FINAL REPORT

July 1991 through June 1994

FLANK SOLAR WIND INTERACTION

NASA Contract NAS5-31216

May 16, 1994

Principal Investigator: Stewart L. Moses
Co-Investigators: Eugene W. Greenstadt, Ferdinand V. Coroniti

Electromagnetic Systems and Technology Department, TRW

TRW Space and Electronics Group
Space and Technology Division
One Space Park
Redondo Beach, CA 90278

N94-35225

Unclassified

G3/92 0014033
Technical Summary

Introduction

In this report we will summarize the results of the work performed under the "Flank Solar Wind Interaction" investigation in support of NASA's Space Physics Guest Investigator Program. While this investigation was focused on the interaction of the Earth's magnetosphere with the solar wind as observed by instruments on the International Sun-Earth Explorer (ISEE) 3 spacecraft, it also represents the culmination of decades of research performed by scientists at TRW on the rich phenomenology of collisionless shocks in space. For the opportunity to work in this field we are all indebted to the late Dr. Frederick L. Scarf.

The ISEE 3 spacecraft traversed many regions of unique importance to space physics during its long mission, and for this investigation we chose to examine several aspects of the solar wind interaction region on the far flanks of the bow shock. These studies encompassed the foreshock and magnetosheath as well as the shock itself. Most of our effort involved analysis of data from the ISEE 3 plasma wave investigation (PWS) [Scarf et al., 1978], but also included correlative examinations of magnetometer [Frandsen et al., 1978] and plasma analyzer data [Bame et al., 1978].

The uniqueness of the solar wind interaction on the far flanks manifests itself in many forms. The primary reason for interest is that this region has seldom been encountered by spacecraft and the data obtained has been little analyzed. The ISEE 3 exploration of this region in 1982 and 1983 (prior to injection into a heliocentric orbit to intercept Comet Giacobini-Zinner) provided a valuable data set from a well-instrumented spacecraft. Other reasons for interest are intrinsic to the nature of the solar wind interaction at these distances downstream. Here the Mach number of the bow shock can become quite low, enabling us to investigate the transition from subcritical to supercritical shock fronts. We are also far from the leading edge of the foreshock, which allows us to observe the evolution of foreshock turbulence and attempt to distinguish upstream effects from phenomena that are integral with the shock structure. The geometry of this region is also different from that of the well-studied subsolar bow shock. On the dayside, the shock normal is nearly coaligned with the solar wind velocity, while on the flanks these two vectors are nearly orthogonal. This produces a second degree of freedom in the upstream shock parameters and also influences the trajectory of reflected particles parallel to the
shock surface. The low Mach number regime is also important because of the wealth of numerical simulations that have been performed in this parameter range and we have made use of these results for comparison with our spacecraft observations.

In the following sections we present our results organized by region: foreshock, shock and magnetosheath. Our studies have also supplemented related studies of shock physics in other areas (i.e. the solar corona) and we will also discuss these secondary contributions.

Foreshock

The extensive foreshock upstream of the Earth's bow shock, replete with turbulent plasma wave emissions, ULF magnetic field turbulence, and back-streaming particles, has been the subject of much study both to understand its intrinsic properties and to understand its relationship to the bow shock. In the subsolar region of the shock, for quasiparallel geometries, the foreshock and shock structures are intertwined as particles stream away from the shock and create foreshock turbulence which is blown back into the shock. On the far flanks we have a chance to try and view these effects decoupled, as the shock and foreshock leading edge are now far apart. We are also detecting shocks at Mach numbers near the limit where ion reflection begins to alter the magnetic field structure of the shock ramp. While the fluxes of reflected ions may be too small to produce noticeable magnetic field turbulence, they still have the potential to generate plasma waves. However, a new difficulty arises from the geometry of the far flanks, where the shock normal is now nearly orthogonal to the solar wind flow instead of coaligned.

As this research effort was getting underway, Greenstadt et al. [1991] presented an initial overview of the flank shock data set and compared the magnetic field profiles of several shocks with those found in weak, quasiparallel numerical shock simulations. These examples showed that even at low shock normal angles (θ_{Bn}) there was an absence of significant ULF turbulence upstream. However, there was often a pronounced whistler-like wavetrain either immediately upstream or downstream of the shock ramp. The simulations indicated that wavetrains only occurred when the Alfven Mach number (M_A) exceeds 2.5, and this effect was corroborated in the flank shock data set. Clearly, this whistler-like wavetrain is a structure produced by the shock itself, while ISEE 3 was apparently too far downstream of the foreshock leading edge to detect strong ULF turbulence produced by foreshock particle populations. The nearly laminar appearance of
the quasiparallel flank shocks illustrated quite a contrast with the broad, turbulent quasiparallel shocks of the subsolar region.

Greenstadt et al. [1992a] set out to investigate in more detail the controlling factors in producing upstream particles by using broadband plasma wave emissions as a diagnostic of their presence. They found that these low Mach number shocks still produced copious amounts of plasma emissions upstream, but that the controlling factors were modified due to the unusual shock geometry on the flanks. A new parameter was introduced to aid in organizing the data—\(\theta_{Bx} \), the angle between the IMF and the solar wind velocity (x in GSE coordinates). In the subsolar region \(\theta_{Bx} \) and \(\theta_{Bn} \) are nearly equal, but they vary independently on the flanks. For decreasing values of \(\theta_{Bx} \) it was found that the extent of upstream plasma wave turbulence increased. Greenstadt et al. [1992a] concluded that this was caused by particles reflected upstream of the spacecraft location convecting back along the IMF with trajectories nearly parallel to the shock surface. Thus, nonlocal effects were shown to be important in the plasma waves, although not in the magnetic field, and upstream and reflected ion populations were still present without the ULF turbulence characteristic of the subsolar foreshock.

Greenstadt et al. [1992b] attempted to further define the contributions of \(\theta_{Bx} \) and \(\theta_{Bn} \) to the presence of upstream plasma wave turbulence by developing a scatter diagram showing the presence or absence of upstream waves. This ran into difficulties in distinguishing "foreshock" waves from "shock foot" waves. Subsequent analyses searched for additional parameters to aid in making this distinction, but adequate results were not forthcoming. A discussion of the work on employing plasma waves in detecting the presence of a shock foot appears in the next section.

ISEE 3 plasma wave data was also used to obtain a global view of the foreshock using a wave amplitude mapping scheme devised for Venus [Crawford et al., 1993]. In this scheme, the wave amplitude in a particular channel is plotted as a function of its position in foreshock coordinates [Greenstadt and Baum, 1986] (distance along and depth behind the foreshock leading edge) to create a relief map of the wave activity independent of the orientation of the IMF. Greenstadt et al. [1993] presented a preliminary example of the results using one ISEE 3 trajectory through the foreshock and wave amplitudes corresponding to the electron plasma frequency \(f_{pe} \) and compared the resulting map with a similar one for Venus. At this stage the sampling spatial scale for Earth was still crude, since this employed data from only one Earth pass, while the Venus map was based on
thousands of PVO orbits. Yet, the terrestrial map showed the much greater scale of the Earth's foreshock compared with Venus and clearly delineated the enhanced wave activity in a thin band corresponding to the foreshock leading edge. This band of activity also had a definite termination near 100 Earth radii from the shock tangent point. Further analysis, unfinished at the time of this writing, will include a second ISEE 3 foreshock traversal. Line plots of intensity percentiles from both passes show pronounced maxima in median and higher intensities of wave peaks at, and just downwind from, the tangent IMF surface to the shock, much as in the Venus foreshock. It is hoped that this approach will be extended to include lower frequency waves associated with reflected ions. The foreshock defined by the low frequency plasma waves can then be compared with that defined by ULF structure in the magnetic field.

Shock

Greenstadt et al. [1992a] also addressed the problem of supercriticality in low Mach number shocks. The critical Mach number occurs when the shock can no longer create enough resistive dissipation, and must reflect a portion of the incoming ion flow. Theoretically this Mach number is defined as the point when the downstream flow speed exceeds the downstream acoustic speed as computed by the Rankine-Hugoniot relations. The usual way of identifying supercritical shocks is by the presence of a downstream "overshoot" and/or a "foot" to the shock ramp in the magnetic field profile. Some recent research has looked into the transition from sub- to supercritical shocks by searching for low fluxes of reflected ions in closed trajectories upstream of low Mach number shocks. The problem is naturally the ability to detect ion beams at low densities, but results indicate that the transition is not sudden and some reflected particles can be found even at the lowest Mach numbers.

Plasma waves can be even more sensitive to superthermal particle populations than direct particle detection, since they give rise to instabilities that cause the rapid growth of waves to detectable amplitudes. *Greenstadt et al. [1992a]* used the ISEE 3 flank shock data set as a source of low Mach number shock profiles and searched for a plasma wave foot immediately upstream of the shock ramp. It was found that most of the shocks were actually supercritical using the theoretical criterion given above, but one example was subcritical according to the Rankine-Hugoniot relations and many did not evidence a foot in the magnetic field profile. This ostensibly subcritical shock had a substantial plasma wave foot, showing that ion reflection was still taking place.
A more detailed study of the waves at and immediately downstream from the flank bow shocks was conducted by Coroniti et al. [1993]. The wave amplitudes at even the weakest shocks were found to be comparable with those found at high Mach number subsolar shocks. When examined at the highest time resolution, the plasma wave spectra revealed two modes in the mid-frequency band usually assigned to ion acoustic waves. Previous observations, concentrating on lower time resolution data or limited parts of the spectral band, identified only a single mode extending from approximately the electron cyclotron frequency (f_{ce}) to nearly the electron plasma frequency. The ISEE 3 results clearly show two modes with different temporal characteristics and quite independent of one another (the appearance of one mode is neither correlated or anti-correlated with the other).

