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Summary

A new algorithm is introduced to compute finite-

amplitude states using primitive variables for Rayleigh-

Benard convection on relatively coarse meshes. The algo-

rithm is based on a finite-difference matrix-splitting

approach that separates all physical and dimensional

effects into one-dimensional subsets. The nonlinear pat-

tern selection process for steady convection in an air-filled

square cavity with insulated side walls is investigated for

Rayleigh numbers up to 20,000. The heated lower

boundary is augmented with "noisy" boundary conditions

to illustrate the transient and bimodal nature of the pattern

selection process above the first critical Rayleigh number.
Above a second critical Rayleigh number other instability

modes may also be excited. The internalization of

disturbances that evolve into coherent patterns is

investigated and transient solutions from linear

perturbation theory are compared with and contrasted to
the full numerical simulations.

The basins of attraction for transient solutions in a phase

plane are shown to be bounded by singular states repre-

senting unstable modes. A particular symmetric mode that

may be stable to symmetric or random disturbances but

unstable to antisymmetric disturbances is investigated.

Introduction

Rayleigh-Benard convection is considered by many an

ideal model for hydrodynamic stability since convection

and dissipation compete with one another in a relatively

straightforward manner. Among the many proposed

approximations to the Navier-Stokes equations, the sim-
plified form first advocated by Boussinesq as a model of

natural convection is now commonly used as the basis for

most theoretical and numerical stability research. The

classical solution method of linearization and expansion

in sinusoiclal functions as described in detail by

Chandrasekhar (1961) is a fh-mly established tool for vir-

tually all stability problems. The eigenvalue problem that

determines the normal modes and critical parameters (in

this case the Rayleigh number) is itself quite a difficult

mathematical problem. In the continual search for simpler

formulations, series expansions in terms of orthogonal
functions other than sinusoids have been used with some

success. In a recent study, Lee et ai. (1989) used an

expansion in Chebyshev polynomials to consider the

linear stability of Rayleigh-Benard convection in a general

two-dimensional cavity. The first instability mode is a

single roll creating a vortex-type motion for cavities with
aspect ratio less than two. The computed critical Rayleigh

number for these finite-aspect-ratio cavities is well above

the value 1708, which is appropriate for infinite-aspect-

ratio systems. The normal mode approach to the perturba-

tion equations will give eigenfunctions and eigenvalues

but will not yield any other information, such as the sense
of the induced flow, the nature of the transient motion, or

the strength of the steady convecting state.

Finite-amplitude nonlinear steady convection at supercrit-

ical Rayleigh numbers has been addressed in the literature

for many decades. A common approach is to use a Fourier

series expansion to compute the final steady convective

flow. The theoretical and experimental literature to 1980

has been reviewed by Busse (1981). In particular, a few

investigators attempted to track the evolution of discrete

modes as the solution to an initial-value problem.

Saltzman (1962) was apparently the first to solve the non-

linear amplitude equations in an infinite horizontal layer

and also to investigate the nature of the steady-state non-

linear modes. Ogura and Yagihashi (1969), using a similar

approach, found that initial conditions played a key role in

determining the ultimate steady-state pattern. In a later

paper Ogura (1971) investigated the effect of a variety of
initial conditions (in the context of Fourier modes) on the

final steady state. This study showed that the flow may

evolve through a series of patterns before the final state is
achieved and that the then-conventional rule that the final

steady-state flow corresponded to the flow with maximum
Nusselt number was false.

In a recent and comprehensive work of this type,

Goldhirsch et al. (1989) investigate natural convection in

a rectangular enclosure by using Chebyshev expansions in

the spatial coordinates and a time-split approach to the

temporal coordinate. The flow is induced by a time-

dependent exponential heating from below. The flow

evolves by creating rolls at the boundaries that ultimately

migrate into the cavity.

In the present paper, a new finite-difference approach is

used to solve the Boussinesq equations in primitive vari-

ables. The method is based on a "discrete dispersion rela-

tion" approach to the convective terms and a new splitting

algorithm to construct compact implicit finite-difference
formulas. The technique is used to examine the pattern

selection process where finite-amplitude steady solutions
are known to exist. Realistic boundary and initial condi-

tions, consisting of insulated side walls and prescribed

temperatures on the top and bottom walls, are imposed. A

unit step in temperature along with "noisy" lower-wall

boundary conditions are used to initiate the motion. The

general flow features outlined by Goldhirsh et al. (1989)

are confirmed by using the current finite-difference

approach, but certain details of the instability growth dif-
fer because of the use of insulated side walls, which

induce a different set of eigenfunctions.



