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ABSTRACT

The principal objective of this research is to develop, test, and
implement coarse-grained, parallel-processing strategies for nonlinear
dynamic simulations of practical structural problems. There are
contributions to four main areas: (a) finite element modelling and analysis
of rotational dynamics, (b) numerical algorithms for parallel nonlinear
solutions, (c) automatic partitioning techniques to effect load-balancing

among processors, and (d) an integrated parallel analysis system.

Two finite element approaches are implemented to account for
rotational nonlinearities involved in dynamic analysis of rotating bladed-
disk assemblies: the Consistent Mass (CM) and Lumped Mass (LM)
approaches. It has been found that the analysis results obtained using the
CM and LM approaches are in close agreement. In addition, for transient
analysis using explicit time integration, the LM approach has been found to

be significantly more efficient than the CM approach.

For explicit and implicit dynamic analyses, the present work
implements a parallel central difference method and a parallel Newmark
method, respectively. A parallel static solver is also implemented for
steady-state solutions of rotational dynamics. For the parallel central
difference method applied to specific test problems run on 6 processors,
parallel efficiencies of over 90% have been achieved. For the parallel
Newmark method and the parallel static solver, parallel efficiencies of more

than 80% have been obtained.



Two automatic spectral partitioning algorithms are developed to
effect load-balancing among processors. They are compared with several
automatic partitioning algorithms by previous researchers. It has been
found that the proposed RST partitioning algorithm with the
communication graph approach gives the best results in most examples
studied. In addition, interactive graphics tools are developed to allow for
manual partitioning and for examining and modifying results of automatic

partitioning.

A parallel analysis system is integrated to help evaluate the parallel
strategies investigated, verify the finite element approaches employed, and
demonstrate how advanced computer technologies can assist engineers in
parallel dynamics simulations. This system takes advantage of the
advanced computing environments, data structures, and interactive
computer graphics to provide a useful research software testbed for study of

nonlinear structural dynamics.
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Chapter 1

Introduction

In recent years the rapid development of novel computer hardware
environments with parallel processing capabilities has created new
opportunities for revolutionizing engineering computing. In computational
structural dynamics, the utilization of these powerful systems may lead to
increasingly complete and sophisticated simulations of advanced structural
systems. Through such simulations, better engineering understanding,
analysis, and design can then be achieved. The realization of advancing
engineering simulations in the novel computing environments, however,
often requires the difficult tasks of designing new computer codes or
adapting old ones. In addition, development of new solution strategies is-
often required to take full advantage of these new computers. This thesis
focuses on one aspect of advances in computational structural dynamics --
the development, testing, and evaluation of coarse-grained, parallel-
processing strategies for nonlinear dynamics simulations of large-scale
practical structural problems. The work also presents an integration of the
latest advanced computing environments, data structures, and interactive
computer graphics to facilitate more efficient and powerful simulations of

nonlinear structural dynamics.

Computing environments with parallel processing capabilities include
shared-memory supercomputers (e.g., Cray Y-MP and IBM 3090), shared-
memory intermediate-sized or personal supercomputers (e.g., Convex and

Alliant), distributed-memory parallel or multiprocessor computers (e.g.,



Intel iPSC and Connection Machine), and a network of high performance
workstations (e.g., Apollo/HP 9000 Series 700, IBM RS/6000, and
DECsystem 5000). The supercomputers are very powerful machines;
however, they are expensive and are not easily accessible in the same sense
as traditional batch-oriented mainframes. On the other hand, engineering
workstations which are not as powerful as supercomputers are more
affordable and cost-effective. With the growing availability of workstations
in the workplace, it is increasingly feasible for engineers to utilize networks
of workstations to achieve improved turnaround through parallel
computations for computationally intensive simulations such as nonlinear
dynamic analysis (Hajjar and Abel 1988, 1989a). This coarse-grained,
distributed-memory networked workstation environment is the principal

parallel processing environment considered in this thesis.

1.1 Background

The work reported in this thesis is a continuation of the research
conducted by Dr. Jerome F. Hajjar (1987, 1988) at Cornell University.
However, due to the rapid advance of computer technologies, there have
been several new developments in computational structural dynamics since
the time Hajjar finished his work in 1988. The exponential growth of
computer speed in the last few years has allowed engineers to conduct
increasingly complete dynamic analyses on more complicated engineering
problems. Recent progress in the area of high speed communication
networks (for example, FDDI as opposed to Ethernet) together with growing
body of software tools to support distributing computing, such as PICL
(Geist et al. 1991), Linda (Leler 1990), and ISIS (Birman et al. 1991), have

made network-based distributing systems a viable environment for



engineering computations. Advanced modelling and analysis tools based on
new software architecture, data structures, and computer graphics have
also been developed to aid engineers in all phases of dynamic simulations,
i.e., the data preparation, analysis monitoring, and result visualization.
The present work takes advantage of these new developments and further
addresses the parallel-processing strategies for nonlinear dynamics

simulations.

The major contribution of Hajjar's research to the present work is the
investigation and development of numerical time integration algorithms for
parallel processing. After re-evaluating these algorithms, this research
investigates and implements two parallel algorithms developed by Hajjar
for solutions of structural dynamics: the central difference algorithm (Hajjar
and Abel 1989a) and the domain decomposition algorithm (Hajjar and Abel
1988).

Using a prototypical environment consisting of one to four
VAXstation II's under the VAXELN operating system, Hajjar has shown the
feasibility of utilizing networked engineering workstations as a parallel
computer to achieve improved turnaround for computationally intensive
simulations of structural dynamics. However, the performance of the
prototypical configuration was limited by the low computational speed of the
VAXstation II (Iess than 1 Mips) and the lack of generality and portability of
the VAXELN operating system. With the advance of computer technology
of individual workstations, the present work implements and evaluates
parallel algorithms in a more generally applicable and powerful computing

environment.



The computer network interface used in this research is Ethernet,
which is the same one used by Hajjar. However, faster networks such as
FDDI (Fibér Distributed Data Interface) have recently become available.
The approximate communication speed of the FDDI is 100 Mbits per second,
which is one order of magnitude faster than Ethernet. Cornell's Program of
Computer Graphics (where the writer is carrying out this research) is also
in the process of installing the FDDI for its parallel processing environment

at the time of this writing (March 1993).

To take advantage of parallel processing in the finite element
analysis of structural dynamics, the finite element domain is usually
partitioned (or decomposed) into a number of subdomains which are
distributed among the processors and solved concurrently. The key problem
of this approach is how to partition the domain to achieve well-balanced
workload distribution among processors and to minimize the amount of
interprocess communication so that significant speed-up can be obtained in
the parallel analysis. Hajjar has addressed this problem by developing a set
of tools with interactive computer graphics to help manual partitioning of
the structural domain. However, even with the aid of interactive computer
graphics, manual partitioning may be difficult for large finite element
meshes with arbitrary geometries. The present work investigates and
improves techniques of automatic domain partitioning to effect load-
balancing among processors. Graphics tools are also provided for manual
partitioning and for examining and modifying results of automatic

partitioning.

The application problems of structural dynamics studied by Hajjar

focus on the analysis of three-dimensional steel frames subject to



earthquake loading. Beam-column elements, which are 1-D elements, were
used for modelling frames. Both geometric and material nonlinearities were
considered. In addition to beam-column elements, the present work uses a
2-D shell element to model floor flexibility in the dynamic analysis of steel
frames. However, only geometric nonlinearity is considered in the shell
elements. A new emphasis in the present work has been on application
problems dealing with finite element analysis of rotating turbine bladed-
disk assemblies experiencing tip rubs. Solid elements (3-D elements) are
used to represent the disks and blades. Both rotational and geometric
nonlinearities are included in the finite element formulation to derive the

governing equations of motion.
1.2 Objectives

The principal objective of this research is to develop, test, and
implement coarse-grained, parallel-processing strategies for nonlinear
dynamics simulations of practical structural problems. The parallel-
processing strategies addressed include (a) numerical algorithms for
parallel nonlinear solutions and (b) techniques to effect load-balancing

among processors.

The second objective of the research is the application of finite
element techniques for rotational dynamics. Emphasis is on the structural

dynamics of rotating turbine bladed-disk assemblies.

The use of advanced computing environments, data structures, and
interactive computer graphics for a more efficient and powerful simulation

of nonlinear structural dynamics is the third objective of this research.



1.3 Scope

The scope of the research reported in this thesis may be summarized
by the three main tasks involved, each paralleling one of the principal
objectives. The first and primary task addresses parallel-processing
strategies for finite element analysis of structural dynamics. The second
one focuses on finite element approaches for modelling and analyzing
problems of rotational as well as non-rotational dynamics although
emphasis is on the rotational dynamics. The third includes the
development of an integrated parallel analysis system. A more detailed

discussion of these tasks is provided in the following sub-sections.

1.3.1 Parallel Processing Strategies

The parallel-processing strategies addressed include numerical
algorithms for parallel nonlinear solutions of structural dynamics and
techniques to effect load-balancing among processors. Although these
strategies are suitable for a variety of machine environments sharing a few
common features, the major configuration investigated is a coarse-grained,
distributed-memory system in a message-passing environment, in
particular, networked engineering workstations, each with large memory

and one or more powerful processor.

For transient dynamic analyses, the numerical algorithms
investigated include both parallel explicit and implicit time integration
algorithms. As mentioned earlier, the present work investigates and
implements the parallel central difference and parallel domain
decomposition algorithms proposed by Hajjar and Abel (1989a, 1988) for

explicit and implicit dynamic analyses. For steady-state stress analyses of



rotating systems, a parallel static solution method is implemented using the

domain decomposition approach.

In this work, these parallel algorithms are implemented in a program
called ABREAST (Srivastav 1991; Aubert 1992), which is a batch finite
element analysis program for nonlinear structural dynamics. The
verification and evaluation of these algorithms are studied using a variety

of example problems.

To effect load-balancing among processors, the present research
focuses on the automatic domain partitioning techniques for parallel finite
element analysis of structural dynamics. The automatic partitioning
algorithms proposed by Farhat (1988), Malone (1988), Al-Nasra and Nguyen
(1991), and Simon (1991) are studied. Modified recursive spectral
partitioning algorithms are then proposed. In addition, interactive graphics
tools are developed to allow for manual partitioning and for examining and

modifying results of automatic partitioning.

These partitioning algorithms as well as graphics tools are
implemented in a program called PSAINT (Hsieh and Srivastav 1992), an
interactive program that performs domain partitioning on finite element
meshes. Comparative studies are conducted to evaluate and compare both

efficiency and effectiveness of these partitioning algorithms.

1.3.2 Finite Element Modelling and Analysis

The finite element method is employed to study structural dynamics
problems for the development, testing, and evaluation of parallel-processing

strategies addressed in this work. Two classes of structural dynamics



problems are investigated. The first one includes framed structures with
flexible floors subjected to seismic loading, and the second includes rotating

turbine bladed-disk assemblies experiencing tip rubs.

For modelling and analysis of framed structures with flexible floors,
the beam-column and shell elements already existing in the finite element
library of ABREAST are employed. Geometric nonlinear analysis is

conducted.

For modelling and analysis of rotating bladed-disk assemblies, a solid
element is implemented in ABREAST. Both rotational and geometric
nonlinearities are considered in the finite element formulation of equations
of motion. Two finite element approaches for handling rotational
nonlinearities are also implemented in ABREAST and compared through

numerical studies.

Both modal vibration and transient dynamic analyses of rotating
bladed-disk systems are investigated and discussed. In the modal vibration
analysis, a steady-state stress analysis is followed by an eigensolution. A
static solution capability, which was previously not provided by ABREAST,
is implemented in ABREAST for the steady-state analysis. In addition,
verification studies are conducted to evaluate the finite element rotational

dynamics and formulations implemented in ABREAST.

1.3.3 An Integrated Parallel Analysis System

An integrated parallel analysis system is developed to help (a)
evaluate the parallel strategies investigated, (b) verify the finite element

approaches employed, and (c) demonstrate how advanced computer



technologies can assist engineers in parallel dynamic simulations. The
system integrates four computer programs: BASYS (Srivastav and Abel
1990; Srivastav 1991) and FRANSYS (Wawrzynek et al. 1988; Martha 1989;
Wawrzynek 1991) for three-dimensional modelling and visualization;
PSAINT for finite element domain partitioning; and ABREAST for

nonlinear dynamic solutions.

BASYS is primarily designed for modelling and visualization of
buildings and other framed structures. FRANSYS was originally developed
to model general, 3-D fracture processes in arbitrarily shaped solids. It has
been extended to provide general tools for modelling and simulation of
complex 3-D solid models. Both BASYS and FRANSYS provide the analyst
an efficient way of modifying and manipulating the structural data through
the use of a radial edge data representation (Weiler 1986, 1988) and a
hierarchical modelling scheme. They also provide a convenient means of
displaying the structure model and visualizing the response of the structure
using interactive computer graphics. In the present work, graphics tools for

visualization of dynamics simulations are implemented in FRANSYS.

PSAINT serves as an interface between BASYS/FRANSYS and
ABREAST. Its primary job is to partition finite element domains for
parallel analysis. Both automatic and manual partitioning tools are

provided. It also collects the results of parallel analysis for simulation

playback in BASYS/FRANSYS.

ABREAST was originally developed for analyzing framed structures
consisting of either truss or beam-column elements and has been extended

to include a nine-node Lagrangian shell element for modelling floors, walls,
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or panels. It is capable of both geometric and material nonlinear transient
dynamic analyses. In the present research, a twenty-node brick solid
element is implemented in ABREAST for modelling rotating bladed-disk
systems. Parallel explicit and implicit time integration methods as well as
parallel steady-state (static) solution methods are also implemented using a
multiple-instruction, multiple-data (MIMD) algorithm.

1.4 Organization
The organization of this thesis is briefly described in this section.

Chapter 2 addresses the finite element approach used for modelling
and analysis of framed structures and rotating bladed-disk assemblies. The
selection of finite elements for modelling purposes is discussed. Equations
of motion for both rotational and non-rotational dynamics are formulated.
Two approaches are presented to account for rotational nonlinearities in
rotating bladed-disk systems. Numerical comparisons between these two
approaches are also conducted. Finite element analyses of both framed
structures and rotating bladed-disk assemblies are discussed. In addition,
verification studies are reported on both finite elements and analysis

algorithms implemented in ABREAST for this work.

Chapters 3 and 4 investigate parallel processing strategies which
include parallel nonlinear solution algorithms for structural dynamics and
domain partitioning techniques for load-balancing among processors. In
Chapter 3, the parallel computing environment used in the present work is
described first. Then, parallel solution algorithms for transient dynamics
analysis as well as steady-state analysis are evaluated. The algorithms

selected and implemented in this research are discussed and their
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effectiveness is studied using numerical examples. In Chapter 4, load-
balancing techniques based on domain partitioning are reviewed and
investigated. Algorithms both proposed by previous researchers and
developed in this work are studied and compared. The effectiveness of these

algorithms for parallel finite element dynamic analysis is also discussed.

A parallel analysis system integrated in this research is presented in
Chapter 5. An overview of the system is first described. The
implementation and application of the system for each phase of parallel
simulation are discussed. In addition, application examples that examine
and demonstrate the efficiency and flexibility of the parallel analysis system
and the parallel processing strategies developed in this research are

included.

Chapter 6 summarizes and concludes the work reported in this

thesis. Suggestions for future work are also provided.



Chapter 2

Finite Element Modelling and Analysis

Two classes of structural dynamics problems are studied for the
development, testing, and evaluation of parallel-processing strategies
addressed in this thesis. The first one includes framed structures with
flexible floors subjected to seismic loading, while the second one includes
rotating turbine bladed-disk assemblies experiencing tip rubs. This chapter
discusses the finite element approach employed in the present work to
model complex structural geometries and material properties, to account for
various nonlinearities, and to formulate the governing equations of motion

for these problems.

In this work, the finite element analysis capabilities of ABREAST,
which has been briefly discussed in Section 1.3, are extended to model and
analyze rotating turbine bladed-disk assemblies as well as other rotating or
nonrotating solid structures. The implementation and verification of these
new capabilities are discussed in this section. Another enhancement of the
analysis capability of ABREAST is the implementation of parallel analysis
algorithms, which is discussed in the next chapter.

2.1 Modelling of Framed Structures with Flexible Floors

The present work uses the pre-existing elements in the finite element
library of ABREAST to model framed structures with flexible floors. To
model beams and columns of steel frames, the beam-column element in

ABREAST is used. To model flexible floors in steel frames, the nine-noded

12
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Lagrangian shell finite element with 2x2 Gauss integration in ABREAST is

employed.

The beam-column element is a line element with twelve degrees-of-
freedom, consisting of three translations and three rotations at each end of
the element. Bernoulli-Euler beam theory (Ugural and Fenster 1981) is
employed in the formulation of the element stiffness with common
assumptions, such as homogeneous and isotropic material, plane sections
remain plane, doubly symmetric prismatic sections with no cross section
distortion, and small strain theory. In linear elastic analyses, the element
stiffness is a well known one (see, for example, McGuire and Gallagher
1979). For second order elastic analyses, geometric nonlinearities are
handled through the use of an updated Lagrangian formulation and a
geometric stiffness matrix (Argyris et al. 1979). For inelastic analyses,
material nonlinearities are included through the use of a concentrated
plasticity model based on the bounding surface approach and the plastic

hardening reduction matrix derived by Hilmy (1984; Hilmy and Abel 1985).

The nine-noded Lagrangian shell finite element was originally
developed for full nonlinear static analysis by White and Abel (1990) and
further developed for geometric nonlinear dynamic analysis by Srivastav
(1991). A projection operator is used to stabilize spurious zero energy modes
associated with reduced integration. In elastic analyses, a two-point Gauss
integration is performed through the thickness of the element for stiffness
computation. For second order elastic analyses, geometric nonlinearities
are handled through the use of an updated Lagrangian formulation and the
geometric stiffness matrix derived by White (1988). For dynamic analyses,
the diagonal element mass matrix formulated by Srivastav (1991) is used.
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The verification of the beam-column element for dynamic analysis
has been conducted by Hilmy (1984). The use of the nine-noded shell
element for dynamic analysis has been verified by Srivastav (1991).
Therefore, no further verification is conducted in this work for these two

elements.

2.2 Modelling of Bladed-disk Assemblies

To achieve high performance and efficiency, advanced turbine blades
have been designed to have complex geometry: thin, low aspect ratio,
cambered, twisted, and swept. Some of these geometric parameters have
been shown to have significant influence on the dynamic characteristics of
blades (for example, Petricone and Sisto 1971; Sreenivasamurthy and
Ramamurti 1981). Therefore, to obtain satisfactory results in the dynamic
analysis of turbine blades, it is important to model complex blade geometry

as accurately as possible.

Because of the ability to model complex structural geometry and
properties along with the advancement in computer technology, the finite
element method has been recognized as a promising and powerful technique
for the analysis of turbine bladed-disk assemblies as well as other
configurations. Therefore, it will be employed in this research to model the
turbine bladed-disk assemblies.

2.2.1 Review of Previous Research

Considerable research on finite element modelling of turbine bladed-
disk assemblies has been conducted. A brief review on some of these

research is given below. The turbine bladed-disk assemblies considered in
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this research consist of two major components: blades and disk. Different
modelling strategies for these components in some of the previous research

are reviewed.

2.2.1.1 Modelling of Blades

Turbine blades have been modelled using beam, plate, shell, and solid
finite elements. In this section, modelling of blades using these finite
elements are briefly reviewed. For detailed description and formulation of
these elements, standard textbooks (for example, Zienkiewicz and Taylor

1989; Bathe 1982; Cook et al. 1989) should be consulted.
Beam Finite Elements

Developments of beam finite elements for pretwisted blades have
been reviewed by Sisto and Chang (1984). They also developed a pretwisted
beam element for use in vibration analysis. Recently, Abbas et al. (1987)
developed a thick, tapered, pretwisted beam element to study blade

vibration with root flexibility effect.

For blade modelling, the use of beam elements is simpler and
requires fewer degrees of freedom than elements of other types. However,
beam elements are not suitable for modelling blades with low aspect ratio

and a wide range of configurations.
Plate Finite Elements

Some applications of plate elements to rotating blade problems have
been reperted in the literature. For example, Dokainish and Rawtani (1971)
used a triangular plate element with both in-plane and bending stiffness to



16

determine the natural frequencies and the mode shapes of a rotating
cantilever plate. This plate element is a superposition of a plane-stress
element with linear displacement order and a plate-bending element with
an eight term, cubic polynomial displacement order. In addition, MacBain
(1975) used a quadrilateral plate bending element for vibration analysis of

twisted cantilever plates.

The aforementioned plate elements are simple to formulate, easy to
use, and require only a simple geometric description. However, several
shortcomings are present in the application of the plate element to model
blades with shell-like complex geometry (Gallagher 1976):

a) The element is unable to model the curved shell surfaces. This
may introduce spurious "discontinuity” bending moments at the
element juncture lines, and thus many elements may be needed to
adequately model shell surfaces.

b) The coupling of membrane and bending within the elements is not
included. This is departure from the true behavior.

¢) When all elements adjacent to a node are coplanar, special

treatment is needed to avoid a singular global stiffness matrix.
Shell Finite Elements

Some previous studies of rotating structures using shell finite
elements have been reviewed briefly by Sreenivasamurthy and Ramamurti
(1981). A three-noded triangular shell element has also been used by them
and later by Omprakash and Ramamurti (1989, 1990a, 1990b) for blade

modelling. Recently, a ten-noded triangular shell element has been used to
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model cambered and twisted fan blades in vibration analysis (Khader and

Abu-Farsakh 1990).

Employing standard tests proposed by MacNeal and Harder (1985),
McGee (1987) has compared the overall performance of all shell elements in
NASTRAN. Among other shell elements in NASTRAN, the three node
triangular (TRIA3) and the four node quadrilateral (QUAD4) shell elements

have then been recommended for practical blade applications.
Solid Finite Elements

Bossak and Zienkiewicz (1973) have proposed isoparametric solid
elements with reduced integration for modelling turbine and compressor
blades. Several tests have also been performed to demonstrate the
versatility of these elements to model both "thick” and "thin" blades in the
analysis of rotating machinery. The only limitation pointed out on the
aspect ratio of these elements is that the ill-conditioning is liable to occur
with a 48-bit word for length/thickness ratio larger than 100. Recently,
Kubiak et al. (1987) have used the eight node solid element for the stress

analysis of the blades.

Employing standard tests proposed by MacNeal and Harder (1985),
McGee (1987) has compared the overall performance of all solid elements in
NASTRAN. Among other solid elements in NASTRAN, the twenty node
isoparametric brick element with reduced integration has been highly

recommended for analysis of thin and moderately thick blades.
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2.2.1.2 Modelling of Disks

The assumption of rigid disks is commonly used in the analysis of
turbine bladed-disk systems. In modern turbine engines designed for
aerospace vehicles, however, blades are usually attached to a relatively
flexible disk to meet stringent weight requirements. Considerable coupling
between blades and the disk may arise and the validity of rigid disk
assumption is questionable. Mota Soares et al. (1976) has pointed out the
considerable effect of disk flexibility on the dynamic characteristics of
turbine blades. Recent research conducted by Leissa et al. (1984) and Ernst
and Lawrence (1987) has also shown that the flexibility of the blade
attachment to the disk has significant effect on the dynamic characteristics
of the bladed disk.

Four types of finite elements, annular, sector, shell, and solid
elements, have been developed to take into account the flexibility of turbine
disks. In this section, modelling of turbine disks using these finite elements

is briefly reviewed.
Annular Finite Elements

An extensive literature survey of the development of annular finite
elements for disk modelling has been presented by Mota Soares and Petyt
(1978a). Annular elements are semi-analytical elements. In their
formulation, trigonometric functions expressed by Fourier series are used to
represent the displacements in the angular direction, while polynomial
functions are used to approximate displacements in the radial direction. By

employing the thick plate theory, one may consider the effects of shear
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deformation and rotary inertia. The element thickness may be constant,
linear, or parabolic in the radial direction, but only constant in the angular

direction.

The use of the annular element has the advantage of reducing
considerably the number of degrees of freedom in the analysis and leads to
computational efficiency. However, its application to bladed disk analysis is
limited due to the difficulties involved in coupling annular elements with

turbine blades modelled by other finite elements.
Sector Finite Elements

Previous research on development of sector finite elements for disk
modelling has been reviewed by Mota Soares and Petyt (1978a). Unlike
annular elements, the displacements of sector elements are approximated
by two-dimensional functions. Although a larger number of degrees of
freedom is used in disk modelled by sector elements than in a corresponding
disk modelled by annular elements, the sector element models offer more
flexibility in coupling to blades modelled by other finite elements in bladed

disk analysis.
Shell Finite Elements

Omprakash and Ramamurti (1989, 1990a, 1990b) have used a three
node triangular shell element to model disk for a variety of bladed disk
analyses. This shell element has six degrees of freedom per node. The disks
modelled by Omprakash and Ramamurti are thin disks in which the ratio of
disk thickness to disk radius ranges from 0.02 to 0.05. Therefore, further
research may be needed to justify the use of this element for thick disks. In
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addition, special treatments are usually required for coupling this element
with turbine blades modelled by not only other finite elements but also the

same element if the angle of attack of the blade is not zero.
Solid Finite Elements

Hinton and Benson (1976) have developed an isoparametric parabolic
solid element to study the vibrations of disks. Recently, Midturi et al.
(1987) have used the standard eight node isoparametric solid brick elements
(HEXS8 in NASTRAN) to model disks in analysis of flexible bladed disk
assemblies. Solid elements are easy to use and flexible enough to model
disks of various configurations. They can be used to model the whole
turbine bladed-disk assemblies and require no special treatments at the
blade-disk junction (and at the disk-shaft junction if the shaft is also
modelled).

2.2.1.3 Modelling of Bladed Disk

Various modelling approaches have been proposed to account for the
coupling between blades and disk. Mota Soares and Petyt (1978b) have
used the sector element and the eight node superparametric thick shell
element to model disk and blades, respectively. Midturi et al. (1987) have
modelled the blades using the plate element and the disk using the eight
node solid element. In the above two approaches, the compatibility between
blades and disk is achieved by means of multi-node constraints. Recently, A
three node triangular shell element has been employed by Omprakash and
Ramamurti (1989, 1990a, 1990b) for modelling both blades and disk. The
blade and disk attachment is established by a set of constraint equations

obtained by the Love-Kirchhoff hypothesis.
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2.2.2 Present Approach

As discussed in previous section, the beam and plate elements are not
capable of modelling a wide range of blade configurations. The annular
elements are difficult to couple with other finite elements for modelling
practical bladed disks. In addition, both annular and sector elements are
special-purpose elements. The limited applications of these elements in
modelling only disk-like structures do not serve well the purpose of
development of the general-purpose finite element system targeted in this

research.

Therefore, shell and solid elements are the two candidates for
modelling bladed disks in this research. For shell elements, the robust and
versatile nine-noded Lagrangian element already existing in the finite
element library of ABREAST has been the leading candidate. This element
was originally developed by White and Abel (1990) for nonlinear static
analysis of structural steel sub-assemblages. The accuracy and robustness
of this element has been demonstrated by White and Abel (1989). Recently,
this element has been further developed and used in nonlinear dynamic
analysis to study the effects of floor flexibility on seismic response of
buildings (Srivastav 1991). For solid elements, the twenty node
isoparametric brick element with reduced integration recommended by

McGee (1987) has been considered.

With the consideration of shell and solid elements as possible choices
for modelling purposes, three possible modelling approaches are considered
in this research. They are (1) the use of shell elements for blade modelling

and solid elements for disk modelling, (2) the use of shell elements for both
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blade and disk modelling, and (3) the use of solid elements for both blade
and disk modelling.

The first approach requires the use of two different types of elements
and special treatment in the region of blade and disk attachment. The
second and third ones both provide a unified modelling approach while the
use of constraint equations to establish the compatibility between blades
and disk is required in the second one. In addition to the simplicity of the
third approach, the solid elements are less complicated than shell elements
and easy to use. They have been shown to be capable of reproducing plate
and shell behavior accurately and economically in analysis of several blade
structures (Bossak and Zienkiewicz 1973). A thorough evaluation of
available published results for the static and dynamic benchmark tests
(especially the free vibration tests) of shells and solids also led to the choice
of solid elements. Moreover, the wide range of applications of the solid
element in finite element analysis serves very well the purpose of
development of the general-purpose structural dynamics simulator targeted

in this research.

As a result of the above consideration, the twenty node isoparametric
brick element with reduced integration is selected to model all components
of turbine bladed-disks studied in the present work. The element is then
implemented in the finite element library of ABREAST.

2.2.3 Verification Studies

Three example problems are used to verify the implementation of the
twenty node isoparametric brick element in ABREAST for modelling

turbine bladed-disks. They are free vibration analyses of a cantilever beam,
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an annular plate, and twisted cantilever parallelepipeds. The numerical
results from ABREAST are compared with those reported by previous
researchers. All analyses performed in the present research use a) twenty-
node brick elements with reduced integration, b) a lumped mass matrix
formulated using the HRZ lumping scheme with full integration (Cook et al.
1989), and c) a subspace iteration method (Lin 1980) for frequency

computations.
Free Vibration of a Cantilever Beam

The natural frequencies of a cantilever beam were calculated by Petyt
(1990) using twenty-node solid finite elements. Figure 2.1 shows the
dimensions and properties of the beam. Thirty-six elements were used in a
2 x 3 x 6 mesh. (Note that 1 x m x n denotes the number of elements in the
X, y, and z directions, respectively.) A consistent mass matrix was employed
in the vibration analysis. The computed natural frequencies of the beam
were compared with results based on slender beam theory (Johnson and

Field 1973).

AY

,x 10.61 m

z 0.30 m
>~
< 3.66 m P
E = 2.068 x 10" N/m?
v=0.3
p=8058 Kg/m3

Figure 2.1 A cantilever beam used for vibration analysis
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In the present research, three vibration analyses with different
meshes are performed. As shown in Table 2.1, the results obtained by the
present approach are in good agreement with those reported by Johnson
and Field, and Petyt. The slight differences between the present results

and those of Petyt are mainly due to the different mass matrices used.

Table 2.1 Comparison of natural frequencies (Hz) of a cantilever beam
obtained by the present approach with those reported by Johnson and Field
(1973), and Petyt (1990)

mode mode Johnson | Petyt present analyses
no. description & Field 2x3x6 | 2x3x8 | 2x3x12
first bending
1 in 18.6 18.6 18.3 18.3 18.4
_XC direction
first bending
2 in 37.3 36.5 36.4 36.5 36.6
y direction
second bending
3 in 116.8 114.3 109.1 110.2 110.9
x direction

Free Vibration of an Annular Plate

Figure 2.2 shows an annular plate which is clamped at the inner edge
while free at the outer edge. Petyt (1990) computed its natural frequencies
using a two-dimensional finite element analysis with four Q8 elements. The
results were compared with those reported by Rao and Prasad (1975) using
plate theory. Irie et al. (1982) pointed out that Rao and Prasad's results
were "incorrect, because there are probably some mistakes in analytical and
computational process”. They then presented their results based on the

Mindlin plate theory.
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The present research uses two different meshes, as shown in Fig. 2.3,
in the vibration analysis. (Note that 1 x m x n denotes the number of
elements in the radial, circular, and thickness directions, respectively.) The
present results and those reported by Rao and Prasad, Petyt, and Irie et al.
are compared in Table 2.2. It can be seen that the results agree closely.

However, the present results are closer to the results of Irie et al. than to

those of Rao and Prasad.

inner radius = 0.3 m
outer radius = 1.0 m
thickness = 0.2 m
clamped at the inner edge
free at the outer edge

E =196x 10° N/i?
v=03
p = 7800 Kg/nf

Figure 2.2 A free-clamped annular plate used for vibration analysis

(a) 4x 12 x 1 mesh (b) 4 x 24 x 1 mesh

Figure 2.3 Finite element meshes used in vibration analysis of an annular

plate



26

Table 2.2 Comparison of natural frequencies (Hz) of a free-clamped annular

plate obtained by the present approach with those reported by Rao and

Prasad (1975), Petyt (1990), and Irie et al. (1982)

nodal nodal Rao & Petyt Irie present analyses
circles | diameters | Prasad | (2D FEM)| et al. 4x12x1 4x24x1
0 0 312 305 296 302 299
0 1 276 290 280 286 283
0 2 323 341 333 332 329

Free Vibration of Twisted Cantilever Parallelepipeds

The natural frequencies of twisted cantilever parallelepipeds, such as

the one shown in Fig. 2.4, have been a great interest of many researchers.

