Monolith Catalysts for Closed-Cycle Carbon Dioxide Lasers

NASA Grant NAG-1-1051

Final Report
Grant Ending Date March 31, 1994

submitted by

Principal Investigator:
Richard K. Herz
Department of Applied Mechanics and Engineering Sciences
University of California, San Diego
La Jolla, California 92093-0310

to

Grant Technical Officer:
David R. Schryer
NASA Langley Research Center
Hampton, Virginia 23665
"Monolith Catalysts for Closed-Cycle Carbon Dioxide Lasers"

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>FINAL REPORT</td>
<td>1</td>
</tr>
<tr>
<td>OBJECTIVE</td>
<td>1</td>
</tr>
<tr>
<td>MANUSCRIPT</td>
<td>2</td>
</tr>
<tr>
<td>APPENDIX I (program listing)</td>
<td>22</td>
</tr>
<tr>
<td>APPENDIX II (program listing)</td>
<td>35</td>
</tr>
<tr>
<td>(last page of final report)</td>
<td>47</td>
</tr>
</tbody>
</table>
The general subject area of the project involved the development of solid catalysts that have high activity at low temperature for the oxidation of gases such as CO. The original application considered was CO oxidation in closed-cycle CO₂ lasers. The scope of the project was subsequently extended to include oxidation of gases in addition to CO and applications such as air purification and exhaust gas emission control. The primary objective of the final phase grant was to develop design criteria for the formulation of new low-temperature oxidation catalysts utilizing Monte Carlo simulations of reaction over NASA-developed catalysts. This work resulted in a paper published in the Journal of Catalysis.
OBJECTIVE

The primary objective of the grant was to develop design criteria for the formulation of new low-temperature oxidation catalysts utilizing Monte Carlo simulations of reaction over NASA-developed catalysts. This work resulted in a paper published in the Journal of Catalysis in. A copy of this paper follows and serves as the main body of this final report. The computer programs used in this work are listed in two appendixes to this final report.
Two-Component Catalysts for Low-Temperature CO Oxidation:
A Monte Carlo Study

R. K. HERZ,* A. BADLANI,* D. R. SCHRYER,† AND B. T. UPCHURCH†

*Chemical Engineering Group, Department of Applied Mechanics and Engineering Sciences,
University of California, San Diego, California 92093-0310; and †NASA Langley Research Center,
Hampton, Virginia 23681-0001

Received August 20, 1992; revised January 5, 1993

The reaction of CO and O₂ at low temperature over composite, noble-metal/reducible-oxide
catalysts is simulated using Monte Carlo techniques. High activity for CO oxidation can be obtained
over a composite material composed of a highly interspersed mixture of one type of site that
adsorbs CO and O₂ and another type of site that adsorbs O₂ without significant CO inhibition. For
example, the rate over Pd under 1% of an atmosphere of CO at room temperature is predicted to
increase 10 orders-of-magnitude with addition of 1% of surface sites which adsorb O₂ but not CO.
For most reaction rules and parameter values, a roughly 50-50 mixture of the two types of sites
gives the greatest activity per unit total surface area. This result is determined by the reaction
stoichiometry and the fact that the two reactants primarily adsorb separately on the two different
types of sites. In a randomly distributed mixture, the two types of sites have widely differing
activities which depend on the local site configurations. The local site configurations of the most
active sites in a random surface are similar to site configurations found in a search for optimal
configurations. The site configurations found in the search for optimal configurations were about
20% more active than the random surfaces of the same overall composition. This relatively small
increase may be due to the simple steric requirements of CO and O₂ adsorption. We expect that
similar searches for optimal site configurations will be more fruitful for reactions with more complex
steric requirements.

INTRODUCTION

For most of us who are familiar with conventional CO oxidation catalysts which are
active only at temperatures above about 150°C, observation of rapid CO oxidation at
room temperature can be startling. In our laboratories, for example, we have measured, at room temperature, 56% conver-
sion of a stoichiometrically balanced, atmospheric-pressure mixture of 1% CO and
0.5% O₂ in N₂ flowing at 1.2 cm³/s over 0.2 g of Au/MnO₂ (1). Au/MnO₂ and related ma-
terials are some of the few heterogeneous catalysts with activities at ambient conditions
which may approach those of biological catalysts. The objective of the work
presented here is to help develop an under-
standing of how these heterogeneous catalysts are able to oxidize CO at ambient and subambient temperatures.

There are several applications in which the catalytic oxidation of CO near ambient
temperature is desirable. One such application is removal of CO as a contaminant of
breathing air in enclosed spaces such as submarines and space vehicles and in burning
structures or mines (2). Another is oxidation of CO in automobile engine exhaust during
cold starts (3). A third is regeneration of
CO₂ in transversely excited atmospheric pressure (TEA) CO₂ lasers (4, 5). Stoichio-
metrically balanced mixtures of CO and O₂ are generated during the operation of CO₂
TEA lasers through the decomposition of
CO₂ by the electrical discharge that initiates the lasing process. Consumption of CO₂ and
buildup of O₂ degrades the performance of
such a laser. A CO oxidation catalyst that operates under low-temperature conditions is desirable for the development of closed-cycle or sealed CO₂ TEA lasers, which have applications such as mapping of earth's wind patterns from space by laser Doppler anemometry and remote sensing of environmental pollutants by infrared spectrometry (6).

The reaction between CO and O₂ proceeds at a negligible rate over most catalysts near ambient temperature, even though the reaction is thermodynamically favored and there are several metals, including Pt and Pd, which can chemisorb both species and, thus, should permit a Langmuir-Hinshelwood-type reaction mechanism to occur (7). The explanation frequently given for the lack of reaction under these superficially favorable conditions is that CO requires only a single vacant adsorption site and O₂ requires two adjacent vacant sites, so that a clean surface exposed to a mixture of CO and O₂ quickly becomes covered with CO, which prevents O₂ adsorption, except at low CO-to-O₂ ratios (8). Only at elevated temperatures, where CO desorption becomes significant, do enough adjacent adsorption-site pairs become available to allow significant O₂ chemisorption and reaction to occur.

A demonstration of the foregoing explanation was presented by Ziff et al. (8). Using a simple stochastic (Monte Carlo) model which assumed equal sticking probabilities for CO and O₂ and neglected CO desorption, they showed that chemisorption and reaction of both CO and O₂ could occur on a uniform surface only when the ratio of the partial pressures of CO to O₂, P_{CO}/P_{O_2}, fell between 0.59 and 1.0. At higher P_{CO}/P_{O_2}, including the stoichiometrically balanced case where $P_{CO}/P_{O_2} = 2$, the surface becomes covered with CO. If the sticking probability of CO is greater than that of O₂, which would be the case for a Pt surface, these partial-pressure ratios would be shifted downward and further away from stoichiometry.

The treatment by Ziff et al. is quite general and should apply to any single-component catalyst in which a species requiring only a single adsorption site is to be oxidized by O₂. A number of other workers have studied the CO + O₂ reaction, or the general A + B₂ reaction, over surfaces using Monte Carlo (9–18) and cellular automaton simulations (19). Ertl and co-workers have used cellular automaton simulations to study the participation of Pt surface reconstruction in rate oscillations during CO oxidation (20, 21). Related Monte Carlo studies have been made of the general A + B reaction over surfaces (22–30). Monte Carlo simulations are required in order to study the kinetics of surface reactions in which adsorbed species are not randomly distributed over the surface; traditional kinetic models using algebraic rate equations assume such random distribution.

The fact that a CO oxidation catalyst must perform two distinct functions, adsorption of CO and dissociative adsorption of O₂, suggests that a "composite material" composed of an intimate mixture of two different materials, each with optimal properties for one of the two catalytic functions required, would have significant low-temperature activity (31). In such an ideal "composite catalyst," CO and O₂ would not compete for the same adsorption sites and, thus, CO inhibition of low-temperature CO oxidation would be eliminated.

A class of composite materials is currently under development for application as low-temperature CO oxidation catalysts in CO₂ TEA lasers and in breathing air purification. We have given the term "noble-metal/reducible-oxide" (NMRO) catalysts to this class of catalytic materials (32). Examples include Au/MnO₂ (33), Au/Fe₂O₃ (34), and Pd/SnO₂ (35, 36). These materials have greater activity and stability than the conventional low-temperature CO oxidation catalyst, Hopcalite, which is a mixture of Cu and Mn oxides with small quantities of other oxides (37). In each of the NMRO catalysts, neither of the separate compo-
components have appreciable activity for CO oxidation at low temperature and, thus, a synergistic interaction is present in the two-component materials. Although the mechanisms of CO oxidation over these materials are not known in detail (32), a probable general explanation for their low-temperature activity is that the noble metal chemisorbs CO and the reducible oxide provides sites that dissociatively adsorb O_2. There are also indications that surface hydrogen or hydroxyl participates in the dissociative adsorption of O_2 and the oxidation of adsorbed CO at low temperature (38).

One barrier to our understanding of the mechanism of CO oxidation over these composite catalysts is that we do not know the surface structure and composition of these materials. Discrete noble-metal particles are present in many catalyst formulations. Recently, Brosilow et al. (9) adapted the model of Ziff et al. (8) to investigate the effect of a reducible-oxide support on the oxidation of CO over noble-metal particles. The effect of the reducible-oxide support was simulated by holding the coverage of adsorbed oxygen at saturation at the perimeter of noble metal particles. Near a stoichiometric ratio of CO and O_2, P_{CO}/P_{O_2} = 2.1, the reaction rate was nonzero for a distance of three or four noble-metal lattice sites with penetration from the perimeter into the noble-metal particle; the rate would be zero everywhere on the particle in the absence of the reducible oxide at the perimeter. At lower CO to O_2 ratios, the effect of the reducible oxide penetrates further into the noble-metal particle. These results suggest that very small noble-metal particles would provide the highest rate per noble-metal surface atom, especially for stoichiometric mixtures.

Enhanced reaction at the perimeter of noble metal particles in contact with a reducible-oxide support is not the only possible reason for the enhanced activity of NMRO catalysts. The activity of Pt/SnO_2 is increased by reducing pretreatments, and Hoflund and co-workers (39, 40) reported that such pretreatment leads to the formation of Pt–O–Sn, Pt(OH)_2, metallic Pt and Sn, and Pt–Sn alloy. In related work, Oh and Carpenter (41) found that a Pt–Rh catalyst which contained bimetallic Pt–Rh particles had enhanced activity for CO oxidation. They proposed that Rh provided sites favorable for O_2 adsorption near CO adsorbed on Pt. Rh may have been present as a reducible oxide in the Pt–Rh bimetallic particles, making this catalyst a member of the NMRO class of materials. Logan and Paffett (42) studied the CO oxidation activity of a 50–50 Pd–Sn surface alloy. They found that Pd–Sn had higher activity than pure Pd but also found that the Sn oxidized to form a partial SnO_x overlayer. Work with Rh/TiO_2 has demonstrated that the unique activity of this material after high temperature reduction pretreatment is related to the presence of TiO_x overlayers covering much of the surface of the Rh particles (43, 44). Although the unique activity in these cases may result from reaction at the interface between the noble-metal and oxide overlayers, this interface may be complex and the noble-metal and reducible-oxide components highly interspersed.

In this work we investigate the reaction of stoichiometric mixtures of CO and O_2 over highly interspersed mixtures of noble-metal and reducible-oxide sites using Monte Carlo simulations. We demonstrate that a two-component catalyst, in which one component chemisorbs CO and the second component chemisorbs O_2 but does not significantly chemisorb CO, makes possible the low-temperature reaction of stoichiometric mixtures of CO and O_2. We suggest that this feature accounts for the pronounced low-temperature activity of NMRO catalysts which readily catalyze the reaction of stoichiometric mixtures of CO and O_2 at room temperature and below (4, 34). Monte Carlo simulations are performed in order to investigate the effects of different O_2 adsorption rules, the effect of changing the O_2 adsorption probability, the kinetic orders of the reaction, and the effects of changing the CO
desorption probability. Finally, a search is made for optimal configurations of surface sites as a first step towards the rational design of composite catalysts. With the exceptions of the study of uniform surfaces with heterogeneous boundaries by Brosilow et al. (9) and the study of uniform surfaces with defects by Vlachos et al. (15, 45), this is the first Monte Carlo study, of which we are aware, of catalytic reaction over nonuniform, multicomponent surfaces.

REACTION MODEL

Noble-metal sites which adsorb CO are referred to in this work as α sites and the reducible-oxide sites which adsorb O_2 are referred to as β sites. Previous Monte Carlo simulation work on uniform surfaces has referred to the CO + O_2 reaction as a member of a general class represented by the reaction $A + B$. The labels α and β have been used previously to distinguish between different sites on catalyst surfaces identified during thermal desorption experiments (46). Thus, the cases studied here can be referred to as examples of the general $A + B$, reaction over a two-component, α/β surface.

The identity of individual β sites is not specified in the Monte Carlo simulations. In Pt/SnO$_2$, for example, actual individual β sites might consist of one or more of the following: (Sn)$_2$, (SnH)$_2$, (SnO)$_2$, (SnO, OH)$_2$, (SnO$_2$H)$_2$, (SnOH)$_2$, etc. Interdispersion of noble-metal and reducible-oxide materials should lead to modification of the properties of each material. Such modifications are not explicitly considered here, although they could be studied by determining the effect of varying the adsorption, desorption and reaction probabilities assigned to each site. Rather, these simulations mainly probe geometric effects such as the effects of changing the relative positions of the two sites in a surface.

The main loop in the simulation program is shown in Fig. 1. This program was developed in order to consider sets of parameter values where adsorption and reaction probability values are within several orders-of-magnitude of each other. The adsorption, desorption, and reaction probabilities are independent of surface coverage. The O_2 sticking probability is the same for all allowed site pairs, and the reaction probability is the same whether the O atom is adsorbed on an α site or a β site. Surface diffusion is not described. A lattice of square sites was used in all simulations.

The following "base set" of parameter values was used below, except where specified otherwise:

(a) CO sticking probability (probability that a gas phase CO molecule striking a vacant α site will adsorb): $p_1 = 1$;

(b) O_2 sticking probability (probability that a gas phase O_2 molecule striking a vacant pair of sites that correspond to the specified set of O_2 adsorption rules—e.g., α/α, α/β, β/β—will adsorb): $p_2 = 1$;

(c) CO desorption probability (probability that a CO molecule will desorb when a site is selected randomly at a frequency equal to the CO collision frequency and the site is occupied by an adsorbed CO; as defined, this probability is inversely proportional to CO pressure): $p_3 = 0$;

(d) reaction probability (probability that a reaction event will occur when a pair of neighboring sites is selected randomly and the site pair is occupied by one adsorbed CO molecule and one adsorbed O atom): $p_4 = 0.4$;

(e) actions allowed on diagonally adjacent pairs of sites,

(f) stoichiometrically balanced ratio of gas-phase CO and O_2: $P_{CO}/P_{O_2} = 2$.

