NASA PATENT ABSTRACTS BIBLIOGRAPHY

A CONTINUING BIBLIOGRAPHY
SECTION 1 ABSTRACTS
The NASA STI Program ... in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program plays a key part in helping NASA maintain this important role.

The NASA STI Program provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program is also NASA's institutional mechanism for disseminating the results of its research and development activities.

Specialized services that help round out the Program's diverse offerings include creating custom thesauri, translating material to or from 34 foreign languages, building customized databases, organizing and publishing research results ... even providing videos.

For more information about the NASA STI Program, you can:

- **Phone** the NASA Access Help Desk at (301) 621-0390
- **Fax** your question to the NASA Access Help Desk at (301) 621-0134
- **E-mail** your question via the Internet to help@sti.nasa.gov
- **Write** to:

 NASA Access Help Desk
 NASA Center for AeroSpace Information
 800 Elkridge Landing Road
 Linthicum Heights, MD 21090-2934
NASA PATENT ABSTRACTS
BIBLIOGRAPHY

A CONTINUING BIBLIOGRAPHY
SECTION 1 INDEXES
INTRODUCTION

Several thousand inventions result each year from the aeronautical and space research supported by the National Aeronautics and Space Administration. The inventions having important use in government programs or significant commercial potential are usually patented by NASA. These inventions cover practically all fields of technology and include many that have useful and valuable commercial application.

NASA inventions best serve the interests of the United States when their benefits are available to the public. In many instances, the granting of nonexclusive or exclusive licenses for the practice of these inventions may assist in the accomplishment of this objective. This bibliography is published as a service to companies, firms, and individuals seeking new, licensable products for the commercial market.

The NASA Patent Abstracts Bibliography (NASA PAB) is a semiannual NASA publication containing comprehensive abstracts and indexes of NASA-owned inventions covered by U.S. patents and applications for patent. The citations included in NASA PAB were originally published in NASA's Scientific and Technical Aerospace Reports (STAR) and cover STAR announcements made since May 1969.

For the convenience of the user, each issue of NASA PAB has a separately bound Abstract Section (Section 1) and Index Section (Section 2). Although each Abstract Section covers only the indicated six-month period, the Index Section is cumulative covering all NASA-owned inventions announced in STAR since 1969. Thus a complete set of NASA PAB would consist of the Abstract Sections of Issue 04 (January 1974) and Issue 12 (January 1978) and the Abstract Section for all subsequent issues and the Index Section for the most recent issue.

The 137 citations published in this issue of the Abstract Section cover the period January 1994 through June 1994. The Index Section references over 5600 citations covering the period May 1969 through June 1994.

ABSTRACT SECTION (SECTION 1)

This PAB issue includes 10 major subject divisions separated into 76 specific categories and one general category/division. (See Table of Contents for the scope note of each category, under which are grouped appropriate NASA inventions.) This scheme was devised in 1975 and revised in 1987 in lieu of the 34 category divisions which were utilized in PAB supplements (01) through (06) covering STAR abstracts from May 1969 through January 1974. Each entry in the Abstract Section consists of a STAR citation accompanied by an abstract and, when appropriate, a key illustration taken from the patent or application for patent. Entries are arranged by subject category in order of the ascending NASA Accession Number originally assigned for STAR to the invention. The range of NASA Accession Numbers within each issue is printed on the inside back cover.

Abstract Citation Data Elements: Each of the abstract citations has several data elements useful for identification and indexing purposes, as follows:

NASA Accession Number
NASA Case Number
Inventor's Name
Title of Invention
U.S. Patent Application Serial Number
U.S. Patent Number (for issued patents only)
U.S. Patent Office Classification Number(s)
(for issued patents only)

These data elements are identified in the Typical Citation and Abstract and in the indexes.
INDEX SECTION (SECTION 2)

The Index Section is divided into five indexes. These indexes are cross-indexed and are used to locate a single invention or groups of inventions.

Subject Index: Lists all inventions according to appropriate alphabetized technical term and indicates the related NASA Case Number, the Subject Category Number, and the Accession Number.

Inventor Index: Lists all inventions according to alphabetized names of inventors and indicates the related NASA Case Number, the Subject Category Number, and the Accession Number.

Source Index: Lists all inventions according to alphabetized source of invention (i.e., name of contractor or government installation where invention was made) and indicates the related NASA Case Number, the Subject Category Number, and the Accession Number.

Number Index: Lists inventions in order of ascending (1) NASA Case Number, (2) U.S. Patent Application Serial number, (3) U.S. Patent Classification Number, and (4) U.S. Patent Number and indicates the related Subject Category Number and the Accession Number.

Accession Number Index: Lists all inventions in order of ascending Accession Number and indicates the related Subject Category Number, the NASA Case Number, the U.S. Patent Application Serial Number, the U.S.Patent Classification Number, and the U.S. Patent Number.

HOW TO USE THIS PUBLICATION TO IDENTIFY NASA INVENTIONS

To identify one or more NASA inventions within a specific technical field or subject, several techniques are possible with the flexibility incorporated into the *NASA PAB*.

1. **Using Subject Category:** To identify all NASA inventions in any one of the subject categories in this issue of *NASA PAB*, select the desired Subject Category in the Abstract Section (Section 1) and find the inventions abstracted thereunder.

2. **Using Subject Index:** To identify all NASA inventions listed under a desired technical subject index term, (A) turn to the cumulative Subject Index in the Index Section and find the invention(s) listed under the desired technical subject term. (B) Note the indicated Accession Number and the Subject Category Number. (C) Using the indicated Accession Number, turn to the inside front cover of the Index Section to determine which issue of the Abstract Section includes the Accession Number desired. (D) To find the abstract of the particular invention in the issue of the Abstract Section selected, (1) use the Subject Category Number to locate the Subject Category and (2) use the Accession Number to locate the desired invention within the Subject Category listing.

3. **Using Patent Classification Index:** To identify all inventions covered by issued NASA patents (not including applications for patent) within a desired Patent Classification, (A) turn to the Patent Classification Number in the Number Index of Section 2 and find the associated invention(s), and (B) follow the instructions outlined in (2)(B), and (D) above.
TABLE OF CONTENTS
Section 1 • Abstracts

AERONAUTICS For related information see also Astronautics.

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>AERONAUTICS (GENERAL)</td>
<td>N.A.</td>
</tr>
<tr>
<td>02</td>
<td>AERODYNAMICS</td>
<td>1 Includes aerodynamics of bodies, combinations, wings, rotors, and control surfaces; and internal flow in ducts and turbomachinery. For related information see also 34 Fluid Mechanics and Heat Transfer.</td>
</tr>
<tr>
<td>03</td>
<td>AIR TRANSPORTATION AND SAFETY</td>
<td>N.A. Includes passenger and cargo air transport operations; and aircraft accidents. For related information see also 16 Space Transportation and 85 Urban Technology and Transportation.</td>
</tr>
<tr>
<td>04</td>
<td>AIRCRAFT COMMUNICATIONS AND NAVIGATION</td>
<td>N.A. Includes digital and voice communication with aircraft; air navigation systems (satellite and ground based); and air traffic control. For related information see also 17 Space Communications, Spacecraft Communications, Command and Tracking and 32 Communications and Radar.</td>
</tr>
<tr>
<td>05</td>
<td>AIRCRAFT DESIGN, TESTING AND PERFORMANCE</td>
<td>N.A. Includes aircraft simulation technology. For related information see also 18 Spacecraft Design, Testing and Performance and 39 Structural Mechanics. For land transportation vehicles see 85 Urban Technology and Transportation.</td>
</tr>
<tr>
<td>06</td>
<td>AIRCRAFT INSTRUMENTATION</td>
<td>N.A. Includes cockpit and cabin display devices; and flight instruments. For related information see also 19 Spacecraft Instrumentation and 35 Instrumentation and Photography.</td>
</tr>
<tr>
<td>07</td>
<td>AIRCRAFT PROPULSION AND POWER</td>
<td>N.A. Includes prime propulsion systems and systems components, e.g., gas turbine engines and compressors; and onboard auxiliary power plants for aircraft. For related information see also 20 Spacecraft Propulsion and Power, 28 Propellants and Fuels, and 44 Energy Production and Conversion.</td>
</tr>
<tr>
<td>08</td>
<td>AIRCRAFT STABILITY AND CONTROL</td>
<td>2 Includes aircraft handling qualities; piloting; flight controls; and autopilots. For related information see also 05 Aircraft Design, Testing and Performance.</td>
</tr>
<tr>
<td>09</td>
<td>RESEARCH AND SUPPORT FACILITIES (AIR)</td>
<td>N.A. Includes airports, hangars and runways; aircraft repair and overhaul facilities; wind tunnels; shock tubes; and aircraft engine test stands. For related information see also 14 Ground Support Systems and Facilities (Space).</td>
</tr>
<tr>
<td>12</td>
<td>ASTRONAUTICS (GENERAL)</td>
<td>N.A. For extraterrestrial exploration see 91 Lunar and Planetary Exploration.</td>
</tr>
<tr>
<td>13</td>
<td>ASTRODYNAMICS</td>
<td>N.A. Includes powered and free-flight trajectories; and orbital and launching dynamics.</td>
</tr>
<tr>
<td>14</td>
<td>GROUND SUPPORT SYSTEMS AND FACILITIES (SPACE)</td>
<td>3 Includes launch complexes, research and production facilities; ground support equipment, e.g., mobile transporters; and simulators. For related information see also 09 Research and Support Facilities (Air).</td>
</tr>
<tr>
<td>15</td>
<td>LAUNCH VEHICLES AND SPACE VEHICLES</td>
<td>N.A. Includes boosters; operating problems of launch/space vehicle systems; and reusable vehicles. For related information see also 20 Spacecraft Propulsion and Power.</td>
</tr>
<tr>
<td>16</td>
<td>SPACE TRANSPORTATION</td>
<td>3 Includes passenger and cargo space transportation, e.g., shuttle operations; and space rescue techniques. For related information see also 03 Air Transportation and Safety and 18 Spacecraft Design, Testing and Performance. For space suits see 54 Man/System Technology and Life Support.</td>
</tr>
<tr>
<td>17</td>
<td>SPACE COMMUNICATIONS, SPACECRAFT COMMUNICATIONS, COMMAND AND TRACKING</td>
<td>N.A. Includes telemetry, space communications networks; astronavigation and guidance; and radio blackout. For related information see also 04 Aircraft Communications and Navigation and 32 Communications and Radar.</td>
</tr>
</tbody>
</table>

N.A. — no abstracts were assigned to this category for this issue.
18 SPACECRAFT DESIGN, TESTING AND PERFORMANCE ... 4
Includes satellites; space platforms; space stations; spacecraft systems and components such as thermal and environmental controls; and attitude controls. For life support systems see 54 Man/System Technology and Life Support. For related information see also 05 Aircraft Design, Testing and Performance, 39 Structural Mechanics, and 16 Space Transportation.

19 SPACECRAFT INSTRUMENTATION ... N.A.
For related information see also 06 Aircraft Instrumentation and 35 Instrumentation and Photography.

20 SPACECRAFT PROPULSION AND POWER ... 5
Includes main propulsion systems and components, e.g., rocket engines; and spacecraft auxiliary power sources. For related information see also 07 Aircraft Propulsion and Power, 28 Propellants and Fuels, 44 Energy Production and Conversion, and 15 Launch Vehicles and Space Vehicles.

CHEMISTRY AND MATERIALS

23 CHEMISTRY AND MATERIALS (GENERAL) .. 7

24 COMPOSITE MATERIALS ... 7
Includes physical, chemical, and mechanical properties of laminates and other composite materials. For ceramic materials see 27 Nonmetallic Materials.

25 INORGANIC AND PHYSICAL CHEMISTRY ... N.A.
Includes chemical analysis, e.g., chromatography; combustion theory; electrochemistry; and photochemistry. For related information see also 77 Thermodynamics and Statistical Physics.

26 METALLIC MATERIALS ... N.A.
Includes physical, chemical, and mechanical properties of metals, e.g., corrosion; and metallurgy.

27 NONMETALLIC MATERIALS .. 9
Includes physical, chemical, and mechanical properties of plastics, elastomers, lubricants, polymers, textiles, adhesives, and ceramic materials. For composite materials see 24 Composite Materials.

28 PROPELLANTS AND FUELS ... N.A.
Includes rocket propellants, igniters and oxidizers; their storage and handling procedures; and aircraft fuels. For related information see also 07 Aircraft Propulsion and Power, 20 Spacecraft Propulsion and Power, and 44 Energy Production and Conversion.

29 MATERIALS PROCESSING .. N.A.
Includes space-based development of products and processes for commercial application. For biological materials see 55 Space Biology.

ENGINEERING For related information see also Physics.

31 ENGINEERING (GENERAL) .. 13
Includes vacuum technology; control engineering; display engineering; cryogenics; and fire prevention.

32 COMMUNICATIONS AND RADAR ... 13
Includes radar; land and global communications; communications theory; and optical communications. For related information see also 04 Aircraft Communications and Navigation and 17 Space Communications, Spacecraft Communications, Command and Tracking. For search and rescue see 03 Air Transportation and Safety and 16 Space Transportation.

33 ELECTRONICS AND ELECTRICAL ENGINEERING ... 14
Includes test equipment and maintainability; components, e.g., tunnel diodes and transistors; microminiaturization; and integrated circuitry. For related information see also 60 Computer Operations and Hardware and 76 Solid-State Physics.

34 FLUID MECHANICS AND HEAT TRANSFER ... 18
Includes boundary layers; hydrodynamics; fluidics; mass transfer and ablation cooling. For related information see also 02 Aerodynamics and 77 Thermodynamics and Statistical Physics.

35 INSTRUMENTATION AND PHOTOGRAPHY .. 21
Includes remote sensors; measuring instruments and gauges; detectors; cameras and photographic supplies; and holography. For aerial photography see 43 Earth Resources and Remote Sensing. For related information see also 06 Aircraft Instrumentation and 19 Spacecraft Instrumentation.

36 LASERS AND MASERS .. 23
Includes parametric amplifiers. For related information see also 76 Solid-State Physics.
<table>
<thead>
<tr>
<th>Code</th>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>MECHANICAL ENGINEERING</td>
<td>Includes auxiliary systems (nonpower); machine elements and processes; and mechanical equipment.</td>
</tr>
<tr>
<td>38</td>
<td>QUALITY ASSURANCE AND RELIABILITY</td>
<td>Includes product sampling procedures and techniques; and quality control.</td>
</tr>
<tr>
<td>39</td>
<td>STRUCTURAL MECHANICS</td>
<td>Includes structural element design and weight analysis; fatigue; and thermal stress. For applications see 05 Aircraft Design, Testing and Performance and 18 Spacecraft Design, Testing and Performance.</td>
</tr>
<tr>
<td></td>
<td>GEOSCIENCES</td>
<td>For related information see also Space Sciences.</td>
</tr>
<tr>
<td>42</td>
<td>GEOSCIENCES (GENERAL)</td>
<td>N.A.</td>
</tr>
<tr>
<td>43</td>
<td>EARTH RESOURCES AND REMOTE SENSING</td>
<td>Includes remote sensing of earth resources by aircraft and spacecraft; photogrammetry; and aerial photography. For instrumentation see 35 Instrumentation and Photography.</td>
</tr>
<tr>
<td>44</td>
<td>ENERGY PRODUCTION AND CONVERSION</td>
<td>Includes specific energy conversion systems, e.g., fuel cells; global sources of energy; geophysical conversion; and windpower. For related information see also 07 Aircraft Propulsion and Power, 20 Spacecraft Propulsion and Power, and 28 Propellants and Fuels.</td>
</tr>
<tr>
<td>45</td>
<td>ENVIRONMENT POLLUTION</td>
<td>N.A.</td>
</tr>
<tr>
<td>46</td>
<td>GEOPHYSICS</td>
<td>N.A.</td>
</tr>
<tr>
<td>47</td>
<td>METEOROLOGY AND CLIMATOLOGY</td>
<td>N.A.</td>
</tr>
<tr>
<td>48</td>
<td>OCEANOGRAPHY</td>
<td>N.A.</td>
</tr>
<tr>
<td></td>
<td>LIFE SCIENCES</td>
<td>Includes atmospheric, noise, thermal, and water pollution.</td>
</tr>
<tr>
<td>51</td>
<td>LIFE SCIENCES (GENERAL)</td>
<td>34</td>
</tr>
<tr>
<td>52</td>
<td>AEROSPACE MEDICINE</td>
<td>Includes physiological factors; biological effects of radiation; and effects of weightlessness on man and animals.</td>
</tr>
<tr>
<td>53</td>
<td>BEHAVIORAL SCIENCES</td>
<td>N.A.</td>
</tr>
<tr>
<td>54</td>
<td>MAN/SYSTEM TECHNOLOGY AND LIFE SUPPORT</td>
<td>N.A.</td>
</tr>
<tr>
<td></td>
<td>SPACE BIOLOGY</td>
<td>Includes exobiology; planetary biology; and extraterrestrial life.</td>
</tr>
<tr>
<td>59</td>
<td>MATHEMATICAL AND COMPUTER SCIENCES</td>
<td>N.A.</td>
</tr>
<tr>
<td>60</td>
<td>COMPUTER OPERATIONS AND HARDWARE</td>
<td>N.A.</td>
</tr>
<tr>
<td>61</td>
<td>COMPUTER PROGRAMMING AND SOFTWARE</td>
<td>N.A.</td>
</tr>
<tr>
<td>62</td>
<td>COMPUTER SYSTEMS</td>
<td>N.A.</td>
</tr>
</tbody>
</table>
63 CYBERNETICS
Includes feedback and control theory, artificial intelligence, robotics and expert systems. For related information see also 54 Man/System Technology and Life Support.