Recently, after giving an extensive review of previous research, McGee

e
b \/ b
ab=1.0
o =30° .
E =196 x 10" N/m?
v =0.3
p = 7800 Kg/m®

Figure 2.4 Twisted cantilevered parallelepipeds used in vibration analysis
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(1992) used the 3-D Ritz method to determine the natural frequencies of a
number of twisted cantilever parallelepipeds. The Ritz results were then
compared with experimental results and those obtained by various 3-D

finite element analyses.

In the present study, the twisted cantilever parallelepipeds shown in
Fig. 2.4 are analyzed using 3-D twenty-node solid elements with 6 x 6 x 1
and 10 x 10 x 1 meshes. (Note that 1 x m x n denotes the number of
elements in the spanwise, chordwise, and thickness directions, respectively.)
In Table 2.3, the present results are compared with four sets of results,
which are listed as cases A-D. Results obtained in the present study are
listed as cases E and F. The thickness-independent frequency parameters,
wb(p/E)/2, are compared. (Note that  is the circular frequency of vibration.)
for thick and thin cantilevered parallelepipeds (b/h = 5 and b/h = 20,
respectively.) Case A lists experimental results reported by MacBain et al.
(1985). In case B, 3-D Ritz method were employed using 6 x 4 x 4
polynomials in the x, y, and z directions, respectively McGee (1992).
Standard eight- and sixteen-node isoparametric solid elements were
employed in cases C and D, respectively (Kielb et al. 1985; Leissa et al.
1984). In case C, a 10 x 10 x 1 mesh and a lumped mass matrix were used.
while a 14-point integration rule on a 24 x 12 x 1 mesh and a consistent

mass matrix were used in case D.

For most of the modes calculated, the present results agree with the
3-D Ritz results closer than the finite element results of cases C and D
although they all agree closely. The present results are also in good
agreement with the experimental results (case A) for the thin (b/h = 20)

twisted parallelepiped model. However, for thicker model, the present
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results as well as results of cases B-D do not agree closely with the
experimental results. As pointed out by McGee (1992), this is mainly due to

imperfect clamping of the specimen during testing.

Table 2.3 Comparison of thickness-independent frequency parameters,
wb(p/E)¥2 of cantilevered parallelepipeds obtained by the present approach
with those reported by previous researchers (a/b=1, ¢ = 30%

0.695

b/h = 20 0.888

0.968

0.847

m g | |w |» (& =@ |0 |a|=@ (>

£ |
o
o
q
S

0.212] 0.271 | 0.398 | 0.505 | 0.688 | 0.797 | 0.864

A = experimental results (MacBain et al. 1985)

B = 3-D Ritz method (McGee 1992)

C = 3-D finite elements - 8-node solid (Kielb et al. 1985; Leissa et al. 1984)
D = 3-D finite elements - 16-node solid (Kielb et al. 1985; Leissa et al. 1984)
E = present 20-node solid elements (6 x 6 x 1 mesh)

F = present 20-node solid elements (10 x 10 x 1 mesh)
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2.3 Formulation of Equations of Motion

The finite element formulation of equations of motion for dynamic
analysis of both nonrotating and rotating systems is presented and
discussed in this section. Since the dynamics of nonrotating objects is just a
special case of that of rotating objects, the formulation presented here
targets the dynamic analysis of rotating systems, in particular, rotating

bladed-disks experiencing tip rubs.

For the clarity of derivation and the convenience of discussion, the
equations of motion are first derived for an elastic analysis which accounts
for only nonlinearity associated with kinetic energy of the rotating system.
Then, by using the updated Lagrangian approach, the analysis is extended
to take into account large displacements (but small strains) of flexible
turbine blades, which is the geometric nonlinearity associated with

potential energy of the system.

2.3.1 Coordinate Systems

Figure 2.5 shows two Cartesian coordinate systems used in the
formulation, an inertial coordinate system (X-Y-Z) which is absolutely fixed
in space and a undeformed body-fixed coordinate system (x-y-z) which is
fixed to and rotating with the undeformed structure. The origin of x-y-z
system is denoted as O'. For the rotating bladed-disk system studied in this
work, it represents the center of the disk. Point i is the undeformed position
of a typical material point in a finite element of the model, while point i' is
the deformed position of the material point. Vectors Pj and R are position
vectors of points i and O, respectively, observed from the X-Y-Z system, and

vectors r; and W; are position and displacement vectors, respectively, of
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point i observed from the x-y-z system. Vectors ® and O are the rotational
velocity and acceleration, respectively, of the x-y-z system with respect to
the X-Y-Z system. It should be noted that all vectors used in the following

formulation are referred to the rotating x-y-z system.

2.3.2 Assumptions

The following assumptions are used in the derivation of equations of
motion for the rotating bladed-disk system considered in the present work:
(1) there is no translational motions of the disk center of the bladed-
disk system (i.e., rigid shaft and bearings are assumed and vector
R in Fig. 2.5 is a constant vector), and
(2) the structure may undergo large deformations but strains remain

small and the material remains elastic.

z e
4 7,\':
P;
FE. ()
wX &¢/r
y
R o
>Y
o x}

X-Y-Z: Inertial coordinates
X x-y-zz Undeformed body-fixed coordinates

Figure 2.5 Coordinate systems used in finite element formulation
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2.3.3 Rotational Nonlinearities

Nonlinearities due to rotational effects, such as centrifugal and
Coriolis effects, are considered in this section for an elastic dynamic
analysis. Two approaches are presented in this thesis to incorporate this
nonlinearity into equations of motions of the rotating system. They are
called by the writer consistent mass and lumped mass approaches. The
consistent mass approach treats the structure as a continuum with mass
points uniformly distributed in the structure, while the lumped mass treats

the structure as a collection of discrete concentrated mass points.

It should be noted that the consistent mass approach presented here
is general for all types of finite elements. The lumped mass approach
presented here, however, is only applicable directly to finite elements with
merely translational degrees of freedom, such as truss and solid elements.
The extension of the lumped mass approach for finite elements with both
translational and rotational degrees of freedom is briefly discussed in

Section 2.3.3.2.

2.3.3.1 Consistent Mass Approach

In the displacement-based finite element approximation, the

displacement field of an element is assumed as
{u} = [Nl{q} 2.1)

in which [N] is the shape function for displacements and {q} is the nodal
displacement vector of the element, while the element geometry field is

assumed as
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{r} = [N']{c} (2.2)

in which [N'] is the shape function for coordinates and {c} contains the nodal
coordinates of the element. For isoparametric finite elements, [N'] and [N]

are identical. The strain-displacement relationship is expressed as

{€} = [Bliq} (2.3)

in which [B] is the strain-displacement matrix. The stress-strain

relationship is expressed as
{0} =[C){E) (2.4)
in which [C] is the material stiffness matrix.

As shown in Fig. 2.5, the instantaneous position vector of a material

point in the element is
{P} =R} + {r} + {u) (2.5)

and the corresponding absolute velocity vector is

vl =) + {0} x ({r} + {u} ) = {u} + [Q] ({r} + {u}) (2.6)
in which
0 -0, 0y ']
[Q] =|- (l)z 0 -(Dx_l
-0, @y 0

Note that {R) = 0 due to the first assumption, and the components in {®} as

well as in [Q] are function of time.
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The kinetic energy of the element is
1 T
T=3 [p & (v devoD @7
Vo

in which p is the density of the material. From Egs. (2.6) and (2.7), the

expression of the kinetic energy becomes
1 AT 1 T2
T = 5 | p @) @) diveD) +3 {p () [Q°]r}d(vol)
Vo Vo

{p w Q% uidvol) + J:p T Qi d(vol)
Yo YO

-!\')IH

+ {p Q% wd(vol) + Ip (@ [Qlud(vol) (2.8)

VO

in which [Q2] = [Q]'[Q). After substituting Eqgs. (2.1) and (2.2) into Eq.
(2.8), one has

T= % _[P (@I IN(@) d(voD) +% J;p ) 1Q21rid(vol)

N)IH

{p (@ TN TN (g} d(vol) +

vo

J: o {4} INTT[Q)ir}d(vol)

vo

+ { o (r) Q2 NI (g)d(voD) +

YO

lp (@ NI [QIINT(g}d(voD) (2.9)

YO

The potential energy of the element is

1

l\’Jl

f(e} (O} d(vol) 2.10)

vol



34

From Egs. (2.3), (2.4), and (2.10), the expression of the (geometrically linear)

potential energy becomes
U= [ @' E"CIBIa) deval

Applying the Lagrange equation

—_ e A ext

d /9T \ aT aU
(aq)

one obtains the equations of motion for the element
[m}{d) + [cc)@) + ( kel + [kql - kel Q) + {£e) = (£

in which

[m] = element mass matrix = { p [N]T[N] d(vol)

A4

[cc] = element Coriolis damping matrix = 2 '[ p [N]T[Q][N] d(vol)
VO

[ke] = element elastic stiffness matrix = { [B]T[C][B] d(vol)

vo

(2.11)

(2.12)

(2.13)

[ka] = element centripetal stiffness matrix = { p [N]T[A][NJ d(vol)

Vo

[k;] = element centrifugal stiffness matrix = '[ p [N]T[Qzl[N] d(vol)
Vo

{fe} = element rotational force vector

= {p [NT"TAIIN')(c) d(vol) -

YO

{p INITIQIIN'){c} d(vol)

Vo

{f ™%} = element external load vector
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and

0 -a, ay'l
[Al=[Q]=] &, 0 -0y
l_'ay ax 0 _]

If additional damping of the structural system is to be considered, it is

frequently modelled by an element equivalent viscous damping matrix, [cy],

which is added to the coefficient of the velocity term {q}.

After assembly, the final global equations of motion will be of the

form
[MJ(Q} + ([Cyv] + [C HQ + ([Kel + [Kal - K] Q) + (Fe} = {F™  (2.14)

It should be noted that the formulation presented above is similar to
the one reported by Omprakash and Ramamurti (1989) except that the
assumption of constant ® (rotational velocity vector) is not used in the
present formulation. The formulation is different from the one presented by
Davis (1989). In his approach, the system model is first discretized into
finite elements with either concentrated masses described by a lumped
mass matrix or distributed masses specified by a consistent mass matrix.
Using the generalized Newton's second law, Davis then derived the kinetic
equations of motion based on the already discretized finite element model
without the use of shape functions of the finite element for interpolating
fields within the element. However, the lumped mass approach presented
below is similar to his approach with a lumped mass matrix except that the
present formulation mainly considers finite elements with merely

translational degrees of freedom.
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2.3.3.2 Lumped Mass Approach

Consider the finite element shown in Fig. 2.5 with masses already
lumped at its nodes. With the first assumption applied, the nodal

instantaneous position vector of the element is

P, = (c+iqg (2.15)

and the corresponding absolute nodal velocity vector is
tv) =) +{o}x({c+{q))= {a} + ([Q]) ({c}+{q}) (2.16)

in which ([Q]) is a block diagonal matrix with [Q]'s on the diagonal.

The kinetic energy of the element is

T =3 tv) lmyJiv,) .17

in which [m] is the lumped element mass matrix. From Egs. (2.16) and

(2.17), the kinetic energy is expressed as
T = 2@ ) + 3 o7 (@) my (el
+ 2@ (@) my ()@ + @ m{el) e
+laT ([Q])T[m,_,] ((Q])a) + (@ tm () (2.18)

The potential energy of the element is

U= 3 [t B CUBlq dwvob (2.19)
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Applying the Lagrange equation (Eq. 2.12) and taking into account
equivalent viscous damping of the element, one has the equations of motion

for the element
[y 4@) + (Lev] + [edd Xah + ( [ked + [kal - (ki) Mg} + {fe} = £ (2.20)
in which
[cy] = element equivalent viscous damping matrix
[c] = element Coriolis damping matrix = [m I{[2]) - {(2]) m,]
= (m {[2]) + {(2])my)

[ke] = element elastic stiffness matrix = J; [B]T[C][B] d(vol)

Yo

[ka] = element centripetal stiffness matrix = [m; ] ([A])
[ky] = element centrifugal stiffness matrix =([Q]) [m; 1{[@])
{fe} = element rotational force vector
= tmy] ([A]) (@ - ([} Tm)([]) o
{f ™"} = element external load vector

and

((a]) = {[2])

After assembly, the final global equations of motion will be of the form

[M 1Q) + ([Cy] + [CI HQ) + ([Kel + [Kal - (K] )Q) + (Fel = {F™Y (2.21)
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By assuming that the lumped masses have no rotational inertia (i.e.,
the mass associated with any rotational degrees of freedom is zero), the
above formulation can be easily extended for finite elements with both

translational and rotational degrees of freedom.

It can be seen that the lumped mass approach is computationally
more efficient than the consistent one. However, since the mass coupling
between element nodes is neglected in the formulation, this approach is not
expected to be as accurate as the consistent one. Later in this chapter,
numerical comparison between the lumped mass and consistent mass
approaches will be conducted to examine the questions of accuracy and

applicability of the lumped mass approach.

2.3.4 Geometric Stiffness Effects

As indicated by Lawrence and Kielb (1984), and Simo and Vu-Quoc
(1987), a geometric nonlinear analysis is usually required for accurately
predicting dynamic behavior of rotating blades. The present research
adopts the formulation presented by Bathe (1982) with slight modification
to account for geometric nonlinearity in the analysis using the updated

Lagrangian approach.

Figure 2.6 shows the motion of a typical body in the undeformed
body-fixed coordinate system (x-y-z). Configuration 0 (Co) represents the
original undeformed state; configuration 1 (Cy) represents the current

(known) deformed state; and configuration 2 (C2) represents the desired
(unknown) deformed state.
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Similar to the tensor notation used by Bathe (1982), both left
subscripts and superscripts on a symbol are used to denote the three
configurations shown in Fig. 2.6. A left superscript denotes in which

configuration the quantity occurs. The absence of such a superscript

indicates that the quantity is an increment between C; and Cgz. A left

subscript denotes in which configuration the quantity is measured. In the

notation adopted, a comma denotes differentiation with respect to the
02u.
coordinate following; thus, for example, fui i 31;]-
j

z,X,

Configuration 2
(*x,'%,, '%,)

Configuration 1

Configuration 0

o_ o 0
(°x"x,,°%,)

» v, x,

X,X, O

Figure 2.6 Motion of body in body-fixed undeformed coordinate system

The principle of virtual displacements gives the equilibrium of the

body expressed in the deformed configuration Cg being sought

2
Jz 2T, 5,€; 24V = 3R | (2.22)
v
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in which 2‘15iLi is the Cauchy stress tensor, Szeij is the variation of an

infinitesimal strain tensor, and gR is the external virtual work, with
2 _ 2.b 2 2cs 2

in which 2f }’ and 2f is are the components of the externally applied body and

surface force vectors, respectively, and 52ui is the variation of the

displacement component.

In the updated Lagrangian formulation, Eq. (2.22) can be
transformed to (Bathe 1982)

2 1 2
J s 8,8 v = 1R (2.24)
\4

in which %Sij is the 2nd Piola-Kirchhoff stress tensor and Sleij is the

variation of the Green-Lagrange strain tensor. The incremental

decomposition of stress tensor is expressed as

2 1
18;= T+ 1S; (2.25)

and the strain increments can be decomposed into

in which leij and 1nij are the linear and nonlinear components of the

Green-Lagrange incremental strain tensor, respectively. Using the

linearized constitutive relationship between stress and strain increments,
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155 = 1G4 1€k 2.27)

and substituting Eqgs. (2.25) and (2.26) into Eq. (2.24), one obtains the

incremental equilibrium equation

1 1 1
\4 A%

2 1
= ’r.- J Ty 8,8y tav (2.28)
\'

After applying finite element approximation, one has the matrix form of the

incremental equilibrium equation (Bathe 1982)
1 1 2 1
(MK + MK HAQ = 2R - 1) (2.29)

in which

1

1(K.] = elastic stiffness matrix = J %[BL]T 1[C] 1[BL] 1dv
\

1

i[Kg] = geometric stiffness matrix = J i[BNL]T T 1Bl 1V
\%

1

i{F} = internal force vector = J %[BL]T YTy 1av
A4

and i[BL] and i[Bm_,] are linear and nonlinear strain-displacement

transformation matrices, respectively.
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Incorporating Eq. (2.29) into Eq. (2.14) for dynamic analysis, one then

has the equations of motion for geometric nonlinear analysis:
1 P24 + (0] + HCeD Y2HQ) + (TKe) + HKg] + iTKal - (TKDAQY

= PO - AFY - HFe) - (K] - (KD Q) (2.30)

for implicit time integration, and

M1 5@ + (1G] + HCeD) HQ) = HF*™ - {F) - {{Fe) - (TKal - {K:D %Q)
(2.31)
for explicit time integration, in which [M] is the time-independent mass
matrix and the symbols t+At and t denotes the configurations at time t+At
and t, respectively. The right superscript in the implicit scheme indicates
the iteration number with respect to which the quantity is evaluated in the

iterative procedure.

In addition, for steady state stress analysis, the equilibrium

equations are expressed as

(1K + TKg) - TR, HAQY = *A4F) - {IAUFY ™ - Fe) + (K] Q)
(2.32)
For undamped vibration analysis and with the Coriolis matrix neglected,

the equations of motion have the form of
MHQ} + ( [Kel + [Kg] - [K1)Q) = (0) (2.33)

which is employed for vibration analysis after the determination of the

static stresses from Eq. (2.32).

It should be noted that Egs. (2.30), (2.31) and (2.32) assume the use of
initial undeformed coordinates to evaluate E{Fe}. If the updated coordinates
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are used (this is usually the case in the updated Lagrangian approach), the
term ([Ka] - TKHQ) in both Egs. (2.30) and (2.31), and the term (K Q)
in Eq. (2.32) are automatically taken into account in E’{Fe} through the

process of coordinate update. In this case, however, it should be also noted

that the shape function in :{Fe} is different from the shape function in both
t[Ka] and :[K,-] if the consistent mass approach is employed and the finite

element used is not isoparametric.

For nonrotating systems (i.e., {w} = {0} in Eq. 2.6), the formulation

reverts to the standard forms, i.e., the equations of motions are
M) HA4G) + S0 TAMQ) + (TR + K AQY

= t+At{Fext} - t:ﬁ:{F}i-l (2.34)

for implicit time integration, and

M1 B + HCY) Q) = SF - LF) (2.35)
for explicit time integration, while for undamped vibration analyses, the

equations of motion have the form of
[IMHQ) + ([K¢] + [Kg) )Q} = {0} (2.36)
2.4 Analysis of Framed Structures

The present work takes advantage of the capabilities already
provided in ABREAST for dynamic analysis of framed structures. These
capabilities include eigensolvers for undamped vibration analysis governed
by Eq. (2.36) and direct time integration solvers for transient analysis
governed by Egs. (2.34) and (2.35). They are briefly discussed in this

section. More detailed descriptions have been provided by Srivastav (1991)
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and Aubert (1992). The enhancement of the time integration algorithms for
parallel transient analysis in this work is discussed in Section 3.2.1.

For free vibration analyses, Eq. (2.36) is usually transformed into an

eigenproblem of the form (Bathe 1982)

KD} = w2 [M){D} (2.37)

in which [K] and [M] are the stiffness and mass matrices of the system, and
o and {®} are the eigenvalue and eigenvector corresponding to the angular
vibration frequency and mode shape of a mode. In ABREAST, two
eigensolvers are provided for solving Eq. (2.37). The first solver uses a
rational QL method (Wilkinson and Reinsch 1971) to solve the full set of
eigenvalues and eigenvectors of the system. The second one uses a subspace
iteration algorithm (Lin 1980) to extract only a desired number of low
modes of vibration. In the present work, the subspace iteration solver is

used due to its feasibility and efficiency for large structural problems.

Both explicit and implicit integration methods are available in
ABREAST for transient dynamic analysis. The explicit time integration
uses the central difference method to solve the equations of motion given by
Eq. (2.35). The central difference method approximates velocity and

acceleration with second-order accuracy by
Q= (*NQ - Q1) 7 @at (2.38)
Q) = (*YMQ - 24Q) + TNQ) 7 (A (2.39)

in which At is the constant time step size. Substitution of Egs. (2.38) and
(2.39) into Eq. (2.35) yields
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(UA)IM] + (1/(2A1)) TTCD) t+44Q) = “F™) - H(F) +
(/A2M] HQ) - (VADIM] - (/24 e 24%Q)  (2.40)

in which the damping matrix [C,] is assumed to be the linear combination of
the mass and stiffness matrices (Rayleigh damping). With the use of
lumped masses and either no damping or mass proportional damping, Eq.
(2.40) is a set of uncoupled equations and its solution can proceed on a
degree-of-freedom level without assembly of the global stiffness matrix and
solution of simultaneous equation. In the case of nondiagonal damping (i.e., |
the stiffness-proportional damping is included), Eq. (2.38) is replaced by a

first-order accurate approximation for the velocity
YQ = (M - TMQ) )/ at (2.41)
Substitution of Egs. (2.41) and (2.39) into Eq. (2.35) yields

(UAE2)IM] 44Q) = HF™) - YF) + (/AtDIM] - (1/At) ICyD) HQ)
- (UADIM] - (VA f1eyd) 24Q) (2.42)

With the use of lumped masses, solution of Eq. (2.42) can also proceed on a
degree-of-freedom level. Since the explicit central difference method is only
conditionally stable, the stability conditions for Eq. (2.40) and (2.42) are
At € 2/®Wmax and At < (2/0)max)(\]1—+—§_2-- £), respectively, where ®Wmax is the
highest undamped natural frequency of the system and § is the fraction of

critical damping at the highest natural frequency, ®max (Cook et al. 1989).

The implicit integration in ABREAST uses the Newmark family of
schemes to solve the equations of motion given by Eq. (2.34). The Newmark

method relates displacements, velocities, and accelerations by (Bathe 1982)
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Bt = HQ) + (- 8 HE) + 5NN At (2.43)

At o) = YQ) + HQIAL + (12 - o) HQ) + o FAHQIAE2 (2.44)

The present work uses the constant average acceleration scheme, in which

5 = 1/2 and a = 1/4, because it is unconditionally stable and second-order
accurate. Substitution of Eqs. (2.43) and (2.44) into Eq. (2.34) and

rearrangement of terms result in the incremental equilibrium equation of

the form

K] (aQ) = AR (2.45)
in which

K] = (LAaAt2)IM] + (F0At) TC] + K. + K] (2.46)
and

t+At{R} - t+At{Fext} ) t:gg{F}i-l‘

IMIC (/(eAtD)CEH2HQP L HQ)) - (W(eat) Q) - (12 - oo ) -
VI (e AHQIL HQ)) - (3o + DYQ) - (3a + DALYG) (2.47)

A modified-Newton iterative solution scheme is used to obtain the

equilibrium solution of Eq. (2.47).

The implementation of the above analysis capabilities in ABREAST
has been verified by Srivastav (1991) and Aubert (1992). Therefore, no

further verification is conducted in this work.

2.5 Analysis of Rotating Bladed-disk Assemblies

In recent years the trend for turbine bladed-disk assemblies to have

higher efficiency, performance, and reliability has significantly increased
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complexities and difficulties in the structural analysis and design of
rotating turbine bladed-disk assemblies. To achieve better understanding
and prediction of behavior of turbine bladed-disk assemblies, considerable
research has been conducted to study the steady-state responses and modal
vibrations of rotating turbine bladed-disk systems. However, little research
has been conducted to investigate the transient responses of rotating
bladed-disk assemblies during a unsteady motion induced by events such as
the start-up, blade tip rubbing, speed or load changes, and passing through
resonant frequencies. The reason for this is usually the lack of both capable
analysis tools and adequate computing power to carry out this type of
analysis due to the complexity and nonlinearity involved in the analysis and

the large size of the problem.

This section discusses the analysis approaches used in this work and
the enhancement of analysis tools in ABREAST for both modal vibration
and transient dynamic analyses of rotating bladed-disks modelled by solid
finite elements. Verification studies of the current implementation are also
provided. The use of parallel processing in a network of powerful
workstations to provide the considerable computing power needed in the
analysis is investigated in Chapters 3 and 4. In addition, the use of
interactive computer graphics to facilitate the modelling and visualization

of the dynamic simulation is presented in Chapter 5.

Due to the attempt in modern design of turbine bladed-disk
assemblies to minimize the clearance between blades and housing for
efficiency and performance optimization, the probability of blade tip rubbing
has been greatly increased. The present work emphasizes the transient

dynamic analysis of rotating bladed-disk assemblies experiencing tip rubs.
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However, the modal vibration analysis of rotating bladed-disk systems
studied in this work plays an important role in verifying the present
approach and implementation. The present study also contributes
additional sets of data of 3-D finite element vibration analyses of rotating

turbine blades and annular disks.

In the following subsections, a brief review of previous research is
given first. The approach used in the present work is then discussed.
Results obtained using the present approach are compared with those
obtained by previous researchers to assess the accuracy of the present
approach. Furthermore, results obtained using the lumped mass approach
are compared with those obtained using the consistent mass approach in the

same verification studies.

2.5.1 Review of Previous Research

Previous research on both modal vibration and transient dynamic

characteristics of rotating turbine bladed-disk assemblies is brief reviewed

as follows.
Modal Vibration Analysis

Free vibration characteristics of rotating turbine blades have been
studied by many researchers. Earlier research on the anaiysis of rotating
blades has been reviewed by Ramamurti and Balasubramanian (1984) and
Rao (1987). In most previous research, beam theory was used in the
vibration analysis of blades often idealized as cantilever beams. Although
many effects such as pre-twist, hub radius, setting angle, hub flexibility,

and tip mass were investigated in the analysis, the effects of shear
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deformation and rotary inertia were often neglected. Recently, Yokoyama
(1988) used the finite element method to determine the bending frequencies
of a rotating uniform Timoshenko beam. Khulief and Bazoune (1992)
calculated the first three frequencies of rotating tapered Timoshenko beams
with different boundary conditions. However, it has been recognized that
the use of beam theory is not sufficient for modelling blades with low aspect
ratio and complex configurations. Some previous applications of plate and
shell theories to study frequencies of rotating blades were briefly reviewed
by Sreenivasamurthy and Ramamurti (1981). More recent examples are

studies conducted by Omprakash and Ramamurti (1989, 1990a, 1990b).

Some research has been reported on the vibration analysis of rotating
disks. A review has been given by Omprakash and Ramamurti (1988). In
the previous work, Kirchhoff-Love thin-plate theory is often used. The
theory neglects the shear deformation and rotary inertia effects and,
therefore, is limited to modelling thin disks. A recent study conducted by
Sinha (1987) has used the Mindlin's plate theory to account for both effects

in the analysis.

It has been recognized that the dynamic behavior of a bladed-disk
system can not be predicted accurately without considering the coupling
effect between the blades and the disk. Although a few studies have been
conducted on the vibration analysis of nonrotating bladed-disks, little
research has been reported on the vibration analysis of rotating bladed-
disks. Recently, after reviewing previous research, Omprakash and
Ramamurti (1990a) studied the coupled vibration characteristics of rotating
bladed-disk systems.



50
Transient Dynamic Analysis

Although transient dynamic analysis is important in predicting the
responses of rotating bladed-disk assemblies during events such as start-up,
blade tip rubbing, speed changes, and traversing through system critical
speeds, it has received little attention. Using an extended beam theory,
Irretier (1985) performed a spectral analysis to simulate the run-up of a
turbine blade subjected to partial admission. Davis (1989) implemented
analysis tools in an existing finite element program to address nonlinear
transient analysis of rotating bladed-disk-shaft systems subjected to blade
rubbing. Due to the large amount of computation involved, only bladed-disk

models with coarse meshes were studied in the sample analyses.

Recently, the transient characteristics of a bladed-disk during run-up
were studied by Omprakash and Ramamurti (1990b) in a spectral analysis
using the finite element method. A three-noded triangular shell element
was used to model the bladed-disk. The cyclic symmetry and modal
superposition approaches were used to reduce computational burden. The
spectral analysis employed the lowest three frequencies that are
interpolated quadratically at each time step from the frequencies computed

by actual eigensolution at selected rotational speeds.

2.5.2 Present Approach

As discussed in Section 2.2, the present work uses twenty-node brick
finite elements with reduced integration to model bladed-disk systems
(although both eight- and twenty-node brick finite elements with either full
or reduced integration have been implemented in ABREAST). The
quadratic displacement model provided by the element goes beyond those
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provided by Mindlin/Timoshenko theory and implicitly takes into account
effects of shear deformation and rotary inertia. However, it should be noted
that numerical ill-conditioning may occur if the aspect ratio of the element
is too large, e.g., exceeding about 50. Such ill-conditioning has been
encountered by the writer in cases where coarse meshes are used to model

very thin blades or disks.

The finite element formulation presented in Section 2.3 has been
implemented in all analysis modules of ABREAST for the brick finite
elements. For rotational dynamics, the current implementation uses the
rotating x-y-z coordinate system shown in Fig. 2.5 as the global coordinate
system. The current implementation also assumes that the time-varying
rotational-velocity vector {®} is the multiplication of a time-varying scalar
and a time-independent reference vector, i.e., the rotational acceleration
vector is colinear with the rotational velocity vector. The user is allowed to
specify in the analysis input file a) the type of formulation for accounting for
rotational nonlinearity (i.e., consistent- or lumped-mass), b) the reference
vector of rotational velocity in terms of three components in the global
coordinates (with the assumption that the vector passes through the origin
of the global coordinate system), and ¢) the name of the history file in which
the time history of the scalar of rotational velocity is defined.

Modal Vibration Analysis

A two-stage analysis is employed in the present work to carry out
modal vibration analyses of rotating bladed-disk systems. The first stage
involves a nonlinear static analysis to obtain a steady-state solution serving

as the initial condition for the second-stage eigenvalue analysis.
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For the steady-state solution, a static analysis capability, which did
not previously exist in ABREAST, has been implemented. The solution
schemes implemented include simple incremental, Newton-Raphson
iterative incremental, and Modified-Newton iterative incremental schemes.
Both Gauss elimination and preconditioned conjugate gradient equation
solvers are available. Since the steady-state solution of a rotating bladed-
disk system involves both rotational and geometric nonlinearities (as shown
in Eq. 2.32), the present work uses either the Newton-Raphson or the
Modified-Newton iterative incremental scheme to ensure the satisfaction of
equilibrium. In addition, the load vector (i.e., the right hand side of Eq.
2.32) is nonlinear and displacement-dependent. The current approach
updates the load vector at the end of each load increment after equilibrium
iteration is completed. At the end of the final increment, a recursive
procedure that updates the load vector and then performs equilibrium
iterations is used until the update of the load vector no longer affects the
equilibrium. Upon completion of the analysis, an initial condition file,
which contains the results for the steady-state nonlinear analysis, is created

for the second-stage vibration analysis.

The second-stage vibration analysis requires the solution of Eq.
(2.33). The system stiffness is computed based on the final equilibrium
state of the system obtained from the first-stage analysis. The present
research uses the subspace iteration algorithm in ABREAST to solve for a

desired number of low modes of vibration.
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Transient Dynamic Analysis

Both the explicit central difference and implicit Newmark integration
methods in ABREAST have been extended to account for rotational
dynamics for the brick elements. In the present central difference analysis
for rotational dynamics, since the Coriolis damping matrix, [(], in Eq.
(2.31) is nondiagonal but skew-symmetric, the velocity and acceleration are
approximated by Eq. (2.41) and Eq. (2.39), respectively. Substitution of Egs.
(2.41) and (2.39) into Eq. (2.31) results in

(UARIM] H24HQ) = YF™) - YF) - HFe) - (HKal - K:D HQ)
+ ((/AR)M] - (VABICY] + {IC) Q)
- ((VAE2M] - (VAL) (ICy] + JIC1 ) "2MQ) (2.48)

The diagonal mass matrix is used to avoid solution of simultaneous
equations. In the present research, the explicit central difference method is
used for dynamic analysis of rotating bladed-disk assemblies experiencing
tip rubs, which is a short-duration dynamic problem. In this case, similar to
the modal vibration analysis discussed earlier, a two-stage analysis is
employed to save computational time. In the first stage, a nonlinear static
analysis is performed to obtain a steady-state solution of the system at a
given rotational speed. This solution then serves as the initial condition for
the second-stage transient analysis which computes system responses

during tip rubbing.