Thesame finite-difference algorithm is used to correlate

stability boundaries predicted by the classical perturbation
method. The most (linearly) unstable mode is computed a

by treating the perturbed Boussinesq equations as a tran- cn

sient stability problem. The eigenvalues and eigenfunc-
tions, which appear as a natural outcome of the transient Cp

solution, are compared with direct solutions to the nonlin- dn

ear equations. Numerical experiments in which the linear d
perturbation equations were used uncovered two instabil-

ity modes over the range of Rayleigh numbers considered, e

Eigenfunctions from the linearized equations are also
correlated with corresponding patterns computed during

the nonlinear exponential growth and the finite-amplitude h

phases. The linearized solution is shown to dominate the
flow evolution during the exponential growth phase, but it k

naturally falls to predict the ultimate nonlinear saturation. 1

Numerically generated steady-state solutions confirm Pr

results from finite-amplitude theory and a parabolic bifur-
cation emerges from the simulation. A series of computa-

tions with noisy boundary conditions illustrates the role of Ra
transients in the pattern selection process. It is found that

the final pattern is imprinted at an early stage of the flow Rac

where linearly unstable modes first become dominant. If T
two modes are possible, there is a chance that either may

be activated. When a symmetric mode is generated it may t
be transformed to a stable rotational mode if both the

U
amplitude and the symmetry of imposed disturbances are

consistent with this pattern. Above the second critical

Rayleigh number the three possible modes are clockwise
or counterclockwise rotational modes and one symmetric c_

mode consisting of two counterrotating vortices with a 13

central updraft. 0

Solutions to the Boussinesq equations are presented 1) as
an example of a relatively complex fluid model to validate v

partially the algorithmic approach, 2) as a vehicle to p
examine some important physical effects, and 3) as a

means of assessing the impact of linear theory on non-

linear processes. Primitive variables are chosen so that co

fully three-dimensional problems can be computed with
the same algorithm. In this report the equations of free X

convection are reviewed; the new finite-difference

approach is described; numerical solutions are presented

in te_ of integrated quantities and instantaneous

velocity-temperature fields; and finally, the process by
which small disturbances are internalized is examined by

using instantaneous snapshots of the flow during a critical
time interval and comparing with a simple second-order

dynamical systems model. The numerical algorithm used
to simulate the flow is described in the appendix.

The author would like to acknowledge the helpful discus-

sions with Murray Tobak and Chris Hill regarding inter-

pretation of the simulated flows.

Nomenclature

convection speed

Courant number, ax/h

specific heat at constant pressure

diffusion number

length scale

energy

gravity vector

space increment

wavenumber in x-direction

wavenumber in y-direction

Prandtl number, v/Z

heat flux vector

Rayleigh number, 13gATd3/vz

critical Rayleigh number

temperature

time

energy

velocity vector

eigenvalue (growth rate)

coefficient of thermal expansion

temperature increment

kinematic viscosity

density

time increment

radian frequency

thermal diffusivity, k/poCp

Formulation of Equations and Solution

Method

Equations of Free Convective Flows

The Boussinesq equations result from the following

assumptions regarding the Navier Stokes and Energy

equations for an incompressible fluid: 1) Fourier's Law

for an isotropic, homogeneous medium relates the heat



flux vector to the temperature gradient by _ = -kVT;

2) imposed temperature differences do not invoke large

density changes; and 3) the thermodynamic state variables

(density and etiergy) depend only on the temperature.

Since the pressure is not considered a thermodynamic

state variable, the pressure term in the equations of motion

is considered a "hydrodynamic" quantity only. Density

and energy changes induced by temperature fluctuations

are computed from the equations p - P0 = -_P0( T - TO)

and e - e0 = cp(T - TO), where the constants are the coef-
ficient of thermal expansion (13) and the specific heat at

constant pressure (Cp).

With these assumptions, the equations of motion become

the simpler set

V._=O

--+v -vv =-_+vv v +_-I3(T*-T0)g" (1)
_* PO

0"_ ,_=.*
-- + v • VT* = --k--V2T *
_t* pOCp

where starred symbols denote physical quantities. These

equations are conventionally nondimensionalized with

length scale d and time scale d2/z, where X = k/p0Cp is the
thermal diffusivity. The final equations of motion in

nondimensional form with the hydrostatic part eliminated

are

V -;=0

_---_+_. V_=-Vp +Pr V_vv +RaPr 0_ (2)
_t

_0+_, V0= V20
_t

The velocity is scaled by z/d, the pressure by p0(g/d) 2,

and the temperature change 0 by the driving temperature

difference AT. The unit vector _ is positive upward. Two

key parameters appearing as coefficients are the Prandtl

number (Pr = v/z) and the Rayleigh number
(Ra = 13gATd3/vz). In all the present computations it is
assumed thai the medium is air with Pr = 0.71.

The linear perturbation equations are obtained from equa-

tion (2) by considering deviations from a basic state

consisting off = 0 and 0 = 1 - y, where y = 0 is the base

of the cavity and 0 -<(x,y) _<1.

V.;" = 0

_' =-Vp' + Pr V2_ " + Ra Pr 0'
_t

(3)

= v:0' + ;';
&

The primed quantities in equation (3) are equivalent to

those unprimed in equation (2) except for the temperature,
which is related by 0 = 0 + (1 - y). These equations must

be augmented with appropriate boundary conditions. The

linear system represented by equation (3) is an eigenvalue

problem and, unlike the full equations, it is solved with

homogeneous boundary conditions.