64 NUMERICAL ANALYSIS
Includes iteration, difference equations, and numerical approximation.

65 STATISTICS AND PROBABILITY
Includes data sampling and smoothing; Monte Carlo method; and stochastic processes.

66 SYSTEMS ANALYSIS
Includes mathematical modeling; network analysis; and operations research.

67 THEORETICAL MATHEMATICS
Includes topology and number theory.

PHYSICS For related information see also Engineering.

70 PHYSICS (GENERAL)
For precision time and time interval (PTTI) see 35 Instrumentation and Photography; for geophysics, astrophysics or solar physics see 46 Geophysics, 90 Astrophysics, or 92 Solar Physics.

71 ACOUSTICS
Includes sound generation, transmission, and attenuation. For noise pollution see 45 Environment Pollution.

72 ATOMIC AND MOLECULAR PHYSICS
Includes atomic structure, electron properties, and molecular spectra.

73 NUCLEAR AND HIGH-ENERGY PHYSICS
Includes elementary and nuclear particles; and reactor theory. For space radiation see 93 Space Radiation.

74 OPTICS
Includes light phenomena and optical devices. For lasers see 36 Lasers and Masers.

75 PLASMA PHYSICS
Includes magnetohydrodynamics and plasma fusion. For ionospheric plasmas see 46 Geophysics. For space plasmas see 90 Astrophysics.

76 SOLID-STATE PHYSICS
Includes superconductivity. For related information see also 33 Electronics and Electrical Engineering and 36 Lasers and Masers.

77 THERMODYNAMICS AND STATISTICAL PHYSICS
Includes quantum mechanics; theoretical physics; and Bose and Fermi statistics. For related information see also 25 Inorganic and Physical Chemistry and 34 Fluid Mechanics and Heat Transfer.

SOCIAL SCIENCES

80 SOCIAL SCIENCES (GENERAL)
Includes educational matters.

81 ADMINISTRATION AND MANAGEMENT
Includes management planning and research.

82 DOCUMENTATION AND INFORMATION SCIENCE
Includes information management; information storage and retrieval technology; technical writing; graphic arts; and micrography. For computer documentation see 61 Computer Programming and Software.

83 ECONOMICS AND COST ANALYSIS
Includes cost effectiveness studies.

84 LAW, POLITICAL SCIENCE AND SPACE POLICY
Includes NASA appropriation hearings; aviation law; space law and policy; international law; international cooperation; and patent policy.

85 URBAN TECHNOLOGY AND TRANSPORTATION
Includes applications of space technology to urban problems; technology transfer; technology assessment; and surface and mass transportation. For related information see 03 Air Transportation and Safety, 16 Space Transportation, and 44 Energy Production and Conversion.
SPACE SCIENCES For related information see also Geosciences.

88 SPACE SCIENCES (GENERAL) ... N.A.

89 ASTRONOMY .. 47
Includes radio, gamma-ray, and infrared astronomy; and astrometry.

90 ASTROPHYSICS .. N.A.
Includes cosmology; celestial mechanics; space plasmas; and interstellar and interplanetary gases and dust.
For related information see also 75 Plasma Physics.

91 LUNAR AND PLANETARY EXPLORATION N.A.
Includes planetology; and manned and unmanned flights. For spacecraft design or space stations see 18

92 SOLAR PHYSICS .. N.A.
Includes solar activity, solar flares, solar radiation and sunspots. For related information see 93 Space
Radiation.

93 SPACE RADIATION ... N.A.
Includes cosmic radiation; and inner and outer earth's radiation belts. For biological effects of radiation see 52
Aerospace Medicine. For theory see 73 Nuclear and High-Energy Physics.

GENERAL

Includes aeronautical, astronautical, and space science related histories, biographies, and pertinent reports
too broad for categorization; histories or broad overviews of NASA programs.

99 GENERAL .. N.A.

Section 2 • Indexes

SUBJECT INDEX
INVENTOR INDEX
SOURCE INDEX
CONTRACT NUMBER INDEX
NUMBER INDEX
ACCESSION NUMBER INDEX
A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO$_3$:H$_2$O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

NASA
AERODYNAMICS

Includes aerodynamics of bodies, combinations, wings, rotors, and control surfaces; and internal flow in ducts and turbomachinery.

METHOD OF REDUCING DRAG IN AERODYNAMIC SYSTEMS

Patent

In the present method, boundary layer thickening is combined with laminar flow control to reduce drag. An aerodynamic body is accelerated enabling a ram turbine on the body to receive air at velocity \(V_0 \). The discharge air is directed over an aft portion of the aerodynamic body producing boundary layer thickening. The ram turbine also drives a compressor by applying torque to a shaft connected between the ram turbine and the compressor. The compressor sucks in lower boundary layer air through inlets in the shell of the aircraft producing laminar flow control and reducing drag. The discharge from the compressor is expanded in a nozzle to produce thrust.

UNDERWING COMPRESSION VORTEX ATTENUATION

Patent Application

A parachute having an improved vent line stacking wherein the parachute is provided with a canopy having a central vent opening and a vent band secured to the canopy around the periphery of the vent opening, with a plurality of vent lines each lying on a diameter of the vent opening and having its ends secured to the vent band on opposite sides of the vent opening is described. The vent lines are sewed to the vent band in an order such that the end of a first vent line is sewed to the vent band at a starting point with the end of a second vent band then being sewed to the vent band adjacent to and counterclockwise from the first band. A third vent band is sewed to the vent band adjacent to and clockwise from the first band, with a fourth vent band being sewed to the vent band adjacent to and counterclockwise from the second vent band. It can be seen that, if the vent lines are numbered in the order of being sewed to the vent band, the odd numbered vent lines will run consecutively in a clockwise direction and the even numbered lines will run consecutively in a counterclockwise direction from the starting point. With this order of assembly, each and every vent line will be separated from adjacent vent lines by no more than one vent line in the center of the vent opening where the vent lines cross.
AIRCRAFT STABILITY AND CONTROL

Includes aircraft handling qualities; piloting; flight controls; and auto pilots.

APPARATUS AND METHOD FOR IMPROVING SPIN RECOVERY ON AIRCRAFT Patent

Previous research on airplane spinning and recovery has shown that at potential spin conditions (high angles of attack with rotation) the horizontal tail, depending upon its location, can create a wake about the vertical tail and rudder which can adversely affect airplane spin and recovery characteristics. Many methods of altering the tail geometry to modify these interference effects were investigated for improving airplane spin and recovery characteristics. Examples of changes include relocation of the horizontal tail, increasing control surface travel, and use of a 'flip tail' that can be rotated to extreme angles for spin recovery. A device is provided which improves the spin recovery characteristics of aircraft which involves attaching the horizontal tail of the aircraft to the aircraft such that a gap remains between the root end of each horizontal tail section and the fuselage or vertical tail of the aircraft. The gaps measure between about 15 and 30 percent of the tail semispan. The gaps may be covered by shields which are released should a spin occur.

RESEARCH AND SUPPORT FACILITIES (AIR)

Includes airports, hangars and runways; aircraft repair and overhaul facilities; wind tunnels; shock tubes; and aircraft engine test stands.

DEPLOYABLE VIDEO CONFERENCE TABLE Patent

A deployable table is presented. The table is stowed in and deployed from a storage compartment based upon a non-self rigidizing, 4-hinge, arch support structure that folds upon itself to stow and that expands to deploy. This assembly includes the following: first and second primary pivot hinges placed at the opposite ends of the storage compartment; first and second lateral frame members with proximal ends connected to the first and second pivot hinges; a medial frame member offset from and pivotally connected to distal ends of the first and second members through third and fourth medial pivot hinges; and left-side, right-side, and middle trays connected respectively to...
the first, second, and third frame members and being foldable into and out of the storage compartment by articulation of the first, second, third, and fourth joints. At least one of the third and fourth joints are locked to set the first, second, and third frame members in a desired angular orientation with respect to each other.

Official Gazette of the U.S. Patent and Trademark Office

System connected to the supporting structure. The supporting structure is provided with bearing assemblies which are adapted to engage a supporting surface for permitting freedom of movement of the supporting structure over the supporting structure in any direction.

Official Gazette of the U.S. Patent and Trademark Office

Apparatus for simulating an exoatmospheric structure, such as a spin stabilized satellite, in an environment subject to gravitational forces is presented. The apparatus includes a floating structure which is pivotally and rotationally supported upon a gimbaled bearing structure positioned adjacent to the center of mass of the floating structure and suspended upon a support structure. The floating structure is translatable in either vertical direction relative to the supporting structure upon a vertically movable suspension system.

Official Gazette of the U.S. Patent and Trademark Office

A retainer member suitable for retaining a gap filler placed in gaps between adjacent tile members is presented. One edge of the retainer member may be attached to the gap filler and another edge may be provided with a plurality of tab members which in an intermediate position do not interfere with placement or removal of the gap filler between tile members. The retainer member may be fabricated from a shape memory alloy which when heated to a specified memory temperature will thermally activate the tab mem-

Official Gazette of the U.S. Patent and Trademark Office

16 SPACE TRANSPORTATION

Includes passenger and cargo space transportation, e.g., shuttle operations, and space rescue techniques.

N94-20304* National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX.

THERMALLY ACTIVATED RETAINER MEANS UTILIZING SHAPE MEMORY ALLOY Patent

Apparatus for simulating an exoatmospheric structure, such as a spin stabilized satellite, in an environment subject to gravitational forces is presented. The apparatus includes a floating structure which is pivotally and rotationally supported upon a gimbaled bearing structure positioned adjacent to the center of mass of the floating structure and suspended upon a support structure. The floating structure is translatable in either vertical direction relative to the supporting structure upon a vertically movable suspension system.

Official Gazette of the U.S. Patent and Trademark Office

A retainer member suitable for retaining a gap filler placed in gaps between adjacent tile members is presented. One edge of the retainer member may be attached to the gap filler and another edge may be provided with a plurality of tab members which in an intermediate position do not interfere with placement or removal of the gap filler between tile members. The retainer member may be fabricated from a shape memory alloy which when heated to a specified memory temperature will thermally activate the tab mem-

Official Gazette of the U.S. Patent and Trademark Office

14 GROUND SUPPORT SYSTEMS AND FACILITIES (SPACE)

Includes launch complexes, research and production facilities; ground support equipment, e.g., mobile transporters; and simulators.

N94-20339* National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX.

APPARATUS FOR SIMULATING AN EXOATMOSPHERIC STRUCTURE Patent

Apparatus for simulating an exoatmospheric structure, such as a spin stabilized satellite, in an environment subject to gravitational forces is presented. The apparatus includes a floating structure which is pivotally and rotationally supported upon a gimbaled bearing structure positioned adjacent to the center of mass of the floating structure and suspended upon a support structure. The floating structure is translatable in either vertical direction relative to the supporting structure upon a vertically movable suspension system.

Official Gazette of the U.S. Patent and Trademark Office

16 SPACE TRANSPORTATION

Includes passenger and cargo space transportation, e.g., shuttle operations, and space rescue techniques.

N94-20304* National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX.

THERMALLY ACTIVATED RETAINER MEANS UTILIZING SHAPE MEMORY ALLOY Patent

Apparatus for simulating an exoatmospheric structure, such as a spin stabilized satellite, in an environment subject to gravitational forces is presented. The apparatus includes a floating structure which is pivotally and rotationally supported upon a gimbaled bearing structure positioned adjacent to the center of mass of the floating structure and suspended upon a support structure. The floating structure is translatable in either vertical direction relative to the supporting structure upon a vertically movable suspension system.

Official Gazette of the U.S. Patent and Trademark Office

A retainer member suitable for retaining a gap filler placed in gaps between adjacent tile members is presented. One edge of the retainer member may be attached to the gap filler and another edge may be provided with a plurality of tab members which in an intermediate position do not interfere with placement or removal of the gap filler between tile members. The retainer member may be fabricated from a shape memory alloy which when heated to a specified memory temperature will thermally activate the tab mem-

Official Gazette of the U.S. Patent and Trademark Office

14 GROUND SUPPORT SYSTEMS AND FACILITIES (SPACE)

Includes launch complexes, research and production facilities; ground support equipment, e.g., mobile transporters; and simulators.

N94-20339* National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX.

APPARATUS FOR SIMULATING AN EXOATMOSPHERIC STRUCTURE Patent

Apparatus for simulating an exoatmospheric structure, such as a spin stabilized satellite, in an environment subject to gravitational forces is presented. The apparatus includes a floating structure which is pivotally and rotationally supported upon a gimbaled bearing structure positioned adjacent to the center of mass of the floating structure and suspended upon a support structure. The floating structure is translatable in either vertical direction relative to the supporting structure upon a vertically movable suspension system.

Official Gazette of the U.S. Patent and Trademark Office

A retainer member suitable for retaining a gap filler placed in gaps between adjacent tile members is presented. One edge of the retainer member may be attached to the gap filler and another edge may be provided with a plurality of tab members which in an intermediate position do not interfere with placement or removal of the gap filler between tile members. The retainer member may be fabricated from a shape memory alloy which when heated to a specified memory temperature will thermally activate the tab mem-

Official Gazette of the U.S. Patent and Trademark Office
bers to predetermined memory positions engaging the tile members to retain the gap filler in the gap. This invention has particular application to the thermal tiles on space vehicles such as the Space Shuttle Orbiter.

Official Gazette of the U.S. Patent and Trademark Office

APPARATUS AND METHOD FOR PRODUCING AN ARTIFICIAL GRAVITATIONAL FIELD Patent Application

An apparatus and method is disclosed for producing an artificial gravitational field in a spacecraft by rotating the same around a spin axis. The centrifugal force thereby created acts as an artificial gravitational force. The apparatus includes an engine which produces a drive force offset from the spin axis to drive the spacecraft towards a destination. The engine is also used as a counterbalance for a crew cabin for rotation of the spacecraft. Mass of the spacecraft, which may include either the engine or crew cabin, is shifted directed through the center of mass of the craft. This off-center centrifugal force creates a moment that counterbalances the moment produced by the off-center drive force to eliminate unwanted rotation which would otherwise be precipitated by the offset drive force.

NASA

N94-20367* National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX.

SPACE STATION TRASH REMOVAL SYSTEM Patent

A trash removal system for space stations is described. The system is comprised of a disposable trash bag member and an attached, compacted large, lightweight inflatable balloon element. When the trash bag member is filled, the astronaut places the bag member into space through an airlock. Once in the vacuum of space, the balloon element inflates. Due to the large cross-sectional area of the balloon element relative to its mass, the combined balloon element and trash bag member are slowed by atmospheric drag to a much greater extent than the Space Station's. The balloon element and bag member lose altitude and re-enter the atmosphere, and the elements and contents are destroyed by aerodynamic heating. The novelty of this system is in the unique method of using the vacuum of space and aerodynamic heating to dispose of waste material with a minimum of increase in orbital debris.

Official Gazette of the U.S. Patent and Trademark Office
An apparatus and method is disclosed for decelerating and absorbing impact of a re-entry vehicle suitable for payloads that are relatively light as well as payloads weighing several tons or more. The apparatus includes four inflatable legs displaced equidistantly from each other around a capsule or housing which contains a payload. The legs are inflated at a designated altitude after entering Earth's atmosphere to slow the descent of the re-entry vehicle. Connected between each of the four legs are drag inducing surfaces that deploy as the legs inflate. The drag inducing surfaces are triangularly shaped with one such surface being connected between each pair of legs for a total of six drag inducing surfaces. The legs have drag inducing outer surfaces which act to slow the descent of the re-entry vehicle.

A rigid patch body for placing over a damaged portion (hole) of an external wall of a pressurized vessel, such as a space vehicle or a habitat, is discussed. The rigid patch body allows an astronaut to make temporary repairs to the pressurized vessel from the exterior of the vessel, which enables more permanent repairs to be made from the interior of the vessel. The pressure wall patch of the present invention includes a floor surrounded by four side members. Each side member includes a threaded screw for anchoring the patch body to the external wall of the pressurized vessel and a recess in its lower surface for supporting an inflatable bladder for surrounding the damaged portion (hole) of the external wall to seal the area surrounding the damaged portion. This allows the vessel to be repressurized. The floor of the rigid patch body supports a source of gas that is connected to the gas supply valve and a gas supply gauge in communication with the gas supply valve and the inflatable bladder.
A method of forming a shock-free supersonic elliptic nozzle, in which the nozzle to be designed is divided into three sections, a circular-to-elliptic section which begins at a circular nozzle inlet, an elliptic subsonic section downstream from the circular-to-elliptic section, and a supersonic section downstream from the elliptic subsonic section is described. The maximum and minimum radii for each axial point in the circular-to-elliptic section and the elliptic subsonic section are then separately determined, the maximum and minimum radii for the widest part of an elliptic cross-section and the narrowest part of the elliptic cross-section, respectively. The maximum and minimum radii for each axial point in the supersonic section are determined based on the Method of Characteristics. Then, each of the three sections are based on the maximum and minimum radii for each axial point in the section. The resulting nozzle is acoustically superior.

FIG. 6

- Weave Carbon Fiber into Sheets
- Apply Resin to the Sheets
- Arrange Sheets into a Laminated Panel with Desired Weave Alignment
- Cure Laminated Panel at 175°C for Three Hours
- Carbonize the Resin at 500°C–1000°C for Two Hours
- Infiltrate the Panel with Hydrocarbon Gas to Deposit Carbon Matrix
- Graphitize the Panel to Align Crystals at 2000°C–3000°C for Two–Three Hours
- Place Holes in the Panel to Form a Grid

FIG. 1(a)

FIG. 1(b)

N94-20370 National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, AL.