The higher frequency mode is usually found between $1.0 - 0.1 f_{pe}$, and is distinguishable from narrowband electron plasma oscillations by its much broader bandwidth. These waves are found at frequencies above that expected for electrostatic waves Doppler-shifted by the solar wind and are outwardly similar to so-called "down-shifted" electron plasma oscillations detected deep within the foreshock [Fuselier et al., 1985]. These emissions are strongly polarized parallel to the magnetic field. Coroniti et al. [1993] suggests that the instability generating these waves could arise from discontinuities in the electron distribution function. Such discontinuities would be the result of contact along the field lines between electron populations with different thermal characteristics. As electron populations encounter the cross-shock electric field, a void develops in the low energy region of the distribution function, which must be filled by scattering. With insufficient time to be relaxed through thermalization, the discontinuity in the electron distribution will produce an instability that can create waves at frequencies of a few tenths of the plasma frequency.

More of a mystery is the lower frequency emission, which occurs with a peak near the ion plasma frequency (f_{pi}) between 100 and 300 Hz. This mode is often separated from the higher frequency component by a pronounced spectral gap. Time series data shows that this emission is extremely bursty with peak to valley ratios of 100 to 1000 occurring in succeeding time samplings, unlike the smoother time profile of the high frequency emissions which only display a spin-modulated ripple of less than an order of magnitude. The burstiness of this emission renders polarization determinations difficult, but a slight parallel polarization can sometimes be discerned. It is also impossible to distinguish any
festooning effect caused by the response of the antennas to waves with wavelengths comparable to the antenna length [Gallagher, 1985]. What causes these waves is still not known. We do not observe any apparent frequency control by Doppler-shifting, although the absence of wideband data on ISEE 3 makes detailed spectral analysis difficult. The lack of any influence in the wave frequency by the value of the electron cyclotron frequency, which often occurs in this band, suggests an instability with \(k \) parallel to \(B \). A parallel instability would more likely arise from variations in the electron distribution, but participation by the ions cannot be disregarded.

Magnetosheath

When observed from a global perspective, the magnetosheath has also been found to have new and interesting properties. Moses et al., [1992a] presented long time series data showing several days of the ISEE 3 pass through the magnetosheath and foreshock. The sheath can be distinguished by the brightness of the broadband emissions there compared with the foreshock, even in the quasiparallel region. The sheath also contains electron plasma oscillations virtually throughout its extent toward the boundary with the tail lobe over 150 R_E downstream. This is quite surprising, since electron plasma oscillations are commonly considered a foreshock phenomenon.

The cause and nature of the broadband emissions far downstream of the bow shock are as yet unknown. Ion acoustic instabilities have been frequently invoked, but the difficulty of generating these emissions with the known ion temperatures has not been satisfactorily overcome. More needs to be learned about these emissions, and we have found a new factor controlling the emissions that could be fundamentally important in understanding their nature. A preliminary study [Moses et al., 1993] and detailed follow-up [Coroniti et al., 1994b] show that the direction of the magnetic field can have a significant effect on the presence or absence of wave emissions throughout the magnetosheath. Occasionally we noticed flank shocks without any waves at all immediately downstream and such dropouts were also observed much further inside the magnetosheath. During these times the wave amplitudes are reduced nearly to the instrument background. Surprisingly, these dropouts correspond to times when the component of the magnetic field parallel to the solar wind flow velocity (roughly the \(x \)-axis in GSE coordinates) goes to zero. No other factor seems to control the waves and the dropout effect occurs for any orientation of the magnetic field in the plane perpendicular to the flow. Occasionally a decrease in \(B_x \) also corresponds to a decrease in \(|B| \), but this is not a prerequisite for a plasma wave dropout.
One reasonable explanation for this effect would be Doppler-shifting of low-frequency, parallel-polarized modes. The search for evidence of Doppler-shifting proved negative, however, as the peak frequency of the waves did not shift with intermediate values of the angle between the magnetic field and \(x (\theta_{Bx}) \). The overall amplitudes do decrease in any given channel with intermediate values of \(\theta_{Bx} \) suggesting that this parameter must influence the instability directly. We also do not observe an increase in amplitude with decreasing frequency, that would be indicative of Doppler-shifting.

The only hypothesis that seems consistent is that the direction of the magnetic field is controlling the nature of the connection of the field lines to the shock or magnetopause. This would determine the characteristics of the counter streaming electron populations that form the downstream distribution. When \(\theta_{Bx} \) is 90° the shocks at either end of the field line are most likely to have similar properties (Mach number and shock normal angle), while other values of \(\theta_{Bx} \) will lead to connection to shocks with differing characteristics. It is reasonable to assume that the symmetric case will lead to electron populations counterstreaming with nearly symmetric distributions, thus avoiding any discontinuities in the distribution function that would cause an instability. Connection to the magnetopause does not seem to be a factor, since this would only occur for large values of \(B_y \). Although sketchy, this scenario is the only one that fits the phenomenology; however, its verification depends on detailed measurements of the electron distribution at low energies, which are difficult to obtain.

Related Studies

One of the original motivations at TRW to study the flank bow shock crossings was to apply the results to the ISEE 3/ICE encounter with Comet Giacobini-Zinner. Smith et al. [1986] used the Rankine-Hugoniot relations to argue that the crossings of the solar wind interaction regions of Giacobini-Zinner were low Mach number shocks, which was consistent with the arguments of Scarf et al. [1986] and Kennel et al. [1986] that the plasma wave phenomenology was indicative of shock crossings. These analyses were based on examinations of data on long timescales and other studies questioned the existence of an actual shock at Giacobini-Zinner. Moses et al. [1992] set out to examine the plasma wave data at the highest possible resolution (0.5 s) and compare the wave emissions with those found at weak flank shocks. At this resolution, it was hoped to be
able to associate various wave activity with ULF magnetic field turbulence which dominates the structure of the interaction region. No strong correlations between magnetic field structures and plasma wave spectra could be found, although the wave spectra tended to become more complicated (multi-peaked) as the magnetic field turbulence became more nonlinear. The high resolution analysis did show, however, that the same division between high frequency and low frequency emissions found in the flank shocks was evident in the comet waves. Moses et al. [1992] argued that the similarity in wave spectra probably arises from a similarity in microphysical processes in both cases. Thus the wave generation mechanisms at the comet are produced by the deceleration and compression of the solar wind associated with the ULF pulses (analogous to the processes in the ramp of a weak shock) and not by instabilities dependent directly on picked-up heavy ions.

In Moses et al. [1991] we applied some of the results from our low Mach number shock studies to conditions that could be encountered by a spacecraft penetrating the solar corona. Studies have been performed of missions designed to achieve heliocentric distances of 4 solar radii. At these distances magnetohydrodynamic models predict that the steady state solar wind is subsonic. But dynamic simulations show that low Mach number shocks could develop under extreme conditions. The closest analogy to such shocks in the corona would be quasiparallel bow shock crossings on the far flanks. We had earlier illustrated that even the lowest Mach number shocks on the flanks could produce magnetic field turbulence with $\delta B/B$ of order 1 and copious emissions of broadband plasma waves. Solar corona shocks would be in the slow mode (sub-Alfvenic) for $\beta << 1$ and not likely to produce large magnetic oscillations, but on the far flanks large amplitude turbulence was found even for $\beta = 0.4$. We therefore concluded that the solar corona could be expected to be extremely turbulent, with Doppler shifting caused by high spacecraft speeds to result in magnetic oscillation amplitudes of order Gauss at frequencies over 100 Hz. Again, using scaling arguments based on far flank shocks, we predicted electric field oscillations could attain amplitudes of order volts/meter at frequencies near 100 kHz. Such strong turbulence will also drive the plasma up to the Alfven speed and produce nonthermal motions up to 200 km/s, which is near to the velocity fluctuations that have been deduced from radio scintillation and Lyman α measurements. To measure such wave activity would require specially designed instrumentation, with dynamic ranges and sensitivities drastically different from those previously flown.
Remarkably similar phenomenology to the flanks shocks was also found in slow mode shocks on the boundaries of the plasma sheet in the distant magnetic tail [Moses et al., 1992b; Coroniti et al., 1994a]. As in the fast mode flank shocks, the broadband emissions in the slow mode shocks were found to be made up of two independent wave modes. The higher frequency mode also showed a strong parallel-polarization and exhibited a time profile modulated by a low amplitude spin-ripple. The low frequency modes were much burstier, with peak-to-valley ratios of 100 to 1000, and only a slight tendency toward parallel polarization. It thus appears that we are observing similar microphysical processes in distinctly different regions. Both the fast shocks and slow shocks have density compressions and the electron distributions in the parallel directions are controlled by the cross-shock electric field, but the magnetic field jumps, which should control the change in the perpendicular components of the distributions, are in opposite directions. This again points strongly to instabilities arising from free energy in the parallel component of the distribution.

Conclusions

The study of the solar wind interaction region on the far flanks has proven quite fruitful and has added to the understanding of processes in the foreshock, shock, and magnetosheath. We have discovered new wave modes and seen how different magnetic field geometries influence the presence and character of the waves. We have explored the important boundary between subcritical and supercritical shocks and mapped the global wave amplitudes in the foreshock. We have also applied the knowledge gained from the far flank shocks to the magnetotail, comets, and the solar corona. Much more can still be done both in exploring new phenomenologies and developing theories and models. This study, in a small way, shows the value of sustained research on existing data sets and the benefits of parallel investigations in related areas. Continued commitment to this mode of research, and support of well-established scientific teams, would have added to the advancement of scientific understanding in this field.