Numerical Method

In two dimensions, equation (2) is a system of four partial

differential equations for the dependent variables

(u,v,0,p). The pressure plays a special role in the incom-

pressible Navier-Stokes equations as the enforcer of mass

conservation. If only those dependent variables with

explicit time derivatives are retained, the following sys-

tem of homogeneous matrix partial differential equations
is obtained:

_---_+ A_.-_-_+B-_-_+ C_2_ + _D-_-+ EU = 0 (4)

_t 0x _ty _x2 _y2

-.p

where U is a three-component solution vector consisting

of (u,v,0), A = diag (u,u,u), B = diag(v,v,v), C = D = diag

(-Pr,-Pr,-l), and E = -Ra Pr 823. The first-order terms

represent convection, the second-order terms diffusion,

and the last is a body-force coupling the momentum and

energy equations. The finite-difference algorithm is

defined by examining the way that plane waves are pro-

cessed by equation (4). The "ansatz" isa plane wave with

arbitrary wave number k,l of the form U = Y(t) eikx+ily,

which is similar to that used in asymptotic wave theory

(Whitham (1974)). Substituting U into equation (4) yields

a fast-order matrix ordinary differential equation for the

amplitude function Y(t).

d_(t) + ikA_f(t) + ilB_/_t) _ k2 CY-'(t) - 12 D_f(t)
dt

+ EY(t) = 0 (5)

with a formal solution in terms of matrix exponentials:



Thebasis of the algorithm is to consider the change in

over a small time interval 1: where temporal changes in the

coefficient matrices are ignored. If a mesh parameter h

and the ratio p = x/h is introduced, the integral is replaced

by a product of matrix exponentials in terms of nondi-

mensional spatial measures kh and lh. The wave parame-

ter kh (or lh) will play a fundamental role in the

construction of finite-difference molecules. A significant

challenge in deriving finite-difference algorithms is to

maintain solution accuracy as kh (and lh) varies over the

allowable range (O,g). Complete resolution is not possible

as there will always be numerical artifacts leading to

phase or amplitude distortion at short wavelengths. The
goal of this effort is to derive formulas of maximum accu-

racy for a given stencil in space-time.

For convenience, the vectors Y0 and Y are replaced by
+I

the conventional i_ and i_n to represent the solution

vector at sequential time steps. The solution is put in the

special form

_*n+l = eDrdh212h2eC.ffh 2 k2h2e_E.ce_iBp lhe_iA p khan (7)

Several approximations have been made in the process of

deriving this fundamental formula. First, the coefficient

matrices A, B, etc. are assumed locally constant. Second,

splitting the exponential into a product of terms is strictly

valid for scalar arguments or matrices with special proper-

ties. Both approximations would indicate a drop to first-
order accuracy in the worst case. However, it is argued
that an essential criterion of these simulations is to main-

tain adequate phase resolution in the individual one-
dimensional algorithms serving as the components of

equation (7).

The solution sequence is a serial operation involving

u-(l)= c(x)_n ' _(2)= c(y)u--(1) etc. Each term has an

obvious counterpart in equation (7) except for the inclu-

sion of the pressure operator P. The six-step process

involves two convection sweeps, two diffusion sweeps, a

velocity-temperature coupling, and a pressure

computation.

, Numerical dispersion can introduce errors of a subtle

nature; these errors are mostapparent in wave problems.
The nature of these effects and the associated waveform

distortion effect using an acoustics model is discussed in

Davis (1991 ). Numerical dispersion of nonlinear weakly

dissipative systems is very difficult to isolate when all

other interrelated physical effects are considered. How-

ever, accurate modeling of the convective terms is critical

to long-time solution accuracy. The procedure adopted is

discussed in the previously cited reference where a dis-

crete dispersion relation approach is used to obtain the
best possible approximation for the chosen stencil. The

ability of the algorithm to track accurately a range of

wavelengths is also demonstrated in the cited reference.

Boundary values for convection are computed from

incoming and outgoing radiation conditions. It should be
noted that these intermediate velocities do not satisfy the

no-slip conditions. The complete convection algorithm is

presented in the appendix.

The coupling term is treated in a simple manner. Unlike

the previous operators, only the local solution at (x,y) is

required to advance to the next time level. Since no
43)

derivatives are involved, the updated solution U is

obtained from a Taylor series expansion of the matrix

exponential e Ex to second order. The matrix E contains

only one off-diagonal element, as indicated above.

The pressure is introduced as a constraint to enforce mass
Each term in equation (7) is interpreted as an incremental ....... .:__ ,-,L^-_ ,,,,:o_ _. ....... ._. __...^..^_.

v- • • _., / w • _1.,)11_1 VI'lUUII. LIIUIIII _ lffUO) lUbt _.IIU_bP...t.I _tll dl, J_lO,at.ll

one-olmenslonal operator n O mat graouauy eVOlVeS . .
• , . .--:n+_ ....... (which Is now well accepted) to define a pressure term
me soiutxon vector to u . _ne anamgy wan lOCally __ .L_ _ _..1. __^ :.... ,_:__. k. _(4) _(3) - w_ ._

frOlll 1.111_ II.Y_i Yl_ll.,l_lt_ _l_lldl_lll. O_' Y --Y = --t, V_ DO

one-dimensional waves is complete when one considers

the simple scalar wave operator 0u/0t + a0u/Ox with an

input harmonic wave e it°t+ikx. In this case un+l = e"ion kh

un (from the dispersion relation to + ka = 0 and the

Courant number cn = axJh). Only one scalar operator is

required to find un+l from un. With reference to equa-

tion (7), the matrix exponentials are replaced by partial

solutions in a sequence of implicit finite-difference matrix

operators:

_.n+l = D(y)D(x)_a_,(01c(y)c(x)_n (8)

that p satisfies a Poisson equation V2p = V- v-'(3)/x from

V _4) Iv n e Ithecontinuitycondition • = 0.Thisd" erge c "s

computed usingsecond-ordercentraldifferencesand the

pressurecomputed from an availablePoissonsolvcr.

Boundary conditionsarcimposed from theconditionthat

thenormal velocity_(4)vanisheson allfourwalls.

The diffusion operator is treated with an algori_ 0( the

Crank-Nicolson form. Actually, the most accurate compu-

tational molecule on a 3-point stencil is of order (t 2, h4) in

contrast to the Crank-Nicolson molecule, which is of

order (t 2, h2). This algorithm also appears in the literature,

4



and it is referred to as the Douglas formula. (See Mitchell

(1969).) However, the Crank-Nicolson formula was found

to be adequate for the range of physical phenomena in this

study. Diffusion is the last operation in the six-step pro-

cess; it allows the imposition of no-slip boundary condi-

tions. These algorithms are also shown in the appendix.

The solution sequence is chosen in order to address the

problem of intermediate boundary conditions in a physi-

cally meaningful manner. The boundary conditions for

convection are set by the operator itself. The coupling

term causes no special boundary-condition problem since

no neighboring mesh points are involved. The pressure
plays a dual role of enforcing the conservation of mass

and causing the normal component of boundary velocity
to vanish.

At this stage, an inviscid solution (the Euler equation) is

available. The tangential velocity at the wall is a measure

of the incremental wall vorticity strength at the indicated

time step. The final diffusion sweeps define the viscosity-

induced shear and enable all boundary conditions to be

imposed exactly. During this final step the initially

solenoidal velocity field remains solenoidal; this charac-

teristic is a fundamental property of the heat equation.

Solutions were obtained on a uniform 25 x 25 mesh with

a time step chosen from _ = 0.06h. There is no externally

imposed velocity scale, but a Courant number U'rJh based

on the final maximum convective velocity ranges to about

one. These time steps are higher than usual since the con-

vection algorithm is dissipation free and dispersion is low

enough to minimize phase errors. The basic convection

finite-difference molecule is phase accurate to a Courant

number of about two, but dependent-variable coupling in

the Boussinesq equations reduces its practical limit to a

Courant number of about one. A typical 400-step run to

steady flow takes about 90 seconds(s) on a Cray Y-MP.

Numerical Solutions

The initial-boundary-value problem is shown in figure 1.

The side walls are rigid and insulated to the flow of heat.

The top and bottom walls are also impervious, but they

are maintained at prescribed temperatures. Motion is

initiated from rest by a unit step in temperature that causes

a large energy input which induces a transient flow that

evolves into a final steady-state pattern. This pattern can

be either convecting or conducting, depending on

Rayleigh number. This indicial approach is both

physically plausible and firmly rooted in classical linear

system theory. The temperature boundary condition on the

lower wall is modeled with a "noisy heater;" that is, the

0

II

,.i

II

,'el_

O=U=V=O

0 = H(t) + _(x,t) u = v = 0

Figure 1. Geometry and typical flow pattern for natural
convection in a box.

0

H
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II

_ xeet_

• X

temperature 1 + E(x,t) is considered to vary randomly in

time (t > 0) with a prescribed space dependence.

The response of a stable physical system governed by lin-

ear homogeneous equations is an exponential decay to an

equilibrium rest condition. The most significant parameter

is its time constant. The situation for nonlinear systems is

not as simple. The possibility of multiple steady solutions

and bifurcation phenomena can easily be appreciated with

the simple Ginzburg-Landau model considered by

Rosenblat and Davis (1979). Solutions to the nonlinear

model evolution equation

dU = (R - 4) U - U 3

dt (9)

u(o) = Uo

are shown in figure 2(a) for a sequence of initial condi-

tions U 0. If R = 2 (left panel), a value less than the critical

R c = 4, the step response decays exponentially for any

choice of initial conditions. When R = 6 (right panel), any

disturbance ultimately resolves itself into the preferred

steady solution U(oo) = ±1.414. If negative values of U are

permitted, this is an example of a symmetric (pitchfork)

bifurcation, the positive branch of which is depicted in

figure 2(b). The branch U = 0 is unstable to infinitesimal

perturbations if R > 4.