LIQUID FUEL INJECTION ELEMENTS FOR ROCKET ENGINES Patent

Thrust chambers for liquid propellant rocket engines include three principal components. One of these components is an injector which contains a plurality of injection elements to meter the flow of propellants at a predetermined rate, and fuel to oxidizer mixture ratio, to introduce the mixture into the combustion chamber, and to cause them to be atomized within the combustion chamber so that even combustion takes place. Evolving from these injectors are tube injectors. These tube injectors have injection elements for injecting the oxidizer into the combustion chamber. The oxidizer and fuel must be metered at predetermined rates and mixture ratios in order to mix them within the combustion chamber so that combustion takes place smoothly and completely. Hence tube injectors are subject to improvement. An injection element for a liquid propellant...
rocket engine of the bipropellant type is provided which includes tangential fuel metering orifices, and a plurality of oxidizer tube injection elements whose injection tubes are also provided with tangential oxidizer entry slots and internal reed valves.

OFFICIAL GAZETTE OF THE U.S. PATENT AND TRADEMARK OFFICE

SEGMENTED ION THRUSTER Patent

Apparatus and methods for large-area, high-power ion engines comprise dividing a single engine into a combination of smaller discharge chambers (or segments) configured to operate as a single large-area engine. This segmented ion thruster (SIT) approach enables the development of 100-kW class argon ion engines for operation at a specific impulse of 10,000 s. A combination of six 30-cm diameter ion chambers operating as a single engine can process over 100 kW. Such a segmented ion engine can be operated from a single power processor unit.

OFFICIAL GAZETTE OF THE U.S. PATENT AND TRADEMARK OFFICE

POLYBENZOXAZOLE VIA AROMATIC NUCLEOPHILIC DISPLACEMENT Patent

Polybenzoxazoles (PBO) are heterocyclic macromolecules which were first synthesized in a two-step process by the initial formation of aromatic diacid chlorides with bis(o-aminophenol) through solution condensation of aromatic diacid chlorides with bis(o-aminophenol) followed by thermal cyclodehydration. Since then several methods were utilized in their synthesis. The most common synthetic method for PBO involves a polycondensation of bis(o-aminophenol) with aromatic diacid diphenyl esters. Another preparative route involves the solution polycondensation of the hydrochloride salts of bis(o-aminopheno) with aromatic diacids in polyphosphoric acid. Another synthetic method involves the initial formation of poly(o-hydroxy amide)s from silylated bis(o-aminophenol) with aromatic diacid chlorides followed by thermal cyclodehydration to PBO. A recent preparative route involves the reaction of aromatic bisphenols with bis(4-fluorophenyl) benzoxazoles by the displacement reaction to form PBO. The novelty of the present invention is that high molecular weight PBO of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.

OFFICIAL GAZETTE OF THE U.S. PATENT AND TRADEMARK OFFICE

METHOD AND APPARATUS FOR NON-DESTRUCTIVE EVALUATION OF COMPOSITE MATERIALS WITH CLOTH SURFACE IMPRESSIONS Patent Application

A method and related apparatus for non-destructive evaluation of composite materials by determination of the quantity known as Integrated Polar Backscatter, which avoids errors caused by surface texture left by cloth impressions by identifying frequency

OFFICIAL GAZETTE OF THE U.S. PATENT AND TRADEMARK OFFICE

24 COMPOSITE MATERIALS

Includes physical, chemical, and mechanical properties of laminates and other composite materials.

N94-15576# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

METHOD AND APPARATUS FOR NON-DESTRUCTIVE EVALUATION OF COMPOSITE MATERIALS WITH CLOTH SURFACE IMPRESSIONS Patent Application

A method and related apparatus for non-destructive evaluation of composite materials by determination of the quantity known as Integrated Polar Backscatter, which avoids errors caused by surface texture left by cloth impressions by identifying frequency...
ranges associated with peaks in a power spectrum for the backscattered signal, and removing such frequency ranges from the calculation of Integrated Polar Backscatter for all scan sites on the composite material is presented.

A SrO-Al2O3 - 2SrO2 (SAS) glass ceramic matrix is reinforced with CVD SiC continuous fibers. This material is prepared by casting a slurry of SAS glass powder into tapes. Mats of continuous CVD-SiC fibers are alternately stacked with the matrix tapes. This tape-mat stack is warm-pressed to produce a ‘green’ composite. Organic constituents are burned out of the ‘green’ composite, and the remaining interim material is hot pressed.

An improved composite flexible blanket insulation is presented comprising top silicon carbide having an interlock design, wherein the reflective shield is composed of single or double aluminized polyimide and wherein the polyimide film has a honeycomb pattern.

A SrO-Al2O3 - 2SrO2 (SAS) glass ceramic matrix is reinforced with CVD SiC continuous fibers. This material is prepared by casting a slurry of SAS glass powder into tapes. Mats of continuous CVD-SiC fibers are alternately stacked with the matrix tapes. This tape-mat stack is warm-pressed to produce a ‘green’ composite. Organic constituents are burned out of the ‘green’ composite, and the remaining interim material is hot pressed.

N94-15926* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

IMPROVED COMPOSITE FLEXIBLE BLANKET INSULATION Patent Application
DEMETRIUS A. KOURTIDES, inventor (to NASA) and DAVID M. LOWE, inventor (to NASA) (San Jose State Univ., Moffett Field, CA.) 1 Aug. 1991 53 p
An improved composite flexible blanket insulation is presented comprising top silicon carbide having an interlock design, wherein the reflective shield is composed of single or double aluminized polyimide and wherein the polyimide film has a honeycomb pattern.

N94-15929* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

INTERCALATED HYBRID GRAPHITE FIBER COMPOSITE Patent
JAMES R. GAIER, inventor (to NASA) 9 Nov. 1993 6 p Filed 25 Nov. 1991 Supersedes N92-17861 (30 - 8, p 1257)
The invention is directed to a highly conductive lightweight hybrid material and methods of producing the same. The hybrid composite is obtained by weaving strands of a high strength carbon or graphite fiber into a fabric-like structure, depositing a layer of carbon onto the structure, heat treating the structure to graphitize the carbon layer, and intercalating the graphitic carbon layer structure. A laminate composite material useful for protection against lightning strikes comprises at least one layer of the hybrid material over at least one layer of high strength carbon or graphite fibers. The composite material of the present invention is compatible with matrix compounds, has a coefficient of thermal expansion which is the same as underlying fiber layers, and is resistant to galvanic corrosion in addition to being highly conductive. These materials are useful in the aerospace industry, in particular as lightning strike protection for airplanes.

Official Gazette of the U.S. Patent and Trademark Office
27 NONMETALLIC MATERIALS

Includes physical, chemical, and mechanical properties of plastics, elastomers, lubricants, polymers, textiles, adhesives, and ceramic materials.

COMPOUNDS CONTAINING META-BIPHENYLENEDIOXY MOIETIES AND POLYMERS THEREFROM Patent Application TERRY L. ST.CLAIR, inventor (to NASA) and JOHN RICHARD PRATT, inventor (to NASA) (Lockheed Engineering and Sciences Co., Hampton, VA.) 13 May 1993 16 p

Two monomers containing meta-biphenylenedioxy moieties were prepared. One monomer, a diamine, is used to prepare polyimide, polyamide, and epoxy polymers. The other monomer, a dianhydride, was used to prepare polyimide polymers. These polymers are used to make films, coatings, and selective membranes.

A structure which is effective as an electrical insulator or as a transmitter-receiver of electromagnetic energy is prepared by providing a suitable substrate and covering the substrate with an adhering layer of a low dielectric, high temperature, linear aromatic polyimide. This polyimide is prepared by selecting aromatic diamine and aromatic dianhydride reactants to meet at least two of the following three conditions: a reactant must have minimal permanent or inducible electrical dipolar characteristics as a result of the presence of pendant or bridging groups therein, a reactant must impart a high degree of free volume to the polymer caused by inefficient chain packing therein in the solid state as a result of the presence of pendant or bridging groups therein, and a reactant must have fluorine atoms chemically attached thereto; and chemically combining equimolar quantities of the aromatic diamine and aromatic dianhydride reactants in a solvent to form a high molecular weight polyamic acid solution, and converting the high molecular weight polyamic acid to the corresponding low dielectric, high temperature linear aromatic polyimide.

Non-brittle dielectric films are formed by blending a cyanoresin such as cyanoethyl, hydroxyethyl cellulose (CRE) with a compatible, more crystalline resin such as cellulose triacetate. The electrical breakdown strength of the blend is increased by orienting the films by uniaxial or biaxial stretching. Blends of high molecular weight CRE with high molecular weight cyanoethyl cellulose (CRC) provide films with high dielectric constants.

A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO₃:H₂O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.
A series of polyimides based on the dianhydride of 1,4-bis(3,4-dicarboxyphenoxy) benzene (HQDEA) or on 2,2-bis(4(3-aminophenoxy phenyl)hexafluoropropane (3-BDAF) are evolved from high molecular weight polyamic acid solutions yielding flexible free-standing films and coatings in the fully imidized form which have a dielectric constant in the range of 2.5 to 3.1 at 10 GHz.
expansion (CTE) was prepared by dissolving the polyimide in solvent and adding a metal ion-containing additive to the solution. Examples of the additive are: Ho(OOCCH3), Er(NPPA)3, TmCl3, and Er(C5H7O2)3. The soluble polyimide resin is combined with the article to form the assembly.

Official Gazette of the U.S. Patent and Trademark Office

N94-20374* National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.
POLYIMIDES CONTAINING AMIDE AND PERFLUOROISOPROPYLIDENE CONNECTING GROUPS Patent

New, thermooxidatively stable polyimides were prepared from the reaction of aromatic dianhydrides containing isopropylidene bridging groups with aromatic diamines containing amide connecting groups between the rings. Several of these polyimides were shown to be semi-crystalline as evidenced by wide angle x-ray scattering and differential scanning calorimetry. Most of the polyimides form tough, flexible films with high tensile properties. These polyimide films exhibit enhanced solubility in organic solvents.

Official Gazette of the U.S. Patent and Trademark Office

N94-20377* National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.
IMPROVED CERAMIC SLIP CASTING TECHNIQUE Patent

A primary concern in modern fluid dynamics research is the experimental verification of computational aerothermodynamic codes. This research requires high precision and detail in the test model employed. Ceramic materials are used for these models because of their low heat conductivity and their survivability at high temperatures. To fabricate such models, slip casting techniques were developed to provide net-form, precision casting capability for high-purity ceramic materials in aqueous solutions. In previous slip casting techniques, block, or flask molds made of plaster-of-paris were used to draw liquid from the slip material. Upon setting, parts were removed from the flask mold and cured in a kiln at high temperatures. Casting detail was usually limited with this technique because of their low heat conductivity and their survivability at high temperatures. To fabricate such models, slip casting techniques were developed to provide net-form, precision casting capability for high-purity ceramic materials in aqueous solutions. In previous slip casting techniques, block, or flask molds made of plaster-of-paris were used to draw liquid from the slip material. Upon setting, parts were removed from the flask mold and cured in a kiln at high temperatures. Casting detail was usually limited with this technique because of their low heat conductivity and their survivability at high temperatures.

Official Gazette of the U.S. Patent and Trademark Office

N94-20529* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.
SINTERING SILICON NITRIDE Patent

Oxides having a composition of (Ba(1-x)Sr(x))O-Al2O3-2SiO2 are used as sintering aids for producing an improved silicon nitride ceramic material. The x must be greater than or equal to 0 to insure the formation of the stable monoclinic celsian glass phase.

Official Gazette of the U.S. Patent and Trademark Office

N94-20541* National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, AL.
METHOD OF FABRICATING A ROCKET ENGINE COMBUSTION CHAMBER Patent
A process for making a combustion chamber for a rocket engine wherein a copper alloy in particle form is injected into a stream of heated carrier gas in plasma form which is then projected onto the inner surface of a hollow metal jacket having the configuration of a rocket engine combustion chamber is described. The particles are in the plasma stream for a sufficient length of time to heat the particles to a temperature such that the particles will flatten and adhere to previously deposited particles but will not spatter or vaporize. After a layer is formed, cooling channels are cut in the layer, then the channels are filled with a temporary filler and another layer of particles is deposited.

Official Gazette of the U.S. Patent and Trademark Office

N94-23075 National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

POLYMERIC MATRIX COMPOSITES Patent

The di(hydroxyphenyl)-1,2,4-triazole monomers were first synthesized by reacting bis (4-hydroxyphenyl) hydrazide with aniline hydrochloride at 250°C in the melt and also by reacting 1,3 or 1,4-bis-(4-hydroxyphenyl)-phenylene- dihydrazide with 2 moles of aniline hydrochloride in the melt. Purification of the di(hydroxyphenyl)-1,2,4-triazole monomers was accomplished by recrystallization. Poly (1,2,4-triazoles) (PT) were prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl)-1,2,4-triazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The reactions were carried out in polar aprotic solvents such as sulfolane or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. This synthetic route has provided high molecular weight PT monomers were used in the synthesis of soluble polybenzimidazoles. The reaction involved the aromatic nucleophilic displacement of

Official Gazette of the U.S. Patent and Trademark Office

N94-23076 National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

PREPARING POLYMERIC MATRIX COMPOSITES USING AN AQUEOUS SLURRY TECHNIQUE Patent

An aqueous process was developed to prepare a consolidated composite laminate from an aqueous slurry. An aqueous poly(amic acid) surfactant solution was prepared by dissolving a poly(amic acid) powder in an aqueous ammonia solution. A polymeric powder was added to this solution to form a slurry. The slurry was deposited on carbon fiber to form a prepreg which was dried and stacked to form a composite laminate. The composite laminate was consolidated using pressure and was heated to form the polymeric matrix. The resulting composite laminate exhibited high fracture toughness and excellent consolidation.

Official Gazette of the U.S. Patent and Trademark Office

N94-23305 National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

BENZIMIDAZOLE MONOMERS Patent

Di(hydroxyphenyl)benzimidazole monomers were prepared from phenyl-hydroxybenzoate and aromatic bis(o-diamines). These monomers were used in the synthesis of soluble polybenzimidazoles. The reaction involved the aromatic nucleophilic displacement of
various di(hydroxyphenyl)benzimidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds in the presence of an alkali metal base. These polymers exhibited lower glass transition temperatures, improved solubility, and better compression moldability over their commercial counterparts.

Official Gazette of the U.S. Patent and Trademark Office

N94-23307* National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

PHENYLETHYNL-TERMINATED POLY(ARYLENE ETHERS) Patent

Phenylethynyl-terminated poly(arylene ethers) are prepared in a wide range of molecular weights by adjusting monomer ratio and adding an appropriate amount of 4-fluoro-4'-phenylethynyl benzophenone during polymer synthesis. The resulting phenylethynyl-terminated poly(arylene ethers) react and crosslink upon curing for one hour at 350°C to provide materials with improved solvent resistance, higher modulus, and better high temperature properties than the linear, uncrosslinked polymers.

Official Gazette of the U.S. Patent and Trademark Office

N94-23311* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

CERAMIC SILICON-BORON-CARBON FIBERS FROM ORGANIC SILICON-BORON-POLYMERS Patent

Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200°C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200°C, from 1200 to 1300°C, and in some cases higher than 1300°C.

Official Gazette of the U.S. Patent and Trademark Office

31

ENGINEERING (GENERAL)

Includes vacuum technology; control engineering; display engineering; cryogenics; and fire prevention.

N94-15891# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

NONAQUEOUS SLIP CASTING OF HIGH TEMPERATURE CERAMIC SUPERCONDUCTORS USING AN INVESTMENT CASTING TECHNIQUE Patent Application

MATTHEW W. HOOKER, inventor (to NASA) (Clemson Univ., SC.), THEODORE D. TAYLOR, inventor (to NASA) (Clemson Univ., SC.), STEPHANIE A. WISE, inventor (to NASA), JOHN D. BUCKLEY, inventor (to NASA), PETER VASQUEZ, inventor (to NASA), GREGORY M. BUCK, inventor (to NASA), and LANAPA. HICKS, inventor (to NASA) 16 Aug. 1993 9 p (NASA-CASE-LAR-14918-1; NAS 1.71:LAR-14918-1; US-PATENT-APPL-SN-096498) Avail: CASI HC A02/MF A01

A process for slip casting ceramic articles that does not employ parting agents and affords the casting of complete, detailed, precision articles that do not possess parting lines is presented. This process is especially useful for high temperature superconductors and water-sensitive ceramics. A wax pattern for a shell mold is provided, and an aqueous mixture of a calcium sulfate-bonded investment material is applied as a coating to the wax pattern. The coated wax pattern is then dried, followed by curing to vaporize the wax pattern and leave a shell mold of the calcium sulfate-bonded investment material. The shell mold is cooled to room temperature, and a ceramic slip is poured out. The shell mold is misted with water and peeled away from the ceramic article, after which the ceramic is fired to provide a complete, detailed, precision, high temperature superconductive ceramic article without parting lines. The casting technique may take place in the presence of a magnetic field to orient the ceramic powders during the casting process.
FLEXIBLE HEATING HEAD FOR INDUCTION HEATING Patent

An induction heating head includes a length of wire having first and second opposite ends and being wound in a flat spiral shape to form an induction coil, a capacitor connected to the first and second ends of the wire, the induction coil and capacitor defining a tank circuit, and a flexible, elastomeric body molded to encase the induction coil. When a susceptor is placed in juxtaposition to the body, and the tank circuit is powered, the susceptor is inductively heated.