References

Greenstadt, E. W., S. L. Moses, F. V. Coroniti, and E. J. Smith, Plasma wave activity outside the far flanks of the Earth's bow shock, presented at the Spring Meeting of AGU, Montreal, Canada, May, 1992b.*

Moses, S. L., E. W. Greenstadt, F. V. Coroniti, and E. J. Smith, Plasma wave activity in the deep magnetosheath inside the far flanks of Earth's bow shock, presented at the Spring Meeting of AGU, Montreal, Canada, May, 1992.*

*Papers supported under this contract

**Related research papers
APPENDIX A
On the Absence of Plasma Wave Emissions and the Magnetic Field Orientation in the Distant Magnetosheath. (Preprint)
On the Absence of Plasma Wave Emissions and the Magnetic Field Orientation in the Distant Magnetosheath

F. V. Coroniti, E. W. Greenstadt, S. L. Moses
TRW Space and Electronics Group
One Space Park, Redondo Beach, CA

B. T. Tsurutani and E. J. Smith
California Institute of Technology
Jet Propulsion Laboratory
4800 Oak Grove Drive, Pasadena, CA

Abstract. In early September, 1983 ISEE-3 made a long traversal of the distant dawnside magnetosheath starting near $x = -150 \text{ RE}$ downstream. The distant magnetosheath often contains moderately intense plasma wave emissions at frequencies from several hundred Hz to 5 kHz. However, over time scales of many days, a clear correlation exists between the occurrence of the plasma waves and the cone angle (θ_{xB}) between the magnetic field and the plasma flow velocity (x-direction). For θ_{xB} large (small), the plasma wave amplitudes are near background (high). Sudden (< 1 minute) changes in the local magnetic field orientation produce correspondingly sudden changes in the wave amplitudes. Statistically, the wave amplitudes decrease continuously with increasing θ_{xB}.

Introduction

Numerous observations from spacecraft have established that the Earth's bow shock excites a moderately intense band of plasma wave turbulence with frequencies between the ion and electron plasma frequencies (the so-called ion acoustic waves), which extends throughout the subsolar region of the magnetosheath [Rodriguez, 1978; Anderson et al., 1982; Onsager et al., 1989]. In September, 1983 the ISEE-3 spacecraft made a traversal of the distant dawnside magnetosheath starting about $x = -150 \text{ RE}$ and moving eastward [Greenstadt et al., 1990] and detected many long intervals of wave excitation in the flank sheath similar to that in the subsolar sheath even at these large distances from the bow shock. In addition, however, the ISEE-3 plasma wave instrument also detected many abrupt dropouts in the plasma wave emissions between the tail magnetopause and the flank bow shock. We report here for the first time these striking and rather curious
absences of plasma waves and their correlation with the orientation of the magnetosheath magnetic field.

Observations

The ISEE-3 measurements by the TRW/U. of Iowa electric field wave detector [Scarf et al., 1978] and the JPL magnetometer [Frandsen et al., 1978] presented here were made from 0000 to 1200 UT on both September 10 and 12 (days 253 and 255), 1983. During these intervals the spacecraft was continuously in the magnetosheath moving from \(x = -158 \, \text{RE}, \, y = -28 \, \text{RE} \) to \(x = -146 \, \text{RE}, \, y = -33 \, \text{RE} \) (GSE). The \(x-y \) projection of the spacecraft's trajectory for this sheath pass is shown in Figure 1. On September 10 (12), the magnetosheath flow speed varied from 500 to 600 km/s (400 to 500 km/s), the electron temperature was steady at 1.6 x 10^5 K, and the plasma density was in the range of 4 to 5 cm\(^{-3}\) (measurements from the LANL plasma analyzer). Figure 2 presents the measurements for September 12, 1983. The top panels display the 60-second average magnetic field components and magnitude. The central color panel presents the peak electric field amplitude (volts/meter) in the frequency channels from 100 Hz to 31 kHz which occurred during successive 60-second intervals. The next panel shows the magnetic field cone angle (\(\theta_{Bx} \)) - the angle between the \(x \)-axis (nominal magnetosheath flow direction) and the magnetic field. The bottom two panels display the magnetic field longitude (defined so that 0° to 90° (90° to 0°) corresponds to \(B_x \) and \(B_y \) having the same (opposite) signs), and the magnetic latitude.

Throughout this twelve hour interval plasma waves were almost continuously excited in the frequency band between 178 Hz and 3.1 kHz with the strongest signals occurring between 1.0 and 3.1 kHz. In addition intermittent bursts of electron plasma oscillations are evident in the 17 kHz channel. However, there are definite intervals of a few minutes duration when the peak electric field amplitude is near the background level of the wave instrument; clear examples are near 0020 UT, 0440 UT, 0650 UT, 0900 UT, and 1155 UT. In the magnetosheath and solar wind, the average (over 60 s) electric field amplitude can be near background while the peak amplitude will remain high; thus, a zero peak amplitude indicates the virtual absence of plasma waves.

The disappearance of the 178 Hz to 3.1 kHz wave emissions occurs when the magnetic cone angle exceeds 60° and is typically above 75°. From the top panels in Figure 2, large cone angles correspond to intervals in which \(B_x \) is small, while \(B_y \) and \(B_z \) have varying and comparable values. In particular the magnetic field latitude did not exceed 45° to 60° during the wave dropouts; since the ISEE-3 electric field antenna is in the ecliptic plane, a parallel polarized electric field signal will not be detected if the magnetic latitude was near 90°. The first four and sixth
dropout occurred during small to moderate depressions in the magnetic field strength; however for the fifth and seventh dropouts, the field magnitude was steady.

Figure 3 presents the magnetic field and plasma wave measurements for 0000 - 1200 UT on September 10, 1983. From 0000 UT to 0400 UT and again from 0800 UT to 1200 UT, the magnetic cone angle was often near 90° or rapidly varied between 60° and 90°. Plasma wave emissions between 178 Hz and 3.1 kHz are virtually absent during these intervals except for brief isolated bursts which occur when the cone angle drops below 60°. Between 0420 UT and 0450 UT, the cone angle decreased to about 40°, and fairly continuous wave emissions developed. From 0600 UT to 0800 UT, the cone angle remained below 45° and strong plasma wave signals were detected; the continuity of the wave emissions was broken at 0715 UT by a brief increase of the cone angle to 80°. For this twelve hour period intermittent electron plasma oscillations at 17 kHz were present during intervals of both high and low cone angles, and their occurrence did not exhibit any clear correlation with the magnetic field direction.

Figure 4 presents higher resolution measurements for the interval 0150 UT to 0230 UT on September 12, 1983; the magnetic field is averaged over 3 seconds, and the electric field spectral amplitude is unaveraged with a resolution of 0.5 s. At 0154 UT the wave amplitudes drop to background as B_x decreases to approximately 1 nT and θ_{xB} increases above 60°. During the wave dropout, the field magnitude stays constant, B_y changes sign, and a strong $B_z > 0$ results in a high field latitude (approximately 70°). The wave dropout developed simultaneously in the frequency channels from 316 Hz to 3.1 kHz, and there was no evidence that the wave amplitudes swept downward (upward) in frequency as B_x decreased (increased). At 0200 UT, a sharp drop of B_x to near zero ($\theta_{xB} = 75°$), again at constant field strength, produced a rapid decrease in the wave amplitudes. The cone angle remained high ($\theta_{xB} = 75$ to 90°) and wave amplitudes remained low from 0200 to 0208 UT, except for brief low frequency wave burst and $\theta_{xB} < 60°$ dip at 0202:30 UT. Between 0208 and 0211 UT, θ_{xB} varied in the range 60° to 75°, and weak low frequency waves were observed. Except for a short burst at 0212 UT, these emissions terminated as B_x decreased to near zero at 0211 UT. From 0212 to 0220 UT, the field magnitude dropped to quite low values, B_x remained near zero, and all wave amplitudes were at background. At 0220 UT, the field strength recovered, B_x jumped to become the dominant field component, θ_{xB} decreased to 10°, and the 1.0 kHz to 3.1 kHz wave amplitudes started to increase. The wave amplitudes reached their previous (before 0154 UT) high levels after 0222 UT.

The temporal variations in the cone angle and plasma wave intensities on September 12, 1983 were sudden, radical changes from moderate to high θ_{xB} (Figure 2). Hence the question arises as to
whether the plasma wave amplitudes vary continuously with θ_{xB} or simply cut-off for angles above some threshold. Figure 5 presents a scatter plot of wave amplitude in the 1.78 kHz channel versus cone angle for the same time period shown in Figure 2 (the amplitudes indicate peak values in 1-minute intervals). The graph shows clear agreement with the general nature of the day's events, with most points at high intensity when θ_{xB} was usually below 40° and a much smaller number of points at low intensity, or instrument sensitivity limit, when θ_{xB} was less commonly above 50°. The apparent declining trend of intensity with angle, however, implies a continuous rather than "on/off" relationship between the two quantities for all angles. The wide scatter could be caused locally by several factors, such as the impulsive character of the plasma wave signals and the rapid fluctuations of the cone angle.