The Rayleigh-Benard system can be interpreted in the

spirit of the Ginzburg-Landau model with a global kinetic

1_ _. _ dA. If Ra < Ra c, U(t)energy measure U(t) =II
2



(a)
2.00

1.75 = R = 6
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U(t) 1.._
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.2s I
0 .5 1.0 1.5 2.0 2.5 0 .5 1.0 1.5

t t

I
2.0

I
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U
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1.0-

•5 --

I I I
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R

Figure 2. Response of a model nonlinear system to step inputs of 0.25, 0.50, O.75, and 1.00. (a) System time history for

subcritical (left) and supercfitical (right) values of parameter R. (b) Bifurcation diagram of mode/nonlinear system.

should decay exponentially whereas bifurcations will

occur at supercritical Rayleigh numbers. The nature of

Rayleigh-Benard instability is shown in figure 3, which

depicts computations of U(t) on a semilog scale from

numerical solutions of equation (2) with Ra as parameter.

At the initial instant of motion the temperature step

induces a uniform buoyant upflow that decays because of

viscous stresses in the cavity and at the side walls. At a

critical Rayleigh number buoyancy forces overwhelm

dissipation causing exponential growth in U. At the
critical Rayleigh number the growth is very slow and of

long duration. There are four significant parameters

relating to these curves: the onset time for growth, the

growth rate, the time t0-non]_ne_ar saturation, and the

amplitude of the final state.

This response is contrasted to linear perturbation theory

that predicts the growth rate (eigenvalues) and some idea
of the final state (the eigenfunctions). The linear solution

is of the form e at f(x,y) where cx is the eigenvalue and

f(x,y) is its eigenfunction. This type of instability is
known as absolute or global instability; it is illustrated in

figure 4, which shows the time history of U from solutions

of equation (3) as dashed lines. Three Rayleigh numbers

are chosen and are superimposed on the related nonlinear

solution from equation (2). Starting with a short transient,

the curves representing solutions of the linear equations

quickly assume exponential form and become unbounded

in time. The exponential-growth portions of the curves are

well predicted, but other significant parameters are left

unresolved when linear theory is used. ]

The growth rate ct was extracted from the perturbation

solutions, and it is shown in figure 5 by the curve labeled

"mode 1." The interpolated value of Rayleigh number Ra

]In the analysis of Iransifion on airfoils and wings using linear
stability theory an attempt to predict_trans,!ion is often made
based on the so-called "e-to-the-N-method." This empirical

procedure predicts the distance from instability to transition by
assuming an amplitude growth ratio ofe N where N is about 10.

This procedure is clearly analogous to the use of linear theory in

figure 4 to predict the nonlinear saturation value.

6
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Figure 3. Globalbehaviorof Rayleigh-Benardsystemfor
Rayleighnumbers2000, 3000, 4000, 5000, 7500,
and 10,000.

lO=

101
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10-5

Figure 4. Superpos#ionof linear(- .... -) and nonlinear
(__) response curvesof the Ray/eigh-Benardsystem
forRayleigh numbers3000, 5000, and 10,000.
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4O

_20
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-2O
I
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I I I
5,OOO 10,000 15,000

Rayleigh number, Fla

20,000

Figure5. Curvesof growthrate as a functionof Rayteigh
numberforrotating(mode 1) andco-rotational(mode2)
eigenfunctions.Solidlines:25 x 25 mesh,symbols:
50 x 50 mesh.

at instability onset is 2512, which compares favorably
with the values 2553 and 2585 reported by _ et al.
(1989) and Kurtzweg (1965), respectively. Numerical

experiments with the perturbation equations revealed
another instability mode that was only excited with per-
turbations that were symmetric with respect to the line

x = 0.5. The growth rates of this mode (mode 2 in the
figure) are smaller than those of mode 1 and they become
positive beyond a second critical Rayleigh number
Racc= 7017. Selected computations with a doubled grid
are shown with filled symbols in figure 5. The eigenfunc-
tions associated with each eigenvalue are obtained from
the evolving numerical solution. During exponential
growth they are simple multiples of one another. Figure 6
shows computed linearized eigenfunctions for temper-
ature and velocity corresponding to modes 1 and 2. (The
temperature eigenfunctions are defined as deviations from
a purely conducting linear state.)

Steady-state solutions of the nonlinear equations may be
represented on a bifurcation diagram such as that shown
in figure 7. Here, the square root of steady-state kinetic
energy is taken as a representative amplitude. These
equilibrium modes are computed by using initial condi-
tions with the same symmetries as the linear eigen-
functions. Modes I and 2 are almost exact fits to the

interpolating parabolas 0.1076 _'/-__--2512and

7
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FTgure6. Maps of modes I and 2 elgenfunctions from solution of linear perturba_on equations. 25 x 25 mesh, Ra = 7500.
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Figure 7. Finite-amplitudestates forthe Rayleigh-Benard
system.25 x 25 mesh,Ra = 7500. Symbols:computation,
solidlines:best-fitparabolas.

Figure8. Timeevolutionofglobalparameter U showing
selectionof mode I and mode 2 finalstates.
25 x 25 mesh,Ra = 16,000.

0.09176 _1_-_-7017. These results are consistent with

Landau's analysis of nonlinear absolute stability (Landau
and Lifshitz (1959), p. 104): they predicted that the ampli-
tudes of the equilibrium state will be proportional to the
square root of the deviation of Ra from the critical value.
These results show that the numerical algorithm predicts

both linear and nonlinear effects that are entirely consis-
tent with the accepted behavior of such flows.

