floors

subjected to seismic loading and rotating turbine bladed-disk assemblies

experiencing tip rubs. However, emphasis is placed on the structural

dynamics of rotating turbine bladed-disk assemblies. To facilitate more

efficient and powerful simulations of nonlinear structural dynamics, an

integrated parallel finite element analysis system is presented. This

chapter summarizes the research work reported in this dissertation, draws

conclusions, and suggests directions for future work.

6.1 Summary

There are four main components included in the present work. The

first of them deals with finite element approaches for modelling and

analyzing structural dynamics problems of rotating turbine bladed-disk

assemblies as well as framed structures. Both the second and the third

address parallel-processing strategies for finite element analysis of

198

199

structural dynamics. The second investigates numerical algorithms for

parallel nonlinear solutions, while the third studies techniques to effect

load-balancing among processors. Finally, the last one entails the

development of an integrated parallel analysis system.

Finite Element Modelling and Analysis

Two classes of structural dynamics problems are studied for the

development, testing, and evaluation of parallel-processing strategies

addressed in this work. The first one includes framed structures with

flexible floors subjected to seismic loading, while the second one includes

rotating turbine bladed-disk assemblies experiencing tip rubs. The finite

element approach is employed to model complex structural geometries and

material properties, to account for both geometric and rotational

nonlinearities, and to formulate the governing equations of motion for these

problems. The emphasis is on the finite element formulation for handling

geometric nonlinear analysis of rotating multi-bladed disk problems.

For modelling and analysis of framed structures with flexible floors,

the finite elements and analysis capabilities already provided in ABREAST

are employed. The beam-column element is used to model beams and

columns of framed structures, while the nine-noded Lagrangian shell

element is used to model floor panels. The dynamic analysis capabilities of

ABREAST include eigensolvers for undamped vibration analysis and both

explicit and implicit direct time integration solvers for transient analysis.

Geometric nonlinearity is considered in the analysis.

For modelling the turbine bladed-disk, the twenty-noded

isoparametric brick element with reduced integration is used after

200

consideration of several alternative modelling strategies as discussed in

Section 2.2. The present implementation of this element in the finite

element library of ABREAST has been verified using three example

problems in Section 2.2.3.

Because turbine blades are relatively flexible and normally respond

to the centrifugal forces with considerable deflections, a geometrically

nonlinear analysis is usually required for accurately predicting dynamic

behavior of rotating blades. Furthermore, the centrifugal loads are also

dependent upon displacements in that they are proportional to the

instantaneous radius from the rotational axis. The present research

accounts for geometric nonlinearities through the use of the geometric

stiffness and an updated Lagrangian formulation. Two finite element

approaches presented in Section 2.3.3 are implemented in ABREAST to

incorporate rotational nonlinearities into equations of motion of the rotating

system: the consistent mass (CM) and lumped mass (LM) approaches. The

CM approach treats the structure as a continuum with mass points

uniformly distributed in the structure, while the LM approach treats the

structure as a collection of discrete concentrated mass points. In Section

2.5.3, numerical studies have been conducted in to verify the present

implementation of both the CM and LM approaches for rotational dynamics.

In addition to verification studies, numerical comparisons are performed

between the CM and LM approaches for accounting for rotational

nonlinearities.

A two-stage analysis is employed to carry out modal vibration

analyses of rotating bladed-disk systems. The first stage involves a

nonlinear static analysis to obtain a steady-state solution which serves as

201

the initial condition for the second-stage eigenvalue analysis. For transient

dynamic analysis of rotating bladed-disk assemblies experiencing tip rubs, a

similar two-stage analysis is also employed to save computational time. The

first stage analysis is the same as that in the modal vibration analysis. The

solution of the first-stage analysis then serves as the initial condition for the

second-stage transient analysis which computes structural responses during

tip rubbing. A static analysis capability, which did not previously exist in

ABREAST, has been implemented for the steady-state solution.

Parallel Nonlinear Solution Algorithms

The parallel computing environment used in this work consists of

either up to six DECsystem 5000's or up to twelve Apollo/HP 9000 series

720's. These UNIX workstations are connected by Ethernet and

communicate via the TCP/IP. The interprocess communication and

synchronization are achieved in a message passing environment provided by

ISIS. This is a coarse-grained, distributed-memory environment where the

number of processors used is small and no global memory is shared among

processors. The present research focuses on parallel solution algorithms

suitable for this type of environment where minimization of communication

overhead and parallelization at the substructure level (as opposed to the

parallelization at the element level or at the degree-of-freedom level as in a

fine-grained environment) are two key strategies for the algorithms to

achieve good parallel performance.

For parallel explicit transient analysis, the parallel central difference

method developed by Hajjar and Abel (1989a) is adopted in this research

and implemented in ABREAST. The central difference algorithm is

202

inherently amenable to parallel processing. With the use of lumped masses

to yield a diagonal mass matrix, the solution may proceed on a degree-of-

freedom basis without treatment of simultaneous equations and with only a

minimum amount of communication required between adjacent processors.

For parallel implicit transient analysis, the parallel Newmark

algorithm with domain decomposition presented by Hajjar and Abel (1988)

is adopted with slight modifications and implemented in ABREAST. This

parallel implicit algorithm uses a domain decomposition approach within

the Newmark time stepping outer loop. The domain decomposition

approach starts with partitioning the structure into a number of

subdomains and assign each subdomain to a separate processor. Then, the

substructure condensation is carried out on each processor independently

and concurrently without any interprocess communication. Finally, a

condensed set of system equations associated with unknowns along

subdomain interfaces is solved by a parallel diagonally-preconditioned

conjugate gradient algorithm.

For parallel steady-state analysis, a parallel Newton-Raphson

iterative incremental algorithm is implemented in ABREAST. The

algorithm uses the same approach as the parallel implicit algorithm except

that the time stepping outer loop is replaced by the load increment outer

loop.

To evaluate the effectiveness of the parallel algorithms implemented

in this work, numerical studies have been performed in Section 3.4 using

structures of different types.

203

Load Balancing Among Processors

To effect load-balancing among processors, the present research

focuses on the automatic domain partitioning techniques for parallel finite

element analysis of structural dynamics. The domain partitioning

techniques partition the domain of a structure into a number of subdomains

which are distributed among the processors and the computation involved

in a subdomain is carried out by a separate processor. Well-balanced

distribution of computations among subdomains and minimization of

interprocess communication are sought so that significant speed-up can be

obtained in the parallel analysis. Because the partitioning is done only once

and before the actual computation starts (i.e., in the preprocessing phase),

the domain partitioning methods are classified as static (as opposed to

dynamic) load balancing techniques.

The automatic partitioning algorithms proposed by Farhat (1988),

Malone (1988), A1-Nasra and Nguyen (1991), and Simon (1991) are

investigated in this research. Two generalized versions of Simon's recursive

spectral bisection (RSB) partitioning algorithm (1991) are then proposed in

Section 4.3.5. They are called the recursive spectral sequential-cut (RSS)

and the recursive spectral two-way (RST) partitioning algorithms. Unlike

the RSB algorithm in which the number of partitions is restricted to an

integer power of two, both the RSS and RST algorithms can yield an

arbitrary number of partitions. In addition, interactive graphics tools are

developed to allow for manual partitioning and for examining and modifying

results of automatic partitioning.

204

Comparative studies have been conducted in Sections 4.4 and 4.5 to

evaluate and compare both efficiency and effectiveness of the automatic

partitioning algorithms investigated. Different types of structures modelled

by 1D, 2D, and 3D finite elements are employed in the studies. The use of

different graph representation of the finite element meshes in the spectral

partitioning algorithms is also investigated.