The differing molecular weights of CO and O_2 were taken into account when determining the relative collision frequencies of these reactants in the simulations.

Reaction rates are reported relative to the CO collision frequency. The results presented here are expected to correspond most closely to reaction over Pt/SnO$_2$ and Pd/SnO$_2$ catalysts at room temperature, where the CO sticking probability is near one and the CO desorption probability is near zero. The results presented also apply
LOW-TEMPERATURE CO OXIDATION

Fig. 1. Main loop in the Monte Carlo simulations. \(r \) = new random number between 0 and 1 generated at each step within the loop. \(\lambda_1 \) = fraction of iterations that are checks for reaction = \(\frac{y_3}{y_1 + y_3} \frac{P_{\text{CO,base}}/P_{\text{CO}}}{1 + \frac{P_{\text{CO,base}}/P_{\text{CO}}}{1}} \), where \(P_{\text{CO,base}}/P_{\text{CO}} \) is the ratio of the CO partial pressure for the base set of conditions to the CO partial pressure for the specific simulation run. \(\lambda_1 \) is defined such that the frequency of checks for reaction in the program at the base set of conditions equals the frequency of CO collisions and such that the frequency of checks for reaction in "real time" is independent of CO pressure. \(\lambda_0 = \) fraction of gas molecules colliding with the surface that are CO molecules. \(p_1 = \) CO sticking probability, \(p_2 = \) \(\text{O}_2 \) sticking probability, \(p_3 = \) CO desorption probability, \(p_4 = \) reaction probability. See text for further explanation of probabilities.

For the parameter values used here, the effect of \(\beta \) sites on \(\alpha \) sites is localized and propagates only a short distance into a "patch" or "particle" of \(\alpha \) sites. Figure 2 shows the variation in reaction rate on \(\alpha

FIG. 2. Local rate vs distance from a semi-infinite linear \(\alpha-\beta \) interface. The local rate is equal to the number of reaction events on an \(\alpha \) site per CO collision with that site.
sites with distance from a semi-infinite $\alpha^{-}\beta$ interface for the base set of parameters and for a case in which O_2 can adsorb on any pair of neighboring sites. The reaction rate is zero everywhere except for the three columns or rows of α sites nearest the $\alpha^{-}\beta$ interface. This result is similar to that obtained by Brosilow et al. (9) at $P_{CO}/P_{O_2} = 2.1$ for adsorption-limited reaction.

RANDOM $\alpha^{-}\beta$ SITE DISTRIBUTIONS

A 42×26 lattice with 1092 total sites and periodic boundaries was used for the simulations of all-α and random $\alpha^{-}\beta$ surfaces. Random $\alpha^{-}\beta$ surfaces represent the opposite extreme in geometric $\alpha^{-}\beta$ configuration from the noble-metal particles on reducible-oxide supports simulated by Brosilow et al. (9). Some Pt-Sn surface alloys have a highly interspersed geometry (42); reaction over other Pt-Sn alloys may involve an intermediate $\alpha^{-}\beta$ geometry, which might be obtained in simulations by “annealing” initially random surfaces.

For the case in which O_2 can adsorb on any site pair and the CO desorption probability is zero, the reaction rate for the all-α surface is zero. The rate is nonzero for the all-α surface for nonzero CO desorption probabilities. For low CO desorption probabilities, the rate increases dramatically when β sites are added to the surface. The relative increase is inversely related to the CO desorption probability. At ambient temperature over Pd, the CO desorption frequency from a site is on the order of 10^6 s$^{-1}$ (7). This desorption frequency leads to a CO desorption probability, as defined above, of 10^{-7} at $P_{CO} = 0.01$ atm, a CO pressure characteristic of CO, TEA lasers (4). With this value of the CO desorption probability, the overall rate increases by 10 orders-of-magnitude—from 10^{-14} reaction events per CO collision with the surface to 10^{-4}—as the fraction of β sites is increased from 0 to 1%. This result demonstrates the extreme sensitivity of steady-state CO oxidation rates over Pd and Pt to the addition of small amounts of an oxygen adsorbing component that is not inhibited by CO. In an experimental demonstration of a related phenomenon, Mundshau and Rausenberger (47) used photoelectron microscopy to show the presence of defect sites present in low concentration in the surface of single crystal Pt that adsorb CO only weakly and initiate the transient burn-off of inhibiting CO overlayers by O_2.

A CO desorption probability of zero was used in most of this work in order to simulate the strong CO adsorption on noble metal sites at ambient temperatures and, thus, the strong inhibition of O_2 adsorption on Pt-group noble metals. In general, the absence of reactant desorption and surface diffusion in Monte Carlo simulations produces results which highlight the geometric effects present in the physical system modeled.

The reaction rate is zero for all α-plus-β surfaces with no CO desorption when O_2 adsorption is not allowed on $\beta^{-}\beta$ pairs. This is because all α sites are saturated with CO in this case, thus blocking O_2 adsorption on $\alpha^{-}\alpha$ and $\alpha^{-}\beta$ pairs. The rate is nonzero with no CO desorption on α-plus-β surfaces when oxygen adsorption is allowed on $\beta^{-}\beta$ pairs.

We focus on the two cases of adsorption of O_2 on (a) any site pair and (b) only $\beta^{-}\beta$ site pairs. In each of these two cases, the O_2 sticking probability is the same on all allowed site pairs. In real catalysts, we would expect that the sticking probability would be different on different site pairs. The two cases considered here are limiting cases, with real systems possibly having behavior intermediate between these two cases.

Figure 3 shows the steady-state rate-per-α-site vs the fraction of β sites present in the surface (“fraction-β” below). The rate-per-α-site is equal to the average number of reaction events per CO collision with an α site. In many cases, the noble metal component represented by the α sites may be the major cost factor in a catalyst. The open circles are for the case in which O_2 can adsorb on any site pair. The solid diamonds are for the case which O_2 can only adsorb...
on \(\beta-\beta \) pairs. At each nominal fraction-\(\beta \), 20 runs were performed to show the variation in rate from run to run, except for only three runs at fraction-\(\beta = 0.99 \) for the solid diamonds. At each specific fraction-\(\beta \), the variation in rate is caused by the fact that different random configurations of \(\alpha \) and \(\beta \) sites have somewhat different activities.

For the case in which \(O_2 \) adsorption is allowed on \(\beta-\beta \) pairs only, the rate-per-\(\alpha \)-site is zero at fraction-\(\beta = 0 \), since no \(O_2 \) can adsorb, and increases continuously as the fraction of \(\beta \) sites is increased. The rate-per-\(\alpha \)-site is somewhat more linear than simply being proportional to the square of the fraction of \(\beta \) sites. The rate-per-\(\alpha \)-site approaches a value of 0.33 reaction events per CO collision with an \(\alpha \) site as the fraction of \(\beta \) sites approaches one, that is, in the limit of isolated \(\alpha \) sites surrounded by \(\beta \) sites. In surfaces with high fraction-\(\beta \) but before this limit, two widely separated \(\alpha \) sites are more active than two adjoining \(\alpha \) sites but are less active than two \(\alpha \) sites separated by a distance of one or two \(\beta \) sites. In the latter case, \(O_2 \) adsorption and reaction are enhanced in the region between the two \(\alpha \) sites since there is an increased rate of formation of vacant \(\beta-\beta \) site pairs in this region.

For the case in which \(O_2 \) adsorption is allowed on any site pair, the rate-per-\(\alpha \)-site goes through a maximum at fraction-\(\beta = 0.5 \). To the left of the rate maximum, the rate increases as more \(\beta \) sites are added to the surface because \(O_2 \) can adsorb on \(\beta \) sites next to CO molecules adsorbed on \(\alpha \) sites. To the right of the rate maximum, the rate-per-\(\alpha \)-site decreases as more \(\beta \) sites are added to the surface. This occurs because \(\alpha \) sites are becoming increasingly dispersed among \(\beta \) sites and, thus, are becoming more susceptible to deactivation by irreversibly adsorbed oxygen atoms. These oxygen atoms cannot desorb because the oxygen desorption probability is zero. They cannot be removed by reaction because there are no neighboring \(\alpha \) sites in the local vicinity which are not also deactivated by oxygen.

Figure 4 shows a “snapshot” of the surface for the two cases at fraction-\(\beta = 0.5 \). The reaction rates are approximately equal for both cases at this fraction-\(\beta \). Note that there is less CO present on the surface for the case where \(O_2 \) adsorbs on any site pair. This is because some \(\alpha \) sites are covered with adsorbed oxygen atoms. Relatively isolated \(\alpha \) sites are deactivated by this adsorbed oxygen. Oxygen adsorbed on \(\alpha \) sites near other \(\alpha \) sites covered with CO can be removed by reaction. At fraction-\(\beta = 0.5 \), the deactivation of isolated \(\alpha \) sites by oxygen roughly balances the contribution to reaction by oxygen adsorption on \(\alpha \) sites which remain active. Qualitatively, adsorbed CO and O are interspersed for the case where \(O_2 \) can adsorb only on \(\beta-\beta \) pairs, whereas adsorbed CO and O are found primarily in separate patches for the case where \(O_2 \) can adsorb on any site pair as a result of the coverage and deactivation of isolated \(\alpha \) sites by adsorbed O.

For the case in which \(O_2 \) adsorption is allowed only on neighboring \(\beta-\beta \) pairs, isolated \(\beta \) sites are inactive, of course. Isolated \(\beta \) sites are also inactive for the case in which \(O_2 \) adsorption is allowed on any site pair when the CO desorption probability is zero. With a nonzero CO desorption probability for this second case, an isolated \(\beta \) site is
active but has a much lower activity than a pair of neighboring \(\beta \) sites. An isolated pair of \(\beta \) sites is active for both cases (\(O_2 \) adsorption only on \(\beta-\beta \) pairs, \(O_2 \) adsorption on any pair) with no CO desorption. Such an isolated \(\beta-\beta \) pair, however, is more active for the case in which \(O_2 \) can adsorb on any site pair since \(O_2 \) adsorption can involve a neighboring \(\alpha \) site and one of the \(\beta \) sites, not just the \(\beta-\beta \) pair itself. The height of the solid curve above the dashed curve at low fraction-\(\beta \) shows the extent to which \(O_2 \) adsorption on \(\alpha-\alpha \) and \(\alpha-\beta \) pairs contributes to the reaction rate for the case in which \(O_2 \) adsorption can occur on any site pair. The differences between these two cases decrease as the oxygen sticking probability decreases.

For the case in which \(O_2 \) adsorption is allowed on any site pair, note in Fig. 3 that the scatter of rates at a given fraction-\(\beta \) is higher at large fraction-\(\beta \) than at low fraction-\(\beta \). This scatter at large fraction-\(\beta \) is caused by the fact that different proportions of site configurations susceptible to oxygen poisoning are generated at the start of the different runs. The surface becomes completely oxygen poisoned for a fraction of \(\beta \) sites equal to 0.8 and above. The time required for complete deactivation to occur in these cases is much longer than the normal start-up transient for runs in which the surface remains active.

For the runs shown in Fig. 3, actions involving diagonally adjacent sites are allowed. When "diagonal actions" involving these "diagonal pairs" are not allowed, the reaction rate decreases by about one-third. However, when diagonal actions are not allowed there is no qualitative change in behavior, with one exception: for the case in which \(O_2 \) can only adsorb on \(\beta-\beta \) pairs, the rate-per-\(\alpha \)-site drops to zero as the fraction of \(\beta \) sites approaches one rather than approaching a nonzero value. That is, individual \(\alpha \) sites surrounded by \(\beta \) sites are inactive at steady state when diagonal actions are not allowed. After an initial transient in which CO adsorbs on these sites and reacts with oxygen atoms which have adsorbed on neighboring \(\beta \) sites, the reaction ceases. This is because oxygen is removed by reaction from the \(\beta \) sites to the left and right and top and bottom of an \(\alpha \) site and this oxygen cannot be replaced. Since, at steady state, the \(\beta \) sites neighboring the \(\alpha \) site diagonally, and essentially all other \(\beta \) sites, are filled with oxygen atoms, these vacant \(\beta \) sites to
FIG. 5. Instantaneous surface configuration during steady-state reaction for a case in which O_2 can adsorb on $\beta-\beta$ pairs only; the fraction of β sites on the entire surface is 0.99, and the base set of parameters is used except that actions involving diagonally adjacent pairs of sites are not allowed. All α sites shown are covered by adsorbed CO, as indicated by the large black circles. The α site located in the upper left and the two α sites located on the far right are inactive because O_2 cannot adsorb on the vacant β sites (small black dots) located to their top and bottom and left and right. The two α sites located just left of center are active since O_2 can adsorb and react on the pair of β sites directly between them.

the left and right and top and bottom do not have any vacant adjacent β sites with which to form a vacant $\beta-\beta$ pair to allow further O_2 adsorption. This inactive steady-state site configuration is shown in Fig. 5.

Figure 6 shows the same runs plotted in Fig. 3 but now plotted as the "overall rate" vs fraction-\(\beta\). The overall rate is defined as the average number of reaction events per CO collision with any site on the surface. This overall rate corresponds to the rate that would be measured in the laboratory in moles per time per unit BET surface area. Note that both cases show a maximum in overall rate vs fraction-\(\beta\). Although the rate-per-α-site is highest at high fraction-\(\beta\) for the case in which O_2 adsorbs only on $\beta-\beta$ pairs, the overall rate is relatively low because of the low fraction of α sites. For both cases at low fraction-\(\beta\) (0 to 0.3), the overall reaction rate in each case is roughly proportional to the fraction of α sites times the square of the fraction of β sites. The overall rate for the case in which O_2 adsorbs only on $\beta-\beta$ pairs continues to be roughly described by this proportionality from low to high fraction-\(\beta\).

The results shown in Fig. 6 are in qualitative agreement with the experimental results of Upchurch et al. (48). They found that the CO oxidation activity, per unit weight, of a series of Pt/SnO$_2$ catalysts was highest at intermediate Pt–SnO$_2$ weight ratios. Surface composition measurements, especially at low noble-metal surface fractions, will be required in future studies in order to distinguish between different O_2 adsorption rules.

Alternate Rules for O_2 Adsorption

Two different sets of rules for O_2 adsorption were discussed above: O_2 adsorption on any site pair and O_2 adsorption only on $\beta-\beta$ pairs. The comparison between these two sets of rules demonstrates that, whenever O_2 can adsorb on $\beta-\beta$ pairs, the predominant mode of reaction involves O_2 adsorption on these pairs, with reaction involving O_2 adsorption on $\alpha-\beta$ and, especially, $\alpha-\alpha$ pairs contributing only slightly. The main contribution seen from allowing O_2 adsorption to involve α sites was to allow for oxygen poisoning of highly dispersed α sites at high fraction-\(\beta\).