In the implicit Newmark analysis for rotational dynamics, the use of
the constant average acceleration scheme results in the incremental

equilibrium equation of the same form as Eq. (2.45)
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YR (AQ) = TAUR)
in which
HK] = ((oAt2)M] + (§0at) TC + K (2.49)

ALY = BN Eerty _ BAt Rl Yo (MK - KD HQ)
- IMIC (UAeAt2)EAHQIL YQ)) - ((oAt) Q) - (U2 - aYolid))
- 101 Bhaat) QL HQD - (3o + DYQ - (3o + 1ALYHQ)) (2.50)

¥Cl = FCy] + HCd (2.51)
K] = {[Kel + {Kg] + {[Kal - {Ks] (2.52)

A
Since :[Cc] and {[Ka] are skew-symmetric, the effective stiffness matrix YK
is no longer symmetric, resulting in a significant increase of storage

A
requirement for t"[K]. To avoid this problem, the current implementation

replaces Eq. (2.49) by

'K = (UaAt2)M] + (8(aab) 1Cy] + TKel + Kl - 1K/ 2.53)

Since the current approach uses a modified-Newton iterative solution
scheme, the use of Eq. (2.53) does not change the final equilibrium solution
although the convergence rate may be affected. The implicit Newmark
method is suited to long-duration dynamic problems such as dynamic

analyses of the run-up of rotating bladed-disk systems.

2.5.8 Verification and Comparative Studies

As discussed earlier, very little research on transient dynamic

analysis of rotating bladed-disk assemblies has been conducted using direct
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time integration solution methods. None of the numerical results of which
the writer is aware provides sufficient information whiéh can be used in the
present implementation to reproduce the results adequately. Therefore, the
present research relies mainly on using some modal vibration results of
rotating beams and plates published in the literature to verify the
implementation in ABREAST for analysis of rotating turbine bladed-disk
assemblies. Both steady-state and vibration analysis capabilities
implemented are directly verified. The transient dynamic analysis
capabilities implemented are verified indirectly and partially because many
portions of them share the same routines with the steady-state or vibration
analysis modules (for example, routines for mass matrix formation and
assembly, stiffness matrix formation and assembly, and stress recovery). In
addition to verification studies, numerical comparisons are conducted
between the consistent mass approach and the lumped mass approach for

accounting for rotational nonlinearities.

Five example problems are used here for verification and comparative
studies. They are (a) the in-plane vibration of a rotating cantilever beam,
(b) the out-of-plane vibration of a rotating cantilever beam, (c) the vibration
of a rotating tapered cantilever beam, (d) the vibration of a rotating annular
plate, and (e) the transient response of a rotating cantilever beam subjected
to an impact load (for comparative study only). The numerical results from
ABREAST are compared with those published in the literature. All
analyses performed in the present research use (i) twenty-node brick
elements with reduced integration, (ii) a lumped mass matrix formulated
using the HRZ lumping scheme with full integration (Cook et al. 1989), and
(iii) a Newton-Raphson iterative method for steady-state solutions, followed
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by either a subspace iteration method (Lin 1980) for frequency computations
or a central difference method for time integration of transient responses.
The present results obtained using the consistent mass approach for taking
into account rotational nonlinearities are denoted as Present-CM, while

those obtained using the lumped mass approach are denoted as Present-LM.
In-plane Vibration of a Rotating Cantilever Beam

The in-plane vibrations of the rotating cantilever beam shown in Fig.
2.7 are studied in the present research over a wide range of rotational
speeds. An 1 x 2 x 8 mesh is used in the study. (Note that 1 x m x n denotes
the number of elements in the x, y, and z directions, respectively.) In Table

2.4, the present results are compared with those obtained by Putter and

Q¥3mm |
2 28/{ 2
l4— L =328 mm —pP° "

E=217x10 'N/m? =7850 kgm® v =03

Q

Figure 2.7 A rotating cantilever beam for in-plane vibration analysis

Manor (1978) and Yokoyama (1988). Putter and Manor used five beam
elements with a fifth-order displacement function and considered effects of
shearing force and rotary inertia, while Yokoyama used eight Euler-
Bernoulli beams with a cubic displacement function. The first and second

normalized frequencies, a(pAL4/ED)V2, of vibrations in the x-z plane are

compared for different values of normalized rotational speeds,
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Q(pAL4/EI)V2, (Note that w is the circular frequency of vibration; p is the

mass density; A is the area of cross-section; L is the length; E is the Young's

modulus of elasticity; I is the moment of inertia; and Q is the rotational

speed.)

Table 2.4 Comparison of in-plane normalized frequencies, o(pALY/EDY2 of

a rotating cantilever beam obtained by the present study with those

reported by Putter and Manor (1978) and Yokoyama (1988)

2.0
[809]

Putter and Manorf| 3.61

| Present-LM
Present-CM 3.68 22.59 4.45 23.31
22.53 4.40 23.28

Present-LM .

| Present-CM 4.16 24.94 7.46 28.78
(2,0221 [Putter andManor|| 4.07 | 2495 | 741 [ 28.92
| Yokoyama 71 407 | 2495 | 741 | 2893
Present-LM 522 | 3203 | 13.34 | 42.89
10.0 Present-CM 522 | 3192 | 1332 | 4267
(4,044] |Putter and Manor| 505 | 3212 | 13.26 | 43.23
Yokoyama
Present-LM 717 | 5101 | 25.43 [ 72.08
20.0 Present-CM 717 | 5066 | 25.39 | 72.68
[8,088] Putter and Manor|| 6.78 51.35 25.29 76.59
| jama | 6.7 51.37 | 25.32 | 76.66
Present-LM | 12.32 | 115.25 | 62.47 | 179.65
| Present-CM | 12.44 | 113.83 | 6250 | 176.39
[20,220] | Putter and Manor| 1048 | 11620 | 61.64 | 181.94
|  Yokoyama | 1090 | 11642 | 61.88 | 182.39
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Both Present-CM and Present-LM results agree well with those of
Putter and Manor and of Yokoyama except the first frequencies when R/L =
0 and Q(pALYEDV2 = 20, 50. It is believed that the disagreements are
mainly due to the different approaches used for taking into account
centrifugal forces between the present work and those of Putter and
Yokoyama. Both Putter and Yokoyama compute the centrifugal forces
based on the undeformed beam configuration while the present research
accounts for the deformed beam configuration. As a result, the differences
become more significant as the rotational speed increases (i.e., deformation
of the beam increases). It can be seen that all of the present first-mode
results are higher than those of Putter and Manor, and Yokoyama. Another
observation is that in all but two cases, the results of Present-LM are either

equal to or slightly higher than those of Present-CM.
Out-of-plane Vibration of Rotating Cantilever Beams

The second example studied is the out-of-plane vibrations of the

rotating cantilever beam shown in Fig. 2.8 over a range of rotational speeds.

Y

3 mm

2'{ z
- 328 mm —pppr 20 0

E=217x10'Nm? p =7850 kgm® v =03

Figure 2.8 A rotating cantilever beam for out-of-plane vibration analysis
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This is the same beam used in the previous example (Fig. 2.7) but with a
different rotational axis. An 1 x 2 x 8 mesh is used in the study. (Note that
1 x m x n denotes the number of elements in the x, y, and z directions,
respectively.) In Table 2.5, the present results are compared with those
obtained by Yokoyama (1988) using eight Euler-Bernoulli beam elements
with a cubic displacement function. The first and second normalized
frequencies, w(pAL4/EI)V2, of vibrations in the x-z plane are compared for
different values of normalized rotational speeds, Q(PAL4/ED)V2. (Note that

notations used here are the same as those in the previous example.)

Table 2.5 Comparison of out-of-plane normalized frequencies, o(pALYET)V2
of a rotating cantilever beam obtained by the present' study with those

reported by Yokoyama (1988)

[Qin rpm] 2
Present-LM
2.0 Present-CM 418 | 2267 | 487 | 2340
[809] Yokoyama 414 | 2262 | 483 | 23.37
Present-LM 5.64 24.31 7.52 26.93
4.0 Present-CM | 563 | 2428 | 751 [ 26.87
[1,618] Yokoyama 559 | 2428 | 748 | 26.96
Present-LM 7.42 26.81 10.50 31.91
6.0 Present-CM | 740 | 2674 | 1047 | 31.79
[2,427) Yokoyama 736 | 2681 | 1044 | 32.03
Present-LM 9.33 29.96 13.57 37.73

80 | Present-CM | 930 | 2984 | 1354 | 37.55
[3,236) | Yokoyama | 9.26 | 30.00 | 1351 | 37.96 |

Present-LM | 11.28 | 3356 | 16.67 | 44.04
10.0 Present-CM | 11.25 | 33.39 | 1664 | 43.77
(4,044] | Yokoyama | 11.20 | 33.64 | 1661 | 44.38
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Both Present-CM and Present-LM results agree closely with those of
Yokoyama. It is observed again that the results of Present-LM are slightly
higher than those of Present-CM in all cases.

Vibration of a Rotating Tapered Cantilever Beam

The frequencies of rotating tapered beams with different taper ratios,
boundary conditions, and rotational speeds were studied by Khulief and
Bazoune (1992) using a tapered Timoshenko beam element. In the present
research, the bending frequencies of the particular rotating tapered beam
shown in Fig. 2.9 are computed. An 8 x 2 x 2 mesh is used in the analysis.
(Note that 1 x m x n denotes the number of elements in the x, y, and z
directions, respectively.) In Table 2.6, the present results are then
compared with those obtained by Khulief and Bazoune using sixteen
tapered Timoshenko beam elements. The first and second normalized
frequencies, 0(pA,L4/El,)V2, of vibrations in the x-y plane are compared for

different values of normalized rotational speeds, Q(pA,L4/Ely)V2. (Note

Az E =20 x 10 N/'m?
Q
\-/‘ p = 8000 kg/m®
\ vV = 0.3
MG IS
0.6 m i >x
i 0.3m

N
mzm—bf

Figure 2.9 A rotating tapered beam for vibration analysis
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that o is the circular frequency of vibration; p is the mass density; A, is the

area of cross-section at x = 0; L is the length; E is the Young's modulus of

elasticity; I, is the moment of inertia at x = 0; and Q s the rotational speed.)

It can be seen that both Present-CM and Present-LM results are in
good agreement with those of Khulief and Bazoune. The results of Present-
LM are either equal to or slightly lower than those of Present-CM for the

first mode while the trend is reversed for the second mode.

Table 2.6 Comparison of normalized frequencies, m(pAoL4/EIo)1’2 of a
rotating tapered beam obtained by the present study with those reported by
Khulief and Bazoune (1992)

1 3 5
| 12,9241 | (87721 | [14,619]

Present-CM ‘

Present-LM 4.40 4.68 5.23

4.43 483 | 555

Present-CM 15.52 16.46 18.35
Present-LM 15.41 15.52 16.48 18.37

| Khulief & Bazoune || 15.98 16.04 16.48 17.34

Vibration of a Rotating Annular Plate

Figure 2.10 shows a rotating annular plate which is clamped at the
inner edge while free at the outer edge. The frequencies of the rotating
plate are computed in the present research using 3-D twenty-node brick
elements with a 4 x 12 x 1 mesh as shown in Fig. 2.3(a). In Table 2.7, the
present results are compared with those obtained by Sinha (1987) who used
Mindlin's plate theory and a modified Rayleigh-Ritz method with a
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numerical trial function. The nondimensional frequencies, w(phr,4/D)V2,
are compared for different values of nondimensional angular velocities of
rotation, Q(phr4/8D)V2. (Note that o is the circular frequency of vibration;
is the mass density; h is the plate thickness; r, is the inner radius; Q is the
angular velocity of rotation; and D = (Eh3)/[12(1-v2)] where E and v are

Young's modulus of elasticity and Poisson's ratio, respectively.)

Q inner radius = 0.25 m

outer radius = 1.0 m
thickness = 0.2 m
clamped at the inner edge
free at the outer edge

E = 196 x 10 ? N/m?
v=0.3
p = 7800 Kg/m®

Figure 2.10 A rotating annular plate for vibration analysis

Again, both Present-CM and Present-LM results agree well with
those of Sinha. The results of Present-LM are either equal to or slightly
higher than those of Present-CM for all three modes.

Transient Response of a Rotating Cantilever Beam Subjected to an
Impact Load

The transient responses of the rotating cantilever beam shown in Fig.
2.7 (in this example, R = 0 and Q = 4,000 rpm) subjected to an impact load
are studied for comparison of the consistent mass and lumped mass
approaches for a transient dynamic problem. The impact load is a uniform
traction in the -x direction applied on the face at the free end of the beam

and has the history shown in Fig. 2.11. The mesh used in the study is
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shown in Fig. 2.12. The transient responses are computed for a duration of

0.0039 sec. and a time step of 0.0000001 sec. is used. The results are output
every 0.000005 sec.

Table 2.7 Comparison of nondimensional frequencies, w(phr,4/D)V2 of a
rotating annular plate obtained by the present study with those reported by
Sinha (1987)

2 4
[16,387] | [32,773]

nodal

circles

Q(phry4/D)V2
[Qin rpm]
Present-CM
Present-LM

Present-CM
Present-LM

Present-LM
Sinha

6.30 10.25 17.13

50T

Traction (KN/m )

; 1§ 4’
0.0 10 2.0 Time(x1.0E-4sec.)

Figure 2.11 History of the impact load applied to the rotating cantilever
beam of Fig. 2.7
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Figure 2.12 Finite element mesh used in the transient analysis of the

rotating cantilever beam of Fig. 2.7

The transient displacements at two different locations of the rotating
beam are monitored in the present study (see positions A and B in Fig.
2.12). In Figs. 2.13 - 2.18, the Present-LM results are plotted against the
Present-CM results. It can be seen that the Present-LM results agree
closely with the Present-CM results in Figs. 2.13 and 2.16. In Figs. 2.14,
2.15, and 2.18, the differences between the Present-LM results and the
Present-CM results mainly come from different displacements obtained at
the end of the steady-state analysis between the Present-LM and the
Present-CM approaches, despite the fact that the same tolerance (11{10'8 in
this example) is used for Newton-Raphson equilibrium iterations in both
cases. The transient characteristics of the Present-LM results are in good

agreement with those of the Present-CM results. In Fig. 2.17, it should be
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noted that the displacements are so small that the differences between the
Present-LM results and the Present-CM results may be neglected.

2.5.4 Closure

Although the lumped mass approach for taking into account
rotational nonlinearities is not expected to be as accurate as the consistent
mass approach due to its neglect of mass coupling, the modal vibration
results obtained using the lumped mass approach in all of the examples
studied in Section 2.5.3 are in close agreement with those obtained using
the consistent mass approach. In most cases, the frequency results from the
lumped mass approach are slightly higher than those from the consistent
mass approach. In addition, the transient displacements predicted using
the lumped mass approach in the example studied agree well with those

predicted using the consistent mass approach.

On the other hand, the lumped mass approach is expected to be
computationally more efficient than the consistent mass approach.
Although this is usually the case in all of the modal analysis examples
studied in Section 2.5.3, the computational times for modal analyses using
these two different approaches differ by only about five to ten percent. This
is probably due to the fact that the calculation of nonlinear rotational forces
is not the major computational cost when compared with the stiffness
matrix formation, equation solving, and eigensolution in modal vibration
analyses. However, the computational time for transient analysis using the
consistent mass approach is about 8.7 times larger than that using the

lumped mass approach in the example studied.
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Figure 2.13 Transient displacements in the x direction at position A of the
rotating beam in Fig. 2.12
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Figure 2.14 Transient displacements in the y direction at position A of the
rotating beam in Fig. 2.12
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Figure 2.15 Transient displacements in the z direction at position A of the
rotating beam in Fig. 2.12
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Figure 2.16 Transient displacements in the x direction at position B of the
rotating beam in Fig. 2.12
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Figure 2.17 Transient displacements in the y-direction at position B of the
rotating beam in Fig. 2.12
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Figure 2.18 Transient displacements in the z direction at position B of the
rotating beam in Fig. 2.12



Chapter 3

Parallel Nonlinear Solution Algorithms

The parallel processing strategies investigated in the present work
include both numerical algorithms for parallel nonlinear solutions and
techniques to effect load-balancing among processors. This chapter
discusses the parallel solution algorithms for transient dynamic analysis as
well as steady-state analysis. The load-balancing techniques based on

domain partitioning are explored in the next chapter.

The realistic computer simulation of nonlinear structural dynamics of
large finite element systems often requires a significant amount of
computing time and memory. One possible way to reduce the elapsed wall
clock time needed for an analysis is the use of parallel processing which
divides the computational work among several processors running
concurrently. For large structural problems, the analysis may often
requires the use of virtual memory which usually slows down the analysis
significantly. With the workload divided among processors in the parallel
analysis, the computation may be performed in each processor without the

use of virtual memory, resulting in additional time saving.

The present research investigates the parallelization of time
integration algorithms and equation solvers for the solution of the governing
equilibrium equations of structural dynamics discussed in Chapter 2. Focus
is placed. on parallel algorithms suitable for the present coarse-grained,

message passing environment where, as mentioned in Chapter 1 and will be

69
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discussed further in Section 3.1, minimization of the interprocess
communication and parallelization at the substructure level are two key

strategies for the algorithms to achieve good parallel performance.

In this chapter, the parallel computing environment used is described
first. Then, a brief review of previous research on parallel solution
algorithms is given. The parallel solution algorithms investigated in the
present work are discussed. Numerical studies are also performed to

evaluate the effectiveness of the present parallel solution algorithms.

3.1 Parallel Computing Environment

The computing environment for parallel processing in this work
consists of either up to six DECsystem 5000's or up to twelve Apollo/HP
9000 series 720's. Each DECsystem 5000 has 16 Mbytes of memory and a
central processor running at the speed of approximately 24 Mips, while each
Apollo/HP 720 has 128 Mbytes of memory and a central processor running
at the speed of approximately 59 Mips. The DEC workstations utilize the
ULTRIX operating system (DEC's version of UNIX), while the HP
workstations utilize the HP-UX operating system (HP's version of UNIX).
They are connected by Ethernet and communicate via the TCP/IP
(Transmission Control Protocol/Internet Protocol) and DECnet protocol (for
DEC workstations only). Any processor may communicate directly with any
of the other processors. The approximate realizable communication speed of

the Ethernet ranges from 0.1 to 1.0 Mbyte per second.

The communication and synchronization between .processors are
achieved in a message passing environment provided by ISIS (Birman et al.

1990), a UNIX-based parallel application manager developed in the
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Computer Science Department at Cornell University. Two of the most basic
facilities that ISIS provides for interprocess communication are process-
group and broadcast mechanisms. The process-group mechanism provides a
means of grouping and naming processes as a unit (note that a process can
be a member of more than one process group). The broadcast mechanism
allows a process to send a message to a process group and to reply to or
forward a message received. Another important feature provided by ISIS is
a programming paradigm called virtual synchrony. Virtual synchrony
ensures that all members of a process group receive the messages sent to
the group in the same order as they were sent but not necessarily at the
same time. This approach avoeids the difficulty and cost involved in
maintaining real synchrony but still provides sufficient synchronicity for
parallel applications. A research version of ISIS is in the public domain
(available via anonymous FTP through the Internet from ftp.cs.cornell.edu)
and has been distributed and used by hundreds of research institutes and

universities. The latest version is now sold commercially.

The parallel computing environment presented above is a coarse-
grained, distributed-memory environment where the number of processors
used is small and no global memory is shared among processors. In the
parallel paradigm, this environment is usually classified as a multiple-
instruction, multiple-data (MIMD) environment where each processor, with
a different set of data, does not necessarily execute the same instruction
simultaneously. It should be noted that the parallel processing strategies
discussed in this chapter are not limited to the networked workstation

environment investigated in this work, but instead are suitable for a variety
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of machine environments which share the aforementioned features. The
major advantages of this type of environments are their

a) extendibility: it is easy to add more processors to increase
processing power. In addition, as the computer technology
advances, the processors as well as network interfaces in the
environment can be upgraded gradually and in a relatively less
expensive fashion.

b) heterogeneity: computers with different features can be put
together to meet different computational needs and to maximize
the utilization of computer resources. For example, the parallel
simulation of structural dynamics may need a workstation with
high-performance graphics for visualization and a number of fast

processors for parallel computations.

In the present networked workstation environment, the
communication among processors is the major bottleneck for parallel
applications due to slow communication speed of Ethernet. Although the
replacement of the Ethernet by a faster FDDI network will provide
improvement in the near future (as mentioned in the Chapter 1), it is
believed that the interprocess communication is still the major bottleneck
because the speed of processors is currently advancing in a faster rate than
that of communication network. Therefore, this research considers parallel
algorithms which minimize communication overhead. In addition, the
parallelization of finite element computations in this type of coarse-grained
environment is usually best devised at the substructure (or subdomain)
level (as opposed to the parallelization at the element level or at the degree-

of-freedom level as in a fine-grained environment).
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3.2 Review of Previous Research

Previous research on both parallel time integration algorithms and

parallel equation solvers is briefly reviewed in the following subsections.

3.2.1 Parallel Time Integration Algorithms

Considerable research has been conducted on various time
integration algorithms to take advantage of parallel processing in transient
dynamic analysis. At Cornell University, a preliminary study on a number
of time integration algorithms had been performed to evaluate their
potential in parallel analysis (Hajjar 1987, 1988). In this subsection,
existing time integration algorithms are briefly re-evaluated for parallel
processing based on the preliminary studies at Cornell and more recent

research work published in the literature.
Explicit algorithms

Among explicit algorithms, the central difference method (see, for
example, Bathe 1982; Cook et al. 1989) is probably the most commonly used.
The central difference algorithm is a conditionally stable explicit time
integration method inherently amenable to parallel processing. With
standard selections of the finite difference relations and the use of lumped
masses, the solution may proceed on a degree-of-freedom level without
assembly of the global stiffness matrix and solution of simultaneous
equations. In addition, groups of degrees of freedom may be readily
apportioned to different processors by substructuring. Finally, with

appropriate preparation of substructure data for each processor, a minimum
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amount of interprocess communication may be achieved, and this

communication needs to occur only between adjacent processors.

Malone (1988, 1990) formulated a parallel central difference
algorithm which does not duplicate computational work among processors,
but requires interprocess communication in the computation of nodal
quantities at nodes shared by two or more processors. The hardware
configuration considered by Malone was a 32-processor Intel iPSC/d5
hypercube. In a networked workstation environment, Hajjar and Abel
(1989a) presented a parallel implementation of the central difference
algorithm which minimizes interprocess communication at the expense of
duplicating the computation of element quantities in elements shared by
two or more processors. Chiang and Fulton (1990) also investigated central
difference method for two different parallel computers, the FLEX/32 shared
memory multicomputer and the Intel iPSC Hypercube local memory
computer. All of the above studies show good parallel performance of the

central difference algorithm.
Implicit algorithms

Implicit algorithms (see, for example, Bathe 1982; Owen 1980) may
be formulated to be unconditionally stable. Compared to explicit methods,
these methods allow a larger time step size to be selected based on accuracy
requirements exclusively. However, the solution of a set of simultaneous
equations is required at each time step, making the implementation of the
procedure in parallel more difficult than explicit methods. The parallel
simultaneous equation solution also requires significant amount of

interprocess communication, both nearest-neighbor and global.
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Hajjar and Abel (1988) used the implicit Newmark-B constant
average acceleration algorithm with domain decomposition for the parallel
solution of nonlinear structural dynamics in a networked workstation
environment. The domain decomposition strategy employed uses
substructuring techniques and a preconditioned conjugate gradient (PCG)
algorithm for the iterative solution of the reduced set of unknowns along the
substructure interfaces. The PCG algorithm seems attractive for parallel
processing because it requires less interprocess communication and is easier
to balance the workload among processors than direct methods. Chiang and
Fulton (1990) investigated implicit Newmark type methods with a skyline
Cholesky decomposition strategy for the FLEX/32 shared memory
multicomputer and the Intel iPSC Hypercube local memory computer. It
was shown that the shared database nature of the decomposition algorithm
made the FLEX/32 multicomputer a more efficient parallel environment

than the Hypercube computer.
Mixed-Time Integration Algorithms

Mixed-time integration algorithms use simultaneously different time
integration methods with different time steps in different domains of the
problem to minimize the computational cost. These methods are suitable
for problems consisting of definitive domains of different stiffness

properties, such as soil-structure interaction problems.

A variety of implicit-explicit methods have been proposed. A review
of these methods was given by Hughes and Belytschko (1983) and Liu
(1987). Since the solution of a reduced set of simultaneous equations is still

required in the implicit integration and different time steps are used in
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different integration methods, parallel implementation of these methods are
more challenging than that of implicit methods, especially in the area of
balancing the computational loads among processors. Liu (1987) discussed
some aspects of parallel implementation of these methods in a shared

memory, parallel processing environment.

Explicit-explicit subcycling (Liu and Belytschko 1982; Liu 1987) is
also one type of mixed-time integration methods. These methods use only
explicit integration with different time steps selected for different domains
of the problem without the solution of simultaneous equations. Therefore,
they are more amenable to parallel processing than implicit-explicit
methods. However, with the use of different time steps in different
domains, their parallel implementation faces challenging tasks for load-
balancing and synchronization among processors to achieve desirable

efficiency, especially in a distributed memory environment.
Semi-Implicit Algorithms

Semi-implicit algorithms first presented by Trujillo (1977) for
structural dynamics are similar to an operator splitting algorithm, termed
the left-right (or right-left) technique (Saul'yev 1964), developed in finite
difference analysis. These methods take the form of implicit time
integration algorithms and split the stiffness and damping matrices into
strictly lower and upper triangular matrices. Both symmetric and
unsymmetric splitting algorithms have been presented. With the use of a
diagonal mass matrix, the solution of a set of simultaneous equations is
avoided and only a back substitution or a forward reduction is required at

each time step.
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Trujillo (1977) proved the unconditional stability of the symmetric
splitting method for the undamped case, and referred the method as an
unconditionally stable method. However, the method was shown to have
poor accuracy performance by several researchers (Mullen and Belytschko
1983; Park and Housner 1982; Hughes and Belytschko 1983). The
unsymmetric splitting method was shown more accurate than the
symmetric splitting, but only conditionally stable (Trujillo 1977; Park and
Housner 1982). Using the concept of a penalty matrix for approximate
factorization, Park (1982) presented a strategy to improve the accuracy of

the symmetric splitting method.

It has been pointed out by Hajjar (1988) that these algorithms are not
ideal for parallel implementation due to the inherently sequential nature of

back substitution.
Group Explicit Algorithms

The group explicit algorithms (Evans 1984, 1985; Abdullah and
Evans 1986; Hajjar 1988) use an explicit approach, such as the central
difference method, with a symmetric splitting operator formulated from the
superposition of the left-right and right-left operators. With appropriate
partitioning of the problem domain into subdomains, the stiffness matrix
can be made block diagonal, and the solution can be computed
independently in each subdomain and simultaneously in all subdomains.
Similar to the central difference method, these methods are suitable for
parallel processing and only nearest neighbor communication is required in
a time step due to the explicit solution performed in the subdomain

interfaces. Although the implicit solution performed in each subdomain



78

allows a larger time step than that of the purely explicit solution, Hajjar
(1988) has shown that these methods are only conditionally stable and the
stability limit governed mainly by the explicit solution in the interfaces is
not increased sufficiently to justify the added computation of the implicit

solution.

The alternating group explicit algorithms (Evans 1984; Abdullah and
Evans 1986; Hajjar 1988) perform implicit solution in the interfaces every
other step to achieve unconditional stability. The solution of a reduced set
of simultaneous equations is therefore required. In addition, these methods
have been reported to provide severe amplitude decay for time steps near

and above the explicit stability limit by Hajjar and Abel (1989b).
Group Implicit Algorithms

In the group implicit algorithms (Ortiz and Nour-Omid 1986; Ortiz et
al. 1988; Hajjar 1988), the problem domain is first partitioned into
subdomains and the implicit operator, such as the Newmark-B constant
average acceleration algorithm, is used to obtain a local solution in each
subdomain. The computed results in the subdomain interfaces are then
weighted by using the mass matrix and averaged to produce a unique

solution.

These methods may be formulated to be unconditionally stable and
are inherently amenable to parallel processing. The implicit solution of
each subdomain may be performed independently of all other domains and
only nearest neighbor communication is required for the averaging
procedure in each time step. However, these methods have limited range of

applicability (Ortiz 1991) and have been shown to provide inadequate
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accuracy for practical time step sizes in dynamic analyses of framed
structures (Hajjar and Abel 1989b) due to conditional consistency in these
methods (Farhat and Sobh 1990).

Summary of Algorithms

As discussed previously, the semi-implicit algorithms are inherently
sequential and not suitable for parallel implementation. Both the group
explicit and group implicit algorithms are well suited for parallel
processing, but the group explicit algorithms suffer from inaccuracy
problems, and the group implicit algorithms have limited range of
applicability. In addition, the efficiency of parallel mixed-time integration
methods depends mainly on how the load-balancing issues are addressed.
In a distributed memory environment such as the networked workstations
investigated in this work, the inherent high communication overhead may

make the load-balancing task difficult and expensive.

The explicit central difference method is inherently amenable to
parallel processing, but is conditionally stable and often requires at least an
order-of-magnitude more time steps than an unconditionally stable implicit
method. Therefore, for certain dynamics problems, such as those involving
short-duration loadings (such as impact) where a short time step is
necessary to capture the dynamic phenomena, the parallel central difference

analysis can be a powerful and efficient time integration algorithm.

The implicit algorithms are not as amenable to parallel processing as
the explicit central difference method because a global simultaneous
solution is needed in each time step. However, the unconditional stability of

these methods makes them more suitable for long-duration problems than
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the central difference method. The major challenge in the parallel implicit
analysis is the devising of an efficient parallel solution technique for the set
of simultaneous equations relating the inter-substructure degrees of

freedom.

3.2.2 Parallel Equation Solvers

The solution of the linear system of equations is required both in a
number of time integration methods (as discussed in Section 3.2.1.2) and in
steady-state (static) analyses (for example, see Eq. 2.32). Since the equation
solving can be the most time consuming task in an analysis, the efficiency of
its parallel implementation greatly affects the performance of the entire
parallel analysis. Many techniques for parallel solution of simultaneous
equations have been studied in previous research and are reviewed briefly

in this subsection.
Direct Algorithms

Direct algorithms obtain the solution of the system of equations in a
known number of arithmetic operations and within machine precision (.e.,
with only the rounding and critical-arithmetic errors introduced in the
computation). The most widely used direct algorithms are Gaussian
elimination and its variants, such as Cholesky (LLT), and LDLT
decompositions. Formulations of these methods are well known (see, for
example, Golub and Van Loan 1989; Bathe 1982) and, therefore, not
repeated here. Because the system of equations arising in many finite
element formulations is symmetric, positive definite, and banded, these
direct methods are usually more efficient than iterative methods on

sequential computers.
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A significant amount of research has been devoted to parallelization
of direct algorithms on both shared and distributed memory parallel
environments. For example, a parallel row-oriented Gaussian elimination
was devised by Farhat (1987) for both the Intel iPSC Hypercube (local
memory) and the Cray X-MP (shared memory) computers. A parallel active
column solver was developed by Farhat and Wilson (1988) on both the Intel
iPSC Hypercube (local memory) and the Encore Multimax (shared memory)
computers. Parallel Cholesky decomposition solvers were studied by Farhat
(1987) on the Intel iPSC Hypercube (local memory) computer and by Chiang
and Fulton (1990) on both the FLEX/32 (shared memory) and the Intel iPSC
Hypercube (local memory) computers. In addition, a parallel frontal solver
was presented by Zhang and Lui (1991) on the Alliant FX/80 (shared

memory) computer.