N94-23627* National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, MD.

MICRO PULSE LASER RADAR Patent

An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lidar systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

METHOD FOR PRODUCING A HYBRIDIZATION OF DETECTOR ARRAY AND INTEGRATED CIRCUIT FOR READOUT Patent

A process is explained for fabricating a detector array in a layer of semiconductor material on one substrate and an integrated readout circuit in a layer of semiconductor material on a separate substrate in order to select semiconductor material for optimum performance of each structure, such as GaAs for the detector array and Si for the integrated readout circuit. The detector array layer is lifted off its substrate, laminated on the metallized surface on the integrated circuit, and provided with interconnections between the detector array pixels and the integrated readout circuit through the channels. The adhesive material for the lamination is
selected to be chemically stable to provide electrical and thermal insulation and to provide stress release between the two structures fabricated in semiconductor materials that may have different coefficients of thermal expansion.

Official Gazette of the U.S. Patent and Trademark Office

fields cancel each other, therefore light on the optical path does not read the effect of either. However, when a ground fault occurs, the optical path is exposed to a net Faraday effect rotation due to the current imbalance thereby exposing the ground fault.

NASA

N94-15706**# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

A METHOD OF DETECTING AND LOCATING ELECTRICAL CURRENT IMBALANCES Patent Application

A method of detecting and locating current imbalances such as ground faults in multiwire systems using the Faraday effect is described. As an example, for 2-wire or 3-wire (1 ground wire) electrical systems, light is transmitted along an optical path which is exposed to magnetic fields produced by currents flowing in the hot and neutral wires. The rotations produced by these two magnetic

N94-15874**# National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, MD.

FORBACK DC-TO-DC CONVERTER Patent Application

A pulse-width modulated DC-to-DC power converter including a first inductor, i.e. a transformer or an equivalent fixed inductor equal to the inductance of the secondary winding of the transformer, coupled across a source of DC input voltage via a transistor switch which is rendered alternately conductive (ON) and nonconductive (OFF) in accordance with a signal from a feedback control circuit is described. A first capacitor capacitively couples one side of the first inductor to a second inductor which is connected to a second capacitor which is coupled to the other side of the first inductor. A circuit load shunts the second capacitor. A semiconductor diode is additionally coupled from a common circuit connection between the first capacitor and the second inductor to the other side of the first inductor. A current sense transformer generating a current feedback signal for the switch control circuit is directly coupled in series with the other side of the first inductor so that the first capacitor, the second inductor and the current sense transformer are connected in series through the first inductor. The inductance values of the first and second inductors, moreover, are made identical. Such a converter topology results in a simultaneous volt-second balance in the first inductance and ampere-second balance in the current sense transformer.

NASA
33 ELECTRONICS AND ELECTRICAL ENGINEERING

N94-15952*# National Aeronautics and Space Administration.
Pasadena Office, CA.
CELLULOSE TRIACETATE, THIN FILM DIELECTRIC
CAPACITOR Patent Application
SHIAO-PING S. YEN, inventor (to NASA) (Jet Propulsion Lab.,
California Inst. of Tech., Pasadena.) and T. RICHARD JOW, inventor
(to NASA) (Jet Propulsion Lab., California Inst. of Tech., Pasada-
ena.) 28 May 1993 13 p
(Contract NAS7-918)
(NASA-CASE-NPO-18935-1-CU;NAS1.71:NPO-18935-1-CU;
US-PATENT-APPL-SN-071416) Avail: CASI HC A03/MF A01

Very thin films of cellulose triacetate are cast from a solution
containing a small amount of high boiling temperature, non-solvent
which evaporates fast and lifts the film from the casting surface.
Stretched, oriented, crystallized films have high electrical break-
down properties. Metallized films less than about 2 microns in
thickness form self-healing electrodes for high energy density,
pulsed power capacitors. Thicker films can be utilized as a dielectric
for a capacitor.

N94-17323*# National Aeronautics and Space Administration.
Pasadena Office, CA.
LEAK DETECTION UTILIZING ANALOG BINAURAL (VLSI)
TECHNIQUES Patent Application
FRANK T. HARTLEY, inventor (to NASA) (Jet Propulsion Lab.,
California Inst. of Tech., Pasadena.) 18 Aug. 1993 23 p
(Contract NAS7-918)
(NASA-CASE-NPO-18399-1-CU; NAS 1.71: NPO- 18399-1-CU;
US-PATENT-APPL-SN-111317) Avail: CASI HC A03/MF A01

A detection method and system utilizing silicon models of the
traveling wave structure of the human cochlea to spatially and
temporally locate a specific sound source in the presence of high
noise pandemonium is presented. The detection system combines
two-dimensional stereausis representations, which are output by at
least three VLSI binaural hearing chips, to generate a
three-dimensional stereausis representation including both binau-
ral and spectral information which is then used to locate the sound
source.

NASA

N94-15988*# National Aeronautics and Space Administration.
Langley Research Center, Hampton, VA.
A DEVICE FOR TESTING CABLES Patent Application
ARTHUR RAY HAYHURT, inventor (to NASA) 7 Jun. 1993 12 p
(NASA-CASE-LAR-14093-1; NAS 1.71:LAR-14093-1;

A device for testing current paths is attachable to a conductor.
The device automatically checks the current paths of the conductor
for continuity of a center conductor, continuity of a shield, and a short
circuit between the shield and the center conductor. The device
includes a pair of connectors and a circuit to provide for testing of the
conductive paths of a cable to be tested with the circuit paths of the
system. The circuit paths in the circuit include indicators to simulta-
neously indicate the results of the testing.

N94-17324*# National Aeronautics and Space Administration.
Pasadena Office, CA.
OPTICALLY-SWITCHED SUBMILLIMETER-WAVE
OSCILLATOR AND RADIATOR Patent Application
MICHAEL G. SPENCER, inventor (to NASA) (Jet Propulsion Lab.,
California Inst. of Tech., Pasadena.) and JOSEPH MASERJIAN,
inventor (to NASA) (Jet Propulsion Lab., California Inst. of Tech.,
Pasadena.) 23 Sep. 1993 29 p
(Contract NAS7-918)
(NASA-CASE-NPO-18547-1-CU; NAS 1.71: NPO-18547-1-CU;
US-PATENT-APPL-SN-125966) Avail: CASI HC A03/MF A01

A submillimeter wave-generating integrated circuit includes an
array of N photoconductive switches biased across a common
voltage source and an optical path difference from a common optical
pulse of repetition rate f sub 0 providing a different optical delay to
each of the switches. In one embodiment, each incoming pulse is
applied to successive ones of the N switches with successive
delays. The N switches are spaced apart with a suitable
switch-to-switch spacing so as to generate at the output load or
antenna radiation of a submillimeter wave frequency f on the order
of Nf sub 0. Preferably, the optical pulse has a repetition rate of at least 10 GHz and N is of the order of 100, so that the circuit generates radiation of frequency of the order of or greater than 1 Terahertz.

A bistable switching element is made of a material whose electrical resistance reversibly decreases in response to intercalation by positive ions. Flow of positive ions between the bistable switching element and a positive ion source is controlled by means of an electrical potential applied across a thermal switching element. The material of the thermal switching element generates heat in response to electrical current flow therethrough, which in turn causes the material to undergo a thermal phase transition from a high electrical resistance state to a low electrical resistance state as the temperature increases above a predetermined value. Application of the electrical potential in one direction renders the thermal switching element conductive to pass electron current out of the ion source. This causes positive ions to flow from the source into the bistable switching element and intercalate the same to produce a non-volatile, low resistance logic state. Application of the electrical potential in the opposite direction causes reverse current flow which de-intercalates the bistable logic switching element and produces a high resistance logic state.

A composite solid electrolyte film for a lithium battery comprising a dispersion of small reinforcing particles such as alumina in a binder rein such as polyethylene oxide is presented. The particles are coated with a compatible lithium salt such as lithium iodide and the alumina particles preferably have a size below 0.5 microns.
The invention relates to planar varactor frequency multiplier devices with a heterojunction blocking barrier for near millimeter wave radiation of moderate power from a fundamental input wave. The space charge limitation of the submillimeter frequency multiplier devices of the BNN+ type is overcome by a diode structure comprising an n+ doped layer of semiconductor material functioning as a low resistance back contact, a layer of semiconductor material with n-type doping functioning as a drift region grown on the back contact layer, a delta doping sheet forming a positive charge at the interface of the drift region layer with a barrier layer, and a surface metal contact. The layers thus formed on an n+ doped layer may be divided into two isolated back-to-back BNN+ diodes by separately depositing two surface metal contacts. By repeating the sequence of the drift region layer and the barrier layer with the delta doping sheet at the interfaces between the drift and barrier layers, a plurality of stacked diodes is formed. The novelty of the invention resides in providing n-type semiconductor material for the drift region in a GaAs/AlGaAs structure, and in stacking a plurality of such BNN+ diodes stacked for greater output power with and connected back-to-back with the n+ GaAs layer as an internal back contact and separate metal contact over an AlGaAs barrier layer on top of each stack.
undersized with respect to the working fluid passageways through the condensation tubes. The restriction member significantly restricts flow of partially vaporized working fluid but does not significantly affect the flow of fully liquid working fluid.

N94-20361* National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, AL.
SPIRAL FLUID SEPARATOR Patent

A fluid separator for separating particulate matter such as contaminants is provided which includes a series of spiral tubes of progressively decreasing cross sectional area connected in series. Each tube has an outlet on the outer curvature of the spiral. As fluid spirals down a tube, centrifugal force acts to force the heavier particulate matter to the outer wall of the tube, where it exits through the outlet. The remaining, and now cleaner, fluid reaches the next tube, which is smaller in cross sectional area, where the process is repeated. The fluid which comes out the final tube is diminished of particulate matter.

Official Gazette of the U.S. Patent and Trademark Office

N94-20495* National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.
HEAT EXCHANGER WITH OSCILLATING FLOW Patent

Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least
one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

 Officials of the U.S. Patent and Trademark Office

N94-20588* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

SYSTEM AND METHOD FOR CANCELLING EXPANSION WAVES IN A WAVE ROTOR Patent

DANIEL E. PAXSON, inventor (to NASA) 7 Dec. 1993 9 p Filed 26 May 1992 Supersedes N93-11172 (31 - 2, p 297)

A wave rotor system that is comprised of a wave rotor coupled to first and second plates is described. Special ports are provided, one in each of the first and second end plates, to cancel expansion waves generated by the release of working fluid from the wave rotor. One of the expansion waves is reflected in the wave rotor from a reflecting portion and provided to the special port in the second end plate. Fluid present at the special port in the second end plate has a stagnation pressure and mass flow which is the same as that of the cells of the wave rotor communicating with such special port. This allows for cancellation of the expansion wave generated by the release of working fluid from the wave rotor. The special port in the second end plate has a first end corresponding to the head of the expansion wave and a second end corresponding to the tail of the expansion wave. Also, the special port is configured to continually change along the circumference of the second end plate to affect expansion wave cancellation. An expansion wave generated by a second release of working fluid from the wave rotor is cancelled in a similar manner to that described above using a special port in the first end plate. The cycle of operation of the wave rotor system is designed so that the stagnation pressure and mass flow of the fluid present at the special ports is the same so that the special ports may be connected by a common duct.

Officials of the U.S. Patent and Trademark Office

N94-23077* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

PROBE SHAPES THAT MEASURE TIME-AVERAGED STREAMWISE MOMENTUM AND CROSS-STREAM TURBULENCE INTENSITY Patent

VERNON J. ROSSOW, inventor (to NASA) 7 Sep. 1993 21 p Filed 21 Feb. 1991

A method and apparatus for directly measuring the time-averaged streamwise momentum in a turbulent stream use a probe which has total head response which varies as the cosine-squared of the angle of incidence. The probe has a nose with a slight indentation on its front face for providing the desired response. The method of making the probe incorporates unique design features. Another probe may be positioned in a side-by-side relationship to the first probe to provide a direct measurement of the total pressure. The difference between the two pressures yields the sum of the squares of the cross-stream components of the turbulence level.

Officials of the U.S. Patent and Trademark Office

N94-23306* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

PROBE SYSTEMS FOR MEASURING STATIC PRESSURE AND TURBULENCE INTENSITY IN FLUID STREAMS Patent

VERNON J. ROSSOW, inventor (to NASA) 7 Sep. 1993 19 p Filed 24 Apr. 1991

A method and apparatus for measuring time-averaged static or ambient pressure and turbulence intensity in a turbulent stream are discussed. The procedure involves placing a plurality of probes in the stream. Each probe responds in a different manner to charac-
characteristics of the fluid stream, preferably as a result of having varying
cross sections. The responses from the probes are used to eliminate
unwanted components in the measured quantities for accurate
determination of selected characteristics.

Official Gazette of the U.S. Patent and Trademark Office

A capacitive type proximity sensor having improved range and
sensitivity between a surface and an intruding object in the vicinity
of the surface having a voltage source, a number of outer electrical
conductors on the surface with each forming one electrode of a
number of sensor capacitors, the other electrode for each sensor
 capacitor being the object is described. The outer conductors are
made from thin sheets of conductive material covered with insula-
tion. An intermediate electrical conductor is located between the
outer conductors and the surface and is of a size larger than the
outer conductors to act as a shield for reducing the parasitic
capacitance between the outer conductors and the surface. The
intermediate conductor is also made from a thin sheet of conductive
material covered with insulation. The outer conductors and the
intermediate conductor are attached to the surface with no gap
between the insulation on the conductors and no gap between the
surface and the insulation on intermediate conductor, the outer
collectors and the intermediate conductor conjoining with each
other and with the surface, with the surface acting as a ground plane.
A current-measuring voltage follower circuit is connected to the
voltage source for coupling in phase and amplitude the instanta-

nous voltage at the voltage source to the outer electrical conduc-
tors and the intermediate electrical conductor. This circuit is respon-
sive to the change in capacitance of the sensor capacitors and
generates a number of output signals.

NASA
A pulse phase locked loop system according to the present invention is described. A frequency generator such as a voltage controlled oscillator (VCO) generates an output signal and a reference signal having a frequency equal to that of the output signal. A transmitting gate gates the output frequency signal and this gated signal drives a transmitting transducer which transmits an acoustic wave through a material. A sample/hold samples a signal indicative of the transmitted wave which is received by a receiving transducer. Divide-by-n counters control these gating and sampling functions in response to the reference signal of the frequency generator. Specifically, the output signal is gated at a rate of F/n, wherein F is the frequency of the output signal and n is an integer; and the received signal is sampled at a delay of F/n wherein n is an integer.

A plug-type heat flux gauge can simultaneously measure heat flux on two opposite surfaces of thick or very thin convection or impingement cooled metal walls. The gauge is capable of continuously measuring transient and steady heat flux under transient and steady state gauge temperature operating conditions. The length of the gauge extends through the entire thickness of the material. A non-linear temperature gradient through the gauge can be measured by attaching 3-5 thermocouples along the length of the gauge.

A remote tire pressure sensing technique is provided which uses vibration frequency to determine tire pressure. A vibration frequency measuring device is attached to the external surface of a tire which is then struck with an object, causing the tire to vibrate. The frequency measuring device measures the vibrations and converts the vibrations into corresponding electrical impulses. The electrical impulses are then fed into the frequency analyzing system which uses the electrical impulses to determine the relative peaks of the vibration frequencies as detected by the frequency measuring device. The measured vibration frequency peaks are then compared to predetermined data describing the location of vibration frequency peaks for a given pressure, thereby determining the air pressure of the tire.
A method for producing a phase hologram using e-beam lithography provides n-ary levels of phase and amplitude by first producing an amplitude hologram on a transparent substrate by e-beam exposure of a resist over a film of metal by exposing n is less than or equal to $m \times m$ spots of an array of spots for each pixel, where the spots are randomly selected in proportion to the amplitude assigned to each pixel, and then after developing and etching the metal film producing a phase hologram by e-beam lithography using a low contrast resist, such as PMMA, and n-ary levels of low doses less than approximately 200 micro-C/sq cm and preferably in the range of 20-200 micro-C/sq cm and aggressive development using pure acetone for an empirically determined time (about 6 sec.) controlled to within 1/10 sec. to produce partial development of each pixel in proportion to the n-ary level of dose assigned to it.

A thermocouple is disclosed. The thermocouple is comprised of an electropositive leg formed of a noble metal-AI alloy and an electronegative leg electrically joined to form a thermocouple junction. The thermocouple provides for accurate and reproducible measurement of high temperatures (600 - 1300 C) in inert, oxidizing or reducing environments, gases, or vacuum. Furthermore, the thermocouple circumvents the need for expensive, strategic precious metals such as rhodium as a constituent component. Selective oxidation of rhodium is also thereby precluded.
A technique was developed which carefully retro-reflects precisely controlled amounts of light back into a laser system thereby intentionally forcing the laser system components to oscillate in a new resonator called the parasitic oscillator. The parasitic oscillator uses the laser system to provide the gain and an external mirror is used to provide the output coupling of the new resonator. Any change of gain or loss inside the new resonator will directly change the lasing threshold of the parasitic oscillator. This change in threshold can be experimentally measured as a change in the absolute value of reflectivity, provided by the external mirror, necessary to achieve lasing in the parasitic oscillator. Discrepancies between experimental data and a parasitic oscillator model are direct evidence of optical misalignment or component performance problems. Any changes in the optical system can instantly be measured as a change in threshold for the parasitic oscillator. This technique also enables aligning the system for maximum parasitic suppression with the system fully operational.
An inline check valve for a flow line where the valve element is guided for inline travel forward and rearward of a valve sealing member and is spring biased to a closed sealing condition is presented. One of the guides for the valve element includes a dashpot housing with a bore and plunger member to control the rate of travel of the valve element in either direction, providing a guiding function. The plunger member is arranged with a dashpot ring to frictionally contact the dashpot bore and has an interior tortuous flow path from one side to the other side of the dashpot ring. The dashpot housing is not anchored to the valve body so that the valve can be functional even if the dashpot ring becomes jammed in the dashpot housing.