We have also investigated the behavior
with other sets of site pairs on which O$_2$ adsorption is allowed. The case in which O$_2$ adsorption is allowed on α-β and β-β pairs behaves similarly to the case in which O$_2$ adsorption is allowed on all site pairs.

Two sets of rules were investigated which do not allow O$_2$ adsorption on β-β site pairs: O$_2$ adsorption only on (a) α-β pairs and (b) α-α and α-β pairs. For these sets of rules, the surfaces are inactive when the CO desorption probability is zero, since all α sites are covered by CO, preventing O$_2$ adsorption. As the CO desorption probability is increased slightly (e.g., to 0.01) from zero, the reaction rate becomes nonzero at most fractions of β sites. With a nonzero CO desorption probability, the rate-per-α-site goes through a maximum at intermediate fraction-β. The rate remains low at low fraction-β because of CO poisoning of the α sites in α-α and α-β site pairs. In many cases, the rate remains zero at high fraction-β because of oxygen poisoning of α sites. Specifically, for O$_2$ adsorption on α-β pairs only and for a CO desorption probability of 0.01, the rate remains zero at fraction-$\beta = 0.7$ and 0.9 for diagonal actions not allowed but is nonzero at these fraction-β when diagonal actions are allowed. For O$_2$ adsorption on α-α and α-β pairs only and for a CO desorption probability of 0.01, the rate is zero at fraction-$\beta = 0.9$ whether or not diagonal actions are allowed. The effect of allowing diagonal actions is to enhance the reaction rate somewhat, except in the case mentioned above for O$_2$ adsorption on α-β pairs only where inactive surfaces become active if diagonal actions are allowed.

Variation of O$_2$ Sticking Probability

In the simulations presented above, the O$_2$ sticking probability was set equal to the CO sticking probability, as in the Monte Carlo models of Ziff and co-workers (8, 49). Over noble metals, O$_2$ sticking probabilities are lower than CO sticking probabilities (50). Here, the effect of reducing the O$_2$ sticking probability is investigated for cases in which diagonal actions are allowed.

For the case in which O$_2$ adsorption is allowed only on β-β site pairs, decreasing the O$_2$ sticking probability decreases the rate at all fraction-β. For the case in which O$_2$ adsorption is allowed on any site pair, decreasing the O$_2$ sticking probability decreases the rate at low fraction-β because of the reduced rate of O$_2$ adsorption on all site pairs. This behavior is shown in Fig. 7. Decreasing the O$_2$ sticking probability increases the rate at high fraction-β because oxygen poisoning of highly dispersed α sites is reduced. The surface at fraction $\beta = 0.8$ goes from inactive to active when the O$_2$ sticking probability is decreased from 1.0 to 0.5. As a result of this behavior, the rate maximum shifts to higher fraction-β and reduces in amplitude as the O$_2$ sticking probability is decreased. The overall result is that, as the O$_2$ sticking probability is reduced to lower values, the case in which O$_2$ adsorption is allowed on any site pair exhibits behavior more similar to the case in which O$_2$ adsorption is allowed only on β-β pairs.

Apparent Orders of Reaction

The dependence of the reaction rate on changes in reactant pressure over small
ranges in reactant pressure can be reported in terms of a power-law rate expression. When the CO and O₂ pressures are varied independently, the rate can be expressed as \(r = kP_{CO}P_{O_2}^{\gamma} \). This rate expression is an empirical correlation of results and does not represent a kinetic mechanism, and the reaction orders are not restricted to integer values. For the Monte Carlo results presented here, the apparent order of the reaction with respect to CO was determined by doubling the CO pressure, keeping the O₂ pressure constant and then using the equation

\[
\phi = \frac{\ln(r_2/r_1)}{\ln 2},
\]

where \(\phi \) is the apparent order with respect to CO, \(r_1 \) is the rate (number of reaction events per unit "real time") at the base CO and O₂ pressures in a stoichiometrically balanced ratio, and \(r_2 \) is the rate obtained when the CO pressure was doubled. The apparent order with respect to O₂, \(\gamma \), was determined in a similar manner by doubling the O₂ pressure and holding the CO pressure constant.

For a stoichiometrically balanced mixture of CO and O₂, the rate can be expressed as \(r = kP_{CO}P_{O_2}^{\eta} \), where \(P_{CO} = 0.5P_{O_2} \), and where \(\eta \) is the apparent overall order. For the Monte Carlo results presented here, the apparent overall order of the reaction was determined by doubling both the CO and O₂ pressures while keeping the reactant pressure ratio stoichiometrically balanced. The overall order was then determined from the equation

\[
\eta = \frac{\ln(r_2/r_1)}{\ln 2},
\]

where \(r_1 \) is the rate at the base CO and O₂ pressures in a stoichiometrically balanced mixture, and \(r_2 \) is the rate obtained when both the CO and O₂ pressures are doubled. The overall order for a stoichiometric mixture will equal the sum of the individual orders, \(\eta = \phi + \gamma \), when the overall and individual orders are determined for infinitesimally small variations in CO and O₂ pressures, or when the true kinetics obey the power-law expression exactly.

There are only a limited number of experimental studies that report the kinetics of the CO oxidation reaction at low temperature over NMRO catalysts. Although these studies have not provided a clear picture of the dependence of rate on reactant pressure, all show that the kinetics are different than those observed over single-component noble-metal catalysts. Stark and Harris (4) determined that the overall order of the reaction was approximately one for stoichiometrically balanced mixtures over Pd/SnO₂ and Pt/SnO₂, and Badlani (1) obtained the same result over Au/MnO₂. Over Pd/SnO₂ at low temperature, Bond et al. (35) found that the reaction was slightly negative order in CO. They also found that the reaction was approximately half order in O₂ over a range of O₂ concentration which depended on Pd concentration and temperature and tended to zero order at high O₂ concentrations. Sampson and Guddde (51) studied stoichiometric mixtures of CO and O₂ over a "precious metal"–SnO₂ catalyst at low temperature and found that the reaction was zero order in CO and first order in O₂. Logan and Paffett (42) determined that the reaction was slightly positive order in both CO and O₂ over a 50–50 Pd–Sn surface alloy.

Figure 8 shows the apparent reaction orders vs fraction-\(\beta \) for the Monte Carlo simulation case in which O₂ can adsorb on any site pair and for the base set of parameters. One interesting observation is that the overall order for the stoichiometric mixture is roughly constant and equal to 0.5 over most of the range of surface composition. Although the separate orders with respect to CO and O₂ change substantially over this range, these changes compensate each other. At small fraction-\(\beta \), reaction orders are similar to those that would be observed over a noble metal: the rate is positive order in O₂ and negative order in CO due to CO inhibition of O₂ adsorption on \(\alpha \) sites. At
large fraction-\(\beta\), the apparent orders are determined primarily by changes in oxygen poisoning of relatively isolated \(\alpha\) sites: as the \(O_2\) pressure increases the poisoning becomes more severe and the rate decreases; as the \(CO\) pressure increases \(\alpha\) sites become more resistant to oxygen poisoning and the rate increases.

Figure 9 shows how the overall order varies with the \(O_2\) sticking probability. When the \(O_2\) sticking probability is 0.01, the overall order is approximately one, in agreement with most experimental measurements of reaction of stoichiometric mixtures over NMRO catalysts at low temperature (1, 4, 51), and the reaction is first order in \(O_2\) and zero order in \(CO\), in agreement with the experiments of Sampson and Gudde (51). Figure 10 shows a characteristic configuration of a surface with 90% \(\beta\) sites and an \(O_2\) sticking probability of 0.01. At any given time during steady state, the \(\alpha\) sites are nearly saturated with \(CO\) molecules, \(\beta\) sites neighboring \(\alpha\) sites are nearly vacant, \(\beta\) sites far from \(\alpha\) sites are saturated with oxygen. These results predict that the reaction rate is limited by the adsorption of \(O_2\) at (or reoxidation of) reducible oxide sites located at the interface between the noble metal and reducible oxide components.

Figure 11 shows the overall order vs fraction-\(\beta\) for the case in which \(O_2\) can adsorb only on \(\beta-\beta\) pairs and for the base set of parameters. Since there is no \(CO\) inhibition or oxygen poisoning in this case, the order in \(CO\) decreases toward zero and the order in \(O_2\) and the overall order increase toward one as the \(O_2\) sticking probability decreases. At low \(O_2\) sticking probability, the behavior for the two cases of \(O_2\) adsorption rules is similar since \(O_2\) adsorption on \(\alpha-\alpha\) and \(\alpha-\beta\) pairs becomes insignificant for the case in which \(O_2\) can adsorb on any site pair.
LOW-TEMPERATURE CO OXIDATION

2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
0.01
0.00
0.2 0.4 0.6 0.8
Fraction of p sites

Fig. 11. Effect of varying the O2 sticking probability, p02, on the overall order for the case in which O2 can adsorb only on β-β pairs and for the base set of parameters.

Variation of CO Desorption Probability

Over metal catalysts where CO inhibition dominates at low temperature, CO desorption is a critical kinetic step in determining the rate. CO desorption is also the most highly activated step in the mechanism of CO oxidation over metals (7). At relatively high P\textsubscript{CO}/P\textsubscript{O2}, where the reaction is negative order in CO pressure, the overall reaction rate increases with temperature primarily as a result of an increased rate of CO desorption and a lower inhibiting CO coverage. Thus, apparent activation energies of the overall reaction (42) are in the same range, 80–120 kJ/mol, as the activation energy for CO desorption (7).

CO desorption is less critical over NMRO catalysts than over metals because CO inhibition is less important. Over these NMRO catalysts at relatively high P\textsubscript{CO}/P\textsubscript{O2}, CO oxidation is only slightly positive (42) or slightly negative order in CO (35) and the apparent activation energies are substantially lower—roughly 20–40 kJ/mol (1, 42)—than for metal catalysts.

The effect of increasing the CO desorption probability from zero was investigated with the Monte Carlo model for cases in which diagonal actions are allowed. For the case in which O2 adsorption is allowed only on β-β site pairs, changing the CO desorption probability from zero to 0.01 produced only a slight decrease in rate at all fraction-β. Increasing the CO desorption probability further simply results in further decreases in reaction rate at all fraction-β.

For the case in which O2 adsorption is allowed on any site pair, changing the CO desorption probability slightly from zero to 0.01 causes the all-α surface to become active but results in only slight changes in rate at higher fraction-β. As the CO desorption probability increases, the rate at low fraction-β increases and the rate at high fraction-β decreases such that the rate maximum shifts to lower fraction-β. This trend of a shift of the rate maximum to lower fraction-β continues as the CO desorption probability is further increased, as shown in Fig. 12.

Continuing with the cases shown in Fig. 12, for a CO desorption probability of 0.3, the surface at fraction-β = 0.7 has become inactive as more α sites become susceptible to oxygen poisoning as the CO coverage on these sites decreases with the increase in CO desorption rate. Except for cases such as this in which a surface becomes completely and irreversibly deactivated, the change in rate over a given surface with increase in CO desorption probability is reversible when the CO desorption probability is later decreased.

Fig. 12. Variation of CO desorption probability, p\textsubscript{d}, O2 can adsorb on any site pair and the base set of parameters was used except for the variation in p\textsubscript{d}.

14
One question that arises is what the optimal configuration of \(\alpha \) and \(\beta \) sites on the surface is in order to obtain the highest rate-per-\(\alpha \)-site or the highest overall rate. One goal, after the correct mechanism is determined, would be the ability to design and prepare the optimal catalyst. Because of the low-temperature operating conditions associated with many of the applications of NMRO CO oxidation catalysts, an optimal but thermodynamically unstable site configuration may be kinetically stable over operating periods of practical length.

One possible way to search for the optimal surface configuration for a given set of rules and parameters would be to take an active site configuration found from a run with a random surface and propagate it periodically across a larger surface. During each run the cumulative number of reaction events occurring on each site was recorded after the start-up transient. This allowed us to look at each surface configuration, search for the most active \(\alpha \) site, for example, and then examine the site configuration surrounding this site. We found that the most active site configurations changed as the rules for \(O_2 \) adsorption changed. Figure 13 shows several most-active site configurations at various fraction-\(\beta \) for cases in which \(O_2 \) can adsorb on any site pair and diagonal actions are allowed. Similar configurations and rates are obtained when diagonal actions are not allowed. For each configuration, the most active \(\alpha \) site is the central site in the surrounding 7 \(\times \) 7 site array shown. Note that the local \(\alpha-\beta \) ratio and the rate on the most active \(\alpha \) site are roughly constant even though the average \(\alpha-\beta \) ratio and the average rate change substantially between different sets of patterns. Three of the five patterns shown have a local fraction-\(\beta \) in the 3 \(\times \) 3 array of sites centered on the most active \(\alpha \) site = 0.44 (4/9), one pattern has a local fraction-\(\beta \) = 0.56 (5/9), and one has a local fraction-\(\beta \) = 0.33 (3/9).

Another approach to finding an optimal site configuration would involve "evolution" of a surface toward a more active configuration. Starting with a random surface of a desired fraction-\(\beta \), for example, the computer program could switch one of the least active \(\alpha \) sites to a \(\beta \) site and one of the least active \(\beta \) sites to an \(\alpha \) site. If this "mutation" resulted in an increase in rate, it would be preserved and another mutation would be tried. If the mutation resulted in a decrease in rate, it would be reversed.

The approach we have pursued most extensively involves searching for optimal periodic configurations of \(\alpha \) and \(\beta \) sites. First we specify the size of a square "base array." Second we choose a fixed number of \(\alpha \) and \(\beta \) sites that will populate this base array. Third, the specified number of \(\alpha \) and \(\beta \) sites are placed in the base array in one of the statistical combinations that are possible. Finally, the base array is propagated periodically and equally in two dimensions for a specified number of repetitions. The resulting square surface is specified to have the conventional periodic boundary conditions with respect to \(O_2 \) adsorption and surface reaction. Finally, the reaction is run on the resulting surface and a time-averaged steady-state rate is determined. Results for two of the cases we have studied are reported here: in one case diagonal actions were allowed, and in the other case diagonal actions were not allowed. In both cases \(O_2 \) adsorption can occur an any site pair and the base set of parameter values was used.

The smallest possible base array is a 1 \(\times \) 1 array. The only configurations possible are the all-\(\alpha \) surface and the all-\(\beta \) surface. These surfaces are also possible surfaces for all larger base arrays and will not be mentioned below. Both of these surfaces are inactive for the two cases considered here.