In addition to the difficulty involved in the parallel implementation of
direct algorithms due to the sequential procedures inherent in the
algorithms, parallel direct algorithms usually require extensive interprocess
communication and entail difficult load balancing tasks. In the context of
finite element analysis, the partitioning of data for the parallel direct
solvers is generally different from that for other phases of the analysis, such
as element formation and stress recovery. Furthermore, to achieve high
parallel efficiency, different phases of the parallel direct solution (for
example, forward reduction and backward substitution) may require
different data partitioning strategies. All of the above complexities plus the
shared database nature of the decomposition procedure make the shared
memory environment a more efficient parallel environment for parallel

direct algorithms than the distributed memory environment.
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A popular étrategy used in the parallel implementation of direct
solvers is substructuring. The substructuring strategy first partitions the
structure into a number of subdomains and assigns each subdomain to a
separate processor. Then, assembly and static condensation are performed
independently and concurrently within each subdomain without any
interprocess communication. Finally, a condensed set of equations
associated with unknowns along subdomain interfaces is solved by a desired
parallel direct algorithm. This approach greatly reduces the cost of
interprocess communication and, therefore, is more efficient than the
outright use of parallel direct solvers for the solution of the entire set of

original equations.
Iterative Algorithms

Starting with an initial approximation of the solution, iterative
algorithms calculate successive approximations of the solution until the
approximation converges to the exact solution with the desired accuracy.
Some commonly used iterative algorithms include Jacobi, Gauss-Seidel,
successive overrelaxation, dynamic relaxation, and conjugate gradient
methods. Descriptions of these iterative methods are available elsewhere
(see, for example, Hageman and Young 1981; Jennings 1977; Golub and Van
Loan 1989; Underwood 1983) and are not repeated here. When iterative
methods converge sufficiently fast, they generally require less amount of
computation than direct methods. For problems with a considerable
number of unknowns (say, for example, over 10,000) and large bandwidth,
iterative methods appear to be especially more effective than direct
methods. However, the efficiency of iterative methods depends heavily on

how fast they converge which is usually not known a priori.
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Considerable research has been conducted on the parallel
implementation of iterative algorithms. For example, a parallel block SOR
iteration method was developed by Farhat (1987) using a reéursive
substructuring technique. Evan and Yousif (1992) reviewed and presented
asynchronous parallel iterative methods, such as asynchronous parallel
Jacobi and Gauss-Seidel methods as well as a purely asynchronous parallel
iterative method. A synchronous parallel Jacobi method was also
implemented for comparison with the asynchronous methods. It was shown
that asynchronous methods were more effective than synchronous methods
because they had less synchronization overhead and it was easier to achieve
load-balancing among processors. A parallel explicit dynamic relaxation
method was implemented by Farhat and Crivelli (1989). Although this
method is robust and amenable to parallel processing, it may be slow in
some applications. In addition, Nour-Omid et al. (1987) investigated a
parallel preconditioned conjugate gradient method with two different
preconditioners: diagonal scaling and incomplete LU factorization. It was
found that the incomplete LU preconditioning was more effective in
reducing the number of iterations than the diagonal preconditioning, but
spent more time per iteration and resulted in an overall increase in the

solution time.
Hybrid Algorithms

Hybrid algorithms combine advantages of both direct and iterative
methods. These algorithms start with partitioning the structure into a
number of subdomains and assign each subdomain to a separate processor.
Then, a direct decomposition method is used for substructure condensation

which is carried out on each processor independently and concurrently

C -2
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without any interprocess communication. Finally, a condensed set of
system equations associated with unknowns along subdomain interfaces is
solved by a parallel iterative algorithm. Examples of parallel
implementation of hybrid algorithms can be found in Nour-Omid et al.

(1987) and Hajjar (1987, 1988).

3.3 Present Approaches

This section discusses the parallel solution algorithms investigated
and implemented in this work for simulations of structural dynamics. For
parallel explicit transient analysis, the parallel central difference method
developed by Hajjar and Abel (1989a) is adopted in this regearch. For
parallel implicit transient analysis, the parallel Newmark algorithm with
domain decomposition developed by Hajjar and Abel (1988) is adopted with
slight modifications. The implementation of the former algorithm has been
carried out in collaboration with Dr. Brian H. Aubert, while the
implementation of the latter algorithm has been carried out in collaboration
with Dr. Sanjeev Srivastav, both at the Cornell Program of Computer
Graphics. For steady-state analysis, a parallel Newton-Raphson iterative
incremental algorithm has been implemented. This algorithm uses the
same approach as the parallel implicit algorithm except that the time

stepping outer loop is replaced by the load increment outer loop.

3.3.1 Parallel Explicit Transient Solution

The present research adopts the parallel central difference method
developed by Hajjar and Abel (1989a) for explicit transient solution of
structural dynamics. Formulation of the central difference method has

already been presented in Section 2.4 (see Egs. 2.38 - 2.42). As discussed
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previously, the central difference algorithm is inherently amenable to
parallel processing. With the use of lumped masses to yield a diagonal
mass matrix, solution may proceed on a degree-of-freedom level without
assembly of the global matrices and solution of simultaneous equations (see,

for example, Eq. 2.42).

To take advantage of parallel processing, the finite element domain is
first partitioned into a number of subdomains which are then distributed
among the processors, and the computation involved in each subdomain is
carried out by a separate processor. The structural partitioning needed by
the present central difference algorithm is shown in Fig. 3.1 for a simple
two-dimensional frame. The elements in a particular substructure are
either interior elements if both their nodes lie completely within the
boundary of the substructure, or border elements if one of their nodes is
resident in a neighboring substructure. The interior nodes in a particular
substructure are nodes lying within the boundary of the substructure. The
boundary nodes are a subset of the interior nodes and connected to at least
one border element. The adjacent nodes are also connected to at least one

border element, but lie outside the boundary of the substructure.

With this partition of structural data, the interprocess
communication can be minimized by including the border elements on both
of the processors associated with neighboring substructures. In this case,
only one nearest-neighbor communication for exchanging the displacements
of the boundary nodes is required per time step. This communication
efficiency is achieved at the expense of a duplication of effort to perform the
element calculations for the border elements on the processors sharing these

elements. This approach is suitable for parallel analyses in which the
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number of border elements is significantly smaller than the number of
interior elements and the cost of interprocess communication is relatively
high. This is usually the case for the type of problem and environment

characterizing the current work.
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| | Adjacent node

[“*— Substructure boundary

Figure 3.1 The partition of structural data for the parallel explicit
algorithm (Hajjar and Abel 1989a)

The parallel central difference method has been implemented in
ABREAST using a multiple-instruction, multiple-data (MIMD) algorithm in
a message passing environment provided by ISIS. Each processor executes

identical code, but asynchronously and on different data (i.e., on a different
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substructure). Within each time step, the one nearest-neighbor
communication for exchanging the displacements of the boundary nodes is
achieved through ISIS process-group and broadcast mechanisms. Table 3.1
briefly outlines the present implementation of this parallel algorithm. It
should be noted that synchronization only between adjacent processors is

required at Steps (5b) and (5c¢) to avoid race conditions.

Table 3.1 Parallel explicit algorithm

(1) Input and setup basic analysis data.
(2) Compute internal force vector.
(8) Compute load vector.
(4) Solve for displacements.
(5) Exchange the displacements of the boundary nodes with
adjacent substructures through message passing.
(5a) Send requests to adjacent substructures for the
displacements of the adjacent nodes.
(5b) Wait for requests from adjacent substructures, then send
out the displacements of the boundary nodes.
(5¢) Wait until displacements for all the adjacent nodes are
received.
(6) Compute velocities and accelerations.
(7) Recover stresses and strains.
(8) Go to (2) for next time step.

In addition, to maximize the portability of the code for any UNIX or
UNIX-like operating system and for alternative message passing
environments, an effort has been taken to provide a layer of software to
isolate the ISIS message passing routines from the application code (this

has been done for all parallel implementations in this work). To illustrate
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what and how ISIS routines are used in this work to achieve interprocess
communication and synchronization for all implemented parallel
algorithms, some example segments extracted directly from the analysis

program are provided in Appendix A.

3.3.2 Parallel Implicit Transient Solution

The present research investigates the parallel Newmark constant
average acceleration algorithm with domain decomposition described by
Hajjar and Abel (1988) for implicit transient solution of structural
dynamics. Formulation of the Newmark constant average acceleration
algorithm has already been presented in Section 2.4 (see Egs. 2.43 - 2.47).
Within the Newmark time stepping outer loop, the domain decomposition
approach employs a hybrid algorithm as discussed previously in Section
3.2.1.2 for the solution of a set of dynamic equilibrium equations (see, for
example, Eq. 2.45). For the sake of discussions, formulation of the domain

decomposition approach is briefly reviewed here.

The domain decomposition approach requires that the finite element
domain be partitioned into a number of subdomains for substructuring
analysis. The structural partitioning needed is shown in Fig. 3.2 for the
same two-dimensional frame of Fig. 3.1. The nodes in a particular
subdomain are either interior nodes, which lie within the boundary of the
subdomain, or boundary nodes, which lie along the interfaces between
subdomains. The boundary nodes are further categorized into primary and
secondary boundary nodes. Each boundary node is a primary node in only
one subdomain but, at the same time, a secondary boundary node in all

other subdomains which share it. The interior elements in a particular
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subdomain are connected to at least one interior node, while the boundary

elements are not connected to any interior nodes but boundary nodes.

Interior element
Boundary element

@ Interior node
M Primary boundary node
O Secondary boundary node

Figure 3.2 The partition of structural data for the parallel implicit
algorithm (Hajjar and Abel 1988)



90

For each subdomain s, which has interior degrees-of-freedom i and

boundary degrees-of-freedom h, the partitioning takes the form
(&3] [ {{Au?}} i) 3.1)
ke [ Hautl] [{Rr2)

In this work the modified decomposition algorithm developed by Han and

Abel (1984) is used for the condensation of the interior degrees-of-freedom.

The condensation results in a reduced set of equations

(k3 {aut} = {RE} 52
in which

(3] = [Ka]- (N3] (N3] 63

(g =[] 3, (3.4)

(k3] =[ua] [La]” 3.5

In the current implementation, the skyline format is used for matrices [K‘;‘i],
[th], [Nfﬁ], and [Lfi]. The Cholesky decomposition is performed in Eq.
(3.5) to obtain [Lfi], then the following formula is used directly to compute
[N%]
k=1
Njk=(Kjk— ZNjnLknJ/Lij (3.6)
n=1
in which Nj is the element at the jth row and kth column of [Nii], Kik is the
element at the jth row and ktb column of [th], and Ly, is the element at the

kth row and nth column of [Lisi]. To take advantage of the skyline format,

the summation index n in Eq. (3.6) does not actually start from one but,

instead, starts from the first nonzero product.
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Upon completion of the condensation, Egs. (3.2) for all subdomains
are assembled to form a set of global equations for the unknowns along the
subdomain interfaces. In this research, a parallel preconditioned conjugate

gradient method is used for solution of these unknowns. Then, the following

equation is used by each subdomain to solve for { Auis}:
{aus} = [ra] L] {Re}-[x3){sutD a7

The present research investigates two different preconditioners for
the parallel preconditioned conjugate gradient method. The first one, which
was used by Hajjar and Abel (1988), factors the coefficient matrix [Kf_l] (see
Eq. 3.2) of each subdomain, and the factored preconditioner is constructed
as

A

[P = Nfb([K{{]_l) (3.8)

F1t

in which Ng,, is the number of subdomains and ¥, is the global finite

element assembly operator. It should be noted that [Kil] in Eq. (3.8) may

not be positive definite for subdomains that does not have enough
prescribed displacements to avoid local rigid body motions. In dynamic

analyses, however, the contribution of the mass matrix (to the effective

stiffness matrix of Eq. 2.46) may in many cases help make [K‘I‘{] positive

definite. Generally speaking, the successful construction of this

preconditioner is not always guaranteed.

The second preconditioner investigated here assembles only the

diagonals of [K%] from all subdomains to construct the diagonal scaling

preconditioner of the form
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[P]= :iil': diag([KAi}]) (3.9)

in which Ny is the number of subdomains, I, is the global finite element
assembly operator, and diag(.) retains only the diagonal terms in a matrix.
This preconditioner is selected in this research over other preconditioners,
such as incomplete Cholesky and block diagonal scaling preconditioners,
because it is simple and requires less computation and interprocess

communication.

The parallel Newmark constant average acceleration algorithm with
domain decomposition described above has been implemented in ABREAST
using a MIMD algorithm. Within each time step, the substructure
condensation for each subdomain is performed on a separate processor
independently and concurrently with no interprocess communication
required. The solution of the unknowns along the subdomain interfaces is
then computed using the parallel preconditioned conjugate gradient
algorithm which requires both nearest-neighbor and global interprocess
communication. For nonlinear analysis, the present research uses a
modified-Newton iterative solution scheme to obtain the equilibrium
solution at the end of each time step. This equilibrium check also requires
both nearest-neighbor and global interprocess communication. Tables 3.2 -
3.5 briefly outline the present implementation of this parallel implicit
algorithm. It should be noted that a host processor is selected among
processors automatically by the program at the beginning of the analysis to
facilitate global interprocess communication whenever it is needed. In
addition, the dot products needed by the conjugate gradient algorithm in

Table 3.4 are computed on the primary boundary nodes.
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Table 3.2 Parallel implicit algorithm

(1)
(2)
(3)
4)
(5)

(6)
(7
(8)

(9)

Input and setup basic analysis data.

Compute internal force vector.

Compute global stiffness matrix (as of Eq. 2.46).

Compute load vector (as of Eq. 2.47).

Solve for displacements.

(5a) Condense the interior degrees-of-freedom.

(5b) Assemble condensed load vector (see Table 3.3).

(6¢) Use parallel preconditioned conjugate gradient method (see
Table 3.4) to solve for boundary degrees-of-freedoms.

(56d) Solve for interior degrees-of-freedoms.

Compute velocities and accelerations.

Recover stresses and strains.

Check equilibrium for nonlinear analysis.

(8a) Assemble internal force and load vectors (see Table 3.3).
(8b) Compute unbalanced force vector.

(8c) Assemble unbalanced force norm (see Table 3.5).

(8d) Go to (9) if convergence is achieved.

(8e) Solve for displacements (same as Step 5).

(8f) Compute velocities and accelerations (same as Step 6).
(8g) Recover stresses and strains (same as Step 7) and go to (8a).
Go to (2) for next time step.

Table 3.3 Assembly of the vector at subdomain boundary

(1)

(2)

(3)

Send requests to adjacent subdomains for their contributions to
the vector being assembled for the current subdomain.

Wait for requests from adjacent subdomains, then send out the
contributions of the current subdomain to adjacent subdomains.
Wait until contributions from all adjacent subdomains are
received and assembled.
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Table 3.4 Parallel preconditioned conjugate gradient algorithm

K] = [K%], k = iteration number = 0; {u}, = {0}; {r}, = (R} = {RA’H},
While( [{r},], < (tol)|{R}], )

Solve [P1{z}, = {r},

k=k+1
Assemble {z}, (see Table 3.3) and compute average values over

neighboring subdomains
Assemble the dot product {r}ﬁ{z}k (see Table 3.5)
if(k=1)

{p}; ={z},
else

T T
Bk = {f}k-1{z}k—1/{r}k—z{z}k-z
{p} = {zhe_y + Br{pPhi,

end
Assemble {S} = [K]{p}, (Table 3.3)

Assemble the dot product {p}: {S} (see Table 3.5)
T T
o = {r}_{z}_1/ {Ph [KI{p}y

{ul = {uh_ +au{ph  {r} = {rh_,- alK[{p}y
Assemble the dot products {r};f{r}k and {R}"{R} (see Table 3.5)

end

{u} = solution vector = {u)k

Table 3.5 Assembly of the dot product

(1)

(2)

(3)

(4)

Signal adjacent subdomains that the current processor is ready for
assembling the dot product.

Wait for signals from adjacent subdomains, then send out local dot
product to host processor.

If the current processor is the host processor, wait until local dot
products from all processors are received and assembled, then
send assembled global dot product to all processors.

Wait until global dot product is received from the host processor.
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3.3.3 Parallel Steady-State Solution

The present research implements a parallel Newton-Raphson
iterative incremental algorithm for steady-state solution of rotational
dynamics. The algorithm uses the same domain decomposition approach as
the parallel implicit algorithm discussed previously. The algorithm has also
been implemented in ABREAST and is outlined briefly in Table 3.6.

Table 3.6 Parallel steady-state (static) algorithm

(1) Input and setup basic analysis data.
(2) Compute global stiffness matrix.
(3) Compute load vector.
(4) Solve for displacements.
(4a) Condense the interior degrees-of-freedom.
(4b) Assemble condensed load vector (see Table 3.3).
(4c) Use parallel preconditioned conjugate gradient method (see
Table 3.4) to solve for boundary degrees-of-freedoms.
(4d) Solve for interior degrees-of-freedom.
(5) Recover stresses and strains.
(6) Check equilibrium for nonlinear analysis.
(6a) Assemble internal force and load vectors (see Table 3.3).
(6b) Compute unbalanced force vector.
(6¢c) Assemble unbalanced force norm (see Table 3.5).
(6d) Go to (7)if convergence is achieved.
(6e) Compute global stiffness matrix (same as Step 2).
(6f) Solve for displacements (same as Step 4).
(6g) Recover stresses and strains (same as Step 5) and go to (6a).
(7) If at the end of final increment, go to (8); else go to (2).
(8) Perform (8a) and (8b) recursively until the update of the load
vector no longer affects the equilibrium.
(8a) Update load vector (see Table 3.3).
(8b) Perform equilibrium iterations (same as Step 6).
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3.4 Effectiveness of Parallel Analysis

This section evaluates and discusses the effectiveness of the parallel
algorithms implemented in this research. The implementation of the
parallel algorithms have been verified by comparing results of parallel
analyses with those of serial analyses. The following definitions of speed-
up, S, and efficiency, E, are used to evaluate the performance of the parallel
algorithm:

Elapsed wall clock time for solution on one processor

= Elapsed wall clock time for solution on Ny processors (3.10)
IORS ei:tu x 100 (3.11)

in which Np is the number of processors used in the parallel analysis. The
wall-clock time is used in Eq. (3.10) because it yields the most conservative
measures of speedup and efficiencies. For example, communication delays
and overhead are fully accounted for with this definition. Nevertheless, it
should be stated that the results reported in this thesis were obtained by

runs overnight while there was little other traffic on the network.

In the investigation of both the parallel implicit and steady-state
analyses, it should be noted that the single-processor analysis does not use
the substructuring (or domain decomposition) approach but, instead, uses a
direct Gauss elimination method for the solution of the total set of original
equations. For the solution of problems which are not too large to be
accommodated in the core memory of a single processor, this direct
approach is believed to be more efficient than the substructuring approach
with either a direct or an iterative equation solver in most cases. This also

leads to more conservative measures of speed-up and efficiency.
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3.4.1 Parallel Explicit Transient Analysis

Three structures of increasing size have been used in the preliminary
study (Abel et al. 1991; Aubert 1992) to evaluate the effectiveness of the
parallel central difference algorithm described in Section 3.2.2.1. The first
structure is a transmission tower shown in Fig. 3.3. The tower has 434

truss elements, 160 nodes, and 468 unrestrained degrees of freedom. The

Figure 3.3 The finite element model of a transmission tower with 434

elements, 160 nodes, and 468 unrestrained degrees of freedom
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structure is subjected to the El Centro earthquake. Both geometrical and
material nonlinearities are considered in the analysis. Up to four

DEC5000's are used.

The second structure is shown in Fig. 3.4 which is an unsupported
space station with 1,428 truss elements, 304 nodes, and 912 unrestrained
degrees of freedom. The structure is loaded with self-equilibrating external
loads (Aubert 1992; Aubert et al. 1992) and is analyzed with the
consideration of geometrical nonlinearity. Up to four DEC5000's are used.

Figure 3.4 The finite element model of a space station with 1,428 elements,

304 nodes, and 912 unrestrained degrees of freedom

The third structure is a thirty-story building shown in Fig. 3.5. The
structure consists of 1,200 beam-column elements, 496 nodes, and 2,880

unrestrained degrees of freedom and is subjected to the El Centro



99

earthquake. Both geometrical and material nonlinearities are considered in

the analysis. Up to five DEC5000's are used.

YVVVV

AANA

Figure 3.5 The finite element model of a thirty-story building with 1,200

elements, 496 nodes, and 2,880 unrestrained degrees of freedom

Figure 3.6 plots the speed-up results obtained in the parallel analyses
versus the linear (optimal) speed-up. For the transmission tower, which is

the smallest structure in these three examples, the speed-up ranges from
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1.7 for two processors to 2.7 for four processors. For the 30-story building,
the largest one in the three examples, the speed-up ranges from 1.8 for two

processors to 4.1 for five processors.
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Figure 3.6 Speed-up results obtained for the parallel analysis on the
structures of Figs. 3.3 - 3.5

In addition to the above studies, several geometrically nonlinear
analyses using the consistent mass approach have been performed of the

rotating bladed-disk problem with the finite element model of Fig. 3.7. The
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model consists of 504 twenty-node brick solid elements, 3,828 nodes, and
10,044 unrestrained degrees of freedom. Up to six DEC5000's or up to
twelve HP9000/720's are used. A time step of 0.00001 seconds is used, and
100 time steps were run. The speed-up and efficiency results obtained from
the parallel analyses are given in Table 3.7. It takes about five hours and
thirty-two minutes for a single DEC5000 to complete the analysis, while it
takes about two hours and fifty-five minutes for a single HP9000/720. The
speed-up results of each analysis are plotted versus the linear (optimal)

speed-up in Fig. 3.8.

Figure 3.7 A finite element model of a 12-bladed turbine disk with 504

elements, 3,828 nodes, and 10,044 unrestrained degrees of freedom
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Table 3.7 The speed-up and efficiency of the parallel central difference
algorithm for analysis of the rotating bladed-disk problem of Fig. 3.7

DEC5000 HP9000/720
N, Speed-up Efficiency (%) Speed-up Efficiency (%)
2 1.9 96 1.9 96
3 2.9 96 2.9 96
4 3.8 94 3.8 95
6 5.4 90 5.6 93
12 - -- 9.7 81
12 ’
11 7
10
9]
87
5 77
w57
47
37 —e— Linear speed-up
27 —a&— Speed-up on DEC's
1- ——o— Speed-up on HP's
0 T T T T T T T T T T T T

o 1 2 3 4 5 6 7 8 9 10 11 1

Number of processors

Figure 3.8 Speed-up of the parallel central difference method applied to the
bladed-disk of Fig. 3.7
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From Fig. 3.6, Table 3.7, and Fig. 3.8, the effectiveness of the parallel
central difference method is apparent. It should be noted that the analyses
cannot achieve linear speed-up, even with no communication overhead,
because element calculations for the border elements are duplicated in the
processors sharing these border elements. However, as long as the ratio of
the number of border elements to the number of interior elements in each
substructure is small, the parallel central difference algorithm can achieve
high speed-up and efficiency.

3.4.2 Parallel Implicit Transient Analysis

Two structures have been analyzed to investigate the effectiveness of
the parallel implicit algorithm. The first one is the same thirty-story
building shown in Fig. 3.5. The building is subjected to the El Centro
earthquake. Geometrically nonlinear analyses are performed. The time
step is 0.01 seconds and 5 seconds of the earthquake are analyzed. The
convergence tolerance for the modified-Newton iterations is 1x10'5, while
the convergence tolerance for the conjugate gradient iterations is 1x10°8.

Up to three DEC5000's are used for the analyses.

The speed-up and efficiency results obtained from the parallel
analyses are given in Table 3.8. ANCGI denotes the average number of
conjugate gradient iterations, while NIDOF denotes the total number of
degrees of freedom on the subdomain interfaces. The average number of
modified-Newton iterations per time step for all analyses is three. The
analysis on a single DEC5000 takes about four hours and twenty-three

minutes.
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From Table 3.8, it can be observed that both preconditioners
accelerate the convergence of the conjugate gradient iteration, but the
diagonal scaling preconditioner of Eq. (3.9) is more effective in this case. In
addition, as the number of processors increases from two to three, both the
number of interface degrees of freedom and the number of conjugate
gradient iterations increase, resulting in an increase of the total amount of
synchronization and communication overhead. Although, at the same time,
the amount of computation per processor decreases, the increase of
overhead dominates in this case and the speed-up factors drop. This means
that nothing is gained by having more than two processors in the parallel

analysis of this example.

Table 3.8 The speed-up and efficiency of the parallel implicit algorithm for
analysis of the thirty-story building of Fig. 3.5 (with the use of modified-

Newton iteration solution scheme)

Preconditioner |
Diagonal
2 Eq. (3.8) 20 1.1 56 96
None 29 1.1 52
Diagonal 7 1.3 44
3 Eq. (3.8) 31 0.7 24 192
None 44 0.7 23

It should be noted that the use of modified-Newton iteration scheme
is unfavorable to the conjugate gradient solution method because, in the
equilibrium iteration loops, only backward substitution is required for the

direct Gauss elimination method (which is the case of Np = 1), while it is not
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the case for the conjugate gradient method. To demonstrate this point, the
same analyses are performed using the simple incremental solution scheme,
instead of modified-Newton iteration scheme, for the cases of Ny = 1 and N
= 2. The results are given in Table 3.9. It takes about three hours and
twenty-five minutes for the analysis on a single DEC5000. It can be seen
that the average number of conjugate gradient iterations decreases and
better speed-up factors are obtained. Surprisingly, however, the
preconditioner of Eq. (3.8) does not reduce but increases the number of

iterations in this case.

Table 3.9 The speed-up and efficiency of the parallel implicit algorithm for
analysis of the thirty-story building of Fig. 3.5 (with the use of simple

incremental solution scheme)

_Np | Preconditioner | ANCGI | S | E(®%) | NIDOF
Diagonal 3 1.5 75
2 Eq. (3.8) 17 1.4 69 96
None 16 1.4 71

The second structure analyzed is a twelve-story L-shaped building
shown in Fig. 3.9. The finite element model of the structure consists of 468
beam-column elements, 72 nine-node Lagrangian shell elements, 482 nodes,
and 2,508 unrestrained degrees of freedom. Again, the structure is
subjected to the El Centro earthquake and geometrically nonlinear analyses
are performed. The time step is 0.01 seconds and only 0.5 seconds of the
earthquake are analyzed. The convergence tolerance for the modified-

Newton iterations is 1x10°°, while the convergence tolerance for the
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conjugate gradient iterations is 1x10°8, Up to four DEC5000's or up to four
HP9000/720's are used for the analyses.

Figure 3.9 A finite element model of a 12-story L-shaped building with 468
beam-column elements, 72 shell elements, 482 nodes, and 2,508

unrestrained degrees of freedom

Table 3.10 reports the speed-up and efficiency results obtained from
the parallel analyses. ANCGI denotes the average number of conjugate
gradient iterations, while NIDOF denotes the total number of degrees of
freedom on the subdomain interfaces. The average number of modified-
Newton iterations per time step for all analyses is three. The analysis takes
about three hours and forty-four minutes on a single DEC5000, while it

takes about two hours and nine minutes on a single HP9000/720. In this
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example, the preconditioner of Eq. (3.8) is not used because singular [Kf{] is

encountered during the analysis. All analyses performed on HP9000/720's
use the diagonal scaling preconditioner of Eq. (3.9). In addition, the speed-
up results of each analysis are plotted versus the linear speed-up in Fig.

3.10.

Table 3.10 The speed-up and efficiency of the parallel implicit algorithm for
analysis of the twenty-story L-shaped building of Fig. 3.9

DEC5000 HP9000/720
._NL Preconditioner | ANCGI ==S= E (%) S E (%) | NIDOF

Diagonal 13 2.1 103 2.1 104

2 None 85 1.8 91 -- -- 84
Diagonal 13 2.5 84 2.5 84

3 None 126 1.6 54 -- -- 168
Diagonal 13 3.3 81 3.3 83

4 None 140 1.6 40 -- -- 252

From table 3.10 and Fig. 3.10, three observations can be made. First,
the diagonal scaling preconditioner of Eq. (3.9) is again very effective in
reducing the number of iterations. As the number of processors increases,
the average number of conjugate gradient iterations increases in the
unpreconditioned analyses but remains the same in the preconditioned

analyses.

Second, the speed-up factors for the unpreconditioned analyses

decreases when the number of processor increases, while those for the
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preconditioned analyses increase. This shows the significance of the

preconditioning.

—~——e——— Linear speed-up
59 —— Speed-up on DEC's (preconditioned)

—a— Speed-up on DEC's (unpreconditioned)
———— Speed-up on HP's (preconditioned)
4 -
g 34
)
-]
Qo
=%
w
2 -
1 -
0 T T T T 1
0 1 -2 3 4 5

Number of processors

Figure 3.10 Speed-up for the twelve-story L-shaped building of Fig. 3.9
using the parallel implicit algorithm

Third, superlinear speed-up is achieved in the preconditioned
analysis for the case of Np = 2. This is probably due to the fact that the
profile (or skyline) of the coefficient matrix for the whole structure in the
serial analysis is not as well minimized as that of the coefficient matrix for
each subdomain in the parallel analysis. The nodal numbering for the

whole structure is currently done in BASYS by a crude bandwidth
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minimization algorithm (Srivastav 1991), while nodal renumbering is
performed for each subdomain using a modified version of the Gibbs-King
profile reduction algorithm (Paulino 1988) in PSAINT. If the same profile
reduction algorithm used for nodal renumbering in each subdomain is used
to renumber the nodes in the whole structure, it is believed that the

superlinear speed-up would not occur in this example.

Generally speaking, the parallel implicit algorithm is not as efficient
as the parallel explicit algorithm because significantly more synchronization
and communication overhead is required in the analysis. Nevertheless, it
has been shown in the above study that the parallel implicit algorithm is
reasonably effective for parallel nonlinear solution of structural dynamics,
especially when the problem size is large and an appropriate number of
processors is used. In addition, the preconditioning often accelerates the
convergence rate of the conjugate gradient method, leading to better
performance of the parallel implicit algorithm. The effectiveness of the

diagonal scaling preconditioner is evident in both examples studied.
3.4.3 Parallel Steady-State Analysis

The steady-state analysis of the rotating bladed-disk with the finite
element model of Fig. 3.7 is conducted to investigate the effectiveness of the
parallel steady-state algorithm. The structure is rotating at a constant
speed of 100 rpm. Geometrically nonlinear analyses are required. The
consistent mass approach is employed to account for rotational
nonlinearities. The convergence tolerance for the Newton-Raphson

iterations is 1x10'5, while the convergence tolerance for the conjugate
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gradient iterations is 1x1071°. Up to six DEC5000's or up to six
HP9000/720's are used for the analyses.

The speed-up and efficiency results obtained from the parallel
analyses are reported in Table 3.11. ANCGI denotes the average number of
conjugate gradient iterations, while NIDOF denotes the total number of
degrees of freedom on the subdomain interfaces. A total of fourteen
Newton-Raphson iterations is required for all analyses to obtain final
equilibrium solutions. The analysis on a single DEC5000 takes about three
hours and eight minutes, while it takes about one hour and forty-six
minutes on a single HP9000/720. In addition, Fig. 3.11 plots the speed-up

results of each preconditioned analysis versus the linear speed-up.

Table 3.11 The speed-up and efficiency of the parallel steady-state
algorithm for analysis of the rotating bladed-disk of Fig. 3.7

DEC5000 HP9000/720

N, | Preconditioner | ANCGI| S E (%) S E (%) | NIDOF
Diagonal 37 1.4 71 1.5 74

__2__= None 48 1.4 70 - - 144
Diagonal 49 2.0 68 2.2 74

_L None 52 2.0 65 -1 - 216
Diagonal 40 | 3 74 | 32 | 80

4 None 49 3.0 74 - -- 288
Diagonal 48 3.9 66 3.9 65

6 None 54 3.9 65 -- -- 432

From Table 3.11 and Fig. 3.11, two observations are obtained. First,

the diagonal preconditioning successfully reduces the number of iterations
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required in conjugate gradient method but the reduction is less significant
for this example than for those examples studied in previous section. In
addition, the speed-up and efficiency of the preconditioned analysis is only
slightly better than the unpreconditioned analysis. This may be because the
additional communication overhead required in the preconditioned analysis
offsets the reduction of communication overhead due to the reduction of

iteration number.

7 -
64 —e—— Linear speed-up
—o—— Speed-up on DEC's
5 ——o— Speed-up on HP's ,
a 47
7
o
3
a 37
m -
2 -
1 -t
0 T T T T T T 1

0 1 2 3 4 5 6 7
Number of processors

Figure 3.11 Speed-up for the 12-bladed turbine disk of Fig. 3.7 using the

parallel steady-state algorithm

Second, as the number of processors increases, the speed-up factors

increase. It should be noted, however, that the efficiency factors increase
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significantly and reach the peak when the number of processors goes from
three to four. The average number of conjugate gradient iterations required
for the case of Np = 4 is also smaller than those for the case of Np = 3. This
is because the nature of the structural domain partitioning affects both the
efficiency of the substructuring condensation in each subdomain and the
condition number of the condensed coefficient matrix. In this case, it
happens to be that the partitioning for the case of Ny = 4 results in the best

parallel performance of the algorithm among all cases.