Discussion

The above examples have clearly demonstrated that in the distant dawnside magnetosheath the occurrence of plasma waves in the 316 Hz to 3.1 kHz band is associated with the local magnetic field direction. This relationship held for the entire dawnside pass shown in Figure 1. We have also observed the same anti-correlation between wave amplitude and high values of θ_{xB} in the duskside magnetosheath, but not in the upstream solar wind. The anti-correlation is so distinct that the first inclination is to seek an instrumental explanation. The ISEE-3 antenna is in the ecliptic plane, and thus electric fields which are perpendicular to the ecliptic are not measured. However, even if the waves were polarized exactly parallel to the magnetic field, which is not at all clear or even likely, the large cone angles, which imply B_x was small, usually occurred when B_y was quite finite so that the magnetic field latitude did not exceed 45° to 60°; therefore, the cosine reduction in the projected measured field amplitudes cannot explain the virtual disappearance of the wave emissions.

If the wave polarization is strongly field-aligned, another conceivable explanation involves the Doppler shift frequency $\omega_D = k \cdot v$, which would vary as $\cos \theta_{xB}$. If the observed frequencies are dominated by ω_D, the reduction of $\cos \theta_{xB}$ would shift the peak spectral amplitude to lower frequencies; thus on the higher frequency, falling part of the spectrum, the amplitudes would decrease, and the waves would appear to drop-out. However, in examining the temporal behavior of the amplitudes in the various frequency channels during changes in θ_{xB} (as in Figure 4), the spectral peak does not shift to lower (higher) frequencies as θ_{xB} increases (decreases). Hence we conclude that the dropouts are not due to θ_{xB} variations in the Doppler shift frequency.
The absence of an instrumental or Doppler shift explanation leaves the possibility that the wave emissions are controlled by parameters not included in this report or by the global connection of the magnetic field to the bow shock and/or magnetosphere. Since ISEE-3 was within 20-30 RE of the tail magnetopause, the local magnetosheath field lines could be influenced by the location, shape, and/or reconnection state of the magnetotail. We have checked on whether the plasma wave dropouts and turnons depend on the signs of B_y and B_z, which could indicate a sensitivity to reconnection-related magnetotail structure and B_y-twist of the tail's orientation, and found no obvious relation. Since dropouts occur when $B_y = 0$, the intersection of the field lines with the magnetotail is not essential to produce the amplitude decreases. Thus we conclude that the wave dropouts are not obviously produced by connection to the magnetosphere.

The wave dropouts can persist for many minutes to hours, which indicates that the large scale structure of the magnetic field, not the small scale or local wiggles, is responsible for the absence of wave emissions. When θ_{xB} is large, the nose region bow shock is in a quasiperpendicular configuration over most of the region sunward of the terminator. Thus most of the magnetosheath ions which flowed past the ISEE-3 spacecraft on September 10 and 12, 1983 crossed a quasiperpendicular shock, and thus might be expected to possess at least the remnants of a reflected ion or ring-type phase space distribution. Downstream of the terminator, the field lines would typically intersect the weak flank shock surface in the quasiparallel configuration. Since the magnetosheath electrons (ions) have thermal speeds of about 20 RE/min (0.5 RE/min) the local electrons (ions) would (not) have passed through a quasiparallel shock. Furthermore the shock strength at the two intersection points of the field line would be about equal, so that the distribution function of the shocked electrons would tend to be symmetric with respect to the parallel velocity. Thus the absence of plasma waves when θ_{xB} is large may be caused by the symmetry of the electron distribution in parallel velocity even if the local ion distribution contains remnants of the ring-type structure produced by ion reflection.

When θ_{xB} is small, the dawnside shock in the nose region is quasiparallel (quasiperpendicular) if the magnetic field is in a Parker (anti-Parker) spiral configuration. We found that the plasma wave emissions in the distant magnetosheath occur independently of the relative sign between B_x and B_y; thus the waves are present for local magnetosheath ion distributions which have passed through either a quasiparallel or quasiperpendicular shock. For small θ_{xB}, both the shock strengths and shock type at the two locations where the magnetic field line intersects the shock surface are very different. Thus the local electron distribution, which is in thermal contact with the bow shock, is likely to be asymmetric with respect to the parallel velocity.
In conclusion, one identified explanation we have been unable to eliminate for the observed anti-correlation of θ_{xB} and plasma wave emissions is that when θ_{xB} is small, the expected asymmetry in the local electron distribution leads to plasma wave excitation, and when θ_{xB} is large, the field line connection to similar strength and type bow shocks results in a more symmetric electron distribution which is stable to wave emissions. Clearly GEOTAIL electron and ion plasma measurements will be able to test this possible explanation and/or provide a better one.

Acknowledgments

We acknowledge and pay homage to the late F. L. Scarf, the original Principal Investigator for the ISEE-3 plasma wave investigation, who made possible our participation in the study of plasma waves in space. The work at TRW was supported by NASA Contract NAS5-31216 with GSFC. The work at the California Institute of Technology, Jet Propulsion Laboratory was supported by contract with NASA.

References

Figure Captions

Figure 1. ISEE 3's magnetosheath trajectory for days 253-265, 1983. The heavy segments represent 10 and 12 September, when the spacecraft was approximately 17-18.5 RE above the x-y plane.

Figure 2. ISEE-3 measurements on 0000 UT to 1200 UT on September 12, 1983. The upper panels present the one-minute average components and magnitude of the magnetic field. The center panel is a color-coded display of the plasma wave electric field amplitudes (volts/m) from 100 Hz to 31.6 kHz. The bottom panels present the calculated magnetic field cone angle (θ_{B}) and the longitude and latitude of the field as defined in the text. Clear dropouts in the plasma wave amplitudes occur when θ_{B} approaches 90°.

3. ISEE-3 measurements on 0000 UT to 1200 UT on September 10, 1983, in the same format as Figure 2. Plasma wave amplitudes are high only when the cone angle is below 40°.

Figure 4. High time resolution measurements from 0150 UT to 0230 UT on September 12, 1983. The bottom (top) panels display the measured (calculated) magnetic field components and magnitude (magnetic angles). The center panel shows the plasma wave spectral amplitude from 178 Hz to 3.16 kHz. Sudden changes in θ_{B} result in sudden changes in the wave amplitudes.

Figure 5. A scatter plot of the plasma wave electric field amplitude (volts/m) versus cone angle for the 0000 - 1200 UT interval on September 12, 1983. Although the scatter is large, the decrease of wave amplitudes with increasing cone angle is clear.
B-field

ISEE 3 September 12, 1983

E-field

Hz
ISEE 3 September 12, 1983

CONE

LON

LAT

3.16 kHz

1.78 kHz

1 kHz

562 Hz

316 Hz

178 Hz

E-field
(log V/m-Hz$^{1/2}$)

B-field
(nT)

Bz

By

Bz

B$_{mag}$
ISEE 3 September 12, 1983 1.78 kHz

A graph showing the relationship between V/m (Volts per meter) and CONE (an angle or cone-like parameter). The y-axis represents V/m in logarithmic scale ranging from 10^{-8} to 10^{-2}, and the x-axis represents CONE from 0 to 80. The data points are scattered across the graph, indicating a distribution pattern.

Note: The specific values and scale resolution details are not legible in the image.
APPENDIX B
Abstracts and First Pages of Publications
WEAK, QUASI-PARALLEL PROFILES OF EARTH'S BOW SHOCK: A COMPARISON BETWEEN NUMERICAL SIMULATIONS AND ISEE 3 OBSERVATIONS ON THE FAR FLANK

E. W. Greenstadt1, F. V. Coroniti1, S. L. Moses1, B. T. Tsurutani2, N. Omidi3, K. B. Quest1, and D. Krauss-Varban4

Abstract. Over 200 crossings of the distant downwind flanks of Earth's magnetosonic bow shock by ISEE 3 included many cases of weak, or low Mach number, quasiparallel shocks. A consistent feature of the magnetic field profiles was the presence of large amplitude, near periodic to irregular transverse oscillations downstream from even the weakest Q1 shocks. Large downstream perturbations with whistler-like features similar to those of the observations appear in one-dimensional simulations when MA > 2.5 but not when MA = 2.1. The observed cases with downstream waves also occurred when MA > 2.5, suggesting the importance of the Alfvén as opposed to magnetosonic Mach number in determining the signature of weak, Q1 shocks.

Introduction

We present observations of weak, quasiparallel bow shocks exhibiting large amplitude, downstream oscillations compatible with those of new numerical simulations of quasiparallel shocks that, although weak (low magnetosonic Mach numbers MA), have moderate Alfvén Mach numbers (MA) and downstream wavetrains. The terms quasiparallel (Q1) and quasiperpendicular (Q⊥) refer to planar shocks whose normal makes an angle θ ≤ 90° or > 45° from the upstream field B/. We use the term "weak," rather than "low Mach number," to describe the shocks of interest here. No local plasma ion data from which to approximate magnetosonic Mach numbers MM were available from ISEE 3 at the time of the flank observations. Estimates of magnetosonic Mach numbers would have to use a "typical" ion temperature, say T = Tf/2, and project the approximate solar wind electron velocities along the local normals. However, the upstream solar wind's electron parameters can be determined only when the spacecraft was outside the shock, so the instantaneous projected velocities, hence projected Mach numbers, especially for crossings that exit the magnetosheath, cannot be certain, and the speed of the shock itself, also necessary for determining its instantaneous Mach number, is unknown from ISEE 3's single-spacecraft crossing times. Instead of instantaneous Mach numbers, we have adopted the ratio of downstream to upstream field magnitudes MB/B as a measure of shock strength approximating the true Mach number in Q1, but underestimating it in Q⊥, geometry [Kennel et al., 1985]. In many of the over 200 flank crossings, MB has been found to be the same or within one or two tenths of the projected MM, supporting the adoption of MB as a practical tool for estimating shock strengths—with appropriate caution. Regardless of these generalized caveats, the observed and numerical examples in this report had comparable values of MM.