The next larger base array is a 2 \(\times \) 2 array. Simulations were performed with surfaces in which the base arrays were propagated periodically eight times in both directions, with the entire 16 \(\times \) 16 arrays having conventional periodic boundary conditions for reaction and \(O_2 \) adsorption. All surfaces
with 2×2 base arrays were inactive for the two cases considered here, with two exceptions. One exception is a 50–50 mixture of α and β sites arranged in alternating nondiagonal rows of α and β sites. This surface is active for the case considered in which diagonal actions are not allowed, and the rate-per-α-site is 0.06. The rate-per-α-site for a 50–50 mixture of α and β sites arranged randomly is 0.13.

The other exception is a 50–50 mixture of α and β sites arranged in alternating diagonal rows of α and β sites, a configuration which looks like a "checkerboard" of α and β sites. This surface is active for the case considered in which diagonal actions are allowed, and the rate-per-α-site is 0.17, higher than for the 50–50 random surface.

The c(2 × 2)–Sn/Pd(100) surface alloys studied experimentally by Logan and Paffett (42) have a checkboard configuration of Pt and Sn atoms, as determined by low energy electron diffraction and surface composition measurements. They found that the surface was active for CO oxidation when exposed to 16-Torr CO and 8-Torr O$_2$ at 170°C, however, the checkerboard structure was disrupted as Sn became oxidized and presumably formed SnO$_2$ patches on top of the surface. An interesting question is whether the checkerboard Pt–Sn surface alloy would be stable and have a high activity for CO oxidation under milder conditions than used in (42).

The next larger base array is a 3×3 array. This base array is sufficiently large that a large number of interesting surface configurations are possible. For each specified ratio of α and β sites, each distinct configuration of sites is a statistical "combination." A search of possible statistical combinations of α and β sites was performed in the follow-
ing manner in order to achieve a confidence limit of $>99.9\%$ of trying all nonequivalent combinations: A configuration in the base array which does not have two- or fourfold rotational symmetry is equivalent, with respect to reaction, to the three other distinct statistical combinations that are formed by rotation of this nonrotationally symmetric configuration. By running a number of trials with random generation of site configuration equal to twice the number of possible statistical combinations, at least one of these four equivalent configurations will be tried within a confidence limit of $>99.9\%$. During the same number of trials, at least one of the four equivalent configurations of all combinations which do not have two- or fourfold rotational symmetry will also be tried within this confidence limit. Configurations in the square base arrays that have two- or fourfold rotational symmetry were run deliberately by specifying the site configurations manually in separate runs.

The search for optimal site configurations with 3×3 base arrays was performed with surfaces in which the base arrays were propagated periodically seven times in both directions, with the entire 21×21 arrays having conventional periodic boundary conditions for reaction and O_2 adsorption.

Figures 14 and 15 summarize the results of the searches performed with 3×3 base arrays. Figure 14 is for runs in which diagonal actions are not allowed and Fig. 15 is for runs in which diagonal actions are allowed. The notation below each pattern gives the fraction-β, the rate-per-α-site, and rate-per-α-site over a random surface with the same fraction-β. The effect of disallowing or allowing diagonal actions on the most active site configurations is clear: in Fig. 14 the α and β sites tend to be arranged in horizontal and vertical rows, whereas diagonal groupings of α sites and β-β site pairs are prevalent in Fig. 15. Note the similarity between the local configurations of the most active α sites in random surfaces, shown in Fig. 13, and the optimal 3×3 base-array configurations found for the same rules and parameters in Fig. 15, especially the lower left configuration.

For the case in which diagonal actions are not allowed, all of the patterns in Fig. 14 are more active than the checkerboard pattern, which is inactive. For the case in which diagonal actions are allowed, all of the patterns in Fig. 15 are less active than the checkerboard pattern.

In Fig. 15, one can form the optimal three-β-site pattern simply by adding one β site to the base array of the optimal two-β-site pattern. Adding one β site to the base array of the optimal three-β-site pattern forms the optimal four-β-site pattern, and so forth to form the optimal five-β-site pattern. A similar progression can be done in Fig. 14, except that movement of a β site is required to go from the optimal three-β-site pattern to the optimal four-β-site pattern.

The results of Fig. 3 for random surfaces over which O_2 can adsorb on any site pair can be compared with the results of Fig. 15 for optimal 3×3 base-array patterns with the same O_2 adsorption rules. In most cases in which the 3×3 patterns are active, they are somewhat more active than a random surface at the same fraction-β. The 3×3 patterns are inactive below fraction-$\beta = 0.22$ and above fraction-$\beta = 0.56$, whereas random surfaces are active except at fraction-$\beta = 0$ and at fraction-$\beta = 0.8$ and above.

The rate-per-α-site of the most active α site was about 0.2 reaction events per CO collision for all random surfaces corresponding to the diagonal-pair rules and fraction-β shown in Figs. 14 and 15. This rate is higher than the rates found for the checkerboard pattern and the patterns in the 3×3 search. This suggests that a base array larger than the 3×3 base array may be required in order to construct the overall optimal pattern of α and β sites.

The next larger base array is the 4×4 base array. We did not do a complete study of 4×4 base arrays since the number of possible configurations is very large. From observing the patterns found in the 3×3
base array search, we inferred that the 4 x 4 base-array configuration shown in the upper right quadrant of Fig. 16 would have high activity for the case in which diagonal actions are allowed. The rate-per-α-site over this "zig-zag" pattern is higher than any found in the 3 x 3 base array search but is 4% less than over the checkerboard pattern shown in the upper left quadrant of Fig. 16. The zig-zag pattern is probably less active than the checkerboard because an oxygen atom adsorbed on an α site can be removed by CO molecules adsorbed on other α sites along two diagonal directions.

Adding one α site to the 4 x 4 base array that forms the zig-zag pattern produces the "zig-zag + 1α" pattern shown in the lower right quadrant of the figure. This pattern has a lower rate-per-α-site than the pattern above it but has the highest overall rate of any surface we have identified. Note that the zig-zag chains of α sites in the zig-zag + 1α pattern are connected to each other at points every four α's along the chains, thus reducing the chance that a section of an α chain can lead to deactivation of this section of the chain. In the checkerboard, an oxygen atom adsorbed on an α site can be removed by CO molecules adsorbed on other α sites along two diagonal directions.

The most active configurations found for 3 x 3 base arrays for cases in which diagonal actions are not allowed. O₂ can adsorb on any nondiagonal site pair, and the base set of parameters was used with the exception of not allowing diagonal actions. α sites are represented as large black circles and β sites are represented as small black dots. The case in which there is one β site in the nine-site base array is inactive due to CO poisoning, and the cases in which there are seven or eight β sites in the base array are inactive due to oxygen poisoning of the α sites.

Fig. 14. The most active configurations found for 3 x 3 base arrays for cases in which diagonal actions are not allowed. O₂ can adsorb on any nondiagonal site pair, and the base set of parameters was used with the exception of not allowing diagonal actions. α sites are represented as large black circles and β sites are represented as small black dots. The case in which there is one β site in the nine-site base array is inactive due to CO poisoning, and the cases in which there are seven or eight β sites in the base array are inactive due to oxygen poisoning of the α sites.

Base array search, we inferred that the 4 x 4 base-array configuration shown in the upper right quadrant of Fig. 16 would have high activity for the case in which diagonal actions are allowed. The rate-per-α-site over this "zig-zag" pattern is higher than any found in the 3 x 3 base array search but is 4% less than over the checkerboard pattern shown in the upper left quadrant of Fig. 16. The zig-zag pattern is probably less active than the checkerboard because an oxygen atom adsorbed on an α site can be removed by CO molecules adsorbed on other α sites along two diagonal directions.

Adding one α site to the 4 x 4 base array that forms the zig-zag pattern produces the "zig-zag + 1α" pattern shown in the lower right quadrant of the figure. This pattern has a lower rate-per-α-site than the pattern above it but has the highest overall rate of any surface we have identified. Note that the zig-zag chains of α sites in the zig-zag + 1α pattern are connected to each other at points every four α's along the chains, thus reducing the chance that a section of an α chain can lead to deactivation of this section of the chain. In the checkerboard, an oxygen atom adsorbed on an α site can be removed by CO molecules adsorbed on other α sites along two diagonal directions.

The most active configurations found for 3 x 3 base arrays for cases in which diagonal actions are not allowed. O₂ can adsorb on any nondiagonal site pair, and the base set of parameters was used with the exception of not allowing diagonal actions. α sites are represented as large black circles and β sites are represented as small black dots. The case in which there is one β site in the nine-site base array is inactive due to CO poisoning, and the cases in which there are seven or eight β sites in the base array are inactive due to oxygen poisoning of the α sites.
3\(\text{sites} \) sites
\[
\text{Rate-per-}\alpha\text{-site} = 0.044
\]
\[
\text{Ave. rate-per-}\alpha\text{-site for random surface} = 0.050
\]
3\(\text{sites} \) sites
\[
\text{Rate-per-}\alpha\text{-site} = 0.12
\]
\[
\text{Ave. rate-per-}\alpha\text{-site for random surface} = 0.13
\]
4\(\text{sites} \) sites
\[
\text{Rate-per-}\alpha\text{-site} = 0.16
\]
\[
\text{Ave. rate-per-}\alpha\text{-site for random surface} = 0.13
\]
5\(\text{sites} \) sites
\[
\text{Rate-per-}\alpha\text{-site} = 0.13
\]
\[
\text{Ave. rate-per-}\alpha\text{-site for random surface} = 0.12
\]

Fig. 15. The most active configurations found for 3 \(\times\) 3 base arrays for cases in which diagonal actions are allowed. \(O_2\) can adsorb on any site pair, and the base set of parameters was used. \(\alpha\) sites are represented as large black circles and \(\beta\) sites are represented as small black dots. The case in which there is one \(\beta\) site in the nine-site base array is inactive due to \(CO\) poisoning, and the cases in which there are six, seven, or eight \(\beta\) sites in the base array are inactive due to oxygen poisoning of the \(\alpha\) sites.

Fig. 16. 4 \(\times\) 4 base-array patterns with high activity for the case in which \(O_2\) can adsorb on any site pair, diagonal actions are allowed, and the base set of parameters is used. The two top patterns are composed of 8\(\text{/16 (0.5)}\) \(\beta\) sites. The checkerboard pattern (also a 2 \(\times\) 2 base-array pattern) has the highest rate-per-\(\alpha\)-site, 0.174, of any pattern studied in this work. The zig-zag pattern has a rate-per-\(\alpha\)-site of 0.167. Random surfaces with this fraction of \(\beta\) sites have an average rate-per-\(\alpha\)-site of 0.13. The overall rates for the checkerboard, zig-zag, and random patterns are 0.087, 0.084, and 0.065, respectively. The two bottom patterns are composed of 7\(\text{/16 (0.44)}\) \(\beta\) sites. The two bottom patterns have lower rates-per-\(\alpha\)-site but higher overall rates than the two top patterns. The rates-per-\(\alpha\)-site for the checkerboard + 1\(\alpha\), the zig-zag + 1\(\alpha\), and random patterns with the same fraction-\(\beta\) are 0.1575, 0.1580, and 0.13, respectively. The overall rates for the checkerboard + 1\(\alpha\), the zig-zag + 1\(\alpha\), and random patterns with the same fraction-\(\beta\) are 0.08857, 0.08875, and 0.073, respectively. The zig-zag + 1\(\alpha\) pattern has the highest overall rate of any pattern studied in this work.

1\(\alpha\) pattern. Subtracting one \(\alpha\) site from the 4 \(\times\) 4 base arrays of the two top patterns in the figure results in decreases in both the rates-per-\(\alpha\)-site and the overall rates.

SUMMARY

This study demonstrates how high activity for CO oxidation can be obtained over a composite material composed of a highly interspersed mixture of one type of site, \(\alpha\), that adsorbs \(CO\) and \(O_2\) and another type of site, \(\beta\), that adsorbs \(O_2\) without significant \(CO\) inhibition. As long as \(O_2\) can adsorb on a pair of \(\beta\) sites, this mode of \(O_2\) adsorption will predominate at low temperatures, where the \(CO\) desorption probability is low, over other possible modes of \(O_2\) adsorption. The main effect of \(O_2\) adsorption on \(\alpha-\alpha\) or \(\alpha-\beta\) pairs is partial deactivation of the surface at high fraction-\(\beta\), and this deactivation will be minimal when the \(O_2\) sticking probability on \(\alpha\) sites is low relative to the \(CO\) sticking probability, except at extremely high fraction-\(\beta\). For some reaction rules and parameter values, specific \(\alpha-\beta\) ratios or specific site configurations are inactive. For most reaction rules and parameter values, a roughly 50–50 mixture of the two types of sites will give the greatest activity per unit total surface area. This result is determined
by the reaction stoichiometry and the fact that the two reactants primarily adsorb separately on the two different types of sites.

The sites in a randomly distributed mixture of the two types of sites have widely differing activities which depend on the local site configurations. The local site configurations of the most active sites in a random surface are similar to site configurations found in the search for optimal configurations. The site configurations found in the search for optimal configurations were only about 20% more active than the random surfaces of the same overall composition. This small difference may be due to the relatively simple steric requirements of CO and O₂ adsorption. We expect that similar searches for optimal site configurations will be more fruitful for reactions with more complex steric requirements.

More detailed experimental studies of reaction kinetics over composite catalysts are required in order to advance our understanding of low-temperature CO oxidation. The present work emphasizes the need for measurements of surface composition and surface structure. The use of scanning nano-probe techniques with model catalyst systems, such as Pd-Sn surface alloys (42), should be especially useful. One particularly interesting question is what the relative contributions are of (a) enhanced reaction at the perimeter of noble-metal particles, predicted by the simulations of Brosilow et al. (9) and (b) reaction over highly interspersed mixtures of the two components, the presence of which have been identified experimentally by Hoflund and co-workers (39, 40) and the kinetics of which have been simulated in this work.

ACKNOWLEDGMENT

Work at the University of California, San Diego, was supported by NASA Grant I-1051.

REFERENCES

APPENDIX I

PROGRAM: Patchwork (Microsoft QuickBasic)

This is the program used for random surfaces.