An Integrated Parallel Analysis System

An integrated parallel analysis system has been developed in this

work to help evaluate the parallel strategies investigated, verify the finite

element approaches employed, and demonstrate how advanced computer

technologies can assist engineers in parallel dynamics simulations. Using

the advanced computing environments, data structures, and interactive

computer graphics, this system provides an efficient and powerful

environment for simulations of nonlinear structural dynamics.

The system integrates four in-house, general-purpose computer

programs: BASYS and FRANSYS for three-dimensional modelling and

visualization, PSAINT for finite element domain partitioning, and

ABREAST for nonlinear dynamic solutions. In Chapter 5, the efficiency and

flexibility of the system for parallel dynamics simulations have been

demonstrated.

6.2 Conclusions

The main contributions of this work are: (a) implementation and

comparison of two finite element approaches for handling rotational

- 205

nonlinearities in dynamic analysis of rotating multi-bladed disks, (b)

investigation and implementation of three parallel solution algorithms for

analysis of structural dynamics in a modern networked workstation

environment, (c) generalization of the Recursive Spectral Bisection (RSB)

partitioning algorithm (Simon 1991) for an arbitrary number of partitions,

(d) evaluation and comparison of several automatic domain partitioning

techniques for load balancing among processors, and (e) integration of a

parallel finite element analysis system.

Comparison of Two Finite Element Approaches

Two finite element approaches have been sucessfully implemented in

this work to account for rotational nonlinearities involved in dynamic

analysis of rotating bladed-disk assemblies: the Consistent Mass (CM) and

Lumped Mass (LM) approaches. In both cases, the inertial properties

(mass) are represented by a diagonal (lumped) mass matrix. However, the

different methods cited are based on whether the mass effects in the

rotational terms are either considered as lumped (LM) or distributed (CM).

Based on the numerical comparative study conducted in Section 2.5.3 and

results observed in the application examples of Section 5.7.2, the following

conclusions may be made:

(1) Although the LM approach is not expected to be as accurate as

the CM approach due to its neglect of mass coupling, it has been

found that the modal vibration results obtained using the LM

approach are in close agreement with those obtained using the

CM approach. In most cases, the frequency results from the LM

approach are slightly higher than those from the CM approach.

206

(2)

The transient displacements predicted using the LM approach

also agree well with those predicted using the CM approach.

On the other hand, the LM approach is expected to be

computationally more efficientthan the CM approach. This has

been found to be the case for transient dynamic analysis using

explicit time integration. In the examples studied, the

computational time required in the analysis using the CM

approach has been found to be about 9 times more than that

using the LM approach. However, for modal vibration analyses,

the computational times of analyses using these two different

approaches do not differ significantly.

Parallel Nonlinear Solution Algorithms

It has been shown in Section 3.4.1 that the parallel central difference

algorithm can achieve high parallel speed-up and efficiency. For example,

in the analysis of the 12-bladed turbine disk of Fig. 3.7, the speed-up ranges

from 1.9 for two processors (i.e., 96% efficiency) to 9.7 for twelve processors

(i.e., 81% efficiency) in a network of HP9000/720 workstations. However,

the central difference method is conditionally stable and often requires at

least an order-of-magnitude more time steps than an unconditionally stable

implicit method. Nevertheless, for structural dynamics problems of short-

duration nature where a short time step is necessary to capture the

dynamic phenomena, the central difference analysis can be a cost-effective

time integration algorithm. One example is the structural dynamics of

rotating turbine bladed-disk assemblies experiencing tip rubs investigated

in this work. Due to the short-duration, impact-like nature of the tip rubs,

the use of a small time step is necessary in analysis to capture the dynamic

w

207

phenomena. Furthermore, the size of the problem is usually large, some of

the coefficient matrices are skew-symmetric rather than symmetric, and

significant computation and storage are required for matrix assembly and

solution of system equations if implicit methods are used.

In addition to more computation and storage needed for stiffness

assembly and solution of system equations, the parallel implicit algorithm

requires significantly more synchronization and communication overhead

than the parallel explicit algorithm and, therefore, is less efficient.

However, its unconditional stability makes it more suitable for long-

duration problems such as the structural dynamics of framed structures

subjected to seismic loading investigated in this work. It has been shown in

Section 3.4.2 that, with the use of the parallel implicit algorithm, nonlinear

analysis of structural dynamics can benefit from parallel processing,

especially when the problem size is large and an appropriate number of

processors is used. For example, in the analysis of the 12-story L-shaped

building of Fig. 3.9, a speed-up of 3.3 (83% efficiency) is achived when four

HP9000/720's are used. In addition, the diagonal scaling preconditioner has

been shown to accelerate effectively the convergence rate of the parallel

conjugate gradient algorithm in the examples studied.

The synchronization and communication overhead required in the

parallel steady-state algorithm is smilar to that of the parallel implicit

algorithm. Good parallel performance of this algorithm has also been

obtained in the example studied. For example, in the analysis of the 12-

bladed turbine disk of Fig. 3.7, a speed-up of 3.2 (80% efficiency) is achived

when four HP9000/720's are used.

208

Automatic Domain Partitioning Algorithms

As presented in Section 4.3.5, two partitioning algorithms have been

developed in this research, both of which generalize the RSB algorithm for

an arbitrary number of partitions. They are the Recursive Spectral

Sequential-cut (RSS) and the Recursive Spectral Two-way (RST)

algorithms. In Sections 4.4.3 and 4.5.2, comparative studies are conducted

among these algorithms and several other algorithms proposed by previous

researchers. From these comparative studies, the following conclusions may

be made:

(1) It has been found that in most cases the RST algorithm with the

communication graph approach gives the best partitioning results

among all the considered algorithms.

(2) all the considered algorithms deliver partitions in a very small

fraction of the computational time for the dynamic analysis. For

coarse-grained problems studied, the spectral partitioning

methods require about the same computational time as the non-

spectral methods.

(3) Although it is undesirable to have fragmented subdomains

because they usually result in longer subdomain boundaries, it

should be noted that having nonfragmented subdomains is not

sufficient in itself to obtain shorter subdomain boundaries.

An Integrated Parallel Analysis System

A parallel analysis system has been integrated in this work. Its

implementation and application for various stages involved in parallel

nonlinear simulations of structural dynamics have been discussed in

- 209

Chapter 5. From the examples presented in Section 5.7, the system has

been shown to provide a useful research software testbed for study of

nonlinear structural dynamics.

6.3 Suggestions for Future Research

There are several areas in which research should continue to improve

parallel processing strategies for simulations of nonlinear structural

dynamics. There are also several possible enhancements of the parallel

analysis system integrated in this work. Some suggestions for future work

are discussed as below.

Parallel Modal Vibration Analysis

To study dynamic characteristics of a structure, modal vibration

analysis is often required. For large structural problems, the eigensolution

involved in the modal vibration analysis is a computationally intensive task

and, therefore, is a potential candidate to benefit from parallel processing.

This work has investigated parallel time integration algorithms for

transient dynamic analysis and parallel equation solvers for steady-state

analysis, but has not studied parallel eigensolution algorithms for modal

vibration analysis. Future research should be conducted to investigate

parallel solution algorithms for large eigenproblems suitable for the present

coarse-grained, distributed-memory environment. The parallelization of

commonly used algorithms such as the subspace iteration method, the

Lanczos method, and the determinant search method could be studied and

compared.

210

Parallel Implicit Analysis

In the present study of the parallel implicit algorithm, the single

processor analysis does not use the substructuring approach but, instead,

uses a direct Gauss elimination method for the solution of the total set of

original equations. In many cases where the problem size and bandwidth

are not too large, this approach can lead to more conservative measures of

the parallel speed-up and efficiency. However, to obtain a better

understanding of synchronization and communication overhead inherent in

the algorithm, research should be done to use the same substructuring

approach in the serial analysis as in the parallel analysis.

Load Balancing Among Processors

As discussed in Chapter 4, a generic finite element mesh may include

finite elements of different types. In addition, a general networked

computing environment may consist of computers with different processing

power. To handle generic finite element meshes and to maximize the

utilization of computer resources in a network, further development and

enhencement of the present domain partitioning approaches are required.