Official Gazette of the U.S. Patent and Trademark Office
piston closure members and a path is provided in the central body of the piston assembly, such that hydraulic fluid flows through the piston assembly to cool the piston assembly during its operation. The compressor of the present invention may be easily adapted for a particular application, and is capable of generating high gas pressures while maintaining both the compressed gas and the compressor components within acceptable temperature limits.

The compressor of the present invention may be easily adapted for a particular application, and is capable of generating high gas pressures while maintaining both the compressed gas and the compressor components within acceptable temperature limits. Official Gazette of the U.S. Patent and Trademark Office

CONNECTOR SYSTEMS FOR STRUCTURES Patent Application
CHRISTIAN LUPO, inventor (to NASA), ERIK EVENSON, inventor (to NASA), and CLARENCE WESSELSKI, inventor (to NASA) (Lockheed Engineering and Sciences Co., Houston, TX.) 25 May 1993 19 p (NASA-CASE-MSC-21998-1; NAS 1.71:MSC-21998-1; US-PATENT-APPL-SN-066271) Avail: CASI HC A03/MF A01

A releasable coupling device for connecting two members to one another where a collet type fastener has normally retracted latching fingers insertable into a latching recess and a longitudinally movable expander for activating the fastener is described. The longitudinal movement is retained with a paraffin actuated system which can reset. The longitudinal movement of the expander in one direction is through a one way threaded ratchet system which provides an automatic locking action and the expander is movable in either direction by an independently operated threaded action.

WELDING NOZZLE POSITION MANIPULATOR Patent Application

The present invention is directed to a welding nozzle position manipulator. The manipulator consists of an angle support to which the remaining components of the device are attached either directly or indirectly. A pair of pivotal connections attach a weld nozzle holding link to the angle support and provide a two axis freedom of movement of the holding link with respect to the support angle. The manipulator is actuated by a pair of adjusting screws angularly mounted to the angle support. These screws contact a pair of tapered friction surfaces formed on the upper portion of the welding nozzle holding link. A spring positioned between the upper portions of the support angle and the holding link provides a constant bias engagement between the friction surfaces of the holding link and the adjustment screws, so as to firmly hold the link in position and to eliminate any free play in the adjustment mechanism. The angular relationships between the adjustment screws, the angle support and the tapered friction surfaces of the weld nozzle holding link provide a geometric arrangement which permits precision adjustment of the holding link with respect to the angle support and also provides a solid holding link mount which is resistant to movement from outside forces.

ATTACHMENT DEVICE Patent Application

An apparatus is disclosed for capturing and holding a rod, bar or similar member; the apparatus having in one aspect a body member with a recess therein and a hook extending from the body member, the hook and recess defining a capture envelope for receiving and confining the rod, etc. In one aspect such an apparatus is disclosed in which the hook is movable with respect to the
body member to vary the size of the capture envelope, both to initially facilitate emplacement of the apparatus about the rod, etc., and then to provide for tightening of the apparatus about the rod, etc., if desired.

An energy absorbing system for controlling the force where a moving object engages a stationary stop and where the system utilizes telescopic tubular members, energy absorbing diaphragm elements, force regulating disc springs, and a return spring to return the telescoping member to its start position after stroking is presented. The energy absorbing system has frusto-conical diaphragm elements frictionally engaging the shaft and are opposed by a force regulating set of disc springs. In principle, this force feedback mechanism serves to keep the stroking load at a reasonable level even if the friction coefficient increases greatly. This force feedback device also serves to desensitize the singular and combined effects of manufacturing tolerances, sliding surface wear, temperature changes, dynamic effects, and lubricity.

A welding torch for plasma arc welding apparatus has a transparent shield cup disposed about the constricting nozzle, the cup including a small outwardly extending polished lip. A guide tube extends externally of the torch and has a free end adjacent to the lip. First and second optical fiber bundle assemblies are supported within the guide tube. Light from a strobe light is transmitted along one of the assemblies to the free end and through the lip onto the weld site. A lens is positioned in the guide tube adjacent to the second assembly and focuses images of the weld site onto the end of the fiber bundle of the second assembly and these images are transmitted along the second assembly to a video camera so that the weld site may be viewed continuously for monitoring the welding process.
A system for coupling an orbital replacement unit (ORU) to a space station structure via the actions of a robot and/or astronaut is described. This system provides mechanical and electrical connections both between the ORU and the space station structure and between the ORU and the robot/astronaut hand tool. Alignment and timing features ensure safe, sure handling and precision coupling. This includes a first female type spline connector selectively located on the space station structure, a male type spline connector positioned on the orbital replacement unit so as to mate with and connect to the first female type spline connector, and a second female type spline connector located on the orbital replacement unit. A compliant drive rod interconnects the second female type spline connector and the male type spline connector. A robotic special end effector is used for mating with and driving the second female type spline connector. Also included are alignment tabs exteriorally located on the orbital replacement unit for berthing with the space station structure. The first and second female type spline connectors each include a threaded bolt member having a captured nut member located thereon which can translate up and down the bolt but are constrained from rotation thereabout, the nut member having a mounting surface with at least one first type electrical connector located on the mounting surface for translating with the nut member. At least one complementary second type electrical connector on the orbital replacement unit mates with at least one first type electrical connector on the mounting surface of the nut member. When the driver on the robotic end effector mates with the second female type spline connector and rotates, the male type spline connector and the first female type spline connector lock together, the driver and the second female type spline connector lock together, and the nut members translate up the threaded bolt members carrying the first type electrical connector up to the complementary second type connector for interconnection therewith.

Official Gazette of the U.S. Patent and Trademark Office

A unique structure for constructing the emissive patch of a spaceborne radiative cooler is shown. The structure has very high emissivity for all angles up to a designed-in maximum angle and near zero emissivity for greater angles. The structure also allows the use of high emissivity, nonconducting paints while fully complying with the NASA Electrostatic Discharge Susceptibility requirements for spacecraft. To accomplish these tasks, two previous disadvantages of prior art methods are addressed; eliminating background thermal radiation sources and problems concerning the high emissivity paints used in association with the black body radiator. A reflector consisting of an array of parabolic concentrators is separated from a black body element by an electrically conductive spacer. The concentrators serve to limit the field of view while the conductive spacer eliminates the need to use a conductive paint on the emissive element.

Official Gazette of the U.S. Patent and Trademark Office

A device for mounting a data transmission apparatus to a rotating, tapered, and instrumented shaft is provided. This device permits attachment without interfering with shaft rotation or the accuracy of data output, and prevents both radial and axial slippage of the data transmission apparatus. The mounting device consists of a sleeve assembly which is attached to the shaft by means of clamps that are situated at some distance removed from the instrumented area of the shaft. The data transmission device is secured to the sleeve such that the entire assembly rotates with the shaft. Shim adjustments between sleeve sections assure that a minimum compressive load is transferred to the instrumented area of the shaft and a rubber lining is affixed to a large portion of the interior surface of the sleeve to absorb vibration.

Official Gazette of the U.S. Patent and Trademark Office
The invention is a counter-balanced, multiple cable construction crane. The apparatus for hoisting payloads comprises a crane having a lifting means, the lifting means comprising an end effector means and three suspension means or cables. One end of each cable attaches to a different winding means located on the lifting means, and the other end of each cable attaches to a different point on the end effector, such that the three cables have a theoretical point of convergence with this point corresponding to the center of mass of the payload. Three controls command rotation of the winding means to a predetermined position. Accordingly, the crane provides precise and autonomous positioning of the payload without human guidance. The crane further comprises a counter-balancing means. Two controls position the counter-balancing means to offset the overturning moment which arises during the lifting of heavy payloads.

In the space shuttle, a cargo bay storage rack was required which was to be manufactured from a metal-plastic composite and bolted to a cargo structure. Following completion, utilization of the rack was disallowed due to tolerances, that is, the size differences between the outside bolt diameter and the inside hole diameter. In addition to the space shuttle problem there are other close tolerance requirements for bolts. Such environments often benefit from close tolerance bolting. Frequently such fabrication is not cost effective. Consequently there is a need for means of achieving close tolerances between bolts and bolt holes. Such means are provided. After compressing the elements together a strong rigid plastic, ceramic, or ceramic plastic fluid is forced into a channel extending through the bolt.

The drive gear meshes with the sun gear and is driven by a handle or servomotor. When the handle or servomotor rotates the drive gear, the sun gear rotates causing the three pinion gears to rotate, thus, causing transverse movement of the three lead screws and, accordingly, transverse movement of the transversing plate. When the drive gear rotates, the transversing plate is driven in and out of a microwave cavity. Thus, the length or size of the cavity can be tuned while maintaining the transversing plate in an exact parallel relationship with an opposing plate on another end of the cavity.
TURNABLE MECHANISM Patent

In vacuum plasma spraying a turntable must be provided which not only makes it possible to rotate and tilt a heavy workpiece, but to operate at vacuum plasma temperatures to do so. In the vacuum plasma coating of large parts such as combustion chambers of rocket engines, the workpiece must not only be rotated, but it must be tilted. Hence, the turntable must be capable not only of supporting heavy parts, but of angulating such heavy workpieces. And this must be done without drive means failure due to extremely high temperatures under which the turntable mechanism is operated. A turntable mechanism is provided which is capable of operating under such conditions. For cooling the turntable drive mechanism, internal cooling means are included.

Official Gazette of the U.S. Patent and Trademark Office

CLIMBING ROBOT Patent

A mobile robot for traversing any surface consisting of a number of interconnected segments, each interconnected segment having an upper 'U' frame member, a lower 'U' frame member, a compliant joint between the upper 'U' frame member and the lower 'U' frame member, a number of linear actuators between the two frame members acting to provide relative displacement between the frame members, a foot attached to the lower 'U' frame member for adherence of the segment to the surface, an inter-segment attachment or the other of the fluid outlets. To minimize fluid turbulence when the valve member is rotated to an alternate operating position, the fluid passage has a convergent entrance for maintaining the passage in a caterpillar like fashion.

Official Gazette of the U.S. Patent and Trademark Office
permanent communication with the fluid inlet as well as an oblong exit opening with spaced side walls for enabling the exit opening to temporarily span the first and second fluid outlets as the valve member is turned between its respective operating positions.

A system for coupling two bodies together and for transmitting torque from one body to another with mechanical timing and sequencing is reported. The mechanical timing and sequencing is handled so that the following criteria are met: (1) the bodies are handled in a safe manner and nothing floats loose in space, (2) electrical connectors are engaged as long as possible so that the internal processes can be monitored throughout by sensors, and (3) electrical and mechanical power and signals are coupled. The first body has a splined driver for providing the input torque. The second body has a threaded drive member capable of rotation and limited translation. The embedded drive member will mate with and fasten to the splined driver. The second body has an embedded bevel gear member capable of rotation and limited translation. This bevel gear member is coaxial with the threaded drive member. A compression spring provides a preload on the rotating threaded member, and a thrust bearing is used for limiting the translation of the bevel gear member so that when the bevel gear member reaches the upward limit of its translation the two bodies are fully coupled and the bevel gear member then rotates due to the input torque transmitted from the splined driver through the threaded drive member to the bevel gear member. An output bevel gear with an attached output drive shaft is embedded in the second body and meshes with the threaded rotating bevel gear member to transmit the input torque to the output drive shaft.
The present invention discloses bola bodies, bolas, and a snaring method which makes use such devices. A bola body, according to the present invention, is nonspherical or irregular in shape rather than a smooth sphere or ovoid body. One or more fingers extend from the bola body. These fingers may be relatively straight or they may have crooked or bent portions to enhance entanglement with a bola line or lines or with each other. Two or more of such fingers may be used and may be regularly or irregularly spaced apart on a bola body. A bola with such bodies includes lines which are connected to the other bodies. In one particular embodiment of a bola body, according to the present invention, the body has an irregular shape with a bottom rectangular portion and a top pyramid portion forming a nose. A plurality of fingers is extended from the pyramidal top portion with one finger extended up and away from each of four corners of the top portion. Such a bola body tends to be initially oriented with its nose and fingers against an object being snared since the body is pulled nose first when a bola line is secured at the tip of the pyramidal portion of the bola body. With such a bola, an unwrapping bola body can slip around a target member so that two of the rod-shaped fingers catch a bola line and guide it into an area or crook between the fingers and a side of the top pyramidal portion of the bola body. With such a bola, tension on the bola line maintains the line in the crook and tends to press the fingers against the unwrapped target member to stabilize the wrapping of the line about the target member. With such a bola, it is difficult for two or more lines unwrapping in different directions to move past one another without being forced together by line tension. Also, the fingers of such bola bodies may hook and hold each other. The fingers may also hook or entangle some object on or portion of the target member. A probable known target member has known dimensions and shapes so that the bola may be sized and configured to reliably snare such a known target. The bolas can be optimally sized, fashioned, and configured to contact and hold a probable target of known size, dimension, and shape.

Official Gazette of the U.S. Patent and Trademark Office
prevent counter-clockwise rotation of the drive shaft. The drive shaft includes a circumferential disk and the housing includes a reaction ring for engagement with the plurality of cammed rollers. The plurality of cammed rollers are released from engagement with the circumferential disk and the reaction ring by a plurality of tripping mechanisms within the housing. The tripping action uses the locking force to act as a release force merely by changing the boundary conditions of the roller interface angles. The tripping mechanisms include trippers for disengaging the plurality of cammed rollers and an anvil shaped portion for providing lateral movement of the trippers. The plurality of cammed rollers is preloaded to engagement with the circumferential disk and reaction ring by a spring, and is located with respect to an adjacent tripping mechanism with another spring.

Official Gazette of the U.S. Patent and Trademark Office

The received signal is next sampled at four times its frequency based on a reference signal from the oscillator and then characterized as a phasor. The phase and amplitude of the received signal are then calculated via trigonometric relationship of at least two samples separated by 90 degrees. The remaining samples are employed to reduce the noise equivalent bandwidth.

N94-10671* National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.
METHOD OF RECERTIFYING A LOADED BEARING MEMBER USING A PHASE POINT Patent

A method of recertifying a load on a bearing member using a pulsed phase locked loop (P2L2) system is disclosed. A first tone burst signal with a corresponding first phase signal is generated in the bearing member in a first load condition. The sample/hold point is correlated with a corresponding position, w, on the first tone burst signal. A second tone burst with a corresponding second phase signal is then generated at some later time in the bearing member in a second load condition. The sample/hold of the P2L2 is adjusted to a determined phase point on the first phase signal and then the P2L2 is locked at this phase period to determine a first load measurement. Next, the phase sample point is correlated with a corresponding position, w, on the first tone burst signal. A second tone burst with a corresponding second phase signal is then generated at some later time in the bearing member in a second load condition. The sample/hold is adjusted to the sample/hold phase point as before and then the output frequency of the P2L2 is adjusted
until the sample/hold is positioned at the previously determined phase point corresponding to position w on the second tone burst signal. The P2L2 is then locked at this phase point to determine a frequency indicative of the load of the second loading condition.

Official Gazette of the U.S. Patent and Trademark Office

A lightweight flexible photovoltaic (PV) blanket is attached to a support structure of initially stowed telescoping members. The deployment mechanism comprises a series of extendable and rotatable columns. As these columns are extended the PV blanket is deployed to its proper configuration.

Official Gazette of the U.S. Patent and Trademark Office

A laminate structure attached to the test surface of an article is presented. The laminate structure is comprised of a liquid crystal polymer substrate. A light absorbing coating is applied to the substrate and is thin enough to permit bonding steric interaction between the liquid crystal polymer substrate and an overlying liquid crystal monomer thin film. Light is directed through and reflected by the liquid crystal monomer thin film and unreflected light is absorbed by the underlying coating. The wavelength of the reflected light is indicative of the shear stress experienced by the test surface.

Official Gazette of the U.S. Patent and Trademark Office

Includes specific energy conversion systems, e.g., fuel cells; global sources of energy; geophysical conversion; and windpower.

Official Gazette of the U.S. Patent and Trademark Office

A lightweight flexible photovoltaic (PV) blanket is attached to a support structure of initially stowed telescoping members. The deployment mechanism comprises a series of extendable and rotatable columns. As these columns are extended the PV blanket is deployed to its proper configuration.

Official Gazette of the U.S. Patent and Trademark Office

A laminate structure attached to the test surface of an article is presented. The laminate structure is comprised of a liquid crystal polymer substrate. A light absorbing coating is applied to the substrate and is thin enough to permit bonding steric interaction between the liquid crystal polymer substrate and an overlying liquid crystal monomer thin film. Light is directed through and reflected by the liquid crystal monomer thin film and unreflected light is absorbed by the underlying coating. The wavelength of the reflected light is indicative of the shear stress experienced by the test surface.

Official Gazette of the U.S. Patent and Trademark Office

Includes specific energy conversion systems, e.g., fuel cells; global sources of energy; geophysical conversion; and windpower.