Because the parallel steady-state algorithm is very similar to the
parallel implicit algorithm, the examples presented in both the present and
previous sections may be studied together to evaluate the effectiveness of
the same parallel approach used by both algorithms. Although high
synchronization and communication costs are inherent in the present
networked workstation environment, the results obtained in these examples
are encouraging. These results also indicate that both the implicit dynamic
and steady-state analyses of either framed structures or rotating turbine

bladed-disks can benefit from parallel processing.



Chapter 4

Load Balancing Among Processors

As discussed in Chapter 3, to take advantage of parallel processing in
finite element analysis, the domain is usually partitioned (or decomposed)
into a number of subdomains which are distributed among the processors
and the computation involved in a subdomain is carried out by a separate
processor. The key problems of this approach are how to partition the
domain to achieve well-balanced workload distribution among processors
and how to minimize the amount of interprocess communication so that

significant speed-up can be obtained in the parallel analysis.

Load-balancing techniques have frequently been classified as either
static or dynamic. Static load balancing techniques assume a priori
knowledge of the static characteristics of the tasks and the system to
distribute the tasks among processors. The task distribution is done only
once and before the actual computation starts (i.e., in the preprocessing
phase). Dynamic load balancing (sometimes referred to as adaptive load
balancing) techniques utilize short-term knowledge of current state
information of the tasks and the system to dynamically distribute the tasks
among processors during the task execution. The tasks originally assigned
to a processor may be migrated (or redistributed) to other processors at any
time during the computation to improve the load balance. Dynamic load
balancing may be important in problems involving material nonlinearity,

self-adaptive mesh refinement, crack propagation, etc.

113
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In this research, attention is limited to the static load balancing
techniques for the domain partitioning problems involved in parallel finite
element analysis of structural dynamics. Because the methods considered
must be applicable to finite element meshes which are large and generic
(irregular shapes, including multiply connected and/or branched), manual
partitioning may be difficult (if not impossible) even with the help of
interactive computer graphics. Simon (1991) has shown that visual
perception may be inadequate for the task of partitioning large three-
dimensional structures. Therefore, the focus of this work is on automatic
algorithms, although interactive graphics tools are also developed to allow
for manual partitioning and for examining and modifying results of
automatic partitioning. The discussion of development of the graphics tools
is deferred until Chapter 5.

Generic finite element meshes can be defined by the following four

characteristics:

a) large meshes which may lack topological or geometrical
regularity, e.g., meshes which have holes, loops, and/or branches.

b) meshes combining finite elements of different geometrical
dimensions, e.g., 1-D line elements, 2-D quadrilateral elements,
and 3-D brick elements.

c) meshes with finite elements of different shapes, e.g., triangular
elements with three nodes and quadrilateral elements with four
nodes.

d) meshes with finite elements of different interpolation orders, e.g.,

linear and quadratic.
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The above definition gives an idea of the complexity involved in the problem

of efficient partitioning of generic finite element meshes.

Different solution methods used in the analysis may require different
strategies for domain partitioning. Two types of partitioning strategies may
be classified: element-based partitioning and node-based partitioning. The
element-based algorithms focus on partitioning elements in finite element
meshes, while the node-based algorithms focus on partitioning nodes. For
parallel solutions of structural dynamics, implicit solution methods often
require element-based partitioning (for example, Hajjar and Abel 1988),
while explicit methods may require either type depending on the parallel
implementation (for example, Malone 1988; Hajjar and Abel 1989a). Both
types of partitioning algorithms are addressed in this fesearch. However,
emphasis is placed on algorithms suitable for use with the parallel solution

methods investigated extensively in this work as discussed in Chapter 3.

In this chapter, a brief review of previous research is given first, and
some basic concepts and definitions of graph theory needed for the purpose
of the present discussions are introduced. Then, domain partitioning
algorithms to effect load balancing among processors proposed by previous
researchers and developed by the present research are studied. Finally,
these partitioning algorithms are evaluated and compared using different

types of structures modelled by 1D, 2D, and 3D finite elements.
4.1 Review of Previous Research

There has been a great amount of research on load balancing in the
field of operating systems. Numerous algorithms and techniques, both

static and dynamic, have been studied and developed to maximize system
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performance (i.e., minimize job turnaround) and to optimize processor
utilization. Several types of system architectures have been also considered
in the literature. However, relatively little research has been conducted
addressing load balancing for parallel finite element analysis of structural

dynamics.

The problem of domain partitioning of finite element meshes is
equivalent to the problem of partitioning the graph associated with the
mesh. Graph partitioning is an important NP-complete problem (Garey and
Johnson 1979) and so is the general nature of mesh partitioning. Therefore,
obtaining optimal solutions is practically intractable, but is also
unnecessary because satisfactory near optimal solutions can always be

sought at a relatively low cost by the use of heuristic algorithms.

Using interactive computer graphics, Hajjar (1987) developed a set of
tools to help manually partition the structural domain for parallel dynamics
solutions of three-dimensional framed structures. This approach works well
for regular meshes with a small number of partitions. However, it is not in
general effective and feasible for meshes that are complex, irregular, and

large, especially if they are multi-connected and/or branched.

Flower et al. (1987) presented a simulated annealing method for
mapping irregular finite element domains to parallel processors. Although
these types of methods can give almost optimal results, they are usually

expensive and time-consuming especially for problems of large size.

After reviewing several decomposition algorithms proposed by
previous researchers, Malone (1988) proposed an automated mesh

decomposition method for transient analysis on hypercube multiprocessor
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computers using an explicit time integrator. The method is called Reduced
Bandwidth Decomposition (RBD) and is based on a scheme which reduces
the bandwidth of the matrix representation of the connectivities in the

mesh. Only element-based partitioning is addressed.

Farhat (1988) proposed an automatic finite element domain
decomposer which seeks to decompose a finite element mesh into a set of
balanced domains sharing a minimum number of common nodal points.
The decomposer is suitable for both shared memory and local memory
multiprocessors. This algorithm explicitly addresses the element-based
partitioning. The node-based partitioning is briefly discussed, but no
algorithm is suggested. A drawback of this algorithm is that it may create
domain splitting situation, i.e., portions of a domain may be unconnected or
not contiguous. The domain splitting increases the size of subdomain
boundaries as well as communication overhead in parallel computations. As
an attempt to avoid the domain splitting situation, Al-Nasra and Nguyen
(1991) incorporated the geometry information of the finite element meshes
into an automatic decomposition algorithm similar to the one proposed by
Farhat (1988). Padovan and Kwang (1991) also developed a direct element
connect filling (DECF) scheme which employs multiple starting nodes and
proceeds with an algorithm similar to Farhat's simultaneously for each
starting node to avoid possible domain splitting. The symmetry of the finite
element domain is considered in the selection of starting nodes and during

the partitioning process.

Simon (1991) compared three partitioning algorithms: recursive
coordinate bisection, recursive graph bisection, and recursive spectral

bisection algorithms, and shows the superiority of the new spectral bisection
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algorithm over the other two. Only element-based partitioning is
addressed. The bisection nature of these algorithms is suitable for
hypercube computers in which the number of processors is an integer power
of two, but it is too restrictive for applications on coarse-grained parallel

computing environments consisting of an arbitrary number of processors.

In addition to the comparison similar to that made by Simon (1991),
Venkatakrishnan et al. (1991) compared two variants of the partitioning
strategies based on each of the three algorithms introduced by Simon. The
two variants were referred to as domainwise and stripwise decompositions.
It was found that the domainwise partitioning strategies attempt to reduce
the transmission costs of interprocess communication, while the stripwise
partitioning strategies attempt to reduce the start-up costs of

communication.

Recently, Hendrickson and Leland (1992) developed a new spectral
graph partitioning algorithm which combines a recursive spectral
octasection algorithm with a generalized Kernighan-Lin algorithm. In the
example problem studied, it was shown that this algorithm produced better
results than the recursive spectral bisection algorithm proposed by Simon
(1991). However, the octasection nature of the algorithm is again best
suited for hypercube architectures and is not amenable for applications on
parallel computing environments consisting of an arbitrary number of

processors.

4.2 Theoretical Background and Definitions

For the purpose of discussion of domain partitioning algorithms, it is

necessary to introduce some essential concepts and definitions of graph
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theory and to establish their relationship to matrix analysis and finite
element analysis. These concepts and definitions are presented in this

section. Different graph represehtations of finite element meshes are also

discussed.

A graph G = (V, E) consists of a non-null finite set of vertices
V = {v;, Vy, ..., V,} together with a set of edges E = {e, ey, ..., €} which
are unordered pairs of distinct values from V; E = { (Vi,Vj) lv,eV, V;€ V%
Edges are elements of the set E and vertices are elements of the set V. A
graph obeying this definition is an undirected graph because the set E is

comprised of unordered pairs of vertices.

The correspondence between a graph and a matrix can be established

by considering a symmetric matrix K of order N with non-null diagonal

components k;;. The ordered and undirected graph of K is denoted by

GK = (VK, EK), This graph has N vertices numbered from 1 to N, and
v, Vj} eEKifand only if kij = kji #0,1# j, where v, denotes the node of EK

with label 1.

The vertices u and v in G are adjacent vertices if {u, v} € E.

The adjacent set of the subset W of the vertices of G, Adj(W), is
defined as

AdiW)={ue (VW) | (uwv)e E,ve W,WcC V) (4.1)

IfW = {v}, Adj(W) = Adj(v). The degree of the set W is defined as

Deg(W) = | Adj(W) | (4.2)



120

where |-| denotes the number of components of the set. Similarly, the

degree of a vertex v is defined as
Deg(v) = | Adj(v) | 4.3)

Consider the finite element mesh of Fig. 4.1(a) with nine nodes, four
T3 elements, two Q4 elements, and no boundary conditions. For the sake of
simplicity, assume one degree of freedom (dof) per node. The stiffness

matrix representation associated with this mesh is given in Fig. 4.1(b) by
the symmetric matrix K (of order nine) with elements ku With respect to

Fig. 4.1(c), VK = (1, ..., 9 } and E¥ = { (1,2}, (1,4), (1,5), ..., (8,9} }, where
each pair {v;, Vj} contains two adjacent vertices. If W = (1, 2, 3}, then
Adj(W) = {4, 5, 6} and Deg(W) = 3. For the vertex No. 6, Adj(6) = {2, 3, 5, 8,
9} and Deg(6) = 5.

(XX XX 7]
1 2 3 |XXXXXX
XX XX
XX XX X
4 : 6 [XXXXXXXX
XX XX XX
XX XX
7 8 9 XXXXX
X XX
FEM mesh Matrix K Graph GK
(9 nodes; 6 elements) (9 x9) (9 vertices; 18 edges)
(a) (b) (c)

Figure 4.1 Correspondence among mesh, matrix, and graph
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Next, consider the finite element mesh of Fig. 4.2(a) with fifteen
nodes, eight T3 elements, four Q4 elements, and no boundary conditions.
The connectivity of the nodes can be represented topologically by the node
graph of Fig. 4.2(b). In order to establish the connectivity of the finite
elements in a topological sense, a dual graph representation is used as

illustrated by Fig. 4.2(c).

The geometric aspect of the dual graph is used here for the purpose of
representing the connectivity of the finite elements in a generic mesh. The
nodes in the dual graph represent finite elements in the original mesh. The
edges in the dual graph represent adjacent finite elements that share a
common boundary in the original mesh. According to this definition, a finite
element of dimension n (n = 1, 2, 3) has boundaries of dimension (n-1). As
an example, by applying this definition to the finite element mesh of Fig.
4.2(a), the dual graph of Fig. 4.2(c) is obtained.

A spectral method, based on algebraic properties of the graph
associated with the finite element mesh, can be used to solve the
partitioning problem (Pothen et al. 1990). The spectral method associates
an adequate graph representation (G) to the finite element mesh and forms
the Laplacian matrix L(G). Here, G is assumed to be a connected graph. A
particular eigenvector of this matrix can be used to partition the vertices of

the graph into two sets.

The Laplacian matrix L(G) is a symmetric matrix of order N, where N
is the number of the vertices of the graph G. The components lij of L(G) are

defined as
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1 if and only if {Vi, VJ} € E
lij= 3 -Deglv;)  ifandonlyifi=j
0 otherwise 4.4)
From this definition, it follows that
L(G) =- D(G) + A(G) (4.5)

where D(G) is a diagonal matrix of order N with diagonal components

dij = Deg(v; and A(G) is an adjacency matrix of order N with components

a; =1 if (v, Vj} € E and zero otherwise. Fig. 4.2(d) shows the Laplacian

matrix L(G?) associated with the graph G” and Fig. 4.2(e) shows the
Laplacian matrix L(G*?) associated with the dual graph G*A,

The Laplacian matrix L(G) is negative semidefinite. Let the
eigenvalues of L(G) be ordered as A; =0 2 A, 2 ... A,,. The largest eigenvalue

is A; = 0 and the associated eigenvector y; has all of its elements equal to 1.
If G is connected, the second eigenvalue is always nonzero and negative.
The special properties of the second eigenvalue A, and its corresponding
eigenvector y, have been studied by Fiedler (1975). The second eigenvector
yq is called the Fiedler vector by Simon (1991). The eigenvalue A, is

designated "algebraic connectivity" and is related to the vertex and edge

connectivities of the graph. The components of y, are associated with the

corresponding vertices of the graph. Differences in the values of the

components of y, give topological distance information about the vertices of

the graph. The components of y, also provide a weighting for these vertices
which can be used for partitioning the graph G. For example, all vertices

with weights below the mean weight may be assigned to one partition, and

the rest to the other partition.



124

Figs. 4.2 (f) and (g) show the algebraic connectivity A, and the Fiedler
vector y, for the graph G® and the dual graph G*A. In both cases, the

mean value of the components of yy is zero.

Graph Representation of Finite Element Meshes

One approach to partition a generic finite element mesh is to
associate a proper graph representation with the mesh and to partition the

graph. There are several ways to associate graphs with meshes.

An advantage of using the dual graph for partitioning of finite
element meshes is that the number of edges in the connectivity graph is
reduced, leading to a smaller set of data storage (compare Figs. 4.2 (b) and
(c)). This is due to the fact that the dual graph defines the connectivity of
the finite elements by means of their boundaries, instead of their nodes.
However, for framed structures consisting of only 1-D finite elements, the
elements are connected to their adjacent elements through 0-D boundary
nodes. Therefore, there is no clear advantage in using the dual graph

approach for domain partitioning of framed structures.

A disadvantage of the dual graph approach is that the dual graph
does not represent the true interprocess communication in parallel finite
element analysis. The true interprocess communication occurs across
shared nodes in the original finite element mesh, but not shared boundaries
(e.g., edges or faces). To better describe the communication pattern,
Venkatakrishnan et al. (1991) proposed the use of a communication graph
which is defined as follows. The nodes in the communication graph

represent finite elements in the original mesh. The edges in the
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communication graph represent adjacent finite elements that share a
common node in the original mesh. Figs. 4.3 (a) and (b) show the same
finite element mesh and its associated dual graph (G* Ay as used in Figs. 4.2
(a) and (c), respectively. Fig. 4.3 (c) shows the associated communication

graph (G A,

Both the dual graph and the communication graph do not
differentiate among different types of finite elements. For example, if one or
more Q4 elements in Fig. 4.3(a) are replaced by Q8 elements, both the dual
graph and the communication graph remain the same as Figs. 4.3 (b) and
(c), respectively. Therefore, the partitioning algorithms employing these
graphs may not produce partitions with well-balanced computational loads
for meshes with mixed finite element types. Nevertheless, the

communication graph is expected to provide better results than the dual

graph.

For node-based partitioning, since the focus is on partitioning nodes
in finite element meshes, the node graph seems to be a natural choice. The
use of the node graph is advantageous for framed structures consisting of
only 1-D finite elements because structures of this type usually have a fewer
number of nodes than of elements, resulting in less requirement of data
storage. However, this becomes a disadvantage for structures consisting of

2D or 3D elements, especially of higher order.

The best choice among different possible graph representations
depends on several factors such as the type of partitioning desired (node-
based or element-based), the parallel solution algorithms of the dynamic

system (explicit or implicit), and the effectiveness and computational cost of
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the partitioning algorithm. This topic is further investigated in the present

research.

10@6®@8@7®6

Q% @ | @

15 14 13 12 11

(a) Finite element mesh

oA
(¢c) Communication graph G

Figure 4.3 Correspondence among mesh, dual graph, and communication

graph
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4.3 Domain Partitioning Algorithms

Four existing automatic algorithms for domain partitioning are
investigated in this research. They are the algorithms proposed by Farhat
(1988), Malone (1988), Al-Nasra and Nguyen (1991), and Simon (1991).
This section illustrates the approaches used by these algorithms and
discusses their strengths and weaknesses. Some aspec;ts of their
implementation in this research are described. Two algorithms have been
developed in this research based on extensions to the spectral partitioning
method used by Simon (1991). They are also discussed in detail in this

section.

4.3.1 Farhat's Algorithm

Farhat (1988) presented an algorithm for automatic decomposition of
arbitrary finite element meshes. The algorithm is designed to meet three
basic requirements: (a) it must be capable of handling arbitrary finite
element meshes; (b) it must generate a set of balanced subdomains (often in
terms of number of elements) to ensure as even as possible distribution of
overall computational load among processors; (c) it must minimize the
amount of interface nodes to reduce the synchronization and/or

communication overhead.

Farhat's partitioning algorithm (here designated FP) is summarized
in Table 4.1. The weight of a node is defined as the number of unassigned
elements connected to it. The interior boundary of a subdomain is defined
as the subset of its boundary that connects to other subdomains. The
present implementation uses the routines provided by Farhat (1988) with

some corrections (Farhat 1992).
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Table 4.1 Farhat's partitioning algorithm (here designated FP) (Farhat
1988) |

(1) Locate a node that belongs to the boundary of the previously defined
subdomains (for the first time, the whole domain is used) and has a
nonzero minimal weight.

(2) Assign unassigned elements that are connected to this node to the
current subdomain. Recursively, assign unassigned elements that are
adjacent to the elements in the current subdomain to the current
subdomain until the number of elements equals to the total number of
elements divided by the number of processors.

(3) Repeat (1) and (2) until all subdomains are defined.

According to Farhat (1988), this algorithm is independent of both
element and nodal numbering, since only adjacency information of elements
is utilized. However, the decomposition obtained from the algorithm is
actually not independent of nodal numbering. In Step (1), there may be
several nodes all with same minimal weight and the first node encountered
with minimal weight is arbitrarily selected. In this case, the initial nodal
numbering determines which starting node is to be selected. It has been
found that the selection of the node with minimal weight in Step (1),
especially the very first one in the algorithm, greatly affects the
decomposition result. In some cases, whether domain splitting occurs in the
decomposition may depend on the selection in Step (1). For example, in the
transmission tower shown in Fig. 4.4(a) (this is the same one shown in Fig.
3.3), the six vertices enclosed by a circle are nodes with minimal weight for

the very first step of the algorithm. Fig. 4.4(b) shows the partitioning
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results for two subdomains with a splitting situation occurring in
subdomain #2. In this case, the algorithm uses the upper right minimum-
weighted node as the starting point. If a different nodal numbering is used
which makes the algorithm start from any of the four support nodes

(minimum-weighted nodes), domain splitting will be avoided for this case.

Subdomain #2
(splitting)

T T L e

(a) Transmission tower (b) Partitioning by FP algorithm

Figure 4.4 Partitioning of a transmission tower using FP algorithm
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4.3.2 Al-Nasra and Nguyen's Algorithm

Recently, Al-Nasra and Nguyen (1991) presented an algorithm
similar to Farhat's FP (1988) for automatic domain decomposition in finite
element analysis. They incorporated the geometry information of the finite
element meshes in the algorithm as an attempt to avoid domain splitting
problems. The algorithm uses the geometry information to identify the
overall long and short directions of the structure and then discourages

spreading of elements in a subdomain in the long but short direction.

Al-Nasra and Nguyen's partitioning algorithm (here designated

ANP) is summarized in Table 4.2. Al-Nasra and Nguyen (1991) stated in
the paper that domain splitting problems did not occur in their algorithm
for all applications they had tested. However, for some applications the
writer tested, the splitting situation did occur. For example, Fig. 4.5(a)
shows an 8-bladed turbine disk modelled by solid finite elements, and Fig.
4.5(b) presents the partitioning results for two subdomains obtained by the
ANP algorithm. It can be seen that splitting occurs in subdomain #2.
Moreover, when the splitting occurs in a subdomain other than the last one,
Step (3) of the algorithm may go into an endless search for the minimum-
weighted node. Therefore, the present implementation uses the routines
provided by Al-Nasra and Nguyen (1991) with a slight modification in Step
(3) to avoid the problem of endless search for the minimum-weighted node.

The modified Step (3) in the algorithm then becomes

(3) Locate a node that has a nonzero minimal weight and is not
located at the boundaries with other subdomains. If all nodes in

the current subdomain are not qualified, perform a search
among all unassigned nodes in the mesh.
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Table 4.2 Al-Nasra and Nguyen's partitioning algorithm (here designated
ANP) (Al-Nasra and Nguyen 1991)

(1) Assign an initial weight to each node. The initial weight of a node is
defined as the number of elements connected to it.

(2) Adjust the initial weight of each node based on its geometric location
in the mesh such that extra weight is added increasingly along the
long direction of the mesh.

(3) Locate a node that has a nonzero minimal weight and is not located at
the boundaries with other subdomains.

(4) Assign unassigned elements that are connected to this node and their
associated nodes to the current subdomain, and reduce the weight of
the nodes by one.

(5) Locate a node with minimum weight and with at least one adjacent
unassigned element in the current subdomain.

(6) Repeat (4) and (5) until the number of elements equals to the total
number of elements divided by the number of processors.

(7) Repeat (3) - (6) until all subdomains are defined.

In addition, the long and short directions defined in the algorithm are
in terms of the directions of global axes used to build the finite element
model of the structure. This means that different choices of the global axes
and different ways of orienting the structure with respect to the chosen
global axes may result in different partitioning results. Therefore, caution

is needed in preparation of input data for this algorithm.
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(a) 8-bladed disk model
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(b) Partitioning by ANP algorithm

Figure 4.5 An 8-bladed disk and its partitioning by ANP algorithm
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4.3.3 Malone's Algorithm

Malone (1988) also presented an algorithm for automatic
decomposition of finite element meshes. The algorithm is called Reduced
Bandwidth Decomposition (RBD) algorithm by Malone (1988) and is

summarized in Table 4.3.

Table 4.3 Malone's reduced bandwidth decomposition (RBD) algorithm
(Malone 1988)

(1) Reduce bandwidth of the matrix representing the nodal connectivities
of the finite element mesh.
(2) Reorder elements in ascending sequence of their lowest numbered

nodes.
(3) To each processor, assign the elements in order until the number of
elements equals to the total number of elements divided by the

number of processors.

In Step (1) of the RBD algorithm, it is stated by Malone that a
modified version of the Collins’ automatic nodal renumbering algorithm for
bandwidth reduction (Collins 1973). The present implementation uses a
modified version of the Collins algorithm developed by Paulino (1988).
However, Collins' algorithm is not as "effective for most meshes” as stated
by Malone (1988, pp. 42), who presented only meshes with constant strain
triangles (CST). This algorithm was reported to be unsuccessful for meshes
with eight-noded quadrilateral elements (Collins 1973). Moreover, all of the

examples presented by Collins (1973) are too small when compared to large
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meshes that demand parallel analysis. Therefore, if a more efficient and
effective heuristic algorithm is used in Step (1) to reduce the bandwidth of
the system matrix, better partitioning results may be obtained. However,
further research is needed to justify this idea.

There is no guarantee in the RBD algorithm that domain splitting
does not occur in the subdomains created. In Fig. 4.6, the space station
shown previously in Fig. 3.4 is partitioned by the RBD algorithm into four

subdomains. It can be seen that splitting occurs in subdomains #2 and #4.

preeccnay

Subdomain #2
(splitting) ~—g

Vooessooessaameman

g mmmm—e-

R Subdomain #4
’ ‘/
(splitting)

Figure 4.6 Partitioning of the space station shown in Fig. 3.4 by the RBD
algorithm.
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In the RBD algorithm originally presented by Malone (1988), there is
a Step (4) to assign uniquely nodes along the interfaces of subdomains to
processors which is required by the parallel dynamic algorithm used by
Malone. It is omitted from Table 4.3 because it is not generally needed by
parallel algorithms and is not implemented in this research. However,
when there is a need to assign uniquely nodes along the interfaces of
subdomains to processors, this research uses an approach different from

Malone's. The approach is discussed later in this chapter.
4.3.4 Simon's Algorithm

Based on the spectral partitioning method proposed by Pot_.hen et al.
(1990), Simon (1991) presented a recursive bisection algorithm for
automatic partitioning of unstructured grids. To establish the partitioning
of the grid, a dual graph representation has been used. The partitioning
algorithm is called Recursive Spectral Bisection (RSB) algorithm by Simon
(1991) and is summarized in Table 4.4.

Table 4.4 Simon's recursive spectral bisection (RSB) algorithm (Simon
1991)

(1) Construct the dual graph associated with the finite element mesh.

(2) Compute the second eigenvector of the Laplacian matrix (called the
Fiedler vector by Simon) of the graph using the Lanczos algorithm.

(3) Sort vertices of the graph according to the value of their associated
components in the Fiedler vector.

(4) Assign half of the vertices to each subdomain.

(5) Repeat recursively for each subdomain.
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This algorithm has two features that are worth mentioning. First,
the dual graph is used to construct the partitioning problem. As discussed
previously in Section 4.2, this approach decreases significantly the size of
the eigenproblem associated with the Laplacian matrix. As a result, the
computational storage and execution time required to solve the eigensystem
are reduced. Second, this algorithm employs the global information of the
graph provided by the Fielder vector to obtain an edge separator which
partitions the graph into two subgraphs of nearly equal size (one vertex

difference at most).

Very good partitioning results have been obtained using this
algorithm, as reported by Simon (1991). It has also been shown by Pothen
et al. (1990) that the separators computed by this algorithm compare quite
favorably with separators computed by other previously proposed

algorithms.

However, there are some problems associated with the RSB
algorithm. First, the dual graph associated with a finite element mesh may
be a disconnected graph. This situation may happen when n-dimensional
finite elements are not connected through all their (n-1)-dimensional
boundaries and when the adjacent finite elements do not have the same
geometric dimensions (Fenves and Law 1983). Although theoretically this
algorithm is capable of handling non-connected graphs (Pothen et al. 1990),
this situation may not only create difficulties and complexities in the

partitioning process but also deteriorate the partitioning results.

Second, as discussed in Section 4.2, the dual graph does not represent

the true interprocess communication in parallel finite element analysis. To
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better describe the communication pattern, the communication graph may
be used. In the present work, both the dual graph and communication
graph approaches are implemented. For node-based partitioning, the node

graph approach is also implemented.

Third, the bisection nature of the RSB algorithm is suitable for
hypercube computers in which the number of processors is an integer power
of two, but it is too restrictive for computing environments consisting of an
arbitrary number of processors, such as the networked workstation
environments investigated in this research. In Section 4.3.5, two algorithms
developed in this research are presented, both of which generalize the RSB
algorithm for an arbitrary number of partitions. They are called by the
author the recursive spectral sequential-cut (RSS) algorithm and the
recursive spectral two-way (RST) algorithm, respectively. Detail

descriptions of these two algorithms are given in Section 4.3.5.

The last problem associated with the RSB method is related to its
computational cost. In general, the solution of the second eigenvector for
large meshes can be quite expensive, even when the dual graph approach is
used. Venkatakrishnan et al. (1991) have compared the execution time of
the RSB algorithm and two other algorithms for a graph with 15,606
vertices on a Silicon Graphics workstation (Iris 4D/70). It is found that the
RSB algorithm is "quite expensive” (1,750 seconds for the RSB algorithm,
while 4 and 3 seconds for the other two algorithms, respectively) although
the performance of the algorithm improves considerably on a vector
computer such as the Cray Y-MP because matrix vector products in the
Lanczos algorithm can be vectorized. Recently, Barnard and Simon (1992)

have developed a fast multilevel implementation of the RSB algorithm
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which is reported to attain "about an order-of-magnitude improvement in
run time on typical examples." This multilevel approach has not been

implemented in the present research.

4.3.5 Present Algorithms

Two algorithms have been developed in this research based on the
same spectral partitioning method used by the RSB algorithm. Unlike the
RSB algorithm in which the number of partitions is restricted to an integer
power of two, both the present algorithms can yield an arbitrary number of
partitions.

Recursive Spectral Sequential-Cut (RSS) Partitioning Algorithm

The recursive spectral sequential-cut (RSS) algorithm partitions the
graph in such a way that subgraphs are cut out of the original graph one by
one (or sequentially) in a recursive fashion. The algorithm is given in Table
4.5. The present implementation allows the use of the dual, communication,

or node graph.
Recursive Spectral Two-way (RST) Partitioning Algorithm

Instead of using a bisection approach, the recursive spectral two-way
(RST) algorithm uses a two-way partitioning approach which partitions the

graph into two parts not necessarily equal in size. The algorithm is given in

Table 4.6. The number of vertices in each subdomain D; when the

partitioning task is completed is denoted by m,. It is computed in advance

by sequentially employing the following equation fori=1, ..., Np:

i-1
mi={[N-2mj]/[Np-(i-1)]} (+ 1 if remainder # 0)
=1
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Table 4.5 Recursive spectral sequential-cut (RSS) algorithm

(1) Construct the dual, communication, or node graph desired graph
associated with the finite element mesh. ’

(2) Compute the second eigenvector of the Laplacian matrix (called the
Fiedler vector by Simon) of the graph using the Lanczos algorithm.

(3) Sort vertices of the graph according to the value of their associated
components in the Fiedler vector.

(4) Assign 1/Np of the vertices to one subdomain and the remaining to
the other, in which Np, is the number of partitions desired (or number
of processors).

(5) Repeat recursively for the larger subdomain in the previous step until

all subdomains are defined.

in which N is the number of available processors and N is the total number
of vertices of the whole domain. The number of partitions desired in the
intermediate subdomain in each two-way partitioning step is denoted by np

(initially np = Ny for the whole domain). Each intermediate subdomain

maintains a list / of subdomain numbers associated with D, which has been
assigned to it (initially the list is {1, ... , Np) for the whole domain). The k-th
component of this list is denoted by l(k). Figure 4.7 demonstrates the
process of partitioning a graph with seventeen vertices into five subdomains

using this algorithm.

From Table 4.6 and Fig. 4.7, it should not be difficult to see that the
RST algorithm degenerates to the RSB algorithm of Table 4.4 when the

number of processors (Np) is equal to an integer power of two.
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Table 4.6 Recursive spectral two-way (RST) algorithm

(D

(2)

(3)

(4)

(5)

Construct the dual or communication graph associated with the finite
element mesh.

Compute the second eigenvector of the Laplacian matrix (called the
Fiedler vector by Simon) of the graph using the Lanczos algorithm.
Sort vertices of the graph according to the value of their associated
components in the Fiedler vector.

Compute the following integers:

pl = np/2 (discard remainder)

p2 =np - pl
rl

n= 3y my,
k=1

Assign n vertices and the list of the first pl components in I(k) to one
subdomain, and set np = p1 for this subdomain.

Assign the remaining vertices and the list of the remaining
components in [(k) to the other subdomain, and set np = p2 for this
subdomain.

Repeat recursively for each subdomain with np > 1.
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Initialization

N=17, p=5
m)=4; my =4; mg =3; my=3; mg=3
l={1D213’4’ 5}

/

!

17 vertices

8 vertices

np =2
pl=22=1
pP2=2-1=1
1=1{1,2}

n=mi=4

e

4 vertices

4 vertices

np=1
l=(1)

np=1
1=1(2)

np=5
pl=5/2=2
p2=5-2=3
1=11,2,3,4,5)

n=m;+mg=8

I

9 vertices

np=3
pl=32=1
p2=3-1=2
{ ={3,4,5)
n=m3z=3

e

N

3 vertices 6 vertices
np=1 np = 2
l= {3} pl =2/2 =1
p2=2-1=1
l= (4, 5)
n=my=3
3 vertices 3 vertices
np = 1 np = 1
1= {4) l = {5)

Figure 4.7 Example of the RST partitioning process
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4.4 Load Balancing for Parallel Implicit Analysis

There are three major computational components involved in the
parallel implicit analysis (also in the parallel steady-state analysis) that
require attention for load balancing among processors. First, the element
calculations, such as element formation and stress recovery, take a
significant portion of the total computational time, especially in nonlinear
analyses of structures modelled by 2D and 3D elements. The load balancing
of this computation among processors requires an essentially even
distribution of elements among subdomains (if a homogeneous parallel
environment is assumed and all elements in the mesh are of the same type).
In the present iﬁplementation, the above load balancing requirement is
fulfilled by all of the partitioning algorithms discussed in Section 4.3
because they all assign equal or nearly equal numbers of elements to each
subdomain. Although this approach does not in general produce optimal
load balancing for meshes with different types of elements, satisfactory
results are still obtained for examples studied in the present work for most

partitioning algorithms (see examples in Section 4.4.3).