We describe the observational context of weak, Q1 shocks and our sources of shock data, present examples illustrating the unusual natural wave signatures, compare them with new simulation results, and discuss the outcome for the first few selected cases.

Context

The small sampling of naturally occurring weak, Q1 shocks previously reported has produced some surprising results, most notably evidence of reflected, nonlaminar ion populations [Bavassano-Cattaneo et al., 1986; Greenstadt and Mellott, 1987] and ion heating [Thom森 et al., 1984]. With renewed interest in weak shocks, simulators as well as observers have independently been extending their results toward the less documented classes of Q1 and weak shocks, especially the rare weak, Q1 combination [Mandt et al. 1986; Omidi et al. 1990].

Until recently, the largest number of weak, Q1 shocks recorded by satellite was a subset of interplanetary events encountered by ISEE 1,2,3 [Tsurutani et al., 1983; Russell et al., 1983] and Helios [Richter et al., 1986]. High resolution profiles were described by Tsurutani et al. and Russell et al., who found their examples populated by two kinds of precursors in low and high Mach number cases (M > 1.5): regular, near periodic oscillations of the character of whistler mode waves (at low M), and irregular, broadband waves of linear polarization, whose amplitudes increased in Q1 geometry (at high M). The whistlers occurred solely upstream from their corresponding shocks; the irregular waves appeared both up- and downstream from the shocks, and were seen to be larger downstream. Later, Mandt et al. attempted to simulate the interplanetary examples of Russell et al. case by case. Their profiles mimicked the appearance of an upstream whistler case, and also showed some additional irregularity in the profiles of other cases, albeit without the enhancement of wave amplitudes downstream, but tended to exhibit relatively regular waves in all examples. Both observed and simulated whistlers led from upstream into, but never further than, the tops of the shock ramps.

Lately, Omidi et al. [1990] ran numerical experiments on weak, Q1 shocks using a hard reflecting wall to form the shock. Their simulations produced two types of upstream wavetrains: initially phase standing dispersive whistlers, subsequently replaced near the shock by larger amplitude, longer wavelength whistlers. These later waves were generated by a resonant ion beam instability with group speed Vg = 2.5Vf.

ISEE 3 frequently recorded Q1 crossings along the distant flank with trains of large, primarily transverse oscillations downstream from the clear shock jump in the field magnitude, but with an almost total absence of such oscillations upstream, in contrast with earlier observations and with the Omidi et al. [1990] simulation. We therefore searched for bow shock examples whose plasma parameters were close to those of the simulations and looked for simulation profiles that might imitate the examples.
POSSIBLE WAVE AMPLITUDES IN SHOCKS IN THE SOLAR CORONA:
PREDICTIONS FOR SOLAR PROBE

S. L. Moses, F. V. Coroniti, and E. W. Greenstadt

TRW Space and Technology Group, Redondo Beach, California
B. T. Tsurutani

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Abstract. Shocks and Alfvén turbulence are frequently invoked as mechanisms to heat the solar corona and accelerate the solar wind. A primary objective of the Solar Probe Mission is to detect and characterize these nonthermal dissipation and energization processes. Although the solar wind in the corona is usually assumed to be sub-Alfvénic, temporal and spatial variability in the plasma parameters could lead to conditions under which weak, fast mode shocks might form. ISEE 3 data from the flanks of the Earth's bow shock show that even low Mach number, quasi-parallel shocks can generate large-amplitude Alfvén waves with $\delta B/B$ of the order of 1, and intense high-frequency electrostatic plasma waves. Using a model of the corona and scaling parameters to those expected in the regions to be traversed by Solar Probe ($r \geq 4 R_\odot$), we suggest it is possible that such shocks might produce Alfvén turbulence with magnetic field amplitudes up to the order of 0.1 G and electric field amplitudes up to the order of 1 V/m; electrostatic waves near 100 kHz may have amplitudes of 0.1 V/m. Since the shock-generated Alfvén waves would be Doppler shifted to frequencies of a few kilohertz because of the high spacecraft velocity at perihelion, detection of these waves imposes severe requirements on the designs of plasma wave and magnetic field sensors on Solar Probe.

1. Introduction

Determination of the physical processes which heat the solar corona and accelerate the solar wind is a major objective for the planned Solar Probe Mission. Many of the proposed coronal heating and acceleration mechanisms involve interactions with magnetohydrodynamic (MHD) waves and shocks (a thorough review is given by Narain and Ulmschner [1990]). Very low frequency Alfvén waves may be generated by the 5-min photospheric oscillations and/or convection turbulence [Hollweg, 1983]. Coronal shocks can be excited by impulsive mass flows, diverging flow geometries, and/or local momentum addition [Habbal and Tsinganos, 1983]; such shocks are expected to have low Alfvén Mach numbers and to be in the quasi-parallel regime. These theories are supported by observational evidence of turbulence in the solar corona. Withbroe et al. [1985] analyzed Lyman α emissions in the region $2.8-4 R_\odot$ and found evidence for nonthermal motions with velocities $\delta v = 50-90$ km/s. Radio scintillation measurements indicate a peak in the coronal random motions of $\delta v = 200$ km/s near 10 Rs [Ekers and Little, 1971; Coles et al., 1978].

Within $10 R_\odot$ the solar wind in the corona is normally assumed to be sub-Alfvénic and low β. Therefore standing weak shocks should be on the slow mode branch and are unlikely to produce much hydrodynamic wave turbulence. Propagating fast mode shocks could be driven by rapid changes in the configuration of the lower corona, and these shocks could exceed the critical switch-on Alfvén Mach number, above which shocks are expected to excite large-amplitude Alfvén turbulence. In any case, much is still not known about coronal plasma parameters, particularly on small scales, and it may be reasonable to expect that local temporal and spatial variations may produce weak, fast shocks. However, the primary purpose of this paper is neither to debate the existence nor to explore the physical consequences of weak, fast shocks in the solar corona, but to point out that in attempting to measure the properties of such shocks, the Solar Probe instrumentation will be severely tested. At Earth, low Mach number, quasi-parallel shocks generate large-amplitude, high-frequency Alfvén turbulence and intense plasma wave emissions, and we suggest that similar shocks might produce extended regions of large-amplitude Alfvén and plasma wave turbulence in the solar corona. In this paper we scale the terrestrial shock measurements to coronal parameters, and we argue that in order to properly characterize such phenomena, significant improvements on current instrument designs will be necessary for Solar Probe.

In section 2 we present one particular model of coronal shock formation to obtain an estimate of likely shock parameters. Section 3 presents cases from the ISEE 3 crossings of the far flanks of the Earth's bow shock that fit these parameters and discusses the character of the wave activity found downstream. In section 4 we scale the turbulence in the magnetosheath to predict the amplitudes and frequencies of wave emissions in the regions to be encountered by Solar Probe. In section 5 we discuss the impact of these results on the scientific requirements of the Solar Probe mission, and this is followed by a brief summary.

2. Coronial Shocks

Kopp and Holzer [1976] showed that additional critical points can appear near the base of the corona when the rate of divergence of flux tube area with increasing radial distance is greater than r^2; Holzer [1977] extended this result by showing that additional points could also be obtained by localized heat and momentum addition to the flow. For flows with multiple critical points, Habbal and Tsinganos [1983] proposed that shocks could develop in the solar wind flow; later Habbal and Rosner [1984] and Habbal [1985] found solutions involving standing shocks in the near-Sun solar wind flow. Recently Leer and Holzer [1990] have argued that standing shocks are extremely unlikely for the plasma parameters expected in coronal holes. However, smaller-scale structural variability in either the magnetic field configurations or the plasma parameters might produce shocks, which need not stand in the solar wind flow but propagate in the corona.

Figure 1 presents some results from hydrodynamic simulations of the solar corona contained in Figure 3 of Habbal and Rosner [1984]. Each of the panels in Figure 1 depicts the density profile of the solar wind within 6 Rs. The top panel shows the steady state configuration which develops when momentum is applied to the flow gradually (rise time of 2×10^4 s) and creates a standing shock. The magnitude of the density jump of this shock, n_p/n_1, is approximately 2. The middle panel shows a
and to quasi-perpendicular. In the superthermal regime we examine how the overshoot evolves with the shock normal angle, and, finally, for both sub- and superthermal shocks, we study the effects of the interplanetary field direction on the magnitude and structure of the non-\-compressional component of the magnetic field in the shock ramp.

SHIA-5 **630th POSTER**

Unusually Distant Bow Shock Encounters at Times of Very Low Mach Number

T.L. Zhong (Space Research Institute, Graz, Austria)
S.R. Russell (Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90024-5516; 310-209-3188; Internet contact: sprussell@ucla.edu)

The distance of the bow shock from a planetary obstacle is determined by the compressibility of the plasma and the Mach number of the fluid from which it is generated. Only when the bow shock is only weakly compressed and the shock must move away from the planet in order for all the shocked plasma to move around the planet does it become very dynamic. This simple concept was a major tool in interpreting distant bow shock locations as evidence for planetary magnetic fields when the Mach number of those distant shocks is unknown.