The domain partitioning methods are static load balancing

techniques which distribute computational loads among processors only

once and before the actual computation starts. This approach is suitable for

problems in which the distribution of computational loads among processors

is constant throughout the course of the analysis. However, for dynamic

analysis involving localized nonlinear responses, the presence of localized

nonlinearity may create significantly unbalanced workloads among

processors, resulting in reduction in parallel efficiency. Therefore, there is a

- 211

need to study and develop dynamic load balancing techniques that can

redistribute computational loads among processors during parallel analysis

in a cost-effective fashion. In the present networked workstation

environment where the cost of interprocess communication is high, the

development of suitable dynamic load balancing techniques is a particularly

challenging research task.

Fault Tolerance of Parallel Analysis

Parallel nonlinear analyses are usually expensive. Since the parallel

analysis requires interprocess communication and synchronization among

several processors in the computing network, the chances of failure due to a

hardware, operation system, or communication problem are higher than

those during a serial analysis. For example, failures due to some

communication problems have been experienced by the writer during this

research. To avoid costly reanalysis of the entire problem, future research

should be conducted to provide fault tolerance capabilities in the present

parallel analysis system.

One simple solution for the fault tolerance problem is a restart

capability for parallel analysis. Essential data for analysis recovery are

written out to data files at the user-specified points (often called the

checkpoints) in the parallel analysis. If a failure occurs, the analysis can

then be restarted by the user at the nearest checkpoint prior to the point of

failure.

More complicated approaches may be devised to automate the restart

sequence. For example, each processor used in the parallel analysis may be

associated with a backup processor. If the primary processor fails, it will be

212

automatically replaced by its backup processor. During the analysis, the

analysis recovery data at the checkpoints are either written to data filesor

sent to backup processors. An automatic mechanism is required to detect

processor failures should they occur, to activate backup processors, and to

restart the analysis at the nearest checkpoint prior to the point of failure.

Interactive Monitoring and Steering of Parallel Analysis

To provide a better interactive parallel analysis environment, the

present parallel analysis system should be further developed to include

interactive monitoring and steering

implementation of these capabilities

environment is explained using Fig. 6.1.

capabilities. The suggested

in a networked workstation

To carry out a parallel analysis,

copies of ABREAST are run on a number of workstations and communicate

through ISIS. Also, through interprocess communication provided by ISIS,

the following interactions between FRANSYS/BASYS, PSAINT, and the

copies of ABREAST can be achieved:

(a) ARer requested by FRANSYS/BASYS, PSAINT collects the most

recent analysis results as they are being calculated by the various

ABREAST's and, then, sends them to FRANSYS/BASYS for

interactive monitoring and visualization of the parallel analysis.

(b) FRANSYS/BASYS may steer the parallel analysis by requesting

the ABREAST's (either through PSAINT or directly) to start/stop

the analysis and modify specific analysis parameters during the

analysis.

In addition, the graphics display of FRANSYS/BASYS can be visualized on

any workstation specified by the user through the X Window system.

- 213

Graphics

Display

Server

FRANSYSBASYS [[PS_

@@
LibX Toolkit

ABREAST

ISIS

Ethernet or FDDI

Figure 6.1 Interactive monitoring and steering of parallel analysis

Closure

In the foreseeable future, the rapidly advancing computer

technologies promise to provide researchers and engineers increasingly

powerful computing environments. Research should be conducted

continuously to take advantage of these technologies for more efficient and

powerful simulations of nonlinear structural dynamics.

Appendix A

Parallel Implementation Using ISIS

This appendix provides a brief description of what and how ISIS

routines are used in the present research to achieve interprocess

communication and synchronization for all implemented parallel algorithms

discussed in Section 3.3. Example code segments extracted directly from

the analysis program ABREAST are provided with all ISIS routine calls

highlighted in bold. For detailed description of these ISIS routines, the ISIS

manual (Birman et al. 1991) should be consulted.

A.1 General Purpose Routines

In the present implementation, processes are assigned unique IT)

numbers based on the sequence they join the ISIS process group. The

following routine returns the ID number of the calling process in the process

group specified by the groupview pointer gv:

int dpp_GetMyID(t_gv)

char *tgv ; /* groupview ptr of the process group */

{

groupview *gv = (groupview *)t_gv ;

int index = 0 ;

while(!addr_ismine(&gv->gv_members[index]))

index++ ;

return(++index) ;

}

214

-- 215

If there are N processes in the process group, the ID number returned from

the above routine for the first process is 1 and that for the last one is N.

When a message is received by a process, it is also necessary for the

process to know the message sender's ID number so that the data in the

message can be handled correctly. The following routine returns the

message sender's ID number:

int dpp_GetSenderID(t gv, t_msg_p)

char *t_gv ;/* groupview ptr of the process group */

char *t_msg_p ;/* ptr to message received */

{

groupview *gv= (groupview *)t_gv ;

message *msg_p = (message *)t msg_p ;

address *sender_addr ; /* message sender's address */

int index = 0 ;

sender_addr = msg_getsender(msg_p) ;

while(!addr_isequal(sender addr, &gv->gv members[index]))

index++ ;

return(++index) ;

}

A.2 Initialization

To run ABREAST under ISIS, a start sequence is required which

initializes the ISIS system (i.e., connects the application to ISIS), registers

all processes in an ISIS process group, and declares all ISIS entry points for

interprocess communication. For example, the following initialization

routine is implemented for the parallel central difference algorithm:

216

static address *gaddr_p ; /* addr ptr of the ISIS process

group 'pp_cd_pg' */

static groupview *gview_p ; /* groupview ptr of the ISIS

process group 'pp_cd_pg' */

void dpp_cd_Init0

{

/* (Function declarations are omitted) */

int my_sbs_id, n_sbs ;

char pp_cd_pg[PG_GLEN] ;

/* name of process group containing all

** processes running parallel CD algorithm */

/* Initialize ISIS */

isis_remote_init((char*)0, 0, 0, ISIS_USEITIMER) ;

/* Finish ISIS startup */

isis_start_done() ;

/* Joint the process group (Note: n sbs is used to detect

** the completion of process-group joining.) */

ads_analysis(GET_PROB_NAME, pp_cd_pg) ;

n_sbs -- (int) ads_css(GET_NUM_SBS) ;

gaddr_p = pg_join(pp_cd_pg, 0) ;

gview_p = pg_getview(gaddr_p) ;

while((int) gview_p->gv_nmemb < n_sbs)

isis_accept_events(ISIS_BLOCK) ;

/* wait (block) until all members have joined */

/* Get a unique ID for this process */

my sbs_id = dpp_GetMyID(gview_p) ;

ads_css(SET_SBS_ID, 0, my sbsjd) ;

/* Declare ISIS entries for interprocess communication */

isis_entry(PP_CD_RECEIVE, dpp_cd_ReceiveDispl,

"dpp_cd_ReceiveDispl") ;

- 217

isis_entry(PP_CD_NOTIFY, dpp_cd_ReceiveNote,

"dpp_cd_ReceiveNote") ;

The initialization routine implemented for the parallel implicit domain

decomposition algorithm follows the same steps as the one given above.

A.3 Interprocess Communication and Synchronization

This section illustrates the interprocess communication and

synchronization routines implemented for both parallel central difference

algorithm and parallel implicit domain decomposition algorithm.