Second, the substructure condensation represented by Egs. 3.3) -
(3.7) may also demand a considerable amount of computational time. At the
outset, the profile for each subdomain should be minimized to increase
computational efficiency within each subdomain. In addition, the load
balancing of this computation requires that the minimized profile of interior
degrees of freedom in each subdomain be equal. None of the partitioning
algorithms discussed in Section 4.3 attempt to satisfy this load balancing
requirement and instead they all focus on the load balancing of element

calculations. This is mainly due to the following two reasons: 1) a
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complicated and expensive iterative strategy may be required to obtain
satisfactory load balancing for condensation because the profile cannot be
known until the subdomain is defined, and 2) for nonlinear analyses of
structures modelled by 2D and 3D elements (which are the major cases in
the present study), it has been found that the load balancing of element
calculations often has a more significant effect on parallel efficiency.
However, for framed structures modelled by 1D elements, it has also been

found that the effect of the load balancing for condensation is dominant. _

Third, the efficiency of solving the unknowns along subdomain
interfaces by the parallel preconditioned conjugate gradient method greatly
affects the overall efficiency of parallel analysis. Although the load
balancing of this solution phase requires that all subdomain have an equal
number of boundary nodes, it is more important that the total number of
boundary nodes shared by subdomains be minimized to reduce the
synchronization and communication overhead. The smaller the number of
the boundary nodes, the fewer the number of equations involved in the
parallel preconditioned conjugate gradient analysis. This not only reduces
the size of messages in interprocess communication but also may decrease
the number of iterations required in the conjugate gradient analysis.
Furthermore, if the total number of boundary nodes is minimized, the
workload unbalance due to uneven distribution of boundary nodes among

subdomains may be neglected.

All of the partitioning algorithms discussed in the previous section
can readily be employed to generate the element-based partitioning, as
shown in Fig. 3.2, required by both the parallel implicit and steady-state

algorithms. However, after the elements are partitioned among subdomains
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(or processors), the partitioning shown in Fig. 3.2 also requires that the
elements in each subdomain be labelled as either interior or boundary
elements, while the nodes be labelled as interior, primary boundary, or
secondary boundary nodes. Moreover, to achieve maximum computational
efficiency within each subdomain for the condensation required in the
domain decomposition approach, nodal renumbering is needed to reduce
either the bandwidth or profile of the subdomain coefficient matrix (see Eq.
3.2). This section briefly describes the present approaches for the element
and node labelling and for subdomain renumbering. Furthermore,
comparative studies are conducted to evaluate the performance of the
partitioning algorithms discussed in the previous section for the element-

based partitioning.
4.4.1 Element and Node Labelling

After the elements in the structure are partitioned among
subdomains by any of the automatic partitioning algorithms, the nodes in
the structure are either labelled as interior nodes if they are shared by
elements residing in the same subdomain or labelled as boundary nodes if
otherwise. Then, the elements are checked to determine if they are
connected to at least one interior node. If they are, they are labelled as

interior elements. Otherwise, they are boundary elements.

Next, the boundary nodes are further partitioned into primary and
secondary boundary nodes. The following approach is used in the present
work:

All boundary nodes are labelled as secondary boundary nodes

initially. Then, boundary nodes common to any two subdomains are
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labelled as primary boundary nodes in the subdomain which has

fewer nodes in the subdomain.
4.4.2 Subdomain Renumbering

As mentioned in Section 3.3.2, most of the matrices involved in the
substructure condensation are stored in the skyline format. Although nodal
renumbering for the whole domain is performed for bandwidth or profile
reduction in BASYS/FRANSYS, this nodal ordering may not result in
optimal profile for each subdomain. In this work, the subdomain is
therefore renumbered to minimize the computational cost within each
subdomain for substructure condensation. Consequently, the overall

computational cost of the parallel analysis is reduced.

The present work uses a modified version of the Gibbs-King profile
reduction algorithm (Paulino 1988) for subdomain renumbering. This
algorithm first finds the endpoints of a pseudo-diameter of the node graph
(i.e., a pair of nodes that are at nearly maximal distance apart in the node
graph) using the approach proposed by Gibbs et al. (1976). Then, one of the
endpoints (arbitrarily selected) is used as the starting node and the nodes in
the graph are numbered by a modified King algorithm (King 1970), which
reduces the profile of the sparse symmetric matrix associated with the
graph. Finally, a test is run to determine if the profile based on new
numbering is smaller than that based on the original numbering. If it is

not, the original numbering is retained. Otherwise, the new numbering is

used.

In the present work, only interior nodes in the subdomain are

renumbered. This is due to two reasons. First, the condensation of the
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interior nodes (see Eq. 3.1) requires that the interior nodes be numbered
before the boundary nodes. The present renumbering algorithm is currently
incapable of handling this constraint. Second, the major computational cost
in the modified decomposition algorithm used for the condensation is
usually the Cholesky decomposition of Eq. 3.5, in which only the interior
nodes are involved. Therefore, if the ratio of the number of boundary nodes
to the number of interior nodes in each subdomain is kept small (which is
usually the case in the present work), renumbering of interior nodes alone

should provide sufficient improvement in computational efficiency.

4.4.3 Comparative Studies Among Algorithms

Six structures of different types have been used to evaluate and
compare the partitioning algorithms discussed in Section 4.3. They include
three framed structures modelled by 1D elements, a building structure
modelled by 1D and 2D elements, and two solid structures modelled by 3D
elements. Some typical results are reported in this section. The following
notations are used in the present study:

Np, = the number of partitions,

N}, = the number of boundary nodes in a subdomain,

N1 = the number of 1D elements in a subdomain,

Neg = the number of 2D elements in a subdomain,

Ne3 = the number of 3D elements in a subdomain,

N4 = the number of subdomains that have disconnected regions,

Tot(x) = total values of x in the whole domain,

Max(x) = maximum value of x among subdomains,

Min(x) = minimum value of x among subdomains,
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CG = communication graph,

DG = dual graph, and

Tepu = the CPU time (sec.) required, which includes time spent in
data preparation for the algorithm, execution of the algorithm,
and setting results into the database.

Framed Structures Modelled by 1D Elements

Three framed structures of increasing irregularity in geometry have
been used to evaluate the performance of different partitioning algorithms.
They are the thirty-story building of Fig. 3.5, the transmission tower of Fig.
3.3, and the space station of Fig. 3.4. The results are given in Tables 4.7 -
4.9. In addition, Fig. 4.8 shows the characteristics of the partitionings
resulted from different partitioning algorithms on the thirty-story building
for Np = 4. It should be noted that the RSB, RSS, and RST algorithms
produce the same results in this particular case.

From Tables 4.7 - 4.9. and Fig. 4.8, the following observations are
obtained:

(1) Compared to the execution time required by a dynamic analysis,
the CPU time spent by all the algorithms are negligible.

(2) As expected, the RST algorithm produces the same results as the
RSB algorithm when Ny is an integer power of two.

(3) Except for one case (Np = 3 in Table 4.9), the RST algorithm
consistently gives partitions with smallest Tot(Ny). However,
even for that case, Tot(Np) resulted from the RST algorithm 1is

very close to the smallest.
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(4) Although it is undesirable to have fragmented subdomains
because they usually result in larger Tot(Np), it should be noted
that having nonfragmented subdomains (i.e., Ng= 0) is not

sufficient in itself to obtain smaller Tot(N}) (see the case of Ny = 4
in Table 4.9).

Table 4.7 Comparison of different algorithms for element-based

partitioning of the thirty-story building of Fig. 3.5 (Np = 4)

Parameter ANP FP RBD RSB RSS RST

Tepu 7 3 2 7 9 8
Tot(Np) 51 58 51 48 48 48
Max(Np) 34 39 34 32 32 32
Min(Np) 17 19 17 16 16 16

Ng 0 0 0 0 0 0
Max(Ne1) | 300 300 300 300 300 300
Min(Nep) 300 300 300 300 300 300

Table 4.8 Comparison of different algorithms for element-based

partitioning of the transmission tower of Fig. 3.3 (Np = 3)

Parameter [ ANP | FP RBD I RSS RST
Tepu 0.9 0.5 0.3 1.9 1.7
Tot(Np,) 13 29 24 13 13
Max(Np) 13 28 24 13 13
Min(Np) 4 16 9 4 5
Ng 0 1 0 0 0
Max(Ne1) 145 145 145 145 145
Min(Ney) 144 144 144 144 144
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Table 4.9 Comparison of different algorithms for element-based

partitioning of the space station of Fig. 3.4

Ng Parameter | ANP FP RBD RSB RSS RST
Tepu 7 3 2 - 15 14
Tot(Np) 36 51 47 -- 38 38
Max(Np) 28 45 47 - 28 28
3 Min(Ny,) 17 25 20 -- 20 20
Ng 0 1 1 - 0 0
Max(Ne1) 476 476 476 - 476 476
Min(Ne1) 476 476 476 -- 476 476
Tepu 7 3 2 15 18 15
Tot(Np) 78 55 68 44 50 44
Max(Np) 58 36 47 32 37 32
4 Min(Ny) 28 17 21 16 17 16
Ng 0 2 2 1 1 1
Max(Ne1) 357 357 357 357 357 357
Min(Ne1) 357 357 357 357 357 357

A Building Structure Modelled by 1D and 2D Elements

The twelve-story L-shaped building of Fig. 3.9 has been partitioned
using different algorithms. The results are reported in Table 4.10. As
discussed previously, the present implementation of all the algorithms
assumes that all elements in the mesh are of the same type. However, in
this example which represents a mixture of 1D and 2D elements, most
algorithms still produce a satisfactorily balanced distribution of elements
among subdomains. The exceptions are the RSS(DG), RSB(DG), and
RST(DG) algorithms. In addition, both the RSS(CG) and RST(CG) give

partitions with smallest Tot(Np) for both cases.
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(a) (b)

Figure 4.8 Partitionings of the thirty-story building of Fig. 3.5 by the (a)
ANP, (b) FP, (c) RBD, and (d) RSB, RSS, or RST algorithms
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(c)

Figure 4.8 (Continued)

(d)
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Table 4.10 Comparison of different algorithms for element-based

partitioning of the 12-story L-shaped building of Fig. 3.9

Ny | Parameter| ANP| FP | RBD | RSB | RSB RSS | RSS | RST | RST
(DGQ) | (CE) | (DG) | (CG) | (DG (CG)

Tee | 3 12} 2| - | --1313/]31]S§3
Tot(Ny) | 30 | 39 ] 38 | - | - | 139 28 | 139 | 28
Max(Np) | 30 [ 38| 38 | - | - | 139 28 | 139 28
MinNp | 15 [ 20) 19| - | - | 75|14} 75] 14
3 Ng ololo | -] -l1fof1]0o0
Max(Ney) | 156 [ 156 | 159 | - | - | 180 | 156 | 180 | 156
Min(N.p | 156 | 156] 153 | - | -- | 108 | 156 | 108 | 156
Max(Ne2) | 24 |476| 476 | - | — | 72 | 24 | 72 | 24
| MinNep) | 24 |4t6]476) - | -~ 1 0 | 2¢ | 0 | 24
Teou 3 21 2| 3| 4] 4| 4| 3] 4

Tot(Ny) 46 | 50| 57 | 155 | 42 | 155 | 42 | 155 | 42
Max(Np) | 31| 32| 38 | 156 | 28 | 156 | 28 | 156 28
MinNp) | 15| 19| 19 | 56 | 14 | 56 14 | 56 | 14
4 Ng 0 0 0 1 0 1 0 1 0

Max(Nep) | 117 | 120 120 | 135 | 117 | 135 | 117 | 135 | 117
Min(Nep) | 117 {113] 114 | 63 [ 117 | 63 | 117 | 63 | 117
Max(Ne2) | 18 | 22| 21 | 72 | 18 | 72 18 72 | 18
Min(Neg) | 18 | 15| 15 0 18 0 18 0 18

Solid Structures Modelled by 3D Elements

Two solid structures have also been used in the present comparative
studies. The first one is the twelve-bladed turbine disk of Fig. 3.7, while the
second one is the turbine blade of Fig. 4.9 which was created by Wawrzynek
(1991) for his work. The partitioning results are given in Tables 4.11 and
4.12. In addition, some typical partitionings on the twelve-bladed disk for

the case of N, = 3 are shown in Fig. 4.10.
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Figure 4.9 A finite element model of a turbine blade with 944 20-noded

elements and 6,427 nodes

From Tables 4.11 and 4.12, the following observations are obtained:

(1) Unlike the previous examples, all the spectral methods (i.e., the

(2)

(3)

RSB, RSS, and RST algorithms), which require eigensolutions,
deliver partitions in a shorter CPU time than the non-spectral
algorithms (i.e., the ANP, FP, and RBD algorithms).

In most cases studied, the DG approach produces smaller Tot(Np)
than the CG approach for the RSS algorithm, while the CG

- approach produces smaller Tot(Np) than the DG approach for the

RST algorithm.
For the bladed disk example, the optimal partitioning for Np = 3

or Np = 6 seem to be a trivial task for the human. However, it is
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not the case for the partitioning algorithms. Only the RSS(DG),
RST(DG), and RST(CG) algorithms deliver the optimal solutions.

(3) Except for the case of Np = 8 in Table 4.12, the RST(CG)
algorithm gives partitions with smallest Tot(Np).

Table 4.11 Comparison of different algorithms for element-based

partitioning of the 12-bladed turbine disk of Fig. 3.7

N; | Parameter| ANP| FP | RBD | RSB | RSB | RSS | RSS | RST | RST

_ | 7 | (D& | (CG) | (DG) | (CG) | (DG) | (CG)

Tepu 74 | 49123 - | - | 40| 40 | 39 | 38
Tot(Ny) | 395|142 194 - | - | 87 [ 87 [ 87 | 87
Max(Np) | 395 |100| 194 - | - | 58 | 58 | 58 | 58

3| MinNp) | 116 92 89 ] - | - | 58 | 58 | 58 | 58
Ny 1 |2l 2 -] -]lo]ololfo
Max(Ne3) | 168 | 168 | 168 | - | - | 168 | 168 | 168 | 168
Min(Neg) | 168 [168] 168 | - | - | 168 | 168 | 168 | 168 |
Tepu 75 | 48 {120 - | - | 40 | 41 | 39 | 38
Tot(Np) | 724 | 268] 481 -- | -- | 174 | 258 [ 174 | 174
Max(Np) | 379 | 97 | 210| - | - | 58 | 92 | 58 | 58

6 | MindNy) | 130 | 84| 97| - | - | 58 | 74 | 58 | 58
Ng 1 4|5 --]-1o0o]3]o]o
Max(Ne3) | 84 | 84| 84 | - | - | 84 | 84 | 84 | 84
MinNeg) | 84 [ 84| 84 | - | - | 84 | 84 | 84 | 84 |

Tepu 76 | 48 | 121 | 39 | 41 | 42 | 42 | 41 | 39
Tot(Ny,) | 883 | 369 | 645 | 304 | 276 | 308 | 387 | 304 | 276
Max(Np) | 473 | 113|189 | 76 | 69 | 79 | 121 | 76 | 69
8 | Min(Np,) | 129 ] 69| 92 | 76 | 69 | 76 | 81 | 76 | 69
Ng 1 5 7 4 0 3 4 4 0
Max(Ne3) | 63 | 63| 63 | 63 | 63 | 63 | 63 | 63 | 63
Min(Ne3) | 63 | 63 ] 63 | 63 | 63 | 63 | 63 | 63 | 63
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Table 4.12 Comparison of different algorithms for element-based

partitioning of the turbine blade of Fig. 4.9

N, | Parameter| ANP| FP |RBD| RSB | RSB| RSS | RSS | RST | RST

Tot(Np) |1301}1055]1127] -- -- | 881 | 868 | 839 | 821
Max(Np,) | 589 | 634 | 516 | -- - | 435 | 381 | 382 | 377

6 | Min(Np,) | 216 | 210 | 203 | -- - | 169 | 180 | 166 | 160
Ng 2 1 0 - -- 0 0 0 0
Max(Ne3) | 158 | 158 | 168 | - - | 158 | 158 | 158 | 158

Min(Ne_:gl)__ | 157 | 157 | 157 | -- - | 157 | 157 | 157 | 157 |

Tepu 243 | 128 | 272 | 113 | 118 { 119 | 125 | 113 | 118
Tot(Np,) |1430]1255[1460[{1138 1179} 989 |1043 | 1138|1179
Max(Nyp) | 495 | 491 | 504 | 444 | 460 | 374 | 365 | 444 | 460
8 | Min(Np,) | 194 | 174 | 174 | 195 | 155 | 144 | 143 | 195 | 155

Ng 1 1 0 0 0 0 0 0 0
Max(Ne3) | 118 | 118 | 118 | 118 | 118 | 118 | 118 | 118 | 118
Min(Ne3) | 118 | 118 | 118 | 118 | 118 | 118 | 118 | 118 | 118

To examine the effect of different partitions on the performance of the
parallel analysis, actual parallel steady-state analyses have been carried
out on the bladed-disk of Fig. 3.7 partitioned into three subdomains by the
FP and RST(CG) algorithm. The partitioning results of these two
algorithms have already been given in Table 4.11. It can be seen that the
total number of boundary nodes in the partitions obtained from the FP
algorithms is almost twice as large as that obtained from the RST(CG)
algorithm. In addition, two subdomains in the partitions produced by the
FP algorithm have disconnected regions. The results of parallel analyses on

DECsystem 5000's are reported in Table 4.13.
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Figure 4.10 Partitioning results of the (a) ANP, (b) FP, (c) RBD, (d) RST
algorithms for the 12-bladed turbine disk of Fig. 3.7 (N = 3)
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Figure 4.10 (Continued)
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Table 4.13 Performance on DEC5000's of the parallel steady-state analysis
of the bladed-disk problem of Fig. 3.7 with domain partitioned by the FP
and RST(CG) algorithms (Np = 3)

Average # of | Total # of
Algorithm | Speed-up | Efficiency | conjugate dof's on the
(%) gradient subdomain

iterations interfaces
FP 0.51 17 270 429

RST(CG)

2.03

68

46

216

Summary of Results

The results of the above studies are summarized as follows:

(1) All the algorithms deliver partitions in a very small amount of
time compared to the computational time of a dynamic analysis.

(2) Generally speaking, the spectral algorithms (i.e., the RSB, RSS,
and RST algorithms) give better results than the non-spectral
algorithms (i.e., the ANP, FP, and RBD algorithms).

(3) In most cases, the RST(CG) algorithm gives the best partitioning
results among all the considered algorithms.

4.5 Load Balancing for Parallel Explicit Analysis

In Section 4.3, only the spectral partitioning algorithms with the node
graph approach have addressed the node-based partitioning. For those
algorithms which address only element-based partitioning, the present work
performs a simple extra step at the end of the algorithms to assign uniquely

common boundary nodes of two or more subdomains to a subdomain so that
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the algorithms can be also used for node-based partitioning. In this extra
step, boundary nodes common to any two subdomains are assigned to the

subdomain which has fewer nodes in its subdomain.

In the rest of this section, a brief description is given first for the
labelling of the elements and nodes in each subdomain required by the
parallel explicit algorithm (as shown in Fig. 3.1). Reéults of comparative
studies conducted to evaluate the performance of different partitioning

algorithms for the node-based partitioning are then reported.
4.5.1 Element and Node Labelling

After the nodes in the structure are partitioned among subdomains,
the elements in the structure are either labelled as interior elements if all of
their nodes reside in the same subdomain or labelled as border elements if
otherwise. For a particular subdomain, all of its nodes are initially labelled
as interior nodes. Then, the nodes are checked to determine if they are
connected to at least one border element. If they are, they are also labelled
as boundary nodes. Once the boundary nodes are identified, all of the nodes
of the border elements connected to these boundary nodes are checked to
determine if they are residing in this particular subdomain. If they are not,

they are labelled as adjacent nodes of this subdomain.

4.5.2 Comparative Studies Among Algorithms

Numerical comparative studies among the partitioning algorithms
discussed in Section 4.3 have been conducted for node-based partitioning
using three structures of different types: (a) the space station of Fig. 3.4
consisting of only 1D elements, (b) the twelve-story L-shaped building of
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Fig. 3.9 consisting of both 1D and 2D elements, and (c) the twelve-bladed
turbine disk of Fig. 3.7 consisting of 3D elements. The partitioning results
are given in Tables 4.14 through 4.16. The following notations are used in
these tables:

Np = the number of partitions,

Nj, = the number of boundary nodes in a subdomain,

N; = the number of nodes in a subdomain,

Nei = the number of 1D elements in a subdomain,

Ne2 = the number of 2D elements in a subdomain,

N,3 = the number of 3D elements in a subdomain,

N4 = the number of subdomains that have disconnected regions,

Sum(x) = summation of values of x over all subdomains,

Max(x) = maximum value of x among subdomains,

Min(x) = minimum value of x among subdomains,

NG = node graph,

CG = communication graph,

DG = dual graph, and

Tepu = the CPU time (sec.) required.
Sum(Nyp) is related to the amount of interprocess communication, while
Max(NpYMin(Np) shows the balancing of communication loads among
processors. Max(N;¥Min(N;) and Max(Ne)/Min(N¢) indicate the balancing of
the computational loads of equation solving and element calculations,
respectively, among processors. Tc¢py includes time spent in data
preparation for the algorithm, execution of the algorithm, and setting

results into the database.
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Intuitively, Ngq is a significant parameter because, generally

speaking, compact nonfragmented subdomains would appear to lead to the

most efficient parallelization. In this connection, Fig. 4.11 shows some

typical partitionings of the twelve-bladed turbine disk of Fig. 3.7 for Ny = 4.

It should be noted that border elements shared by adjacent subdomains are

included in each subdomain shown.

From Tables 4.14 - 4.16 and Fig. 4.11, the following observations can

be obtained:

(1)

(2)

(3)

(4)

In all examples studied, the CPU time spent by all the algorithms
is very small compared to the execution time of a dynamic
analysis.

In the example of the space station, the node graph approach
produces better results than the dual and communication
approaches for the spectral algorithms. Among all the considered
algorithms, the RSS(NG) algorithm gives the best results.

In the example of the twelve-story L-shaped building, the
RSS(CG) and RST(CG) algorithms give partitions with smallest
Sum(Np), while the RST(NG) algorithm produces partitions with
most balanced Nj, Nj, Ne1, and Ng2 among subdomains. Among
all the considered algorithms, the RSS and RST algorithms with
the dual graph approach (i.e., the RSS(DG) and RST(DG)
algorithms) give the worst results.

In the example of the twelve-bladed disk, although the optimal
partitioning into four or six subdomains seem to be a trivial task
for the human, it is not the case for the partitioning algorithms.
Only the RSS(DG), RSS(NG), RSB(DG), RSB(CG), RST(DG), and
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RST(CG) algorithms give the optimal solution for the case of N =
4. The RSS(DG), RST(DG), and RST(CG) algorithms also give
the optimal solution for the case of Ny = 6. For the case of Np =8
which does not have a trivial optimal solution, the RST(NG)
algorithm gives the best results among all the considered
algorithms. In addition, the communication graph approach
produces better or at least not worse partitioning results than the
dual graph approach for the RSB and RST algorithms, while it is
opposite for the RSS algorithm.

(5) Although it is undesirable to have fragmented subdomains
because they usually result in longer subdomain boundaries (see
Figs. 4.11(a) & (c¢)), it should be noted that having nonfragmented
subdomains (i.e., Ng = 0) is not sufficient in itself to obtain
shorter subdomain boundaries (see Table 4.16 and Figs. 4.11(a) &
(b)).

(6) In all the cases studied, the RST(CG) algorithm, which
consistently delivers good partitioning results, has the best

overall performance among all the considered algorithms.

To show the effect of different partitions on the performance of the
parallel central difference method, actual parallel analyses have been
carried out on the bladed-disk model (shown in Fig. 3.7) partitioned into
four and six subdomains by different algorithms. The partitioning results
have already been given in Table 4.16. The parallel analysis results for
DECsystem 5000's are given in Table 4.17. It can be seen that the results in
Table 4.17 verify the trends observed in Table 4.16.
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Table 4.14 Comparison of different algorithms for node-based partitioning
of the space station of Fig. 3.4 (Np = 3)

Parameter | ANP | FP | RBD RSS RST
NG |DG & CG| NG |DG & CG
Tepu 7 2 2 2 16 2 16
Sum(Np) 98 97 83 72 83 75 83
Max(Np) 45 42 42 29 39 29 39
Min(Ny) 17 18 18 18 18 20 18

Max(N;) | 151 | 153 | 139 | 132 156 132 156
Min(N) | 119 | 119 | 117 | 120 115 120 115
Max(N.;) | 565 | 568 | 548 | 521 605 523 605
Min(Nep) | 473 | 476 | 474 | 497 456 494 456
Ny 0 0 1 0 0 0 0

Table 4.15 Comparison of different algorithms for node-based partitioning
of the twelve-story L-shaped building of Fig. 3.9 (N = 3)

Parameter| ANP| FP | RBD RSS RST
NG | DG | CG | NG| DG | CG
Tepu 3 1 1 3 3 3 3 3 3

Sum(Nyp) | 98 137 | 134 90 | 439 | 81 87 | 439 | 81
Max(Np) | 49 60 67 39 | 290 | 39 34 | 290 | 39
Min(Ny) 14 27 19 18 64 14 19 | 64 14
Max(N;) | 205 | 226 | 223 | 218 | 474 | 223 | 214 | 474 | 223
Min(Nj) 176 | 187 | 182 | 175 | 232 | 170 | 176 } 232 | 170
Max(Ney) | 181 | 195 | 193 | 207 | 211 | 215 [ 204 | 211 215
Min(Nep | 154 | 151 | 152 | 153 | 95 | 137 | 155 ] 95 137
Max(Ne2) | 29 31 31 30 72 30 29 | 72 | 30
Min(Ne2) | 24 28 27 24 34 24 24 | 34 | 24

Ny 0 0 0 0 1 0 0 1 0
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Table 4.16 Comparison of different partitioning algorithms on the bladed-
disk problem of Fig. 3.7

Np | Parameter| FP |RBD | ANP RSS RST & RSB(N,#6)
NG | DG | ¢G | NG [ DG | cG

Teou 37 [ 109 64 | 139 | 28 | 27 | 123 | 27 | 26
Sum(Np) | 484 | 637 | 826 | 280 | 280 | 426 | 356 | 280 | 280
Max(Np) | 161 ] 237|261 | 70 | 70 | 131 | 89 | 70 | 70
MinNp) | 92 | 92 | 184 70 { 70 | 79 | 89 | 70 | 70

4 | Max(Ny |1141]1271]1292] 1027 | 1027 [ 1101|1046 1027 | 1027
Min(N;) | 10331044 [ 1018] 1027 | 1027 | 1023 | 1046 1027 | 1027
Max(Ne3) | 146 | 160 | 170 | 132 | 132 | 144 | 134 | 132 | 132
Min(Neg) | 126 | 126 | 126 | 132 | 132 | 126 | 134 | 132 | 132

N 3| 3jJo]Joflo}1}lo]o 0

Tepu 37 |110| 66 | 190 | 28 | 29 | 145] 29 | 28
Sum(Ny) | 624 |1107|1569] 675 | 420 | 624 | 566 | 420 | 420
Max(Ny,) | 121 | 246 | 378 | 118 | 70 [ 131|130 | 70 | 70
Min(Np) | 89 | 97 | 154 105) 70 | 79 ] 80 | 70 | 70

6 | Max(N; | 766 | 880 |1219| 768 | 708 | 779 | 768 | 708 | 708
Min(Ny) | 722 | 756 | 747 | 740 | 708 | 725 | 718 | 708 | 708
Max(Ne3) | 94 | 104 | 164 [ 98 | 90 {100 | 98 | 90 | 90
Min(No) | 90 | 84 | 84 | 88 | 90 | 84 | 88 | 90 | 90
Ng 3| 5| 1] 2]ol3]1]o 0

Tepu 38 | 111 69 | 234 | 31 | 33 | 148 ] 29 [ 27
Sum(Nyp) | 908 | 1567 [1722] 795 | 759 | 947 | 672 | 777 | 740
Max(Np) | 140 | 246 | 361 | 126 [ 116 | 149 | 94 [ 130 | 116
Min(Ny) | 81| 92 |136] 82 | 76 | 81 [ 66 | 76 | 69

8 | Max(Ny | 699 | 711 |1051] 594 | 610 | 635 | 572 | 711 | 613
Min(Ny) | 545 | 573 | 581 | 553 | 537 | 542 | 544 | 531 | 529
Max(Ne3) | 86 | 84 |125| 74 | 78 | 84 | 74 | 87 | 80
Min(Ne3) | 65 | 63 | 63 | 66 | 63 | 63 | 66 | 63 | 63
N4 5 | 7111 3| 3|4]of] 4]0
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(a) Partitioning results for the FP algorithm

Figure 4.11 Partitioning results of the FP, ANP, and RST algorithms for
the 12-bladed turbine disk of Fig. 3.7 (Np = 4)
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(b) Partitioning results for the ANP algorithm

Figure 4.11 (Continued)
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(c) Partitioning results for the RST algorithm

Figure 4.11 (Continued)
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Table 4.17 Performance on DEC5000's of the parallel central difference
analysis of the bladed-disk problem of Fig. 3.7 with domain partitioned by
different algorithms

Algorithm N, =4 N, =6
Speed-up | Efficiency (%) | Speed-up | Efficiency (%)
FP 3.4 85 5.2 87
RBD 1.8 45 4.6 76
ANP 1.8 44 3.0 50
RSB (CG & DG) 3.8 94 -- -
RST (CG & DG) 3.8 94 5.4 90




Chapter 5

An Integrated Parallel Analysis System

An integrated parallel analysis system is developed in this research
to help evaluate the parallel strategies investigated, verify the finite
element approaches employed, and demonstrate how advanced computer
technologies can assist engineers in all phases of parallel dynamics
simulations. The system takes full advantage of the advanced computing
environments, data structures, and interactive computer graphics and
provides a research software testbed for study of nonlinear structural

dynamics.

This chapter discusses the implementation and application of this
system for various stages involved in parallel nonlinear simulations of
structural dynamics. The emphasis is on the enhancement of several
software applications previously developed at Cornell Program of Computer
Graphics, the development of new applications, and most importantly, the
integration of these applications into an efficient and powerful analysis
system. In addition, application examples that examine and demonstrate

the efficiency and flexibility of the system are presented.

5.1 System Overview

The parallel analysis system consists of four major software
applications: BASYS (Srivastav and Abel 1990; Srivastav 1991) and
FRANSYS (Wawrzynek et al. 1988; Martha 1989; Wawrzynek 1991) for

interactive three-dimensional modelling and visualization, PSAINT (Hsieh

169
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and Srivastav 1992) for finite element domain partitioning, and ABREAST
(Srivastav 1991; Aubert 1992) for parallel nonlinear solutions. Figure 5.1
illustrates the organization of the system and indicates the relationship

among these applications.

Modelling &

BASYS FRANSYS visualization
programs

\ / Parallel

structural
PSAINT analysis

: interface

Parallel

ABREAST analysis
program

Figure 5.1 Organization of the parallel analysis system

BASYS is primarily designed for modelling and visualization of
buildings, space structures, and other framed structures. FRANSYS was
originally developed to model general, 3-D fracture processes in arbitrarily
shaped solids and has been extended to provide general tools for modelling
and simulation of complex 3-D solid models. It has been further extended in
the present work to include graphics tools for visualization of dynamics

simulations.