In the next series of calculations the case Ra = 16,000 will
be considered in some detail in order to distinguish the

possible stable states associated with the linear eigenfunc-
tions and the role of the boundary conditions in selecting
each state. Two bifurcation curves were identified in fig-
ure 7 as being representative of stable equilibrium states.
The first is a unicellular vortex motion bifurcating from
Ra = 2512 with an amplitude measure of 12.4, and the
second a symmetric mode bifurcating from Ra = 7017
with an amplitude measure of 8.7.

A series of runs at Ra = 16,000 starting from rest with a
small random 1% temperature perturbation on the base of
the cavity showed evidence of both modes. The vortex
modes (either clockwise or counterclockwise rotation)

appeared more than twice as often as the two-vortex con-
figuration. Energy growth curves (on a linear scale) are
shown in figure 8. There seemed to be some indecision
just after the exponential-growth phase as to which mode
would predominate. In fact, this case shows that the

mode 1 solution coincides with the mode 2 growth-rate
path at early times. The final state for both modes is pre-
sented in figure 9, with panels of perturbation tempera-
ture, total temperature, and velocity vectors. These modes
retain remnants of the linear eigenfunctions of figure 6,
but they are distorted by the nonlinear convection term in
the Navier-Stokes equation.

Examination of the transient motion shows that the non-

linear stability curves possess a characteristic energy dip
(cf. fig. 3) where many significant events occur. In this
region the flow first aligns itself into the preferred spatial
pattern (an "immature eigenfunction") in preparation for
exponential growth. The field of velocity vectors is exam-
ined at the six points indicated at the top Offigure 10. The
first three represent the internalization period of the initial
conditions (also called "receptivity"), the fourth the
minimal energy state, and the last two the instability mode
that determines the final state.

A generally uniform updraft in figure 10(a) is the initial
response to the temperature step function; the large shear
generates side-wall vorticity. The velocity terms in the
Navier-Stokes equation convect and diffuse this vorticity,
but the pressure plays a special role. In enforcing continu-
ity, it tends to turnor rotate the flow. The net effect, along
with the no-slip boundary conditions, is to generate two
narrow recirculating eddies as shown in figure 10(b). The
vortices migrate from the wall and align themselves more
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or less symmetrically in the manner of a mode 2 eigen-

function as in figure 10(c). This spatial realignment takes

place in a field of decreasing energy. (All velocities in

fig. 10 are to the same scale.) The flow is now configured
for unstable growth. The small, random, 1% temperature

perturbations on the lower boundary buffet the eddies
about, and a chance push in the fight direction induces

exponential growth. Panel 10(d) shows the point at which
these disturbances first start to affect the flow and pan-

els 10(e) and 10(f) confirm the dominance of the left vor-

tex. This counterclockwise eddy soon extinguishes its

partner and the final state will consist of a single large
vortex.

Some investigations into what we have called the "sym-

metric state" are shown in figures 11 and 12. Unlike

previous examples, the flow is first established as the

symmetric two-vortex mode before disturbances are

imposed. Disturbances are initiated at t = 0.5 and released

at t = 0.6. Three types of temperature distributions along
the bottom wall are chosen:

(a) 0(x) = e Rand{-1,1 } (x - 0.5)

0a) 0(x) =

(c) e(x) = e (x - 0.5)

where Rand{-1,1 } is a random number in the indicated

range. The disturbances (a) have no spatial coherence

while disturbances (b) and (c) are symmetric and antisym-

metric, respectively, with respect to the vertical line of

symmetry x = 0.5. Figure i 1 indicates that random pertur-

bations with peak-to-peak amplitudes as much as 100%

cause the two vortices to react quite violently with one

another but do not change the fundamental modal struc-
ture, which settles down to its initial configuration.

Symmetric disturbances of type 0a) cause violent excur-

sions, but they also fall to upset the basic symmetry.

Case (c) of equation (10), presented in figure 12, shows

that above a critical amplitude the flow becomes asym-
metric and evolves into the stable vortex mode state. In

summary, 1) the symmetric state is stable to symmetric

disturbances of any size, 2) the symmetric state is stable

to small antisymmetric or random disturbances, and 3) the

symmetric state is unstable to larger anfisymmetric
disturbances.

The mode selection process will now be investigated with
the aid of a model second-order nonlinear dynamic sys-

tem. Consider a phase-plane (or state-space) representa-
tion with the kinetic energy U(t) as ordinate and dU/dt as
abscissa. The instantaneous state actually requires an
infinite-dimensional velocity vector, but U will represent
a convenient measure for a model second-order damped
nonlinear oscillator. Finite-amplitude steady flows consist

of discrete limit points on the 13 = 0 axis. At supercritical

(10)

100

8O

.i

4O

2O
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I I I

0 2. .4 .6 .8

Time, t

1.0

Figure 11. Energy time history for random temperature

inputs to base of cavity during time interval 0.5 - 0.6 with

various ampfitudes.
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Figure 12. Energy time history for anti-symmetric

temperature inputs to base of cavity during the time
interval 0.5 - 0.6 with various amplitudes. Ra = 16,000.
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Rayleigh numbers there may be many limit points: singu-

larities possessing domains of attraction to which all solu-

tion paths congregate. Figure 12 shows that there are

attractors at U = 76 and U -- 154 for Ra = 16,000. The

state-space path corresponding to g = 1 is shown in

figure 13 to be attracted from rest to the mode 2 state at A

and then perturbed to a path that encroaches on the

mode 1 domain of attraction. Points A and B along the

path correspond to the imposition and elimination of the

disturbance at t = 0.5 and t = 0.6. The curve beyond

point B is the response of the Boussinesq equations to

initial conditions at B that were vigorous enough to propel

the solution path away from the mode 2 attractor.