CLS
CLEAR
PRINT "Written by Ajay Badlani and Dr. Richard K. Herz, Chemical"
PRINT "Engineering, Mail Code 0310,"
PRINT "University of California at San Diego, La Jolla, CA 92093-0310,"
PRINT "Phone: (619) 534-6540, internet: rherz@ucsd.edu, bitnet:"
PRINT "rherz@ucsd.bitnet"
PRINT "All rights reserved."
PRINT ""
PRINT "Hit any key to continue:" INPUT MX

REM define variables
DEFINT A-Z
REM dimension arrays
DIM black%(4) 'pen specification for black ovals (CO) and dots (B sites)
DIM shade%(4) 'pen specification for shaded ovals (O atoms)
DIM rectangle%(4) 'coordinates of oval in subgraphics subroutine
DIM site%(100,100) 'site array, see all set-up subroutines for max.
 'Ispan% and Jspan% values
DIM rxnarray!(100,100) 'array matching site% that keeps track of no. of
 'reaction events on each site
DIM SM%(10) 'for subcross subroutine
DIM ST%(10) 'for subcross subroutine
DIM Nrxn!(100) 'number of reaction events in M (100 MC) time steps
DIM VR!(100) 'used in subran0

REM Specify Parameter Values
yco!=2/3 'yco is the mole fraction of CO in the CO-O2 mixture
Mco!=28 'Molecular weight of CO
Mo2!=32 'Molecular weight of O2
y!=I/(l+((l-yco!)/yco!)*SQR(Mco!/Mo2!)) 'Ratio of CO collisions to the
 'total number of collisions

REM reseed random number generator "RND"
REM use "TIMER," but first convert it to an integer (so can later repeat
REM an old run exactly using same seed)
TSEED!=(TIYZR-43201!)*(65536!/86401!) '65536 max integer range, 86401
 'max sec from midnight
ISEED%=FIX(TSEED!) 'ISEED% should be from -32768 to +32766
RANDOMIZE ISEED%

REM Set up graphics by defining bit patterns for the drawing "pen"
black%(0)=&HFFFF:black%(1)=&HFFFF:black%(2)=&HFFFF:black%(3)=&HFFFF
shade%(0)=&H4422:shade%(1)=&H8811:shade%(2)=&H4422:shade%(3)=&H8811

CLS
PRINT "This is a Monte Carlo simulation of CO oxidation on a surface with"
PRINT "two types of sites, A & B."
PRINT "Empty B sites are marked with dots. Empty A sites are blank."
PRINT "Black circles are CO which adsorb on a single A site only."
PRINT "Grey circles are O atoms. O2 needs two empty sites to adsorb."
PRINT "The input options selected determine whether actions involving"
PRINT "next nearest neighbor sites (on diagonals) can occur and whether"
PRINT "O2 can adsorb on AB pairs, AB & BB pairs, AB & AA pairs, any pair,"
PRINT "or just BB pairs."

22
Appendix I, Program Patchwork Listing, 13 pages total

PRINT ""
PRINT "Rate constants are read from the file 'Patchwork Input Data' and"
PRINT "are equal"
PRINT "to the probability that an event will happen when the"
PRINT "corresponding"
PRINT "site-occupancy configuration is chosen randomly."
PRINT ""
PRINT "Output data are written to the file 'Patchwork Output ###' where"
PRINT "### is"
PRINT "an index number assigned automatically. The index number is stored"
PRINT "in the file"
PRINT "'Patchwork Index'."

LABEL READ:
PRINT ""
PRINT "TURNING OFF COLOR AND SCREEN SAVER SUGGESTED TO SPEED PROGRAM!!!!"
PRINT ""
PRINT "EDIT AND CLOSE file 'Patchwork Input Data' before continuing!"
PRINT ""
PRINT "Hit any key when ready to read input data file:"
INPUT MX
CLS
OPEN "Patchwork Input Data" FOR INPUT AS #1
INPUT #1,M '#100 MC steps
INPUT #1,IX '0=checker, 1=random, 2=4AxB stripe, 3=cross, 4=
'Donut, 5= read "Patch OLD sites" file
INPUT #1,FBsite! 'Nominal fraction of B sites for IX = 1, random
'distribution
INPUT #1,NN '0 means diagonal actions not allowed
INPUT #1,BB '0 for O2 ads on AB pairs, 1=AB & BB, 2=AB & AA, 3=any
'pair, 4=BB pairs
INPUT #1,kcoadsorb! 'Probability CO will adsorb on collision with
'an empty A site (use value from 0 to 1)
INPUT #1,kcodesorb! 'Probability that an adsorbed CO on an A site
'will desorb when selected (use value from 0 to 1)
INPUT #1,koxadsorb! 'Probability that an O2 will adsorb on
'collision with an empty site pair determined by BB (use value from 0 to 1)
INPUT #1,kreact! 'trys at reaction per CO collision with an A site
CLOSE #1
PRINT "M (# 100 MC time steps) = ",M
PRINT "IX (0=checker,1=random,2=4AxB stripe,3=cross,4=Donut,5=old sites)"
PRINT " = ",IX
PRINT "FBsite! (fraction of B sites for IX = 1, random distribution)"
PRINT " = ",FBsite!
PRINT "NN (0 means diagonal actions not allowed) = ",NN
PRINT "BB (0 for O2 ads on AB pairs, 1=AB & BB, 2=AB & AA, 3=any pair,"
PRINT "4=BB pairs) = ",BB
PRINT "kcoadsorb! = ",kcoadsorb!
PRINT "kcodesorb! = ",kcodesorb!
PRINT "koxadsorb! = ",koxadsorb!
PRINT "kreact! = ",kreact!
PRINT ""
PRINT "For uniform..., all A surface, BB needs to be = 2"
PRINT "For IX=5, file 'Patch OLD sites' for I=42, J=26 array must be"n
PRINT " present"
PRINT ""
PRINT "Hit 1 to re-read input data, any other key to continue:"n
INPUT MX
IF MX=1 THEN GOTO LABEL READ
Appendix I, Program Patchwork Listing, 13 pages total

REM **** RE-activate the next 7 lines by removing leading (') to do SCAN *****
'IX=1 'override input params to get random distribution
'BB=2 'override input params on BB, CHECK TO MAKE SURE THIS IS WHAT
 'YOU WANT!!!!!!
'M=15 'override input params on M, CHECK TO MAKE SURE THIS IS WHAT
 'YOU WANT!!!!!!
'FOR ZII=1 TO 9 '**** TEST (should be 9) ****
 'FBsite!=(.l*ZII) 'scan range of FBsite!
REM **** repeat 10 times FOR each value of FBsite! ***
'FOR ZI=1 TO 10 '**** TEST (should be 10) ****

REM ***
REM read index file for output file names
OPEN "Patchwork index" FOR INPUT AS #1
INPUT #1,indexA
CLOSE #1
REM update index file
OPEN "Patchwork index" FOR OUTPUT AS #I
indexA=indexA+1
PRINT #1,indexA
CLOSE #1
REM open output file
fileout$="Patchwork Output "+STR$(indexA)
OPEN fileout$ FOR OUTPUT AS #I
PRINT #1,"Patchwork Output ",STR$(indexA)
PRINT #I,"
PRINT #1,"Initia! state (0=checker, l=random, 2=4Ax2B stripe, 3=\cross, 4=Donut, 5=old sites) = ",IX
PRINT #1,""
PRINT #1,"FBsite! (fraction of B sites for IX = 1, random distribution)"
PRINT #1,"",FBsite!
PRINT #1,""
PRINT #1,"NN (0 means diagonal actions not allowed) = ",NN
PRINT #1,""
PRINT #1,"BB (0 for O2 ads on AB pairs, 1=AB & BB, 2=AB & AA, 3=any pair,"
PRINT #1,"4=BB pairs) = ",BB
PRINT #1,""
PRINT #1,"kcoadsorb! = ",kcoadsorb!
PRINT #1,"kcodesorb! = ",kcodesorb!
PRINT #1,"koxadsorb! = ",koxadsorb!
PRINT #1,"kreact! = ",kreact!
PRINT #1,"yco!=",yco!
PRINT #1,""
PRINT #1,"ISEED% =",ISEED%
PRINT #1,""
REM set-up initial state
IF IX=0 THEN GOSUB subchecker
IF IX=1 THEN GOSUB subrandom
IF IX=2 THEN GOSUB substripes
IF IX=3 THEN GOSUB subcross
IF IX=4 THEN GOSUB subdonut
IF IX=5 THEN GOSUB subsitefile
REM return from initial state set-up subroutines
REM calculate NStotal! the following way to not exceed integer limit
NStotal!=Ispan%
NStotal!=NStotal!*Jspan%
FAactual!=NAsite!/NStotal!
FBactual!=1-FAactual!
REM krxn! is the number of trys at reaction to the total trys

24
Appendix I, Program Patchwork Listing, 13 pages total

\[
krxn! = \frac{(y! \times k\text{react}!)}{(1 + (y! \times k\text{react}!))}
\]

PRINT #1, "The total number of sites =", NStotal!
PRINT #1, "The number of A sites =", NAsite!
PRINT #1, "FActual! = ", FAactual!
PRINT #1, "FBactual! (compare to FBsite! for IX = 1) = ", FBactual!
PRINT #1, "krxn! = ", krxn!
PRINT #1, ""
PRINT #1, "Rate is no. of reaction events per CO collision with an A site,
PRINT #1, "averaged over 100*NStotal! tries (times through loop)."
PRINT #1, "Dtime! is the no. of CO collisions per A site from time = 0."}
PRINT #1,
PRINT #1, "Dtime!", ", ", "Rate"
REM display initial state
CLS
GOSUB subgraphics
REM initialize reaction event counter array
FOR I=1 TO Jspan%
 FOR J=1 TO Jspan%
 rxnarray!(I,J)=0!
 NEXT J
NEXT I
REM start main iteration loop
ON BREAK GOSUB labelBREAK:BREAK ON
FOR KK=1 TO M
 REM initialize reaction event counter
 Nrxn!(KK)=0
 REM Set flag IFF so "RND" will be re-seeded in subran0 every 10 KK (every
 REM 1000 MC steps) on average
 REM in order to increase repetition period of "RND"
 GOSUB subran0
 IF RAN0!<.1 THEN IFF=0
 FOR K=I TO IO00 !***** TEST (should be IO00) ********
 FOR LA=I TO Jspan% 'split into two loops so don't exceed integer limit with
 FOR LB=I TO Jspan%
 REM Check for a reaction krxn! fraction of the time and for an adsorption-
 REM desorption event (1-krxn!) of the time.
 GOSUB subran0
 IF RAN0!>krxn! THEN GOTO label88 'then look at an adsorption event
 REM check to see if reaction happens
 GOSUB subpairpick
 REM REACT if 0 on A site and CO on A site
 IF site%(x,y)=2 AND site%(xn%,yn%)=1 THEN
 GOSUB subrxn
 GOTO label10
 END IF
 REM REACT if CO on A site and O on A site
 IF site%(x,y)=1 AND site%(xn%,yn%)=2 THEN
 GOSUB subrxn
 GOTO label10
 END IF
 REM REACT if CO on A site and O on B site
 IF site%(x,y)=1 AND site%(xn%,yn%)=12 THEN
 GOSUB subrxn
 GOTO label10
 END IF
 REM REACT if O on B site and CO on A site
 IF site%(x,y)=12 AND site%(xn%,yn%)=1 THEN
Appendix I, Program Patchwork Listing, 13 pages total

GOSUB subrxn
GOTO label10
END IF
GOTO label10

label88:
REM look at a CO event y! fraction of the time and at an oxygen event
REM (1-y!) of the time
GOSUB subran0
IF RAN0!>y! THEN GOTO label888 'then go look at an oxygen event
REM check for CO adsorption or desorption
REM pick random site, site%(x,y)
GOSUB subran0
x=INT((Ispan%*RAN0!)+l!)
GOSUB subran0
y=INT((Jspan%*RAN0!)+l!)
IF site%(x,y)=0 THEN
GOSUB subcoadsorb
GOTO label10
END IF
IF site%(x,y)=1 THEN GOSUB subcodesorb
GOTO label10

label888:
REM check to see of O2 adsorbs
GOSUB subpairpick
REM ADSORB O if BB<4 and empty A site and empty B site
IF BB<4 AND site%(x,y)=0 AND site%(xn%,yn%)=10 THEN
GOSUB suboxadsorb
GOTO label10
END IF
REM ADSORB O if BB<4 and empty B site and empty A site
IF BB<4 AND site%(x,y)=10 AND site%(xn%,yn%)=0 THEN
GOSUB suboxadsorb
GOTO label10
END IF
REM ADSORB O if BB=1 and empty B site and empty B site
IF BB=1 AND site%(x,y)=10 AND site%(xn%,yn%)=10 THEN
GOSUB suboxadsorb
GOTO label10
END IF
REM ADSORB O if BB=2 and empty A site and empty A site
IF BB=2 AND site%(x,y)=0 AND site%(xn%,yn%)=0 THEN
GOSUB suboxadsorb
GOTO label10
END IF
REM ADSORB O if BB=3 and empty A site and empty A site
IF BB=3 AND site%(x,y)=0 AND site%(xn%,yn%)=0 THEN
GOSUB suboxadsorb
GOTO label10
END IF
REM ADSORB O if BB=3 and empty B site and empty B site
IF BB=3 AND site%(x,y)=10 AND site%(xn%,yn%)=10 THEN
GOSUB suboxadsorb
GOTO label10
END IF
REM ADSORB O if BB=4 and empty B site and empty B site
IF BB=4 AND site%(x,y)=10 AND site%(xn%,yn%)=10 THEN
GOSUB suboxadsorb
GOTO label10

26
Appendix I, Program Patchwork Listing, 13 pages total

END IF

label10:
'GOSUB subgraphics '*** activate by removing leading (') to check logic
'changes by displaying each trial *****

NEXT LB
NEXT LA
NEXT K

GOSUB subgraphics
IF NA.site!=0 THEN GOTO labelSKIP
REM at this point Nrxn!(KK) equals no. of reaction events in 100!*NStotal!
REM total times through loop.
Nrxn!(KK)=Nrxn!(KK)/(100!*NStotal!*l-krxn!)*y!*FAactual!
REM Nrxn!(KK) now equals no. of reaction events per CO collision with an A
REM site
Dtime!=KK*100*(l-krxn!)*y! 'Dtime! is total no. of CO collisions per A
'site since time = 0

labelSKIP:
LOCATE 21
PRINT USING "### #.### ;KK,Nrxn!(KK)
PRINT #1, USING "$###^~^~_ _ _ _ $###^~^~$;Dtime!,Nrxn!(KK)

NEXT KK

labelBREAK:
REM If allowed to complete FOR-NEXT loop, KK becomes M+1, so reset it to
REM equal M.
REM If BREAK sent, don't use incomplete series in average below so reset
REM anyway.
KK=KK-1
REM **** DE-activate the next 15 lines by adding leading (') to do SCAN ****
LOCATE 22
'PRINT "hit any key to re-display final configuration:
'INPUT MX
GOSUB subgraphics
LOCATE 21
PRINT USING "$###^~^~_ _ _ _ $###^~^~$;KK,Nrxn!(M)
PRINT "
'PRINT "hit any key to continue:
'INPUT MX
IF KK>15 THEN MS=KK-14 ELSE MS=1
LOCATE 1
PRINT "Rate @ M (# 100*NStotal! trys) ",MS,"to",KK
FOR KS=MS TO KK
PRINT USING "$###^~^~$;Nrxn!(KS)
NEXT KS