Parallel Central Difference Algorithm

Within each time step of the parallel central difference algorithm,

interprocess communication is required between adjacent processors to

exchange the displacements of the boundary nodes (see Step (5) in Table

3.1). The routines implemented to achieve this interprocess communication

are given as follows:

staticint

staticint

n_note_got = 0 ;

n_msg_got = 0 ;

void dpp_cd_Commun0

{

/* (Function declarations are omitted) */

int n_adj_sbs = (int)ads_css(GET N_ADJ SBS, 0) ;

/* notify all adjacent processors that sending displacements

** is now allowed. (Note: this is to avoid the possible race

** condition that adjacent processors may send displacements

** right before this processor escapes from the "ISISBLOCK"

** loop aider calling dpp cd SendDisp0.) */

218

dpp_cd_NotifyO ;

/* Wait until all replies needed have been received */

while (n_note_got < n_adj_sbs) {

isis_accept_events(ISIS_BLOCK) ;

}

n_note_got = 0 ; /* Reset n_note_got */

/* Send displacements of '"ooundary nodes" to adjacent

** substructures */

dpp cd SendDispl0 ;

/* wait until displacements of"adjacent vertices" from all

** adjacent substructures have been received (Note: the

** routine dpp_cd_ReceiveDispl() for receiving displacements

** is defined in dpp cd Init0 as an ISIS entry which is

** activated automatically by ISIS whenever a message for it

** arrives.) */

while (n_msg_got < n_adj_sbs) {

isis_accept_events(ISISBLOCK) ;

}

n_msg_got = 0 ; /* Reset n_msg_got */

void dpp_cd_Notify0

{

inti;

int n_adj_sbs = (int)ads css(GET_N_ADJ_SBS, 0) ;

int *adj_sbs_l = (int *)ads_css(GET_ADJ_SBS_LIST, 0) ;

address send_to ;

/* Send notes to all adjacent processes (substructures)*/

for (i=0 ; i < n_adj_sbs ; i++) {

send_to = gview_p->gv_members[adj_sbs_l[i]] ;

bcast(&send_to, PP_CD_NOTIFY, "%d", 1, 0) ;

}

- 219

void dpp_cd_ReceiveNote(msg_p)

message *msg_p ;

{

int note ;

msg_get(msg_p, "%d", ¬e) ;

n_note_got++ ;

void dpp_cd_SendDispl0

{

/* (Function declarations are omitted) */

int

int

double

address

n_adj_sbs, *adj_sbs_l ;

msg_len ; /* length of msg_buff] */

msg_buf ;/ ptr to message buffer */

sendto ;

Query basic information */

n_adj_sbs = (int)ads_css(GET_N_ADJ_SBS, 0) ;

adj_sbs_l = (int *)ads_css(GET_ADJ_SBS_LIST, 0) ;

Send displacements to all adjacent processes */

for (i=0 ; i < n_adj_sbs ; i++) {

/* For the current adjacent substructure, compute

msg_len, allocate memory for msg_buf using

caUoc(), and put the displacements of boundary

nodes into msg_buf */

/* (Codes omitted) */

/* broadcast the displacements */

send_to = gview p->gv_members[adj_sbs_l[i]] ;

bcast(&sendto, PP_CD_RECEIVE, "%*G", msg_buf,

msg_len, free, 0) ;

}

220

void dpp_cd_ReceiveDispl(msg_p)

message *msg_p ;

{

/* (Function declarations are omitted) */

int sender_id ;

double *msg_buf;

address send_to ;

/* Query basic information */

/* (Codes omitted) */

/* Receive displacements from adjacent substructures */

msg_get(msg_p, "%+G", &msg_buf, &n_elem) ;

/* get the message sender's ID */

sender_id = dpp_GetSenderID(gview_p, msg_p) ;

/* set the displacements into database */

/* (Codes omitted) */

/* Free the message buffer and increase n_msg_got by 1 */

free((void *) msg_buf) ;

n_msg_got++ ;

Parallel Implicit Domain Decomposition Algorithm

Two types of interprocess communication and synchronization are

required for the parallel implicit domain decomposition algorithm. The first

one is the assembly of the vector at substructure boundary by adding

contributions from adjacent substructures (See also Table 3.3), while the

second one is the computation of a global dot product by summing

contributions from all substructures (See also Table 3.5). The routines

221

implemented to achieve both types of interprocess communication

synchronization are given as follows.

Assembly of the Vector at Substructure Botmd_ry

static address *dd_ga ; /* ptr to addr of the process

** group containing all processes

** running the parallel domain

** decomposition algorithm*/

static groupview *dd_gv ;/* Ptr to groupview of the process

** group containing all processes

** running the parallel domain

** decomposition algorithm */

static int *n_bdry_vec_note_got=0;/

static int *n_bdry_vec_got=0;

static double **vec_own = 0;/* Ptrs for temporarily holding

** the addresses of boundary

** vectors (of this process) */

static void AssembleBoundaryVector(id, v)

BdryVecType id ;/* type id of the boundary vector */

double *v ;/* the boundary vector of type id */
{

int

int

int

n_sbs = (int)ads_css(GET_NUM_SBS) ;

n_adj_sbs = (int)ads_css(GET N ADJ_SBS, 0);

i;

/* put the boundary vector into buffer vec_own[type_id][] */

for(i=0; i<n h dof; i++)

vec_own[(int)id][i] = v[i] ;

/* Synchronize all processors */

NotifySendingBoundaryVector(id);

while(n bdry_vec_note_got[id] < n_sbs).

isis_accept_events(ISIS_BLOCK) ;

n_bdry_vec_note_got[id] = 0 ; /* reset the counter */

and

222

/*Send boundary vector */

SendBoundaryVector(id,v);

/*Wait untilcontributionsfrom alladjacent processes

** have been received*/

while(n_bdry_vec_got[id]< n_adj_sbs)

isis_accept_events(ISIS_BLOCK);

n_bdry_vec_got[id]= 0 ; /*resetthe counter */

/*put the assembled vectorinto v */

for(i=O;i<n_h_dof; i++)

vii]= vec_own[(int)id][i];

}

static void NotifySendingBoundaryVector(id)

BdryVecType id;/* type id of the boundary vector */

{

int i ;

int n_sbs = (int) ads_css(GET_NUM_SBS) ;

address send_to ;

/* Send notes to all processes for synchronization */

for(i=0; i<n_sbs; i++){

send_to = dd_gv->gv_members[i] ;

bcast(&send_to, PP_DD_RecvBdryVecNote, "%d,%d",

1, id, 0);

}

static void RecvBdryVecNote(t_msg_p)

char *t_msg_p ; /* ptr to the message */

{

message *msg_p = (message *)t_msg_p ;

int note ;

BdryVecType id ;

msg_get(msg_p, "%d,%d", ¬e, &id) ;

223

n_bdry_vec_note_got[id] += note ;

}

static void SendBoundaryVector(id, v)

BdryVecType id ;/* type id of the boundary vector */

double *v ;/* the boundary vector to be sent */

{

int i ;

address send_to ;

double *msg_buf;

int msg_len ;

int n_adj_sbs = (int) ads_css(GET N ADJ_SBS, 0) ;

int *adj_sbs_l = (int *)ads_css(GET_ADJ SBS_LIST, 0) ;

Send the vector to adjacent processes */

for(i=0; i<n_adj_sbs; i++){

/* compute msg_len, allocate memory for msg bur

using maUoc0, and put v into msg_buf*/

/* (Codes omitted) */

send_to = dd_gv->gv_members[adj_sbs_l[i]] ;

bcast(&send_to, PP_DD_RecvBdryVec, "%d,%*G", id,

msg_buf, msg_len, free, 0) ;

}

static void RecvBdryVec(msg_p)

message *msg_p ;

{

int sender_id ;

BdryVecType id;

double *v ;

int n_h_dof_recv ;

/* Receive the message */

msg_get(msg_p, "%d,%+G", &id, &v, &n h_dof_recv) ;

224

/* Figure out which adjacent substructure sends this data */

sender_id = dpp_GetSenderID(dd_gv, msg_p);

/* Assemble the contributions of the adjacent boundary

** vector into buffer vec_own.*/

/* (Codes omitted) */

n_bdry_vec_got[id]++;

free(v) ;