SHIA-6 **630th POSTER**

Analysis of the Neptune Bow Shock

A. Szabo (MIT Center for Space Research, Cambridge, MA 02139)
R. P. Lepping (NASA Goddard Space Flight Center, Code 692, Greenbelt, MD 20771)

During Voyager 2's approach to Neptune, the spacecraft crossed a high Mach Number (M = 36) and high β (β = 6) bow shock. Preliminary calculations (Szabo et al., A.G.U. Abstracts Spring 1991 Meeting, EOS April 23, 1991) suggested an increase of a perpendicular shock normal to the local interplanetary magnetic field at Neptune (e Jewish-Seat square of Venus and Scudder (Venus and Scudder, J. Geophys Res. 92, 99, 1986), we determined that the angle between the bow shock normal and the IMF was ±6°, validating the previous assumption. Also, the motion of the shock was determined to be 15 ± 10 km/s moving away from the planet. This is consistent with observations at Earth. In addition to the compulsorily propagated bow shock, we also found that there was a good agreement with the ideal Rankine-Hugoniot shock solutions. However, the shock standoff distance was not constant; it varied with the solar wind conditions.

SHIA-18 **630th POSTER**

Plasma Wave Activity in the Far Magnetosphere Outside the Far Flanks of the Earth's Bow Shock

S. L. Moses, E. W. Greenstadt, P. V. Connors, (TRW Space and Technology Group, One Space Park Rd1/R070, Redondo Beach CA 90278, 310-262-2175)
E. J. Smith (Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109; 818-354-2348)

We present condensed, color spectrograms of plasma wave (pw) data, together with magnetic field records, collected during passage through the solar wind field outside the bow shock of the Earth. The data come from 10-30 Aug 1979. The observations are made during an interval of nearly isotropic nighttime magnetospheric both parallel and transverse to the tail axis. Magnetic field observations typically show ions of several tens of keV are observed, sometimes as much as 20 keV. The downstream observed between the solar wind direction from the field line target region. Magenta and the magnetic field levels are low to moderate, although some strong events are observed from the tail. The magnetic field levels are low to moderate, although some strong events are observed from the tail. The magnetic field levels are low to moderate, although some strong events are observed from the tail. The magnetic field levels are low to moderate, although some strong events are observed from the tail. The magnetic field levels are low to moderate, although some strong events are observed from the tail. The magnetic field levels are low to moderate, although some strong events are observed from the tail.
Plasma Wave Profiles of Earth's Bow Shock at Low Mach Numbers:
ISEE 3 Observations on the Far Flank

E. W. GREENSTADT, F. V. CORONITI, AND S. L. MOSES

Electromagnetic Technology Department, TRW, Redondo Beach, California

E. J. SMITH

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

The Earth's bow shock is weak along its distant flanks where the projected component of solar wind velocity normal to the hyperbolic surface is only a fraction of the total free stream velocity, severely reducing the local Mach number. We present a survey of selected crossings far downstream from the subsolar shock, delineating the overall plasma wave (pw) behavior of a selected set of nearly perpendicular crossings and another set of limited Mach number but broad geometry; we include their immediate upstream regions. The result is a generalizable pw signature, or signatures, of low Mach number shocks and some likely implications of those signatures for the weak shock's plasma physical processes on the flank. We find the data consistent with the presence of ion beam interactions producing noise ahead of the shock in the ion acoustic frequency range. One subcritical case was found whose pw noise was presumably related to a reflected ion population just as in stronger events. The presence or absence, and the amplitudes, of pw activity are explainable by the presence or absence of a population of upstream ions controlled by the component of interplanetary magnetic field normal to the solar wind flow.

INTRODUCTION

The collisionless, high Pl(-1) shock in a magnetized plasma is in general a complicated phenomenon, but it should appear in its simplest manifestations when the Mach number is low. At its weakest, the shock has been assumed for years to display a smooth steplike jump or a dispersive wave profile, with modest jumps of magnetic field and density unlikely to disrupt the laminar flow of plasma from upstream to downstream states, while bestowing on it a mild temperature increase [Au et al., 1971; Mellott, 1985]. Relatively clean profiles of low-M shocks were in fact obtained analytically and experimentally two decades ago, but cases were necessarily simplified to achieve both analytic solutions and reproducible laboratory results [Tidman and Krall, 1971; Robson, 1969].

Satellite measurements in space plasmas offered the first opportunities to observe nature's solutions to the collisionless shock problem and to test the validity of theory- and laboratory-bound simplifications, but low-M shocks have turned out to be relatively scarce in the accessible extraterrestrial environment where most missions have gone. The Earth's bow shock is commonly strong (M > 5) in its subsolar region, where the great bulk of natural shock observations have been made, although solar wind variability has occasionally produced low-M conditions. Interplanetary shocks launched by solar activity or coronal inhomogeneities are often weak (M ~ 2), but they are encountered unsystematically and pass deep space probes too fast to reveal their structures to any but the fastest instruments and sampling systems. Nevertheless, interest in, and the importance of documenting, weak shocks has motivated investigators to collect and examine the available events, with somewhat surprising results: The presumably simplest (or borderline simplest) of shock displays have included nonlaminar cases with unexpected heating [Thomsen et al., 1985] and unanticipated magnetic and plasma wave profiles compatible with the presence upstream of small numbers of reflected ions not always detectable by particle instruments [Greenstadt and Mellott, 1987; Mellott and Greenstadt, 1988].

The chief indirect evidence for reflected ions has been the occurrence of elevated plasma wave (pw) signals between 10 Hz and 3 kHz, in the range of lower hybrid and ion acoustic frequencies in the otherwise undisturbed interplanetary magnetic field (IMF) immediately outside of low-M shock ramps. The signals are attributable to ion beam instability and are detectable because of the relatively high sensitivity of pw detectors to waves produced by even low densities of counter-streaming protons. The number of cases on which the pw evidence has been based has been small, however, but study has recently begun on a massive collection of weak shock observations made by ISEE 3 during its repeated crossing of the downwind bow shock in 1982 and 1983. The collection contains mostly low-M shocks because much of the satellite's time was spent where the weakened bow shock approaches its asymptotic Mach cone far downstream from Earth [Greenstadt et al., 1990].

The purpose of this report is to confirm and enlarge the earlier results with a more comprehensive, although still preliminary survey of cases covering a range of local Mach numbers and IMF orientations, from quasi-perpendicular (Q_\perp) to quasi-parallel (Q_\parallel).

The sections immediately following describe our form of data presentation, scheme of case selection, and method of defining shock strength and then present our examples and discuss our interpretation of them.

DATA PRESENTATION

Shock Subsets

The pool of 110 shock crossings described by Greenstadt et al. [1990] has been augmented, with the help of J. T. Gosling...
Solar Wind and IMF Control of the Magnetopause in a
Tsyganenko Model with Tail Warping

M. Pfeffer (Hstes STX Corporation, at NASA/GSFC)
A. Y. Tsyganenko (St Petersburg State University, RUSSIA, and Oak Grove Institute of Technology, 90024-1565, 13641 S. Oak Grove Drive, LaGuna Woods, CA 92637)
A. C. Curtis and D. P. Stern (Laboratory for Extraterrestrial Physics, Stanford University, CA 94305)
M. V. Malkov (Polar Geophysical Institute, Apasit, RUSSIA)

A new family of Tsyganenko 87 models incorporating plasma sheet warping effects, and organized according to Solar Wind (SW) and IMF parameters, have been derived. The new models are based on the recently expanded IMP-8/IMP-9 and ACE/AGU magnetodisk model data of Tsyganenko and have added MSIS ion temperature data, as well as all observed interplanetary SW and IMF conditions. Interplanetary SW and IMF correlation information by source is presented for each of the Tsyganenko parameters. The new models are compared to the Tsyganenko 87 model and to the model results. The new models have improved the transition between the SW and IMF regimes by allowing for both Tsyganenko and magnetodisk model conditions. The transition is based on the quasi-linear kinetic equations which in turn depend on the angle of inclination of the boundary layer to the solar wind. The magnetodisk conditions are derived from the Tsyganenko 87 model and the SW conditions are derived from the MSIS ion temperature data. The new models are also compared to the THEMIS and MAGSAT data. The new models have improved the transition between the SW and IMF regimes by allowing for both Tsyganenko and magnetodisk model conditions.

Solar Wind and IMF Control of the Magnetopause in a
Tsyganenko Model with Tail Warping

M. Pfeffer (Hstes STX Corporation, at NASA/GSFC)
A. Y. Tsyganenko (St Petersburg State University, RUSSIA, and Oak Grove Institute of Technology, 90024-1565, 13641 S. Oak Grove Drive, LaGuna Woods, CA 92637)
A. C. Curtis and D. P. Stern (Laboratory for Extraterrestrial Physics, Stanford University, CA 94305)
M. V. Malkov (Polar Geophysical Institute, Apasit, RUSSIA)

A new family of Tsyganenko 87 models incorporating plasma sheet warping effects, and organized according to Solar Wind (SW) and IMF parameters, have been derived. The new models are based on the recently expanded IMP-8/IMP-9 and ACE/AGU magnetodisk model data of Tsyganenko and have added MSIS ion temperature data, as well as all observed interplanetary SW and IMF conditions. Interplanetary SW and IMF correlation information by source is presented for each of the Tsyganenko parameters. The new models are compared to the Tsyganenko 87 model and to the model results. The new models have improved the transition between the SW and IMF regimes by allowing for both Tsyganenko and magnetodisk model conditions. The transition is based on the quasi-linear kinetic equations which in turn depend on the angle of inclination of the boundary layer to the solar wind. The magnetodisk conditions are derived from the Tsyganenko 87 model and the SW conditions are derived from the MSIS ion temperature data. The new models are also compared to the THEMIS and MAGSAT data. The new models have improved the transition between the SW and IMF regimes by allowing for both Tsyganenko and magnetodisk model conditions.
Observations of Plasma Waves in the Solar Wind Interaction Region of Comet Giacobini-Zinner at High Time Resolution

S. L. Moses, F. V. Coroniti, and E. W. Greenstadt

TRW Space and Technology Group, Redondo Beach, California

B. T. Tsurutani
Jet Propulsion Laboratory, California Institute of Technology, Los Angeles

High-time-resolution spectra of plasma wave emissions detected in the interaction region of comet Giacobini-Zinner with the solar wind reveal a wave phenomenology much more complicated than first reported. Spectra often exhibit three or more independent peaks, which become more prominent the deeper into the interaction region the spacecraft traversed. The main peaks correspond to whistler emissions below the electron cyclotron frequency, a midfrequency peak near the maximum Doppler shift frequency for waves with \(k\lambda_{D} = 1 \), a high-frequency peak above the Doppler shift maximum frequency, and electron plasma oscillations at the plasma frequency. Similar multipeaked spectra are also observed downstream from weak shocks at Earth, which suggests that the plasma wave generation mechanisms responsible need not require particle populations created by photionization.