REM **
REM ave the last half of the run to get an average rate
Avestart%=INT(.5*KK) 'start averaging 50% through series - can change
'factor if desired
Nrxn!(M+I)=0 'place holder for the average of (KK+1-Avestart) Nrxn! to
'average together
FOR KS=Avestart% TO KK
Nrxn!(M+1)=Nrxn!(M+1)+Nrxn!(KS)/(KK+1-Avestart%)
NEXT KS
LOCATE 22
PRINT "Rate =",Nrxn!(M+1)
GOSUB subanalysis
REM finish writing to output file
PRINT #1,"The following is a 'snapshot' of the final site configuration,
PRINT #1,"site%(I,J),"
PRINT #1," listed as all Jspan% J's for I=1, then all Jspan% J's for I=2,"
PRINT #1," etc., up to I=Ispan%"
PRINT #1," Ispan% = ",Ispan%
PRINT #1," Jspan% = ",Jspan%
FOR I=1 TO Ispan%
FOR J=1 TO Jspan%
PRINT #1,site%(I,J)
NEXT J
NEXT I
PRINT #1,
PRINT #1,"The following is the reaction event counter array"
PRINT #1," rxnarray!(I,J),"
PRINT #1," listed as all Jspan% J's for I=1, then all Jspan% J's for I=2,"
PRINT #1," etc., up to I=Ispan%:
FOR I=1 TO Ispan%
FOR J=1 TO Jspan%
PRINT #1,rxnarray!(I,J)
NEXT J
NEXT I
PRINT #I,
PRINT #1," END OF DATA"
CLOSE #1
REM update summary file
OPEN "Patchwork Summary" FOR APPEND AS #I
PRINT #I, USING "###_,###### , #, #.### , #, #, #.### ,#.### , #.### , #.### ,#.###";indexA, ISEED%,IX,FBactua!!,NN, BB,Nrxn!(M+1),kcoadsorb!,kcodesorb!,kcxadsorb!,kreact!
CLOSE #I
REM **** RE-activate next 2 lines by removing leading ('') to do a SCAN
'NEXT ZI
'NEXT ZII
REM **** DE-activate next 7 lines by adding leading ('') to do a SCAN
LOCATE 21
PRINT " "
PRINT "
PRINT " ENTER 1 TO RERUN: "
PRINT "
INPUT MX
IF MX=I GOTO label00
REM ***
BREAK OFF
END
subran0:
REM This routine is similar "RAN0" in the book "Numerical Recipes (FORTRAN) by
REM It "scrambles" the "RND" numbers to cut down on pair correlations.
REM I have also added a random re-seeding of "RND" to increase its repetition
REM period
REM from originally on the order of 5E07 calls (11,000 MC steps for 1092
REM array).
REM IF IFF=0 THEN
 IFF=1
 REM re-seed "RND" randomly with random seed to to increase its
REM repetition period
ZR%=32767*RND
IF RND<.5 THEN ZR%=-ZR%
RANDOMIZE ZR%

REM the next lines "set up" the scrambling array for RAN0
FOR JR=1 TO 97
 dum!=RND
NEXT JR
FOR JR=1 TO 97
 VR!(JR)=RND
NEXT JR
YR!=RND
END IF
JR=I+INT(97!*YR!)
YR!=VR!(JR)
RAN0!=YR!
VR!(JR)=RND
RETURN

subchecker:
REM initialize for A-B checker board initial state
Ispan%=42 'can be changed for different array size but needs to be 'even number
Jspan%=26 'can be changed for different array size but needs to be 'even number
NAsite!=Ispan%/2
NAsite!=NAsite!*Jspan% 'calculate this way so don't exceed integer 'limit during calculation
FOR I=1 TO 21 '1 to (Ispan%/2)
 IO=(2*I)-1
 IE=(2*I)
 FOR J=1 TO 13 '1 to (Jspan%/2)
 JO=(2*J)-1
 JE=(2*J)
 site%(IO,JO)=0 'site is empty A site
 site%(IE,JE)=10 'site is empty B site
 NEXT J
 NEXT I
RETURN

subrandom:
REM initialize for empty random A-B site distribution
NAsite!=0!
Ispan%=42 'can be changed for different array size
Jspan%=26 'can be changed for different array size
FOR I=1 TO Ispan%
 FOR J=1 TO Jspan%
 GOSUB subran0
 IF RAN0!=FBsite! THEN
 site%(I,J)=0 'site is empty A site
 NAsite!=NAsite!+1! 'number of A sites to use in 'calculating rate per A site
 GOTO labelSR0
 END IF
 NEXT J
 NEXT I

labelSR0:
 site%(I,J)=10 'site is empty B site
NEXT J
NEXT I
Appendix I, Program Patchwork Listing, 13 pages total

RETURN

substripes:
REM initialize for stripes of 4 A sites wide followed by 2 B sites wide
Ispan%=42 'can be changed for different array size but must be
'multiple of repeat period of 6
Jspan%=26 'can be changed for different array size
NAsite%=Jspan%*(4*Ispan%/6)
FOR I=0 TO 6 '0 to ((Ispan%/6)-1)
 FOR J=1 TO Jspan%
 site%((I*6)+1,J)=0 'site is empty A site
 site%((I*6)+2,J)=0 'site is empty A site
 site%((I*6)+3,J)=0 'site is empty A site
 site%((I*6)+4,J)=0 'site is empty A site
 site%((I*6)+5,J)=10 'site is empty B site
 site%((I*6)+6,J)=10 'site is empty B site
 NEXT J
NEXT I
RETURN

subcross:
REM initialize for staggered crosses of A's
Ispan%=40 'can be changed but must be multiple of repeat period of 8
Jspan%=24 'can be changed but must be multiple of repeat period of 8
NAsite%=600 '600 is for Ispan%=40, Jspan%=24
(= Ispan%*Jspan%*10/16 ?????)
REM initialize arrays
SM%(1)=0
SM%(2)=0
SM%(3)=0
SM%(4)=10
SM%(5)=0
SM%(6)=10
SM%(7)=0
SM%(8)=10
ST%(1)=1
ST%(2)=4
ST%(3)=7
ST%(4)=2
ST%(5)=5
ST%(6)=2
ST%(7)=3
ST%(8)=6
FOR J=0 TO 2 '0 to (Jspan%/8)-1
 FOR JX=1 TO 8
 FOR I=0 TO 4 '0 to (Ispan%/8)-1
 FOR IX=1 TO 8
 CX=ST%(JX)+IX
 IF CX>8 THEN CX=CX-8
 site%((I*8+IX),(J*8+JX))=SM%(CX)
 NEXT IX
 NEXT I
 NEXT JX
NEXT J
RETURN

subdonut:
REM initialize for A-B checker board initial state
Ispan%=42 'can be changed for different array size
Jspan%=26 'can be changed for different array size
NAsite%=Ispan%/2
Appendix I, Program Patchwork Listing, 13 pages total

NAsite! = NAsite!*Jspan% 'calculate this way so that it does not exceed integer limit during calculation

FOR I = 1 TO 21 'I to Ispan%/2
FOR J = 1 TO 26
site%(I, J) = 0 ' site is empty A site
NEXT J
NEXT I

FOR I = 22 TO 42 'Ispan%/2 to Ispan%
FOR J = 1 TO 26
site%(I, J) = 10 'site is a empty B site
NEXT J
NEXT I
RETURN

subsitefile:
REM This is set up to read the array "snapshot" of a previous run for an
REM I=42, J=26 array.
REM The file "Patch OLD sites" must be present.
Ispan% = 42 'can be changed for different array size
Jspan% = 26 'can be changed for different array size
NAsite! = 0
OPEN "Patch OLD sites" FOR INPUT AS #2
FOR I = 1 TO 42
FOR J = 1 TO 26
INPUT #2, site%(I, J)
IF site%(I, J) = 0 THEN NAsite! = NAsite! + 1
IF site%(I, J) = 1 THEN site%(I, J) = 0: NAsite! = NAsite! + 1
IF site%(I, J) = 2 THEN site%(I, J) = 0: NAsite! = NAsite! + 1
IF site%(I, J) = 12 THEN site%(I, J) = 10
NEXT J
NEXT I
CLOSE #2
RETURN

subpairpick:
REM this picks a random pair of sites
REM pick random site, site%(x,y)
GOSUB subran0
x = INT((Ispan% * RAN0!) + 1)
GOSUB subran0
y = INT((Jspan% * RAN0!) + 1)
REM pick neighboring site
IF NN = 0 THEN GOTO labelDD
REM the following 7 lines are for: diagonal neighbor actions are CK
labelNN:
GOSUB subran0
xn% = x + INT(3 * RAN0!) - 1
GOSUB subran0
yn% = y + INT(3 * RAN0!) - 1
IF xn% = x AND yn% = y THEN GOTO labelDD 'neighbor can't be itself
GOTO label1999
labelDD:
REM the following 18 lines are for: diagonal actions not allowed
GOSUB subran0
IF RAN0! < .5 THEN GOTO label1999
xn% = x
GOSUB subran0
IF RAN0! < .5 THEN
yn% = y + 1
ELSE
Appendix I, Program Patchwork Listing, 13 pages total

```
y%=y-1
END IF
GOTO label99
label99:
y%=y
GOSUB subran0
IF RAN0! < .5 THEN
  xn%=x+1
ELSE
  xn%=x-1
END IF
label99:
  REM Set indices correctly for neighbors over array boundary.
  REM This corresponds to the surface as a torus or as a semi-infinite
  REM flat
  REM surface formed of a periodic array of the sub-array computed here.
  IF xn%=0 THEN xn%=Ispan%
  IF xn%>Ispan% THEN xn%=1
  IF yn%=0 THEN yn%=Jspan%
  IF yn%>Jspan% THEN yn%=1
RETURN
subcoadsorb:
  GOSUB subran0
  IF RAN0! < kcoadsorh THEN site%(x,y)=1
RETURN
subcodesorb:
  GOSUB subran0
  IF RAN0! < kcodesorb THEN site%(x,y)=0
RETURN
suboxadsorb:
  GOSUB subran0
  IF RAN0! < koxadsorb THEN
    site%(x,y)=site%(x,y)+2
    site%(xn%,yn%)=site%(xn%,yn%)+2
  END IF
RETURN
subrxn:
  GOSUB subran0
  IF RAN0! > .4052345# THEN GOTO labelRXN
  Nrxn!(KK)=Nrxn!(KK)+1!
  IF site%(x,y)=i THEN site%(x,y)=0
  IF site%(x,y)=2 THEN site%(x,y)=0
  IF site%(x,y)=12 THEN site%(x,y)=10
  IF KK>36 THEN rxnarray!(x,y)=1+rxnarray!(x,y)
  IF site%(xn%,yn%)=1 THEN site%(xn%,yn%)=0
  IF site%(xn%,yn%)=2 THEN site%(xn%,yn%)=0
  IF site%(xn%,yn%)=12 THEN site%(xn%,yn%)=10
  IF KK>36 THEN rxnarray!(xn%,yn%)=1+rxnarray!(xn%,yn%)
labelRXN:
  RETURN
subgraphics:
  FOR I=1 TO Ispan%
  FOR J=1 TO Jspan%
    REM set coordinates for "ovals" (circles here) in PAINTOVAL calls
    rectangle%(0)=(J-1)*12
    rectangle%(1)=(I-1)*12
    rectangle%(2)=J*12
    rectangle%(3)=I*12
```

Appendix I, Program Patchwork Listing, 13 pages total

\[
dot%(0)=((J-1)*12)+5
\]
\[
dot%(1)=((I-1)*12)+5
\]
\[
dot%(2)=(J*12)-5
\]
\[
dot%(3)=(I*12)-5
\]

REM update site graphics
IF site%(I,J)=0 THEN 'site is empty A site
 CALL EFASEOVAL(VARPTR(rectangle%(0)))
 GOTO labelGR1
END IF
IF site%(I,J)=1 THEN 'site is CO ads on A site
 CALL FENPAT(VARPTR(black%(0)))
 CALL FAINTOVAL(VARPTR(rectangle%(0)))
 GOTO labelGR1
END IF
IF site%(I,J)=2 THEN 'site is O ads on A site
 CALL FENPAT(VARPTR(shade%(0)))
 CALL FAINTOVAL(VARPTR(rectangle%(0)))
 GOTO labelGR1
END IF
IF site%(I,J)=10 THEN 'site is empty B site
 CALL EFASEOVAL(VARPTR(rectangle%(0)))
 CALL FENPAT(VARPTR(black%(0)))
 CALL PAINTOVAL(VARPTR(dot%(0)))
 GOTO labelGR1
END IF
IF site%(I,J)=12 THEN 'site is O ads on B site
 CALL FENPAT(VARPTR(shade%(0)))
 CALL FAINTOVAL(VARPTR(rectangle%(0)))
 CALL FENPAT(VARPTR(black%(0)))
 CALL FAINTOVAL(VARPTR(dot%(0)))
 GOTO labelGR1
END IF
PRINT "error: in subgraphics with unknown site configuration"
' shouldn't reach this point
labelGR1:
NEXT J
NEXT I
RETURN

subanalysis:
REM determine fractional coverages and statistics
sumco%=0
sumox%=0
FOR I=1 TO Ispan%
 FOR J=1 TO Jspan%
 IF site%(I,J)=1 THEN sumco%=sumco%+1!
 IF site%(I,J)=2 THEN sumox%=sumox%+1!
 NEXT J
NEXT I
IF NAsite!=0 THEN
 thetaco%=999!
 thetaox%=999!
 GOTO labelANAL1
END IF
thetaco%=sumco%/NAsite!
thetaox%=sumox%/NAsite!
labelANAL1:
PRINT #1,"Thetas on A sites ONLY of 'snapshot' of final configuration:"
PRINT #1,""
PRINT #1, USING " _h_e_t_a_ _C_O_ _ = _ #.###"; thetaco!
PRINT #1, USING " _h_e_t_a_ _O_X_ _ = _ #.###"; thetaox!
RETURN
APPENDIX II

PROGRAM: Opt? (?)/3x3x7 (Microsoft QuickBasic)

This is the program used for searching for optimal surface structures.