Assembly of a Global Dot Product

staticint

staticint

staticint

staticint

staticdouble

n_ldotprod_note_got=0;

n_ldotprod_got=0;

n_gdotprod_got=0;

n_gdotprod_note_got=0;

gdot ; /* value of global dot product*/

double dpp_DD_AsmDotProduct(a, b)

double *a, *b ;

{

int n_sbs = (int) ads_css(GET_NUM_SBS) ;

double ldot ;

int uno = 1;

int my_id ;

gdot = 0.0 ;/* initialize global dot product */

/* Synchronize all processes */

NotifySendingLDotProd();

while(n_ldotprod_note_got < n sbs)

isis_accept_events(ISIS_BLOCK) ;

n_ldotprod_note_got = 0 ;/* reset the counter */

/* Compute own share of dot product */

ldot = DDOT(&n_pr h dof, a, &uno, b, &uno) ;

- 225

/* Send own share of dot product */

SendLDotProd(ldot);

/* If this is the host processor, collect all the dot

** product contributions */

my_id = ads css(GET_SBS_ID, 0) ;

if((my_id - 1) == 0) {/* 0th is designated the host */

while(n_ldotprod_got < n_sbs)

isis_accept_events(ISIS_BLOCK) ;

n_ldotprod_got = 0 ; /* reset the counter */

/* send assembled global dot product to all

processes */

SendGDotProd0 ;

}

/* Wait until the global dot product has been received */

while(n_gdotprod_got < 1)

isisacceptevents(ISIS_BLOCK);

n_gdotprod_got = 0 ; /* reset the counter */

return(gdot) ;

}

static void NotifySendingLDotProd0

{

int i ;

int n_sbs = (int)ads_css(GET_NUM_SBS) ;

address send_to ;

/* Send notes to adjacent processes */

for(i=0; i<n_sbs; i++){

send_to = dd_gv->gv_members[i] ;

bcast(&send to,PP_DD_RecvLDotProdNote,"%d",l,0) ;

}

}

226

static void RecvLDotProdNote(msg_p)

message *msg_p ;

{

int note ;

BdryVecType id ;

msg_get(msg_p, "%d", ¬e) ;

n_ldotprod_note_got += note ;

static void SendLDotProd(d)

double d ;

{

address send_to ;

/* Send the local dot product to the host processor */

send_to = dd_gv->gv members[0] ;

/* 0th is designated the host *!

bcast(&send to, PP_DD_RecvLDotProd, "%G[1]", &d, 0) ;

}

static void SendGDotProd()

{

int

int

address

i;

n_sbs = (int)ads_css(GET_NUM_SBS) ;

send_to ;

/* Send the global dot product to all processes */

for(i=0; i<n_sbs; i++){

send_to = dd_gv->gv_members[i] ;

bcast(&send_to,PP_DD_RecvGDotProd,"%G[1]",&gdot,0) ;

}

}

static void RecvLDotProd(msg_p)

message *msg_p ;

-- 227

]*

/*

double dot ;

receivea localdot product */

msg_get(msg_p, "%g", &dot);

Add the local dot product into the global dot product */

gdot += dot ;

n_Idotprod_got++ ;

static void RecvGDotProd(msg_p)

message *msg_p ;

{

double dot ;

]* Receive the global dot product */

msg_get(msg_p, "%g", &dot) ;

gdot = dot ;

n_gdotprod_got++ ;

}

A.4 Termination

After the parallel analysis is complete, a termination sequence is

required to disconnect the application from ISIS. For example, the following

termination routine is implemented for the parallel central difference (CD)

algorithm:

void dpp_cd_Done()

{

int

address

int

n_sbs = (int)ads_css(GET_NUM_SBS) ;

send_to ;

i;

228

/* Notify all members in the process group 'pp_cd_pg' that

** this process isleaving */

for(i=0;i<n_sbs; i++){

send_to = gview_p->gv_members[i] ;

bcast(&send_to, PP_CD_NOTIFY, "%d", 2, 0) ;

}

/* Wait until all members are ready to leave the process

** group */

while(n_note_got < (int) gview_p->gv_nmemb) {

isis_accept_events(ISIS_ASYNC) ;

}

n_note_got = 0 ; /* reset the counter n_note_got */

/* Leave the process group */

pg_leave(gaddr_p) ;

}

The termination routine implemented for the parallel implicit domain

decomposition (DD) algorithm follows the same steps as the one given

above.

Bibliography

Abbas, B. A. H. and K. M. Kamal (1987). '"Vibration of Turbomachinery

Blades with Root Flexibility Effect", Bladed Disk Assemblies, ASME
Publication DE-Vol. 6, No. H00406, 31-41.

Abdullah, A. R., and D. J. Evans (1986). "A Weighted Group Explicit

Method for the Diffusion Equation," Computer Methods in Applied

Mechanics and Engineering, Vol. 55, No. 3, 221-238.

Abel, J. F., B. H. Aubert, S. H. Hsieh (1991). "On the Use of a Workstation
Network for the Parallel Solution of Nonlinear Structural

Dynamics," presented in the First U.S. National Congress on

Computational Mechanics, Chicago, IL, July 21-24.

A1-Nasra, M., and D. T. Nguyen (1991). "An Algorithm for Domain

Decomposition in Finite Element Analysis," Computers and

Structures, Vol. 39, No. 3/4, 277-289.

Argyris, J., O. Hilpert, G. Malejannakis, and D. Scharpf (1979). "On the

Geometrical Stiffness of a Beam in Space," Computer Methods in
Applied Mechanics and Engineering, Vol. 20, No. 1, 105-131.

Aubert, B. H. (1992). "Numerical Simulation of the Transient Nonlinear

Dynamics of Actively Controlled Space Structures," Ph.D.

dissertation, Cornell University, Ithaca, New York.

Aubert, B. H., S. H. Hsieh, and J. F. Abel (1992). "Simulation of the

Dynamics of Large Space Structures," in N. K. Srivastava, A. N.

Sherbourne, and J. Roorda, Eds., Innovative Large Span Structures,

Vol. 1, Toronto, Canada, 570-580.

/" Barnard, S. T., and H. D. Simon (1992). "A Fast Multilevel

Implementation of Recursive Spectral Bisection for Partitioning

Unstructured Problems," Report RNR-92-033, NAS Systems Division,

Applied Research Branch, NASA Ames Research Center, Mail Stop
T045-1, Moffett Field, CA 94035.

Bathe, K. J. (1982). Finite Element Procedures in Engineering Analysis,

Prentice Hall, New Jersey.

Birman, K. P., R. Cooper, T. A. Joseph, K. P. Kane, and F. Schmuck (1991).

ISIS - A Distributed Programming Environment, Version 3.0 - User's

Guide and Reference Manual. Department of Computer Science,

Cornell University, Ithaca, New York.

Bossak, M. A. J., and O. C. Zienkiewicz (1973). "Free Vibration of Initially

Stressed Solids, with Particular Reference to Centrifugal-force

229

230

I /

Effects in Rotating Machinery", Journal of Strain Analysis, Vol. 8,

245-252.

Chiang, K. N., and R. E. Fulton (1990). "Structural Dynamics Methods
for Concurrent Processing Computers," Computers and Structures,

Vol. 36, No. 6, 1031-1037.

Collins, R. J. (1973). "Bandwidth Reduction by Automatic Renumbering,"

International Journal for Numerical Methods in Engineering, Vol. 6,

345-356.

Cook, R. D., D. S. Malkus, and M. E. Plesha (1989). Concepts and

Applications of Finite Element Analysis, 3rd Ed., Wiley, New York.

Davis, R. R. (1989). "Practical Nonlinear Simulation of Rotating

Machinery Dynamics With Application to Turbine Blade Rubbing,"

Ph.D. dissertation, University of California at Davis, Davis,

California, June 1989.