INTRODUCTION

One of the most prominent issues to arise after the encounter of the International Cometary Explorer (ICE) with comet Giacobini-Zinner on September 11, 1985, is whether the interaction of the solar wind with the heavy ions produced near the comet creates a bow shock around the comet. Measurements made by the ICE plasma wave detector (PWS) were among the data used to support the existence of a shock [Scarf et al., 1986; Kennel et al., 1986], and an analysis utilizing the Rankine-Hugoniot relations suggested that a low Mach number shock was crossed both inbound and outbound [Smith et al., 1986]. These studies employed long time-scale averages of the data to obtain a global picture of the comet encounter. In contrast, using numerical simulations of the ion pickup region, Omidi and Winske [1988] argued that the solar wind did not encounter a single shock but was slowed by the cumulative effect of steepened magnetosonic waves, known as "shocklets", which increase in number and amplitude nearer the comet. This model is consistent with the signature of steepened magnetosonic waves in the magnetic field deep inside the interaction region [Tsurutani and Smith, 1986], the absence of a single identifiable shock transition, and electron plasma data in which shock-heated downstream plasma was interspersed with seemingly unshocked solar wind [Thomsen et al., 1986]. However, it has not yet been shown that the steepened magnetosonic waves in the comet are causing the deceleration of the solar wind.

Similar magnetic field and plasma wave conditions were found at comet Halley during the encounters by the Giotto and VEGA spacecraft, and Tsurutani [1986] presents a detailed review of the phenomenology found at both comets. The magnetosonic waves detected upstream of Halley were reported to be of smaller amplitude, but more turbulent appearance, than those found at Giacobini-Zinner [Johnstone et al., 1986] and it has been suggested that this might be due to the greater distances over which waves were generated at Halley, which would allow more wave-wave interactions to occur. In general, the clean progression in the development of steepened magnetosonic waves observed at Giacobini-Zinner was not seen at Halley. Intense plasma wave activity was also observed at Halley, although the sensitivity of the plasma wave detectors flown on those spacecraft was at least an order of magnitude poorer than for the ICE PWS (this is due to the extremely long length, 90 m tip to tip, of the ICE electric field antennas).

The purpose of this paper is to present the plasma wave observations made at Giacobini-Zinner on a time scale that resolves individual steepened magnetosonic waves and compare them with similar high-resolution observations of weak terrestrial bow shocks. On this scale the wave spectra at the comet are highly variable and reveal more wave modes than previously assumed, but similarities can still be found between the cometary spectra and those from weak shocks at Earth. In the next section we will illustrate the evolution of the wave spectrum as the magnetosonic waves steepen and describe the different wave modes. The third section presents the plasma wave data from weak quasi-parallel shocks observed on the flanks of the Earth's bow shock and contrasts them with the comet examples. The fourth section contains a discussion of the results in the light of previous wave generation models. This is followed by a brief summary.

GIACOBINI-ZINNER OBSERVATIONS

Figure 1 shows the magnetic field data for the 1-hour interval containing the inbound shock crossing (top panel) and 5-min-averaged electric field spectra which illustrate the shocklike characteristics of the plasma waves as used by Kennel et al. [1986] in the initial report on plasma waves in the solar wind interaction region. The upstream region was found to contain electron plasma oscillations at the plasma frequency, \(f_{p} \), and broadband emissions with frequencies from about 100 Hz to nearly 10 kHz. These signals are similar to waves observed in the ion foreshock at Earth and are often called (for lack of a
SM22B 1330h Magnetic Reconnection: Onset of Magnetospheric Substorms and Solar Eruptive Processes II (joint with SH)

CA: 415 1330h Magnetic Reconnection: Onset of Magnetospheric Substorms and Solar Eruptive Processes II (joint with SH)

Presiding: B Sonnerup, Dartmouth College

SM22-1 1330h POSTER Observational Aspects of Magnetic Reconnection at Earth’s Magnetopause

L.T. Goedel (NS446, Los Alamos National Laboratory, Los Alamos, NM 87545; 505-667-5389; jgoedel@lanl.gov)

Measurements made in the magnetopause of the magnetosphere have provided direct demonstration that reconnection between the interplanetary magnetic field (IMF) and the magnetospheric magnetic field occurs. These measurements tell us much about where and when reconnection occurs as a consequence of the interaction of the interplanetary magnetic field lines at the magnetopause, but tell us very little about details of the reconnection process, itself. Direct evidence for reconnection is found in observations of bulk plasma accelerations and plasma reflections and transmissions that occur at dawn, in the ion and electron layers in the low latitude boundary layer (LML), and in systematic oscillations in the normal magnetic field components, particularly as flux transfer events. Increasingly, reconnection in the magnetopause does not appear to lead directly to either substantial plasma heating (although some occurs) or the formation of Alfvénic waves, but is extremely rare within the layer of reconnected field lines at the magnetopause. Reconnection appears to occur in both a quasi-stationary mode and in a time-dependent mode. It is common to see both modes occurring in an interplay. This interplay may result in the formation of local field shear, and at high latitudes and along the flanks of the magnetosphere, it results in the formation of gradual and magnetic field. Reconnection can then be observed between the IMF and both the closed magnetospheric field lines at low latitudes and the "open" field lines of the polar caps and tail lobes. At dawn, reconnection is entirely responsible for the formation of the LML, as well as the reconnection process involves facets of low plasma beta in the magnetosphere.

SM22-2 1335h Possible Conjugate Reconnection at the High-Latitude Magnetopause

Data from Alan's rocket payload collected during the S2-C cruise has provided an opportunity to study the conjugacy of the reconnection process at multiple points along the Earth's Magnetopause. The data has been analyzed using a joint analysis algorithm that accounts for the dynamics of both the Earth and the solar wind. The results show that conjugate reconnection can occur at multiple points along the magnetopause, with the strength of the conjugate reconnection varying with the local solar wind conditions. The results have implications for the understanding of the reconnection process at the magnetopause and the generation of magnetic field structures in the magnetosphere.

SM22-3 1410h Triggered Plasma Fluctuations and Conjugate Reconnection in the Magnetosphere

L. Luijendijk (Department of Physics, UCLA, Los Angeles, CA 90024-1545)

The role of ionospheric disturbances and conjugate reconnection in the magnetosphere is a complex and multifaceted phenomenon. Recent studies have shown that conjugate reconnection can occur at multiple points along the magnetopause, with the strength of the conjugate reconnection varying with the local solar wind conditions. The results have implications for the understanding of the reconnection process at the magnetopause and the generation of magnetic field structures in the magnetosphere.

SM22-4 1450h Transition to Whistler Mediated Magnetic Reconnection

M.E. Iedema and T.E. Drake (Both at: Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742; ph: 301-405-4017; fax: 301-405-4005; e-mail: miedema@iptscience.umd.edu; darke@iptscience.umd.edu)

We will present our recent results on the transition to whistler mediated magnetic reconnection. The whistler reconnection model represents a unique opportunity to study the magnetic field structure in the magnetosphere and to better understand the nature of magnetic reconnection in space. Our results show that the transition to whistler mediated reconnection occurs when the magnetic field structure in the magnetosphere is favorable to the growth of whistler waves. The transition is characterized by the formation of a whistler mode oscillation, which grows in amplitude and eventually leads to magnetic reconnection. The results have implications for the understanding of magnetic reconnection in the magnetosphere and the generation of magnetic field structures in the magnetosphere.
We have examined Voyager 5.) This work was supported by
3.) References
5.) This work was supported by NASA grant NAGW-2445 and Jet Propulsion Laboratory contract #951-107 to the BRI.

SH51A-1 1830h POSTER
Investigation of Bow Shock in a Laboratory Simulated Earth's Magnetosphere
Gene Yur and H. T. Rahman (Boh AC Institute of Geophysics and Planetary Physics, University of California, Riverside, California 92521-0978-7551-0978-7558 4560; 801-375-2108)

SH51A-2 0830h POSTER
Proton Velocity Maps Mars
E. Kallio, H. Kostikainen (Finnish Meteorological Institute, Department of Geophysics, P.O. Box 72, 00010, Helsinki, Finland; and Ma. E. Kallio, H. Kostikainen (Finnish Meteorological Institute, Department of Geophysics, P.O. Box 72, 00010, Helsinki, Finland; and 2.)References
3.) References
4.) Figures
5.) This work was supported by NASA grant NAGW-2445 and Jet Propulsion Laboratory contract #951-107 to the BRI.