The stable state that will be realized depends on the value

of the parameter E; there must be a critical amplitude

depending on e that separates these flows. The particular

path corresponding to this critical value should pass

through a saddle-type singular point in the phase plane.

Numerical experiments using the bisection method identi-

fied critical amplitude bounds in the range

0.9031 < e < 0.9047. State-space trajectories for four

2OO

150

5O

o
-500 o 500 lOOO 15oo

Rateof em,rw, {J(t)

Figure 13. Phase-plane representation for flow evolving
from rest to a mode 2 symmetric state at U = 76 and

perturbed to a mode I state at U = 154 with anti-symmetric

disturbances. Equation 10(c), e = 1.0. The path moves

below an unstable singular point at C.

amplitudes in the vicinity of the critical value are shown

in figure 14. The 1Tajectories pass near a singularity at
point C, representing an unstable equilibrium. The role of

this unstable state is appreciated from the time histories in

figure 15 for E -- 0.90312 and e = 0.9047. The system

responds along a common path after removal of the

perturbation at point B until it encounters the instability at

U = 53.6; from here they evolve to a final state fated by
the disturbance history. A change of 0.17% in E induces a

final state with an energy change of over 200%. A flow

pattern near the unstable equilibrium point is shown in

figure 16. Here the velocities prefer a diagonally sym-

metric pattern with vortices of opposite sense. The pattern

for a sign-reversed flow near the instability point is

similar except that vortices appear at opposite corners

with sign-reversed flow.

The singular points of the trajectories shown in figures 13

and t4 do not line up in the usual stable-unstable-stable

sequence because of the use of the positive-definite quan-

tity U as the characteristic measure. A more conventional

diagram can be recovered if a dependent variable that can

be either positive or negative is selected as the character-

istic measure. Figure 17 shows transient solution paths to
the static attractors associated with the quantity A0 (the

temperature difference across the box at midheight). The

sense of the single vortex solution can be positive or
negative, as revealed by the symmetric location of the

spiral attractors. The origin of this phase diagram repre-

sents both the initial conducting flow and the symmetric
mode 2 state. The boundaries of the basins of attraction

are defined by separatrices; they are approximately indi-

cated by the solid lines, which represent trajectories for

E = :L-0.9047. Representative paths in the two basins of

attraction for positive A0 are shown by dashed lines.

This digression to nonlinear dynamics for a specific dis-

turbance mode and Rayleigh number is presented to illus-

trate how the numerical approach can be used to examine

and interpret parametric trends with a global measure. A

complete analysis of all possible modes, phase-plane

parameters, and flow states is beyond the scope of this

paper.

The examples discussed above for Ra >Racc have a

richer structure than the response for Ra < Racc that
allows only simple rotational-flow solutions. If the

Rayleigh number is greater than about 20,000, fine-scale

secondary instabilities appear and the role of three-

dimensional disturbances and nonlinear oscillatory modes
must be considered ab initio.
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Conclusions

A new primitive-variable finite-difference simulation of

the Boussinesq equations has revealed details of the
initial-flow structure and has traced modes of instability

from inception to the final nonlinear state. The finite-

difference scheme used in these computations differs from

other techniques in the use of matrix-exponential splitting

to separate physical and dimensional processes. This

method allows construction of efficient, low-dispersion

computational molecules as well as relatively coarse

meshes and longer time steps.

As a result of this study, a picture emerges of the response

of the Boussinesq model to imposed disturbances. The ini-

tial response involves a realignment of the velocity field

that is strongly influenced by the incompressibility con-

straint. Once the field attains a small but spatially coher-

ent pattern, strong coupling with other dependent

variables induces a rapid and large-scale change in the

flow energy. Nonlinear effects cause saturation to a steady

flow governed by the magnitude of the externally applied

temperature field. While the linear perturbation equations

can accurately predict the growth rates and eigenfunction

patterns, the nonlinear equations must be analyzed in

detail before the initial internalization process and the

process of final pattern selection can be understood.
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In this study only step-type motions--specifically instan-

taneously applied heating--have been used. Other initial

conditions may have different initial responses, but the

nature of instability growth will not change. In addition,

only two-dimensional flows were considered. Expanding

the parameter space to a third dimension and to other

aspect ratios may invoke other interesting modes. The

Boussinesq model of flow stability couples the dependent

variables in a particular but relatively simple manner.