Dokanish, M. A., and S. Rawtani (1971). "Vibration Analysis of Rotating
Cantilever Plates," International Journal for Numerical Methods in

Engineering, Vol. 3, 233-248.

Ernst, M. A., and C. Lawrence (1987). "Hub Flexibility Effects on Propfan
Characteristics", NASA TM-89900.

Evans, D. J. (1984). "The Group Explicit Method for the Numerical
Solution of Non-linear Partial Differential Equations," in R. W. Lewis,

E. Hinton, P. Bettess, and B. A. Schrefler, Eds., Numerical Methods

for Transient and Coupled Problems, Proceedings of the International
Conference on Numerical Methods for Transient and Coupled

Problems, Venice, Italy, 9-13 July 1984, Pineridge Press, Swansea, U.

K., 801-815.

Evans, D. J. (1985). "The Numerical Solution of Non-linear Parabolic

Equations on Parallel Computers by Group Explicit Methods," in J.
Middleton, G. N. Pande, and A. A. Balkema, Eds., NUMETA '85

Numerical Methods in Engineering: Theory and Applications,

Proceedings of the International Conference on Numerical Methods

in Engineering, Vol. 2, Swansea, U. K., 7-11 January 1985, 973-980.

Evans, D. J., and N. Y. Yousif (1992). "Asynchronous Parallel Algorithms

for Linear Equations," in H. Adeli, Ed., Parallel Processing in

Computational Mechanics, Marcel Dekker, Inc., New York, 69-130.

Farhat, C. (1987). "Multiprocessors in Computational Mechanics," Ph.D.

dissertation, University of California, Berkeley, California.

Farhat, C. (1988). "A Simple and Efficient Automatic FEM Domain

Decomposer," Computers and Structures, Vol. 28, No. 5, 579-602.

231

Farhat, C. (1992). Personal Communication.

Farhat, C., and L. Crivelli (1989). "A General Approach to Nonlinear FE
Computations on Shared Memory Multiprocessors," Computer

Methods in Applied Mechanics and Engineering, Vol. 72, No. 2, 153-
172.

Farhat, C., and N. Sobh (1990). "A Consistency Analysis of a Class of

Concurrent Transient Implicit/Explicit Algorithms," Computer

Methods in Applied Mechanics and Engineering, Vol. 84, 147-162.

Farhat, C., and E. Wilson (1988). "A Parallel Active Column Equation

Solver," Computers and Structures, Vol. 28, No. 2, 289-304.

Fenves, S. J., and K. H. Law (1983). "A Two-Step Approach to Finite

Element Ordering," International Journal for Numerical Methods in

Engineering, Vol. 19, 891-911.

Fiedler, M. (1975). "A Properties of Eigenvectors of Nonnegative

Symmetric Matrices and Its Application to Graph Theory,"
Czechoslovak Mathematics Journal, Vol. 25, No. 100, 607-618.

Flower, J., S. Otto, and M. Salama (1987). "Optimal Mapping of Irregular
Finite Element Domains to Parallel Processors," in A. K. Noor, Ed.,

Parallel Computations and Their Impact on Mechanics, ASME, New
York, 239-250.

Gallagher, R. H., "Problems and Progress in Thin Shell Finite Element

Analysis," in D. G. Ashwell and R. H. Gallagher, Eds., Finite

Elements for Thin Shell and Curved Members, Wiley, New York.

Garey, M. R., and D. S. Johnson (1979). Computers and Intractability: A

Guide to The Theory of NP-Completeness, W. H. Freeman and

Company, New York.

Geist, G. A., M. T. Heath, B. W. Peyton, and P. H. Worley (1991). "A Users'

Guide to PICL - A Portable Instrumented Communication Library,"

ORNL/TM-11616, Oak Ridge National Laboratory, Oak Ridge,
Tennessee 37831.

George, A. (1971). "Computer Implementation of the Finite Element

Method," Technical Report STAN-CS-71-208, Computer Science

Department, Stanford University.

Gibbs, N. E., W. G. Poole, Jr., and P. K. Stockmeyer (1976). "An Algorithm

for Reducing the Bandwidth and Profile of a Sparse Matrix," SIAM

Journal of Numerical Analysis, Vol. 13, No. 2, 237-250.

Golub, G. H., and C. Van Loan (1989). Matrix Computations, 2nd Ed., The

Johns Hopkins University Press, Baltimore, Maryland.

232

Hageman, L. A., and D. M. Young (1981). Applied Iterative Methods,
Academic Press, New York.

Hajjar, J. F. (1987). "Parallel Processing for Transient Nonlinear
Structural Dynamics of Three-Dimensional Framed Structures,"

Department of Structural Engineering Report No. 87-5, Cornell

University, Ithaca, New York, November 1987.

Hajjar, J. F. (1988). "Parallel Processing for Transient Nonlinear
Structural Dynamics of Three-Dimensional Framed Structures,"

Ph.D. dissertation, Cornell University, Ithaca, New York, January
1988.

Hajjar, J. F., and J. F. Abel (1988). "Parallel Processing for Transient
Nonlinear Structural Dynamics of Three-Dimensional Framed

Structures Using Domain Decomposition," Computers and

Structures, Vol. 30, No. 6, 1237-1254.

Hajjar, J. F., and J. F. Abel (1989a). "Parallel Processing of Central
Difference Transient Analysis for Three-Dimensional Nonlinear
Framed Structures," Communications in Applied Numerical

Methods, Vol. 5, 39-46.

Hajjar, J. F., and J. F. Abel (1989b). "On the Accuracy of Some Domain-

by-domain Algorithms for Parallel Processing of Transient

Structural Dynamics," International Journal for Numerical Methods

in Engineering, Vol. 28, 1855-1874.

Han, T. Y., and J. F. Abel (1984). "Substructure Condensation Using

Modified Decomposition," International Journal for Numerical

Methods in Engineering, Vol. 20, No. 11, 1959-1964.

Hendrickson, B., and R. Leland (1992). "An Improved Spectral Graph

Partitioning Algorithm for Mapping Parallel Computations,"

Technical Report SAND92-1460, Sandia National Laboratories,

Albuquerque, New Mexico.

Hinton, E., and P. R. Benson (1976). "A Thick Finite Strip Solution for
Static, Free Vibration and Stability Problems," International Journal

for Numerical Methods in Engineering, Vol. 10, 665-678.

Hilmy, S. I. (1984). "Adaptive Nonlinear Dynamic Analysis of Three-
Dimensional Steel Framed Structures with Interactive Computer

Graphics," Ph.D. dissertation, Cornell University, Ithaca, New York.

Hilmy, S., and J. F. Abel (1985). "A Strain-Hardening Concentrated
Plasticity Model for Nonlinear Analysis of Steel Buildings,"

NUMETA 85 Numerical Methods in Engineering: Theory and

Application; Proceedings of International Conference on Numerical

Methods in Engineering, Swansea, U. K., Vol. 1,305-314.

233

Y

Hsieh, S. H., and S. Srivastav (1992). "PSAINT: An Parallel Structural
Analysis Interface," unpublished internal document, Program of
Computer Graphics, Cornell University, Ithaca, New York.

Hughes, T. R. J., and T. Belytschko (1983). "A Precis of Developments in
Computational Methods for Transient Analysis," Journal of Applied

Mechanics, Vol. 50, No. 46, 1033-1041.

Irie, T., G. Yamada, and K. Takagi (1982). "Natural Frequencies of Thick

Annular Plates," Journal of Applied Mechanics, Vol. 49, 633-638.

Irretier, H. (1985). "Computer Simulation of the Run-Up of a Turbine

Blade Subjected to Partial Admission," ASME Paper 85-DET-128.

Jennings, A. (1977). Matrix Computation for Engineers and Scientists,

John Wiley and Sons, New York.