CLS
CLEAR

PRINT "Written by Richard K. Herz, Chemical Engineering, Mail Code 0310,"
PRINT "University of California at San Diego, La Jolla, CA 92093-0310,"
PRINT "Phone: (619) 534-6540, internet: rherz@ucsd.edu, bitnet:"
PRINT "rherz@ucsd.bitnet"
PRINT "All rights reserved."
PRINT ""
PRINT "Hit any key to continue:"
INPUT MX

REM define variables
DEFINT A-Z

REM define variables
DIM black%(4) 'pen specification for black ovals (CO) and dots (B sites)
DIM shade%(4) 'pen specification for shaded ovals (O atoms)
DIM rectangle%(4) 'coordinates of oval in subgraphics subroutine
DIM site%(100,100) 'site array, see all set-up subroutines for max.
DIM maxsite%(100,100) 'site array to hold optimal configuration
DIM site0%(100,100)
DIM Nrxn! (100) 'number of reaction events in M (100 MC) time steps
DIM VR! (100) 'used in subroutines

REM Specify Parameter Values
yco!=2/3 'yco is the mole fraction of CO in the CO-O2 mixture
Mco!=28 'Molecular weight of CO
Mo2!=32 'Molecular weight of O2
y!=1/(1+((1-yco!)/yco!)*SQR(Mco!/Mo2!))
REM y! = Ratio of CO collisions to the total number of collisions

REM reseed random number generator "RND"
REM use "TIMER," but first convert it to an integer
REM (so can later repeat an old run exactly using same seed)
TSEED!=(TIMER-43201!)*(65536!/86401!)
REM 65536 max integer range, 86401 max sec from midnight
ISEED%=FIX(TSEED!) 'ISEED% should be from -32768 to +32766
RANDOMIZE ISEED%

REM Set up graphics by defining bit patterns for the drawing "pen"
black%(0)=&HFFFF:black%(1)=&HFFFF:black%(2)=&HFFFF:black%(3)=&HFFFF
shade%(0)=&H4422:shade%(1)=&H8811:shade%(2)=&H4422:shade%(3)=&H8811

CLS
PRINT "This is a Monte Carlo simulation of CO oxidation on a surface with"
PRINT "two types of sites, A & B."
PRINT "Empty B sites are marked with dots. Empty A sites are blank."
PRINT "Black circles are CO which adsorb on a single A site only."
PRINT "Grey circles are O atoms. O2 needs two empty sites to adsorb."
PRINT "The input options selected determine whether actions involving"
PRINT "next nearest neighbor sites (on diagonals) can occur and whether"
PRINT "O2 can adsorb on AB pairs, AB & BB pairs, AB & AA pairs, any pair,"
PRINT "or just BB pairs."
PRINT ""
PRINT ""
PRINT ""
PRINT "Hit any key when ready to read input data:"
INPUT MX
CLS

labelASK01:
PRINT "Enter no. of A sites in base array (NAbase%):"
INPUT NAbase%
PRINT "Enter NN (0 diag no allowed, 1 diag OK):"
INPUT NN
PRINT "NAbase% =",NAbase%
PRINT "NN = ",NN
PRINT "Enter 2 if you want to revise, any other key to continue:"
INPUT MX
IF MX=2 GOTO labelASK01

M=100 'number of MC steps performed
avestart%=10 'number of runs from start to skip in getting average rate
IX=1

BB=3
kcoadsorb!=1
kcodesorb!=0
koxadsorb!=1
kreact!=1
I0span%=3 'size of base array in I0span direction
J0span%=3 'size of base array in J0span direction
expander%=7 'number of times base array repeated in each direction
REM krnx! is the number of tries at reaction to the total tries
krnx!!=(y!*kreact!)/(1+y!*kreact!)
REM set up name of output file
Mtitle$=CHR$(NAbase%+48)
Ntitle$=CHR$(NN+4)
Ititle$=CHR$(I0span%+48)
Jtitle$=CHR$(J0span%+48)
Etitle$=CHR$(expander%+48)
fileout$="Opt"+Mtitle$+"."+Ntitle$+"."+Ititle$+"."+Jtitle$+"."+Etitle$+".txt"
REM print to screen
PRINT "M (# 100 MC time steps) = ",M
PRINT "avestart% = ",avestart%
PRINT "IX (1=random) = ",IX
PRINT "NN (0 means diagonal actions not allowed) = ",NN
PRINT "BB (0 for C2 ads on AB pairs, 1=AB & BB, 2=AB & AA, 3=any pair,
PRINT "4=BB pairs) = ",BB
PRINT "kcoadsorb! =",kcoadsorb!
PRINT "kcodesorb! =",kcodesorb!
PRINT "koxadsorb! =",koxadsorb!
PRINT "kreact! =",kreact!
PRINT ""
PRINT "I0span%, J0span% = ",I0span%,J0span%
PRINT "NAbase% = ",NAbase%
PRINT "expander% = ",expander%
PRINT ""

labelASK00:
PRINT "Enter 1 to start with new random array, 2 to read old file,"
PRINT "3 to input manually:"
INPUT MZ
IF MZ<1 OR MZ>3 THEN PRINT "TRY AGAIN":GOTO labelASK00
REM set-up initial state
IF MZ=1 THEN GOSUB subrandom
IF MZ=2 THEN GOSUB suboldfile
Appendix II, Program Cpt?(?)/3x3x7 Listing, 13 pages total

IF MZ=3 THEN GOSUB submanual
GOSUB subexpand
REM calculate NStotal! the following way to not exceed integer limit
REM during calculation
NStotal!=Ispan%
NStotal!=NStotal!*Jspan%
FAactual!=NASite!/NStotal!
FBactual!=1-FAactual!
REM initialize parameters and write to output file so run type recorded if all
REM poison
maxrate!=0
runnum!=0
GOSUB suboutput

labelSTART:
OPEN "OPT Index" FCR INPUT AS #i
INPUT #1,indexA
CLOSE #1
REM update index file
OPEN "OPT Index" FCR OUTPUT AS #1
indexA=indexA+1
PRINT #1,indexA
CLOSE #1
runnum!=runnum!+1
IF runnum!>1 THEN
GOSUB subrandz 'generate new random surface for next run
GOSUB subexpand
REM calculate NStotal! the following way to not exceed integer limit
REM during calculation
NStotal!=Ispan%
NStotal!=NStotal!*Jspan%
FAactual!=NASite!/NStotal!
FBactual!=1-FAactual!
END IF
CLS
GOSUB subgraphics
REM start main iteration loop
ON BREAK GOSUB labelBREAK: BREAK ON
FOR KK=1 TO M
REM initialize reaction event counter
Nrxn!(KK)=0
REM Set flag IFF so "RND" will be re-seeded in subran0 every 10 KK (every
REM 1000 MC steps) on average
REM in order to increase repetition period of "RND"
GOSUB subran0
IF RAN0!<.1 THEN IFF=0
FOR K=1 TO 100
FOR LA=1 TO Ispan% 'split so don't exceed integer limit in Ispan%*Jspan%
FOR LB=1 TO Jspan%
REM Check for a reaction krxn! fraction of the time and for an adsorption-
REM desorption event (1-krxn!) of the time.
GOSUB subran0
IF RAN0!>krxn! THEN GOTO label88 'then look at an adsorption event
REM check to see if reaction happens
GOSUB subpairpick
REM REACT if O on A site and CO on A site
IF site%(x,y)=2 AND site%(xn%,yn%)=1 THEN
GOSUB subrxn
GOTO label10

37
Appendix II, Program Opt?/?/3x3x7 Listing, 13 pages total

END IF
REM REACT if CO on A site and O on A site
IF site%(x,y)=1 AND site%(xn%,yn%)=2 THEN
GOSUB subrxn
GOTO label10
END IF
REM REACT if CO on A site and O on B site
IF site%(x,y)=1 AND site%(xn%,yn%)=12 THEN
GOSUB subrxn
GOTO label10
END IF
REM REACT if O on B site and CO on A site
IF site%(x,y)=12 AND site%(xn%,yn%)=1 THEN
GOSUB subrxn
GOTO label10
END IF
GOTO label10

label88:
REM look at a CO event y! fraction of the time and at an oxygen event (1-
REM y!) of the time
GOSUB subran0
IF RAN0!>y! THEN GOTO label888 'then go look at an oxygen event
REM check for CO adsorption or desorption
REM pick random site, site%(x,y)
GOSUB subran0
x=INT((lspan%*P_.N0!)+l!)
GOSUB subran0
y=INT((Jspan%*P_.N0!)+l!)
IF site%(x,y)=0 THEN
GOSUB subcoadsorb
GOTO label10
END IF
IF site%(x,y)=1 THEN GOSUB subcodesorb
GOTO label10

label888:
REM check to see if O2 adsorbs
GOSUB subpairpick
REM ADSORB O if BB<4 and empty A site and empty B site
IF BB<4 AND site%(x,y)=0 AND site%(xn%,yn%)=10 THEN
GOSUB suboxadsorb
GOTO label10
END IF
REM ADSORB O if BB<4 and empty B site and empty A site
IF BB<4 AND site%(x,y)=10 AND site%(xn%,yn%)=0 THEN
GOSUB suboxadsorb
GOTO label10
END IF
REM ADSORB O if BB=1 and empty B site and empty A site
IF BB=1 AND site%(x,y)=10 AND site%(xn%,yn%)=10 THEN
GOSUB suboxadsorb
GOTO label10
END IF
REM ADSORB O if BB=2 and empty A site and empty B site
IF BB=2 AND site%(x,y)=0 AND site%(xn%,yn%)=0 THEN
GOSUB suboxadsorb
GOTO label10
END IF
REM ADSORB O if BB=3 and empty A site and empty A site
IF BB=3 AND site%(x,y)=0 AND site%(xn%,yn%)=0 THEN
 GOSUB suboxadsorb
 GOTO label10
END IF

REM ADSORB 0 if BB=3 and empty B site and empty B site
IF BB=3 AND site%(x,y)=10 AND site%(xn%,yn%)=10 THEN
 GOSUB suboxadsorb
 GOTO label10
END IF

REM ADSORB 0 if BB=4 and empty B site and empty B site
IF BB=4 AND site%(x,y)=10 AND site%(xn%,yn%)=10 THEN
 GOSUB suboxadsorb
 GOTO label10
END IF

labell0:
'GOSUB subgraphics '*** activate by removing leading ('') to check logic
NEXT LB
NEXT LA
NEXT K

GOSUB subgraphics
IF NAsite!=0 THEN PRINT "NAsite! = 0 !!!!!!!!!!!!!!!!":GOTO labelSKIP
REM at this point Nrnx!(KK) equals no. of reaction events in 100!*NStota!!
REM total times through loop.
Nrnx!(KK)=Nrnx!(KK)/(100!*(1-krxn!)*y!*NAsite!)
REM Nrnx!(KK) now equals (no. of reaction events per A site) per (CO
REM collision per A site)
Dtime!=KK*100*(1-krxn!)*y!
REM Dtime! is total number CO collisions per A site since time = 0

labelSKIP:
LOCATE 21
PRINT fileout$
PRINT USING "'
REM ******** TERMINATE RUNNING ON DEAD SURFACE **************
IF Nrnx!(KK)=0 AND kcodesorb!=0 THEN GOTO labelSTART
REM needed to prevent program from getting stuck in infinite loop if all A sites are
REM filled
IF Nrnx!(KK)=0 THEN
 killcheck%=
 FOR I=1 TO Ispan%
 FOR J=1 TO Jspan%
 IF site%(I,J)=1 THEN killcheck%=

NEXT J

END I
END IF
REM kill if no vacant or CO-filled A sites left
IF Nrnx!(KK)=0 AND killcheck%=0 THEN GOTO labelSTART
REM **** SURFACE STILL ALIVE IF GET TO HERE **************

NEXT KK

REM If allowed to complete FOR-NEXT loop, KK becomes M+I, so reset it to
REM equal M.
KK=KK-I

REM average rates calculated after startup period
Nrnx!(M+I)= 'place holder for the ave of (KK+1-Avesteem) Nrnx!
FOR KS=(startup%+1) TO KK
 Nrnx!(M+I)=Nrnx!(M+I)+Nrnx!(KS)/(KK-startup%)
NEXT KS
LOCATE 22
PRINT fileout$
PRINT "Ave. Rate =",Nrnx!(M+I)
REM **** check to see if this is the highest rate so far *******
IF Nrxn!(M+1)>maxrate! THEN
 maxrate!=Nrxn!(M+1)
 FOR I=1 TO Ispan%
 FOR J=1 TO Jspan%
 maxsite%(I,J)=site%(I,J)
 NEXT J
 NEXT I
 BREAK OFF
 GOSUB suboutput
END IF
GOTO labelSTART
labelBREAK:
BREAK OFF
GOSUB submaxgraph
LOCATE 22
labelASK:
 PRINT "Continue Program? (y or Y OR n or N):"
 INPUT MY$
 IF MY$="y" OR MY$="Y" THEN GOTO labelSTART
 IF MY$<"n" AND MY$<>"N" THEN CLS:LOCATE 12:GOTO labelASK
 OPEN fileout$ FOR APPEND AS #i
 PRINT #1,"Total runs started in this set = ",runnum!
 PRINT #1,""
 PRINT #1, "END OF DATA"
 CLOSE #1
END
subran0:
REM This routine is similar "RAN0" in the book "Numerical Recipes (FORTRAN) by
REM It "scrambles" the "RND" numbers to cut down on pair correlations.
REM I have also added a random re-seeding of "RND" to increase its repetition period.
REM from originally on the order of 5E07 calls (11,000 MC steps for 1092 REM array).
IF IFF=0 THEN
 IFF=1
 REM re-seed "RND" randomly with random seed to to increase its
 REM repetition period
 ZR%=32767*RND
 IF RND<.5 THEN ZR%=-ZR%
 RANDOMIZE ZR%
 REM the next lines "set up" the scrambling array for RAN0
 FOR JR=1 TO 97
 dum:=_2$D
 NEXT JR
 FOR JR=1 TO 97
 VR!(CR)=RND
 NEXT JR
 YR!=RND
END IF
JR=1+INT(97!*YR!)
YR!=VR!(JR)
RAN0!=YR!
VR!(JR)=RND
RETURN
subrandom:
REM initialize for empty random A-B site distribution
labelSRl:
Appendix II, Program Cpt(?)/3x3x7 Listing, 13 pages total