Both BASYS and FRANSYS provide the analyst an efficient way of
modifying and manipulating the structural data through the use of a

topological data representation called the radial edge data structure (Weiler
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1986, 1988) and a hierarchical modelling scheme. The radial edge data
structure supports an unambiguous boundary representation of non-
manifold topologies of the structural model and therefore, allows BASYS
and FRANSYS to model complex three-dimensional structures. Because the
adjacency relationships of the structural entities are explicitly stored in the
radial edge database, the time required for modelling operations such as
determination of the elements sharing a particular node is considerably
reduced. This contrasts with the use of a geometrically based database in
which time-intensive searches through a connectivity table or time-
consuming floating-point computations and comparisons are required for
the same kinds of modelling operations. In addition, the use of a hierarchy
of topological models to represent the structure allows analysts to work with
the structural model at various levels of abstraction according to their needs
at various stages of analysis and design. The inheritance of structural
attributes (e.g., material properties, boundary conditions, etc.) from the top
down in the hierarchy of models provides a natural and efficient way for the
analyst to assign the structural attributes. For example, material
properties only need to be assigned to entities in the geometry model at the
top of the hierarchy which is the coarsest discretization of the structure, and
all of the entities in the mesh model at the bottom of the hierarchy
automatically inherit the material properties from their parent entities in
the geometry model from which they are derived. This is opposed to "the
mesh is the model” approach in which tedious assignments of structural

attributes to elements and nodes of the mesh are unavoidable.

Both BASYS and FRANSYS also provide a friendly interface for user-

program interaction and a convenient means of displaying the structure
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model and visualizing the response of the structure using interactive
computer graphics. The graphical user interfaces provided include pop-up
menus, dialog boxes, message boxes, toggle buttons, data input tools using a
variety of mouse- and keyboard-based techniques, and 2-D and 3-D
graphical windows for displaying 2-D and 3-D objects, respectively. Two
versions of graphics implementation are currently available for both
programs. For convenience, they are simply referred here as X and PEX
versions. The X version is based on the X Window System1 (Scheifler and
Gettys 1986) for 2-D graphical displays and a simple in-house 3-D graphics
package (Wawrzynek 1987) for transformation of 3-D objects into 2-D
images. To achieve a better 3-D graphical display, the PEX version uses
PEX? (PHIGS? extensions to X) (Rost et al. 1989) instead of the in-house 3-
D graphics package for the 3-D graphical display, but the 2-D graphics is
still based on the X Window System. The current implementation of PEX in
BASYS/FRANSYS uses a primitive version of PEX implemented by Digital
Equipment Corporation (Potyondy 1992) and is operable only on
DECstations.

PSAINT is developed in this work to serve as an interface between
BASYS/FRANSYS and ABREAST for parallel analysis. It is also the key

component that glues the whole system together. Two major tasks are

1 ¥ is a network-based graphics window system developed jointly by
M.LT. and Digital Equipment Corporation. It is currently supported by
most of the major computer vendors.

2 PEX is a 3-D graphics package developed to support 3-D graphical
display in a network windowing environment. It has been recently gaining
wider support from the major computer vendors.

3 PHIGS is one of the available 3-D graphics standards. It is now widely
used in the industry.
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performed in PSAINT: (1) the partitioning of structural domains for parallel
analysis in ABREAST and (2) the collection and merging of the parallel
analysis results from ~the subdomains into a single set of results for
simulation playback in BASYS/FRANSYS. All of the domain partitioning
algorithms discussed in Section 4.3 have been implemented for automatic
partitioning. Interactive graphics tools are also provided for manual
partitioning of the structure and for evaluation and modification of the
results of automatic partitioning. The program automatically generates
various statistics related to partitioning results and allows for visualization
of individual subdomains. Like BASYS and FRANSYS, both X and PEX

versions of graphics implementation are available for PSAINT.

ABREAST is a batch analysis program capable of both geometric and
material nonlinear transient dynamic analyses. Geometric nonlinear
behavior is modelled using an updated Lagrangian formulation with
geometric element stiffness matrices. Material nonlinear response is
included for beam-column elements only through a concentrated plasticity
model which is based on a bounding surface model in three-dimensional
force space (Hilmy 1984; Hilmy and Abel 1985). The original version was
primarily geared towards frame structures consisting of either truss or
beam-column elements. A nine-node Lagrangian shell element is also
available for modelling floors, walls, or panels. For modelling rotating
bladed-disk systems, ABREAST has been extended in the present research
to include a twenty-noded isoparametric brick solid element. Furthermore,
the parallel nonlinear solution algorithms discussed in Section 3.3 for both
transient dynamic and steady-state (static) analyses have been

implemented using a multiple-instruction, multiple-data (MIMD) algorithm.
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Efforts have been taken in the development of these programs to
maximize their portability. For example, BASYS and ABREAST have been
ported from Digital VAXstations running the VMS operating system to both
Digital DECstations running the ULTRIX operating system and Hewlett-
Packard computers running the HP-UX operating system. FRANSYS has
been ported from the VMS operating system to the ULTRIX operating
system. PSAINT has been ported from the ULTRIX operating system to the
HP-UX operating system.

5.2 Interactive Modelling

For the sake of discussion, the modelling of the structure is divided
into two phases. The first phase creates the geometry of the structure.
Only the coarsest discretization of the model that accurately characterizes
the structural geometry is required. The second phase involves the
assignment of the structural attributes, such as material properties,
boundary conditions, etc., and the generation of a mesh for finite element

analysis.
Geometry Creation of Framed Structures

Until recently, BASYS relied on a program called CU-PREPF
(McGuire et al. 1989) for creation of the geometry model of framed
structures. CU-PREPF (Cornell University PREProcessor for Frames) is an
interactive program for the definition of two- and three-dimensional framed
structures. It provides a menu-driven interface to help the analyst
construct structural geometry and specify structural attributes. Once the
basic definition of the structure is completed in CU-PREPF, an output data
file is created that can be read into BASYS for further refinements.
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Although CU-PREPF is a complete preprocessor for framed
structures, its effectiveness and efficiency are limited by the use of
geometrically based database and "the mesh is the model" approach as
discussed previously. The use of CU-PREPF for creation of the geometry
model for BASYS has been an expedient in the ongoing software evolution.
Recently, a model creator has been implemented in BASYS (White and Lee
1993) which eliminates the dependence of BASYS on CU-PREPF. Taking
advantage of the hierarchical topology database and the graphical user
interfaces in BASYS, the model creator provides a set of flexible and
powerful tools for the analyst to create and edit complex 3-D framed and/or
panel structures (consisting of line and/or face elements). Nevertheless, the
interface in BASYS for input of models created in CU-PREPF is still
available to allow for retrieval of structural models created in CU-PREPF at

the early stage of this research.
Attribute Assignment and Mesh Generation of Framed Structures

The hierarchical topology database in BASYS includes three discrete
levels of data representation:4 the structural element (STR) level, the
subdivision (SDV) level, and the mesh (MSH) level. The geometry model of
the structure is first built up in the STR level either using the tools provided
by the model creator in BASYS or based on the model created in CU-
PREPF. Structural attributes are then assigned to structural elements in
the STR level. If the attributes have already been specified in CU-PREPF
along with the geometry model, they are automatically set to the attribute

4 There was a forth representation known as the substructure (SBS)
level which does not use topological representation and has been recently
removed from BASYS.
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database when the input data file from CU-PREPF is read. A set of
graphics tools is also provided for interactive definition and modification of

structural attributes.

To generate a finite element mesh model for the analysis, the
topological edges of the STR model are first subdivided in the SDV level to
define the desired mesh density throughout the structure. Then, the SDV
model is further discretized in the MSH level to obtain the final finite
element mesh (Srivastav 1991). The attributes associated with the
elements in the MSH model are automatically inherited from those

associated with their parent elements in the STR model.
Geometry Creation of 3-D Solids

FRANSYS requires as input a collection of surface patches that
represents the boundary (or skin) of the 3-D solid being modelled. An
object-oriented, boundary-representation, non-manifold solid modeller called
OSM (Potyondy 1991) is used to help the analyst create such surface
patches. Through a scripting language, the user can construct surface
patches in OSM from the simpler entities such as points, lines, and curves.
The statements in the scripting language may be either entered one by one
directly by the user or read from a file prepared in advance. Multiple 3-D
graphics windows may also be activated by the user to display any already
defined entities. Once the desired surface patches are constructed, an
output data file is created that can be read into FRANSYS for further

modelling operations.

For creation of the bladed-disk models with different geometry (see,

for example, Figs. 3.7 and 4.5) in the present research, a simple C program
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called BDM is written to generate automatically the statements in the
scripting language that can be read into OSM to construct the surface
patches of the desired bladed-disk model. BDM allows the user to specify
the following ten parameters for a bladed-disk model (see also Fig. 5.2): the
total number of blades (Np), inner radius of the disk (R;), outer radius of the
disk (R,), thickness of the disk (Hg), length of the blades (Lp), thickness of
the blades (Hp), width of the blades (Wp), length of the blade-disk joint (L),
thickness of the blade-disk joint at the disk end (Hj;), and pre-twisted angle

of the blades (Tj).

Figure 5.2 Parameters for definition of a bladed-disk model

Attribute Assignment and Mesh Generation of 3-D Solids

FRANSYS uses a hierarchy of topological models to represent the

structure at different levels of discretization. The hierarchy consists of the
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following five models: the geometry (GEO) model, the volume decomposition
or subdomain (SDM) model, the face decomposition or subregion (SRG)
model, the edge decomposition or subdivision (SDV) model, and the mesh
(MSH) model. After the initial GEO model of the structure is constructed
from the surface patches created in OSM, FRANSYS allows the analyst to
modify the GEO model, and assign attributes to the GEO model. A set of
interactive tools are also provided for refinements of the GEO model into

the SDM model and further into the SRG model.

To generate a finite element mesh model for the analysis, the
topological edges of the SRG model are first subdivided in the SDV level to
define the desired mesh density throughout the structure. Then, the
topological faces and volumes in the SDV model are meshed in the MSH
level to obtain the final finite element mesh. Several meshing tools based
on a variety of techniques are provided for meshing of faces and volumes.
For meshing faces, these include bi-linear transfinite mapping, collapsed bi-
linear transfinite mapping, tri-linear transfinite mapping, and general
triangulation. For meshing volumes, the tools available are tri-linear
transfinite mapping and general sweeping. In addition, the attributes
associated with the elements in the MSH model are automatically inherited

from those associated with their parent elements in the GEO model.

5.3 Domain Partitioning

Once the modelling in BASYS or FRANSYS is completed, an output
data file, called the structural analysis (SA) data file, is created which is
already a valid input file for ABREAST if only a serial finite element

analysis is required. For parallel analysis, the SA file is instead read into
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PSAINT for partitioning of the finite element domain defined in BASYS or
FRANSYS into a number of subdomains. Both automatic and manual
partitioning tools are provided in PSAINT for such partitioning. The
partitioning results are appended at the end of the SA file. The updated SA
file can then be read into ABREAST for parallel analysis.

Automatic Domain Partitioning

All the automatic partitioning algorithms discussed in Section 4.3
have been implemented in PSAINT for both element-based and node-based
partitioning. The studies in Chapter 4 show that, in most cases, the
RST(CG) algorithm gives the best partitioning results among all the studied
algorithms. However, in many cases, comparisons among results from
different algorithms may be necessary to assure that the best possible

results among all implemented algorithms are obtained.
Manual Domain Partitioning

A set of graphics tools is provided in PSAINT under the "Interactive
Partitioning" menu for manual partitioning. To define a subdomain, the
user first specifies the corresponding subdomain number of the subdomain
through a dialog box. The subdomain is then defined by collecting nodes in
the structural domain using a set of data collectors. If the node-based
partitioning is required, the collected nodes are assigned to the subdomain.
If the element-based partitioning is required, those elements with all of
their nodes collected are assigned to the subdomain. Upon exit from the
partitioning menu when all subdomains are defined, the elements and
nodes in subdomains are then labelled following the procedures discussed in

Sections 4.4.1 and 4.5.1 for the element-based partitioning and the node-
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based partitioning, respectively. Various collectors are available for the

user to collect nodes in the structural domain:

(1)

(2

3)

4)

(5)

MANY NODES: nodes are collected one by one simply by
pointing to them.

NODES ON LINE: Two nodes are selected to define a line. All
nodes lying on the line are then collected automatically.

NODES ON PLANE: Three nodes are selected to define a plane.
All nodes lying on the plane are then collected automatically.
NODES IN CUBE: A rectangular parallelepiped with faces
aligned to the global coordinate axes is defined by selecting the
endpoints of its diagonal. All nodes in the parallelepiped are then
collected automatically. The two endpoints can be either existing
nodes in the structure or points at the coordinates specified by
the user.

NODES IN SECTOR: A sector is defined by specifying the
following parameters as shown in Fig. 5.3: a reference point P
which defines the local origin of the sector, a reference vector ¥
which is aligned to the face, a rotation axis u, the angle of
rotation, @, and the thickness of the sector, h. All nodes in the
sector are then collected automatically. The current
implementation requires that vectors u and y align with the

global coordinate axes.

In addition, the above tools can be used to modify previous partitions,

say, resulting from automatic partitioning. In this case, the modification is

achieved by re-defining the subdomain numbers associated with the nodes

(if node-based partitioning) or the elements (if element-based partitioning)

-
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in the structural domain. First, the user first specifies the current active
subdomain. Then, the collected nodes (if node-based partitioning) or the
elements with all of their nodes collected (if element-based partitioning) are
assigned to the active subdomain. Finally, when the re-definition of nodes

or elements is completed, the elements and nodes in each subdomain are re-

labelled accordingly.
éll
¢
h/2 P
2 - v

Figure 5.3 Parameters for definition of a sector

Examination of Partitioning Results

PSAINT also provides graphics tools under the "Display
Substructures” menu for the user to examine partitioning results. Upon
activation of this menu, subdomains in a partitioned domain are displayed
in different colors. The user is then allowed to turn on and off display of any
subdomain, to display subdomains individually, or to display them in a
sequential order for better examination of partitioning results. Message
boxes containing statistics of partitioning results are also displayed. For
element-based partitioning, the statistics provided for each suhbdomain
include the total number of nodes, the number of interior nodes, the number

of primary boundary nodes, the number of secondary boundary nodes, and



182

the number of elements of different types. For node-based partitioning, the
statistics provided for each subdomain include the total number of nodes,
the number of interior nodes, the number of boundary nodes, the number of

adjacent nodes, and the number of elements of different types.
5.4 Parallel Nonlinear Analysis

After reading the SA file prepared by BASYS/FRANSYS and
PSAINT, ABREAST performs the desired parallel nonlinear analysis
specified in the SA file. As already discussed in Section 3.3, the parallel
solution algorithms implemented in ABREAST for this work include a
parallel central difference algorithm for explicit transient analysis, a
parallel Newmark algorithm with domain decomposition for implicit
transient analysis, and a parallel Newton-Raphson iterative-incremental
algorithm for steady-state (static) analysis. The effectiveness of these

parallel algorithms implemented has also been investigated in Section 3.4.

A UNIX shell script is used to help the user run parallel analyses.
The shell script takes two arguments as input: the name of the SA file
(without file extension) and the name of a user-specified file containing a
list of processors available for use in parallel analyses. The script extracts
the number of subdomains (or processors), Np, from the SA file and remotely
invokes executable image of ABREAST on each of the first Ny processors in
the list to start the parallel analysis.

All copies of ABREAST running on separate processors are identical
and read identical copies of the SA file. The order that each ABREAST joins
the ISIS process group is used to automatically determine the distribution

of subdomains among processors (i.e., subdomain No. 1 is assigned to the
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first member in the process group, and so on). Because each processor
executes identical code, but asynchronously and on different data, this is a
MIMD (multiple instruction, multiple-data) approach. As discussed in
Section 3.1, the communication and synchronization between processors are

achieved in a message passing environment provided by ISIS.
5.5 Response Visualization

Once the parallel analysis is complete, an individual response file is
created by each ABREAST on a separate processor which contains analysis
results associated with the subdomain assigned to that particular processor.
PSAINT is then used to gather these response files into a single file for
visualization in BASYS or FRANSYS.

There are three major utilities provided in BASYS and FRANSYS for
visualization of dynamic responses of the structure. The first one is for
animation of modal vibration of the structure. The eigenvectors (or mode
shapes) obtained from an ABREAST eigensolution can be scaled and
dynamically displayed. The second utility provides two-dimensional plots
for selected response data at specific points in the finite element model. The
user can interactively specify the time interval for which the desired
response quantities are to be plotted. The user can also choose from the
following quantities for the ordinate and abscissa axes in the plots: time,
displacements, velocities, accelerations, stresses, strains, and stress
resultants. The third utility is for dynamic simulation of the structure. The
results of displacements and stresses/strains in the response file (which are
calculated at the user-specified time intervals) are used to construct a

sequence of displays that animates the deforming motions of the structure
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with color contours showing the changing of a selected stress or strain
quantity. The user is allowed to specify the time interval and the

displacement amplification factor for the dynamic simulation.

5.6 Interactive Monitoring and Steering

The capabilities for interactively monitoring and steering parallel
analysis have not been implemented in the current version of parallel
analysis system. However, the idea for monitoring the progress of parallel
analysis has been investigated in the preliminary version of parallel
analysis system consisting of BASYS and ABREAST at the early stage of
this research (Abel et al. 1991; Aubert 1992). At that time, PSAINT had not
been created and temporary graphics tools were provided in BASYS for
interactive domain partitioning. Visualization tools in BASYS were
extended to include a response monitor and process monitors for use in
monitoring the progress of parallel analysis of framed structures. The
response monitor provides a means to display analysis results (i.e.,
deformed shape of the structure with color contours of the selected
stress/strain quantity) as they are being calculated, while the process
monitors display the most current status of parallel processors, such as the
name of the computing node, the time spent for the actual computations, the
time spent for interprocess communication, etc. The user is also allowed to
specify the update frequencies (in terms of time steps) of the monitors. Up

to six DECsystem 5000's were used.

Figure 5.4 shows the interactive monitoring of parallel analysis using
the preliminary version of parallel analysis system in a networked

workstation environment. ABREAST's are run on a number of workstations
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and communicate through ISIS. Also, through ISIS, BASYS collects the
most recent analysis results as they are being calculated by the ABREAST's
and monitors the progress of the parallel analysis. In addition, the graphics
display of BASYS can be visualized on any workstation specified by the user
through the X Window system.

?
rWorkStatio; rWorkStatio; r(WorkStatioh
Graphics BASYS

Display H@J ABREAST
ST
L ZAN
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Figure 5.4 Interactive monitoring of parallel analysis using the preliminary

version of the parallel analysis system

It was found that the performance of the parallel analysis was
degraded when the interactive monitors (especially the response monitor) in
BASYS were used. This is mainly due to the increase of communication
overhead that is required for the various ABREAST's to send calculated
responses of the structure and timing statistics of the parallel analysis to
BASYS. The amount of response information that needs to be sent to the

response monitor becomes larger as the size of the structure being analyzed
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increases. It was also found that the time required to update the display of
the response monitor might increase considerably so that a responsive

interactive display environment in BASYS could not be maintained.

However, as the processing power and the speed of communication
network continue to increase, interactive monitoring and steering of parallel
analyses in the current parallel analysis system will become more feasible.
The future development of interactive monitoring and steering capabilities

in the current parallel analysis is suggested in Section 6.2.

5.7 Application Examples

Two examples are used in the present work to examine and
demonstrate the efficiency and flexibility of the parallel analysis system
presented above. The first example analyzes a framed structure subjected
to seismic loading, while the second one analyzes a rotating turbine bladed-

disk experiencing tip rubs.
5.7.1 Framed Structure Subjected to Seismic Loading

A twelve-story L-shaped building is analyzed to demonstrate the
capabilities of the parallel analysis system for dynamic simulations of
framed structures. The structure has been studied by Srivastav (1991) to
examine effects of floor flexibility on building responses and is similar to the
one shown in Fig. 3.9 but with each floor panel modelled by four shell

elements. Only linear elastic analyses are performed by Srivastav.

Detailed descriptions of the design of the structure and assumptions
used in the analysis have been given by Srivastav (1991) and, therefore, are

not repeated here. Four different strategies were used for modelling floor



187

slabs of different flexibility in Srivastav's work. In the present work, the
floor slabs are modelled by shell finite elements with the stiffness of a

typical reinforced concrete slab.

The geometry model and attributes of the structure are defined in
CU-PREPF, while the finite element meshes of the structure are generated
in BASYS. The resulting finite element model consists of 696 beam-column
elements, 288 nine-node Lagrangian shell elements, 1,514 nodes, and 7,668

unrestrained degrees of freedom.

The structure is subjected to the El Centro earthquake. Both linear
and geometric nonlinear parallel analyses are performed using six
HP9000/720's. The time step is 0.01 seconds and 20 seconds of structural
responses are analyzed, i.e., 2,000 steps are performed. The structure is
partitioned by floors into six subdomains using the interactive tools
provided in PSAINT. Each subdomain consists of two floors of the
structure. The parallel Newmark implicit time integration in ABREAST is
used for dynamic solutions. For each time step, the equilibrium solution is
achieved using modified-Newton iterations. The diagonal scaling
preconditioner of Eq. 3.9 is used in the parallel preconditioned conjugate
gradient (PCG) iterations. The convergence tolerance for the modified-
Newton iterations is 10'5, while the convergence tolerance for the conjugate

gradient iterations is 1x10®. The results are output every 0.05 seconds.

The measured wall clock time required for the parallel analyses using
six HP9000/720's is given in Table 5.1. If only a single HP9000/720 is used,
it is estimated that the linear analysis would take about 13 hours and 14

minutes, while the geometric nonlinear analysis would take about 53 days
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13 hours and 32 minutes. These estimations are extrapolated from time
required for actual analysis runs of twenty time steps. In this example,
superlinear speed-up is observed in both the linear and nonlinear parallel
analyses. As discussed in Section 3.4.2, this is probably due to the fact that
the profile (or skyline) of the coefficient matrix for the whole structure in
the serial analysis is not as well minimized as that of the coefficient matrix
for each subdomain in the parallel analysis. Moreover, for analysis of this
particular structure, the substructuring approach with the PCG solver in
the parallel analysis may require fewer computational operations (i.e., may
be more effective) than the direct approach in the serial analysis because
only a very small number of PCG iterations is required in the analysis (see

Table 5.1). This also accounts for the superlinear speed-up of the analyses.

Table 5.1 The time required for parallel implicit analyses of the twelve-

story L-shaped building studied in Section 5.7.1 (six HP9000/720's are used)

Analysis type ll Linear Geometric nonlinear
Wall clock time (days hours:minutes) | 2:09 : 3 15:40
Average number of equilibrium
iterations per time step - 6
Average # of PCG iterations 7 12
Number of boundary d.o.f.'s ﬂ 420 420

Finally, the response files of the parallel analysis are gathered by
PSAINT into a single response file for response visualization in BASYS. In
this example, the gathered response file takes up approximately 86 Mbytes
of disk space. Fig. 5.5 shows a simulation playback of dynamic responses of

the structure in BASYS.
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Figure 5.5 A simulation playback of dynamic responses of the 12-story L-
shaped building in BASYS
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5.7.2 Rotating Bladed-disk Experiencing Tip Rubs

The rotating turbine 12-bladed disk problem with the finite element
model of Fig. 3.7 is analyzed to demonstrate the capabilities of the parallel
analysis system for transient simulations of rotational dynamics of solid
models. The bladed-disk rotates at the speed of 12,000 rpm and experiences
a rubbing impact at the tip of one of its blades.

Geometrical Configuration and Material Properties

The geometry model of the structure is constructed using the BDM
and OSM programs discussed in Section 5.2. The geometric configuration of
the model is described by the following parameters (see also Fig. 5.2):

1) the inner radius of the disk (R;) = 0.048 m,

2) the outer radius of the disk (Ry) = 0.12 m,

3) the thickness of the disk (Hq) = 0.05 m,

4) the length of the blades (Lp) = 0.10 m,

5) the thickness of the blades (Hp) = 0.0025 m,

6) the width of the blades (Wp) = 0.05 m,

7) the length of the blade-disk joint (L) = 0.02 m,

8) the thickness of the blade-disk joint (H;) = 0.0075 m, and

9) the pre-twisted angle of the blades (Tg) = 45°.

The properties of the aluminum are used for the entire structure and are
represented by the following parameters:

1) the Young's modulus = 6.9 x 1010 N/mz,

2) the density = 2687.36 kg/m®, and

3) the poison ratio = 0.33.
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Finite Element Mesh

The finite element mesh model of the structure is generated in
FRANSYS. In the present example, after the topological edges of the model
are subdivided, the automatic meshing capabilities provided by FRANSYS
are used to construct both surface and volume meshes. The resulting finite
element model consists of 504 twenty-node brick solid elements, 3,828
nodes, and 10,044 unrestrained degrees of freedom. The twenty-node brick
element uses the reduced integration scheme in all analyses performed in

the present example.
Domain Partitioning

The structure is partitioned into six subdomains using the RST
automatic partitioning algorithm in PSAINT. For partitions used in
parallel steady-state analysis, the partitioning type specified is the element-
based partitioning, while the node-based partitioning is specified for

partitions used in parallel central difference analysis.

Parallel Steady-State Analysis

To obtain the steady-state solution of the bladed-disk model rotating
at the speed of 12,000 rpm, parallel steady-state analyses are performed
using six DEC5000's. Both rotational and geometric nonlinearities are
considered in the analyses and a lumped mass matrix is employed. Two
sets of analyses using the lumped mass (LM) and consistent mass (CM)
approaches for the formulation of the rotational terms, respectively, are
performed. The fractional load step size used is 0.2, and Newton-Raphson

iterations are used to achieve equilibrium solutions for each load increment.
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The measured wall clock time required for the parallel analyses is given in
Table 5.2. The maximum radial displacement at the blade tips is about 0.5

mm.

Serial analyses using a single DEC5000 are also performed. The
analysis with the LM approach takes about 8 hours and 31 minutes, while
the analysis with the CM approach takes about 7 hours and 26 minutes.
Based on these results, a speed-up of 3.8 and an efficiency of about 64% can
be calculated for the parallel analyses with both the LM and CM

approaches.

From Table 5.2, it can be seen that the analysis with the CM
approach takes less time than that with the LM approach. This is mainly
because the former requires fewer Newton and PCG iterations in this
example despite the greater computational effort per Newton step to

account for rotational nonlinearity.

Table 5.2 The time required for parallel steady-state analyses of the
rotating turbine bladed-disk studied in Section 5.7.2 (six DEC5000's are

used)
Aggroach LM CM
Wall clock time (hours:minutes) 2:16 1:56
Total number of Newton iterations 39 33
Average # of PCG iter. per Newton iter. 78 75
Number of boundary d.o.f.'s 432 432
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Modal Vibration Analysis

The modal vibration characteristics of the bladed-disk model are
examined. Two cases are considered in the analysis. In the first case, the
model does not rotate (Q = 0 rpm), while the model rotates at the speed of Q
= 12,000 rpm in the second case. For the case of Q = 12,000, the results of
the previous steady-state analysis are used as initial conditions for the
analysis. The subspace iteration method in ABREAST is used for
eigensolutions. A lumped mass matrix is used. The computed frequencies
for the first thirty-six modes are given in Table 5.3. The results are then
read into FRANSYS for visualization of mode shapes. Each of the

eigenanalyses takes about 2 hours and 57 minutes on a single DEC5000.

Table 5.3 Modal frequencies of the turbine 12-bladed disk studied in
Section 5.7.2

Frequency (Hz)
Mode Q=0rpm Q =12,000 rpm
LM approach | CM approa&
1 278 278
2~12 181 279 279
13 ~ 17 838
18~ 24 839 413 412
25 ~ 28 625 620
29 626 621
30 & 31 1147 629 624
32 & 33 632 627
34 ~ 36 633 628
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From Table 5.3, it can be observed that, for both nonrotating and
rotating cases, the frequency results fall into three clusters. The first
cluster includes the first twelve modes, the second one includes the next
twelve modes, and so on. In the first cluster, the frequencies of the rotating
case are higher than those of the nonrotating case. However, the
frequencies of the rotating case in the second and third clusters are lower
than those of the nonrotating case in the second cluster. It should be noted
also that the mode shapes of the same mode number in both the nonrotating

and rotating cases may not necessarily be the same.
Parallel Transient Dynamic Analysis

The transient responses of the rotating bladed-disk meodel are
analyzed. The model rotates at the speed of 12,000 rpm and experiences a
rubbing impact at the tip of one of its blades. Parallel central difference
analysis using the LM approach is performed using six DEC5000's. Both
rotational and geometric nonlinearities are considered in the analyses and a
lumped mass matrix is employed. The results of the previous steady-state

analysis are used as initial conditions for the analysis.

The blade tip rubs are modelled by a set of applied impact forces
based on a dry friction rub model. In this rub model, the frictional (or
circumferential) force, Fy, is proportional to the normal (or radial) force, Fy.
That is

Fi=pFp (5.1)
in which p is the coefficient of friction. In this example, p = 0.21s used and
uniform tractions Tt and T, are applied to the blade tip surface for the

impact forces Fy and Fy, respectively. Figure 5.6 shows the time history of
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the normal traction T, which acts in the inward radial direction. The
circumferential traction T, acts in the direction opposite to the tangential

blade tip velocity.
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Figure 5.6 Time history of the normal traction Ty used in the transient

dynamic analysis of Section 5.7.2

The transient responses are computed for a duration of 10" sec. and
a time step of 1077 sec. is used. The results are output every 5%10°° sec., i.e.,
every 50 time steps. The measured wall clock time required by the parallel
analysis with the LM approach is about 12 hours and 19 minutes. Serial
analysis with the LM approach using a single DEC5000 is also performed.
The analysis takes about 2 days 15 hours and 12 minutes. Based on the
above results, a speed-up of 5.1 and an efficiency of 86% can be calculated.

For analyses with the CM approach, it is estimated that the parallel

" analysis using six DEC5000's would take about 4 days 6 hours and 53

minutes, while the serial analysis using a single DEC5000 would take about
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23 days 1 hour and 47 minutes. These estimations are extrapolated from

the analysis results obtained in Section 3.4.1 for the same turbine 12-bladed

disk model but for only 100 time steps.

Finally, the response files of the parallel analysis are gathered by
PSAINT into a single response file for response visualization in FRANSYS.
In this example, the gathered response file takes up approximately 58
Mbytes of disk space. Fig. 5.7 shows a simulation playback of dynamic
responses of the structure in FRANSYS.
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Figure 5.7 A simulation playback of dynamic responses of the turbine 12-
bladed disk in FRANSYS



Chapter 6

Summary and Conclusions

The principal objective of this research is to develop, test, and
implement coarse-grained, parallel-processing strategies for nonlinear
dynamics simulations of practical structural problems. The parallel-
processing strategies considered include numerical algorithms for parallel
nonlinear solutions and techniques to effect load-balancing among
processors. Finite element techniques are employed for modelling and
analysis of structural dynamics problems studied in this work. Two classes
of problems are investigated: framed structures with flexible floors
subjected to seismic loading and rotating turbine bladed-disk assemblies
experiencing tip rubs. However, emphasis is placed on the structural
dynamics of rotating turbine bladed-disk assemblies. To facilitate more
efficient and powerful simulations of nonlinear structural dynamics, an
integrated parallel finite element analysis system is presented. This
chapter summarizes the research work reported in this dissertation, draws

conclusions, and suggests directions for future work.

6.1 Summary

There are four main components included in the present work. The
first of them deals with finite element approaches for modelling and
analyzing structural dynamics problems of rotating turbine bladed-disk
assemblies as well as framed structures. Both the second and the third

address parallel-processing strategies for finite element analysis of

198
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structural dynamics. The second investigates numerical algorithms for
parallel nonlinear solutions, while the third studies techniques to effect
load-balancing among processors. Finally, the last one entails the

development of an integrated parallel analysis system.
Finite Element Modelling and Analysis

Two classes of structural dynamics problems are studied for the
development, testing, and evaluation of parallel-processing strategies
addressed in this work. The first one includes framed structures with
flexible floors subjected to seismic loading, while the second one includes
rotating turbine bladed-disk assemblies experiencing tip rubs. The finite
element approach is employed to model complex structural geometries and
material properties, to account for both geometric and rotational
nonlinearities, and to formulate the governing equations of motion for these
problems. The emphasis is on the finite element formulation for handling

geometric nonlinear analysis of rotating multi-bladed disk problems.

For modelling and analysis of framed structures with flexible floors,
the finite elements and analysis capabilities already provided in ABREAST
are employed. The beam-column element is used to model beams and
columns of framed structures, while the nine-noded Lagrangian shell
element is used to model floor panels. The dynamic analysis capabilities of
ABREAST include eigensolvers for undamped vibration analysis and both
explicit and implicit direct time integration solvers for transient analysis.

Geometric nonlinearity is considered in the analysis.

For modelling the turbine bladed-disk, the twenty-noded

isoparametric brick element with reduced integration is used after
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consideration of several alternative modelling strategies as discussed in
Section 2.2. The present implementation of this element in the finite
element library of ABREAST has been verified using three example

problems in Section 2.2.3.