Johnson, S. E., and E. I. Field (1973). "Three Isoparametric Solid
Elements for NASTRAN," NASA TM x-2893, NASTRAN: User's

Experiences, 423-437.

Kielb, R. E., A. W. Leissa, and J. C. MacBain (1985). "Vibrations of

Twisted Cantilever Plates - A Comparison of Theoretical Results,"

International Journal of Numerical Methods in Engineering, Vol. 21,
1365-1380.

Khader, N., and G. Abu-Farsakh (1990). "A Triangular Shell Element for

Vibration Analysis of Cambered and Twisted Fan Blades," Finite

Elements in Analysis and Design, Vol. 6, 287-301.

Khulief, Y. A., and A. Bazoune (1992). "Frequencies of Rotating Tapered

Timoshenko Beams with Different Boundary Conditions," Computers

and Structures, Vol. 42, No. 5, 781-795.

Kubiak, J. A., O. Yrigoyen, A. Carnero, and J. Aguirre (1987). "Analysis of

the Last Stage Blade Group", Bladed Disk Assemblies, ASME

Publication DE-Vol. 6., No. H00406, 101-111.

Lawrence, C., and R. E. Kielb (1984) "Nonlinear Displacement Analysis of

Advanced Propeller Structures Using NASTRAN", NASA TM-83737.

Leissa, A. W., J. C. MacBain, and R. E. Kielb (1984). "Vibrations of

Twisted Cantilever Plates - Summary of Previous and Current

Studies," Journal of Sound and Vibration, Vol. 96, No. 2, 159-173.

Leler, W. (1990). "Linda meets Unix," Computer, Vol. 23, No. 2, 43-54.

Lin, T. W. (1980). Basic Application Programs in Engineering (in

Chinese), New Knowledge Education Press, Taipei, Taiwan.

234

Liu, W. K. (1987). "Parallel Computations for Mixed-time Integrations,"
in R. W. Lewis, E. Hinton, P. Bettess, and B. A. Schrefler, Eds.,
Numerical Methods for Transient and Coupled Problems, Chapter 13,

John Wiley & Sons Ltd., 261-277.

Liu, W. K., and T. Belytschko (1982). "Mixed-Time Implicit-Explicit Finite
Elements for Transient Analysis," Computers and Structures, Vol.

15, No. 4, 445-450.

MacBain, J. C. (1975). "Vibrating Behaviour of Twisted Cantilever

Plates," Journal of Aircraft, Vol. 12, 343-349.

MacBain, J. C., R. E. Kielb, and A. W. Leissa (1985). "Vibrations of
Twisted Cantilever Plates - Experimental Investigation," Journal of

Engineering for Gas Turbines and Power, Vol. 107, 187-196.

MacNeal, R. H., and R. L. Harder (1985). "A Proposed Standard Set of
Problems to Test Finite Element Accuracy," Finite Element in

Analysis and Design, Vol. 1, 3-20.

Malone, J. G. (1988). "Automatic Mesh Decomposition and Concurrent
Finite Element Analysis for Hypercube Multiprocessor Computers,"

Computer Methods in Applied Mechanics and Engineering, Vol. 70,
27-58.

Malone, J. G. (1990). "Parallel Nonlinear Dynamic Finite Element

Analysis of Three-Dimensional Shell Structures," Computers and

Structures, Vol. 35, No. 5, 523-539.

Martha, L. F. C. R. (1989). _Topological and Geometrical Modeling

Approach to Numerical Discretization and Arbitrary Fracture
Simulation in Three-Dimensions," Ph.D. dissertation, Cornell

University, Ithaca, New York.

McGee, O. G. (1992). "Performance of Continuum and Discrete Three-
Dimensional Vibration Analyses of Twisted Cantilevered

Parallelepipeds," Computers and Structures, Vol. 42, No. 2, 211-227.

Midturi, S., M. L. Soni, W. A. Stange, and J. D. Reed (1987). "On Model

Generation and Modal Analysis of Flexible Bladed Disk Assemblies",

Bladed Disk Assemblies, ASME Publication DE-Vol. 6, No. H00406,

49-54.

McGee, 0. G. (1987). "Finite Element Analysis of Flexible Rotating

Blades", NASA TM-89906.

McGuire, W., and Gallagher, R. H. (1979). Matrix Structural Analysis,

John Wiley & Sons, New York.

235

McGuire, W., G. G. Deierlein, T. K. Sooi, and Y. Zhao (1989)._"Iliustrated
Primer for CU-PREPF, CU-STAND, and CU-QUAND," Structural
Engineering Report 89-12, School of Civil and Environmental
Engineering, Cornell University, Ithaca, New York.

Mota Soares, C. A., M. Petyt, and A. M. Salama (1976). "Finite Element
Analysis of Bladed Disks," in A. V. Srinivasan and Pratt & Whitney
Aircraft, Eds., Structural Dynamic Aspects of Bladed Disk

Assemblies, ASME Winter Annual Meeting, New York, 73-91.

Mota Soares, C. A., and M. Petyt (1978a). "Finite Element Dynamic

Analysis of Practical Discs," Journal of Sound and Vibration, Vol. 61,

No. 4, 547-560.

Mota Soares, C. A., and M. Petyt (1978b). "Finite Element Dynamic

Analysis of Practical Bladed Discs," Journal of Sound and Vibration,

Vol. 61, No. 4, 561-570.

Mullen, R., and T. Belytschko (1983). "An Analysis of an Unconditionally

Stable Explicit Method," Computers and Structures, Vol. 16, No. 6,
691-696.

Nour-Omid, B., A. Raefsky, and G. Lyzenga (1987). "Solving Finite

Element Equations on Concurrent Computers," in A. K. Noor, Ed.,
Parallel Computations and Their Impact on Mechanics, ASME, New

York, 209-227.

Omprakash, V., and V. Ramamurti (1988). "Analysis of Bladed Disks - A

Review," Shock and Vibration Digest, Vol. 20, No. 11, 14-21.

Omprakash, V., and V. Ramamurti (1989). "Dynamic Stress Analysis of

Rotating Turbo-machinery Bladed-Disk Systems," Computers and
Structures, Vol. 32, No. 2, 477-488.

Omprakash, V., and V. Ramamurti (1990a). "Coupled Free Vibration

Characteristics of Rotating Tuned Bladed Disk Systems," Journal of

Sound and Vibration, Vol. 140, No. 3, 413-435.

Omprakash, V., and V. Ramamurti (1990b). "Spectral Analysis of the
Transient Characteristics of a Bladed Disk During Run-up,"

Computers and Structures, Vol. 37, No. 6, 983-992.

Ortiz, M. (1991). "Discussion on 'A Consistency Analysis of a Class of

Concurrent Transient Implicit/Explicit Algorithms', by C. Farhat

and N. Sobh," Computer Methods in Applied Mechanics and

Engineering, Vol. 92, 397-398.

Ortiz, M., and B. Nour-Omid (1986). "Unconditionally Stable Concurrent

Procedures for Transient Finite Element Analysis," Computer

236

Methods in Applied Mechanics and Engineering, Vol. 58, No. 2, 151-

174.

Ortiz, M., B. Nour-Omid, and E. D. Sotelino (1988) "Accuracy of a Class of

Concurrent Algorithms for Transient Finite Element Analysis,"
International Journal of Numerical Methods in Engineering, Vol. 26,

379-391.

Owen, D. R. J. (1980). "Implicit Finite Element Methods for the Dynamic

Transient Analysis of Solids with Particular Reference to Non-Linear

Situations," in J. Donea, Ed., Advanced Structural Dynamics,

Applied Science, London, 123-190.

Padovan, J., and A. Kwang (1991). "Hierarchically Parallelized
Constrained Nonlinear Solvers with Automated Substructuring,"

Computers and Structures, Vol. 41, No. 1, 7-33.