Other models, especially those governing convective
flows with inflow-outflow boundaries, will have other

modal responses which will be investigated in the future

using the numerical techniques introduced.

Appendix

Natural Convection Algorithm

The algorithm used to simulate the Boussinesq equations

is presented schematically in equation (7). The procedure

is similar to other time-splitting approaches except that

each operator and each coordinate direction is identified

as a separate physical process. It has been difficult to

obtain accurate composite finite-difference formulas for

convection and diffusion. However, simpler algorithms
are obtained by separating the formulas into distinct steps.

In this appendix the computational molecule for each step
is shown in some detail.

The convection algorithm is split into separate x- and

y-sweeps. The system is closed with finite-difference

approximations to radiation conditions; this approach

avoids the question of intermediate boundary conditions.

Consider, for example, a uniform mesh at time t = n%and

points x = (i - 1)h, y = (j - 1)h (1 < i,j < hi) with velocity

denoted by uP. A local Courant number is defined in
14"

terms of the local velocity by cn = unj ¢./h. The algorithm

for updating u at an interior mesh point during an x-sweep

is:

_L(cn- 1)(cn- 2) +,10 2)
12 l-ltJ 6

_-!-(cn + 1)(cn + 2)__1j (AI)12

-6J- (cn - 2)(on + 2)unj

+ _L (cn - 1)(cn - 2)_÷1j12

The boundary algorithms at i -- 1 and i = N arc

(cn l_u n+l-(cn+'" n+1- J Id i)u2j =

-(cn + 1)u_d + (cn - l)t_2j
(A2)

-- n+l +(cn+l_u n+l-(cn- I)UN.1, j J N,j =

(cn + 1)u_. 1d - (cn - 1)u_d

These sweeps convect the dependent variable in x without

specific reference to the boundary conditions. If an arbi-

trary plane wave with wavcnumber k is propagated

through the mesh, equation (A1) is accurate to (kh) 4.

Equation (A2) involves only two mesh points and it is
accurate to (kh) 2. In the commonly used terminology,

these equations arc accurate in space-time to fourth- and

second-order, respectively. This criterion is not a com-
plete representation of the accuracy of the finite-

difference approximation. In actual simulations the

accuracy attainable with a given mesh depends on the

gradients of the computed solution. In any physical

problem a higher accuracy algorithm will always bca

better choice, but it is more difficult to decide whether or

not the computed solution is a more valid physical

representation. The algorithm for v and 0 is exactly the

same as the preceding equations.

The y-sweep is computed in the same manner as equa-

tions (A1) and (A2) except that cn is now defined by

vndz/h with the j index being variable. The notation
(n + 1) does not mean that the solution bears any

resemblance to the actual physical solution at time n + 1;

it only denotes a partial correction as one step toward the

ultimate physical solution.

The vector of dependent variables is now corrected for the
coupling term involving the matrix E in equation (7). This

term, which does not involve any spatial derivatives, is

equivalent to the simple matrix equation bU/"dt + EU = 0.

The updated vector is obtained from a Taylor series in

time with z as the small parameter:

U = U0e-Ex = U0(I + E%+ 1-E. E%2 + ...) (A3)
2

The matrix E is very simple; all powers of E vanish
except for the first. The vertical velocity is updated from

the simple formula

vn+lld= vi_ (1 + E23%) (A4)

Note that this revised velocity does not involve the solu-

tion at neighboring mesh points.

Updated vciocitiesu, v are now available, and the pres-

sure is computed in order that the velocities remain com-

patible with the incompressibility condition. The Poisson

equation for p as discussed in the body of the paper is:
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v2p=  u x+
°P=u,(x=0, x-- 1,0<y< 1) (A5)
3x

_-----= v, (y = 0, y= 1, 0<x < 11
Oy

This two-dimensional elliptic boundary-value problem on

a uniform mesh is solved with available software library

routines. The solution for p is used to update the velocities

from the defining equation

Unew =-'¢0p/_x + Uold
(A6)

Vnew=-'r_/_ + Voia

The last step is a diffusion to the final velocity as deter-

mined from a Crank-Nicolson sweep. In the x-direction:

l dn un+l+ un.+l -_dn uin+llj-_- i-l,j (1 +dn) _d

=.l.dn un.l.j + (1- dn)_d + 2J_dR un+l d (A7)2

where the diffusion number dn ---Prt/h 2 for velocity dif-

fusion and dn= x_/h2- for temperature diffusion. The

formula is exactly the same for y-diffusion. Boundary

conditions based on the no-slip condition for velocity and

either the no-slip or the no-flux condition for temperature
are used.

Each of the tridiagonal equations appearing in these equa-

tions is solved by using variants of the Thomas algorithm.

Although the diffusion equation is diagonally dominant
and causes no solution difficulties, the Thomas algorithm

will fail for equation (AI) if some of the local values of cn

exceed unity. This failure is not due to the algorithm,
which was shown in the cited references to be accurate to

at least cn = 2, but it is caused by a breakdown in diagonal

dominance required by the algorithmic construction. This
breakdown forces the allowable time step to be reduced

somewhat. Other classes of sparse matrix solvers that

might alleviate this restriction are under investigation.
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