Because turbine blades are relatively flexible and normally respond
to the centrifugal forces with considerable deflections, a geometrically
nonlinear analysis is usually required for accurately predicting dynamic
behavior of rotating blades. Furthermore, the centrifugal loads are also
dependent upon displacements in that they are proportional to the
instantaneous radius from the rotational axis. The present research
accounts for geometric nonlinearities through the use of the geometric
stiffness and an updated Lagrangian formulation. Two finite element
approaches presented in Section 2.3.3 are implemented in ABREAST to
incorporate rotational nonlinearities into equations of motion of the rotating
system: the consistent mass (CM) and lumped mass (LM) approaches. The
CM approach treats the structure as a continuum with mass points
uniformly distributed in the structure, while the LM approach treats the
structure as a collection of discrete concentrated mass points. In Section
2.5.3, numerical studies have been conducted in to verify the present
implementation of both the CM and LM approaches for rotational dynamics.
In addition to verification studies, numerical comparisons are performed
between the CM and LM approaches for accounting for rotational

nonlinearities.

A two-stage analysis is employed to carry out modal vibration
analyses of rotating bladed-disk systems. The first stage involves a

nonlinear static analysis to obtain a steady-state solution which serves as
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the initial condition for the second-stage eigenvalue analysis. For transient
dynamic analysis of rotating bladed-disk assemblies experiencing tip rubs, a
similar two-stage analysis is also employed to save computational time. The
first stage analysis is the same as that in the modal vibration analysis. The
solution of the first-stage analysis then serves as the initial condition for the
second-stage transient analysis which computes structural responses during
tip rubbing. A static analysis capability, which did not previously exist in
ABREAST, has been implemented for the steady-state solution.

Parallel Nonlinear Solution Algorithms

The parallel computing environment used in this work consists of
either up to six DECsystem 5000's or up to twelve Apollo/HP 9000 series
790's. These UNIX workstations are connected by Ethernet and
communicate via the TCP/IP. The interprocess communication and
synchronization are achieved in a message passing environment provided by
ISIS. This is a coarse-grained, distributed-memory environment where the
number of processors used is small and no global memory is shared among
processors. The present research focuses on parallel solution algorithms
suitable for this type of environment where minimization of communication
overhead and parallelization at the substructure level (as opposed to the
parallelization at the element level or at the degree-of-freedom level as in a
fine-grained environment) are two key strategies for the algorithms to

achieve good parallel performance.

For parallel explicit transient analysis, the parallel central difference
method developed by Hajjar and Abel (1989a) is adopted in this research
and implemented in ABREAST. The central difference algorithm is
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inherently amenable to parallel processing. With the use of lumped masses
to yield a diagonal mass matrix, the solution may proceed on a degree-of-
freedom basis without treatment of simultaneous equations and with only a

minimum amount of communication required between adjacent processors.

For parallel implicit transient analysis, the parallel Newmark
algorithm with domain decomposition presented by Hajjar and Abel (1988)
is adopted with slight modifications and implemented in ABREAST. This
parallel implicit algorithm uses a domain decomposition approach within
the Newmark time stepping outer loop. The domain decomposition
approach starts with partitioning the structure into a number of
subdomains and assign each subdomain to a separate processor. Then, the
substructure condensation is carried out on each processor independently
and concurrently without any interprocess communication. Finally, a
condensed set of system equations associated with unknowns along
subdomain interfaces is solved by a parallel diagonally-preconditioned

conjugate gradient algorithm.

For parallel steady-state analysis, a parallel Newton-Raphson
iterative incremental algorithm is implemented in ABREAST. The
algorithm uses the same approach as the parallel implicit algorithm except
that the time stepping outer loop is replaced by the load increment outer

loop.

To evaluate the effectiveness of the parallel algorithms implemented
in this work, numerical studies have been performed in Section 3.4 using

structures of different types.
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Load Balancing Among Processors

To effect load-balancing among processors, the present research
focuses on the automatic domain partitioning techniques for parallel finite
element analysis of structural dynamics. The domain partitioning
techniques partition the domain of a structure into a number of subdomains
which are distributed among the processors and the computation involved
in a subdomain is carried out by a separate processor. Well-balanced
distribution of computations among subdomains and minimization of
interprocess communication are sought so that significant speed-up can be
obtained in the parallel analysis. Because the partitioning is done only once
and before the actual computation starts (i.e., in the preprocessing phase),
the domain partitioning methods are classified as static (as opposed to

dynamic) load balancing techniques.

The automatic partitioning algorithms proposed by Farhat (1988),
Malone (1988), Al-Nasra and Nguyen (1991), and Simon (1991) are
investigated in this research. Two generalized versions of Simon'’s recursive
spectral bisection (RSB) partitioning algorithm (1991) are then proposed in
Section 4.3.5. They are called the recursive spectral sequential-cut (RSS)
and the recursive spectral two-way (RST) partitioning algorithms. Unlike
the RSB algorithm in which the number of partitions is restricted to an
integer power of two, both the RSS and RST algorithms can yield an
arbitrary number of partitions. In addition, interactive graphics tools are
developed to allow for manual partitioning and for examining and modifying

results of automatic partitioning.
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Comparative studies have been conducted in Sections 4.4 and 4.5 to
evaluate and compare both efficiency and effectiveness of thé automatic
partitioning algorithms investigated. Different types of structures modelled
by 1D, 2D, and 3D finite elements are employed in the studies. The use of
different graph representation of the finite element meshes in the spectral

partitioning algorithms is also investigated.
An Integrated Parallel Analysis System

An integrated parallel analysis system has been developed in this
work to help evaluate the parallel strategies investigated, verify the finite
element approaches employed, and demonstrate how advanced computer
technologies can assist engineers in parallel dynamics simulations. Using
the advanced computing environments, data structures, and interactive
computer graphics, this system provides an efficient and powerful

environment for simulations of nonlinear structural dynamics.

The system integrates four in-house, general-purpose computer
programs: BASYS and FRANSYS for three-dimensional modelling and
visualization, PSAINT for finite element domain partitioning, and
ABREAST for nonlinear dynamic solutions. In Chapter 5, the efficiency and
flexibility of the system for parallel dynamics simulations have been

demonstrated.
6.2 Conclusions

The main contributions of this work are: (a) implementation and

comparison of two finite element approaches for handling rotational
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nonlinearities in dynamic analysis of rotating multi-bladed disks, (b)
investigation and implementation of three parallel solution algorithms for
analysis of structural dynamics in a modern networked workstation
environment, (¢) generalization of the Recursive Spectral Bisection (RSB)
partitioning algorithm (Simon 1991) for an arbitrary number of partitions,
(d) evaluation and comparison of several automatic domain partitioning
techniques for load balancing among processors, and (e) integration of a

parallel finite element analysis system.
Comparison of Two Finite Element Approaches

Two finite element approaches have been sucessfully implemented in
this work to account for rotational nonlinearities involved in dynamic
analysis of rotating bladed-disk assemblies: the Consistent Mass (CM) and
Lumped Mass (LM) approaches. In both cases, the inertial properties
(mass) are represented by a diagonal (lumped) mass matrix. However, the
different methods cited are based on whether the mass effects in the
rotational terms are either considered as lumped (LM) or distributed (CM).
Based on the numerical comparative study conducted in Section 2.5.3 and
results observed in the application examples of Section 5.7.2, the following
conclusions may be made:

(1) Although the LM approach is not expected to be as accurate as

the CM approach due to its neglect of mass coupling, it has been
found that the modal vibration results obtained using the LM
approach are in close agreement with those obtained using the
CM approach. In most cases, the frequency results from the LM
approach are slightly higher than those from the CM approach.
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The transient displacements predicted using the LM approach
also agree well with those predicted using the CM approach.

(2) On the other hand, the. LM approach is expected to be
computationally more efficient than the CM approach. This has
been found to be the case for transient dynamic analysis using
explicit time integration. In the examples studied, the
computational time required in the analysis using the CM
approach has been found to be about 9 times more than that
using the LM approach. However, for modal vibration analyses,
the computational times of analyses using these two different

approaches do not differ significantly.
Parallel Nonlinear Solution Algorithms

It has been shown in Section 3.4.1 that the parallel central difference
algorithm can achieve high parallel speed-up and efficiency. For example,
in the analysis of the 12-bladed turbine disk of Fig. 3.7, the speed-up ranges
from 1.9 for two processors (i.e., 96% efficiency) to 9.7 for twelve processors
(i.e., 81% efficiency) in a network of HP9000/720 workstations. However,
the central difference method is conditionally stable and often requires at
least an order-of-magnitude more time steps than an unconditionally stable
implicit method. Nevertheless, for structural dynamics problems of short-
duration nature where a short time step is necessary to capture the
dynamic phenomena, the central difference analysis can be a cost-effective
time integration algorithm. One example is the structural dynamics of
rotating turbine bladed-disk assemblies experiencing tip rubs investigated
in this work. Due to the short-duration, impact-like nature of the tip rubs,

the use of a small time step is necessary in analysis to capture the dynamic
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phenomena. Furthermore, the size of the problem is usually large, some of
the coefficient matrices are skew-symmetric rather than symmetric, and
significant computation and storage are required for matrix assembly and

solution of system equations if implicit methods are used.

In addition to more computation and storage needed for stiffness
assembly and solution of system equations, the parallel implicit algorithm
requires significantly more synchronization and communication overhead
than the parallel explicit algorithm and, therefore, is less efficient.
However, its unconditional stability makes it more suitable for long-
duration problems such as the structural dynamics of framed structures
subjected to séismic loading investigated in this work. It has been shown in
Section 3.4.2 that, with the use of the parallel implicit algorithm, nonlinear
analysis of structural dynamics can benefit from parallel processing,
especially when the problem size is large and an appropriate number of
processors is used. For example, in the analysis of the 12-story L-shaped
building of Fig. 3.9, a speed-up of 3.3 (83% efficiency) is achived when four
HP9000/720's are used. In addition, the diagonal scaling preconditioner has
been shown to accelerate effectively the convergence rate of the parallel

conjugate gradient algorithm in the examples studied.

The synchronization and communication overhead required in the
parallel steady-state algorithm is smilar to that of the parallel implicit
algorithm. Good parallel performance of this algorithm has also been
obtained in the example studied. For example, in the analysis of the 12-

bladed turbine disk of Fig. 3.7, a speed-up of 3.2 (80% efficiency) is achived
when four HP9000/720's are used.



208

Automatic Domain Partitioning Algorithms

As presented in Section 4.3.5, two partitioning algorithms have been

developed in this research, both of which generalize the RSB algorithm for

an arbitrary number of partitions. They are the Recursive Spectral

Sequential-cut (RSS) and the Recursive Spectral Two-way (RST)

algorithms. In Sections 4.4.3 and 4.5.2, comparative studies are conducted

among these algorithms and several other algorithms proposed by previous

researchers. From these comparative studies, the following conclusions may

be made:

(1)

(2)

3)

It has been found that in most cases the RST algorithm with the
communication graph approach gives the best partitioning results
among all the considered algorithms.

all the considered algorithms deliver partitions in a very small
fraction of the computational time for the dynamic analysis. For
coarse-grained problems studied, the spectral partitioning
methods require about the same computational time as the non-
spectral methods.

Although it is undesirable to have fragmented subdomains
because they usually result in longer subdomain boundaries, it
should be noted that having nonfragmented subdomains is not

sufficient in itself to obtain shorter subdomain boundaries.

An Integrated Parallel Analysis System

A parallel analysis system has been integrated in this work. Its

implementation and application for various stages involved in parallel

nonlinear simulations of structural dynamics have been discussed in
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Chapter 5. From the examples presented in Section 5.7, the system has
been shown to provide a useful research software testbed for study of

nonlinear structural dynamics.

6.3 Suggestions for Future Research

There are several areas in which research should continue to improve
parallel processing strategies for simulations of nonlinear structural
dynamics. There are also several possible enhancements of the parallel
analysis system integrated in this work. Some suggestions for future work

are discussed as below.
Parallel Modal Vibration Analysis

To study dynamic characteristics of a structure, modal vibration
analysis is often required. For large structural problems, the eigensolution
involved in the modal vibration analysis is a computationally intensive task

and, therefore, is a potential candidate to benefit from parallel processing.

This work has investigated parallel time integration algorithms for
transient dynamic analysis and parallel equation solvers for steady-state
analysis, but has not studied parallel eigensolution algorithms for modal
vibration analysis. Future research should be conducted to investigate
parallel solution algorithms for large eigenproblems suitable for the present
coarse-grained, distributed-memory environment. The parallelization of
commonly used algorithms such as the subspace iteration method, the

Lanczos method, and the determinant search method could be studied and

compared.
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Parallel Implicit Analysis

In the present study of the parallel implicit algorithm, the single-
processor analysis does not use the substructuring approach but, instead,
uses a direct Gauss elimination method for the solution of the total set of
original equations. In many cases where the problem size and bandwidth
are not too large, this approach can lead to more conservative measures of
the parallel speed-up and efficiency. However, to obtain a better
understanding of synchronization and communication overhead inherent in
the algorithm, research should be done to use the same substructuring

approach in the serial analysis as in the parallel analysis.
Load Balancing Among Processors

As discussed in Chapter 4, a generic finite element mesh may include
finite elements of different types. In addition, a general networked
computing environment may consist of computers with different processing
power. To handle generic finite element meshes and to maximize the
utilization of computer resources in a network, further development and

enhencement of the present domain partitioning approaches are required.

The domain partitioning methods are static load balancing
techniques which distribute computational loads among processors only
once and before the actual computation starts. This approach is suitable for
problems in which the distribution of computational loads among processors
is constant throughout the course of the analysis. However, for dynamic
analysis involving localized nonlinear responses, the presence of localized
nonlinearity may create significantly unbalanced workloads among

processors, resulting in reduction in parallel efficiency. Therefore, there is a
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need to study and develop dynamic load balancing techniques that can
redistribute computational loads among processors during parallel analysis
in a cost-effective fashion. In the present networked workstation
environment where the cost of interprocess communication is high, the
development of suitable dynamic load balancing techniques is a particularly
challenging research task.

Fault Tolerance of Parallel Analysis

Parallel nonlinear analyses are usually expensive. Since the parallel
analysis requires interprocess communication and synchronization among
several processors in the computing network, the chances of failure due to a
hardware, operation system, or communication problem are higher than
those during a serial analysis. For example, failures due to some
communication problems have been experienced by the writer during this
research. To avoid costly reanalysis of the entire problem, future research
should be conducted to provide fault tolerance capabilities in the present

parallel analysis system.

One simple solution for the fault tolerance problem is a restart
capability for parallel analysis. Essential data for analysis recovery are
written out to data files at the user-specified points (often called the
checkpoints) in the parallel analysis. If a failure occurs, the analysis can
then be restarted by the user at the nearest checkpoint prior to the point of

failure.

More complicated approaches may be devised to automate the restart
sequence. For example, each processor used in the parallel analysis may be

associated with a backup processor. If the primary processor fails, it will be
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automatically replaced by its backup processor. During the analysis, the
analysis recovery data at the checkpoints are either written to data files or
sent to backup processors. An automatic mechanism is required to detect
processor failures should they occur, to activate backup processors. and to

restart the analysis at the nearest checkpoint prior to the point of failure.
Interactive Monitoring and Steering of Parallel Analysis

To provide a better interactive parallel analysis environment, the
present parallel analysis system should be further developed to include
interactive monitoring and steering capabilities. The suggested
implementation of these capabilities in a networked workstation
environment is explained using Fig. 6.1. To carry out a parallel analysis,
copies of ABREAST are run on a number of workstations and communicate
through ISIS. Also, through interprocess communication provided by ISIS,
the following interactions between FRANSYS/BASYS, PSAINT, and the
copies of ABREAST can be achieved:

(a) After requested by FRANSYS/BASYS, PSAINT collects the most
recent analysis results as they are being calculated by the various
ABREAST's and, then, sends them to FRANSYS/BASYS for
interactive monitoring and visualization of the parallel analysis.

(b) FRANSYS/BASYS may steer the parallel analysis by requesting
the ABREAST's (either through PSAINT or directly) to start/stop
the analysis and modify specific analysis parameters during the
analysis.

In addition, the graphics display of FRANSYS/BASYS can be visualized on
any workstation specified by the user through the X Window system.
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Figure 6.1 Interactive monitoring and steering of parallel analysis

Closure

In the foreseeable future, the rapidly advancing computer
technologies promise to provide researchers and engineers increasingly
powerful computing environments. Research should be conducted
continuously to take advantage of these technologies for more efficient and

powerful simulations of nonlinear structural dynamics.



Appendix A

Parallel Implementation Using ISIS

This appendix provides a brief description of what and how ISIS
routines are used in the present research to achieve interprocess
communication and synchronization for all implemented parallel algorithms
discussed in Section 3.3. Example code segments extracted directly from
the analysis program ABREAST are provided with all ISIS routine calls
highlighted in bold. For detailed description of these ISIS routines, the ISIS
manual (Birman et al. 1991) should be consulted.

A.1 General Purpose Routines

In the present implementation, processes are assigned unique ID
numbers based on the sequence they join the ISIS process group. The
following routine returns the ID number of the calling process in the process
group specified by the groupview pointer gv:
int dpp_GetMyID(t_gv )

char *t_gv ; /* groupview ptr of the process group */
{

groupview *gv = (groupview *)t_gv ;
intindex =0 ;

while( !addr_ismine( &gv->gv_members[index] ) )
index++ ;

return( ++index ) ;

}

214
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If there are N processes in the process group, the ID number returned from

the above routine for the first process is 1 and that for the last one is N.

When a message is received by a process, it is also necessary for the
process to know the message sender’s ID number so that the data in the
message can be handled correctly. The following routine returns the
message sender's ID number:
int dpp_GetSenderID( t_gv, t_msg_p )

char *t_gv ; /* groupview ptr of the process group */
char *t_msg_p ; /* ptr to message received */

groupview *gv= (groupview *)t_gv ;

message *msg_p = (message *)t_msg_p;

address *sender_addr ; /* message sender's address */
int index =0 ;

sender_addr = msg_getsender( msg_p);

while( !addr_isequal(sender_addr,&gv->gv_members[index]) )
index++ ;

return( ++index ) ;

}

A.2 Initialization

To run ABREAST under ISIS, a start sequence is required which
initializes the ISIS system (i.e., connects the application to ISIS), registers
all processes in an ISIS process group, and declares all ISIS entry points for
interprocess communication. For example, the following initialization

routine is implemented for the parallel central difference algorithm:
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static address *gaddr_p; /* addr ptr of the ISIS process
group 'pp_cd_pg' */
static groupview *gview_p ; /* groupview ptr of the ISIS
process group 'pp_cd_pg' */
void dpp_cd_Init()
{
/* (Function declarations are omitted) */
int my_sbs_id, n_sbs ;
char pp_cd_pg[PG_GLEN];
/* name of process group containing all
** processes running parallel CD algorithm */

/* Initialize ISIS */
isis_remote_init( (char*)0, 0, 0, ISIS_USEITIMER) ;

/* Finish ISIS startup */
isis_start_done();

/* Joint the process group (Note: n_sbs is used to detect
** the completion of process-group joining.) */
ads_analysis( GET_PROB_NAME, pp_cd_pg ) ;
n_sbs = (int) ads_css( GET_NUM_SBS ) ;
gaddr_p = pg_join( pp_cd_pg,0);
gview_p = pg_getview( gaddr_p ) ;

‘while( (int) gview_p->gv_nmemb < n_sbs )
isis_accept_events( ISIS_BLOCK ) ;
/* wait (block) until all members have joined */

/* Get a unique ID for this process */
my_sbs_id = dpp_GetMyID( gview_p ) ;
ads_css( SET_SBS_ID, 0, my_sbs_id ) ;

/* Declare ISIS entries for interprocess communication */
isis_entry( PP_CD_RECEIVE, dpp_cd_ReceiveDispl,
"dpp_cd_ReceiveDispl" ) ;
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isis_entry( PP_CD_NOTIFY, dpp_cd_ReceiveNote,
"dpp_cd_ReceiveNote" ) ;

The initialization routine implemented for the parallel implicit domain

decomposition algorithm follows the same steps as the one given above.

A.3 Interprocess Communication and Synchronization

This section illustrates the interprocess communication and
synchronization routines implemented for both parallel central difference

algorithm and parallel implicit domain decomposition algorithm.
Parallel Central Difference Algorithm

Within each time step of the parallel central difference algorithm,
interprocess communication is required between adjacent processors to
exchange the displacements of the boundary nodes (see Step (5) in Table
3.1). The routines implemented to achieve this interprocess communication

are given as follows:

static int n_note_got =0 ;
static int n_msg_got =0 ;

void dpp_cd_Commun()
{
/* (Function declarations are omitted) */
int n_adj_sbs = (int)ads_css( GET_N_ADJ_SBS, 0 ) ;

/* notify all adjacent processors that sending displacements
** is now allowed. (Note: this is to avoid the possible race

** condition that adjacent processors may send displacements
** right before this processor escapes from the "ISIS_BLOCK"

** 1oop after calling dpp_cd_SendDisp().) */
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dpp_cd_Notify( ;

/* Wait until all replies needed have been received */
while ( n_note_got < n_adj_sbs ) {
isis_accept_events( ISIS_BLOCK);
}
n_note_got =0 ; /* Reset n_note_got */

/* Send displacements of "boundary nodes” to adjacent
** gubstructures */
dpp_cd_SendDispl() ;

/* wait until displacements of "adjacent vertices” from all
** adjacent substructures have been received (Note: the
** routine dpp_cd_ReceiveDispl() for receiving displacements
** is defined in dpp_cd_Init() as an ISIS entry which is
** gctivated automatically by ISIS whenever a message for it
** arrives.) */
while ( n_msg_got < n_adj_sbs ) {
isis_accept_events( ISIS_BLOCK)) ;
}
n_msg_got=0; /* Reset n_msg_got */

void dpp_cd_Notify()
{
inti;
int n_adj_sbs = (int)ads_css( GET_N_ADJ_SBS, 0);
int *adj_sbs_l = (int *)ads_css( GET_ADJ_SBS_LIST, 0);
address send_to ;

/* Send notes to all adjacent processes (substructures)*/
for (i=0 ;i < n_adj_sbs ; i++ ) {
send_to = gview_p->gv_members[ adj_sbs_l[i] ] ;
beast( &send_to, PP_CD_NOTIFY, "%d", 1,0 ) ;
}
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void dpp_cd_ReceiveNote( msg_p )
message *msg_p;
{

int note;

msg_get( msg_p, "%d", &note ) ;
n_note_got++ ;

void dpp_cd_SendDispl()

{
/* (Function declarations are omitted) */
int n_adj_sbs, *adj_sbs_l ;
int msg_len ; /* length of msg_buf[] */
double *msg_buf ; /* ptr to message buffer */
address send_to;

/* Query basic information */
n_adj_sbs = (int)ads_css( GET_N_ADJ_SBS,0);
adj_sbs_l = (int *)ads_css( GET_ADJ_SBS_LIST,0);

/* Send displacements to all adjacent processes */
for (i=0 ;1 <n_adj_sbs ;i++ ) {

/* For the current adjacent substructure, compute
msg_len, allocate memory for msg_buf using
calloc(), and put the displacements of boundary
nodes into msg_buf */

/* (Codes omitted) */

/* broadcast the displacements */
send_to = gview_p->gv_members[ adj_sbs_l[i] ] ;

bcast( &send_to, PP_CD_RECEIVE, "%*G", msg_buf,

msg_len, free, 0) ;
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void dpp_cd_ReceiveDispl('msg p)
message *msg.p,;
{
/* (Function declarations are omitted) */
int sender_id ;
double *msg_buf;
address send_to;

/* Query basic information */
/* (Codes omitted) */

/* Receive displacements from adjacent substructures */
msg_get( msg_p, "%+G", &msg_buf, &n_elem ) ;

/* get the message sender’s ID */
sender_id = dpp_GetSenderID( gview_p, msg_p ) ;

/* set the displacements into database */
/* (Codes omitted) */

/* Free the message buffer and increase n_msg_got by 1 */
free( (void *) msg_buf) ;
n_msg_got++

}

Parallel Implicit Domain Decomposition Algorithm

Two types of interprocess communication and synchronization are
required for the parallel implicit domain decomposition algorithm. The first
one is the assembly of the vector at substructure boundary by adding
contributions from adjacent substructures (See also Table 3.3), while the
second one is the computation of a global dot product by summing

contributions from all substructures (See also Table 3.5). The routines
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implemented to achieve both types of interprocess communication and

synchronization are given as follows.

Assembly of the Vector at Substructure Boundary

static address *dd_ga ; /* ptr to addr of the process
** group containing all processes
** running the parallel domain
** decomposition algorithm*/
static groupview *dd_gv ; /* Ptr to groupview of the process
** group containing all processes
** running the parallel domain
** decomposition algorithm */
static int *n_bdry_vec_note_got=0;/
static int *n_bdry_vec_got=0;
static double **vec_own = 0; /* Ptrs for temporarily holding
** the addresses of boundary
** vectors (of this process) */

static void AssembleBoundaryVector(id, v)
BdryVecType id ; /* type id of the boundary vector */
double  *v;/* the boundary vector of type id */

{
int n_sbs = (int)ads_css( GET_NUM_SBS ) ;
int n_adj_sbs = (int)ads_css( GET_N_ADJ_SBS, 0 );

int 1;

/* put the boundary vector into buffer vec_own[type_id][] */
for(i=0; i<n_h_dof; i++)
vec_own[(int)id][i] = v[i] ;

/* Synchronize all processors */
NotifySendingBoundaryVector( id );
while( n_bdry_vec_note_got[id] < n_sbs ) -
isis_accept_events( ISIS_BLOCK ) ;
n_bdry_vec_note_got[id] = 0 ; /* reset the counter */
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/* Send boundary vector */
SendBoundaryVector(id, v) ;

/* Wait until contributions from all adjacent processes
** have been received */
while( n_bdry_vec_got[id] < n_adj_sbs )
isis_accept_events( ISIS_BLOCK) ;
n_bdry_vec_got[id] = 0 ; /* reset the counter */

/* put the assembled vector into v */
for(i=0; i<n_h_dof; i++)
v[i] = vec_own[(int)id][i] ;

}

static void NotifySendingBoundaryVector( id )
BdryVecType id; /* type id of the boundary vector */

it 1i;
int n_sbs = (int) ads_css( GET_NUM_SBS );
address send_to;

/* Send notes to all processes for synchronization */
for(i=0; i<n_sbs; i++){
send_to = dd_gv->gv_members[i];

bcast( &send_to, PP_DD_RecvBdryVecNote, "%d,%d",

1,id,0);

}

static void RecvBdryVecNote( t_msg_p )
char *t_msg_p; /* ptr to the message */

message *msg_p = (message *)t_msg_p;
int note ;
BdryVecType id ;

msg_get( msg_p, "%d,%d", &note, &id);
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n_bdry_vec_note_got[id] += note ;

static void SendBoundaryVector(id, v)
BdryVecType id ; /* type id of the boundary vector */
double *v;/* the boundary vector to be sent */

int 1i;

address send_to ;

double *msg_buf;

int msg_len;

int n_adj_sbs = (int) ads_css(GET_N_ADJ_SBS, 0) ;
int *adj_sbs_l = (int *)ads_css(GET_ADJ_SBS_LIST, 0) ;

/* Send the vector to adjacent processes */
for(i=0; i<n_adj_sbs; i++){
/* compute msg_len, allocate memory for msg_buf
using malloc(), and put v into msg_buf */
/* (Codes omitted) */
send_to = dd_gv->gv_members[ adj_sbs_l[i] ] ;
beast( &send_to, PP_DD_RecvBdryVec, "%d,%*G", id,
msg_buf, msg_len, free, 0);

static void RecvBdryVec( msg_p)
message *msg_p;

int sender_id ;
BdryVecType id;
double *y .

int n_h_dof recv;

/* Receive the message */
msg_get( msg_p, "%d,%+G", &id, &v, &n_h_dof_recv ) ;
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/* Figure out which adjacent substructure sends this data */
sender_id = dpp_GetSenderID( dd_gv, msg_p );

/* Assemble the contributions of the adjacent boundary
** yector into buffer vec_own.*/
/* (Codes omitted) */

n_bdry_vec_got[id]++;
free(v) ;

Assembly of a Global Dot Product

staticint n_ldotprod_note_got=0;

staticint n_ldotprod_got=0;

staticint n_gdotprod_got=0;

staticint n_gdotprod_note_got=0;

static double gdot ; /* value of global dot product*/

double dpp_DD_AsmDotProduct(a, b)
double *a, *b ;
{
int n_sbs = (int) ads_css( GET_NUM_SBS ) ;
double Idot;
int uno=1;
int my_id;

gdot = 0.0 ; /* initialize global dot product */

/* Synchronize all processes */
NotifySendingLDotProd();
while( n_ldotprod_note_got < n_sbs )
isis_accept_events( ISIS_BLOCK)) ;
n_ldotprod_note_got = 0 ; /* reset the counter */

/* Compute own share of dot product */
ldot = DDOT(&n_pr_h_dof, a, &uno, b, &uno) ;
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/* Send own share of dot product */
SendLDotProd(ldot);

/* If this is the host processor, collect all the dot
** product contributions */
my_id = ads_css( GET_SBS_ID, 0 ) ;
ifl(my_id - 1) == 0) { /* Oth is designated the host */
while( n_ldotprod_got < n_sbs )
isis_accept_events( ISIS_BLOCK) ;
n_ldotprod_got = 0 ; /* reset the counter */
/* send assembled global dot product to all
processes */
SendGDotProd() ;
}

/* Wait until the global dot product has been received */

while( n_gdotprod_got < 1)
isis_accept_events( ISIS_BLOCK),
n_gdotprod_got = 0 ; /* reset the counter */

return( gdot ) ;

static void NotifySendingLDotProd()

{
int 1;
int n_sbs = (int)ads_css( GET_NUM_SBS ) ;
address send_to;

/* Send notes to adjacent processes */
for(i=0; i<n_sbs; i++){
send_to = dd_gv->gv_members[i] ;
beast(&send_to,PP_DD_RecvLDotProdNote," %d",1,0) ;

}
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static void RecvLDotProdNote( msg_p )
message *msg_p;

int note ;
BdryVecType id ;

msg_get( msg_p, "%d", &note ) ;
n_ldotprod_note_got += note ;

static void SendLDotProd( d)
double d;

address send_to ;

/* Send the local dot product to the host processor */
send_to = dd_gv->gv_members([0] ;
/* 0th is designated the host */
beast( &send_to, PP_DD_RecvLDotProd, "%G[1]", &d, 0 ) ;

static void SendGDotProd()

{
int 1;
int n_sbs = (int)ads_css( GET_NUM_SBS ) ;
address send_to;

/* Send the global dot product to all processes */
for(i=0; i<n_sbs; i++){
send_to = dd_gv->gv_membersli] ;
bcast(&send_to,PP_DD_RecvGDotProd,"%G[1]",&gdot,0) ;
}

static void RecvLDotProd(msg_p)
message *msg_p;
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double dot;

/* receive a local dot product */
msg_get( msg_p, "%g", &dot ) ;

/* Add the local dot product into the global dot product */
gdot +=dot ;

n_ldotprod_got++ ;

static void RecvGDotProd( msg_p )
message *msg_p;

double dot ;

/* Receive the global dot product */

"

msg_get( msg_p, "%g", &dot ) ;
gdot = dot ;

n_gdotprod_got++ ;

A.4 Termination

After the parallel analysis is complete, a termination sequence is
required to disconnect the application from ISIS. For example, the following

termination routine is implemented for the parallel central difference (CD)

algorithm:

void dpp_cd_Done()

{
int n_sbs = (int)ads_css(GET_NUM_SBS) ;

address send_to ;
int 1;
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/* Notify all members in the process group '‘pp_cd_pg' that
** this process is leaving */
for(i=0; i<n_sbs; i++){
send_to = gview_p->gv_members[i] ;
beast( &send_to, PP_CD_NOTIFY, "%d", 2,0) ;
)

/* Wait until all members are ready to leave the process
** group */
while( n_note_got < (int) gview_p->gv_nmemb ) {
isis_accept_events( ISIS_ASYNC ) ;
}

n_note_got = 0 ; /* reset the counter n_note_got */

/* Leave the process group */
pg_leave( gaddr_p);
}

The termination routine implemented for the parallel implicit domain
decomposition (DD) algorithm follows the same steps as the one given

above.
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