Park, K. C. (1982). "An Improved Semi-Implicit Method for Structural

Dynamics Analysis," Journal of Applied Mechanics, Vol. 49, 589-593.

Park, K. C., and J. M. Housner (1982). "Semi-Implicit Transient Analysis

Procedures for Structural Dynamics Analysis," International

Journal for Numerical Methods in Engineering, Vol. 18, 609-622.

Paulino, G. H. (1988). "Preprocessing of Three-Dimensional Space
Frames, with Nodal Reordering, using Interactive Computer

Graphics," M.Sc. Dissertation, Department of Civil Engineering,

PUC, Rio de Janeiro (in portuguese).

Petricone, R., and F. Sisto (1971). "Vibration Characteristics of Low

Aspect Ratio Compressor Blades," Journal of Engineering for Power,
Vol. 93, 103-110.

Petyt, M. (1990). Introduction to Finite Element Vibration Analysis,

Cambridge University Press.

Pothen, A., H. Simon, and K.-P. Liou (1990). "Partitioning Sparse

Matrices with Eigenvectors of Graphs," SIAM Journal of Matrix

Analysis and Application, Vol. 11, No. 3, 430-452.

Potyondy, D. (1992). "A PEX Implementation for 3-D Graphics in

FRANSYS," unpublished internal document, Program of Computer

Graphics, Cornell University, Ithaca, New York.

Potyondy, D. (1991). "Object-oriented Solid Modeller (OSM): Initial

Specification," unpublished internal document, Program of Computer

Graphics, Cornell University, Ithaca, New York.

Putter, S., and H. Manor (1978). "Natural Frequencies of Radial Rotating

Beams," Journal of Sound and Vibration, Vol. 56, No. 2, 175-185.

237

Ramamurti, V., and P. Balasubramanian (1984). "Analysis of
Turbomachine Blades -- A Review," Shock and Vibration Digest, Vol.

16, No. 8, 13-28.

Rao, J. S. (1987). "Turbomachine Blade Vibration," Shock and Vibration

Digest, Vol. 19, No. 5, 3-10.

Rao, S. S., and A. S. Prasad (1975). "Vibrations of Annular Plates

Including the Effects of Rotatory Inertia and Transverse Shear
Deformation," Journal of Sound and Vibration, Vol. 42, No. 3, 305-324.

Rost, R. J., J. D. Friedberg, and P. L. Nishimoto (1989). "PEX: A Network-

transparent 3D Graphics System," IEEE Computer Graphics and

Applications, 14-26.

Saul'yev, V. K. (1964). Integration of Equations of Parabolic Type by the

Method of Nets, The MacMillan Company, New York.

Scheifler, R. W., and J. Gettys (1986). "The X Window System," ACM

Transactions on Graphics, Vol. 5, No. 2, 79-109.

Simo, J. C., and L. Vu-Quoc (1987). "The Role of Non-linear Theories in

Transient Dynamic Analysis of Flexible Structures," Journal of

Sound and Vibration, Vol. 119, No. 3, 487-508.

Simon, H. D. (1991). "Partitioning of Unstructured Problems for Parallel

Processing," Computing Systems in Engineering, Vol. 2, No. 2/3, 135-
148.

Sinha, S. K. (1987). "Determination of Natural Frequencies of a Thick

Spinning Annular Disk Using a Numerical Rayleigh-Ritz's Trial

Function," Journal of Acoustical Society of America, Vol. 81, No. 2,
357-369.

Sisto, F. and A. T. Chang (1984). "A Finite Element for Vibration Analysis
of Twisted Blades Based on Beam Theory," A/AA Journal, Vol. 22, No.

11, 1646-1651.

Sreenivasamurthy, S. and V. Ramamurti (1981). "A parametric Study of
Vibration of Rotating Pre-twisted and Tapered Low Aspect Ratio

Cantilever Plates", Journal of Sound and Vibration, Vol. 76, No. 3,

311-328.

Srivastav, S. (1991). "Three-Dimensional Modelling and Simulation of

Buildings for Seismic Analysis," Ph.D. dissertation, Cornell

University, Ithaca, New York.

Srivastav, S., and J. F. Abel (1990). "3-D Modelling of Buildings for

Nonlinear Seismic Analysis," Proceedings of Eurodyn 90, European

Conference on Structural Dynamics.

238

Trujillo, D. M. (1977). "An Unconditionally Stable Explicit Algorithm for
Structural Dynamics," International Journal for Numerical Methods

in Engineering, Vol. 11, 1579-1592.

Ugural, A. C., and S. K. Fenster (1981). Advanced Strength and Applied
Elasticity, Elsevier, New York.

Underwood, P. (1983). "Dynamic Relaxation," in T. Belytschko and T. J. R.

Hughes, Eds., Computational Methods for Transient Analysis, Vol. I,
Mechanics and Mathematical Methods, A Series of Handbooks, First

Series: Computational Methods in Mechanics, Elsevier Science

Publishers B. V., Amsterdam, 245-265.

Venkatakrishnan, V., H. D. Simon, and T. J. Barth (1991). "A MIMD

Implementation of a Parallel Euler Solver for Unstructured Grids,"

Report RNR-91-024, NAS Systems Division, Applied Research

Branch, NASA Ames Research Center, Mail Stop T045-1, Moffett

Field, CA 94035.

Wawrzynek, P. A. (1987). "FRANSYS: Initial Graphics Specification,"

unpublished internal document, Program of Computer Graphics,
Cornell University, Ithaca, New York.

Wawrzynek, P. A. (1991). "Discrete Modeling of Crack Propagation:

Theoretical Aspects and Implementation Issues in Two and Three
Dimensions," Ph.D. dissertation, Cornell University, Ithaca, New
York.

Wawrzynek, P. A., L. F. Martha, and A. R. Ingraffea (1988). "A

Computational Environment for the Simulation of Fracture
Processes in Three Dimensions," in A. J. Rosakis et al., Eds.,

Analytical, Numerical, and Experimental Aspects of Three
Dimensional Fracture Processes, Vol. 91, 321-327.

Weiler, K. (1986). "Topological Structures for Geometric Modelling, _
Ph.D. dissertation, Rensselaer Polytechnic Institute, Troy, New York,
1986.

Weiler, K. (1988). "The Radial-edge Structure: A Topological

Representation for Non-manifold Geometric Boundary

Representations," Geometric Modelling for CAD Applications, 3-36.

White, C., and J. J. Lee (1993). "Implementation of a Model Creator for

Complex 3-D Framed Structures in BASYS," unpublished internal
document, School of Civil and Environmental Engineering, Cornell

University, Ithaca, New York.

White, D. W. (1988). "Analysis of Monotonic and Cyclic Stability of Steel

Frame Subassemblages," Ph.D. dissertation, Cornell University,

Ithaca, New York.

239

White, D. W., and J. F. Abel (1989). _Testing of Shell Finite Element
Accuracy and Robustness, _ Finite Element in Analysis and Design,

Vol. 6, 129-151.

White, D. W., and J. F. Abel (1990). "Accurate and Efficient Nonlinear
Formulation of a Nine-node Shell Element with Spurious Mode

Control," Computers and Structures, Vol. 35, No. 6, 621-641.

Wilkinson, J. H., and C. Reinsch (1971). Handbook for Automatic

Computation: Vol. H Linear Algebra, 1st Ed., Springer-Verlag, Berlin.

Yokoyama, T. (1988). "Free Vibration Characteristics of Rotating
Timoshenko Beams," International Journal of Mechanical Sciences,

Vol. 30, No. 10, 743-755.

Zhang, W., and E. M. Lui (1991). "A Parallel Frontal Solver on the AUiant

FX/80," Computers and Structures, Vol. 38, No. 2, 203-215.

Zienkiewicz, O. C., and R. L. Taylor (1989). The Finite Element Method, 2

vols., 4th Ed., McGraw-Hill, New York.