SH51A-3 1830h POSTER
D. Gifford, D. E. Jones, and N. Yamaguchi (All from Department of Physics and Astronomy, Brigham Young University, Provo, UT, 84602, 801-375-2108)

SH51A-4 0830h POSTER
Extreme Plasma Outcoults in the Forebomk: Occurrence of Cations and Ions in the Forebomk

SH51B POSTER
Superthermal He\(^{+}\) and the Origin of Energetic Ions in the Earth's Forebomk Region
S. A. Forsling, (Los Alamos National Laboratory, Los Alamos, NM 87545; M. F. Thomas, Los Alamos National Laboratory, Los Alamos, NM 87545; M. F. Iarvis, University of Maryland, College Park, MD, 2016)

Energetic ion distributions (with energies of a few keV\(^{+}\) extending to over 100 keV\(^{+}\), also called diffuse ion distributions) from the Earth's near parallel bow shock have approximately solar wind composition (i.e., ~4% H\(^{+}\)). In contrast, field-aligned ion beams observed in the near forebomk region upstream from the Earth's bow shock have He\(^{+}\) concentrations which average two orders of magnitude below that in the solar wind. Thus, while it is clear that field-aligned beams are not the major source of energetic ions in the forebomk region, the seed population (i.e., the suprathermal stage through which the solar wind source parcels pass in the acceleration process) for these ions has not been identified. We report E\(^{+}\) and He\(^{+}\) observations from the ISEE-1 and -2 spacecraft which suggest...
Plasma Waves Downstream of Weak Collisionless Shocks

F. V. Coroniti, E. W. Greenstadt, and S. L. Moses

TRW Space and Electronics Group, Redondo Beach, California

E. J. Smith and B. T. Tsurutani

Jet Propulsion Laboratory, California Institute of Technology, Pasadena

In September 1983 the ISEE 3/ICE spacecraft made a long traversal of the distant dawnside flank region of the Earth's magnetosphere and had many encounters with the low Mach number bow shock. These weak shocks excite plasma wave electric field turbulence with amplitudes comparable to those detected in the much stronger bow shock near the nose region. Downstream of quasi-perpendicular (quasi-parallel) shocks, the E field spectra exhibit a strong peak (plateau) at midfrequencies (1–3 kHz); the plateau shape is produced by a low-frequency (100–300 Hz) emission which is more intense behind quasi-parallel shocks. Polarization measurements made in the very steady magnetic field conditions downstream of two quasi-perpendicular shocks show that the low frequency signals are polarized parallel to the magnetic field, whereas the midfrequency emissions are unpolarized or only weakly polarized. A new high frequency (10–30 kHz) emission which is above the maximum Doppler shift frequency is clearly identified as a separate wave component. High time resolution spectra often exhibit a distinct peak at high frequencies; this peak is often blurred by the large amplitude fluctuations of the midfrequency waves. The high-frequency component is strongly polarized along the magnetic field and varies independently of the lower-frequency waves.

1. Introduction

From September through December of 1983 the ISEE 3 spacecraft traversed the far dawnside region of the magnetosheath and had multiple encounters with the bow shock [Greenstadt et al., 1990]. Since the shock normal is nearly orthogonal to the solar wind flow direction, the far flank shocks have low Alfvén and magnetosonic Mach numbers. Thus the ISEE 3 data set provides a unique opportunity to investigate the plasma, magnetic field, and plasma wave properties of collisionless shocks in a Mach number regime which has rarely been accessible to previous satellite studies. In this paper we focus on plasma wave electric field measurements in the region immediately downstream of several typical quasi-parallel and quasi-perpendicular flank shocks. Strong shocks in the nose region of the magnetosheath [Rodriguez and Gurnett, 1975] and interplanetary shocks [Kennel et al., 1982] generate intense electric field turbulence in the downstream region. The weak flank shocks might be expected to stimulate a significantly lower level of downstream wave noise. We find, however, that the electric field spectral amplitudes and spectral shapes detected behind the flank shocks are quite comparable to the wave properties observed behind the nose region shocks.

In the subsolar region of the Earth’s bow shock, Rodriguez [1979] identified three types of electrostatic plasma waves which occurred in the magnetosheath: (1) a low-frequency component with a peak near 100–300 Hz, well below the ion plasma frequency \((2\pi f_{pl} = (4\pi ne^2m_i)^{1/2}) \) and with a smoothly falling spectrum above the peak frequency; (2) an intermediate-frequency component with frequencies between the ion and electron plasma frequencies \((f_{pl} < f < f_{pe}) \) and a peak near 1 kHz; and (3) a high-frequency component at the electron plasma frequency. The low-frequency component resembles the wave spectra typically observed within the shock front [Rodriguez and Gurnett, 1975; Gurnett, 1985], whereas the intermediate- and high-frequency components had spectra which are similar to wave emissions in the upstream region. Rodriguez [1979] suggested that the intermediate-frequency waves might be excited by narrow velocity spread electron beams as are believed to cause the similar upstream emissions. By comparing the voltages across antennas with different tip-to-tip lengths, Rodriguez [1979] concluded that the wavelengths of the magnetosheath turbulence exceeded 100 m across the entire frequency band from 40 Hz to 100 kHz. Since IMP 6 had a pair of orthogonal antennas and obtained the full waveform from 0 to 1.0 kHz, Rodriguez [1979] demonstrated that the electric field polarization in this frequency range was parallel to the magnetic field. At higher frequencies, Rodriguez and Gurnett [1975] used rapid sample (a measurement of a given frequency channel every 0.32 s) electric field amplitudes to show that the waves at 3.11 kHz were polarized along the field direction and stated that parallel polarization was a general property of the magnetosheath wave emissions.

Anderson et al. [1982] reported on two additional aspects of magnetosheath waves. Using the high time resolution capabilities of the ISEE 1 and 2 electric field spectrum analyzer and wideband system, Anderson et al. [1982] discussed short-duration emission spikes which spanned the frequency range from 100 Hz to 56 kHz. These spikes are a permanent feature of the nose region magnetosheath and made the main contribution to the spectral density above 1.0 kHz. The HAM passive sounder measurements indicated that the e-folding time of the spikes was less than or comparable to the 8-ms time constant of the HAM receiver. The electric field spectrum analyzer showed that the spikes occurred simultaneously at all frequencies within the 50 ms
To be initiated by the responsible NASA Project Office, Technical Monitor, or their appropriate NASA official for all presentations, reports, papers, and proceedings that contain scientific and technical information. Explanations are on the back of this form and are presented in greater detail in NHB 2200.2, "NASA Scientific and Technical Information Handbook."

I. DOCUMENT IDENTIFICATION INFORMATION
- **Title:** Solar Wind Interactions
- **Authors:** B. L. Nares and J. W. Bame
- **Originating NASA Organization:** NASA/GSFC
- **Contract/Grant/Interagency/Project Number:** CSA-699-900

Document Number(s): CR-1899327

Document Date:

II. AVAILABILITY CATEGORY
- **Export Controlled Document:** Yes
- **Nations Restricted Distribution Document:** Yes

Document describing an invention:

- **Documents marked in this block must be routed to NASA Headquarters International Affairs Division for approval.**
- **Documents must be marked Limited Distribution.**
- **Publicly available documents must be unclassified and may not be export-controlled or restricted distribution documents.**
- **Copyrighted:** Yes

III. SPECIAL CONDITIONS
- **Check one or more of the applicable boxes in each of (a) and (b) to the limits for special restricted distribution if the "Special Conditions" box under NASA Restricted Distribution Document is checked. Guidelines are provided on reverse side of form.**
 - **Foreign government Information:** Yes
 - **Commercial product or evaluation results:** Yes
 - **Preliminary Information:** Yes
 - **Information subject to special contract provision:** Yes
 - **U.S. Government agencies and U.S. Government agencies only:** Yes
 - **NASSA contractors and U.S. Government agencies only:** Yes
 - **NASSA personnel only:** Yes
 - **Available only with approval of issuing office:** Yes

IV. BLANKET RELEASE (OPTIONAL)
- **All documents issued under the following contract/grant/project number **:

 - **The blanket release authorization granted:**
 - **Data:**
 - **Prescribed - Future documents must have individual availability authorizations.**
 - **Modified - Limitations for all documents processed in this STI system under the blanket release should be changed to conform to blocks on checked in Section II.**

V. PROJECT OFFICE/TECHNICAL MONITOR
- **Typical Name of Project Office/Technical Monitor:** J. W. Bame
- **Office Code:**
- **Signature:**

VI. PROGRAM OFFICE REVIEW
- **Typical Name of Program Office Representative:**
- **Program Office Code:**
- **Signature:**

VII. INTERNATIONAL AFFAIRS DIVISION REVIEW
- **Open, domestic conference presentation approval:**
- **Foreign publication/presentation approval:**
- **Export controlled limitation is approved:**

VIII. EXPIRATION OF REVIEW TIME
- **The document is being released in accordance with the availability category and limitation checked in Section II since no objection was received from the Program Office and it is approved by NASA Headquarters International Affairs Division in accordance with NHB 2200.2.**

IX. DOCUMENTS DISCLOSING AN INVENTION
 - **This document may be released on:**
 - **Installation Patent or Intellectual Property Counsel:**

 - **This document was processed on:**

X. DISPOSITION
- **Completed forms should be forwarded to the NASA Scientific and Technical Information Facility, P.O. Box 8797, Wash., D.C. 20014.**
- **Printed or reproducible copy of document enclosed:**
- **Abstract or Report Documentation Page completed:**

PP427 REV OCT 88