NAt=0
FBsite!=1-(NAtbase%/(IOspan%*J0span%))
FOR I=1 TO IOspan%
 FOR J=1 TO J0span%
 GOSUB subran0
 IF _N_!>FBsite! THEN
 site0%(I,J)=0:NA%=NA%+1 'site is empty A site
 GOTO labelSR0
 END IF
 site0%(Z,J)=10 'site is empty B site
 labelSR0:
 NEXT J
 NEXT I
 IF NA%<>NAbase% THEN GOTO labelSR1 'fixes no. A sites in base array
RETURN

suboldfile:
CLS
labelASK1:
filename$=FILES$(1,"TEXT")
IF filename$="" GOTO labelASK1
PRINT "Input File is " ;filename$
OPEN filename$ FCR INPUT AS #i
PRINT ""
MX=25
FOR I=1 TO MX
 LINE INPUT #2,!y$
 NEXT I
 LINE INPUT #1,maxra=e$
 PRINT maxrate$
 MX=5
FOR I=1 TO MX
 LINE INPUT #1, dummy$
 PRINT dummy$
 NEXT I
PRINT "hit any key = continue"
INPUT MZZ
FOR I=1 TO IOspan%
 FOR J=1 TO J0span%
 INPUT #1,sie0%(I,J)
 IF site0%(I,J)=1 THEN site0%(I,J)=0
 IF site0%(I,J)=2 THEN site0%(I,J)=0
 IF site0%(I,J)=12 THEN site0%(I,J)=10
 PRINT "site0% (I,J) =", site0%(I,J)
 NEXT J
 NEXT I
CLOSE #1
PRINT "enter any key to continue"
INPUT MZZ
CLS
FOR IM=0 TO (expander%-1)
 FOR JM=0 TO (expander%-1)
 FOR I=1 TO IOspan%
 FOR J=1 TO J0span%
 REM set coordinates for "ovals" (circles here) in PAINTOVAL calls
 rectangle%(0)=((JM*J0span%)+J-1)*12
 rectangle%(1)=((IM*IOspan%)+I-1)*12
 rectangle%(2)=((JM*J0span%)+J)*12
 rectangle%(3)=((IM*IOspan%)+I)*12
 NEXT J
 NEXT I
 NEXT JM
 PRINT ""
dot%(0)=(((JM*I0span%)+J-1)*12)+5
dot%(1)=(((JM*I0span%)+I-1)*12)+5
dot%(2)=(((JM*J0span%)+J)*12)-5
dot%(3)=(((JM*I0span%)+I)*12)-5

REM show current maximum rate site configuration
IF site0%(I,J)=0 THEN 'site is empty A site
 CALL PENPAT(VARPTR(black%(0)))
 CALL PAINTOVAL(VARPTR(rectangle%(0)))
GOTO labelOGR1
END IF
IF site0%(I,J)=1 THEN 'site is CO ads on A site
 CALL PENPAT(VARPTR(black%(0)))
 CALL PAINTOVAL(VARPTR(rectangle%(0)))
GOTO labelOGR1
END IF
IF site0%(I,J)=2 THEN 'site is O ads on A site
 CALL PENPAT(VARPTR(black%(0)))
 CALL PAINTOVAL(VARPTR(rectangle%(0)))
GOTO labelOGR1
END IF
IF site0%(I,J)=10 THEN 'site is empty B site
 CALL ERASEOVAL(VARPTR(rectangle%(0)))
 CALL PENPAT(VARPTR(black%(0)))
 CALL PAINTOVAL(VARPTR(dot%(0)))
GOTO labelOGR1
END IF
IF site0%(I,J)=12 THEN 'site is O ads on B site
 CALL ERASEOVAL(VARPTR(rectangle%(0)))
 CALL PENPAT(VARPTR(black%(0)))
 CALL PAINTOVAL(VARPTR(dot%(0)))
GOTO labelOGR1
END IF
PRINT "error: in subgraphics with unknown site configuration"
REM shouldn't reach this point
labelOGR1:
 NEXT J
 NEXT I
 NEXT JM
 NEXT IM
 LOCATE 18
 PRINT maxrate$
 PRINT
 PRINT "hit any key to continue:"
 INPUT MX
 RETURN

submanual:
labelMAN:
CLS
PRINT "This is for base array =",I0span%,J0span%
PRINT "With # A sites =",NAbase%
PRINT "Input rows down first column, then second, then third,"
PRINT "A's are 0, B's are 10:"
basecheck%=0
FOR I=1 TO I0span%
 FOR J=1 TO J0span%
 INPUT site0%(I,J)
 IF site0%(I,J)=0 THEN basecheck%=basecheck%+1
 NEXT J
 NEXT I
NEXT I
CLS
FOR IM=0 TO (expander%-1)
FOR JM=0 TO (expander%-1)
FOR I=1 TO I0span%
FOR J=1 TO J0span%
 REM set coordinates for "ovals" (circles here) in PAINTOVAL calls
 rectangle%(0)=((JM*J0span%)+J-1)*12
 rectangle%(1)=((IM*I0span%)+I-1)*12
 rectangle%(2)=((JM*J0span%)+J)*12
 rectangle%(3)=((IM*I0span%)+I)*12
 dot%(0)=(((JM*I0span%)+J-1)*12)+5
 dot%(1)=(((IM*I0span%)+I-1)*12)+5
 dot%(2)=(((JM*J0span%)+J)*12)-5
 dot%(3)=(((IM*I0span%)+I)*12)-5
 REM show current maximum rate site configuration
 IF site0%(I,J)=0 THEN 'site is empty A site
 CALL PENPAT(VARPTR(black%(0)))
 CALL PAINTOVAL(VARPTR(rectangle%(0)))
 END IF
 IF site0%(I,J)=10 THEN 'site is empty B site
 CALL ERASEOVAL(VARPTR(rectangle%(0)))
 CALL PENPAT(VARPTR(black%(0)))
 CALL PAINTOVAL(VARPTR(dot%(0)))
 END IF
NEXT J
NEXT I
NEXT JM
NEXT IM
LOCATE 18
IF NAbase%<>casecheck% THEN PRINT "NOT THE CORRECT NUMBER OF A SITES'
PRINT "Enter 2 to revise, any other to accept:
INPUT MX
IF MX=2 GOTO _hel_N
RETURN

subexpand:
NAsite!=expander%*expander%*NAbase%
I0span%=I0span%*expander%
J0span%=J0span%*expander%
FOR IM=0 TO (expander%-1)
 FOR JM=0 TO (expander%-1)
 FOR I=1 TO I0span%
 FOR J=1 TO J0span%
 site%((IM*I0span%)+I,(JM*J0span%)+J)=site0%(I,J)
 NEXT J
 NEXT I
 NEXT JM
 NEXT IM
RETURN

suboutput:
OPEN fileout$ FOR OUTPUT AS #1
PRINT #1,fileout$
PRINT #1,""
PRINT #1,"Run tried to this point =",runnum!
PRINT #1,""
PRINT #1,"Initial state (I=random) = ",IX
PRINT #1,""
PRINT #1,"NN (0 means diagonal actions not allowed) = ",NN
PRINT #1,"BB (0 for O2 ads on AB pairs, 1=AB & BB, 2=AB & AA, 3=any "
PRINT #1, "pair, 4=BB pairs) = ",BB
PRINT #1,""
PRINT #1,"kcoadsorb = ",kcoadsorb!
PRINT #1,"kcodesorb = ",kcodesorb!
PRINT #1,"koxadsorb = ",koxadsorb!
PRINT #1,"kreact! = ",kreact!
PRINT #1,"yco! = ",yco!
PRINT #1,""
PRINT #1,"The total number of sites = ",NStotal!
PRINT #1,"The number of A sites = ",NAsite!
PRINT #1,"FAactual! = ",FAactual!
PRINT #1,"FBactual! (compare to FBsite! for IX = 1) = ",FBactual!
PRINT #1,"krxn! = ",krxn!
PRINT #1,""
PRINT #1,"Maxrate! is no. reactions per CO collision with an A site"
PRINT #1,"averaged over last 24 of 28 X 100 MC steps"
PRINT #1,""
PRINT #1,"Maxrate!",maxrate!
PRINT #1,""
PRINT #1,"The following is the site configuration, site0%(I,J),"
PRINT #1," listed as all J0span% J's for I=1, then all J0span% J's"
PRINT #1," for I=2, etc., up to I=I0span%"
PRINT #1,"I0span% = ",I0span%
PRINT #1,"J0span% = ",J0span%
FOR I=1 TO I0span%
 FOR J=1 TO J0span%
 PRINT #1,site0%(I,J)
 NEXT J
NEXT I
PRINT #1,""
CLOSE #1
RETURN

subpairpick:
 REM this picks a random pair of sites
 REM pick random site, site%(x,y)
 GOSUB subran0
 x=INT((Ispan%*RAN0!) + 1!)
 GOSUB subran0
 y=INT((Jspan%*RAN0!) + 1!)
 REM pick neighboring site
 IF NN=0 THEN GOTO labelDD
 REM the following 7 lines are for: diagonal neighbor actions are OK
 labelNN:
 GOSUB subran0
 xn%=x+INT(3*RAN0!)-1
 GOSUB subran0
 yn%=y+INT(3*RAN0!)-1
 IF xn%=x AND yn%=y THEN GOTO labelNN 'neighbor can't be itself
 GOTO label99
 labelDD:
 REM the following 18 lines are for: diagonal actions not allowed
 GOSUB subran0
 IF RAN0! < .5 THEN GOTO label99
 xn%=x
 GOSUB subran0
 IF RAN0! < .5 THEN
yn%=y+1
ELSE
yn%=y-1
END IF
GOTO label999

label999:
yn%=y
GOSUB subran0
IF RAN0!>.5 THEN
xn%=x+1
ELSE
xn%=x-1
END IF
RETURN

subcoadsorb:
GOSUB subran0
IF RAN0!<kcoadsorb THEN site%(x,y)=1
RETURN

subcodesorb:
GOSUB subran0
IF RAN0!<kcodeserbl THEN site%(x,y)=0
RETURN

suboxadsorb:
GOSUB subran0
IF RAN0!<koxadsorb THEN
 site%(x,y)=site%(x,y)+2
 site%(xn%,yn%)=site%(xn%,yn%)+2
END IF
RETURN

subrxn:
GOSUB subran0
IF RAN0!>=.4052345 THEN GOTO labelRXN
Nrxn!(KK)=Nrxn!(KK)+!
IF site%(x,y)=1 THEN site%(x,y)=0
IF site%(x,y)=2 THEN site%(x,y)=0
IF site%(x,y)=12 THEN site%(x,y)=10
IF site%(xn%,yn%)=1 THEN site%(xn%,yn%)=0
IF site%(xn%,yn%)=2 THEN site%(xn%,yn%)=0
IF site%(xn%,yn%)=12 THEN site%(xn%,yn%)=10
labelRXN:
RETURN

subgraphics:
FOR I=1 TO Ispan%
 FOR J=1 TO Jspan%
 REM set coordinates for "ovals" (circles here) in PAINTOVAL calls
 rectangle%(0)=(J-1)*12
 rectangle%(1)=(I-1)*12
 rectangle%(2)=J*12
 rectangle%(3)=I*12
 dot%(0)=((J-1)*12)-5
 NEXT J
NEXT I
dot%(1)=((I-1)*12)+5
dot%(2)=(J*12)-5
dot%(3)=(I*12)-5

REM update site graphics
IF site%(I,J)=0 THEN 'site is empty A site
 CALL PAINTOVAL(VARPTR(rectangle%(0)))
GOTO labelGR1
END IF
IF site%(I,J)=1 THEN 'site is CO ads on A site
 CALL PENPAT(VARPTR(black%(0)))
 CALL PAINTOVAL(VARPTR(rectangle%(0)))
GOTO labelGR1
END IF
IF site%(I,J)=2 THEN 'site is O ads on A site
 CALL PENPAT(VARPTR(white%(0)))
 CALL PAINTOVAL(VARPTR(rectangle%(0)))
GOTO labelGR1
END IF
IF site%(I,J)=10 THEN 'site is empty B site
 CALL PAINTOVAL(VARPTR(rectangle%(0)))
 CALL PENPAT(VARPTR(black%(0)))
 CALL PAINTOVAL(VARPTR(dot%(0)))
GOTO labelGR1
END IF
IF site%(I,J)=12 THEN 'site is O ads on B site
 CALL PENPAT(VARPTR(shade%(0)))
 CALL PAINTOVAL(VARPTR(rectangle%(0)))
 CALL PENPAT(VARPTR(black%(0)))
 CALL PAINTOVAL(VARPTR(dot%(0)))
GOTO labelGR1
END IF
PRINT "error: in subgraphics with unknown site configuration"
REM shouldn't reach this point
labelGR1:
NEXT J
NEXT I
RETURN

submaxgraph:
CLS
FOR I=1 TO Ispan%
FOR J=1 TO Jspan%
 REM set coordinates for "ovals" (circles here) in PAINTOVAL calls
 rectangle%(0)=(J-I)*12
 rectangle%(1)=(I-I)*12
 rectangle%(2)=J*12
 rectangle%(3)=I*12
 dot%(0)=((J-1)*12)+5
 dot%(1)=((I-1)*12)+5
 dot%(2)=(J*12)-5
 dot%(3)=(I*12)-5
REM show current maximum rate site configuration
 IF maxsite%(I,J)=0 THEN 'site is empty A site
 CALL PENPAT(VARPTR(black%(0)))
 CALL PAINTOVAL(VARPTR(rectangle%(0)))
 GOTO labelMGR1
 END IF
 IF maxsite%(I,J)=1 THEN 'site is CO ads on A site
 CALL PENPAT(VARPTR(black%(0)))
 CALL PAINTOVAL(VARPTR(rectangle%(0)))
 GOTO labelMGR1
 END IF
CALL PAINTOVAL(VARPTR(rectangle%(0)))
GOTO labelMGR1
END IF
IF maxsite%(I,J)=2 THEN 'site is O ads on A site
CALL PENPAT(VARPTR(black%(0)))
CALL PAINTOVAL(VARPTR(rectangle%(0)))
GOTO labelMGR1
END IF
IF maxsite%(I,J)=10 THEN 'site is empty B site
CALL ERASEOVAL(VARPTR(rectangle%(0)))
CALL PENPAT(VARPTR(black%(0)))
CALL PAINTOVAL(VARPTR(dot%(0)))
GOTO labelMGR1
END IF
IF maxsite%(I,J)=12 THEN 'site is O ads on B site
CALL ERASEOVAL(VARPTR(rectangle%(0)))
CALL PENPAT(VARPTR(black%(0)))
CALL PAINTOVAL(VARPTR(dot%(0)))
GOTO labelMGR1
END IF
PRINT "error: in subgraphics with unknown site configuration"
REM shouldn't reach this point
labelMGR1:
NEXT J
NEXT I
LOCATE 18
PRINT fileout$;
PRINT "Total number runs started = ",runnum!
PRINT "Current optimal surface (big black dots are A sites, small dots"
PRINT "are B sites)"
PRINT "Max. Rate =",maxrate!
RETURN