Official Gazette of the U.S. Patent and Trademark Office
The metastatic potential of tumors can be evaluated by the quantitative detection of urokinase and DNA. The cell sample selected for examination is analyzed for the presence of high levels of urokinase and abnormal DNA using analytical flow cytometry and digital image analysis. Other factors such as membrane associated urokinase, increased DNA synthesis rates and certain receptors can be used in the method for detection of potentially invasive tumors.

A method and apparatus for characterizing the time and frequency response of an ultrasonically reflective contrast agent is disclosed. An ultrasonically reflective contrast agent is injected, under constant pressure, into a fluid flowing through a pump flow circuit. The fluid and the ultrasonically reflective contrast agent are uniformly mixed in a mixing chamber, and the uniform mixture is passed through a contrast agent chamber. The contrast agent chamber is acoustically and axially interposed between an ultrasonic transducer chamber and an acoustic isolation chamber. A pulse of ultrasonic energy is transmitted into the contrast agent chamber from the ultrasonic transducer chamber. An echo waveform is received from the ultrasonically reflective contrast agent, and it is analyzed to determine the time and frequency response of the ultrasonically reflective contrast agent.

Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cell aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

The described invention is related to extra-corporeal blood access and radiation methods and apparatuses and, in particular, to subjecting flowing blood to energy in variety of forms, including radiation, electromagnetic force fields or atomic particles. It is
directed to methods and apparatuses for accessing flowing blood and for subjecting the blood to electrical conductive, electrostatic or electromagnetic fields or for radiating the blood with some type of radiation, e.g., radio waves, ultrasonic or audio waves, microwaves, IR rays, visible light, UV radiation, x-rays, alpha, beta or gamma rays. An apparatus is employed which includes one or more access ports or windows for radiating blood and/or for sensing/analyzing blood. This invention is useful for killing viruses and bacteria in blood, monitoring blood for medical purposes, genetic modification of blood, and analyzing and/or treating blood components.

54 MAN/SYSTEM TECHNOLOGY AND LIFE SUPPORT

Includes human engineering; biotechnology; and space suits and protective clothing.

N94-15883* National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX. INFLATABLE RESCUE DEVICE Patent Application SCOTT A. SWAN, inventor (to NASA) 4 May 1993 21 p (NASA-CASE-MSC-22244-1; NAS 1.71;MSC-22244-1; US-PATENT-APPL-SN-066274) Avail. CASI HC A03/MF A01 This invention discloses, in one aspect, a personal rescue device for use in outer space which has an inflatable flexible tube with a shaper apparatus herein. Gas under pressure flows through the shaper apparatus and into the flexible tube. The flexible tube is mounted to the shaper so that as it inflates it expands and deploys lengthwise away from the shaper. In one embodiment a housing contains the shaper and the flexible tube and the housing is designed to facilitate movement of the expanding tube from the housing so the expanding tube does not bunch up in the housing.

N94-20194* National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX. APPARATUS AND METHOD FOR MEASURING SUBJECT WORK RATE ON AN EXERCISE DEVICE Patent WILLIAM E. THORNTON, inventor (to NASA) 7 Sep. 1993 19 p Filed 15 Oct. 1991 Supersedes N92-17910 (30 - 8, p 1335) (NASA-CASE-MSC-21752-1; US-PATENT-5,242,339; US-PATENT-APPL-SN-775404; US-PATENT-CLASS-482-8; US-PATENT-CLASS-482-54; US-PATENT-CLASS-73-379.01; INT-PATENT-CLASS-A63B-22/02; INT-PATENT-CLASS-A63B-71/00) Avail: US Patent and Trademark Office Method and apparatus for accurately simulating locomotion in a weightless environment, especially to prevent atrophy of a subject's musculoskeletal and cardiorespiratory systems during space travel, are disclosed. Forces, including the vertical, horizontal, and lateral force generated by an individual during locomotion on a treadmill using a rigid belt with rigid transfer elements supported by low friction bogies, are measured by strain gauges sensitive in their respective direction. The vertical forces produced by securing the subject to the treadmill via bungee cords, in conjunction with the measured velocity of the treadmill and the mode of locomotion, are used to determine the subject's equivalent weight. The other horizontal and lateral forces are used to determine the external work produced by the subject when locomotion is performed on a nonlevel surface with an effective grade angle. The measured forces are related in such a way that the grade angle is easily determined. A motor and additional circuitry can be added to the apparatus to measure and force a subject to maintain a predetermined work rate associated with a preselected grade angle and tread velocity.

N94-20493* National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, AL. AUTOMATIC LOCKING ORTHOTIC KNEE DEVICE Patent BRUCE C. WEDDENDORF, inventor (to NASA) 7 Dec. 1993 8 p Filed 26 Dec. 1991 Supersedes N92-17866 (30 - 8, p 1335) (NASA-CASE-MFS-28633-1; US-PATENT-5,267,950; US-PATENT-APPL-SN-813629; US-PATENT-CLASS-602-26; US-PATENT-CLASS-623-43; US-PATENT-CLASS-623-44; INT-PATENT-CLASS-A61F-5/00) Avail: US Patent and Trademark Office An articulated tang in clevis joint for incorporation in newly manufactured conventional strap-on orthotic knee devices or for replacing such joints in conventional strap-on orthotic knee devices is discussed. The instant tang in clevis joint allows the user the freedom to extend and bend the knee normally when no load (weight) is applied to the knee and to automatically lock the knee when the user transfers weight to the knee, thus preventing a damaged knee from bending uncontrollably when weight is applied to the knee. The tang in clevis joint of the present invention includes first and second clevis plates, a tang assembly and a spacer plate secured between the clevis plates. Each clevis plate includes a
bevelled serrated upper section. A bevelled shoe is secured to the tank in close proximity to the bevelled serrated upper section of the clevis plates. A coiled spring mounted within an oblong bore of the tank normally urges the shoes secured to the tank out of engagement with the serrated upper section of each clevis plate to allow rotation of the tang relative to the clevis plate. When weight is applied to the joint, the load compresses the coiled spring, the serrations on each clevis plate dig into the bevelled shoes secured to the tang to prevent relative movement between the tang and clevis plates. A shoulder is provided on the tang and the spacer plate to prevent overextension of the joint.

Official Gazette of the U.S. Patent and Trademark Office

61 COMPUTER PROGRAMMING AND SOFTWARE

Includes computer programs, routines, and algorithms, and specific applications, e.g., CAD/CAM.

N94-15703** National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, MD.

A Linear Motion Encoding device for measuring the linear motion of a moving object is disclosed in which a light source is mounted on the moving object and a position sensitive detector such as an array photodetector is mounted on a nearby stationary object. The light source emits a light beam directed towards the array photodetector such that a light spot is created on the array. An analog-to-digital converter, connected to the array photodetector is used for reading the position of the spot on the array photodetector. A microprocessor and memory is connected to the analog-to-digital converter to hold and manipulate data provided by the analog-to-digital converter and to compute the linear displacement of the moving object based upon the data from the analog-to-digital converter.

N94-17326** National Aeronautics and Space Administration. Pasadena Office, CA.

A technique for reducing the spurious signal content in digital sinusoid synthesis is presented. Spur reduction is accomplished through dithering both amplitude and phase values prior to word-length reduction. The analytical approach developed for analog quantization is used to produce new bounds on spur performance in these dithered systems. Amplitude dithering allows output word-length reduction without introducing additional spur. Effects of periodic dither similar to that produced by a pseudo-noise (PN) generator are analyzed. This phase dithering method provides a spur reduction of 6(M + 1) dB per phase bit when the dither consists
of M uniform variates. While the spur reduction is at the expense of an increase in system noise, the noise power can be made white, making the power spectral density small. This technique permits the use of a smaller number of phase bits addressing sinusoid look-up tables, resulting in an exponential decrease in system complexity. Amplitude dithering allows the use of less complicated multipliers and narrower data paths in purely digital applications, as well as the use of coarse-resolution, highly-linear digital-to-analog converters (DACs) to obtain spur performance limited by the DAC linearity rather than its resolution.

NASA

N94-20492* National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX.

RECONFIGURABLE FUZZY CELL Patent

This invention relates to a reconfigurable fuzzy cell comprising a digital control programmable gain operation amplifier, an analog-to-digital converter, an electrically erasable PROM, and an 8-bit counter and comparator, and supporting logic configured to achieve in real-time fuzzy systems high throughput, grade-of-membership or membership-value conversion of multi-input sensor data. The invention provides a flexible multiplexing-capable configuration, implemented entirely in hardware, for effectuating S-, Z-, and P-membership functions or combinations thereof, based upon fuzzy logic level-set theory. A membership value table storing 'knowledge data' for each of S-, Z-, and P-functions is contained within a nonvolatile memory for storing bits of membership and parametric information in a plurality of address spaces. Based upon parametric and control signals, analog sensor data is digitized and converted into grade-of-membership data, in situ learn and recognition modes of operation are also provided.

Official Gazette of the U.S. Patent and Trademark Office

N94-17328*# National Aeronautics and Space Administration. Pasadena Office, CA.

NON-BLOCKING CROSSBAR PERMUTATION ENGINE WITH CONSTANT ROUTING LATENCY Patent Application
STEVE P. MONACOS, inventor (to NASA) (Jet Propulsion Lab., California Inst. of Tech., Pasadena) 18 Aug. 1993 60 p (Contract NAS7-918)

The invention is embodied in an N x N crossbar for routing packets from a set of N input ports to a set of N output ports, each packet having a header identifying one of the output ports as its destination, including a plurality of individual links which carry individual packets. Each link has a link input end and a link output end, a plurality of switches. Each of the switches has at least top and bottom switch inputs connected to a corresponding pair of the link output ends and top and bottom switch outputs connected to a corresponding pair of link input ends, whereby each switch is connected to four different links. Each of the switches has an exchange state which routes packets from the top and bottom switch inputs to the bottom and top switch outputs, respectively, and a bypass state which routes packets from the top and bottom switch inputs to the top and bottom switch outputs, respectively. A plurality of individual controller devices governing respective switches for sensing from a header of a packet at each switch input for the identity of the destination output port of the packet and selecting one of the exchange and bypass states in accordance with the identity of the destination output port and with the location of the corresponding switch relative to the destination output port.

NASA

FIG. 3

N94-17330*# National Aeronautics and Space Administration. Pasadena Office, CA.

A SCALABLE WRAP-AROUND SHUFFLE EXCHANGE NETWORK WITH DEFLECTION ROUTING Patent Application
STEVE P. MONACOS, inventor (to NASA) (Jet Propulsion Lab., California Inst. of Tech., Pasadena) 18 Aug. 1993 36 p (Contract NAS7-918)

The invention is embodied in a shuffle-exchange network with deflection routing, having multiple shuffle stages, with the shuffling at each stage being provided by a deflection routing cell, each stage comprising a plurality of m x m shuffle stages, each stage comprising a plurality of m x m deflection routing cells, whereby in a first stage of the network the shuffle stage is a shuffle exchange stage, and in a second stage the shuffle stage is a shuffle exchange stage with deflection routing, and in each case the shuffle cell comprises a plurality of deflection routing cells, each of which comprises a plurality of deflection routing cells.
The invention in one embodiment is a communication network including plural non-blocking crossbar nodes, first apparatus for connecting the nodes in a first layer of connecting links, and second apparatus for connecting the nodes in a second layer of connecting links independent of the first layer, whereby each layer is connected to the other layer at each one of the nodes. Preferably, each one of the layers of connecting links corresponds to one recirculating network topology that closes in on itself.

FIG. 2

63 CYBERNETICS

Includes feedback and control theory, artificial intelligence, robotics and expert systems.

N94-15704*# National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD.
STEERING CAPACIFLECTOR SENSOR Patent Application
DEL T. JENSTROM, inventor (to NASA) and ROBERT L. MCCONNELL, inventor (to NASA) (West Virginia Univ., Morgantown.) 23 Nov. 1992 15 p

A capacitive type proximity sensor having substantial range and sensitivity between a machine and an intruding object in the immediate vicinity of the machine and having a steerable sensing field has an outer electrical conductor on the machine forming one electrode of a sensor capacitor, the other electrode is the object. The outer conductor is a thin sheet of conductive material with a pair (or more) of intermediate electrical conductors located between the outer conductor and the machine. The pair of intermediate electrical conductors are in close proximity to each other and together form a surface having a size substantially larger than the outer conductor to act as a shield for reducing the parasitic capacitance between the outer conductor and the machine and to steer the sensor field. The pair of intermediate conductors are thin sheets of conductive material substantially wider than the first conductor. The outer and pair of intermediate conductors are attached to a surface on the machine in electrical isolation and with no gaps between the conductors and no gap between the surface and the pair of intermediate conductors. The outer and pair of intermediate conductors are also in conformance with each other and the surface of the machine, and the surface of the machine acts as a ground plane. Variable gain voltage follower circuits are used for coupling, in phase, the instantaneous voltage at the outer electrical conductor to the pair of intermediate electrical conductors and a signal generator is coupled to the outer conductor and is responsive to the capacitance of the sensor capacitor for generating a control signal to the machine.

N94-15946*# National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD.
DOUBLE-DRIVEN SHIELD CAPACITIVE TYPE PROXIMITY SENSOR Patent Application
JOHN M. VRANISH, inventor (to NASA) 25 Jan. 1993 24 p

A capacity type proximity sensor comprised of a capacitance type sensor, a capacitance type reference, and two independent and mutually opposing driven shields respectively adjacent to the sensor and reference and which are coupled in an electrical bridge circuit configuration and driven by a single frequency crystal controlled oscillator is presented. The bridge circuit additionally includes a pair of fixed electrical impedance elements which form adjacent arms of the bridge and which comprise either a pair of
precision resistances or capacitors. Detection of bridge unbalance provides an indication of the mutual proximity between an object and the sensor. Drift compensation is also utilized to improve performance and thus increase sensor range and sensitivity.

FIG 2

N94-15958** National Aeronautics and Space Administration. Pasadena Office, CA.

UNIPOLAR TERMINAL-ATTRACTOR BASED NEURAL ASSOCIATIVE MEMORY WITH ADAPTIVE THRESHOLD Patent Application

(Contract NAS7-918)

NASA

N94-20366** National Aeronautics and Space Administration. Pasadena Office, CA.

ELECTRONIC NEURAL NETWORK FOR SOLVING TRAVELING SALESMAN AND SIMILAR GLOBAL OPTIMIZATION PROBLEMS Patent

NASA

N94-20360** National Aeronautics and Space Administration. Pasadena Office, CA.

ELECTRONIC NEURAL NETWORK FOR PROCESSING BOTH SPATIAL AND TEMPORAL DATA WITH TIME BASED BACK-PROPAGATION Patent

JAMES A. VILLARREAL, inventor (to NASA) and ROBERT O. SHELTON, inventor (to NASA) 12 Oct. 1993 34 p

NASA

N94-21892** National Aeronautics and Space Administration.

Lyndon B. Johnson Space Center, Houston, TX.

NEURAL NETWORK FOR PROCESSING BOTH SPATIAL AND TEMPORAL DATA WITH TIME BASED BACK-PROPAGATION Patent

JAMES A. VILLARREAL, inventor (to NASA) and ROBERT O. SHELTON, inventor (to NASA) 12 Oct. 1993 34 p

FIG 5

Neural networks are computing systems modeled after the paradigm of the biological brain. For years, researchers using various forms of neural networks have attempted to model the brain's information processing and decision-making capabilities. **Neural network algorithms have impressively demonstrated the capability of modeling spatial information. On the other hand, the**
application of parallel distributed models to the processing of temporal data has been severely restricted. The invention introduces a novel technique which adds the dimension of time to the well known back-propagation neural network algorithm. In the space-time neural network disclosed herein, the synaptic weights between two artificial neurons (processing elements) are replaced with an adaptable-adjustable filter. Instead of a single synaptic weight, the invention provides a plurality of weights representing not only association, but also temporal dependencies. In this case, the synaptic weights are the coefficients to the adaptable digital filters. Novelty is believed to lie in the disclosure of a processing element and a network of the processing elements which are capable of processing temporal as well as spatial data.

Official Gazette of the U.S. Patent and Trademark Office

71 ACOUSTICS

Includes sound generation, transmission, and attenuation.

N94-23312 National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.
HEAD RELATED TRANSFER FUNCTION PSEUDO-STEREOPHONY Patent
DURAND R. BEGAULT, inventor (to NASA) 22 Dec. 1992 10 p
Filed 29 Jan. 1992

An apparatus for producing pseudo-stereophonic sound from a monaural signal is discussed. The apparatus includes a monaural source that has a speaker placed in an anechoic room and has a sound output generated by the monaural signal. The second, third, fourth, and fifth speakers are placed in the anechoic room symmetrically about a listener. The monaural signal from the source is processed to output processed signals to each of the second, third, fourth, and fifth speakers, each speaker producing a sound output corresponding to the received processed signal. A pair of microphones is placed in the ears of the listener for receiving the sound outputs of the first, second, third, fourth, and fifth speakers and producing two differentiated audio channels.

Official Gazette of the U.S. Patent and Trademark Office

72 ATOMIC AND MOLECULAR PHYSICS

Includes atomic structure, electron properties, and molecular spectra.

N94-17329# National Aeronautics and Space Administration. Pasadena Office, CA.
ELECTRON REVERSAL IONIZER FOR DETECTION OF TRACE SPECIES USING A SPHERICAL CATHODE Patent Application
(Contract NAS7-918)

A reversal electron, high-current ionizer capable of focusing a beam of electrons to a reversal region employs an indirectly heated cathode having a concave emitting surface of width of W less than 2r, where r is the radius of curvature and preferably a ratio of width to radius approximately equal to one for optimum high current for a given cathode width.

NASA
An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 Å. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

Official Gazette of the U.S. Patent and Trademark Office
A device for position encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a monochromatic light beam is directed towards the facets. The facets of the polygonal mirror each have a low line density diffraction grating to diffract the monochromatic light beam into a number of diffracted light beams such that a number of light spots are created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spots on the linear array detector means. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spots and to compute the position of the shaft based upon the data from the analog-to-digital converter.

An associative optical memory including an input spatial light modulator (SLM) in the form of an edge enhanced liquid crystal light valve (LCLV) and a pair of memory SLM's in the form of liquid crystal televisions (LCTV's) forms a matrix array of an input image which is cross correlated with a matrix array of stored images. The correlation product is detected and nonlinearly amplified to illuminate a replica of the stored image array to select the stored image correlating with the input image. The LCLV is edge enhanced by reducing the bias frequency and voltage and rotating its orientation. The edge enhancement and nonlinearity of the photodetection improves the orthogonality of the stored image. The illumination of the replicate stored image provides a clean stored image, uncontaminated by the image comparison process.

An associative optical memory including an input spatial light modulator (SLM) in the form of an edge enhanced liquid crystal light valve (LCLV) and a pair of memory SLM's in the form of liquid crystal televisions (LCTV's) forms a matrix array of an input image which is cross correlated with a matrix array of stored images. The correlation product is detected and nonlinearly amplified to illuminate a replica of the stored image array to select the stored image correlating with the input image. The LCLV is edge enhanced by reducing the bias frequency and voltage and rotating its orientation. The edge enhancement and nonlinearity of the photodetection improves the orthogonality of the stored image. The illumination of the replicate stored image provides a clean stored image, uncontaminated by the image comparison process.

An optical system is shown for controlling wavefront errors in a complex optical system. The sensitivity model of the complex optical system obtained by linear ray tracing is used to compute a control gain matrix by imposing the mathematical condition for minimizing the total wavefront error at the optical system's pupil. The most recent deformations or error states of the controlled segments or optical surfaces of the system are then assembled as an error vector, and the error vector is transformed by the control gain matrix to produce the exact control variables which will minimize the total wavefront error at the exit pupil of the optical system. These exact control variables are then applied to the actuators controlling the various optical surfaces in the system causing the immediate reduction in total wavefront error observed at the exit pupil of the optical system.
A strip imaging wide angle optical system is provided. The optical system is provided with a 'virtual' material stop to avoid aberrational effects inherent in wide angle optical systems. The optical system includes a spherical mirror section for receiving light from a 180 deg strip or arc of a target image. Light received by the spherical mirror section is reflected to a frustoconical mirror section for subsequent rereflection to a row of optical fibers. Each optical fiber transmits a portion of the received light to a detector. The optical system exploits the narrow cone of acceptance associated with optical fibers to substantially eliminate vignetting effects inherent in wide angle systems. Further, the optical system exploits the narrow cone of acceptance of the optical fibers to substantially limit spherical aberration. The optical system is ideally suited for any application wherein a 180 deg strip image need be detected, and is particularly well adapted for use in hostile environments such as in planetary exploration.

Optical fibers may have applications including fluorosensors which sense the concentration of an analyte. Like communication fibers, these fluorosensors are modeled using a weakly guiding approximation which is only effective when the difference between the respective refractive indices of the fiber core and surrounding cladding are minimal. An optical fiber fluorosensor is provided having a portion of a fiber core which is surrounded by an active cladding which is permeable by the analyte to be sensed and containing substances which emit light waves upon excitation. A remaining portion of the fiber core is surrounded by a guide cladding which guides these light waves to a sensor which detects the intensity of waves, which is a function of the analyte concentration. Contrary to conventional weakly guiding principles, the difference between the respective indices of refraction of the fiber core is surrounded by an active cladding which is thin enough such that its index of refraction is effectively that of the surrounding atmosphere, thereby the atmosphere guides the injective indices of the fiber core and the cladding results in an unexpected increase in the power efficiency of the fiber core.

An optical fiber is provided. The fiber is comprised of an active fiber core which produces waves of light upon excitation. A factor ka is identified and increased until a desired improvement in power efficiency is obtained. The variable a is the radius of the active fiber core and k is defined as $2\pi/\lambda$ wherein λ is the wavelength of the light produced by the active fiber core. In one embodiment, the factor ka is increased until the power efficiency stabilizes. In addition to a bare fiber core embodiment, a two-stage fluorescent fiber is provided wherein an active cladding surrounds a portion of the active fiber core having an improved ka factor. The power efficiency of the embodiment is further improved by increasing a difference between the respective indices of refraction of the active fiber core having an improved ka factor. The power efficiency of the embodiment is further improved by increasing a difference between the respective indices of refraction of the active fiber core and the active fiber core.
COMICALLY SCANNED HOLOGRAPHIC LIDAR TELESCOPE Patent

An optical scanning device utilizing a source of optical energy such as laser light backscattered from the earth's atmosphere or transmitted outward as in a lidar, a rotating holographic optical element having an axis of rotation perpendicular to the plane of its substrate, and having a stationary focus which may or may not be located on its axis of rotation, with the holographic optical element diffracting the source of optical energy at an angle to its rotation axis enabling a conical scanning area and a motor for supporting and rotating the rotating holographic optical element, is described.

Space savings are effected in the optical output system of a laser velocimeter. The output system is comprised of pairs of optical fibers having output ends from which a beam of laser light emerges, a transfer lens for each light beam, and at least one final (LV) lens for receiving the light passing through the transfer lenses and for focussing that light at a common crossing point or area. In order to closely couple the transfer lenses to the final lens, each transfer lens is positioned relative to the final lens receiving light therefrom such that the output waist of the corresponding beam received by the final lens from the transfer lens is a virtual waist located before the transfer lens.
Hydrocarbon polymer coatings used in microelectronic manufacturing processes are anisotropically etched by hyperthermal atomic oxygen beams (translational energies of 0.2 to 20 eV, preferably 1 to 10 eV). Etching with hyperthermal oxygen atom species obtains highly anisotropic etching with sharp boundaries between etched and mask protected areas.

Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si-Ge layers followed by patterning into mesa structures. The mesas are stain etched resulting in porosification of the Si-Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si-Ge layers produced in a similar manner emitted visible light at room temperature.
METHOD FOR CONTROLLING PROTEIN CRYSTALLIZATION Patent

A method and apparatus for controlling the crystallization of protein by solvent evaporation including placing a drop of protein solution between and in contact with a pair of parallel plates and driving one of the plates toward and away from the other plate in a controlled manner to adjust the spacing between the plates is presented. The drop of solution forms a liquid cylinder having a height dependent upon the plate spacing thereby effecting the surface area available for solvent evaporation. When the spacing is close, evaporation is slow. Evaporation is increased by increasing the spacing between the plates until the breaking point of the liquid cylinder. One plate is mounted upon a fixed post while the other plate is carried by a receptacle movable relative to the post and driven by a belt driven screw drive. The temperature and humidity of the drop of protein solution are controlled by sealing the drop within the receptacle and mounting a heater and dessicant within the receptacle.

Official Gazette of the U.S. Patent and Trademark Office

METHOD OF FORMING SILICON STRUCTURES WITH SELECTABLE OPTICAL CHARACTERISTICS Patent

The design and performance of a wide angle, single screen, frequency selective surface (FSS) with gridded square-loop path elements are described for diplexing closely separated signal bands, for example, X- and Ku-band signals in an Orbiting Very Long Baseline Interferometer (OVLBI) earth station reflector antenna system, as well as other applications such as military and commercial communications via satellites. Excellent agreement is obtained between the predicted and measured results of this FSS design using the gridded square-loop patch elements sandwiched between 0.0889 cm thick tetrafluoroethylene fluorocarbon polymer (PTFE) slabs. Resonant frequency drift is reduced by 1 GHz with an incident angle from 0 degrees normal to 40 degrees from normal.

Official Gazette of the U.S. Patent and Trademark Office

WIDE ANGLE, SINGLE SCREEN, GRIDDED SQUARE-LOOP FREQUENCY SELECTIVE SURFACE FOR DIPLEXING TWO CLOSELY SEPARATED FREQUENCY BANDS Patent Application

The design and performance of a wide angle, single screen, frequency selective surface (FSS) with gridded square-loop path elements are described for diplexing closely separated signal bands, for example, X- and Ku-band signals in an Orbiting Very Long Baseline Interferometer (OVLBI) earth station reflector antenna system, as well as other applications such as military and commercial communications via satellites. Excellent agreement is obtained between the predicted and measured results of this FSS design using the gridded square-loop patch elements sandwiched between 0.0889 cm thick tetrafluoroethylene fluorocarbon polymer (PTFE) slabs. Resonant frequency drift is reduced by 1 GHz with an incident angle from 0 degrees normal to 40 degrees from normal.

Official Gazette of the U.S. Patent and Trademark Office

METHOD OF FORMING SILICON STRUCTURES WITH SELECTABLE OPTICAL CHARACTERISTICS Patent

The design and performance of a wide angle, single screen, frequency selective surface (FSS) with gridded square-loop path elements are described for diplexing closely separated signal bands, for example, X- and Ku-band signals in an Orbiting Very Long Baseline Interferometer (OVLBI) earth station reflector antenna system, as well as other applications such as military and commercial communications via satellites. Excellent agreement is obtained between the predicted and measured results of this FSS design using the gridded square-loop patch elements sandwiched between 0.0889 cm thick tetrafluoroethylene fluorocarbon polymer (PTFE) slabs. Resonant frequency drift is reduced by 1 GHz with an incident angle from 0 degrees normal to 40 degrees from normal.

Official Gazette of the U.S. Patent and Trademark Office

The design and performance of a wide angle, single screen, frequency selective surface (FSS) with gridded square-loop path elements are described for diplexing closely separated signal bands, for example, X- and Ku-band signals in an Orbiting Very Long Baseline Interferometer (OVLBI) earth station reflector antenna system, as well as other applications such as military and commercial communications via satellites. Excellent agreement is obtained between the predicted and measured results of this FSS design using the gridded square-loop patch elements sandwiched between 0.0889 cm thick tetrafluoroethylene fluorocarbon polymer (PTFE) slabs. Resonant frequency drift is reduced by 1 GHz with an incident angle from 0 degrees normal to 40 degrees from normal.

Official Gazette of the U.S. Patent and Trademark Office
PUBLIC AVAILABILITY OF COPIES OF PATENTS
AND PATENT APPLICATIONS

Copies of U.S. patents may be purchased directly from the U.S. Patent and Trademark Office, Washington, D.C. 20231 at $1.50 per copy. When ordering patents, the U.S. Patent Number should be used, and payment must be remitted in advance, preferably by money order or check payable to the Commissioner of Patents and Trademarks. Prepaid purchase coupons for ordering are also available from the Patent and Trademark Office.

NASA patent application specifications are sold in paper copy and microfiche by the NASA Center for AeroSpace Information (CASI). The N accession number should be used in ordering either paper copy or microfiche from CASI.

LICENSES FOR COMMERCIAL USE:
INQUIRIES AND APPLICATIONS FOR LICENSE

NASA inventions, abstracted in NASA PAB, are available for nonexclusive or exclusive licensing in accordance the NASA Patent Licensing Regulations. It is significant that all licenses for NASA inventions shall be by express written instruments and that no license will be granted or implied in a NASA invention except as provided in the NASA Patent Licensing Regulations.

Inquiries concerning the NASA Patent Licensing Program or the availability of licenses for the commercial use of NASA-owned inventions covered by U.S. patents or pending applications for patent should be forwarded to the NASA Patent Counsel of the NASA installation having cognizance of the specific invention, or the Associate General Counsel for Intellectual Property, code GP, National Aeronautics and Space Administration, Washington, D.C. 20546. Inquiries should refer to the NASA Case Number, the Title of the Invention, and the U.S. Patent Number or the U.S. Application Serial Number assigned to the invention as shown in NASA PAB.

The NASA Patent Counsel having cognizance of the invention is determined by the first three letters or prefix of the NASA Case Number assigned to the invention. The addresses of NASA Patent Counsels are listed alongside the NASA Case Number prefix letters in the following table.

STANDING ORDER SUBSCRIPTIONS

NASA SP-7039, Section 1 and its supplements are available from the NASA Center for AeroSpace Information on standing order subscription. Standing order subscriptions do not terminate at the end of a year, as do regular subscriptions, but continue indefinitely unless specifically terminated by the subscriber.
PATENT LICENSING REGULATIONS

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
14 CFR Part 1245
Patents and Other Intellectual Property Rights

AGENCY: National Aeronautics and Space Administration (NASA).

ACTION: Final Rule.

SUMMARY: 14 CFR part 1245, subpart 2, "Licensing of NASA Inventions" provides policies and procedures applicable to the licensing of federally owned inventions in the custody of the National Aeronautics and Space Administration and implements Public Law 96-517. The object of subpart 2 is to use the patent system to promote the utilization of inventions arising from NASA supported research and development.

EFFECTIVE DATE: December 13, 1990.

FOR FURTHER INFORMATION CONTACT: Harry Lupuloff, (202) 358-2041

SUPPLEMENTARY INFORMATION:
14 CFR part 1245, subpart 2 is amended by revising NASA position titles in §1245.208 (a), (b) and (c). Since this action is internal and administrative in nature and does not affect the existing regulations, notice and public comment are not required.

The National Aeronautics and Space Administration has determined that:
(1) This rule is not subject to the requirements of the Regulatory Flexibility Act, 5 U.S.C. 601-612, since it will not exert a significant impact on a substantial number of small business entities.
(2) This rule is not a major rule as defined in Executive Order 12291.
List of Subjects in 14 CFR part 1245
Administrative practice and procedure. Authority delegations (Government agencies). Inventions and patents.

For reasons set out in the Preamble, 14 CFR part 1245 is amended as follows:

PART 1245—PATENTS AND OTHER INTELLECTUAL PROPERTY RIGHTS
(1) The authority citation for 14 CFR part 1245, subpart 2 continues to read as follows:
(2) Section 1245.208 is revised to read as follows:

§1245.208 Scope of subpart.

This subpart prescribes the terms, conditions and procedures upon which a NASA invention may be licensed. It does not affect licenses which (a) were in effect prior to July 1, 1981; (b) may exist at the time of the Government's acquisition of title to the invention, including those resulting from the allocation of rights to inventions made under Government research and development contracts; (c) are the result of an authorized exchange of rights in the settlement of patent disputes; or (d) are otherwise authorized by law or treaty.

§1245.201 Policy and objective.

It is the policy and objective of this subpart to use the patent system to promote the utilization of inventions arising from NASA supported research and development.

§1245.202 Definitions.

(a) "Federally owned invention" means an invention, plant, or design which is covered by a patent, or patent application in the United States, or a patent, patent application, plant variety protection, or other form of protection, in a foreign country, title to which has been assigned to or otherwise vested in the United States Government.

(b) "Federal agency" means an executive department, military department, Government corporation, or independent establishment, except the Tennessee Valley Authority, which has custody of a Federally owned invention.

(c) "NASA Invention" means a Federally owned invention with respect to which NASA maintains custody and administration, in whole or in part, of the right, title or interest in such invention on behalf of the United States Government.

(d) "Small business firm" means a small business concern as defined at section 2 of Pub. L. 85-536 (15 U.S.C. 632) and implementing regulations of the Administrator of the Small Business Administration. For the purpose of these regulations, the size standard for small business concerns involved in Government procurement, contained in 13 CFR 121.3-8, and in subcontracting, contained in 13 CFR 121.3-12, will be used.

(e) "Practical application" means to manufacture in the case of a composition or product, to practice in the case of a process or method, to operate in the case of a machine or system; and, in each case, under such conditions, as to establish that the invention is being utilized and that its benefits are to the extent permitted by law or Government regulations available to the public on reasonable terms.

(f) "United States" means the United States of America, its territories and possessions, the District of Columbia, and the Commonwealth of Puerto Rico.

§1245.203 Authority to grant licenses.

NASA inventions shall be made available for licensing as deemed appropriate in the public interest. NASA may grant nonexclusive, partially exclusive, or exclusive licenses thereto under this subpart on inventions in its custody.

Restrictions and Conditions

§1245.204 All licenses granted under this subpart.

Types of Licenses

1245.205 Nonexclusive licenses.
1245.206 Exclusive and partially exclusive licenses.

Procedures

1245.207 Application for a license.
1245.208 Processing applications.
1245.209 Notice to Attorney General.
1245.210 Modification and termination of licenses.
1245.211 Appeals.
1245.212 Protection and administration of inventions.
1245.213 Transfer of custody.
1245.214 Confidentiality of information.

Subpart 2—Licensing of NASA Inventions

§1245.200 Scope of subpart.

For reasons set out in the Preamble, 14 CFR part 1245 is amended as follows:

(1) The authority citation for 14 CFR part 1245, subpart 2 continues to read as follows:

Subpart 2—Licensing of NASA Inventions

§1245.200 Scope of subpart.

This subpart prescribes the terms, conditions and procedures upon which a NASA invention may be licensed. It does not affect licenses which (a) were in effect prior to July 1, 1981; (b) may exist at the time of the Government's acquisition of title to the invention, including those resulting from the allocation of rights to inventions made under Government research and development contracts; (c) are the result of an authorized exchange of rights in the settlement of patent disputes; or (d) are otherwise authorized by law or treaty.

§1245.201 Policy and objective.

It is the policy and objective of this subpart to use the patent system to promote the utilization of inventions arising from NASA supported research and development.

§1245.202 Definitions.

(a) "Federally owned invention" means an invention, plant, or design which is covered by a patent, or patent application in the United States, or a patent, patent application, plant variety protection, or other form of protection, in a foreign country, title to which has been assigned to or otherwise vested in the United States Government.

(b) "Federal agency" means an executive department, military department, Government corporation, or independent establishment, except the Tennessee Valley Authority, which has custody of a Federally owned invention.

(c) "NASA Invention" means a Federally owned invention with respect to which NASA maintains custody and administration, in whole or in part, of the right, title or interest in such invention on behalf of the United States Government.

(d) "Small business firm" means a small business concern as defined at section 2 of Pub. L. 85-536 (15 U.S.C. 632) and implementing regulations of the Administrator of the Small Business Administration. For the purpose of these regulations, the size standard for small business concerns involved in Government procurement, contained in 13 CFR 121.3-8, and in subcontracting, contained in 13 CFR 121.3-12, will be used.

(e) "Practical application" means to manufacture in the case of a composition or product, to practice in the case of a process or method, to operate in the case of a machine or system; and, in each case, under such conditions, as to establish that the invention is being utilized and that its benefits are to the extent permitted by law or Government regulations available to the public on reasonable terms.

(f) "United States" means the United States of America, its territories and possessions, the District of Columbia, and the Commonwealth of Puerto Rico.

§1245.203 Authority to grant licenses.

NASA inventions shall be made available for licensing as deemed appropriate in the public interest. NASA may grant nonexclusive, partially exclusive, or exclusive licenses thereon under this subpart on inventions in its custody.

Restrictions and Conditions

§1245.204 All licenses granted under this subpart.

(a) Restrictions: (1) A license may be granted only if the applicant has supplied NASA with a satisfactory plan for development or marketing of the invention, or both, and with information about the applicant's capability to fulfill the plan.

(2) A license granting rights to use or sell under a NASA invention in the United States shall normally be granted only to a licensee who agrees that any products embodying the invention or produced through the use of the invention will be manufactured substantially in the United States.

(b) Conditions. Licenses shall contain such terms and conditions as NASA determines are appropriate for the protection of the interests of the Federal Government and the public and are not in conflict with law or this subpart. The following terms and conditions apply to any license:

(1) The duration of the license shall be for a period specified in the license agreement, unless sooner terminated in accordance with this subpart.

(2) The license may be granted for all or less than all fields of use of the invention or in specified geographical areas, or both.
PATENT LICENSING REGULATIONS

(3) The license may extend to subsidiaries of the licensee or other parties if provided for in the license but shall be nonassignable without approval of NASA, except to the successor of that part of the licensee's business to which the invention pertains.

(4) The license may provide the licensee the right to grant sublicenses under the license, subject to the approval of NASA. Each sublicense shall make reference to the license, including the rights retained by the Government, and a copy of such sublicense shall be furnished to NASA.

(5) The license shall require the licensee to carry out the plan for development or marketing of the invention, or both, to bring the invention to practical application within a period specified in the license, and to continue to make the benefits of the invention reasonably accessible to the public.

(6) The license shall require the licensee to report periodically on the utilization or efforts at obtaining utilization that are being made by the licensee, with particular reference to the plan submitted.

(7) All licenses shall normally require royalties or other consideration.

(8) Where an agreement is obtained pursuant to §1245.204(a)(2) that any products embodying the invention or produced through use of the invention will be manufactured substantially in the United States, the license shall recite such agreement.

(9) The license shall provide for the right of NASA to terminate the license, in whole or in part, if:

(i) NASA determines that the licensee is not executing the plan submitted with its request for a license and the license and the licensee cannot otherwise demonstrate to the satisfaction of NASA that it has taken or can be expected to take within a reasonable time effective steps to achieve practical application of the invention;

(ii) NASA determines that such action is necessary to meet requirements for public use specified by Federal regulations issued after the date of the license and such requirements are not reasonably satisfied by the licensee;

(iii) The licensee has willfully made a false statement of or willfully omitted a material fact in the license application or in any report required by the license agreement; or

(iv) The licensee commits a substantial breach of a covenant or agreement contained in the license.

(10) The license may be modified or terminated, consistent with this subpart, upon mutual agreement of NASA and the licensee.

(11) Nothing relating to the grant of a license, nor the grant itself, shall be construed to confer upon any person any immunity from or defenses under the antitrust laws or from a charge of patent misuse, and the acquisition and use of rights pursuant to this subpart shall not be immunized from the operation of state or Federal law by reason of the source of the grant.

Types of Licenses

§1245.205 Nonexclusive licenses.

(a) Availability of licenses. Nonexclusive licenses may be granted under NASA inventions without publication of availability or notice of a prospective license.

(b) Conditions. In addition to the provisions of §1245.204, the nonexclusive license may also provide that, after termination of a period specified in the license agreement, NASA may restrict the license to the fields of use or geographic areas, or both, in which the licensee has brought the invention to practical application and continues to make the benefits of the invention reasonably accessible to the public. However, such restriction shall be made only in order to grant an exclusive or partially exclusive license in accordance with this subpart.

§1245.206 Exclusive and partially exclusive licenses.

(a) Domestic licenses.

(1) Availability of licenses. Exclusive or partially exclusive licenses may be granted on NASA inventions: (i) 3 months after notice of the invention's availability has been announced in the Federal Register; or (ii) without such notice where NASA determines that expeditious granting of such a license will best serve the interests of the Federal Government and the public; and (iii) in either situation, specified in (a)(1)(i) or (ii) of this section only if:

(A) Notice of a prospective license, identifying the invention and the prospective licensee, has been published in the Federal Register, providing opportunity for filing written objections within a 60-day period;

(B) After expiration of the period in §1245.206(a)(1)(ii)(A) and consideration of any written objections received during the period, NASA has determined that:

(1) The interests of the Federal Government and the public will best be served by the proposed license, in view of the applicant's intentions, plans, and ability to bring the invention to practical application or otherwise promote the invention's utilization by the public;

(2) The desired practical application has not been achieved, or is not likely expeditiously to be achieved, under any nonexclusive license which has been granted, or which may be granted, on the invention;

(3) Exclusive or partially exclusive licensing is a reasonable and necessary incentive to call forth the investment of risk capital and expenditures to bring the invention to practical application or otherwise promote the invention's utilization by the public; and

(4) The proposed terms and scope of exclusivity are not greater than reasonably necessary to provide the incentive for bringing the invention to practical application or otherwise promote the invention's utilization by the public;

(c) Record of determinations. NASA shall maintain a record of determinations to grant exclusive or partially exclusive licenses.
PATENT LICENSING REGULATIONS

Procedures

§1245.207 Application for a license.

An application for a license should be addressed to the Patent Counsel at the NASA installation having responsibility for the invention and shall normally include:

(a) Identification of the invention for which the license is desired, including the patent application, serial number or patent number, title, and date, if known;

(b) Identification of the type of license for which the application is submitted;

(c) Name and address of the person, company, or organization applying for the license and the citizenship or place of incorporation of the applicant;

(d) Name, address, and telephone number of representative of applicant to whom correspondence should be sent;

(e) Nature and type of applicant's business, identifying products or services which the applicant has successfully commercialized, and approximate number of applicant's employees;

(f) Source of information concerning the availability of a license on the invention;

(g) A statement indicating whether applicant is a small business firm as defined in §1245.202(c);

(h) A detailed description of applicant's plan for development or marketing of the invention, or both, which should include:

(1) A statement of the time, nature and amount of anticipated investment of capital and other resources which applicant believes will be required to bring the invention to practical application;

(2) A statement as to applicant's capability and intention to fulfill the plan, including information regarding manufacturing, marketing, financial, and technical resources;

(3) A statement of the fields of use for which applicant intends to practice the invention; and

(4) A statement of the geographic areas in which applicant intends to manufacture any products embodying the invention and geographic areas where applicant intends to use or sell the invention, or both;

(i) Identification of licenses previously granted to applicant under Federally owned inventions;

(j) A statement containing applicant's best knowledge of the extent to which the invention is being practiced by private industry or Government, or both, or is otherwise available commercially; and

(k) Any other information which applicant believes will support a determination to grant the license to applicant.

§1245.208 Processing applications.

(a) Applications for licenses will be initially reviewed by the Patent Counsel of the NASA installation having responsibility for the invention. The Patent Counsel shall make a preliminary recommendation to the Director of Licensing, NASA Headquarters, whether to:

(1) Grant the license as requested.

(2) Deny the license.

The Director of Licensing shall review the preliminary recommendation of the Patent Counsel and make a final recommendation to the NASA Associate General Counsel (Intellectual Property). Such review and final recommendation may include, and be based on, any additional information obtained from applicant and other sources that the Patent Counsel and the Director of Licensing deem relevant to the license requested. The determination to grant or deny the license shall be made by the Associate General Counsel (Intellectual Property) based on the final recommendation of the Director of Licensing.

(b) Where notice of a prospective exclusive or partially exclusive license is published in the Federal Register in accordance with §1245.206(a)(1)(iii)(A) or §1245.206(b)(1)(i), any written objections received in response thereto will be considered by the Director of Licensing in making the final recommendation to the Associate General Counsel (Intellectual Property).

(c) If the requested license, including any negotiated modifications, is denied by the Associate General Counsel (Intellectual Property), the applicant may request reconsideration by filing a written request for reconsideration within 30 days after receiving notice of denial. This 30-day period may be extended for good cause.

(d) In addition to, or in lieu of requesting reconsideration, the applicant may also appeal the denial of the license in accordance with §1245.211.

Dated: November 23, 1990
Richard H. Truly,
Administrator.
<table>
<thead>
<tr>
<th>NASA Case Number</th>
<th>Prefix Letters</th>
<th>Address of Cognizant NASA Patent Counsel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC-xxxxx</td>
<td>XAR-xxxxx</td>
<td>Ames Research Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mail Code: 200-11A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moffett Field, California 94035</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Telephone: (415) 694-5104</td>
</tr>
<tr>
<td>ERC-xxxxx</td>
<td>XER-xxxxx</td>
<td>NASA Headquarters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mail Code: GP</td>
</tr>
<tr>
<td>HQN-xxxxx</td>
<td>XHQ-xxxxx</td>
<td>Washington, DC 20546</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Telephone: (202) 358-2066</td>
</tr>
<tr>
<td>GSC-xxxxx</td>
<td>XGS-xxxxx</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mail Code: 204</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Greenbelt, Maryland 20771</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Telephone: (301) 286-7351</td>
</tr>
<tr>
<td>KSC-xxxxx</td>
<td>XKS-xxxxx</td>
<td>John F. Kennedy Space Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mail Code: PT-PAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kennedy Space Center, Florida 32899</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Telephone: (305) 867-2544</td>
</tr>
<tr>
<td>LAR-xxxxx</td>
<td>XLA-xxxxx</td>
<td>Langley Research Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mail Code: 279</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hampton, Virginia 23365</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Telephone: (804) 865-3725</td>
</tr>
<tr>
<td>LEW-xxxxx</td>
<td>XLE-xxxxx</td>
<td>Lewis Research Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mail Code: 500-318</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21000 Brookpark Road</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cleveland, Ohio 44135</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Telephone: (216) 433-5753</td>
</tr>
<tr>
<td>MSC-xxxxx</td>
<td>XMS-xxxxx</td>
<td>Lyndon B. Johnson Space Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mail Code: AL3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Houston, Texas 77058</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Telephone: (713) 483-4871</td>
</tr>
<tr>
<td>MFS-xxxxx</td>
<td>XMF-xxxxx</td>
<td>George C. Marshall Space Flight Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mail Code: CC01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Huntsville, Alabama 35812</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Telephone: (205) 544-0024</td>
</tr>
<tr>
<td>NPO-xxxxx</td>
<td>XNP-xxxxx</td>
<td>NASA Resident Legal Office</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mail Code: 180-801</td>
</tr>
<tr>
<td>FRC-xxxxx</td>
<td>XFR-xxxxx</td>
<td>4800 Oak Grove Drive</td>
</tr>
<tr>
<td>XOO-xxxxx</td>
<td>WOO-xxxxx</td>
<td>Pasadena, California 91103</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Telephone: (818) 354-2700</td>
</tr>
</tbody>
</table>
NASA Patent Abstracts Bibliography
A Continuing Bibliography
Section 1: Abstracts (Supplement 45)

Abstract
Abstracts are provided for 137 patents and patent applications entered into the NASA scientific and technical information system during the period January 1994 through June 1994. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.

Key Words (Suggested by Author(s))
- Bibliographies
- Patent Policy
- NASA Programs

Distribution Statement
Unclassified - Unlimited
Subject Category - 82

For sale by the NASA Center for AeroSpace Information, 800 Elkridge Landing Road, Linthicum Heights, MD 21090-2934
<table>
<thead>
<tr>
<th>Bibliography Number</th>
<th>STAR Accession Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA SP-7039 (04) SEC 1</td>
<td>N69-20701 - N73-33931</td>
</tr>
<tr>
<td>NASA SP-7039 (12) SEC 1</td>
<td>N74-10001 - N77-34042</td>
</tr>
<tr>
<td>NASA SP-7039 (13) SEC 1</td>
<td>N78-10001 - N78-22018</td>
</tr>
<tr>
<td>NASA SP-7039 (14) SEC 1</td>
<td>N78-22019 - N78-34034</td>
</tr>
<tr>
<td>NASA SP-7039 (15) SEC 1</td>
<td>N79-10001 - N79-21993</td>
</tr>
<tr>
<td>NASA SP-7039 (16) SEC 1</td>
<td>N79-21994 - N79-34158</td>
</tr>
<tr>
<td>NASA SP-7039 (17) SEC 1</td>
<td>N80-10001 - N80-22254</td>
</tr>
<tr>
<td>NASA SP-7039 (18) SEC 1</td>
<td>N80-22255 - N80-34339</td>
</tr>
<tr>
<td>NASA SP-7039 (19) SEC 1</td>
<td>N81-10001 - N81-21997</td>
</tr>
<tr>
<td>NASA SP-7039 (20) SEC 1</td>
<td>N81-21998 - N81-34139</td>
</tr>
<tr>
<td>NASA SP-7039 (21) SEC 1</td>
<td>N82-10001 - N82-22140</td>
</tr>
<tr>
<td>NASA SP-7039 (22) SEC 1</td>
<td>N82-22141 - N82-34341</td>
</tr>
<tr>
<td>NASA SP-7039 (23) SEC 1</td>
<td>N83-10001 - N83-23266</td>
</tr>
<tr>
<td>NASA SP-7039 (24) SEC 1</td>
<td>N83-23267 - N83-37053</td>
</tr>
<tr>
<td>NASA SP-7039 (25) SEC 1</td>
<td>N84-10001 - N84-22526</td>
</tr>
<tr>
<td>NASA SP-7039 (26) SEC 1</td>
<td>N84-22527 - N84-35284</td>
</tr>
<tr>
<td>NASA SP-7039 (27) SEC 1</td>
<td>N85-10001 - N85-22341</td>
</tr>
<tr>
<td>NASA SP-7039 (28) SEC 1</td>
<td>N85-22342 - N85-36162</td>
</tr>
<tr>
<td>NASA SP-7039 (29) SEC 1</td>
<td>N86-10001 - N86-22536</td>
</tr>
<tr>
<td>NASA SP-7039 (30) SEC 1</td>
<td>N86-22537 - N86-33262</td>
</tr>
<tr>
<td>NASA SP-7039 (31) SEC 1</td>
<td>N87-10001 - N87-20170</td>
</tr>
<tr>
<td>NASA SP-7039 (32) SEC 1</td>
<td>N87-20171 - N87-30248</td>
</tr>
<tr>
<td>NASA SP-7039 (33) SEC 1</td>
<td>N88-10001 - N88-20253</td>
</tr>
<tr>
<td>NASA SP-7039 (34) SEC 1</td>
<td>N88-20254 - N88-30583</td>
</tr>
<tr>
<td>NASA SP-7039 (35) SEC 1</td>
<td>N89-10001 - N89-20085</td>
</tr>
<tr>
<td>NASA SP-7039 (36) SEC 1</td>
<td>N89-20086 - N89-30155</td>
</tr>
<tr>
<td>NASA SP-7039 (37) SEC 1</td>
<td>N90-10001 - N90-20043</td>
</tr>
<tr>
<td>NASA SP-7039 (38) SEC 1</td>
<td>N90-20044 - N90-30170</td>
</tr>
<tr>
<td>NASA SP-7039 (39) SEC 1</td>
<td>N91-10001 - N91-21058</td>
</tr>
<tr>
<td>NASA SP-7039 (40) SEC 1</td>
<td>N91-21059 - N91-33053</td>
</tr>
<tr>
<td>NASA SP-7039 (41) SEC 1</td>
<td>N92-10001 - N92-22095</td>
</tr>
<tr>
<td>NASA SP-7039 (42) SEC 1</td>
<td>N92-22096 - N92-34247</td>
</tr>
<tr>
<td>NASA SP-7039 (43) SEC 1</td>
<td>N93-10001 - N93-19958</td>
</tr>
<tr>
<td>NASA SP-7039 (44) SEC 1</td>
<td>N93-19959 - N93-32425</td>
</tr>
<tr>
<td>NASA SP-7039 (45) SEC 1</td>
<td>N94-10001 - N94-25542</td>
</tr>
</tbody>
</table>